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ABSTRACT 

 This Major Qualifying Project is intended to solve electrical and mechanical issues with 

voice controlled release systems used in shooting sports.  This report describes the networking 

portion of the system containing wireless communication, state machine logic, software 

controlled data flow and integrated power management to improve upon current voice controlled 

release systems based on user requirements. 
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INTRODUCTION  

ABOUT THE PROJECT 

 Shooting sports, such as trap shooting and skeet shooting, date back to the mid 19
th

 

century and are popular in many countries. This project focuses on trap shooting and the 

equipment used by shooters and shooting clubs. In particular, this project seeks to improve the 

voice-controlled release systems that have become popular in different clubs around the United 

States, using the Canterbury system as a model this report seeks to improve. This report explores 

the networking aspect of an improved implementation, modeled using several microprocessor 

systems and wireless modules to simulate this improved product.  

BACKGROUND 

 In order to understand the project it is necessary to understand the background of the 

sport, including origins, evolution, variety, necessary equipment, rules, and procedures for game 

play. Also included in this section are current mainstream and alternative implementations of 

voice controlled release systems for examination. 

TRAP SHOOTING 

 The sport of trap has many variations of game play depending on region and available 

resources.  The premise of each game is to break clay disks by firing at them using a shotgun. 

The goal of the game is to break as many targets as possible. In older variations the targets were 

live pigeons while the modern game is played with clay disks called by the same name (clay 

pigeons).  This project will primarily deal with American trap as opposed to many of its other 

styles.  American Trap is governed almost exclusively by the rules of the Amateur Trapshooting 

Association.
1
 

 To play the game in its modern form requires five firing rows, called lanes or runs, as 

well as a trap house as oriented in Figure 1.These rows are located at standardized distances from 

the trap house starting at 16 yards.  

                                                             
1
  The full Amateur Trapshooting Association rulebook is available on the online at the ATA website at 

http://www.shootata.com under About the ATA. 
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FIGURE 1: GENERIC TRAP FIELD SETUP 

 The three usual games within the sport of trap are Singles, Handicap, or Doubles.  For 

singles, all shooters are located at the 16 yard distance. In their lane, each shooter is normally 

provided a total of 5 targets; however it is also possible to shoot 10 targets per post.  Handicap is 

similar to singles; however the firing distance can range from 16 yards to 27 yards.  In both 

singles and handicap the clay leaves the house in a random direction as defined by the ATA 

rulebook. In doubles, each shooter attempts to break 2 targets which leave the house 

simultaneously. In addition, for this game the position of the clays leaving the house is fixed and 

can be considered to follow the same flight path on every throw.  In general, in a squad shooting 

handicap no shooter is ever more than 3 yards from another in order to minimize the muzzle 

shockwave.  The typical number of targets thrown in a handicap or singles round is typically 25 

per shooter (50 per round of doubles). Several rounds (called sub-events in the ATA rules) will 

make up an event which typically consists of 100 targets per shooter (however 50 and 200 target 

events are also common). 

 

TYPICAL SHOOTING SEQUENCE 

 In order to play a game, a group of 1 to 5 shooters, called a squad, assume positions on 

the trap field with each shooter assigned to a particular shooting post, or station.  Targets are shot 

in succession with each shooter firing a total of five shots from each station for a total of 25 shots 

per shooter, per round.
2
  At the end of each subset of 5 shots, the shooters rotate shooting posts 

until each shooter has attempted to shoot 5 (or 10 in the case of doubles) targets from each 

station.   This pattern of firing can be seen in Figure 2: Rotational Firing pattern.  Each shooter 

                                                             
2
 25 shots per shooter per round is typical, however there are common variations such as shooting 10 rounds per 

shooter per post, shooting 5 pairs of targets per post (10 shots per post taken two at a time when shooting 
doubles), and variations on doubles where shooters will shoot 2, 3, 2, 3, 2 pairs (24 targets) or 3,2,3,2,3 pairs (26 
targets). 
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can be considered legal when that person can be expected to call for the next clay pigeon.  This 

includes the next person on the line as well as the potential for the original shooter to call again 

due to one of the failure modes and sources. 

Lane 1 Lane 2
Lane 3

Shooter 2

Lane 4

Shooter 3
Lane 5 

Lane 1

Shooter 1

Lane 1
Lane 2

Shooter 1

Lane 3 Lane 4

Shooter 2

· Lane 5 

· Shooter 3

Lane 1

Lane 1 Lane 2
Lane 3

Shooter 1
Lane 4

Lane 5 

Shooter 2

Lane 1

Shooter 3

 

FIGURE 2: ROTATIONAL FIRING PATTERN 

 For a typical shooting sequence, one shooter follows the previous until the pattern would 

repeat itself, at which point the initial shooter starts the sequence again.  Several conditions exist 

in which a shooter will call for multiple targets in a single pass; these are shown in failure modes 

and sources. 

GAME HARDWARE 

 There is very little machinery required to play the game, however it is important to know 

what these pieces are.  An essential piece of hardware is a trap machine, which comes in two 

varieties: automated and manual.  A shotgun could be considered additional hardware however 

the system designed by this Major Qualifying Project is completely independent of this element 

in all forms. 

MANUAL LAUNCHERS 

 Before automated systems, the trap house was activated manually via a lever and rope 

system. The switch from manual to automated systems involved a financial investment by trap 

shooting clubs.  In smaller establishments the $3,000-$6,000 cost for an automatic trap machine 

is a substantial investment.  However, in order to run a field with a manual launcher the presence 

of 2 volunteers is required.  One member is used to load the clays and the other is used to 
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activate the machine typically with a pushbutton.  These machines are normally spring driven 

and targets are loaded manually for each launch.  

AUTOMATED LAUNCHERS 

 The trap house is a concrete structure that surrounds the trap machine shown in Figure 3, 

typically buried partially underground, launching targets using a hydraulic lever arm.  The trap 

house itself is governed by its own physical dimension requirements as to meet the ATA 

rulebook.   These dimensions are laid out in Section XIII, Article B of the ATA rulebook as 

quoted below: 

B. TRAPHOUSES 

Traphouses must adequately protect the trap loaders and shall not 

be higher than necessary for that purpose. It is recommended that 

traphouses constructed after September 1, 2003 shall conform to 

the following specifications: 

 

1. Length not less than 7 feet, 6 inches, nor more than 9 feet, 

6inches. 

 

2. Width not less than 7 feet, 6 inches, nor more than 9 feet, 6 

inches. 

 

3. Height not less than 2 feet, 2 inches, nor more than 3 feet, 0 

inches, the height to be measured from the plane of the number 3 

shooting position. It is recommended that the throwing surface 

(throwing arm or plate) of the trap machine be on the same level 

as that of Post 3 and the target height setting pad. 

 

 

FIGURE 3: AUTOMATED TRAP MACHINE 
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 The trap machine is triggered by a relay connection through a twist pin within the trap 

house.  That twist pin can be connected to a variety of sources; in some setups it is triggered by a 

manual push button, while in some systems it is triggered using a voice release system. 

CURRENT VOICE RELEASE SYSTEMS 

 Though non-essential, it is common practice for fields and clubs to use voice release 

systems for convenience.  This project is primarily based upon the Canterbury, the most popular 

voice release system with a few others taking distant second.  The Canterbury is implemented in 

two variations: wired and wireless, both accomplishing the same goal only in slightly different 

manners.  Another system that has been popular in the past is the Clay Mate, and there is an 

upcoming system called ERAD. 

THE CANTERBURY  

The construction of the Canterbury is composed of 3 physical parts in both the wired and 

wireless designs.  In Figure 4 the functional block diagram of a wired Canterbury can be seen. In 

the wired Canterbury the system user end is a loudspeaker, which functions as semi-directional 

microphone to receive input from the shooter.  Those signals are taken to the second stage of the 

wired Canterbury and processed to determine if a valid call has been received.  The process by 

which the Canturbury determines the difference between noise and a call is unknown.  Based 

solely on observation during operation, it can be suggested that the “brain box” performs a rough 

low pass filter to determine an acceptable firing condition.    

Canterbury 

Microphone I

Canterbury 

Microphone II

Canterbury 

Microphone III

Canterbury 

Microphone IV

Canterbury 

Microphone V

Brain Box Control Box Trap Machine

 

FIGURE 4: CANTERBURY SETUP 

 The last piece of the Canterbury wired system is the control box that sits within the trap 

house.  It is connected to the brain box by a cable and its primary job is to take a fire signal from 

the brain box and tell the clay thrower to launch, with a secondary function to isolate the 

triggering mechanism from the rest of the system for a degree of electrical protection.  This 

system is not complicated to install or maintain beyond ordering replacement parts. 
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FIGURE 5: WIRELESS CANTERBURY LANE ASSEMBLY 

 The wireless Canterbury system is similar to the wired system with only a few key 

differences. As opposed to the wired system where the microphone sends call signals directly to 

the “brain box”, in the wireless system each speaker, referred to as a microphone transceiver by 

Canterbury shown in Figure 5,  is fed into a plastic box attached to the stand with the 

microphone, which then relays the signal wirelessly to the trap transceiver.
3
 It is unclear whether 

the decision engine is within the microphone stand or in the trap transceiver positioned within 

the trap house. Assuming it follows the same procedure and tests for threshold and the decision 

engine is within the first stage, the “brain” box portion of the wireless system is an enclosed 

transceiver positioned at the front of the lanes that relays that information to the trap house. 

 After the signal is transmitted, it is fed into another hop-along point at the trap house 

which receives the signal and transmits it to the control unit, which then activates the trap 

machine.  Other than eliminating the wired portion of the system, the wireless provides a small 

amount of additional information via lights located on the transmit receiver boxes.  

THE CLAY MATE 

 The Clay Mate is a lapel system similar in design to this project that is used in limited 

quantities, less commonly used than the Canterbury.  It seemed to accomplish many of the goals 

of the Canterbury as well as providing a few extra features such as the ability to play “skeet”, 

another style of sport shooting, and a counter for how many targets were launched.  In addition 

the Clay Mate had an extra station per field in which you could manually control the launches as 

seen in Figure 6 as well as provide different firing styles easily. 

                                                             
3
 Specific terms used in this section are those used by the description of the system within the Canterbury manual 

available on the Canterbury 
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FIGURE 6: CLAY MATE CONTROL STATION 

THE ERAD  

 The last system we will examine is the ERAD, a potential competitor and recent system 

with the same capabilities as this MQP‟s proposed one.  Limited public information bounds what 

can be discussed but examining promotional materials ERAD looks like an equal product in 

everything but price.  Instead of speakers, users use credit card sized modules, equipped with a 

12 digit keypad and a liquid crystal display, carried on their person and transmitted to the house 

to set off targets. 
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PROJECT EXPLANATION AND GOALS 

 This section will provide the baseline for deriving the fundamental goals of this Major 

Qualifying Project. It includes the conversions of real problems into quantifiable solutions by 

means of the system architecture and implementation.  

DATA GATHERING 

In order to better define the problems to be solved by this current Major Qualifying 

Project, and to determine shooter expectations, a large amount of information was collected 

through various mediums.   This information was gathered in three main ways: player input, 

online reference and personal observation.    The majority of input gathered was via personal 

shooter experience therefore problems and suggestions are not independent of bias. 

SHOOTER-SUBMITTED PROBLEMS 

 Several shooters as well as club operators have problems with the ability to diagnose a 

failure with the existing systems quickly to restore its operation.  The primary reasons for system 

malfunction are hardware fatigue and failure due to use and environmental conditions.   

Particularly in the case of the wired Canterbury system there are several wires leading to and 

from various components as shown in Figure 7 Figure 7.  In the wired Canterbury, if any 

particular connection is faulty or non operational it will lead to a stop in play, because each 

station is used even if there is only a single shooter.  In the case of a wire failure, the unit in 

question is replaced with a different, functioning wire and the malfunctioning wire is repaired.  

Each wire in the Canterbury system is similar to that of a XLR or microphone cable with some 

weatherproofing to withstand some environmental conditions.  In additional to the wire failure 

from stress on the cable, a problem noticed by shooters and operators are the connectors.  

Standard CBC microphone style connectors are subject to easy penetration by water.  If a club 

has the need to replace a cable, in order for the system to be operational with 1 microphone 

transceiver per lane an overhead unit must be kept ready.  Theoretically, if all 5 cables were to 

fail the club would need to stock 10 cables total for the system and 5 to replace when the 

originals failed. This is an additional overhead cost to the club applying the same concept for 

every element within the system. 
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Microphone MicrophoneMicrophoneMicrophoneMicrophone

Brain Box

House Relay Trap Machine

 

FIGURE 7: WIRE ORIENTATION 

 Dealing directly with the input portion of the Canterbury system, shooters reported a 

probability of the system being inadvertently triggered by banter on the line or other people on 

adjacent trap fields.  In addition to the incorrect firing of a machine, this condition confuses 

shooters as to who is attempting to break that target.  The cost, as mentioned earlier in this 

section, is deferred to the club as no shooters will be attempting to break this target or claim 

responsibility.  The other complaint presented with the current system is the inability to play 

other variations of shotgun sports, however this project will not attempt to find a solution to 

those game play issues. 

 In order to gather information beyond the members of the Wallum Lake Rod and Gun 

Club, a popular website for trap shooters was used.  Trapshooters.com is a forum style website 

dedicated to shotgun sports, culture, and member interests as well as serving as the second 

medium for data collection.  By making several posts regarding people‟s opinions on the 

Canterbury and other voice controlled release systems, a lot of information was debated among 

shooters as well as operators.  The first major conclusion of the online submissions was the 

opinion from many shooters that that the systems in question responded to a particular command 

or utterance.  The most commonly used call is the word “pull,” however via all 3 mediums 

several dozen possibilities were collected including: “bird,” “call,” “fire,” “shoot,” “go,” and 

growls of many varieties. 

 The fact that many people believed the system responded to a particular word caused 

them to distrust the system.  Also, in a related submission, people came to the conclusion that a 

shooter with a high or low pitched voice would be less likely to reliably trigger the machine. 

Most often this was suggested in the case of women and children, however from personal 

experience I cannot confirm this behavior.  These shooters would often not trigger the machine 

on their first attempt according to many of the posters on trapshooters.com.  Also online there 

was a variety of people discussing the topic outside topics related to this project including 

enthusiasts of other systems such as ERAD. Club operators had concern with the battery life of 

any wireless unit as they found money lost in batteries quickly adding up.  This was due to a 

need to replace as well as the increased cost of replacement cells. 
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OBSERVATIONS 

From personal observations there can be additional problems worth mentioning.  The 

physical orientation of the Canterbury system can lead to 3 problems: tipping, tangling, and 

placement hazards.  Each microphone station for shooter input is naturally top heavy as shown in 

Figure 8.   The wired version (not pictured) is even more top heavy, with some tension being 

applied from the back of the microphone.  Dependent on location, each stand can tip over due to 

wind and or accidental shooter contact, and this can lead to damage to different elements within 

the Canterbury in the form of broken casings, extra pull on wires as well as connection 

deformation. In addition, when a microphone tips over it causes a stop in play and potentially 

accidental firing of the trap machine.  One solution to this taken by the Wallum Lake Rod and 

Gun Club is to attach 2 Lb lead weights to the base of the stands in order to prevent them tipping, 

however this solution was not thought of by the manufacturer. 

 

FIGURE 8: CANTERBURY WIRELESS LANE STATION 

 In the case of the wired Canterbury there is a major concern with tangling after a day‟s 

worth of play.  Due to the fact that the Canterbury‟s are stationary in relation to the firing 

distance of the shooter, they seem to be constantly moved within a single game of handicap or 

even singles depending on preferences each shooter has for microphone position.  Each 

microphone stand, when moved, creates the possibility of tangled wires as well as creating pull 

on the connections. When the system is disassembled at the end of play, the tangled wires are 

often a hassle to the operator of the field.  The last of the physical orientation problems was the 

placement of the system during inclement weather.  In particular, snowy weather has pieces of 

the system placed where one must trudge the powder in order to set the system up.  In the case of 

the wired system this would typically mean placing the brain box buried in the snow in front of 

the lanes with it possibly sinking into the weather testing its weatherproofing.  For rain the 

speakers can often become waterlogged if their small drain hole is blocked or missing. 

FAILURE MODES AND SOURCES 

 There are very few failures modes in the normal operation of the system.    The failure to 

launch a legal target when one is expected or the launches of a target when none is expected are 
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the most obvious failure modes. The third failure mode is a stop in play when the system fails to 

respond to any input or behaves without pattern or logic.  There are several sources for those 

failure modes in the Canterbury system. 

 In the case of a failure to launch, the flow of the game and concentration of the shooters 

are disturbed.  For instance, a shooter playing a round of singles calls for a target and waits in 

firing position to see the clay pigeon leave the house.  If the clay pigeon does not appear within a 

reasonable time the focus is broken and the shooter may reposition and call again.  If you were to 

predict the location of the next shooter not knowing the machine failed to produce a legal target 

the prediction would be incorrect. In the case where a clay pigeon within the machine is broken 

before or while leaving the trap house, it is not a legal target therefore equivalent to no clay 

leaving the trap house.  Figure 3 in Automated Launchers shows the rotating drum containing 

several hundred clays.  If loaded unevenly, slots within the drum can run out sooner than others 

leading to empty slots.  These empty slots, even if the voice controlled release and trap machine 

are working entirely as intended, would cause a failure to launch legal clay. 

 The second failure mode is launching a clay pigeon when no intentional triggering 

condition is present.  This condition is larger in importance to the owners and operators of the 

club fields as it directly translates into profits lost and costs increased.  In the Canterbury it 

appears any sufficiently loud source is a viable trigger.  This is a major problem due to the fact 

noise sources are largely available on site.  For example fields are often located adjacent to one 

another in various arrangements with no more than a few dozen yards between them shown in 

Figure 9.  While these distances are not standard across all clubs the fact remains that the 

possibility of cross field noise is highly likely. 

X Yards

 

FIGURE 9: DISTANCE BETWEEN SHOOTERS 

 The third failure mode is the event of a system performing not to design.  The system 

behaves radically regardless of input but also could mean a complete lack of response.  This is a 

stop in play condition (SiP) where all actions are purely in effort to return the system to an 

operational status.  This is caused by complete hardware failure or user incompetence. 

IRREGULAR SHOOTING CONDITIONS 

 Several conditions exist where an uncommon event takes place.  These events have the 

potential to change the flow of play without technically having a failure in the system anywhere.  

If a shooter enters the squad at some point after the round has started and each person in the 

initial squad has shot at least once; they would disturb the expected order as well as misrepresent 

the total number of shooters on the field.  Another condition is a shooter leaving the round before 
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its completion.  This can happen when the shooter has another urgent matter or possibly 

equipment failure.  Another irregular shooting condition is the immediate shutdown of a field for 

weather or other reasons, while the system is not at fault it still may be in a condition to trigger 

the failure modes. 

PROBLEM STATEMENT  

 The Canterbury, as with many other voice controlled release systems, fails to solve 

many of the problems associated with controlled flow game play as well as simply setup and 

maintenance. Networking solutions being developed in this project will be combined with a 

signals portion as to build a complete solution in another implementation.  Below are the 

problems to be solved by the system: 

· Reduce number of accidental fires due to noise and incorrect shooter calls 

· Maintain accounting information for tracking 

· Allow for remote control of a field by a master administration station 

· Implement a System Design which requires less setup and maintenance 

· Provide for an affordable end result based on progress in this project 

DERIVED DESIGN REQUIREMENTS 

  This project aims to solve the networking problems with this system through a 

combined approach of wireless communications, state machine logic and administrative control.  

In order to achieve the solutions for the issues listed above in the problem statement a variety of 

system architecture requirements must be defined.  The majority of the problems defined above 

can be solved by combing elements within a system design.  The system will consist of a unit 

implementing wireless communications, allowing for the management of multiple fields, capable 

of handing any number of different actions in the game play, and establishing system 

architecture for simplicity and effectiveness. 

PROPOSED SOLUTION 

 In order to satisfy the design requirements for this project the current, previous, and 

upcoming systems were analyzed.  These systems each carried their own disadvantages and 

operation failures, and by combining the system‟s best attributes this project came to a feasible 

solution.  This system can be separated into 2 distinct categories: Networking and Signal 

Analysis.  This report will cover the networking responsibilities from the point past the 

recognition of a signal to the consequences of that data fully propagated through the system. The 

system will consist of 3 physical subsections, a lapel unit, a transceiver relay (located at the trap 

house) and an administration center as system architecture in order to accomplish its goals. The 

organization of these physical subsections in the proposed system is shown in Figure 10 as 

would be seen in a multiple field installation. 
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 The first, the “Lapel Unit”, acts as a replacement for the microphone transceiver in the 

Canterbury system.  As opposed to the fixed positions of Canterbury system, the Lapel Unit will 

be attached to each shooter.  This unit will carry a wireless transceiver in order to eliminate the 

possibility of wire tangling and to reduce bulk and weight to a few ounces. This unit will be 

responsible for the signal determination, namely all signal processing and source identification.  

The wireless transceiver in this implementation is used as a transmitter, as receiving capabilities 

are unnecessary in this portion of the system. 

 The second unit within the system is the “Transceiver Relay” positioned at the trap 

house.  This unit replaces the control box of the Canterbury and serves the same purpose with 

additional capabilities.  This unit is responsible for activating the trap machine, serves as the 

main logic control of the system, and serves as a node for the accounting within the system.  Due 

to its location it will need to be powered and protected to meet its surroundings.  ATA rules state 

that a trap house must remained undamaged when shot at minimum range of 16 yards, the same 

applies for the Transceiver Relay module.  In a later implementation of this project a protective 

covering can be designed as to protect the system at the house during use with live, not 

simulated, inputs.  This design characteristic is one not solvable by electrical means and 

therefore should be considered non-material in relation to this project. 

 

FIGURE 10: PHYSICAL SYSTEM ARCHITECHTURE 

 The third unit in the system is the administration control which adds a new element when 

compared to the Canterbury.  This unit is a global replacement for the scorekeepers‟ transceiver 

within the Canterbury architecture. As opposed to having a 1:1 ratio with the Canterbury Control 

Box, the Administration Control Unit has reign over all Receiver Relay units in that subset of 

fields.  This unit will provide game manipulation actions as well as accounting features to better 

inform the users of their status.  Discussed in the Future work section is the possibility of adding 

a hardware unit so that each field has a scorekeeper‟s control.  This hazard relates to the play of 

the game during competition but was not a concern when investigating the problems with the 

current voice controlled release systems.  
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PROTOTYPE HARDWARE A RCHITECTURE 

 This project is supported by very simple hardware architecture in which the system must 

be capable of several actions.  The hardware architecture developed for this project is only meant 

to satisfy the networking constraints with signal processing being used as a placeholder in 

Error! Reference source not found. below. The system must be capable of external 

communication to a wireless module to be used as a node within the system as a whole.  This 

communication is essential to implement the system as described in the proposed solution 

section.  In addition to external communications, the receiver relay unit will need to have general 

purpose input/output pins available for the control of external devices including but not limited 

to the trap machine.  

Signal Processing

Microcontroller

Wireless 

Communication

Lapel Unit

Wireless 

Communications

Microcontroller

Receiver Relay

GPIO

Wireless 

Communications

Microcontroller

Administration Center

 

FIGURE 11: HARDWARE BLOCK DIAGRAM 

 

  In addition to external communication and control of peripherals, the system needs to 

receive input.  This input is used to simulate the result of the signal portion of the system as well 

as provide controllable menus for the administration center.  Two hardware requirements of the 

wireless module are the ability to transmit from the farthest lane position to the trap house where 

the receiver relay unit is located, and transmit data at a rate fast enough to reach the 

administrative center without losing information.  In the lapel unit, where battery life is required 

to last multiple months on low duty cycle use on a daily basis, a low power solution has to be 

adopted. 

 Essentially, the hardware in each unit of the system is made of an operational 

microcontroller as well as a wireless module with some additional inputs on the lapel and 

Administration units of the system. Instead of developing a microcontroller platform on which to 

base our software elements a viable alternative was available.  Some additional hardware circuits 

must be developed in a full scale production in order to perform voltage transformation and 

proper input configuration. 
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  While only the administration center requires a display for the proof of concept of the 

system, an LCD is available on the chosen hardware on each unit to display various state 

changes and user firing information without digital I/O measurements.   

 Using the MSP430-449STK2 Development kits available in the electrical and computer 

engineering shops, we were provided all required attributes required by the hardware architecture 

as described above and pictured below in Figure 12.  Retail wireless transmitters are very 

common in their construction and interfacing; most use serial data streams at fixed/standard baud 

rates. Several attributes are helpful in addition to being a functional wireless module which helps 

satisfy our system requirements.  For instance an operating voltage which a transceiver runs 

should have an intersecting range with the operating voltage of the microcontroller.  A major 

concern for the Lapel Unit of the system being developed is power, and therefore we should be 

able to reduce its draw on the power supply.  This project incorporates the Xbee Xb-24 

Transceiver from Digi in order perform wireless transmission of data. 

 

FIGURE 12: MSP430-449STK2 DEVLOPMENT KIT 

MSP430 DEVELOPMENT BOARD 

 The MSP430 Development kit uses the MSP430F449 160 pin controller to operate its 

many peripherals.  The peripherals include 4 momentary pushbuttons, rs-232 port, JTAG 

Debugging Interface, Buzzer, 7 character LCD display, as well as 2 extension headers including 

access to the UART0 Rx/Tx pins.  This module uses one of several programming software 

packages including IAR Kick start used for this project.  Due to these development kits being 

used in ECE2801: Embedded System Design as well as several authorities that are available on 

the use of these controllers, they were chosen for use in this project. 

As seen in the above Figure 12 the MSP430 development kit contains pushbutton inputs 

that can be used in order to simulate the result of the signals portion of the system attached to 

pins P3.4 -P3.7.  In addition these buttons will serve as the source of menu selection when using 

the boards as an administration unit within the system.  On each extension header of the MSP 

development kit there is a pair of UART pins capable of streamlined serial transmission.  This 

capability will serve as the external communication to the XB-24 wireless modules by Digi 

discussed in the XB-24 Wireless Module section of this report.  The alternative to which is to 

have the system implement a software UART substitute with timers and pin interrupts. 
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In terms of GPIO pins available on the MSP Development board there are 17 including 

the UART pins this system will use to interface with its wireless module.  This number is low 

compared to the maximum possible 48 GPIO pins.  This system will only make use of 2 GPIO 

pins: one for the sleep mode of the wireless module and one for the output to the trap machine to 

control the release of clay pigeons.  

 

 XB-24 WIRELESS MODULE 

The choice to use Xbee wireless transceivers for serial transmission was derived from 

requirements shown in section Prototype Hardware Architecture.  The transmitters in the lapel 

units must operate in the range of 2.1-3.6 Volts, and must have a low power consumption (sleep) 

mode.  In addition to satisfying the operating voltage and transmission rate there are several 

advantages to the using the Xbee modules that satisfy some of the software requirements listed in 

the Software System Architecture section.  In addition to the standard features of any wireless 

transmitter the Xbee provides two beneficial features: randomly seeded retransmit times and an 

internal addressing network that will work in conjunction with a software addressing mode.  

 

FIGURE 13: STANDARD XBEE MODULE 

  Each Receiver Relay as well as the administration station will use both the transmit and 

receive functions of their wireless serial links.  In order to configure the Xbee modules, Xbee 

manufacturer Digi provided software that allows for direct access to all registers on the wireless 

module which control its behavior.   This software provides a high level of configurability for later 

updates to this project however in the current implementation we will be using only a few registers 

shown in Error! Reference source not found.. 



22 | P a g e  
 

 

TABLE 1: XBEE REGISTER CONFIGURATION 

Register Label Purpose 

Retries RR Set number of retries the modem will execute in 

addition to the 3 retries provided by the 802.15.4 MAC. 

For each XBee retry, the 802.15.4 MAC can execute up 

to 3 retries. 

Source Address MY Set the 16-bit source address for the modem. Set MY = 

0xFFFF to disable reception of packets with 16-bit 

addresses. 64-bit source address is the serial number 

and is always enabled. 

Destination Address (Low) DL Set/read the lower 32 bits of the 64 bit destination 

address. Set the DH register to zero and DL less than 

0xFFFF to transmit using a 16 bit address.  

0x000000000000FFFF is the broadcast address for the 

PAN. 

Sleep Mode SM Set/read sleep mode: Pin Hibernate is lowest power, Pin 

Doze provides the fastest wake up, Cyclic Sleep 

Remote with or without pin wake up. Sleep Coordinator 

setting is for SM parameter compatibility with version 

106; ATCE should be used going forward. 

 

 Xbee XB-24 units in their simplest implementation are just a wireless replacement for an 

RS-232 serial link.  However, the XB-24 has many layers of complexity as well as capabilities 

similar to that of a microcontroller. The most important registers in dealing with the goals of this 

project are the Source/ Destination Registers as well as Xbee Re-tries and Sleep Cycle attributes.  

COMBINED XB-24/MSP430 ATTRIBUTTES 

Using the MSP430 Microcontroller and the XB-24 wireless modules the overall system 

can be run using a supply voltage no lower than 2.1V, the lower limit as recorded for reliable 

operation of the XB-24 datasheet. In order to supply the necessary battery life as defined by the 

user requirements as well as convenience for cell availability and cost, the system will operate at 

3V using two AA or AAA sized battery cells.  
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FIGURE 14: MSP EXT/XBEE CONNECTIONS SOFTWARE 

In figure 14 we can see a schematic between the MSP extension header and the relevant 
Xbee Pins. This unit represents all 3 subsections within the system as the Administration and 
Transceiver units will not require pin to drive their XBEE’s wireless power mode as they will be in a 
constant on state. In addition to that P3.0 in the lapel and administration units will be disconnected 
as they have no function which would change the level on that pin. 
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SOFTWARE SYSTEM ARCHITECTURE 

The following sections detail the software architectures used in the development of an 

improved voice control release. These base concepts will allow for a software implementation to 

solve the majority of the problems with the current voice controlled release products on the 

market.  Similar to the prototype hardware architecture, the software architecture diagram can be 

found below in Figure. 
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FIGURE 15: SOFTWARE ARCHITECTURE FLOWCHART 

The software architecture from user input to the final propagation of data is essential for 

the system in order to accomplish its goals over the long term.   

POWER MANAGEMENT 

Starting with the power management software architecture, the main way the system can 

conserve energy is by entering low power modes for peripherals.  In software this means 

enabling and disabling power consuming units with externally controlled sleep modes.  This 

would be ideal for the wireless module as it consumes roughly 2 orders of magnitude more 

current, shown in the software critical issues section.  
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XBEE PARAMETER JUSTIFICATION 

 The first critical register is the retries (RR) register which controls the number of retries a 

module attempts to transmit the applicable data and receive a confirmation of receive signal.  In 

addition to the 3 attempts an Xbee module automatically will try, the Xbee will perform 

additional attempts to successfully transmit data based on the value of the RR register as seen in 

Equation 1 below. 

EQUATION 1 

                                                         

 This register is set to its maximum value in order to decrease the chance for a corruption 

of the data. If two shooters trigger the system at the exact same time, the retransmit time for each 

of their data is reseeded randomly therefore making conflicting data signals highly unlikely for 

the additional repetitions.  

 The source and destination registers define the personal identifications and expected end 

unit for any particular Xbee unit. The source register identifies the source of a transmission and 

should be paired with the destination register on the receiving unit for correct operation shown in 

Figure. 
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‘B’
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‘A’

Lapel Unit Transceiver Relay

 

FIGURE 16: SOURCE-DESTINATION REGISTER RELATIONSHIP 

 This is important because only transmissions from addresses listed in a chips destination 

register will receive the end packets out of their Dout.  This allows for the limiting of information 

per field without additional cross field data contamination safeguards.  This aspect of the Xbee 

allows for the use of its internal addressing in combination with software addressing into a 2 

stage addressing system.  

  The last important register is the sleep cycle register allowing for the system to enter a 

low current sleep mode for power efficiency.  This register can be configured in both a pin 

activated sleep mode as well as a cycle style where it wakes on a periodic schedule.  This register 

is configured for pin sleep in its lowest current drawing form. 
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USER-ENABLE LOGIC 

The User Enable Logic is the core decision-making software once a trigger condition has 

been received.  This software resides within the “Transceiver Relay” portion of the system at the 

trap house. The User Enable Logic‟s primary job is to take a user‟s attempt to activate and 

determine whether it is a legal shooter, then, if legal, trigger the trap machine.  The User Enable 

Logic is based upon the expectation of the users to fire in a sequential order.  In order for the 

logic to keep an account of the legal shooters at any moment it must maintain the order of 

shooters as well as any changes to that order and stalls in the pipeline of expected events. This 

system uses a state machine as the architecture for which to base this User Enable Logic.  It is 

intended to determine all possible outcomes of the next shooter and has a pre-determined list of 

actions to compensate for any user whom triggers the trap machine. 

Z: All inputs open

A: Incomplete Array

B: Complete Array

C: Exception Condition

Z

C

A B

AP10

AP13

AP1

AP2

AP3

AP4 AP5

AP6
AP7

AP8

AP12

Reset

AP9 AP11

   

FIGURE 17: USER ENABLE LOGIC STATE MACHINE 

STATE Z 

Once the state machine has been initialized to a reset condition it is known as Z or Zero 

State, a state which only serves to be a base point for the rest of the state machine.   State Z exists 

where all inputs are open; the system allows any shooter assigned to that field to successfully 

trigger a target.  No particular user has priority when it comes to the order of play.  Because of 

this any shooter whom calls in state Z will cause a clay pigeon to be thrown.   The state diagram 

of all conditions State Z where it would be changed to another state is seen below in 

Z

C

A

AP10

AP1

Reset

 

Figure. 
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FIGURE 18: STATE Z DIAGRAM 

When a user‟s „call‟ is received by the state machine, it then uses AP1 which corresponds 

directly with the first shooter within a squad.  AP1 is the only user driven action path which can 

be executed from state Z.  Since there are no inclusive action paths that are available from state 

Z, the state machine will terminate in a different state then in started after a reset condition.  

Action Path 10 will be discussed later in this chapter due to its relationship to state C. 

STATE A 

 State A is used under the incomplete array category; it is used when there are 

indeterminate amounts of shooters yet to fire their first shot.  Under this condition the system can 

only consider the total amount of shooters in a squad final in the case of a repetition in the initial 

shooter which originally caused the change from state Z or a full 5 person squad. 

A B

AP2

AP3

 

FIGURE 19: STATE A DIAGRAM 

 

Figure above is a diagram of all conditions and action paths involving State A 

excluding those involving state C. The main function of State A is to acquire all users 

and establish a shooting order before moving into State B.   Action Path 2 functions to 

fill the array with all shooters on the line, for that reason state A has access to action 

paths which enter state B when the array is complete.  Action Path 3 detects either a full 

squad or the repetition the initial shooter therefore signifying the completion of the 
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squad.  AP3 allows for the expected user in the typical shooting sequence because of its 

transition to state B. 

STATE B 

 State B is the most major of the states within the machine.  It handles the most events as 

well as is responsible for manipulation of the expected next shooter in the case of a failure mode 

or irregular game play.   This state is not escapable without SiP conditions and therefore is the 

terminal destination for each round. 

B

AP4 AP5

AP6
AP7

 

 

FIGURE 20: STATE B DIAGRAM 

  Figure above details any action paths that originate from State B, and how it is affected 

by those actions.  AP4 is considered standard play where either the next expected user calls or 

the most recent user calls again in certain failure mode conditions.  In this action path you can 

expect that if a shooter called and received a broken target the other shooters would recognize 

the fact that shooter needs to attempt again without penalty.  In action path 5 if a new shooter 

were to enter the line once the order has been established, everyone past the point of entry will 

need to wait one more shot until they are legal shooters.  In the case of AP6, if a shooter leaves 

the line for whatever reason it seems inappropriate to wait each time that shooter‟s position 

comes up.  For that reason shooters are effectively removed from the game when missing their 

second shot in a row.  In AP7 there may be a temporary break in the typical cycle for a shooter.  

This shooter may participate out of turn, in that case a shooter will call for a target, not receive 

one and be added to an exception listing where should they call again they shall receive a target. 

STATE C 

 As you can see from Figure state C affects every single other state though a direct link.  

However state C is not a game play mechanism, but rather a SiP condition where a field enters a 

state unable to activate the trap house.  This SiP is intentional given such causes as emergencies 

and operator‟s preference.  When a field enters state C all conditions relating to play are simply 

held in limbo.  
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FIGURE 21: STATE C DIAGRAM 

 When the users in a particular field have left the system inactive for a period, the 

administration resets a field, or the maximum number of triggers has elapsed, the system will 

automatically revert to the Z state.  However in the case that a field should be shut down 

temporarily, the administration alone can force a field to go into State C, which serves no 

purpose but to disable triggering of the house by any source. Above in Figure all action paths 

involving State C are shown. 

ZERO-NODE PROTOCOL 

 This system makes use of a Zero Node Protocol to redirect the flow of information as   

described in the system requirements as a sub requirement of the administration control.  This 

control flow operates on the premise that certain nodes have positional values which are used to 

determine if the information is propagating toward the Zero node.  The assumption is that within 

the system the “zero” node will always be in range of the administration center, from this node to 

be transmitted to the administration station and vice-versa when applying to outgoing 

commands. When using zero node protocol the system should never generate multiple copies of 

the same information because of non-specified destinations.  These non specified destinations 

will cause a recursive effect where nodes generate additional packets elsewhere in the system. 

Node 3 Node 2 Node 1 Node Zero

 

FIGURE 14: ZERO NODE PROTOCOL 

 

 A potential problem in the addressed in the future work section of this report is the 

capability of a node to reach 2 other nodes each qualifying to retransmit the package when using 

the zero node protocol.  This causes the same recursive data as the non specified destination 

model where a single instance of data may multiply into many copies. 
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TWO STAGE ADDRESSING 

 The system takes advantage of two addressing systems when using the Zero Node 

Protocol.  Using addressing within the Xbee XB-24 Units as well as the data addressing defined 

within the code the system effectively separates the system into a 2 stage process regardless of 

the operation.  The purpose of the 2 stage addressing is to allow for the system to operate with 

the same set of identifying tags on every instance of a field.  Otherwise each set of lapels would 

need to be explicitly paired with its transceiver with a restructuring of the administration in order 

to assign targets to each user based on a permanent ID.  

 

Lapel
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FIGURE 22: 2 STAGE ADDRESSING CONNECTIVITY 

 In the above Figure 22 the connectivity of each field is displayed.  All elements on the 

same color pads are linked together.  Once the information is transferred by the Xbee XB-24 

Internal Addressing from the lapels, the receiver relay nodes linked by the same addressing use 

the software addressing to propagate the data in the correct directions.    

ADMINISTRATION CONTROL 

 One of the major improvements to the current system is the increase in accountability.  

The administration control provides an insight into the operation of the game as well as the 

ability to perform routine game operations remotely.  The administration control is a key for 

solving a few of the design requirements as listed in the software architecture section. The 

administration control‟s responsibility is divided into actions: Accounting and Game 

Manipulation. The increase in accountability is most directly a result of the increase of available 

information by the administration center.  In the administration center it will serve 3 purposes:  

the displaying of scores by field and shooter, placing remote fields into standby or state C, and 

removing users from fields where they would have left voluntarily. 

ACCOUNTING 

 The accounting modes of the administration control deal primarily with the shot totals of 

each user on a field.  They are intended to be a monitoring tool for system operators in order to 

press accountability on users whom abuse the lack of observation at a field using automated 
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equipment.  It is the position of this project based on the requirements derived from user 

accounts, that the ability to account for losses is the highest priority of correctable solution in 

regards to the operation of a trap club.   

 In the administration control unit each 2 byte package contains the originating field as 

well as the user who fired.  The data is stored in a 5 by (X field) integer array which is updated 

as the system is constantly running.  The navigation of capabilities is run though a simple 

rotating software driver activated by buttons.  This software driver is similar to a cryptex where 

each option corresponds to a drum; each drum represents a type (function, field, user) which 

holds a value, and the combination of those values give us the function of the machine. 

                                                                           

                                                                                   

 This code can be found in the appendix.   This type of menu system can generate every 

combination for the administration center in this implementation.  One note to mention is that 

when the administration center attempts to standby a field it is of no consequence which value 

the user drum is holding as it will standby all users on that field simultaneously. 

GAME MANIPULATION 

 The other function of the administration center is to act upon games without being a 

direct shooter on the field.  Using the same menu system as described above the administration 

center can send out character based hex values tied to field ID‟s that will be interpreted by the 

destination to accomplish certain tasks.  Each of these messages is sent out with an address 

therefore only the transceiver relay with the correct address will be affected by the game 

manipulation software. 
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METHODOLOGY AND IMPLEMENTATION 

 The following sections will document the technologies required in the development of 

our improved voice controlled release system.  These technologies satisfy the specifications for 

power consumption, reduction in connections, correcting of failure in triggering, increasing user 

accountability and making the system implementation practical for users and operators. 

SOFTWARE ADDRESSING & REDIRECTION 

  Originally the information to leave the lapel and to be received by the transceiver relay 

would be an indication of field and user who activated the trap machine.  In addition to that the 

system was originally intended to indicate the probability for signal to be either a call or shot.  

This would add an additional element of information, the purpose of the aforementioned 

probabilities to be turned into the base for an active filter.  In order to create an exclusive band of 

values which can be interpreted as identified values for field ID‟s a portion of the standard ACII 

table was reserved by the system.  0x61 through 0x7A translate into „a‟ to „z‟ where now the 

value of the zero node is actually „a‟ as an ID representing the lowest point within a system. 

 In practice, the system checks for the presence of an incoming character whose value is 

within the identification range.  If so, the expectation of the next character received on the serial 

line is the shooter associated with that call.  When those are paired together the result is the basis 

for a field user data string.  Shown below in Figure 23 is the code associated with determining if 

an incoming packet warrants being retransmitted.   

 

 

FIGURE 23: DATA ADDRESSING CODE 

  Each node is hardcoded with an identifier as to allow for the comparison from the incoming 
packet.  In the above code example this node is ‘a’ therefore will take any inputs from ‘b’ to ‘z’. In the 
Future Work section of this report there is the detailing of a potential hazard as a result of Zero 
Node Protocols. 
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IMPLEMENTING THE STATE MACHINE 

This section details the software implementation which using data structures created and 
manipulated in C on the MSP430F449 Development Board. 

   

case 'Z':  

      ExpectedUserArray[0]= internal; Apointer=1; state ='A'; ArrayLimit=1; FirePulse(); 

      if (OVERRIDE ==1) { state='C';}   

FIGURE 24: Z STATE CODE INITALIZATION 

Starting in state Z shown in Figure 24, the system for implementing a state machine is 

fairly simple.  Whenever a particular user calls, they transmit their integer based unique identifier 

of their unit to the trap house.  Since each unit has a different identifier, it is possible just to build 

the array based on the received one at a time, building the array which governs the action paths 

taken in states A and B.  Each Action Path carries with it a set number of actions to manipulate 

variables which control the logical decisions of the User Enable Logic.  In AP1 the system uses 

the user information received in order to assign that user to the first firing position within the 

ExpectedUserArray as shown below in Error! Reference source not found..  Without it 

implementing a state machine architecture would be impossible for this project.   

TABLE 2: ACTION PATH 1- EXPECTED USER ARRAY 

 ExpectedUserArray (Before AP1)  ExpectedUserArray (After AP1) 

[0] 0x00 [0] 0x02 “Example ID” 

[1] 0x00 [1] 0x00 

[2] 0x00 [2] 0x00 

[3] 0x00 [3] 0x00 

[4] 0x00 [4] 0x00 

 

The ExpectedUserArray is an integer array data structure in C which corresponds to the 

sequential firing rotation on a trap field given a standard game play as described in typical 

shooting sequence.  Each user is given its own integer, assigned as a permanent identifier: in the 

Error! Reference source not found. example “User 2” is the first shooter.  The identification 

integer associated with each user is completely independent of their firing position.  For example 

an array of 5 shooters could be 2,1,4,5,3, which behaves exactly the same as an array of 

1,2,3,4,5.  In addition to the assignment of the initial user to the first position within the array, 

the system adjusts the array pointer (Apointer) which determines the next location to be assigned 

while in State A.  The Array Pointer, with variable Apointer, points to the array location and 
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therefore can only range from 0-4; in addition the Apointer will serve as the point of reference 

for the expected shooter in State B, as well; in AP1 the Array Limit is increased from zero to one 

allowing for a looping mechanism to take place at the end of each rotation.  AP1 will only take 

place once when the initial shooter‟s trigger signal has been received leaving the system in state 

A after its completion.  

In state A, AP2 also detects for 2 fault conditions: non-initial user repetition and 

exceeding array limits.  If a user not assigned to ExpectedUserArray[0] is detected twice before 

an initial user repetition, the system will assume a fault in game play and reset the system to Z 

state.  This will allow for the firing order to be preserved without interrupting game play.  In the 

case where the system detects that the array location [4] within the ExpectedUserArray has been 

filled it will change to State B bypassing AP3.  This bypassing of AP3 is only possible when a 

full Squad of 5 shooters is on the line or hardware failure.  In the case of a squad of less than 5 

users, AP3 detects the repetition of the user in initial position and changes states, as well as 

modifying the Apointer to reflect ExpectedUserArray[1] to be the next user.  This Action Path 3 

leaves the system in State B, the primary firing state. 

TABLE 3: EXAMPLE FIRING SEQUENCE 

Call Total State User Action Path ExpectedUserArray 

1 Z 1 1 {1,0,0,0,0} 

2 A 2 2 {1,2,0,0,0} 

3 A 3 2 {1,2,3,0,0} 

4 A 1 3 {1,2,3,0,0} 

5 B 2 4 {1,2,3,0,0} 

6 B 3 4 {1,2,3,0,0} 

 

 The system will spend the majority of its time per round in State B.  This state signifies 

the completed array and therefore allows the firing pattern to be maintained throughout this 

stage.  There are a total of 5 AP‟s possible from State B.  These correspond to 5 functions that 

are necessary in order for the game to play out as expected.  Action Path 4 represents standard 

play; it increments the Apointer allowing for the previous shooter to be eligible in case of a 

broken bird.    In order to be considered a valid user, the ID associated with ExpectedUserArray 

[Apointer] must match either directly Apointer or Apointer-1; see Error! Reference source not 

found. below.Error! Reference source not found. 
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TABLE 4: ENABLED USER EXAMPLE 

 ExpectedUserArray 

Ex.1 

 ExpectedUserArray 

[0] 0x02 [0] 0x02 

<<Apointer>> 

[1] 0x01 [1] 0x01 

[2] 0x04<<Apointer>> [2] 0x04 

[3] 0x05 [3] 0x05 

[4] 0x00 [4] 0x03 

   

Whether the Apointer increments or resets back to the start of the array is dependent on 

the position the array. If the user firing, was at the end of the array and the state machine tried to 

increment the Apointer the array would end up floating in user-less array locations.  These user-

less array positions have the potential to stall the system due to the inability to reset the Apointer. 

In order to reset the position of Apointer it is compared to the ArrayLimit which holds the 

number of shooters in a squad.  This action path also resolves the condition where for any 

shooter broken clay would force them to call for another target. Since the user did not have a 

legal opportunity to attempt the first clay and the system incremented the Apointer regardless, 

enabling the -1 location in the array solves that problem.  If the Apointer-1 user is detected a 

unique section of AP4 will not increment the Apointer due to the fact it would already be in the 

correct position from the broken target triggering.  AP4 will be the most used Action Path in the 

system; since the number of broken targets per round is typically within 5 for a full squad, other 

AP conditions will be rare occasions by comparison.  Within the designated requirements for the 

system is the ability for the system to seamlessly add an additional user to a squad of 4 or less.  

Action Path 5 takes a user not previously in the array and slides the array forward using a 

positional sliding counter as shown below in Table 5.Error! Reference source not found. 

Error! Reference source not found. 

TABLE 5: ACTION PATH 5 RESULTS 

 Expected User Array  Expected User Array 

[0] 0x02 [0] 0x02 

[1] 0x03 << Apointer>> [1] 0x05 

[2] 0x01 [2] 0x03<<Apointer>> 
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[3] 0x04 [3] 0x01 

[4] 0x00 [4] 0x04 

 Another inclusive state B function is the remove user function, or Action Path 6.  It takes 

2 cycles of users in order to trigger this AP because of the special case exception as allowed by 

AP8.  The system recognizes after 2 missed appearances that the player has been removed from 

the game and therefore should not be afforded any more enable locations in the array.  Should 

that user return before the completion of that round, the system treats them as if they were a new 

user. 

 The Action Path 6 function is a problem in that if you allow an Apointer+1 category for 

enabling the user logic, you increase the percentage of active IDs greater to that of inactive IDs 

in cases of a full squad.  This is true of all Array Limits as shown in Table 6.  Even with a full 

squad the chance to deter an incorrect call is limited to 40% with 3 of 5 enabled users at given 

moment. 

TABLE 6: LIMITING STATION BREAKDOWN 

Number of Users % Active with 0/-1 

Enable 

% Active with 0/-1/ +1 Enable 

1 100% 100% 

2 100% 100% 

3 66% 100% 

4 50% 75% 

5 40% 60% 

 

Action Path 7 performs a simple exception condition in which a non-enabled user triggers 

the User Enable Logic.  On the first call the system will disallow their attempt but insert a special 

condition in which if they were to call again would fire.  This is to allow for skipping of a user 

for a brief period but then to resume normal play, for instance if a player had to momentarily 

remove his or herself from the game. Similar to AP1, AP2 uses the Apointer to assign the next 

user ID into the next available slot in ExpectedUserArray, however it will not cause a state 

change until the user ID assigned to ExpectedUserArray[0] is detected, signifying a full rotation 

of the line. 
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SERIAL TRANSMISSION 

In order to communicate with the X-Bees, the system takes advantage of the internal 

UART (Universal Asynchronous Receiver Transmitter) configuration from the MSP430 

microcontroller.  Once the XB-24 Units are configured there are several steps on the way to 

having an operational UART port.  As listed in the MSP430 Family User guide there are several 

initialization steps required for the setup of one of its 2 UART Pairs. Only 1 UART pair is 

available externally per board however this satisfies the requirements as each lapel only requires 

1 pair of serial connections.  

 In our system we set pins P2.4 and P2.5 to their alternate functionality which is a UART 

Tx and Rx Pins by writing to P2SEL.  Below in Figure 25 the initialization of the UART pins 

can be seen along with the along with comments as to each operations function. 

 

FIGURE 25: SYSTEM INITALIZATION 

 Also available to the system designer in the MSP430 user guide was the register 

configuration for commonly known data rates given a typical clock speed and what is used in our 

system.  Because we are using the 1.048MHz ACLK shown the default settings when using a 32 

KHz input crystal we can safely assign the registers as follows shown on page 514 of the user 

guide.  

 

FIGURE 26: UART REGISTER SPREADSHEET 
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 The configuration for the UART ports is straightforward and allows for the 

communication of all the modules within a field through the use of the XB-24 modules. In order 

to transmit once the system has been initialized the program will need to write to the UART TX 

0 buffer which will send the information via Xbee shown in Figure 27. 

 

FIGURE 27: UART TX MULTIPLEXED SYSTEM 

  Receiving information comes from an interrupt vector where the contents of the RX 

buffer are transferred to a variable of your choosing in a 2-3 operation ISR as shown below in 

Figure 28.  Once the interrupt is received it enables the system while is stuck in a while(1) to 

perform a single iteration of the various functions associated with array management. 

 

FIGURE 28: RX INTERRUPT SERVICE ROUTINE 

 

TIMER SETUP 

The use of timers is a required element within the system.  This project makes use of 

timers for two purposes in the development of a Voice Controlled Release.  The first is to delay 

the system in order fully allow the XB-24 to initialize once woken from sleep mode.  The second 

purpose of timers are disabling of the input to the system for a given period after a successful 

fire. This timer is in order to ignore the expected gunshot approximately two seconds after a call.   
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To implement the timers associated with the lockout and power conservation modules the 

included “Timer B” was used.  Timer B was the only available choice as the LCD uses the basic 

timer and the buzzer uses the Timer A, in case the system was to use that as a demonstration 

tool.  In order to set the parameters of Timer B, three particular registers are relevant: TBCTL, 

TBCCR0, and TBCCTL0.  TBCTL controls the majority of the attributes of the timer including 

clock source selection, number of bits, type of counting, and enabling its operations.  In order to 

set TBCTL to the parameters desired, predefined labels provided in the MSP430 header file were 

used, as seen in Error! Reference source not found., as well as the equation found in Equation 

2. 

EQUATION 2: TIMER B CONTROL REGISTER 

TBCTL = TBSSEL_1 + CNTL_0 + ID_0 + MC_1 

TBSSEL_1 is the source selection header for the timer choosing ACLK running at 32,768 

Hz.  Other choices included TBCLK and SMCLK; however SMCLK is configured at 1.0485 

MHz, too high a speed for our timing needs to be satisfied without adding functions.  CNTL_0 

controls counter length, and this label specifies 16 bits, which is necessary due to the fact we 

need all 65,536 places in order to generate the 2 second lockout timer, shown in Table 7. 

Bits Locations Maximum 

Value 

tmax 32.768KHz in 

s 

tmax 1.0485MHz in 

s 

16  2
16

 65,536 2 0.062500536 

12  2
12 

16,384 0.5 0.015625134 

10  2
10 

1,024 0.03125 0.000976571 

8  2
8 

256 0.0078125 0.000244143 

TABLE 7: MAXIMUM TIMER INTERRUPT VALUES 

ID_0 sets the internal divisor, up to a maximum of 8, in order to modify the length of the 

timer interrupt. The system uses a divisor of 1; even with an interrupt 8 times slower the largest 

counter length could not satisfy the 2 second timer required for our purpose. Finally, MC_1 sets 

the timer to operate in “up mode” counting to the specified maximum in TBCCR0 as opposed to 

defaulting to maximum counter value or up-down maximum value.    Since Timer B will be 

operating in up mode, the system needs to specify a maximum value in TBCCR0.  The value of 

TBCCR0 depends on the time between interrupts; this system implements 2 distinct timers: 15 

milliseconds and 2 seconds.  The first, 15 milliseconds, is the listed wake up time within the Digi 

XBee module user‟s guide of 13.2ms from the lowest power mode, as seen in Figure 29. 
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FIGURE 29: XBEE WAKE UP TIME AND SLEEP CURRENT 

In order to implement the 15ms timer, TBCCR0 is set to 0x01EC Hexadecimal or 492 

decimal.  Below in Equation 3 Error! Reference source not found. is the calculation for the 

value in TBCCR0.  The resolution on the 32.768KHz clock does not give us an exact 

representation of 15 ms however, since each use of this timer is not cumulative, the error is never 

past 1 tick, and the approximation of 492 ticks as opposed to 491.52 gives a larger margin of 

error for those past the 13.2 second listed wake up time. 

EQUATION 3: 15 MILLISECOND TBCCR0 CONFIGURATION 

 

      
                 

                        ticks 

To configure the 2 second stall timer the system uses after a trigger to lockout accidental 

firing by a gunshot, the same calculations are performed, show in Equation 4.  The register is set 

to the maximum value of the up counter, 0xFFFF or 65,536.  In this case the TBCCR0 register 

could have not been configured and the timer could be run in continuous mode, because in this 

case they have the same behavior. 

EQUATION 4: 2 SECOND TBCCR0 CONFIGURATION 

 

     
          

          65536 ticks 

 

POWER CONSUMPTION 

In this section we will describe the power consumption attributes of the modules as well as 
the choices run operate the modules in according to a specific constraint.  
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FIGURE30: TYPICAL CURRENT CONSUMPTION OF MSP430 DEVICES 

LPM0 – LPM4 are MSP defined low power modes within the hardware architecture 

however since this project will not implement them, their specific attributes are irrelevant.  The 

current draw of the XB-24 Module as compared to the MSP in active mode is at least 2 orders of 

magnitude larger as shown in Figure.  However the operational time of the XB is shorter than 

that of the MSP considering the time between shooters in relation to the transmit time as shown 

in Error! Reference source not found..  The operational time of the XB-24 units including 

sleep time is approximately 20ms, therefore having a potential maximum pull of 2.7mJ, also seen 

in Figure.  Considering the difference in current draw as well as the active periods of each 

module, the decision was made to run the MSP430 in an active state as long as the system has 

power. 

EQUATION 5: XB-24/MSP430 CURRENT DRAWS 

 

 

EQUATION 6: XB-24 POWER DRAW 

                
 

    
                                           

                              ~20mS*35mA= 2.7mJ 

 

In the software, the system asserts the GPIO P3.0 sleep pin, and then initializes the timer 

B indefinitely stalling the system.   In order to escape the while loop the system is hung on, timer 

B must trigger an interrupt signifying 15 milliseconds has passed.  At which point the system 

transmits the package of data as shown in Figure 31.  This way the system will never 

prematurely attempt to send UART data when the wireless chip is not ready, also allowing for 

minimal power consumption when the system is not transmitting anything. 
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/***************************WirelessEnable()***************************/ 

void WirelessEnable(void) 

{ 

  P3OUT=0x01; 

  TimerB15ms(); 

  while(wait==1); 

  Tx(btn+0x30); 

} 

FIGURE 31: WIRELESS WAKEUP FUNCTION 

In the case of each lapel unit the system will run in a while(1) state while the power is on, 

only waking the Xbee units when the system is attempting to send information.  Even though 

each XB-24 Unit can act as a Transceiver on the lapel units, there will be no expectation of 

receiving or acting as an ad-hoc node.   Each administration center as well as receiver relay 

station will be continuously powered including constant running of the wireless modules. 
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SOFTWARE CRITICAL ISSUES 

CONFIGURING THE GPIO PINS 

 In order to use the available pins on the MSP430 Development Board a degree of 

configuration must be executed.  These pins will control two external sources: the trap machine 

and the sleep pin in on the Xbee wireless module.  For convenience the two pins selected for 

GPIO configuration are P3.0 and P3.1 because of their location on the same port as well as 

physical location adjacent to each other on the extension header as seen in Figure 32.   

 

FIGURE 32: MSP430 DEVELOPMENT BOARD EXTENSION HEADER 

 The first step in setting the GPIO pins as configured is to set their function, as most pins 

on the MSP430F449 are able to multitask depending on the application.  The PxSEL register is 

responsible for function selection; setting the bits low corresponds to I/O functionality.  This can 

be seen in Figure 33 where the lower 4 bits of port3 are set to I/O functionality.  Once the 

function has been chosen each I/O pin is set to be an output so that if can function as a control 

signal for another device. Now that the P3.0 and P3.1 are configured to be outputs in order to 

change the value on them write to the P3OUT register. 

 

FIGURE 33: PORT 3 GPIO CONFIGURATION CODE 

TABLE 8: GPIO SUMMARY TABLE 

P3.0 Output Lapel 

P3.1 Output Trap  Machine 

P3.2 Output All units 

P3.3 Output All units 
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CONCLUSION AND FUTURE WORK 

RELIABILITY 

This system cannot be considered reliable for several reasons.  One, the hardware in 

which it is being developed is insufficient to be put into a full scale production.  Two, the 

development of the technologies used in this project are based solely on observation and 

therefore have not been tested using live data to revise the software if required. 

COST EFFECTIVENESS 

Obviously the intention when building a system is to be cost effective.  However due to 

the nature of the hardware involved in the development of this project, being cost effective was 

not a viable option.  Given the current retail pricing for the components in the system, each lapel 

unit would cost approximately $100 before markup.  For a full scale production in which the 

microprocessor foundation was custom built the whole product would satisfy the original 

intention to make this an option for even the smallest of clubs. 

FUTURE WORK 

 In the interest of continuance of this project the availability of upgrades should be 

considered.  For one, the ability to turn on not only the system but also the trap machine remotely 

would prove hugely beneficial for clubs and ranges.  In addition, with more time the system 

could be redesigned with the required inputs and less for the rapid development of the system.   

In a future adaptation of this project the system should address the data addressing hazard by 

implementing either a mandatory node the administrative control unit or assigning each 

transmission an authenticator as to compare transmissions at the final node with each other for 

repetition.  A simple addition to the hardware and software architecture is the need to a 

scorekeepers unit capable of triggering the house without attributing the call to any particular 

user incorrectly.  Using any information available, going forward the system should reflect the 

best attributes of any system that would compete with it.  This means the system goals should be 

ever changing to reach its full potential. 

CONCLUSION 

In conclusion the project addresses several issues plaguing the current voice controlled 

release systems available today.  However there are several constraints introduced in this project 

that were unable to be addressed due to lack of time.  The fact this system was a prototype 

caused the introduction of several sources of failure when compared to our original guidelines.  

This report only aims to cover half the problem posed by Voice controlled release systems and 

should be taken as a stepping stone for future works. 
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APPENDIX 

 The following pages contain the code, relevant datasheets, promotional material and 

other external materials essential for the completion of this project.  It is limited by space and 

importance and therefore some materials shall be listed by their publication instead in the 

bibliography section. 

LAPEL.C 

The following code is the final version of the Lapel of the system used for MSP implementation 

for the demonstration: 

#include "msp430x44x.h"      // Definitions, constants, etc for msp430F449 

#include <string.h>          

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <in430.h> 

 

// ***************************************** FUNCTION DECLARATIONS 

************************************************** 

void init_sys(void);      // MSP430 Initialization routine     

 

void clearLCD(void);         // Clears LCD memory segments so that LCD is blank 

void initLCD(void);          // Setup code to interface LCD with MSP430F449 

void writeLetter(int position,char letter);  // display single character on LCD 

void writeWord(const char *word);    // displays words upto 7 chars on LCD. Can  

int  getBTN(void);                   // also display numbers passed as text 

void buzzerOn(void);    // turns buzzer on 

void buzzerOff(void);   // turns buzzer off 

void swDelay(unsigned int max_cnt);   // simple SW delay loop  

 

void UserDetection(void); //Detects user presses simulation for post signal identification 

void ArrayManagement(void); // Checks array state changes 

void SpecialArray(void); // Checks B state Array Exception Conditions 

void FirePulse(void); //The Firing trigger mechanism for the trap machine 

void NewUser(void); //Checks if the user is not in the array and ajusts firing order 

void RemoveUser(void); //Removes a user if they miss thier spot more then twice 

void ErrorDec(void); // Detects if an illegal repetition has occured in array formation 

void reset(void); // software reset without power loss or interupt vector 

void Tx1(char TxTemp); // Generic UART Tx Replacement with Lockout and Wireless Enable 

void Tx2(char TxTemp); // Superficial UART Tx Replacement with Wireless Enable 

void mode(int MdTemp, int mode); // Transmitts correct information based on mode 

void TimerB15ms(void); // 

void TimerB2s(void); 

void TimerBStop(void); 

void WirelessEnable(void); 

 

 

/************************************************************************/ 

/*                                                                      */ 

/* Global variable declarations                                         */ 

/*                                                                      */ 

/************************************************************************/ 

 

char *LCD = LCDMEM;       // pointer to LCD Memory Segments 

int btn=0, lastbtn=0; 

int modesel=0; int wait=0; 

/************************************************************************/ 

/*                                                                      */ 

/* main() variable declarations                                         */ 

/*                                                                      */ 

/************************************************************************/ 
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//******************************************** LCD CONSTANTS 

******************************************************** 

// From Muneem Shahriar's LCD driver code from Olimex.com 

#define     a      (0x80)    // definitions for LCD seegments on the Olimex LCD. 4-Mux operation 

is assumed 

#define     b      (0x40)    // For more details on 4-Mux operation, gather your LCD datasheet,  

#define     c      (0x20)    // TI's MSP430F449 User Guide (look for LCD Controller, then 4-Mux), 

#define     d      (0x01)    // and MSP-449STK-2 schematic. You will need ALL these 3 when 

defining 

#define     e      (0x02)    // each number or character. Remember, the Olimex LCD doesn't use a 

LCD driver! 

#define     f      (0x08)    // You tell the LCD what characters to display. It's very time 

consuming!! 

#define     g      (0x04) 

#define     h      (0x10) 

 

/********************* MAIN FUNCTION *********************/ 

void main(void) 

{ 

 

  WDTCTL = WDTPW + WDTHOLD;   // Stop watchdog timer   

  init_sys();                 // Initialize the MSP430 

 

/* Loop forever waiting for input (where would you go if you exited?) */    

  while(1) 

  { 

    getBTN(); 

    if(btn!=lastbtn) 

    { 

    switch(btn) 

    { 

      case 1:  

        writeWord("USER 1"); 

        mode(btn, modesel);    

        swDelay(2); 

        clearLCD(); 

        break; 

      case 2: 

        writeWord("USER 2"); 

        mode(btn, modesel); 

        swDelay(2); 

        clearLCD(); 

        break; 

      case 3:  

        writeWord("USER 3"); 

        mode(btn, modesel); 

        swDelay(2); 

        clearLCD(); 

        break; 

      case 4: 

        clearLCD(); 

        writeWord("SWITCH"); 

        if(modesel==1) 

          {modesel=0;} 

        else 

          {modesel=1;} 

        swDelay(2); 

        clearLCD(); 

        break; 

      default: writeWord("MODE   "); writeLetter(2, modesel+0x30); 

    } 

    } 

  } 

} 

 

/******************** initSys() *****************************/ 

void init_sys(void) 

{ 

  initLCD();                  // Setup LCD for work 

  clearLCD();                 // Clear LCD display 

  FLL_CTL0 |= XCAP18PF;                     // Configure load caps 
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  P2SEL |= 0x30;                            // P2.4,5 = USART0 TXD/RXD 

  ME1 |= UTXE0 + URXE0;                     // Enable USART0 TXD/RXD 

  UCTL0 |= CHAR;                            // 8-bit character 

  UTCTL0 |= SSEL1;                          // UCLK = SMCLK 

  UBR00 = 0x6d;                             // 1MHz 9600 

  UBR10 = 0x00;                             // 1MHz 9600 

  UMCTL0 = 0x03;                            // modulation 

  UCTL0 &= ~SWRST;                          // Initialize USART state machine 

  IE1 |= URXIE0;                            // Enable USART0 RX interrupt 

  P2DIR |= 0x10;                            // P2.4 output direction 

  P3SEL &= ~(BIT0|BIT1|BIT2|BIT3);          // P3.0-3 I/O Function 

  P3DIR = 0x0F;                             // P3.0-3 Output Direction 

  P3OUT=0x01; 

  _BIS_SR(GIE);                             //General Interupt Enable 

} 

 

 

 

/* The functions below are from MSL90: MSP430F449 LCD Driver Code for  

   MSP430F449STK-2 Starter Kit from Olimex.com 

   ---------------------------------------------------------------------------- 

*  Author Details   :  Muneem Shahriar 

                      Electrical Engineering & Mathematics (Senior) 

                      Texas Tech University, Lubbock, TX, USA 

                      Email: muneem.shahriar@ttu.edu 

* --------------------------------------------------------------------------- */   

 

// **************************** initLCD *************************************** 

void initLCD(void)   // initialize the various registers for LCD to work  

{                    // (code obtained from sample demos of MSP430F449) 

    FLL_CTL0 = XCAP10PF;          //set load capacitance for 32k xtal 

    // Initialize LCD driver (4Mux mode)  

    LCDCTL = LCDSG0_7 + LCD4MUX + LCDON; // 4mux LCD, segs16-23 = outputs 

    BTCTL  = BT_fLCD_DIV128;             // set LCD frame freq = ACLK 

    P5SEL  = 0xFC;                       // set Rxx and COM pins for LCD 

}   

 

 

// **************************** clearLCD *************************************** 

void clearLCD(void) // makes the LCD blank 

{                   // clear LCD memory to clear display 

    unsigned int iLCD; 

    for (iLCD =0; iLCD<20; iLCD++)  // clears all 20 LCD memory segments 

    { 

      LCD[iLCD] = 0; 

    }  

}   

 

 

// ***************************  writeLetter ************************************ 

void writeLetter(int position,char letter) // writes single character on the LCD.  

{                                          // User can specify position as well 

    // DO NOT PLAY WITH THE CODE BELOW ----------------------------------------- 

    if (position == 1)  // this is position adjustment for compatibility 

      position = position + 6;  

    else  

      if ( (position > 1) &  (position < 8) ) 

        position = ((position * 2) - 1) + 6;  // adjust position 

    // ------------------------------------------------------------------------- 

 

    switch(letter)                                   

    { 

       // letter  // LCDM7                           // LCDM8                          // End 

       case 'A':  LCD[position-1] = a + b + c + e;      LCD[position] = b + c + g;        break;                                                                         

       case 'B':  LCD[position-1] = c + h + e;          LCD[position] = b + c + g;        break;   

       case 'C':  LCD[position-1] = a + h;              LCD[position] = b + c;            break;   

       case 'D':  LCD[position-1] = b + c + h + e;      LCD[position] = c + g;            break;      

       case 'E':  LCD[position-1] = a + h + e;          LCD[position] = b + c + g;        break;   

       case 'F':  LCD[position-1] = a;                  LCD[position] = b + c + g;        break;   

       case 'G':  LCD[position-1] = a + c + h + e;      LCD[position] = b + c;            break;  

       case 'H':  LCD[position-1] = b + c + e;          LCD[position] = b + c + g;        break;   
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       case 'I':  LCD[position-1] = a + h + f;          LCD[position] = d;                break;   

       case 'J':  LCD[position-1] = b + h + c;          LCD[position] = c;                break;   

       case 'K':  LCD[position-1] = d + g;              LCD[position] = b + c + g;        break;   

       case 'L':  LCD[position-1] = h;                  LCD[position] = b + c ;           break;     

       case 'M':  LCD[position-1] = b + c + g;          LCD[position] = b + c + f;        break;     

       case 'N':  LCD[position-1] = b + c + d;          LCD[position] = b + c + f;        break; 

       case 'O':  LCD[position-1] = a + b + c + h;      LCD[position] = b + c;            break; 

       case 'P':  LCD[position-1] = a + b + e;          LCD[position] = b + c + g;        break; 

       case 'Q':  LCD[position-1] = a + b + c + h + d;  LCD[position] = b + c;            break; 

       case 'R':  LCD[position-1] = a + b + d + e;      LCD[position] = b + c + g;        break; 

       case 'S':  LCD[position-1] = a + c + h + e;      LCD[position] = b + g;            break; 

       case 'T':  LCD[position-1] = a + f + b;          LCD[position] = d + b;            break; 

       case 'U':  LCD[position-1] = b + c + h;          LCD[position] = b + c;            break; 

       case 'V':  LCD[position-1] = g;                  LCD[position] = b + c + e;        break; 

       case 'W':  LCD[position-1] = b + c + d;          LCD[position] = b + c + e;        break; 

       case 'X':  LCD[position-1] = d + g;              LCD[position] = e + f;            break; 

       case 'Y':  LCD[position-1] = b + c + h + e;      LCD[position] = f;                break; 

       case 'Z':  LCD[position-1] = a + h + g;          LCD[position] = e;                break;       

        

       // number  // LCDM7                              // LCDM8                          // END 

       case '0':  LCD[position-1] = a + b + c + h;      LCD[position] = b + c;            break;                             

       case '1':  LCD[position-1] = b + c;              LCD[position] = d & a;            break;  

       case '2':  LCD[position-1] = a + b + e + h;      LCD[position] = c + g;            break;  

       case '3':  LCD[position-1] = a + b + c + e + h;  LCD[position] = g;                break;  

       case '4':  LCD[position-1] = b + c + e;          LCD[position] = b + g;            break;  

       case '5':  LCD[position-1] = a + c + h + e;      LCD[position] = b + g;            break;  

       case '6':  LCD[position-1] = a + c + h + e;      LCD[position] = b + c + g;        break;  

       case '7':  LCD[position-1] = a + b + c;          LCD[position] = d & a;            break; 

       case '8':  LCD[position-1] = a + b + c + e + h;  LCD[position] = b + c + g;        break;  

       case '9':  LCD[position-1] = a + b + c + e ;     LCD[position] = b + g;            break;  

        

       // others 

       case '.':                                        LCD[position] = h;                break;  

// decimal point 

       case '^':                                        LCDM2 = c;                        break;  

// top arrow 

       case '!':                                        LCDM2 = a;                        break;  

// bottom arrow 

       case '>':                                        LCDM2 = b;                        break;  

// right arrow 

       case '<':                                        LCDM2 = h;                        break;  

// left arrow 

       case '+':                                        LCDM20= a;                        break;  

// plus sign 

       case '-':                                        LCDM20= h;                        break;  

// minus sign 

       case '&':                                        LCDM2 = d;                        break;  

// zero battery 

       case '*':                                        LCDM2 = d + f;                    break;  

// low battery 

       case '(':                                        LCDM2 = d + f + g;                break;  

// medium battery 

       case ')':                                        LCDM2 = d + e + f + g;            break;  

// full battery */ 

    } 

} 

 

 

// ******************************  writeWord *********************************** 

void writeWord(const char *word)  // displays a word upto 7 characters -- why 7? 

                                  // words must be in upper case (why?) 

{ 

   unsigned int strLength = 0;   // variable to store length of word 

   unsigned int i;               // dummy variable 

    

   strLength = strlen(word);     // get the length of word now 

   for (i = 1; i <= strLength; i++) // display word 

   { 

     writeLetter(strLength - i + 1,word[i-1]);  // displays each letter in the word 

   } 
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} 

int  getBTN() 

{ 

   lastbtn=btn; 

   char   inReg; 

    

   /* Remember: Buttons are implemented "active low". That is, the input pin 

      will equal logic 0 when the button is pressed and 1 otherwise*/   

   

   inReg = (P3IN >> 4) & 0x0F;  /* Read the input register and shift bits 7-4 to be bits 3-0 then 

mask out  

      just the low nibble */ 

   if (inReg == 0x0E) 

     btn = 1; 

   else if (inReg == 0x0D) 

     btn = 2; 

   else if (inReg == 0x0B) 

     btn = 3; 

   else if (inReg == 0x07) 

     btn = 4; 

   else 

     btn = 0; 

   return(btn); 

} 

 

/******************* swDelay() ************************/ 

void swDelay(unsigned int max_cnt) 

{ 

   unsigned int  cnt1=0, cnt2; 

    

   while (cnt1 < max_cnt) 

   { 

     cnt2 = 0; 

     while (cnt2 < 65535) 

       cnt2++; 

     cnt1++; 

   } 

} 

 

/********************* Tx1()***************************/ 

void Tx1(char TxTemp) 

{ 

  WirelessEnable(); 

  while ((IFG1 & UTXIFG0) == 0); {U0TXBUF = TxTemp;} 

  P3OUT=0x01; 

  writeWord("LOCKOUT"); 

  TimerB2s(); 

  while(wait==1); 

  clearLCD(); 

   

} 

/********************* Tx2()***************************/ 

void Tx2(char TxTemp) 

{ 

  WirelessEnable(); 

  while ((IFG1 & UTXIFG0) == 0); {U0TXBUF = TxTemp;} 

  P3OUT=0x00; 

} 

   

 

/**********************Mode*************************/ 

void mode(int MdTemp, int mode) 

{ 

  if(mode==0) 

  { 

      switch(MdTemp){ 

        case 1: Tx1('1'); break; 

        case 2: Tx1('2'); break; 

        case 3: Tx1('3'); break;} 

  } 

  else if(mode==1){ 
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      switch(MdTemp){ 

        case 1: Tx2('a'); Tx2('2');  break; 

        case 2: Tx2('c'); Tx2('1');  break; 

        case 3: Tx2('c'); Tx2('2');  break;} 

  } 

} 

 

 

/*******************************TimerB15ms()*****************************/ 

void TimerB15ms(void) 

{ 

  TBCTL= TBSSEL_1 + CNTL_0 + ID_0 + MC_1; 

  TBCCR0=0x1EC; 

  TBCCTL0=CCIE; 

  wait=1; 

} 

 

/*******************************TimerB2s()*****************************/ 

void TimerB2s(void) 

{ 

  TBCTL= TBSSEL_1 + CNTL_0 + ID_0 + MC_1; 

  TBCCR0=0xFFFF; 

  TBCCTL0=CCIE; 

  wait=1; 

} 

//**************************** Timer B interupt***************** 

#pragma vector=TIMERB0_VECTOR 

__interrupt void timerB0_ISR(void) 

{ 

wait=0; 

TimerBStop(); 

} 

/******************************TimerBStop()**************************/ 

void TimerBStop(void) 

{ 

  TBCTL= MC_0; 

} 

 

/***************************WirelessEnable()***************************/ 

void WirelessEnable(void) 

{ 

  P3OUT=0x00; 

  TimerB15ms(); 

  while(wait==1); 

} 

 

ADMINISTRATION.C 

#include "msp430x44x.h"      // Definitions, constants, etc for msp430F449 

#include <string.h>          

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <in430.h> 

 

void init_sys(void); 

void clearLCD(void);         // Clears LCD memory segments so that LCD is blank 

void initLCD(void);          // Setup code to interface LCD with MSP430F449 

void writeLetter(int position,char letter);  // display single character on LCD 

void writeWord(const char *word);    // displays words upto 7 chars on LCD. Can  

int  getBTN(void);                   // also display numbers passed as text 

void buzzerOn(void);    // turns buzzer on 

void buzzerOff(void);   // turns buzzer off 

void swDelay(unsigned int max_cnt);   // simple SW delay loop  

void display(void);  //screen refresh multipler 

void Excecute(void); // Preforms the action based on the Multi(tier) Variables 

void Tx(char TxTemp); //Cosmetic Tx Operation 
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void calc(int CalcTemp); 

 

//******************************************** LCD CONSTANTS 

******************************************************** 

// From Muneem Shahriar's LCD driver code from Olimex.com 

#define     a      (0x80)    // definitions for LCD seegments on the Olimex LCD. 4-Mux operation 

is assumed 

#define     b      (0x40)    // For more details on 4-Mux operation, gather your LCD datasheet,  

#define     c      (0x20)    // TI's MSP430F449 User Guide (look for LCD Controller, then 4-Mux), 

#define     d      (0x01)    // and MSP-449STK-2 schematic. You will need ALL these 3 when 

defining 

#define     e      (0x02)    // each number or character. Remember, the Olimex LCD doesn't use a 

LCD driver! 

#define     f      (0x08)    // You tell the LCD what characters to display. It's very time 

consuming!! 

#define     g      (0x04) 

#define     h      (0x10) 

 

char *LCD = LCDMEM;       // pointer to LCD Memory Segments 

int    lastbtn=0; 

int  Scores[3][5]= {0,0,0,0,0}; 

char ID='0', User='0'; 

int stage=0, field; int btn=0; 

int multi1=0, multi2=0, multi3=0; 

int Tier=3; 

char fieldt='0'; 

int ten, hun, one; 

 

int main( void ) 

{ 

  // Stop watchdog timer to prevent time out reset 

  WDTCTL = WDTPW + WDTHOLD; 

  init_sys(); 

  clearLCD(); 

  display(); 

  while(1) 

  { 

  getBTN(); 

  ///////////////////////////////////////////////////////////// 

  if(ID!='0' && User!='0')                  ////////////////// 

  {                                         ////////////////// 

      switch(ID)                            ////////////////// 

      {                                     ////////////////// 

         case 'a': field=0; break;          //////////////////   

         case 'b': field=1; break;          ////////////////// 

         case 'c': field=2; break;          ////////////////// 

         default: break;                    ////////////////// 

      }                                     ////////////////// 

                                            ////////////////// 

      Scores[field][User-0x30-1]+=1;          //////////////////   

      ID='0';                               ////////////////// 

      User='0';                             ////////////////// 

  }                                         ////////////////// 

  ////////////////////////////////////////////////////////////// 

  if(btn!=lastbtn) 

  { 

    switch(btn) 

    { 

    case 1: Excecute(); break; 

    case 2:  

      if(Tier==3){ 

        if(multi3==2) 

        {multi3=0;} 

        else{multi3+=1;}} 

      else if(Tier==2){ 

        if(multi2==2) 

        {multi2=0;} 

        else{multi2+=1;}} 

      else if(Tier==1){ 

        if(multi1==4) 

        {multi1=0;} 
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        else{multi1+=1;}} 

      display(); 

       break; 

         

    case 3: if(Tier<3){Tier+=1;  display();} break; 

    case 4: if(Tier>1){Tier-=1;  display();} break; 

    } 

     

  } 

} 

} 

 

 

 

void init_sys(void) 

{ 

  initLCD(); 

  FLL_CTL0 |= XCAP18PF;                     // Configure load caps 

  P2SEL |= 0x30;                            // P2.4,5 = USART0 TXD/RXD 

  ME1 |= UTXE0 + URXE0;                     // Enable USART0 TXD/RXD 

  UCTL0 |= CHAR;                            // 8-bit character 

  UTCTL0 |= SSEL1;                          // UCLK = SMCLK 

  UBR00 = 0x6d;                             // 1MHz 9600 

  UBR10 = 0x00;                             // 1MHz 9600 

  UMCTL0 = 0x03;                            // modulation 

  UCTL0 &= ~SWRST;                          // Initialize USART state machine 

  IE1 |= URXIE0;                            // Enable USART0 RX interrupt 

  P2DIR |= 0x10;                            // P2.4 output direction 

  _BIS_SR(GIE); 

} 

 

#pragma vector=UART0RX_VECTOR 

__interrupt void usart0_rx (void) 

{ 

  if(stage==0) 

  {ID = U0RXBUF; stage=1;} 

  else 

  {stage=0; User=U0RXBUF;} 

} 

 

 

/* The functions below are from MSL90: MSP430F449 LCD Driver Code for  

   MSP430F449STK-2 Starter Kit from Olimex.com 

   ---------------------------------------------------------------------------- 

*  Author Details   :  Muneem Shahriar 

                      Electrical Engineering & Mathematics (Senior) 

                      Texas Tech University, Lubbock, TX, USA 

                      Email: muneem.shahriar@ttu.edu 

* --------------------------------------------------------------------------- */   

 

// **************************** initLCD *************************************** 

void initLCD(void)   // initialize the various registers for LCD to work  

{                    // (code obtained from sample demos of MSP430F449) 

    FLL_CTL0 = XCAP10PF;          //set load capacitance for 32k xtal 

    // Initialize LCD driver (4Mux mode)  

    LCDCTL = LCDSG0_7 + LCD4MUX + LCDON; // 4mux LCD, segs16-23 = outputs 

    BTCTL  = BT_fLCD_DIV128;             // set LCD frame freq = ACLK 

    P5SEL  = 0xFC;                       // set Rxx and COM pins for LCD 

}   

 

 

// **************************** clearLCD *************************************** 

void clearLCD(void) // makes the LCD blank 

{                   // clear LCD memory to clear display 

    unsigned int iLCD; 

    for (iLCD =0; iLCD<20; iLCD++)  // clears all 20 LCD memory segments 

    { 

      LCD[iLCD] = 0; 

    }  

}   
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// ***************************  writeLetter ************************************ 

void writeLetter(int position,char letter) // writes single character on the LCD.  

{                                          // User can specify position as well 

    // DO NOT PLAY WITH THE CODE BELOW ----------------------------------------- 

    if (position == 1)  // this is position adjustment for compatibility 

      position = position + 6;  

    else  

      if ( (position > 1) &  (position < 8) ) 

        position = ((position * 2) - 1) + 6;  // adjust position 

    // ------------------------------------------------------------------------- 

 

    switch(letter)                                   

    { 

       // letter  // LCDM7                           // LCDM8                          // End 

       case 'A':  LCD[position-1] = a + b + c + e;      LCD[position] = b + c + g;        break;                                                                         

       case 'B':  LCD[position-1] = c + h + e;          LCD[position] = b + c + g;        break;   

       case 'C':  LCD[position-1] = a + h;              LCD[position] = b + c;            break;   

       case 'D':  LCD[position-1] = b + c + h + e;      LCD[position] = c + g;            break;      

       case 'E':  LCD[position-1] = a + h + e;          LCD[position] = b + c + g;        break;   

       case 'F':  LCD[position-1] = a;                  LCD[position] = b + c + g;        break;   

       case 'G':  LCD[position-1] = a + c + h + e;      LCD[position] = b + c;            break;  

       case 'H':  LCD[position-1] = b + c + e;          LCD[position] = b + c + g;        break;   

       case 'I':  LCD[position-1] = a + h + f;          LCD[position] = d;                break;   

       case 'J':  LCD[position-1] = b + h + c;          LCD[position] = c;                break;   

       case 'K':  LCD[position-1] = d + g;              LCD[position] = b + c + g;        break;   

       case 'L':  LCD[position-1] = h;                  LCD[position] = b + c ;           break;     

       case 'M':  LCD[position-1] = b + c + g;          LCD[position] = b + c + f;        break;     

       case 'N':  LCD[position-1] = b + c + d;          LCD[position] = b + c + f;        break; 

       case 'O':  LCD[position-1] = a + b + c + h;      LCD[position] = b + c;            break; 

       case 'P':  LCD[position-1] = a + b + e;          LCD[position] = b + c + g;        break; 

       case 'Q':  LCD[position-1] = a + b + c + h + d;  LCD[position] = b + c;            break; 

       case 'R':  LCD[position-1] = a + b + d + e;      LCD[position] = b + c + g;        break; 

       case 'S':  LCD[position-1] = a + c + h + e;      LCD[position] = b + g;            break; 

       case 'T':  LCD[position-1] = a + f + b;          LCD[position] = d + b;            break; 

       case 'U':  LCD[position-1] = b + c + h;          LCD[position] = b + c;            break; 

       case 'V':  LCD[position-1] = g;                  LCD[position] = b + c + e;        break; 

       case 'W':  LCD[position-1] = b + c + d;          LCD[position] = b + c + e;        break; 

       case 'X':  LCD[position-1] = d + g;              LCD[position] = e + f;            break; 

       case 'Y':  LCD[position-1] = b + c + h + e;      LCD[position] = f;                break; 

       case 'Z':  LCD[position-1] = a + h + g;          LCD[position] = e;                break;       

        

       // number  // LCDM7                              // LCDM8                          // END 

       case '0':  LCD[position-1] = a + b + c + h;      LCD[position] = b + c;            break;                             

       case '1':  LCD[position-1] = b + c;              LCD[position] = d & a;            break;  

       case '2':  LCD[position-1] = a + b + e + h;      LCD[position] = c + g;            break;  

       case '3':  LCD[position-1] = a + b + c + e + h;  LCD[position] = g;                break;  

       case '4':  LCD[position-1] = b + c + e;          LCD[position] = b + g;            break;  

       case '5':  LCD[position-1] = a + c + h + e;      LCD[position] = b + g;            break;  

       case '6':  LCD[position-1] = a + c + h + e;      LCD[position] = b + c + g;        break;  

       case '7':  LCD[position-1] = a + b + c;          LCD[position] = d & a;            break; 

       case '8':  LCD[position-1] = a + b + c + e + h;  LCD[position] = b + c + g;        break;  

       case '9':  LCD[position-1] = a + b + c + e ;     LCD[position] = b + g;            break;  

        

       // others 

       case '.':                                        LCD[position] = h;                break;  

// decimal point 

       case '^':                                        LCDM2 = c;                        break;  

// top arrow 

       case '!':                                        LCDM2 = a;                        break;  

// bottom arrow 

       case '>':                                        LCDM2 = b;                        break;  

// right arrow 

       case '<':                                        LCDM2 = h;                        break;  

// left arrow 

       case '+':                                        LCDM20= a;                        break;  

// plus sign 

       case '-':                                        LCDM20= h;                        break;  

// minus sign 

       case '&':                                        LCDM2 = d;                        break;  

// zero battery 
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       case '*':                                        LCDM2 = d + f;                    break;  

// low battery 

       case '(':                                        LCDM2 = d + f + g;                break;  

// medium battery 

       case ')':                                        LCDM2 = d + e + f + g;            break;  

// full battery */ 

    } 

} 

 

 

// ******************************  writeWord *********************************** 

void writeWord(const char *word)  // displays a word upto 7 characters -- why 7? 

                                  // words must be in upper case (why?) 

{ 

   unsigned int strLength = 0;   // variable to store length of word 

   unsigned int i;               // dummy variable 

    

   strLength = strlen(word);     // get the length of word now 

   for (i = 1; i <= strLength; i++) // display word 

   { 

     writeLetter(strLength - i + 1,word[i-1]);  // displays each letter in the word 

   } 

 

}  

int  getBTN() 

{ 

   lastbtn=btn; 

   char   inReg; 

    

   /* Remember: Buttons are implemented "active low". That is, the input pin 

      will equal logic 0 when the button is pressed and 1 otherwise*/   

   

   inReg = (P3IN >> 4) & 0x0F;  /* Read the input register and shift bits 7-4 to be bits 3-0 then 

mask out  

      just the low nibble */ 

   if (inReg == 0x0E) 

     btn = 1; 

   else if (inReg == 0x0D) 

     btn = 2; 

   else if (inReg == 0x0B) 

     btn = 3; 

   else if (inReg == 0x07) 

     btn = 4; 

   else 

     btn = 0; 

   return(btn); 

} 

 

/******************* swDelay() ************************/ 

void swDelay(unsigned int max_cnt) 

{ 

   unsigned int  cnt1=0, cnt2; 

    

   while (cnt1 < max_cnt) 

   { 

     cnt2 = 0; 

     while (cnt2 < 65535) 

       cnt2++; 

     cnt1++; 

   } 

} 

 

/*******************Display()******************************/ 

void display(void) 

{ 

  clearLCD(); 

  if(Tier==3){ 

    if     (multi3==0){writeWord("CALLCLY");} 

    else if(multi3==1){writeWord("STANDBY");} 

    else if(multi3==2){writeWord("RM USER");} 

  } 
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  if(Tier==2){ 

    if     (multi2==0){writeWord("FIELD A"); fieldt='a';} 

    else if(multi2==1){writeWord("FIELD B"); fieldt='b';} 

    else if(multi2==2){writeWord("FIELD C"); fieldt='c';} 

  } 

  if(Tier==1){ 

    if     (multi1==0){writeWord("USER 1");} 

    else if(multi1==1){writeWord("USER 2");} 

    else if(multi1==2){writeWord("USER 3");} 

    else if(multi1==3){writeWord("USER 4");} 

    else if(multi1==4){writeWord("USER 5");} 

  } 

} 

/**************************Excecute()**********************/ 

void Excecute(void) 

{ 

  if(multi3==0) 

  { 

    calc(Scores[multi2][multi1]);  

    clearLCD(); writeWord("FIELD  "); writeLetter(1,0x30+multi2+1); swDelay(3); 

    clearLCD(); writeWord("USER   "); writeLetter(1,0x30+multi1+1); swDelay(3); clearLCD(); 

    writeLetter(2,ten+0x30); 

    writeLetter(3,hun+0x30); 

    writeLetter(1,one+0x30); 

    swDelay(3); clearLCD(); 

  } 

  if(multi3==1) 

  {Tx(field); Tx(0x2E); } 

  if(multi3==2) 

  {Tx(field); Tx(0x2F); Tx(multi1+0x30);} 

  display(); 

} 

   

     

     

     

/*************************Tx()**********************/ 

void Tx(char TxTemp) 

{ 

  while ((IFG1 & UTXIFG0) == 0); {U0TXBUF = TxTemp;} 

} 

 

/*********************calc()****************/ 

void calc(int CalcTemp) 

{ 

  hun=0; ten=0; one=0; 

  while(CalcTemp>=100) 

  {CalcTemp-=100; hun+=1;} 

  while(CalcTemp>=10) 

  {CalcTemp-=10; ten+=1;} 

  while(CalcTemp>=1) 

  {CalcTemp-=1; one+=1;} 

} 

 
 

 

 

RRELAY.C 

//Inclusive Logic Demonstration 

#include "msp430x44x.h"      // Definitions, constants, etc for msp430F449 

#include <string.h>          

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 



57 | P a g e  
 

#include <in430.h> 

 

// ***************************************** FUNCTION DECLARATIONS 

************************************************** 

void init_sys(void);      // MSP430 Initialization routine     

 

void clearLCD(void);         // Clears LCD memory segments so that LCD is blank 

void initLCD(void);          // Setup code to interface LCD with MSP430F449 

void writeLetter(int position,char letter);  // display single character on LCD 

void writeWord(const char *word);    // displays words upto 7 chars on LCD. Can  

int  getBTN(void);                   // also display numbers passed as text 

void buzzerOn(void);    // turns buzzer on 

void buzzerOff(void);   // turns buzzer off 

void swDelay(unsigned int max_cnt);   // simple SW delay loop  

 

void UserDetection(void); //Detects user presses simulation for post signal identification 

void ArrayManagement(void); // Checks array state changes 

void SpecialArray(void); // Checks B state Array Exception Conditions 

void FirePulse(void); //The Firing trigger mechanism for the trap machine 

void NewUser(void); //Checks if the user is not in the array and ajusts firing order 

void RemoveUserDetection(void); //Removes a user if they miss thier spot more then twice 

void ErrorDec(void); // Detects if an illegal repetition has occured in array formation 

void reset(void); // software reset without power loss or interupt vector 

void RMT(int RT); 

void Tx(char TxTemp); 

 

 

/************************************************************************/ 

/*                                                                      */ 

/* Global variable declarations                                         */ 

/*                                                                      */ 

/************************************************************************/ 

 

char *LCD = LCDMEM;       // pointer to LCD Memory Segments 

int    lastbtn=0, btn=0, ACTIVE; 

int ExpectedUserArray[5] = {0,0,0,0,0}; 

int RemoveVector[5]={0,0,0,0,0}; 

int internal=0, Apointer=0, ArrayLimit, OVERRIDE, TempEx, internal; 

int triggercount=0, active=0, QVB='0';  int RMinc=0; 

char state = 'Z', temp='0'; 

const char ID='b'; 

char Queue1='0', IDhold; char LastState='Z'; 

/************************************************************************/ 

/*                                                                      */ 

/* main() variable declarations                                         */ 

/*                                                                      */ 

/************************************************************************/ 

 

//******************************************** LCD CONSTANTS 

******************************************************** 

// From Muneem Shahriar's LCD driver code from Olimex.com 

#define     a      (0x80)    // definitions for LCD seegments on the Olimex LCD. 4-Mux operation 

is assumed 

#define     b      (0x40)    // For more details on 4-Mux operation, gather your LCD datasheet,  

#define     c      (0x20)    // TI's MSP430F449 User Guide (look for LCD Controller, then 4-Mux), 

#define     d      (0x01)    // and MSP-449STK-2 schematic. You will need ALL these 3 when 

defining 

#define     e      (0x02)    // each number or character. Remember, the Olimex LCD doesn't use a 

LCD driver! 

#define     f      (0x08)    // You tell the LCD what characters to display. It's very time 

consuming!! 

#define     g      (0x04) 

#define     h      (0x10) 

 

/********************* MAIN FUNCTION *********************/ 

void main(void) 

{ 

 

  WDTCTL = WDTPW + WDTHOLD;   // Stop watchdog timer   

  init_sys();                 // Initialize the MSP430 

/* Loop forever waiting for input (where would you go if you exited?) */    
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  while(1) 

  { 

    if(active==1){ 

       

      switch(temp) 

      { 

      case '1': writeWord("TRIG 1"); swDelay(2); clearLCD(); break; 

      case '2': writeWord("TRIG 2"); swDelay(2); clearLCD(); break; 

      case '3': writeWord("TRIG 3"); swDelay(2); clearLCD(); break; 

      case '4': writeWord("TRIG 4"); swDelay(2); clearLCD(); break; 

      case '5': writeWord("TRIG 5"); swDelay(2); clearLCD(); break; 

      default: clearLCD(); 

      } 

      internal=temp-0x30; 

      ErrorDec(); 

      if(active==1){ 

      ArrayManagement(); 

      SpecialArray(); 

      Tx(ID); Tx(internal+0x30); 

      } 

      internal=0; temp='0'; active=0; 

    } 

  } 

} 

 

#pragma vector=UART0RX_VECTOR 

__interrupt void usart0_rx (void) 

{ 

  temp=U0RXBUF; 

  if(temp>0x60 && temp<0x7B) 

  {QVB=1; IDhold=temp;} 

  else if(QVB==1  && temp>0x2D && temp<0x36) 

  { 

    Queue1=U0RXBUF; QVB=0; 

    if(IDhold>ID) 

    { 

      clearLCD(); writeWord("ZNP    "); writeLetter(4,ID-0x20); writeLetter(2,IDhold-0x20); 

writeLetter(1,Queue1);   

      while ((IFG1 & UTXIFG0) == 0);  U0TXBUF = IDhold; 

      while ((IFG1 & UTXIFG0) == 0);  U0TXBUF = Queue1; 

      swDelay(5); 

      clearLCD(); 

    } 

    else if(IDhold==ID) 

    { 

      if(temp==0x2E  && state!='C'){ 

        LastState=state; state='C'; active=0; clearLCD(); writeWord("STANDBY");} 

      else if(temp==0x2E && state=='C') 

      {state=LastState; active=0; clearLCD(); writeWord("WAKE UP");} 

      else if(temp==0x2F){RMinc=1;} 

    } 

  } 

  else if(RMinc==1) 

  {RMT(temp-0x30); RMinc=0;} 

  else if(temp>0x30 && temp<0x36) 

  {active=1;} 

} 

 

/*******************ArrayManagement() ***********************/ 

void ArrayManagement(void) 

{  

  if(internal !='0'){ 

  switch (state){ 

  case 'Z':  

      ExpectedUserArray[0]= internal; Apointer=1; state ='A'; ArrayLimit=1; FirePulse(); 

      if (OVERRIDE ==1) { state='C';}      

      break; 

  case 'A': 

    if (OVERRIDE ==1) { state='C';} 

    if(ExpectedUserArray[0]==internal || Apointer==5) // Doesnt check if non first shooter 

repeats 
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      { state='B'; ArrayLimit=Apointer; Apointer=1; FirePulse(); } 

    else 

      {ExpectedUserArray[Apointer]= internal; Apointer+=1; ArrayLimit=Apointer; FirePulse();} 

      break; 

  case 'B': 

    if (OVERRIDE ==1) { state='C';} 

    else if ( ExpectedUserArray[Apointer]==internal) 

      { 

      FirePulse(); 

      Apointer+=1;} 

    else if (ExpectedUserArray[Apointer-1]==internal) 

       { 

         FirePulse(); 

       } 

    else if (Apointer==0) 

    { 

      if (ExpectedUserArray[ArrayLimit-1]==internal) 

      { 

        FirePulse(); 

      } 

    } 

    else if (internal==TempEx) 

    {FirePulse(); 

    Apointer+=2; 

     TempEx=0;} 

    else{TempEx=internal;} 

    if(Apointer==ArrayLimit){Apointer=0;} 

    if(Apointer==ArrayLimit+1){Apointer=1;} 

    break; 

  case 'C': clearLCD(); writeWord("STANDBY"); 

  default: break;}    

  } 

} 

 

/*******************UserDetection()***************************/ 

void UserDetection(void) 

{ 

  if(btn!=lastbtn){ 

    clearLCD(); 

        if      (btn==1) { 

          clearLCD(); writeWord("USER 1 ");  

          while ((IFG1 & UTXIFG0) == 0);  U0TXBUF = btn+0x30;} 

        else if (btn==2) {  

          clearLCD(); writeWord("USER 2 ");  

          while ((IFG1 & UTXIFG0) == 0);  U0TXBUF = btn+0x30;} 

        else if (btn==3) {  

          clearLCD(); writeWord("USER 3 ");  

          while ((IFG1 & UTXIFG0) == 0);  U0TXBUF = btn+0x30;} 

        else if (btn==4) {  

          clearLCD(); writeWord("USER 4 ");  

          while ((IFG1 & UTXIFG0) == 0);  U0TXBUF = btn+0x30;} 

        else             { clearLCD(); writeWord("       ");}  

  } 

} 

/******************** initSys() *****************************/ 

void init_sys(void) 

{ 

  initLCD();                  // Setup LCD for work 

  clearLCD();                 // Clear LCD display 

  FLL_CTL0 |= XCAP18PF;                     // Configure load caps 

  P2SEL |= 0x30;                            // P2.4,5 = USART0 TXD/RXD 

  ME1 |= UTXE0 + URXE0;                     // Enable USART0 TXD/RXD 

  UCTL0 |= CHAR;                            // 8-bit character 

  UTCTL0 |= SSEL1;                          // UCLK = SMCLK 

  UBR00 = 0x6d;                             // 1MHz 9600 

  UBR10 = 0x00;                             // 1MHz 9600 

  UMCTL0 = 0x03;                            // modulation 

  UCTL0 &= ~SWRST;                          // Initialize USART state machine 

  IE1 |= URXIE0;                            // Enable USART0 RX interrupt 

  P2DIR |= 0x10;                            // P2.4 output direction 

  _BIS_SR(GIE); 
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} 

 

/* The functions below are from MSL90: MSP430F449 LCD Driver Code for  

   MSP430F449STK-2 Starter Kit from Olimex.com 

   ---------------------------------------------------------------------------- 

*  Author Details   :  Muneem Shahriar 

                      Electrical Engineering & Mathematics (Senior) 

                      Texas Tech University, Lubbock, TX, USA 

                      Email: muneem.shahriar@ttu.edu 

* --------------------------------------------------------------------------- */   

 

// **************************** initLCD *************************************** 

void initLCD(void)   // initialize the various registers for LCD to work  

{                    // (code obtained from sample demos of MSP430F449) 

    FLL_CTL0 = XCAP10PF;          //set load capacitance for 32k xtal 

    // Initialize LCD driver (4Mux mode)  

    LCDCTL = LCDSG0_7 + LCD4MUX + LCDON; // 4mux LCD, segs16-23 = outputs 

    BTCTL  = BT_fLCD_DIV128;             // set LCD frame freq = ACLK 

    P5SEL  = 0xFC;                       // set Rxx and COM pins for LCD 

}   

 

 

// **************************** clearLCD *************************************** 

void clearLCD(void) // makes the LCD blank 

{                   // clear LCD memory to clear display 

    unsigned int iLCD; 

    for (iLCD =0; iLCD<20; iLCD++)  // clears all 20 LCD memory segments 

    { 

      LCD[iLCD] = 0; 

    }  

}   

 

 

// ***************************  writeLetter ************************************ 

void writeLetter(int position,char letter) // writes single character on the LCD.  

{                                          // User can specify position as well 

    // DO NOT PLAY WITH THE CODE BELOW ----------------------------------------- 

    if (position == 1)  // this is position adjustment for compatibility 

      position = position + 6;  

    else  

      if ( (position > 1) &  (position < 8) ) 

        position = ((position * 2) - 1) + 6;  // adjust position 

    // ------------------------------------------------------------------------- 

 

    switch(letter)                                   

    { 

       // letter  // LCDM7                           // LCDM8                          // End 

       case 'A':  LCD[position-1] = a + b + c + e;      LCD[position] = b + c + g;        break;                                                                         

       case 'B':  LCD[position-1] = c + h + e;          LCD[position] = b + c + g;        break;   

       case 'C':  LCD[position-1] = a + h;              LCD[position] = b + c;            break;   

       case 'D':  LCD[position-1] = b + c + h + e;      LCD[position] = c + g;            break;      

       case 'E':  LCD[position-1] = a + h + e;          LCD[position] = b + c + g;        break;   

       case 'F':  LCD[position-1] = a;                  LCD[position] = b + c + g;        break;   

       case 'G':  LCD[position-1] = a + c + h + e;      LCD[position] = b + c;            break;  

       case 'H':  LCD[position-1] = b + c + e;          LCD[position] = b + c + g;        break;   

       case 'I':  LCD[position-1] = a + h + f;          LCD[position] = d;                break;   

       case 'J':  LCD[position-1] = b + h + c;          LCD[position] = c;                break;   

       case 'K':  LCD[position-1] = d + g;              LCD[position] = b + c + g;        break;   

       case 'L':  LCD[position-1] = h;                  LCD[position] = b + c ;           break;     

       case 'M':  LCD[position-1] = b + c + g;          LCD[position] = b + c + f;        break;     

       case 'N':  LCD[position-1] = b + c + d;          LCD[position] = b + c + f;        break; 

       case 'O':  LCD[position-1] = a + b + c + h;      LCD[position] = b + c;            break; 

       case 'P':  LCD[position-1] = a + b + e;          LCD[position] = b + c + g;        break; 

       case 'Q':  LCD[position-1] = a + b + c + h + d;  LCD[position] = b + c;            break; 

       case 'R':  LCD[position-1] = a + b + d + e;      LCD[position] = b + c + g;        break; 

       case 'S':  LCD[position-1] = a + c + h + e;      LCD[position] = b + g;            break; 

       case 'T':  LCD[position-1] = a + f + b;          LCD[position] = d + b;            break; 

       case 'U':  LCD[position-1] = b + c + h;          LCD[position] = b + c;            break; 

       case 'V':  LCD[position-1] = g;                  LCD[position] = b + c + e;        break; 

       case 'W':  LCD[position-1] = b + c + d;          LCD[position] = b + c + e;        break; 

       case 'X':  LCD[position-1] = d + g;              LCD[position] = e + f;            break; 
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       case 'Y':  LCD[position-1] = b + c + h + e;      LCD[position] = f;                break; 

       case 'Z':  LCD[position-1] = a + h + g;          LCD[position] = e;                break;       

        

       // number  // LCDM7                              // LCDM8                          // END 

       case '0':  LCD[position-1] = a + b + c + h;      LCD[position] = b + c;            break;                             

       case '1':  LCD[position-1] = b + c;              LCD[position] = d & a;            break;  

       case '2':  LCD[position-1] = a + b + e + h;      LCD[position] = c + g;            break;  

       case '3':  LCD[position-1] = a + b + c + e + h;  LCD[position] = g;                break;  

       case '4':  LCD[position-1] = b + c + e;          LCD[position] = b + g;            break;  

       case '5':  LCD[position-1] = a + c + h + e;      LCD[position] = b + g;            break;  

       case '6':  LCD[position-1] = a + c + h + e;      LCD[position] = b + c + g;        break;  

       case '7':  LCD[position-1] = a + b + c;          LCD[position] = d & a;            break; 

       case '8':  LCD[position-1] = a + b + c + e + h;  LCD[position] = b + c + g;        break;  

       case '9':  LCD[position-1] = a + b + c + e ;     LCD[position] = b + g;            break;  

        

       // others 

       case '.':                                        LCD[position] = h;                break;  

// decimal point 

       case '^':                                        LCDM2 = c;                        break;  

// top arrow 

       case '!':                                        LCDM2 = a;                        break;  

// bottom arrow 

       case '>':                                        LCDM2 = b;                        break;  

// right arrow 

       case '<':                                        LCDM2 = h;                        break;  

// left arrow 

       case '+':                                        LCDM20= a;                        break;  

// plus sign 

       case '-':                                        LCDM20= h;                        break;  

// minus sign 

       case '&':                                        LCDM2 = d;                        break;  

// zero battery 

       case '*':                                        LCDM2 = d + f;                    break;  

// low battery 

       case '(':                                        LCDM2 = d + f + g;                break;  

// medium battery 

       case ')':                                        LCDM2 = d + e + f + g;            break;  

// full battery */ 

    } 

} 

 

 

// ******************************  writeWord *********************************** 

void writeWord(const char *word)  // displays a word upto 7 characters -- why 7? 

                                  // words must be in upper case (why?) 

{ 

   unsigned int strLength = 0;   // variable to store length of word 

   unsigned int i;               // dummy variable 

    

   strLength = strlen(word);     // get the length of word now 

   for (i = 1; i <= strLength; i++) // display word 

   { 

     writeLetter(strLength - i + 1,word[i-1]);  // displays each letter in the word 

   } 

 

} 

int  getBTN() 

{ 

   lastbtn=btn; 

   char   inReg; 

    

   /* Remember: Buttons are implemented "active low". That is, the input pin 

      will equal logic 0 when the button is pressed and 1 otherwise*/   

   

   inReg = (P3IN >> 4) & 0x0F;  /* Read the input register and shift bits 7-4 to be bits 3-0 then 

mask out  

      just the low nibble */ 

   if (inReg == 0x0E){ 

     btn = 1; active=1;} 

   else if (inReg == 0x0D){ 

     btn = 2; active=1;} 
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   else if (inReg == 0x0B){ 

     btn = 3; active=1;} 

   else if (inReg == 0x07){ 

     btn = 4; active=1;} 

   else 

     btn = 0; 

   return(btn); 

} 

 

/******************* swDelay() ************************/ 

void swDelay(unsigned int max_cnt) 

{ 

   unsigned int  cnt1=0, cnt2; 

    

   while (cnt1 < max_cnt) 

   { 

     cnt2 = 0; 

     while (cnt2 < 65535) 

       cnt2++; 

     cnt1++; 

   } 

} 

 

/*******************FirePulse()***************************/ 

void FirePulse(void) 

{ 

 clearLCD(); 

 writeWord("TRIGGER"); 

 triggercount+=1; 

 swDelay(2); 

 clearLCD(); 

} 

/******************SpecialArray()********************/ 

void SpecialArray(void) 

{  

  NewUser(); 

  RemoveUserDetection(); 

} 

 

/*******************NewUser()*************************/ 

void NewUser(void) 

{  

  int count=0; 

  if(state=='B' && internal!=0) 

  { 

    for(int i=0; i<=ArrayLimit-1; i++) 

    { 

      if(internal!=ExpectedUserArray[i]) 

      {count+=1;} 

    } 

    if(count==ArrayLimit) 

    { 

      for(int i=ArrayLimit; i>Apointer; i--) 

      {ExpectedUserArray[i]=ExpectedUserArray[i-1];} 

      ExpectedUserArray[Apointer]=internal; 

      Apointer+=1; ArrayLimit+=1; 

    } 

  } 

} 

/********************************RemoveUser()***********************/ 

void RemoveUserDetection(void) 

{ 

    if      (internal==ExpectedUserArray[Apointer+1] && state=='B') 

    {RemoveVector[Apointer]+=1;} 

    if      (internal==ExpectedUserArray[0]&& state=='B' && Apointer==ArrayLimit-1) 

    {RemoveVector[Apointer]+=1;} 

  for(int x=0; x<5; x++) 

  { 

    if(RemoveVector[x]>1) 

    { 

      int RemoveTarget=0; 
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      RemoveTarget=ExpectedUserArray[x]; 

      RMT(RemoveTarget); 

    } 

  } 

} 

 

/****************************RemoveTarget*****************************/ 

void RMT(int RT) 

{ 

  for(int i=0; i<5; i++) 

  { 

    if(RT==ExpectedUserArray[i]) 

    { 

      ExpectedUserArray[i]=ExpectedUserArray[i+1]; 

      ExpectedUserArray[i+1]=ExpectedUserArray[i+2]; 

      ExpectedUserArray[i+2]=ExpectedUserArray[i+3]; 

      ExpectedUserArray[i+3]=ExpectedUserArray[i+4]; 

      Apointer+=1; ArrayLimit-=1; RemoveVector[i]=0; 

    } 

    if(Apointer==ArrayLimit){Apointer=0;} 

    if(Apointer==ArrayLimit+1){Apointer=1;} 

  } 

} 

/********************************ErrorDec()***************************/ 

void ErrorDec(void) 

{ 

  int Ecnt=0; 

  if(ExpectedUserArray[1]==internal) 

  {Ecnt+=1;} 

  if(ExpectedUserArray[2]==internal) 

  {Ecnt+=1;} 

  if(ExpectedUserArray[3]==internal) 

  {Ecnt+=1;} 

  if(ExpectedUserArray[4]==internal) 

  {Ecnt+=1;} 

  if(Ecnt>0 && state=='A') 

  { 

     clearLCD(); 

     writeWord("ERROR  "); 

     writeLetter(1,internal+0x30); 

     swDelay(2); 

     reset(); 

     active=0;} 

} 

 

/****************************Reset()********************************/ 

void reset(void) 

{ 

  ExpectedUserArray[0]=0;  

  ExpectedUserArray[1]=0; 

  ExpectedUserArray[2]=0; 

  ExpectedUserArray[3]=0; 

  

  ExpectedUserArray[4]=0;  

  Apointer=0; ArrayLimit=0; 

  lastbtn=0; temp='0'; internal=0; TempEx=0; state='Z'; btn=0; clearLCD(); 

} 

/************************Tx()*********************************/ 

 

void Tx(char TxTemp) 

{ 

  while ((IFG1 & UTXIFG0) == 0); {U0TXBUF = TxTemp;} 
} 


