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Abstract 

This major qualifying project implements a simple indoor localization system using 

software defined radio. Both time of arrival and received signal strength methods are used by an 

array of wireless receivers to trilaterate a cooperative transmitter. The implemented system 

builds upon an IEEE 802.11b-like communications platform implemented in GNU Radio. 

Our results indicate substantial room for improvement, particularly in the acquisition of time 

data. This project contributes a starting point for ongoing research in indoor localization, both 

through our literature review and system implementation. 
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Glossary 

802.11: See IEEE 802.11. 

AoA: Angle of Arrival. 

Base Station: A stationary node with a known location. 

BBN: Raytheon BBN Technologies. See also: BBN80211. 

BBN80211: A set of GNU Radio blocks that partially implement IEEE 802.11b. 

BS: See Base Station 

Data Fusion: The process of determining the position of a mobile station by assimilating 

distance measurements and known error. 

DP: Direct Path, a straight-line route between a transmitter and receiver. This route may or may 

not be obstructed and may or may not be detectable. 

DSP: Digital Signal Processing. Some articles use this abbreviation for a digital signal processor, 

a data processing device used to perform DSP. 

DTDoA: Differential Time Difference of Arrival, a method for determining the distance between 

two nodes by measuring the round-trip time of a packet. 

FCC: Federal Communications Commission, a regulatory body in the United States that is 

responsible for the wireless spectrum. 

Flight Time: See Time of Flight. 

FPGA: Field Programmable Gate Array, an integrated circuit implementing programmable 

digital logic. 

FTW: Forschungszentrum Telekommunikation Wien, or the Telecommunications Research 

Center of Vienna, Austria. 

GUI: Graphical User Interface used by a program to communicate with a human. 
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Handshake: A bidirectional correspondence between two nodes on a network. Often used to 

establish connections, achieve synchronization, or authenticate a user. 

IEEE: Institute of Electrical and Electronics Engineers. 

IEEE 802.11: The first IEEE 802.11x standard. This term is often used interchangeably with 

IEEE 802.11x. 

IEEE 802.11x: A family of standards pertaining to wireless local area networks.  

LAN: Local Area Network. 

Localization: The process of determining the location of a node in a wireless network. 

LoS: Line of sight. 

Multilateration: See localization. 

Mobile Station: A portable or moving node. The location of the Mobile Station must be found 

through localization. 

MS: See Mobile Station 

NLoS: Non-line-of-sight 

Node: One device in a network. 

NRL: United States Naval Research Laboratories, our project sponsor. 

PPLD: Post Processing Localization Database, software we developed to perform data quality 

analysis and visualize errors. 

RF: Radio Frequency. 

RSS: Received Signal Strength, a class of localization techniques that use RSSI to calculate the 

distance a packet has travelled. 

RTLS: Real Time Localization Solver, software we developed to perform real-time localization 

and visualize the locations of mobile transmitters. 
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RTT: Round Trip Time, the Time of Flight for one packet that is sent from one node to another 

and then returned. 

RSSI: Received Signal Strength Indication, the measured magnitude of the received RF signal.  

Round-Trip Time: The combined flight time of two packets used in a handshake. 

SDR: Software Defined Radio. 

Sensor: A device that collects data about its environment. In the context of our project, a sensor 

is a base station that collects data for localizing mobile stations. 

SNR: Signal to Noise Ratio, the ratio of strength of the desired signal to the strength of the noise 

present in the environment. This value is often expressed logarithmically using decibels. 

Synchronization: A state where two nodes or modules share the same system time and clock, 

often by knowing the exact time and frequency offset between them. 

Time of Flight: The period of time required for a packet to travel between a transmitter and a 

receiver, as measured using timestamps of the time it was sent and the time it was 

received. This contains the time required for the first bit of the packet to propagate 

through the environment, the analog RF components of the transmitter and receiver, as 

well as error from various sources.   

ToA: Time of Arrival, a method for determining the distance between a transmitter and a 

receiver using the flight time of a packet. Requires synchronization between all nodes in 

the network. 

ToF: See Time of Flight 

TDoA: Time Difference of Arrival, a method for determining the distance between a mobile 

station and nearby synchronized base stations. 
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UDP: Undetected Direct Path, a condition where packets propagating through the direct path 

between the transmitter and receiver are undetectable but other paths are able to deliver 

packets to the receiver. 

USRP: Universal Software Radio Peripheral, a SDR platform from Ettus Research. Predecessor 

to the USRP2. 

USRP2: Universal Software Radio Peripheral 2, the Ettus Research SDR platform used for our 

project.  

UWB: Ultra Wide Band. This refers to a method of communications where a very high 

frequency carrier is employed along with multi-GHz bandwidth or frequency spreading. 

WPI: Worcester Polytechnic Institute. 
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Executive Summary 

Decades of research have been devoted to wireless localization projects. The success of 

Global Positioning Systems and cellular phone localization has enhanced outdoor applications 

such as emergency call localization, vehicular navigation, and the recovery of stolen articles. 

However, cost-effective indoor localization remains an area of ongoing research. Indoor 

localization requires a very high level of precision and accuracy but is stymied by exceptionally 

challenging wireless channel conditions.  

Software Defined Radio has revolutionized the communications industry by providing 

unprecedented levels of flexibility. SDRs implement nearly all radio functionality in 

programmable components such as field programmable gate arrays (FPGA) and computers, 

allowing them to be reconfigured without any changes to the radio hardware. This flexibility 

makes SDR popular for applications such as rapid prototyping, scientific experimentation, 

limited-production devices and cognitive radio. One example of a low cost software defined 

radio platform is Ettus Research‘s USRP2.  

The United States Naval Research Laboratory is developing an indoor localization 

system for improving the security of their secure research facilities. Our goal was to create a 

low-cost indoor localization testbed as a first step towards developing this system. This testbed is 

able to localize wireless transmitters using an array of three stationary USRP2 sensors positioned 

at known locations. Additional tools were developed for assessing the quality of this localization 

data, and will be used by the NRL as they continue to improve the accuracy of their results in 

increasingly challenging environments. Time of Arrival and Received Signal Strength Indication 

data is utilized by our system.  
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Our system utilizes a GNU Radio platform along with a partial implementation of IEEE 

802.11 developed by Raytheon BBN Technologies. This system is capable of localizing 

cooperative devices transmitting in the 2.4GHz frequency band. The platform was modified as 

and enhanced with additional features. The full sensor platform configures itself using saved 

parameters, collects experimental data in a computer-readable format, and makes the collected 

data available to real-time localization software. Real-time localization software receives this 

data and uses it to display the computed location of the transmitter on a map of the environment. 

This real-time software is intended to be used as the basis for a final security product, while the 

stored results and data analysis software provide the NRL with essential tools for visualizing 

errors and developing improved methods of counteracting them.  
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1 Introduction 

Localization has become part of everyday life through the use of global positioning 

system (GPS) devices, smartphones, and other technologies. These systems rely on signals from 

sources such as satellites, cellular towers, and wireless access points to locate the user. Many 

systems use localization information to provide directions or coordinates related to the user‘s 

current location. However, most commercially deployed systems have limited accuracy and 

precision in indoor environments due to interference, path loss, and other variables. A robust 

indoor localization system would be very beneficial in providing high accuracy positioning and 

correction for the unpredictability of the indoor environment. Applications for such a system 

include pedestrian navigation, locating firefighters and other personnel within a building, and the 

detection and isolation of possible threats to the building‘s security. 

There are several techniques for localization, using data such as the time when signals 

arrived and received signal strength along with an understanding of how this data changes as 

mobile devices move throughout the environment. Although the free space behavior of 

electromagnetic waves is known to be predictable, localization techniques must account for 

environment-specific errors introduced during indoor operation in order to achieve a usable level 

of accuracy. These errors come from physical phenomena such as spatial and temporal fading, 

path loss, multipath, and interference from other wireless activity [40]. While outdoor systems 

available today are sufficient for the applications they serve, indoor environments demand much 

more precise position estimates while introducing unpredictable sources of error that outdoor 

applications are not forced to consider.  
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Numerous indoor localization techniques require a process known as fingerprinting to be 

performed before they can accurately localize mobile devices. This process is time-consuming, 

costly, and must be repeated for each new environment or when the environment changes. These 

constraints greatly limit the number and types of applications that can use indoor localization. As 

a result, a robust method requiring no or minimal knowledge of the area is sorely needed and 

could prove to be very valuable. A considerable body of research exists discussing the theoretical 

foundations of this problem and possible solutions but fewer focus on low-cost implementations.   

This project proposes a solution for such an indoor localization system using a 

combination of Received Signal Strength Indication (RSSI) and Time of Arrival (ToA) based 

methods over an IEEE 802.11-like wireless communication system. Three USRP2 software 

defined radios with known locations create a sensor network able to localize an unknown 

wireless transmitter employing the WiFi standard, which is implemented using another USRP2 

software defined radio. This localization setup is shown in Figure 1.  
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Figure 1: Localization system setup with three USRP2 sensors and a transmitter 

 

Using ToA or RSSI methods, the distance between each of the sensors and the transmitter 

can be estimated. The distances along with the coordinates of the sensors are used in a simple 

trilateration algorithm to calculate the coordinates of the transmitter. Additional software 

processing compensates for the unpredictable indoor environment by calculating the error 

contributed by various sources and using the results to correct incoming data. The proposed 

system is also designed to be a starting point for future research that will continue to improve 

localization performance, add the ability to localize uncooperative transmitter, and prepare the 

system for deployment in a security application.  

This document provides an introduction to the broad concepts required to understand the 

proposed wireless localization system and demonstrates the capabilities and limitations of the 

proposed system in its current state. Chapter 2 provides an explanation of key topics related to 

wireless localization and the platform utilized for this system. Focusing on the system design, 
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Chapter 3 presents the specific goals and requirements met by the proposed system, the 

components that constitute the proposed system, and the design decisions that guided system 

development. Discussed in Chapter 4 is the system implementation and the environments and 

methodologies used for deploying and testing this system. Results are presented in Chapter 5, 

explaining both the data collected and an analysis of the data‘s significance. Finally, the 

concluding Chapter 6 summarizes the results of this project, presents conclusions, and offers 

recommendations for future work in the field of indoor localization. 
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2 Wireless Networks and Localization Overview 

This section introduces the concepts of wireless networks and localization, as well as 

several specific localization techniques. Known sources of error that arise from indoor wireless 

channels and equipment limitations are also explained and discussed.  

Location information is invaluable for countless applications of wireless technology. 

Cellular operators use location information to find the source of emergency calls and manage 

infrastructure resources, while cellular devices and GPS receivers provide this information to 

location-aware applications such as navigation tools. Location information is also essential for 

wirelessly tracking objects such as vehicles and valuable goods [1]. Wireless localization‘s 

success in outdoor environments has led to considerable research into indoor localization. On 

June 14 of 2010, WPI hosted an International Workshop on Opportunistic RF Localization for 

next generation wireless devices, where many important figures, such as the CTO of Verizon 

Wireless, and the CEO of Skyhook Wireless, gathered to speak about location based mobile 

applications. This is sometimes referred to as geolocation. Some notable speeches at the 

convention were given by the Department of Homeland Security ("Localization Requirements 

for Homeland Security Applications"), QUALCOMM  ("Technology Challenges and 

Opportunities in Indoor Location"), the Verizon Wireless Standards Group (―"The Role of 

Standards in Localization and Progress Made‖) and many others researchers at the University of 

Massachusetts Lowell, and the Massachusetts Institute of Technology. These presentations 

reviewed the challenges associated with indoor localization [2].  

There are multiple challenging indoor conditions that make localization more than just an 

elementary research topic. However these challenges are documented well on the web making it 

easy to learn, such as effects of scatter which take into account multipath fading (signals that 
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reflect off objects in the environment and arrive at the receiver with some latency), path delays 

(time it takes for a transmission to be received), Doppler spread (provides insight on angle of 

arrival (AoA)), non-line-of-sight (NLOS) conditions (obstacles blocking the direct path to a 

signal), noise introduced by the channel, and more [3]. Due to the difficulty of overcoming 

challenging indoor channel conditions using low-cost hardware, indoor localization remains a 

research field. 

Mobile wireless devices can be localized in several different ways. In applications where 

the mobile device needs to know its own location, the mobile user can rely on existing wireless 

emitters at known locations or deploy their own localization infrastructure. Global Positioning 

System (GPS) uses this type of application, employing a combined approach where many 

independent mobile users localize themselves using emissions from cooperative satellites 

deployed by the United States Department of Defense [4]. Other applications are driven by the 

infrastructure maintainer‘s need to localize mobile devices. One example of this application is 

Enhanced 911, a cellular localization application where cell phone providers provide the location 

of customers placing emergency calls [1]. In order for a device to use radio frequency (RF) 

signals for localization, there needs to be a set of signals that can be used to determine the 

location of the mobile device. These signals are provided by permanent transmission 

infrastructures and other deployable devices. There are three major methods for providing an 

infrastructure for trilateration. 

One solution is to develop a custom-designed infrastructure that can have any 

characteristics and be deployed as needed. However, this flexibility comes at a great expense in 

that the infrastructure must be specially designed and produced. This cost in time and money is 

beyond the scope of this project. 
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Another common solution is to use existing RF signals that are produced for other 

purposes for localization. Cellular phone signals and wireless Internet are commonly used for 

communications and are already widely deployed, and as the transmitters are often in fixed 

locations these signals can be localized without any additional infrastructure design and 

deployment costs. However, the localization system is then constrained by the properties of the 

signal used. For example, WiFi localization is forced to use direct-sequence spread spectrum 

(DSSS) on the 2.4GHz band to remain compatibility.  

A third solution is to develop the infrastructure dynamically through an ad-hoc network. 

By attempting to localize several devices using each other, relative positions can be obtained 

without installing a permanent infrastructure. This has advantages in hostile environments where 

fixed infrastructures may be impractical, such as a coal mine, while preserving much of the 

design flexibility of a fixed infrastructure. 

Other techniques may be classified as combinations of the above methods. For example, 

GPS implements a fixed satellite infrastructure, but allows these signals to be treated as an 

existing infrastructure by any number of mobile receivers. Ad-hoc networks can be used to 

extend the coverage of other techniques, by positioning nodes relative to known transmitters 

when available and relative to each other when unavailable. Furthermore, many systems 

incorporate RF localization with other technologies such as accelerometers and acoustic signals. 

Those approaches are able to provide improved accuracy due to the additional data input. Since 

our project uses a USRP2 and not a fully-functional robot, other sensors are not available. 

2.1 Localization Techniques 

There are many different techniques through which a position can be found relative to 

other known positions. These can be split up mainly into the categories of time based and signal 
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strength based. Each method has its pros and cons, and all require the use of multiple sensors 

with known locations. 

2.1.1 Time of Arrival 

Time of arrival (ToA), uses the travel time from the transmitter to the receiver, or time-

of-flight (ToF), to measure the distance between the two. In order to properly localize with ToA, 

there must be at least three sensors. When the distances from three different sensors are known, 

the location can be found at the intersection of the three circles created around each sensor with 

the radius being the distance calculated. Imperfect measurements create a region of uncertainty 

between each of the sensors in which the transmitter might be contained. shown in Figure 2  

 

Figure 2: Time of Arrival 

 

Since ToA relies on the difference between the time of arrival and time of departure, all 

receivers and transmitters must be synchronized so there is no error in the difference due to clock 



9 

 

offsets. This may prove to be a problem, especially considering the high speed at which the 

signals travel. Also, as with any time sensitive systems, there is also the possibility of significant 

hardware delays that must be accounted for to calculate the correct distances. 

2.1.2 Time Difference of Arrival 

Time difference of arrival (TDoA), uses multilateration, or hyperbolic positioning, to 

locate the intruder. It is very similar to ToA in that it uses the travel time from the transmitter to 

the receiver in order to measure distances. Instead of using the travel time from each receiver to 

find the distance between the transmitter and receiver, the difference in travel times from each 

sensor are used to find the distance between each sensor. This results in several hyperbolas to 

which the intersection of is the location of the transmitter [7]. Similar to ToA or any other time-

based methods, synchronicity must exist in order for different time measurements to be accurate. 

However, since TDoA does not use the distance between the transmitter and the receiver, the 

transmitter is not required to be in sync with the sensor. Synchronicity is only required between 

all sensors since the calculation is based on their time/distance difference. 

2.1.3 Received Signal Strength 

The received signal strength (RSS) from a transmitter may be used to estimate the 

distance using a method known as received signal strength indication (RSSI). This method 

typically requires much prior work to be done before localization can take place. Using the RSS 

from the transmitter, the distance between it and the receiver can be estimated using existing data 

of RSSs found in different areas. 

Although this method can prove to be suitable indoors, there is much room for error and 

it is very much an estimate in that there are many factors that affect the RSS. Path loss modeling 

can be used based on the area, but there is still a large margin of error and unpredictability. A 
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simple log-linear path loss model that can calculate the distance between the transmitter and 

receiver is presented in Equation 1. 

 

                

                                              

Equation 1: Distance calculation using log-linear path loss model 

 

This equation can estimate the distance from a signal, given that d is the distance between 

the transmitter and receiver, RSSI is the received signal strength measurement, RSSIcalibration is 

the RSSI offset, α is the path loss gradient of the environment, and dcalibration is the distance 

offset. 

2.2 Calculating Distance using Timestamps 

Every ToA/TDoA approach to wireless localization relies on determining the time of 

flight of a packet. Three different approaches to this problem have been identified in the 

literature.  

2.2.1 Synchronized BS and MS, one-packet ToA 

This approach uses a single packet sent from the BS to the MS containing the time it was 

transmitted, relying on BS-MS synchronization to eliminate clock-related drift (citation needed). 

Since the receiving MS knows when the packet arrived and that it is synchronized with the BS, 

the distance travelled can be calculated using the following formula: 

 

            

Equation 2: Distance calculation from time difference [26] 
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This simple equation is used to calculate distance based on the time it took a signal to go 

from the transmitter to the receiver when dtoa is the distance between the transmitters and 

receiver, c is the speed of light (approximately 3*10
6
 m/s), and ttoa is the time difference. 

 

2.2.2 Synchronous BS, asynchronous MS, one-packet TDoA 

This approach uses a single packet sent from the BS to the MS, but does not assume that 

synchronization has been established. By mathematically estimating the time offset between the 

BS clock and the MS clock, all of the benefits of a single-packet solution can be preserved 

without requiring BS-MS synchronization. Reference [10] describes a probability-based 

algorithm that can be used to implement TDoA distance measurements using this approach. 

2.2.3 Differential Time Difference of Arrival (DTDoA) 

This approach mathematically eliminates time offsets between the BS and MS by having 

both nodes send a packet to one another. Since the same time offset is added to the measured 

time of one packet and subtracted from the other, the correct time of flight can be calculated 

without any synchronization between the MS and the BS. Since the time offset can also be 

solved for using this data, this approach permits synchronization to be established using the 

localization packets [11]. This provides a distinct benefit to other services and protocols relying 

on the BS and MS. However, this method requires the MS and the BS to work together. In 

security-related applications where one device is passively attempting to determine the location 

of the other, this method is not realistic. 

It is helpful to have similar BS and MS devices when using this approach. This is because 

this method, in its simplest form, assumes that the path travelled by each packet is the same. Our 

project uses identical USRP2 devices for both the BS and the MS. 802.11 devices are unlicensed, 
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and therefore subject to strict FCC regulations (in the United States) concerning the transmitted 

power. This consideration has resulted in the deployment of 802.11 systems where both the BS 

and MS are similar in design, also validating the assumption of this approach. 

The PinPoint localization system developed at the University of Maryland is one example 

of this approach. PinPoint polls the BS and collects timestamps from both the packet sent and the 

packet received. By combining the time values as shown, this method is able to calculate and 

therefore overcome local clock drift and skew [11], as shown in Equation 3 and Figure 3. 

Time of Flight = (τB1 – τA1 + τA2 – τB2 ) / 2 

Equation 3: Time of flight calculation from PinPoint 

 

Figure 3: PinPoint DTDOA scheme [11]. 

τA represents a time value measured using Node A‘s local clock 

τB represents a time value measured using Node B‘s local clock 
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2.2.4 Synchronization 

ToA requires the clocks to be synchronized between each of the base stations. A scheme 

must be employed to ensure that any given pair of nodes can be synchronized and remain 

synchronized. One method of establishing synchronization is a polling method based on the 

DTDoA approach [11].  However, a more commonly used method of establishing 

synchronization is to exploit the preamble and training sequence found in 802.11 packets. Wang 

et. al. discuss a method for obtaining synchronization from the 802.11 packets [12]. 

2.3 Software Defined Radio Platforms 

Traditional radios often consist of a super-heterodyne or integrated circuit transceiver 

implemented using dedicated hardware. While this type of implementation became ubiquitous as 

consumer devices from televisions to mobile phones proliferated, new hardware had to be 

developed for each platform that was created [13]. Software defined radio is a different 

approach. While both methods can implement the same transmitter and receiver design, software 

radios implement most stages in a digital form using programmable devices such as digital signal 

processing (DSP) and FPGAs. A common software defined radio design is to implement high-

frequency RF signal processing in analog hardware and all intermediate frequency and baseband 

processing in software. This architecture is more flexible than using dedicated-purpose hardware 

and requires fewer parts but is bound by the reliability and security of the software. Additionally, 

software-defined radio uses more power than comparable specialized hardware [14]. Figure 4 

offers a comparison between an analog radio and this software-defined radio architecture. 
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Figure 4: Diagram comparing SDR with analog radio [13] 

 

Note that while Figure 4 demonstrates a receiver, both transmitters and receivers can be 

built in either fashion. Numerous significant flexibility benefits are obtained from using a 

software approach. First, the time required to deploy new products and product upgrades is 

greatly reduced by the near-elimination of new hardware development. In fact, already-deployed 

software radio devices can simply be reprogrammed to take advantage of emerging standards 

and features that were not available when the radio hardware was deployed [14] [15]. 

Additionally, new products can be created without any need to design and manufacture new 

hardware designs [16]. Interoperability between otherwise incompatible radio standards, such as 
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those used by different types of emergency responders, is another important benefit provided by 

software-defined radio [17]. Furthermore, software-defined radio is a key enabling technology 

for cognitive radio and dynamic spectrum access, emerging disciplines that utilize self-

reconfiguring radios to adapt to channel conditions and unutilized spectrum [14] [17].  

2.3.1 The Universal Software Radio Peripheral 

 The Universal Software Radio Peripheral, or USRP, is a low-cost software defined radio 

platform produced by Ettus Research. The device consists of a USB 2.0 host computer interface, 

an Altera Cyclone FPGA, and compatibility with a wide variety of plug-and-play high-frequency 

RF modules. Four input channels and four output channels are provided along with MIMO 

capability, supporting up to two full transceivers [18]. Up to 8MHz of signal bandwidth can be 

used on each channel [13]. Ettus Research also produces and sells USRP-compatible RF 

daughtercards that provide the USRP a range of high-frequency options. At time of writing, Ettus 

Research sells RF daughtercards to support frequencies from DC to 2.9GHz as well as the 4.9-

5.9GHz band [19]. Third-party manufacturers such as Agile SDR Solutions also provide USRP-

compatible daughtercards with frequency support up to 4.4GHz, though Agile‘s product has only 

become available recently [20].  

 The USRP and its Ettus Research daughterboards are fully open source hardware and can 

be supported entirely with open-source software. Full schematics for each of these components 

can be found on the Ettus Research website [19]. When the USRP is used with GNU Radio, 

discussed in Section 2.4.3, the resulting software defined radio is completely open source. Other 

software environments are also available for use with the USRP, including LabVIEW and 

Simulink. Simulink is discussed in Section 2.4.4, while LabVIEW is undergoing beta testing at 

the time of writing. All USRP hardware is sold as test equipment. This approach allows 
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maximum flexibility, but holds the end user responsible for complying with wireless spectrum 

regulations [19].  

2.3.2 The USRP2 

The USRP2 is another low-cost software defined radio platform produced by Ettus 

Research. The device has a very similar architecture as the USRP, though with different 

components capable of providing higher performance. The device consists of a Gigabit Ethernet 

host computer interface, a Xilinx Spartan FPGA, and compatibility with all USRP RF modules. 

Two input channels and two output channels are provided, and MIMO capability is supported 

when multiple USRP2s are connected together. Only one full transceiver is supported, but up to 

50MHz of signal bandwidth can be used due to the 100MS/s ADC sampling rate [21]. The 

USRP2 is fully supported by GNU Radio and Simulink, which are discussed in Section 2.4.3 and 

Section 2.4.4 respectively. 

At time of writing, the USRP2 is being discontinued in favor of the USRP N200 and 

USRP N210. These radios offer the same daughtercard and transceiver capabilities along with a 

100MS/s ADC sampling rate, but have different Xilinx FPGAs and several more subtle 

differences. Ettus Research has stated that the USRP N200-series is code-compatible with the 

USRP2, allowing code written for the USRP2 to be used seamlessly with a newer radio [19]. 

2.3.3 GNU Radio 

GNU Radio is a free, open-source software environment for the implementation of low-

cost software defined radio systems. The GNU Radio project was created so the general public 

could experiment with radio hardware and the wireless spectrum, and does so by providing free 

software to complement low-cost hardware [20]. The project is used by a variety of academic, 

government, and commercial researchers as well as some amateur radio enthusiasts, and supports 
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both simulation environments and Ettus Research software-defined radio hardware products [20] 

[18][21].  

As of GNU Radio 3.2.2 and 3.3.0, the software provides a framework for combining 

signal processing ―blocks‖ combined together into ―flowgraphs.‖ Each block, written in the C++ 

programming language for performance reasons, implements a single data processing step such 

as matched filtering [13] [14]. GNU Radio provides numerous commonly-used blocks, though 

users are encouraged to create their own when a block they need is unavailable [20]. Each block 

executes in a separate operating system thread, allowing for pipelined processing that efficiently 

exploits multicore computer architectures [23]. Flowgraphs are typically written in the Python 

programming language and represent a data stream between the radio hardware and the user‘s 

choice of a data source or output. Additionally, flowgraphs can be produced automatically 

through a graphical user interface (GUI) tool called GNU Radio Companion (GRC). This 

implementation permits easy radio system design and development without compromising 

runtime performance [13] [20]. 

While GNU Radio is fully open source, has a strong user base, and is a well-established 

software-defined radio platform, the code remains in active development and is generally lacking 

in documentation. Significant bugs are routinely discovered and fixed, while backwards 

compatibility is often broken as the software attempts to benefit from the latest developments in 

the many libraries it depends on. Documentation consists of several tutorials, an API, email 

archives and code comments while end-user support is frequently performed by volunteers [20]. 

GNU Radio addresses the host computer software used with a USRP or USRP2, and when 

combined with either Ettus Research product a complete software-defined radio is formed. 
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2.3.4 Simulink Communications Blockset 

As our project was under way, a proprietary alternative to GNU Radio became available. 

The MathWorks chose to extend their Matlab and Simulink software with a real-time 

communications processing toolbox, including USRP2 hardware blocks [21]. Simulink has long 

been established as a simulation toolbox, and can be used to implement flowgraphs in a visual 

form. This functionality is similar to GNU Radio Companion, except fully integrated with the 

Simulink product line. This provides easy access to, for example, common digital signal 

processing and logic functions. Additionally, this software interfaces with the well-established 

software package Matlab. Matlab focuses on offline vector and matrix manipulation as well as 

data visualization [22]. At the time of writing, numerous limitations still exist, such as 

comparatively weak USRP2 support and an implementation that was poorly optimized for real-

time data processing on multicore processors. The authors were exposed to this product and its 

limitations during an academic course on software defined radio during which the MathWorks 

gathered feedback about its performance. It is expected that many of these issues will be resolved 

in future releases.  

2.4 IEEE 802.11 

IEEE 802.11 is a wireless standard utilized by a wide variety of devices to provide a 

network connection. The standard provides several physical layer specifications and one medium 

access control (MAC) protocol [33]. Different variants of the 802.11 standard have been used for 

different applications, including mainstream WiFi network devices. These variants rely on 

different physical layer transmission schemes and carrier frequencies, and as a result are not 

always interoperable. Table 1 shows a selection of IEEE 802.11 variants used by both consumer 

and more specialized applications, describing their transmission frequency band, transmission 
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scheme, and compatibility. All standards shown in the same vertical column are backwards 

compatible with each other. Standards are presented from top to bottom in chronological order of 

release, from oldest to newest.  

Table 1: Comparison of selected 802.11x protocols [33] 

802.11 (original) 

FHSS and DSSS 

2.4GHz and others 

802.11a 

OFDM 

5.8GHz 

802.11b 

DSSS 

2.4GHz 

 802.11g 

OFDM (DSSS preamble) 

2.4 GHz 

 802.11p (draft) 

OFDM 

5.9GHz 

802.11n 

(DSSS preamble, various 

schemes) 
 

Three IEEE 802.11 implementations currently exist for the USRP and USRP2. Each is 

described in the following subsections. 

2.4.1 BBN80211b 

BBN Technologies, now a subsidiary of Raytheon, developed a partial implementation of 

IEEE 802.11b for the USRP as part of the ADROIT project. ADROIT‘s objective is to create a 

cognitive wireless network capable of reconfiguring the radios according to network needs and 

channel conditions. The primary objective of BBN in implementing IEEE 802.11 over a 

software-defined radio was to create a radio designed from the ground up to be cognitively 

controlled [23].   

The ADROIT project developed a wide variety of software packages, many of which 

were publicly released under open-source licenses. In addition to network management and 

cognition software, a functional IEEE 802.11b transmitter and receiver were produced for the 

USRP platform as well as improvements for GNU Radio 3.1.1 [24]. The receiver is able to 

completely decode IEEE 802.11b packets transmitted at a 1Mbps data rate and partly decode 

packets sent at a 2Mbps data rate [24].  
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BBN80211 is not without limitations. No automatic gain control is implemented, making 

the system‘s performance sensitive to the user-specified gain. Additionally, to overcome the 

bandwidth limitations of USB 2.0, the receiver subsamples incoming signals before delivering 

them to the host computer    [24]. Subsequent contributors to the BBN80211 codebase have 

ported it to the USRP2 platform and GNU Radio 3.2.2, circumventing the limitations of USB 2.0 

by using Gigabit Ethernet as the interface with the host computer. Examination of the 

BBN80211 source code indicates a lack of both frequency and phase correction [25]. These 

limitations reduce the robustness of BBN80211b to adverse channel conditions. 

2.4.2 SPAN 80211b Receiver 

Mohammad Firooz and Neal Patwari of the Signal Processing Across Networks (SPAN) 

Laboratory at the University of Utah developed an IEEE 802.11b receiver for the USRP. This 

receiver project was motivated by one of the primary limitations of BBN80211b at the time. 

Since BBN80211b was deliberately downsampling the signal and reducing it to an 8-bit format 

for transmission over the USB 2.0 host computer connection, both data rate and SNR were being 

compromised. This issue was resolved by implementing the OFDM de-spreading operation on 

the Altera FPGA located within the USRP itself. The result is a USRP2 receiver based on BBN‘s 

work but fully capable of receiving IEEE 802.11b packets transmitted at 2Mbps [26]. 

2.4.3 FTW 802.11p Encoder and Transmitter 

Another significant software-defined radio implementation of IEEE 802.11 is an 

802.11a/g/p transmitter developed by researchers at Forschungszentrum Telekommunikation 

Wien (Telecommunications Research Center of Vienna) and the University of Salento. This 

transmitter is compatible with GNU Radio 3.2.2, employs the USRP2 platform and was fully 

functional as of February 2010 [24].  The code is open source and can be found on CGRAN (the 
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Comprehensive GNU Radio Archive Network [24]. Although designed to create IEEE 802.11p 

frames for USRP2 transmission, both IEEE 802.11p and the encoder use the same physical layer 

as IEEE 802.11a and IEEE 802.11g [24]. At time of writing, no corresponding 802.11p receiver 

has been developed for a software-defined radio platform.   

2.5 Challenges in Flight Time Calculation 

Numerous sources of error exist for the calculated flight time. The resolution of the 

timestamps limits the precision of the distance measurements, while a delay is introduced by the 

hardware required to process the arriving signal regardless of the system implementation [9]. 

Multipath conditions result in time-delayed copies of the packet arriving at the receiver. Large 

errors can be introduced when the line-of-sight packet is undetectable or obscured by multipath 

copies, while smaller yet still significant errors result when low bandwidth conditions coalesce 

multiple copies into a single RSSI peak [6].  

2.5.1 Resolution of the Timestamps 

There are various techniques for determining the time of arrival of a signal in these kinds 

of systems, depending on the level of accuracy needed versus the cost of the fully implemented 

system. A purely software-based approach is to detect when the first decoded bit arrives. The 

precision of such a system is limited to the data rate of the connection, as it is uncertain when the 

asynchronous signal arrived during the time between each bit [7]. Commercially available 

802.11 chipsets are limited to 1 microsecond of accuracy at the MAC layer, due to the 1Mbps 

data rate used by the 802.11 preamble [8]. However, this level of precision is insufficient for 

indoor environments. Each bit arrives once every microsecond. 
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  Bits are travelling towards receiver 
0 1 0 1 0 1 0 1 0 1 

t (µs)    0     1    2    3    4     5    6    7     8    9   10    

     |---| Timestamp error 

Figure 5: Arrival of bits showing possible timestamp error 

 

RF signals in free space propagate at the speed of light, approximately 3*10
8
 m/s . Using 

this estimate and Equation 4, we can calculate the approximate distance travelled by the packet 

in 1µs. 

            

        

Equation 4: Distance calculation in 1 microsecond 

 

A 300-meter (approximately 1000 feet) error is unacceptable for indoor localization, as it 

is longer than many buildings. Software-based approaches also encounter issues if the time-

measuring software is run on the same machine as other programs. The processing time on 

systems where the processing hardware is shared with other applications is uncertain, so an 

unknown delay is added to the time measurement [9]. For these reasons, indoor localization 

requires that all some form of hardware-based approach to timestamping. It is important to 

ensure that the timestamp resolution is as high as possible, to minimize the error introduced. If 

the packet detection technique is implemented on the FPGA, the measurement uncertainty is 

theoretically limited by the USRP2‘s hardware capabilities. Since the sampling rate of the 

USRP2‘s ADC is 100Msamples/second [21], the timestamp resolution is effectively limited by a 

100MHz clock. 
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Efforts should be undertaken to improve the resolution of the timestamp beyond the 

USRP2‘s sampling rate in order to achieve maximum performance.  This is because the time 

period between samples is 10ns, and by Equation A will result in an uncertainty of 

approximately 3.3 meters (10 feet). Two general approaches to this problem have been identified 

in the literature.  
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Table 2: Comparison of analog and digital packet arrival detection 

Approach Benefits Costs 

Analog, asynchronous arrival 

detection. 

Uncertainty can be improved to 

sub-nanosecond levels using 

methods described in [7]. 

Requires an analog packet 

detector that bypasses the 

baseband ADC. 

Digital approach using quantized 

data. 

No analog baseband feed or 

analog detector design required. 

 

Complex data processing needed 

to improve resolution. 

Unable to achieve sub-

nanosecond resolution 

 

Using an asynchronous analog approach eliminates the limitations of the ADC. One 

possible implementation of the analog approach is to use an analog comparator to implement the 

Threshold RSSI technique. The binary output of the comparator could then be fed into an 

asynchronous digital input and used to provide a binary timestamp signal. Analog 

implementations of more advanced techniques can also be used so long as they are able to act 

asynchronously on the signal as it arrives. The arrival time of this asynchronous timestamp 

signal can be measured using any of the methods discussed in [7] with sub-nanosecond accuracy 

even on FPGAs with a 100MHz clock.  

However, the costs associated with an analog implementation are too high. The 

limitations associated with Threshold RSSI, as discussed in Section 2.5.1, are too great for 

reliable use in an 802.11-like wireless localization system. Most importantly, modifying the 

analog hardware of the USRP2 or its daughterboards is not an option for this project. This is due 

to the cost of the equipment and the fact our devices are shared with other students and 

researchers at WPI.   

2.5.2 Hardware Delay 

Even under perfectly synchronized conditions with strong line of sight, the time 

measured for a packet to travel from one node to another does not truly reflect the distance 
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between the nodes. This is because there is a delay at both the transmitter and receiver. This 

delay originates in the device hardware, since it takes time for a packet to propagate from the end 

of an antenna to the timestamping module. Additionally, the timestamp determination logic 

implemented in the FPGA introduces measurement and calculation delays. However, this 

hardware delay is constant and therefore easily compensated for [9]. Reference [11] recommends 

tuning each mobile and base station by asking them to transmit a packet to themselves when each 

device is powered on. The flight time of the self-calibration packet incorporates both transmitter 

and receiver delay, but virtually no travel distance. We have observed that the transmit antenna 

and receive antenna of our USRP2 devices are approximately one inch apart, corresponding to a 

flight time of approximately 0.1ns. This error in the hardware delay calculation is one to two 

orders of magnitude less than the desired accuracy of our system. 

2.5.3 Multipath Rays 

When the first bit of a packet is arriving at the receiver, numerous multipath ―rays‖ arrive 

carrying the packet. These rays appear as peaks in the received signal strength, as seen in [12]. 

The first of these rays is the direct path, a line-of-sight path going directly from the transmitter to 

the receiver. In non-line-of-sight conditions, a secondary ray produced by multipath may be 

much stronger than the direct path ray. In some instances, this direct path component may be 

undetectable. In any event, it is important that the time the first ray arrives is precisely 

documented to ensure the measured flight time is actually the time that the packet was in transit 

between the two nodes.  

As the first detectable ray of a wireless signal bit arrives at the receiver, the amplitude of 

the detected signal rises above a predetermined detection threshold. This rise is followed by a 

peak and then both the other multipath rays and other bits. The peak of this signal is considered 
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the exact time that the ray arrived. However, the signal has yet to be decoded into meaningful 

data. If a packet was not successfully received, it is likely that noise triggered the timestamp 

module and so the timestamp must be discarded. Detection techniques differ in how they 

determine when the first ray arrived and how they ensure that the ray begins to a valid 

transmission.  

2.5.4 Bandwidth limitations 

The bandwidth of the received signal limits any algorithm‘s ability to determine when the 

direct path arrived. When multiple multipath rays arrive very close together in a low bandwidth 

signal, they combine into one perceived peak. This means that the detected peak does not 

accurately represent a distinct direct path ray, introducing an error [6]. The correlation 

algorithms examined in [1], including TD-MUSIC, consider limited bandwidth situations. The 

performance of these algorithms degrades as the bandwidth decreases though peaks are still 

noticeable. 

2.5.5 Undetected Direct Path 

In a Non-Line-of-Sight (NLoS) channel where the direct path exists but is below the 

detection threshold of the receiver. This results in a large error in the distance estimate, as the 

distance traveled by the packet is not the distance between the transmitter and the receiver. Much 

research has been conducted on detecting and eliminating this error. This research is discussed 

further in Section 2.7 Undetected Direct Paths, as these techniques are often implemented after 

distances have been calculated and the sensor is attempting to resolve measurements from 

multiple transmitter units. 
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2.6 Methods of Detecting Arriving Packets 

Every ToA/TDoA approach to wireless localization relies on determining the time of 

flight of a packet transmitted between the transmitter and receiver. This is accomplished by 

knowing when the packet was transmitted as well as when it was received and removing any 

known errors. Having an accurate time of flight allows the distance to be calculated, as 

electromagnetic signals travel at the known speed of light. Much research has focused on 

achieving very precise estimates of the arrival time, using a variety of hardware and software 

based approaches. A hardware implementation is needed to keep measurement error small or 

constant, indicating that the chosen approach is to be implemented on the USRP2‘s FPGA.  

2.6.1 Peak Detection Using RSSI 

When no packets are present in the medium, the magnitude of the measured signal solely 

depends on environmental noise. The presence of a packet increases the RSSI [35]. The simplest 

method for detecting the arrival of a packet is to compare the received signal strength with a 

known threshold and signal the packet‘s arrival once the threshold is exceeded. This method has 

the additional advantage of being easy to implement using an analog comparator, producing an 

asynchronous digital signal. The asynchronous signal can then be used as an input to the high-

resolution timestamping methods discussed in [7], making sub-nanosecond resolution possible. 

However, it is important to choose an appropriate threshold when using this method. The noise 

power is generally unknown, unpredictable, and subject to change. Path loss also affects the 

RSSI [35]. IEEE 802.11 implements power control [33], which means that the transmitter output 

power may change over time as well.  

According to [6], the peak of the received signal energy indicates the correct time of 

arrival for the first symbol of the packet. This approach is not dependent on the magnitude of the 
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total received power [35]. The rate of change in the RSSI can be used to help determine when a 

peak is detected and the timestamp should be recorded. To reduce the system‘s sensitivity to 

noise, digital implementations can employ a double sliding window approach. Two values for 

the RSSI are calculated by taking the sums of two adjacent time intervals. As new samples 

arrive, old values are discarded. This is implemented using Equation 5. 

 

            
        

  

Equation 5: RSSI [22] 

 

 This equation uses   to indicate the output value of the sliding window, rn to indicate an 

individual RSS measurement, and L is the length of the sliding window.  

Larger values of L improve noise resilience, at the expense of a longer algorithm-induced 

time delay and increased processing requirements. Since the delay is constant it does not present 

a significant issue, but both sliding windows need to be able to update once every clock cycle. 

Since a larger sliding window requires more memory [35], the size of the sliding window is 

limited by the capabilities of the FPGA hardware.   

2.6.2 Matched Filter Correlation 

Matched filtering is a well-known technique for determining when a signal arrived, and is 

commonly used in noisy environments [30]. Given a known pattern within the transmitted signal, 

a matched filter can be created by reversing the pattern in time and multiplying it by the arriving 

signal. A fixed time delay equal to the length of the pattern being correlated must be introduced 

to ensure the filter is causal [30]. The matched filter can be represented with Equation 6. 

               

Equation 6: Matched filter 
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This equation gives the result of a matched filter when s(t) is the known waveform, τ is 

the length of the known waveform in the time domain, and A is a filter gain. 

The output of the filter, h(t)*s(t), is a correlation function that maximizes the SNR of its 

output. The peak values of this correlation function indicate the strongest matches between the 

received signal and the anticipated signal. When a strong correlation appears, a timestamp can be 

created. If the matched filter method is used, care must be taken to select an appropriate known 

waveform that will indicate the arrival of the packet. IEEE 802.11 provides a known preamble at 

the beginning of every packet consisting of ―scrambled ones‖ [33], allowing matched filters to be 

created using part of or the entire known signal. 

2.6.3 MUSIC-based Correlation Algorithms 

An algorithm known as MUSIC was developed as an improved correlation method for 

determining the time of arrival. Reference [39] presents an improved version of this algorithm 

known as Root-MUSIC in the context of an 802.11a/g system. Reference [1] presents and 

compares three very similar algorithms known as TD-MUSIC, FD-EigenValue, and FD-MUSIC. 

Due to the similarity of these algorithms, TD-MUSIC is presented below. This algorithm was 

shown to have the best performance of the three variants discussed.  

TD-MUSIC creates a pseudospectrum similar in appearance to a Fourier transform that 

may be used to isolate individual peaks when determining the time at which the direct path 

arrived. The pseudospectrum F(τ) is generated using the following steps: 

1) Formulate an autocorrelation matrix for the received signal. 

2) Perform Eigenvalue decomposition on the autocorrelation matrix. 
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3) Estimate the signal subspace dimensions. This is crucial to the performance of the TD-

MUSIC algorithm [1]. 

4) Separate the signal subspace using the magnitudes of the Eigen values. 

5) Pass the new signal subspaces through the function defined in Equation 7. 

  

             
 

           
       

 

Equation 7: TD-MUSIC algorithm 

 

Many of these quantities represent standard quantities in digital signal processing. τ is the 

time offset between the current value in the sample and the first value of the sample, while s(n-τ) 

is the generalized signal vector. UN represents the noise subspace. 

2.7 Undetected Direct Paths 

When there is no line of sight, the direct path ray may be undetectable. In this case, the 

distance calculated is the total distance that particular ray travelled and not the distance between 

the MS and BS. This creates a large range calculation error, biasing the distance estimate and 

posing a critical problem for localization [27]. This can be the result of two different conditions. 

One situation is that a large metal object is blocking the direct path between a transmitter and 

receiver that are otherwise close to one another. Examples cited in the literature include elevators 

and the RF-isolated chambers found in some research laboratories [6] but large metal filing 

cabinets can have a similar effect. A second possible situation is that the transmitter and receiver 

are further away and the direct path is undetectable due to path loss. Another source of UDP-

related bias results from the DP signal propagating at a lower speed through some of the objects 

that are found along the direct path. 
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There are many different approaches used to take UDP conditions into account. 

1) Accept the error. 

One approach is to assume that the MS has line of sight with all the BS units, and 

that the direct path is detectable. If these assumptions hold, there is no UDP and no 

compensation is necessary. The advantage of this approach is that no algorithms need to 

be implemented for compensating for the UDP. However these assumptions do not hold 

if UDP conditions exist, which is common in indoor environments [6] [28].   

2) Improve transmitter coverage and discard the UDP measurements. 

In situations where the LOS distance measurement cannot be reconstructed, the 

distance measurement can be detected as an outlier and discarded. If more than the 

minimum number of neighbors are present (3 for 2D space, 4 for 3D space) the redundant 

data can be used to replace the outlier in triangulation. In order to discard a measurement 

as an outlier, some algorithm needs to determine which if any data values need to be 

discarded. Reference [38] presents three different methods of identifying LOS and NLOS 

channels, although only one is viable for an unknown indoor environment. This method 

relies on the kurtosis (peakiness) of the multipath channel. The multipath channel for the 

data is found by the equalizer in 802.11. This kurtosis, along with the kurtosis of known 

IEEE path-loss models, is then modeled using a log-normal distribution with the 

following probability density function in Equation 8. 

     
 

 √    

      
          

 

   
 

  

Equation 8: Probability density function of kurtosis 

In this density function, µk is the mean of ln(k) and σk is the standard deviation of 

ln(k). If the probability density function (PDF) matches that of a LoS path-loss model, the 
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signal is deemed LOS. If it matches the NLoS path-loss model, the signal is deemed 

NLoS.  [38] mentions that this holds true of cellular systems in home, office, and 

industrial indoor environments but not in outdoor environments. Since that paper focuses 

on outdoor environments, it does not discuss this technique further. 

Additional BS units can be provided to eliminate severe UDP conditions. BS units 

can be located on the opposite side of large metal objects to provide detectable direct 

paths at more locations. Reference [6] performed an experiment in which this technique 

effectively eliminates large ranging errors caused by UDP conditions. This experiment 

took place in the same environment as shown in [7], with two additional LoS BS units. 

While this method improves localization accuracy when the BS locations are well-

chosen, all costs associated with installing and maintaining additional BS units are 

increased. 

3) Rely on distance calculations performed by neighboring nodes. 

In an ad-hoc network, each node computes its location relative to its surrounding 

nodes. This information is sometimes shared between nodes to provide synchronized 

coordinate systems and improved localization data. If a neighboring node was able to 

calculate the distance more accurately, its measurements can be relied upon instead of the 

MS‘s own measurements. Reference [20] proposes such a system, but does not produce 

or test a prototype. Reference [6] also discusses this technique. This method is directed 

towards ad-hoc networks where multiple mobile users are present. Since our test system 

assumes that only one MS is present, this technique is not immediately useful but can be 

added to our system in the future should multiple mobile user capability be implemented. 

4) Compensate for the UDP. 
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Several different methods exist for compensating for the undetected direct path.  

This is considered a major research area, and is the topic of numerous background 

materials. Selections of the published algorithms that are suitable for ToA localization in 

an unknown environment are described below. 

2.7.1 Exploit frequency, temporal, or spatial diversity 

Shadow fading in communications systems can be compensated for by repeating the 

signal multiple times. This can be done by broadcasting it simultaneously over multiple 

frequencies, repeating it at a different point in time, or by using Multiple Input Multiple Output 

(MIMO) spatial multiplexing techniques [6]. IEEE 802.11 preambles use DSSS, which provides 

frequency diversity that can potentially be used to help correct for UDP conditions. However, it 

does not provide any other form of diversity [33]. Communications applications use this 

diversity to overcome shadow fading, a similar phenomenon where the transmitted signal 

momentarily degrades. However, [6] points out that many of the techniques that have been 

developed to overcome shadow fading do not consider the complexity of radio propagation in an 

indoor environment. This remains an area for research. 

2.7.2 Use AoA to exploit a non-direct path for localization 

It is possible to calculate the distance of a non-direct path and use it for localization when 

additional components have been added to the MS. Reference [6] shows how a signal that has 

been reflected once off a wall can be reverse ray-traced and used to calculate the distance 

between BS and MS. This method requires a known direction of travel, as well as a precise 

sectored antenna capable of finding the AoA. Since the USRP2 lacks a sectored antenna capable 

of finding AoA, this method is not feasible for our project. 



34 

 

2.7.3 Maintain a history of the MS’s measurement noise, and use it to reconstruct LOS 

Numerous techniques exist for correcting the NLOS error given knowledge of the 

environment. For example, [28] is able to combine knowledge of the environmental path loss 

with the signal strength of the direct path ray to determine the distance. Our project assumes that 

the environment has not been mapped; therefore this approach is not useable. Reference [27] is 

able to use a statistical method to remove identified NLoS biases from distance measurement 

data. However, this statistical approach assumes that the standard measurement error exceeds the 

NLoS error and that a known bound for the NLoS error can be established. These assumptions 

are valid for the cellular system described [27], but not for an indoor localization system [6].  

2.7.4 Comparison of UDP compensation techniques 

Table 3 provides a comparison of the discussed UDP compensation techniques that are 

possible to implement with our system. 

Table 3: Comparison of UDP compensation techniques 

Method Benefits Costs 

Accept the error Simplest to implement 

No additional hardware 

Large errors under UDP 

conditions 

Improve transmitter coverage, 

rely on other measurements 

Simple to implement 

Eliminates most UDP error 

Requires additional BS units 

Compensate for UDP using 

frequency diversity 

No additional hardware 

 

Research required 

Limited by system bandwidth 

 

2.8 Data Fusion 

After the distance between the intruder and each sensor have been established, the 

localization system must then determine the location of the intruder on a Cartesian coordinate 

system. This coordinate system contains the known coordinates of each sensor, and can be 

displayed to the user using a GUI. Time-based protocols provide measurements of the distance 



35 

 

between each sensor and the intruder, as discussed in Section 2.2. Since our project necessitates a 

time-based approach, the chosen data fusion algorithm must use these measurements. 

Due to the sources of error discussed in Section 2.4, each distance measurement is 

usually too large. As seen below in Figure 6, there is no single point where all of the distance 

measurements can agree the intruder is at. Various data fusion algorithms have been developed 

to resolve these measurements, determine the most likely location of the intruder, and minimize 

the localization error. These calculations can be processed on any node that knows all the 

distance measurements. 

 

Figure 6: How Range Error Affects Triangulation [31] 

 

Figure 6 shows a mobile station, labeled ―Tx,‖ being localized with respect to three BS 

units labeled ―Rx 1‖ through ―Rx 3.‖ ř1 through ř3 are the distances measured between the MS 

and each BS, while r1 through r3 are the distances between these nodes after the data fusion 

algorithm has determined the location of the MS. This example illustrates a moderately good 

case, as there is a substantial overestimate of each distance but the distances are still resolvable.  
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Different data fusion algorithms have different ways of deciding where within the center 

region the MS actually is and if any of the distance measurements are too inaccurate to be 

utilized.  

Each of the listed algorithms uses the geometry of the nodes in relation to one another. 

Statistical approaches are generally associated with techniques where the environment is 

mapped, whereas our project does not permit prior mapping of the environment. 

2.8.1 Least-Squares Error Minimization 

The Least-Squares method is a generic mathematical process for approximating the 

solution to a system of equations where more equations are provided than variables. It attempts 

to minimize the error by which each equation deviates from the approximated result. Least-

squares algorithms are typically implemented in matrix form, to permit an arbitrary number of 

equations to be solved.  

One variant of this technique is the weighted least-squares method. Each distance 

measurement is given a weighting based on the receiver‘s level of confidence in it. When 

weighted least-squares is used for localization, the BS closest to the MS is typically given the 

strongest weight. This is because ranging errors, such as those related to multipath, frequently 

increase the measured distance (citation needed). The MS also receives a much stronger signal 

from a nearby tower, especially in the context of a cellular network. 

[32] provides three variants of the least-squares method, using a series of linear equations 

in matrix form to minimize the distance estimation error for each input. These linear equations 

are approximations of nonlinear systems, and can be used to minimize the error associated with 

each distance measurement. The error ε is calculated using the equation below [19]: 
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This equation error can then be used in one of the many methods proposed by [32], some 

of which are referred to in Section 2.8.2. Weights can be applied to each of the measurements 

without much difficulty using this, but tuning may be required to find appropriate weights. 

Reference [29] references additional least-squares algorithms that use a two-step iterative 

process to solve similar equations. 

2.9 Summary 

This section contained information regarding the concepts of wireless networks. We 

introduced the components and processes that make up a wireless infrastructure and reviewed the 

concepts behind time calculation, packet protocols, data fusion algorithms and many others. This 

source is intended to provide readers with information that help them to understand the concepts 

of wireless networks, localization, and of the methods of localizing needed to create a wireless 

localization system. The next section is a combination of several concepts that help to form the 

design of our wireless communication system. 
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3 System Design 

This section introduces the goal and motivation of our project. Within this chapter we 

introduce our major objectives and our design requirements. This is followed by a design 

overview of our system. We then illustrate the integration of our major components and walk 

through the fundamental procedures required for the development of our localization system. 

Finally, we take a look at the data analysis tools used to track erroneous conditions, and learn 

about the error correction methods we applied to enhance our final results.      

3.1 Project Motivation and Goal 

Localization can be used to detect emitting transmitters that should not be within a 

network. Therefore, there is a need to overcome important security challenges. For instance, 

some facilities may be off-limits to most electronics devices, such as unauthorized portable 

computers and cellular phones. This policy is in place because unapproved devices are typically 

capable of recording images and audio, and potentially could capture sensitive information. 

These security breaches are often caused by legitimate laboratory employees and visitors who 

themselves are allowed within these secure confines, but forget to leave unauthorized devices 

such as their personal cell phones outside the secure areas [36].    

A full resolution to this problem is a difficult and involved task which requires a 

functional, though not necessarily reliable or secure, wireless localization system incorporating 

one or more transmitters and multiple receivers. For simplicity in system implementation, we are 

permitted to assume that the transmitter will be cooperative and able to assist in localization. Our 

goal is to develop a cyber-physical system consisting of a sensor network, an unauthorized 

transmitter, and processing software that can determine the transmitter‘s location and relay this 

information to the sensor network operator. 
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This project utilizes open-source software defined radios because of the many strengths 

behind a coding approach [36]. Software defined radio, as discussed in Section 3.6, implements 

nearly all radio functionality in software. This approach allows a single radio hardware design to 

serve many purposes, and facilitates both in-place upgrades of deployed systems and cognitive 

approaches where radios optimize their configuration using feedback from the environment [16]. 

When this software and accompanying hardware is fully open source, every piece of 

functionality can be closely examined for issues such as bugs, limitations, processing delay, and 

security vulnerabilities. These benefits both facilitate system development and add value to the 

resulting localization system.  

3.2 Objectives 

 Considering our project‘s motivation as well as guidance from our sponsor, we created a 

list of the major objectives for our project. These objectives are presented below: 

 Collect time and signal strength data from a transmitting software defined radio using an 

IEEE 802.11-like protocol with a group of software defined radio sensors. 

 Use the collected data to calculate the transmitter‘s position. 

 Display the transmitter‘s position relative to other objects in the environment. 

 Provide tools for calculating and visualizing measurement errors so the system may 

continue to be improved. 

Each of these objectives is fulfilled by one or more pieces of software. Data collection 

occurs at each sensor and is integrated with the IEEE 802.11b-like receiver. This process is 

discussed further in Section 3.8. Position calculation is performed in two pieces of software, the 

real-time localization solver (RTLS) and the post processing localization database (PPLD). The 

RTLS also displays the transmitter‘s position within the environment in real time, while the 
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PPLD is a post-processing tool for calculating and visualizing measurement errors. These 

software packages are discussed in Section 3.9 and Section 3.10, respectively. 

3.3 Design Requirements 

In order to complete the project‘s objectives, we compiled a list of the subtasks that our 

design must perform in order to meet the objectives. Namely, 

 Establish wireless communication between a transmitter and receiver. 

 Create a packet protocol for communicating localization information. 

 Achieve time synchronization between the sensor nodes. 

 Collect and store localization data. 

 Understand, calculate, and compensate for known sources of measurement error. 

 Find and implement algorithms for finding the distance between each sensor and the 

transmitter using the collected data. 

 Find and implement an algorithm for determining the position of the transmitter given the 

calculated distances. 

 Present the calculated results in a user-friendly format. 

 

The first requirement is to establish wireless communication. At minimum, the system 

must be capable of successfully communicating a data packet from a transmitter to a compatible 

receiver. This packet may be any size that is appropriate for our needs, but all of the data 

transmitted must be received correctly. Keeping the end goal of localizing consumer devices in 

mind, we were guided towards IEEE 802.11-like communications protocols. After considering 

the complexity of IEEE 802.11, we opted to reuse and modify existing IEEE 802.11-like 
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transmitter and receiver implementations instead of creating our own. The full decision-making 

process is illustrated in Section 3.7.1. 

The second objective is to establish a packet protocol for communicating localization 

information from the transmitter to the receiver. Since RSSI data is provided by the original 

BBN 802.11b receiver, w determined that the only two pieces of information that needed to be 

conveyed in the payload are the transmitter‘s MAC address and the time at which the packet was 

sent. Both fields are represented in transmitted packets as plain ASCII text. The inherent 

redundancy of this format is used to perform error detection. A more detailed discussion of this 

protocol can be found in Section 3.7.2. 

The third requirement is sensor synchronization. All of the TDoA algorithms we found in 

our research require that each sensor shares a common time reference, thereby requiring sensor 

synchronization. Other algorithms sometimes avoid this requirement, but we determined that 

they were not appropriate for our application. Sensor synchronization is handled by the Network 

Time Protocol (NTP) and the Network Time Protocol Daemon (NTPD), which rely on the host‘s 

internet connection to adjust the system clock to the correct time. As a result, no synchronization 

data is carried in the packet. The details of and rationale behind this protocol are discussed in 

further detail in Section 4.3.  

The fourth requirement is to collect and store localization data. Data collection is handled 

at each sensor by modifications made to existing receiver code. This software extracts the MAC 

address the time of transmission from the contents of each received packet. Received signal 

strength indications and times of arrival are collected from the receiver. This information, along 

with the receiver‘s location within the environment, is both logged to disk in a computer-

readable format and transmitted across a network for real-time processing. 
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Our fifth requirement is to implement distance calculators using the available ToA and 

RSSI data. We chose the simple linear and log-linear mathematical techniques discussed in 

Section 3.8 to perform this task and implemented each in both the RTLS and the PPLD. Both 

formulas convert the measured data to distance values indicating how far the transmitter is from 

each particular sensor. Some calibration data is needed beforehand, but this information is easily 

obtained from simple tests involving one transmitter and one receiver in the deployment 

environment. 

Our sixth requirement is to understand, calculate, and compensate for known sources of 

measurement error. Each sensor reads in a set of stored environmental parameters from our data 

files managed by the PPLD, while real-time error correction occurs in the RTLS. Additionally, 

the PPLD is responsible for visualizing the errors that were not removed during processing so 

improvements can be made to the processing software. 

Our seventh requirement is to implement position finding algorithms. A single position 

finding algorithm is used for both ToA-based and RSSI-based distance measurements. This 

algorithm was chosen for its simplicity, and is implemented in both the PPLD and the RTLS. 

Our eighth and final requirement is to present the results in a user-friendly form. This is 

important since the end user must know at a glance where the transmitter is located and how 

reliable the position estimates are. The RTLS is primarily responsible for visualizing the 

transmitter‘s location in the environment, and does so by overlaying the transmitter‘s position on 

a user-provided map. Additional information is provided when the user requests it. The PPLD 

contributes to the fulfillment of this requirement by generating plots and graphs of measurement 

errors.  
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3.4 Design Overview 

Our design is implemented by four pieces of software that work together to fulfill the 

project objectives. These components are: 

Table 4: Software Components and their Roles 

Component Purpose 

Transmitter Simulate unauthorized users; provide MAC address and transmit time 

Sensor (3 needed) Receive transmissions; capture data for storage and network transmission 

RTLS Real-time data processing; display unauthorized user‘s location 

PPLD Data quality analysis; enable user-friendly transmitter and sensor configuration 

 

The localization techniques we selected govern the configuration of our transmitter and 

sensors. First, a distance measurement from each sensor to the transmitter is calculated using 

TDoA and log-linear path loss. Then, a geometric position calculation uses the distance 

measurements to find the transmitter‘s location. This process is discussed in greater detail in 

Section 3.8. Since three or more sensors are required to perform two-dimensional localization, 

three or more sensors must be placed at known locations. One additional sensor is used as a 

mobile transmitter and positioned in several different test locations. Once set up, the transmitter 

broadcasts packets into the wireless channel at a known frequency. These packets are compliant 

with the message exchange protocol detailed in Section 3.6.2. Each sensor then receives a copy 

of this packet and measures its time of arrival and received signal strength indication. Upon 

collecting this data, each sensor then simultaneously writes a copy of the information to disk and 

delivers it to the RTLS over a network connection as described in Section 3.7. The configuration 

of the transmitter is controlled by data files produced by the PPLD. This approach allows for 

environment-specific settings to be loaded in a user-friendly manner, and is described in greater 
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detail in Section 3.10. Figure 7 shows this system in a flow graph format, demonstrating how 

data moves between each node and software package.  

 

Figure 7: Full system architectural flow graph 
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The configuration of our data processing and visualization software was governed by the 

needs of end users at the NRL. Three approaches to presenting localization and data quality 

information became apparent: post-processing in a data analysis program such as Microsoft 

Excel or Matlab, real-time output from a custom-implemented program to a text-only terminal, 

and real-time visualization through a custom-designed program with a graphical user interface. A 

comparison of each of these approaches is shown in Figure 8. 

 

Figure 8: Comparison of localization software realizations 

 

Our final system utilizes all three of these approaches, each for different purposes. Post 

processing is utilized for our data quality analysis so that system developers can quickly and 

easily visualize sources of error. This approach manifests itself in the PPLD and is well suited to 

the needs of system development. System development requires rapid, straightforward 

implementation of new error correction and visualization tools that present considerable 

challenges for software that has been custom-implemented in a low-level language. Additionally, 
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system developers can afford to stop the localization infrastructure and gather stored data files. 

In contrast, end users view any interruption in system availability as a window of opportunity for 

security threats to go undetected. For this reason it became clear that end users need a real-time 

system. We chose to use a GUI as it is a very visual format, allowing security personnel to know 

where unauthorized users are intuitively, without having to translate numbers into positions 

within a building. However, a real-time terminal output is provided for debugging the RTLS. 

This approach is used because text is more conducive to system error logging and a terminal 

output is immune to problems with the GUI display. 

We have developed a higher level system design, made up of five components and 

several requirements. First we developed the data component which is responsible for storing 

information via multiple CSV files. Information collected includes raw project data, localization 

test results, sensor locations, frequency offsets, and calibration data. The remaining four 

components interact with each other in order to provide the data component with information. 

Second we developed our data gathering component. This component consists of the 

actual communication via the 802.11BBN code, and an error correcting module. Calibration data 

and frequency offset CSV‘s provide our modified 802.11BBN code with enhancements to 

provide initial average error correction to our system. The error correction module uses 

theoretical lookups and range based analysis of incoming data to categorize the inputs and then 

add the most likely error to the data. 

Third is the localization component that contains a variety of modules. Received in real-

time is the project data with a mode identifier, which decides between using RSSI or ToA based 

distance calculations. After the distance is calculated, we use an aggregator that groups the 

distances by incoming MAC address. Each MAC address uses the sensor location CSV to reveal 
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its actual XY coordinates. Another mode is then triggered that distinguishes between using our 

Python localization or our C localization. The final results are logged and sent to our GUI. 

The GUI component is rather small, however helps tremendously. This component 

contains the actual real time localization mapping and tracking. It also contains a test bench that 

can manipulate the data within the PPLD to test the effect of different variable parameters such 

as time difference, or the path loss gradient. 

The final component consists of our processing and reporting which contain the PPLD as 

well as the Excel Localization Test Bench (ELTB). These are quality analysis tools that use our 

raw project data to ultimately determine the best calibration parameters for our system. In 

addition, both tools provide detail analysis of the environment in well-organized test 

environment reports. In the following sections, we go into the procedural details of our system. 

Figure 9 shows our design components and the relationships between them.  
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Figure 9: System functionality diagram 



3.5 Mathematical Localization Techniques 

Many localization techniques exist, but most of these are presented in mathematical form 

in research papers. In order to perform localization with real data, our chosen techniques must be 

translated into software. This placed a serious constraint on our chosen techniques, as there is a 

direct relationship between algorithmic complexity and the time required to produce a software 

implementation. This was especially challenging as many algorithms are presented in 

mathematics that are appropriate for the graduate level, often in matrix form so they may scale to 

arbitrary numbers of nodes.  

Many RSSI-based distance calculation algorithms rely on coverage maps of the 

environment or reverse ray-tracing techniques. While it is possible to obtain a coverage map, a 

full sensor deployment would be required to update the coverage map every time RF-opaque 

objects are moved within the area being sensed. This would add considerable complexity to 

everyday tasks such as moving a filing cabinet, and in practice is unlikely to be implemented as 

routine procedure. Reverse ray tracing is at the time of writing an active research field. Both the 

complexity and equipment requirements of reverse ray tracing place it firmly beyond the scope 

of our project.  

Accordingly, we chose to use simplistic and easily implemented methods for our solver 

software. We decided on the following simple formulas in to find the (x,y) coordinates of the 

intruder based on the coordinates of the sensors and the calculated distances. 

  
  

    
    

 

   
 

  
  

    
    

    
 

   
 

   

  
 

Equation 9: Localization algorithms to calculate coordinates of intruder 
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These algorithms will return the coordinates of the intruder where   is the calculated 

distance from the specified sensor to the intruder,   is the x-coordinate of the specified sensor, 

and   is the y-coordinate of the specified sensor. 

Calculations need three or more distances to determine position. Therefore additional 

sensors along with some modifications can add new nodes to our calculations thus enhancing 

accuracy of the system. Future work ought to consider the benefits of combining our research 

with that of more theory-oriented projects, so the contributions of the latter may be fully realized 

in the context of our system. 

 

3.5.1 Distance Calculation 

The flight of a packet is used to determine the distance between transmitters and 

receivers. This relies on a time of arrival type approach to determine distance. We will 

implement our Packet based communication protocol on our system in attempt to synchronize 

the base stations and mobile station.   In order to do so we will have our receiver search the air 

for any incoming signals, or in other words our receiver will be polling and when a packet is 

acknowledged the mobile station begins synchronization with the base station.  

The receiver will need to receive packets from at least three of the four base stations in 

order to implement the location algorithm that applies trilateration to find position. The 

additional base station, if picked up, will add additional data, which should help the accuracy of 

our measurements. This will be one of the many things we will look into as we begin 

implementation. 
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3.5.2 Position Calculation 

 Determining the position of the unauthorized device is possible once we have determined 

the three distances from our sensors. The algorithm we have chosen uses the equations for a 

circle, as well as the distances between each sensor. Using the three equations for each sensor, it 

is then just a matter of some simple algebra to solve for the two unknowns – the x and y 

coordinates of the intruder. More on this can be found in Appendix A. 

The collected distance values, along with the three sensor positional coordinates, are used 

to calculate the location of the intruder. All results are stored in a CSV file for later processing 

via the PPLD. There, we can utilize a test bench, to review and enhance position estimates. 

Further research will be to experiment with the implementation of different localization methods 

within our software packages, and compare the results of each method.  

 

3.6 Software-Defined Radio Platform Selection 

 As discussed in Section 3.1, a software-defined radio environment was needed for 

implementing our localization and satisfying the project goals. At the time our project was 

commencing, GNU Radio was the only readily available open-source option for our radio 

software platform. Since any homemade equivalent would require extensive software 

development, GNU Radio was selected for use as the basis of our project. A more in-depth 

discussion of GNU Radio can be found in Section 2.4.3. In retrospect, GNU Radio and more 

particularly the BBN80211 communications system we used with it proved to be unreliable and 

poorly documented. Future work that does not require an open-source platform could potentially 

benefit from utilizing a competing platform, as a commercially-supported competitor was 

released while this project was underway. At the time of writing, the MathWorks has produced a 
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functional alternative called the Communications System Toolbox that is fully integrated with 

their Matlab and Simulink products. However, no 802.11-like communications platforms are 

known to have been developed for this software environment. This product is discussed further 

in Section 2.4.4.  

When choosing a software-defined radio to work with, we found our choices were rather 

limited. The radio hardware that was already available to us consisted of USRP2s and USRP 

software-defined radios, all of which are shared by a large group of students and researchers. The 

purchase of other radio platforms was beyond the means of our budget, while the development of 

a custom hardware solution was outside the scope of our project and our skills. Therefore, our 

choice of radio hardware was limited to USRPs and USRP2s. Table 5 provides a comparison of 

the two radios, focusing on features that are relevant to this localization project. 

Table 5: Comparison of Available SDR Platforms 

Feature USRP USRP2 

Available Radios 4 14 

Receiver Sampling Rate 64 MS/s [18] 100 MS/s [21] 

Interface Required USB 2.0 [18] Gigabit Ethernet [21] 

GNU Radio version* 3.1.1 3.2.2 

*The version of GNU Radio required for running BBN80211. Both radios work properly 

with newer versions of GNU Radio, but BBN80211 currently does not. See Section 2.5 for a 

more thorough discussion of the BBN80211 platform. 

 

Radio availability was our most important consideration. Conducting this project required 

two to four radios at any given time. With other students and researchers using the radios from 

time to time, sufficient availability was not guaranteed. Our budget was not sufficient to 

purchase multiple additional radios to supplement this supply. The substantially larger supply of 

USRP2s was a significant factor in weighing which platform to use. Additionally, the USRP2‘s 
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higher sampling rate allows higher resolution timestamping. This improvement is even more 

noticeable when examining the samples at the software host, as Gigabit Ethernet provides much 

higher data rates than USB 2.0. A heterogeneous system using both radios was considered but 

encountered problems due to the disparate versions of GNU Radio. As mentioned in Section 2.5, 

BBN80211 has separate branches to support each radio. The USRP2 branch of BBN80211 has 

been updated to support GNU Radio 3.2.2, whereas the USRP branch of BBN80211 is currently 

incompatible with any version newer than GNU Radio 3.1.2. This situation was discovered by 

the authors while experimenting with the radio platforms. Unfortunately, GNU Radio 3.1.2 has a 

known issue with Python 2.6 (http://vps.gnuradio.org/redmine/issues/show/312) that was fixed in 

later releases, but was found to impair installation on our Ubuntu 10.10 platform. Downgrading 

to an older version of Python or Ubuntu was not viable on shared laboratory computers and 

porting BBN80211 to a newer version of GNU Radio was not considered an efficient use of 

project time. For these reasons, we selected the USRP2 for use as our radio platform. 

Our project‘s goal is to build a localization system using specially configured USRP2 

transmitters and receivers, while a subsidiary goal is to provide a foundation for future work that 

will be undertaken to achieve our sponsor‘s mission. Since the timestamps associated with 

localization can easily be carried by a 1Mbps or faster communications system, we will attempt 

to keep our communications protocol implementation as simple as possible without considering 

the costs in terms of data rates. 
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3.7 Real-time Communications 

In order to replicate unauthorized users employing IEEE 802.11, an IEEE 802.11-like 

communications protocol was needed. The transmitter provides a MAC address to identify itself 

as well as a time of transmission, information that must be relayed to the sensor via a 

communications system and packet protocol. This section details the selection of our 

communications platform and packet protocol.  

3.7.1 Communications System 

In order to reduce the implementation time for our project, we opted to utilize an existing 

IEEE 802.11-like communications platform. Although our project requirements specified that 

our system needs to be compatible with consumer WiFi devices, they do not require a specific 

protocol. Additionally, as discussed in Section 3.7.2, our packet protocol does not demand high 

data rates. These considerations offer a high degree of flexibility in choosing an IEEE 802.11-

like platform. 

The process of choosing a communications platform is intertwined with the process of 

choosing a localization algorithm. Any form of localization requires a receiver of some form. 

Algorithms that require highly precise time of transmit information necessitate specially 

configured transmitters and receivers, as this information is not customarily provided by IEEE 

802.11 (cite IEEE 802.11, see references). Additional benefits to having an SDR transmitter is 

that we can directly control the time and contents of each transmission, whereas a commercial 

wireless card integrated into a laptop would be less predictable unless custom drivers were 

created. Since many wireless drivers and wireless cards are proprietary, reverse engineering one 

would be difficult at best and result in an implementation specific to hardware that might be 

discontinued at any time.    
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Only one of the available IEEE 802.11 implementations discussed in Section 2.5 contains 

both a transmitter and a receiver and is compatible with the USRP2. This implementation is the 

USRP2 port of BBN802.11. Testing this system showed that it can properly decode the headers 

of IEEE 802.11 packets being transmitted across WPI‘s campus wireless network, though the 

contents were unreadable as they were encrypted and often transmitted at unsupported IEEE 

802.11g/n data rates. We elected to use the 1Mbps data rate setting to ensure robustness, as 

higher data rates were not required for our message exchange protocol. 

 Compatibility issues have arisen between newer releases of GNU Radio and the BBN 

codebase. We were unable to get the code functioning with version 3.3.0 of GNU Radio, but 

succeeded in making it work with version 3.2.2 and GCC 4.4.5 with only minor modifications. 

Although we modified the BBN802.11 code during this project so it would log packet data, as 

discussed in Section 3.8, the underlying communications system is functionally unchanged. 

3.7.2 Message Exchange Protocol 

Implementation of a message exchange protocol is essential for enabling appropriate data 

collection. In order for received signal data to be collected at each sensor, some form of packet 

must be transmitted by the unauthorized user. However, a cooperative transmitter could provide 

additional benefits by simplifying or improving the robustness of our localization algorithm. 

Choosing our DToA approach requires the transmitter to produce a time of transmission but 

avoids the need for bidirectional communications. Additionally, the transmitter needs to provide 

some form of identifying information to distinguish it from other signal sources found in an 

indoor environment. Since IEEE 802.11 uses MAC addresses to identify senders, the MAC 

address format was selected as a form of transmitter identification [33].    
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Having determined that the data the transmitter needs to provide is its MAC address and 

the time of transmission, the next step is to design a message exchange protocol to ensure this 

information is correctly received and understood at each sensor. The design goals for this 

protocol were as follows: 

 Ability to carry MAC addresses and timestamps 

 Size of the packet in bytes 

 Robustness against bit errors introduced by the channel 

 Implementation complexity 

Two options presented themselves for each item of data into each packet. The data could 

be sent in a serialized network-byte-order form, or converted to human-readable ASCII before 

transmission. The advantages of transmitting in raw ASCII format include ease of debugging and 

the ability to use sanity checks on each decoded character to detect bit errors. Only characters 

that could represent hexadecimal numbers may appear in ASCII-format MAC addresses, while 

any number may appear in a standard MAC address. The advantages of transmitting the raw data 

are a smaller packet size from elimination of redundancy and similarity with real network 

protocols such as IEEE 802.11. Disadvantages include reduced ease of debugging and the need 

for separate error detection or correction.  

Three potential protocols were considered, although other protocols could be developed. 

Some of these protocols require the MAC addresses and timestamps to be implemented in 

numerical form, while others require them in ASCII form. Numerical MAC addresses require 6 

bytes while ASCII MAC addresses that include the colons require 17 bytes. Numerical 

timestamps require at least 4 bytes to represent the seconds that have passed since the Unix 

epoch, and at least 4 more bytes to represent the nanoseconds. However, numerical timestamps 
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that allow for fractions of nanoseconds, and years greater than 2038, are implemented using 64-

bit fields, and use as much as 16 bytes total. Our ASCII timestamps print the time at which our 

experiments took place and require 20 bytes for single-nanosecond precision, including the 

decimal point. 

1) IEEE 802.11 Header with Timestamp 

Table 6: IEEE 802.11-based Message Exchange Protocol 

Frame 

Control 

(2 bytes) 

Duration 

/ ID 

(2 bytes) 

Address 1 

(6 bytes) 

Address 2 

(6bytes) 

Address 3 

(6bytes) 

Sequence 

Control 

(2 bytes) 

Address 4 

(6 bytes) 

Numerical 

Timestamp 

(16 bytes) 

CRC 

 

(4 bytes) 

 

This protocol has the advantages of being IEEE 802.11 compliant and incorporating error 

checking, but is very large given the limited quantity of data being transmitted. Due to the 

frequency drift endemic to USRP2s and the lack of automatic frequency offset compensation in 

BBN80211, the reliable and complete transmission of a 46-byte header at a low data rate could 

not be guaranteed. 

2)  Bare-Minimum Packet Size 

Cutting out data fields not required by the project greatly reduces the probability of a bit 

error occurring in the data fields but does not eliminate it completely. The following protocol 

also reduces the size of the timestamp, reducing future-proofing in the interest of saving space: 

Table 7: Minimal Message Exchange Protocol Format 

Numerical MAC Address 

(6 bytes) 

Abbreviated Timestamp 

(8 bytes) 

CRC 

(4 bytes) 

This protocol, though more efficient, still requires the use of a CRC and makes 

debugging complex. Text files created with unmodified numerical data are unreadable in many 

text editors. This situation complicated the process of verifying that BBN80211 was functioning 
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properly. As a result, we decided to use ASCII formatted data fields despite their size penalty. 

This also allowed us to move away from CRC error checking and towards a technique which 

could be easily verified by human programmers. The resulting packet format is shown in Table 

8. 

Table 8: Final Message Exchange Protocol Format 

MAC address (17 bytes) 

ASCII 

Timestamp (20 bytes) 

ASCII 
 

Though this format is nearly as large as the original IEEE 802.11-based protocol, it 

greatly simplifies the process of determining whether or not BBN802.11 and the error checking 

features are functioning correctly. However, ASCII-based error correction is not as robust as 

CRC checks and consumes considerably more space in the packet. Future work may benefit from 

reconsidering other protocol formats after the reliability of BBN80211 has been improved.  

The selected design encodes both the MAC address and timestamp as plain ASCII text. 

The MAC address aa:bb:cc:dd:ee:ff is represented in the packet as AA:BB:CC:DD:EE:FF, 

although the protocol is not case sensitive. When bit errors occur in the MAC address, there is a 

high probability that the results will not form a valid ASCII MAC address. When ASCII text 

such as the letter ‗Q‘ that cannot be used to represent a hexadecimal value is found in the MAC 

address field, the sensor knows that bit errors occurred and drops the packet. This technique 

proved to be very helpful when using BBN80211, as our packet protocol does not implement 

explicit error detection or correction. The time of transmission timestamp is also represented as 

ASCII text. The timestamp itself appears as a floating point number of seconds that have passed 

since the Unix epoch, with 9 decimal places and the decimal point included. This format 

consumes a total of 20 bytes and is trivially created by Python-based software. Error checking is 
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also performed on the timestamp, and the packet is dropped if invalid ASCII characters appear or 

the decimal point is missing.   

3.8 Data Collection 

 Our data collection system consists of a sensor node equipped with a modified version of 

the BBN80211 receiver. Each sensor is capable of reading packets sent using our packet protocol 

and collecting data both from the arriving signal and the packet contents. Localization data is 

collected within the BBN receiver. At first, we modified the receiver callback function where 

packet contents are made available to the end users of BBN80211 to print out the calculated 

RSSI value as well as the time when the function is called. This performed as expected, though 

there was considerable room for improvement. Since the callback function is the very last 

functional block to process the received packet data, it is the most sensitive to variable 

processing delays. Additionally, the RSSI values only showed two significant digits of precision, 

resulting in very little variation in the measurements.  

Table 9: Comparison of Localization Data Collection Point 

 PLCP block Callback block 

Language C++ Python 

Easier to program for C programmers Object oriented programmers 

RSSI precision 6 significant figures 2 significant figures 

Bit count Readily available Not readily available 

Runtime performance Fast Moderate 

 

Due to this need for improvement, we chose to move our data collection and 

timestamping to a lower level component of BBN80211. Our final design modifies Physical 

Layer Convergence Protocol (PLCP) block, as this is the first block in the receiver flowgraph 

where all of the essential data is present and has been decoded. The PLCP block‘s internal RSSI 
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data has six significant figures, a considerable improvement over the two significant figures 

provided in the callback function. Another advantage of modifying the PLCP block is that it is 

implemented in C++, allowing for higher runtime performance. 

 Table 10 shows the pieces of data that are extracted from the PLCP block. 

Table 10: Data gathered by the sensors 

Data Extracted From: 

Transmitter MAC address Packet contents 

Time of Transmission Packet contents 

Time of Arrival System clock 

Received Signal Strength Indication PLCP block internal data 

Sensor location Sensor parameters 

 

These data fields are used by the RTLS and PPLD. Each sensor is responsible for 

ensuring that the data is accessible to these localization tools, so C++ code is provided for 

simultaneously transmitting the data over a network and logging it to disk. Both computer-

readable and human-readable files are created. Blocking I/O operations take a very long period 

of time relative to most other tasks a computer performs. It is essential to ensure that this 

constraint does not interfere with the PLCP layer‘s processing of arriving USRP2 samples. 

Therefore, two additional threads of execution are created in addition to the PLCP block so 

network transmission, file operations, and PLCP processing can occur simultaneously. The 

design decisions leading to this implementation are presented in more detail in Section 3.8.4. 

3.8.1 Sensor and Transmitter Configuration 

The transmitter and sensors are run by executing a Python script that configures and 

executes a GNU Radio flow graph. When this code is run, program parameters are read in from a 
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series of five data files. These files are labeled calibration data, frequency offset, sensor 

locations, project data, and localization test results. Each computer file is created and managed 

by the PPLD, allowing the user to easily save settings for each test configuration or environment 

the system is operated in. Table 11 describes the contents of each computer file. 

Table 11: Transmitter and Sensor Configuration Parameters 

Computer File Name Description 

Calibration Data Contains ToA and RSS calibration data grouped by environment ID.  

Frequency Offset Contains BSSID‘s along with individual frequency offsets. 

Sensor Locations Contains Sensor XYZ locations grouped by BSSID‘s. 

Project Data Contains raw data from every test ever conducted. 

Localization Test Results Tracks XYZ location of an unauthorized device by project ID. 

 

Our design uses these computer files to provide an intuitive, PPLD-driven method of 

configuring the sensors. As a result, an iterative improvement process is facilitated as shown in 

Figure 10.  
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Figure 10: The iterative design process enabled by the PPLD 

 

This integration between the transmitter and sensor parameters and our data quality analysis 

tools adds value to the project helping future work focus on the localization data rather than the 

nuances of the underlying software packages. 

3.8.2 Time Synchronization 

In order to use timestamps for localization, the clocks used for timestamping must share a 

common reference. Unsynchronized clocks will drift due to small but significant errors in the 

oscillator clock frequency. Accurate timestamps must be sent so we can calculate the distance 

correctly. In order to establish time synchronization between our units we decided to look into 

Network Time Protocols so that we can use a server‘s atomic clock, similar to what GPS 

currently does in order to sync computers. 

Experiment 
Conducted 

Data Collected 

Data Analyzed 

Errors 
Identified 

Configuration 
Updated 
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One potential approach is to use a DTDoA communication protocol between sensor 

nodes to establish and update the clock offset between each node. DTDoA, as discussed in 

Section 2.3.3, achieves this by sending a packet round-trip between each pair of sensors. The 

difference in the recorded flight time for each trip is used to calculate the offset. This approach 

has the advantage that synchronization can be achieved with a level of accuracy limited only by 

the radio hardware and timestamp calculation methods employed. However, there is a notable 

disadvantage in that the channel being sensed must be used for overhead packets. Since our radio 

platform only provides half-duplex capability, each sensor will be inoperable while transmitting. 

These considerations, combined with the enormous difficulty BBN80211 has in successfully 

transmitting packets, strongly encouraged us to seek an alternative solution. 

Since the BBN code struggles to provide successful communications, we opted to use an 

approach to time synchronization that does not rely on successful full-duplex communication. As 

each sensor is in a fixed location indoors, it is not unreasonable to expect that they will each have 

a connection to a static network such as a wired LAN. An existing protocol called Network Time 

Protocol (NTP) is used to synchronize servers to atomic clocks over such a network. NTP 

customarily checks the atomic clock‘s time once per day and corrects the server‘s time 

accordingly. This, by itself, is not enough to achieve an appropriate level of synchronization as 

the computer‘s clock may drift considerably over the course of a day. Linux offers another tool 

for improving this synchronization called Network Time Protocol Daemon (NTPD). The NTPD 

is a daemon that runs in the background and continuously corrects this drift in the clock. This 

behavior is precisely what is needed for ensuring time synchronization across all three sensors.  

This discovery proffers two new approaches to time synchronization. Firstly, we could 

employ NTP and NTPD directly as implemented in Ubuntu Linux. Secondly, we could examine 
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the open-source codebases for these features and use them as a guide for implementing our own 

time synchronization method. Further examination concluded that both features are highly 

complicated—for example, NTPD must ensure that other processes that rely on the system clock 

are not affected by corrections to the system time. Therefore we concluded that it would be more 

appropriate to use these protocols as-is, rather than budgeting large quantities of time to 

improving these already-functional protocols. Given the importance of time synchronization to 

time-based localization, this remains a potential source of improvements to our system.  

3.8.3 Data Format  

Localization data is stored in a computer-readable file, utilizing the Comma-Separated 

Values (CSV) file format. This format is simple and uses a combination of commas, semicolons, 

and newlines to separate different pieces of data within a text file. The simplicity of this format 

has led to it being compatible not only with the code we have implemented but programs such as 

Microsoft Excel. As a result, CSV files are used not only for configuring the transmitter but for 

storing the localization data. This configuration was described in more detail in Section 3.8.1.  

During the data collection process, two logged copies of the data are created. One copy is 

in CSV format and is intended for use with the PPLD. The other is a text (.txt) format intended to 

be easily read by humans. The PPLD field names of the raw data which print from the PLCP 

layer can be found in Table 12.  
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Table 12: Raw data fields 

Field Names Field Descriptions 

Mac_Address Base Station Identifier 

Time_Sent_sec Time Sent (seconds) 

Time_Sent_ns Time Sent  (nanoseconds) 

Time_Rcvd_sec Time Received (seconds) 

Time_Rcvd_ns Time Received (nanoseconds) 

RSSI_dbm Received Signal Strength Indicator 

Sensor_X_location X coordinate on provided map 

Sensor_Y_location Y coordinate on provided map 

Sensor_Z_location Z coordinate on provided map 

  
The MAC address is a C++ class encapsulating an integer, and is used to separately 

identify multiple transmitters as well as environmental packets that aren‘t being localized. It also 

provides functionality for checking incoming packets for bit errors as described in Section 3.7.2. 

The time of transmission and time received are represented using two 64-bit data values, and 

correspond to the time that has passed since the Unix epoch. By representing the number of 

nanoseconds as a 64-bit floating point value, fractions of nanoseconds can easily be stored and 

mathematical calculations are able to avoid losing precision. This ability to retain full precision 

during calculations outweighs the performance advantages of using a smaller fixed-point integer 

value. The RSSI is a 32-bit floating point number using the BBN code‘s own RSSI format, and is 

not calibrated to any particular reference value. Localization software is responsible for 

performing this calibration using known information about the transmitter or prior test results. 

The location of the sensor consists of floating point coordinates representing the sensor‘s 

position, in meters, relative to an arbitrary point (0, 0). The Z value is reserved for future use 

with three-dimensional localization algorithms, but can also be used to represent a known 

difference between the transmitter‘s elevation and the sensor‘s elevation. 
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3.8.4 Efficiently Logging Data in a Real-Time Environment  

One fundamental implementation challenge, given our sensor‘s need for real-time 

performance, is effectively handling some form of data output. Each available technique for 

implementing our data processing requires a different kind of output, as shown below: 

Table 13: I/O requirements 

Approach I/O operations needed 

Display all data using a terminal Print to terminal (may be redirected to a file output) 

Write data to file File output 

Transmit data over a network Network output 

 

None of these options are able to guarantee that long delays are avoided. Even the fastest 

hard drives are many orders of magnitude slower than a computer processor, while networks 

potentially introduce even longer delays. This delay is highly variable and depends on whether or 

not the output resource is available when the I/O function call occurs. As there are no high-

performance options here, we opted to find an alternate solution to the real-time I/O problem and 

choose an approach based on other considerations. Terminal output was designated for problem 

reporting and debugging, as information logged there is most easily accessible for 

troubleshooting and diagnostics. File I/O was selected as it allows data processing to occur 

outside of real time, whereas network I/O could be used in the future for forwarding data to a 

centralized collection point for real-time processing. 

Several approaches were considered and compared to handle writing raw sensor data to 

log files. 

 Synchronous blocking I/O in the primary execution thread. 

 Synchronous blocking I/O in a secondary helper thread. 
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 Asynchronous non-blocking I/O using asio. 

The performance constraints on blocking I/O are unacceptably time-consuming for 

implementation in the primary execution thread. We assumed that the PLCP block already 

demands a lot of resources, so the combined load is assumed to be outside real-time operation. 

Blocking I/O in a helper thread allows the host OS to schedule file output in parallel with PLCP 

execution, but only permits one such operation to happen at the same time. This problem could 

be partially alleviated by using multiple helper threads.  

Asynchronous I/O using an API, such as asio, introduces a different set of tradeoffs. The 

underlying implementation can vary, as can its performance characteristics. Advanced API 

implementations, such as OS-level support for this feature, offer potential performance benefits 

that would be time-consuming or impossible to realize with a handmade solution. However, we 

were not able to locate an API with our logger‘s desired behavior: a function that is called once, 

takes ownership of a copy of the packet data, and writes it to disk without any further 

complications. Asio and the related boost::asio APIs require a callback function that is used once 

the output operation completes. Considering that callback function would, at most, delete 

extraneous copies of the data we felt the signaling overhead introduced by this approach was at 

best undesirable.  

Additionally, the underlying implementation of an asynchronous I/O API could 

potentially reduce performance. Every thread that is created incurs some overhead, while the 

benefits that are realized from multithreading vary based on the design of and load on the 

computer‘s processor. By opening Ubuntu‘s System Monitor while the BBN receiver is running, 

we determined that GNU Radio creates large numbers of threads and is capable of fully utilizing 

dual and quad-core processors. Any additional threads that wish to execute must share processor 
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cores with GNU Radio, thereby introducing more overhead as the OS performs context switches. 

Thread-intensive asynchronous I/O implementations potentially compound this problem, 

especially on computers with fewer processor cores or that cannot benefit from features such as 

hyperthreading. For these two reasons, we elected to create a custom I/O solution. The option we 

chose is to have a dedicated logging thread serially output the packet data using blocking I/O. 

Although only one thread is currently used to handle output to both log files, the system could 

easily be reconfigured to use separate threads for each desired file. 

3.9 Real-Time Processing and Display 

After our data has been successfully collected, we process it with an automated 

localization solver to produce transmitter-to-sensor distances, a position estimate for the 

transmitter, as well as an output for the end user. To do this in real time, we created a software 

package known as the Real Time Localization Solver, or RTLS. The RTLS is an example of and 

foundation for a security-oriented localization system targeted at end users. It contains real-time 

localization data processing as well as a continuously updating map of the environment. This 

map contains the locations of the sensors and any unauthorized transmitters that have been 

detected. Menus are provided as part of a complete user interface for configuring the real-time 

localization system. A picture of this interface is shown in Figure 11. 
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Figure 11: RTLS graphical user interface 

 

The blue triangles represent the sensors while the red circle represents the unauthorized 

device. The yellow dot in the center of the circle indicates that the unauthorized device is 

stationary. If the device was moving, the simulator would show an arrow indicating the current 

direction of travel. A map of a sample environment is provided and overlaid with the sensors and 

unauthorized devices. Note that a ―Help‖ dropdown is provided within the menu at the top left. 

One of the items in this menu is a ―What Next?‖ command, which can be used to determine what 

action should be performed next to configure and run the simulation.  
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 The coordinate system used during localization is hidden from the viewer, though the 

point (0, 0) is currently designated to be the top left corner of the map. Sensors are depicted as 

blue triangles while unauthorized transmitters are depicted as a red circles with an arrow 

indicating direction of travel. The unauthorized user appears to move with time and its path is 

tracked on the screen. 

3.9.1 Real-Time Simulator 

A corresponding simulator was created to test and demonstrate the RTLS. This simulator 

is provided as a development tool for testing the solver. Simulated sensor data has a known, 

controllable quantity of error whereas actual sensor data is subject to many sometimes unknown 

sources of error. A similar user interface showing a map of the environment is used in the 

simulator. As seen in Figure 12, the user interface is nearly identical to that of the RTLS. This 

similarityThis approach makes comparing the RTLS results to the simulated environment 

exceptionally straightforward. 
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Figure 12: Real-Time Simulator GUI. 

Note its many similarities with the real-time solver. 

 

3.9.2 RTLS Specifications, Features and Structure 

The RTLS and its simulator are written in C++, using wxWidgets 2.8 to provide GUI 

functionality. It has been developed for Ubuntu 10.10 64-bit, though nearly all of the code is 

system-independent and easily portable to other major desktop platforms. A script called 

―makenmove‖ is provided to compile both the RTLS and its simulator, automatically producing 

executable binaries for both components. This script also prepares the user‘s copy of BBN80211 

for integration with the sensor code, though the user then has to configure and install BBN80211 

as specified by that software package‘s README. When each program is launched, the user is 

presented with the main GUI screen. Unfamiliar users are advised to use the built-in Help, 

particularly the ―What Next?‖ feature.  
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Our source code is divided up into five major groups, as described below. Header files 

are kept separate from implementations to reduce the clutter in each directory. Additional folders 

are provided as necessary for images such as the environment map and object files used in 

compilation.  

 ―Sensor‖ files are exclusively used with BBN80211 at each RTLS-compatible sensor. 

 ―Simulator‖ files are exclusive to the provided simulator. 

 ―Solver‖ files are exclusive to the RTLS. 

 ―Shared‖ files are common to both the RTLS and the simulator. 

 ―Common‖ files are used by all three components. 

This architecture organizes the source code in a manageable fashion. Each major class 

receives its own header and implementation file, while relatively small and closely related 

classes often share files. The name of each file reflects the class or classes contained within as 

well as the functional purpose that it serves. Copies of BBN80211 files are kept in the sensor 

directory only if they have been modified.  

Figure 13 shows how data flows into and through the RTLS.  
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Figure 13: RTLS Flow Chart 

 

Data is fed into the RTLS from the sensor or the simulator. The sensor code extracts 

packet information from the BBN80211 PLCP layer, while the simulator periodically generates 

packets using user-specified locations for the sensors and unauthorized users. Users are able to 

switch between simulated data and sensor data through a socket-based interface. Each sensor 

data stream is handled by a TCP connection, transferring a standard ―packet‖ data structure as a 
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serialized array. Each sensor forms a connection with the RTLS when initialized, while the 

simulator creates three such connections when told to by the user. This modular system places 

the RTLS in an independent process that can be run on any machine with a network connection 

to the incoming data stream, regardless of whether or not that machine is being used as a sensor 

or simulator. TCP provides a lossless and easy to troubleshoot connection, though a different 

network protocol could be considered for the future.  

We also considered using the wireless network set up by the USRP2s to transfer data 

from each sensor to the RTLS, but determined that BBN80211 isn‘t a simple or reliable enough 

network interface for this to be reasonable. These reliability concerns stem from the fact that 

BBN 80211 lacks automatic frequency offset compensation, resulting in bit errors and lost 

transmissions when the USRP2 clock frequencies periodically drift. A socket-based approach 

also provides considerable future-proofing, as the interface between modules is simple and easy 

to replicate. Future work could implement software for playing back saved experimental data to 

the RTLS or use BBN80211 as a LAN without modifying the RTLS so long as they use the same 

socket-based interface. 

Upon arrival, the packet data is simultaneously written to disk and placed into a buffer 

until a timeout occurs. The buffer is structured as a heap with the oldest packet at the root. 

Packets are ordered using the time at which they arrived at the sensor and timeouts occur one 

second after the time of arrival. This method allows for proper aggregation regardless of network 

delay or the order in which the packets arrived. Since transmissions arrive at each sensor within 

tens of nanoseconds of each other, it is assumed that all of the packets generated by each 

transmission will expire simultaneously. Packets that share the same MAC address, are generated 
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at different sensor locations, and arrived within 100 nanoseconds of each other are considered 

matches.  

The localization algorithm is a modular component consisting of a ―framework‖ and one 

or more ―models.‖ Frameworks are C++ wrapper classes that encapsulate a particular solver 

architecture, while models are individual localization algorithm components. The current RTLS 

implements one framework called FiveStepFramework, which subdivides localization into the 

following tasks: 

1) Calculate distance using the transmit and receive timestamps. 

2) Calculate distance using RSSI, a known RSSI at some known distance and a path loss 

model. 

3) Find location of the unauthorized device using time-based distance calculations. 

4) Find location of the unauthorized device using RSSI distance calculations. 

5) Select one of the two positions for output. 

Each framework is required to have a function called ―localize()‖, which accepts a 

measurement containing a group of aggregated packets and adds both a calculated position and 

an uncertainty to the measurement. Future work is encouraged to use this simple interface for 

implementing error correction, as well as more advanced localization algorithms drawn from 

cutting-edge research in wireless localization theory. 

For each step required by our chosen framework, we implement both a model specifying 

what is required to complete that step and an example algorithm for performing it. Time-based 

distance calculations are handled by a class called LightspeedToA, which produces distance 

information. 
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The time offset is a constant, user-specified value for the radio hardware processing 

delay. Since all of the sensors are USRP2s, it can be assumed that this processing delay will be 

almost identical for each sensor. The speed of light is also user-specified, though the speed of 

light in free space is used by default. 

A single position calculator called SimpleGeometricLocalizer is employed for both types of 

position calculations. This class implements several sanity checks to ensure that erroneous 

results are discarded. Although this algorithm does not produce an uncertainty estimate, the 

model provided to encapsulate position calculation does. Future work could easily incorporate 

uncertainty estimation, as all of the functionality needed to process and display it already exists 

in the RTLS. 

With two position data streams available, a technique must be employed to select which 

data stream is more accurate. FiveStepFramework implements a sanity check to ensure useable 

data is being passed along. If neither position calculation succeeded in producing valid results, a 

non-fatal error is thrown to inform the user of this occurrence. If one or both sets of calculations 

returned erroneous or nonexistent results, the valid data stream is used for the unauthorized 

device‘s location. If both data streams contain valid data, a selection algorithm is called to figure 

out which data set to use. A simplistic algorithm is provided in the form of a class known as 

ShortestDistanceChooser. ShortestDistanceChooser will return whichever position estimate has 

the least distance to any one sensor. This is intended to avoid large position errors that place the 

unauthorized device far away from the sensor grid but provide little utility when both position 

estimates are reasonably accurate. The results that are kept are written to disk and passed along 

to the intruder tracker. 
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The intruder tracker manages the intruder objects that indicate where unauthorized 

devices are located in the environment. It treats the localization measurements as periodic 

updates, determines whether the measurements‘ MAC addresses correspond to newly identified 

unauthorized devices or those that are already in the environment. If an unauthorized device has 

already been found and an update for it is received, the intruder tracker can update the GUI with 

its current direction of travel. If an existing device is no longer detected, it will continue to 

appear for a user-specified length of time or until the same device reappears. This ―coasting‖ 

behavior is intended to help with the localization of transmitters that are temporarily silent, but 

may result in out-of-date information being displayed. The coasting period is user-specified due 

to this tradeoff. 

3.9.3 RTLS Calibration 

The RTLS can be easily calibrated using simulated or sensor data. This calibration 

process is necessary for determining the RSSI at a known distance and the processing delay 

encountered by time of arrival measurements. Calibration is performed by providing the solver 

with the real location of an unauthorized user, referred to in the dialog as an ―Intruder‖ for 

conciseness and consistency with the source code, as well as a MAC address for identifying that 

user. This dialog is shown in Figure 14 below. 

 

Figure 14: RTLS calibration dialog 
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A different approach that was considered for addressing calibration was to flag arriving 

data packets as ―calibration packets‖ before they were transmitted to the RTLS. The user would 

configure each sensor or the simulator to mark outbound packets for calibration before each 

experiment that is performed for calibration, providing both the real distance between the 

transmitter and sensor as well as a ―flag‖ indicating this data is present. This approach was not 

chosen because it is more complicated both to implement and for the user, but would not actually 

improve calibration results. The chosen approach is very simple to use and to implement, but 

adds a small amount of processing overhead to packets being processed by the RTLS. This 

overhead occurs because each arriving packet is checked against the list of calibration MAC 

addresses and ―flagged‖ if it originated from one of them.  

3.9.4 Design Decisions 

When we identified a need for a GUI-based localization solver capable of visualizing the 

environment, we discussed various possible specifications for the RTLS. The software needed to 

be capable of receiving data from both USRP2-based sensors and a simulator, displaying the 

information received to a user interface, and provide a map of the environment overlaid with the 

positions of both our sensors and the unauthorized user(s) being localized. Real-time operation 

was considered highly desirable. These requirements were then translated into a series of design 

decisions and eventually the finished RTLS. 

First, we chose to develop the RTLS for the Ubuntu Linux platform. This was primarily 

motivated by the fact that our USRP2-based sensors operate on Linux and porting the necessary 

sensor code to another platform is unlikely to be a trivial task. While GNU Radio has been tested 

on other platforms, BBN80211 has not as of the time of writing. Effectively and reliably porting 

both codebases to a non-Linux environment is a delicate task that would take time away from 
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more important parts of our project. At minimum, the interface between the RTLS and 

BBN80211 needed to be implemented in Linux. Another advantage of the Linux platform is that 

it can be installed on virtually any computer without the need for software licenses. For these 

reasons, we elected to build the entire RTLS for the Linux platform. Ubuntu 10.10 was selected 

as the Linux distribution used for development due to its relatively high compatibility with GNU 

Radio and existing deployment on the available computers. 

At first, we did not realize how profoundly our choice of a GUI platform would impact 

the structure and content of the RTLS‘ code. We began writing RTLS code in a mixture of C and 

C++, choosing to remain with familiar C programming while occasionally exploiting a more 

advanced C++ feature. After some initial testing, we began to incorporate the GUI and then 

realized that our code would need to be restructured. Accordingly, our design decisions are 

presented in the order in which they were made rather than in the order they should have been 

made.  

We reassessed our choice of programming language upon realizing the significance of 

our GUI platform. Several programming languages were considered for the RTLS. Programmer 

familiarity and C compatibility were important concerns as the time and effort required to learn a 

new programming language or programming paradigm can be non-trivial. At this point, we 

already had some investment in C/C++ but were willing to work in a compatible environment if 

the benefits outweighed the costs. We also considered performance, scalability, implementation 

time, and compatibility with our Linux platform. Ubuntu Linux supports most popular 

programming languages, as do most mature desktop platforms.  
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GNU Radio is implemented in a combination of Python and C++, object-oriented 

languages that are within relatively easy reach of a C programmer. As a result, our comparison 

focused on C, C++, and Python as candidate programming languages. 

Table 14: Comparison of RTLS Programming Languages 

Language C C++ Python 

Our Familiarity Excellent Good Fair 

C/C++ compatibility Excellent Excellent Fair* 

GUI platform 

compatibility 

Limited** Good Good 

Runtime Performance Excellent Excellent Fair 

Built-In Features Fair Excellent Excellent 

Ubuntu support Excellent Excellent Excellent 

Scalability Fair Excellent Good 

Implementation time Poor Fair Good 

Educational value N/A Excellent Good 

*Python code can treat C and C++ code as custom-implemented modules. This can be done by 

manually writing Python-compliant C/C++ code or using a software package called SWIG. We 

tested SWIG, and while it functioned correctly it proved to be weakly documented and had a 

noticeable learning curve. 

**C code can be used within C++ applications, meaning a nominally C++ codebase can almost 

entirely be written as though it were C code.   

 

We chose C++ as it offers the best combination of all these considerations. Python uses a 

different syntax and structure than C and therefore requires special techniques to reuse existing 

code, while extensive use of C would greatly limit our ability to employ time-saving features and 
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advanced user interface libraries. Our limited familiarity with the object-oriented programming 

paradigm was compensated for by the significant improvement in scalability as well as the 

learning experience that would be provided. Transitioning from C to C++ could occur gradually 

and coincide with productive software development. Additionally, writing the software in a 

language known for good runtime performance makes the RTLS easier to transform into a final 

product. While performance was not critical for our prototype, runtime performance is directly 

related to the ability for a final product to handle large and active environments. Future work is 

likely to scale the RTLS beyond three sensors and one unauthorized user. This would generate 

much more data to be processed, making runtime performance and algorithmic efficiency 

important future-proofing considerations. 

As the project continued to progress, our code evolved from a very C-like style to a 

predominantly object oriented approach. Using C++‘s classes to encapsulate functionality proved 

very beneficial. This change provided many advantages especially as the code grew and reached 

many thousands of lines of source code., as C++‘s classes make it much easier to encapsulate 

functionality. This is what is referred to by scalability and directly affects implementation time. 

Additionally, C++ provides built-in support for variable-size arrays, queues, and heaps. Learning 

to use these features proved enormously beneficial. The final RTLS makes extensive use of C++ 

features and the process of transitioning to C++ from C proved to be a valuable educational 

experience. 

As we were selecting a programming language to use, we were concurrently searching 

for a GUI platform to use for the RTLS. This critical software dependency had to be chosen 

carefully, as further investigation showed how the API selected dictates the syntax and structure 

of all of our GUI-related code. The API chosen had to be compatible with a Linux platform, 
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readily available, and capable of producing GPL-compliant software. GPL-compliance is critical 

as GNU Radio and BBN80211 are both licensed under the GPL, a license for open-source 

software that is inherited by all derivative works. Additionally, NRL specified that the results of 

our project be freely available under the GPL. Simplicity, user-friendliness, documentation and 

cross-platform compatibility were also desired features. C, C++, or Python compatibility needed 

to be present and mature although any combination of the three could be supported. C++ 

compatibility in particular became increasingly desirable as we weighed the available 

programming languages. 

There was considerable discrepancy as to whether the RTLS has more in common with 

real-time games or traditional user interfaces. Video game oriented libraries such as Allegro and 

ClanLib offer extensive support for constantly updating interactive environments, but little or no 

support for GUI features such as menus and message boxes. GUI libraries such as wxWidgets 

offer extensive GUI support but are typically not designed to support frequently updating on-

screen objects.  

We chose to use a GUI library instead of a game library, reasoning that it would be easier 

to make real-time objects in a GUI than menus in a video game. In contrast, no clear and simple 

method of creating menus presented itself when looking at freely-available Linux-compatible 

video game libraries. Implementation time was a key consideration, as no team member had 

extensive experience with any particular game or GUI library and therefore considerable time 

would be spent learning the basic API.  

Of the GUI libraries, wxWidgets emerged as a strong candidate for many reasons. It 

provides highly used C++ and Python support, meaning that we would not be substantially 

limiting our choice of a programming language. Very importantly, most wxWidgets code is open 
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source and licensed under a variant of the LGPL that permits commercial applications. The few 

exceptions to this rule were not relevant to our application, while all of the wxWidgets sample 

code provided could be freely inter-mixed with original RTLS code. When examining the 

available documentation, we determined that wxWidgets has adequate though not spectacular 

online and print documentation including tutorials and examples for getting started. Indeed, 

wxWidgets serves as a wrapper for several other potential choices, using GTK+ and QT if they 

are native to the current platform while transparently incorporating Windows and Mac natives on 

those platforms. Other GUI libraries, such as Visual Basic, don‘t support Linux and introduce 

licensing difficulties open source alternatives lack. 

wxWidgets was selected as our choice of a GUI library as it incorporated all of our 

desired features in a single GUI library. Implementing the GUI simply required us to modify 

freely available example code and integrate it with features of the localization code we had 

already developed. Just as importantly, wxWidgets provides many core features in a relatively 

easy to use format. wxWidgets implements cross-platform threads, sockets, and events. Other 

libraries such as Boost also provide these features but would increase both the compile time and 

learning curve of the RTLS.  While wxWidgets‘ threads were not substantially different from 

pthreads, the event-driven paradigm proved helpful even when writing non-graphical 

functionality. wxWidgets‘ implementation of sockets proved to be far easier to use and make 

robust than Berkeley sockets, so we migrated the RTLS to that paradigm. However, we reserved 

our prior Berkeley socket client implementation for the USRP2 sensor code as BBN80211 does 

not use a wxWidgets GUI.  

In retrospect, wxWidgets and C++ proved difficult to work with due to manual memory 

management and many other nuances. A different approach, such as Microsoft Visual Basic, 
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may have been a more time-conscious choice. While cross-platform and Linux compatibility is 

helpful, our decision to use sockets as an interface between the sensor and RTLS permitted us to 

run the RTLS independently on a different computer. This permitted us to use any OS for the 

RTLS, though Linux would still be preferred for other reasons. However, enduring these 

difficulties did add value to the RTLS. A finished product capable of meeting the demands of a 

deployment environment can reuse any of the existing code without compromising platform 

compatibility, licensing or performance considerations. 

3.10 Data Quality Analysis Tools 

The processing and reporting component of our system design, shown in Figure 15, 

contains our data quality analysis tools. These tools are also known as the Excel Localization 

Test Bench (ELTB) and the Post Processing Localization Database (PPLD). Both of these tools  

automatically generate useful reporting documents by collecting data from the project CSV. The 

data is processed using mathematics and creates testing environment reports containing tables 

and graphs. Both tools have their own unique benefits and help to expand upon each other. 
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Figure 15: Enlarged Flow Diagram of Processing and Reporting 

 

The ELTB allows us to establish quick and easy calibration. It takes the raw project data 

and produces both RSSI and ToA reports based on errors in the system. It also suggests the best 

initial parameters that can be used to enhance the system. Input fields allow you to change 

parameters and possibly enhance the results. The ELTB is quick and easy and only requires that 

you import calibration data into the results sheet of the ELTB.  

Below in Figure 16 is an example of the most basic concept of ToA Correction via the 

ELTB. The test is a calibration test at one meter, with our initial time difference and deviation set 

to zero. The ELTB gives results revealing the average time difference of the test. The captions 

explain the process we take to find the best calibration parameters. 
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Figure 16: ELTB test bench for calibration at 1 meter 

 

We change the initial time difference to the value given by the ELTB. This enhances our 

results, however does not fix it precisely. The time deviation input can be set by the user and 

should ultimately fix the final average distance to what it should be. In our case, the average time 
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difference is .003142595 seconds for our one meter results. By conducting these experiments 

within the ELTB, we can organize test data by distance in order to plot system errors.  The 

concepts introduced when creating the ELTB have found its way into the PPLD to provide as a 

foundation for error correction. 

The PPLD has been modified to ds the exact same calculations, however they are done 

automatically. In addition, because the database collects and stores multiple projects, the 

averages used for calibration are of greater precision. The PPLD also monitors the average errors 

associated with RSSI and ToA values and filter the errors so that when an incorrect value is 

passed to our system the PPLD swaps the value with the correct one based on the likeliness it has 

occurred. Therefore for an environment with lots of calibration and project data, is likely to have 

better results. This can easily be tested by using the Access Test Bench GUI. 

The Access Test Bench Graphical User Interface is designed to test the effect of different 

parameters, as we have been done preciously in the ELTB. The parameters include time offset, 

time deviation, pathloss gradient, sensor location coordinates and more. By changing these 

parameters we are able to monitor the affect they had on the errors of our system.  

 This is a fundamental learning technique that can be applied to all SDR localization 

systems. Studies on localization systems require that you observe the environment and that you 

conduct multiple tests with varying test conditions in order to determine the best initial 

parameters. To do so accurately you need a lot of data, a lot of tests, and lots of results. By doing 

so you can learn to adapt and manipulate your system to obtain the correct results. 

 Other data used by the PPLD is obtained from the Localization Test Results computer 

file. This allows the database to pull up localization results by project identification and then plot 

them sequentially on a map. Overall we can produce more sophisticated results such as the time 
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offsets specific to MAC address, average environment errors for RSSI and ToA, environment 

specific calibrations, and localization result comparisons.  

Post-Processing teaches us many things about the environment and the components we have 

developed allow us to capture and display our results in a way that can be easily understood by 

anyone. The complete SDR Localization design had been developed so that any SDR hardware 

can be connected and utilize the benefits of the system. Therefore this modular design would also 

work on successors to the USRP2 such as the E100 and the N210. The task of designing this 

interweaving system was not novel due to the multiple relationships needed for the system 

design and PPLD.  

3.10.1 Managing Test Data  

 In order to successfully localize an unauthorized user we need to adapt our system to the 

environment we are testing, which requires calibration. We start by initializing variables 

associated with RSSI and ToA distance calculations. Once we have learned about the test 

environment we can set timing offsets, deviations and gradients in order to reduce any large error 

in the position estimates produced.  

 The ELTB and PPLD, introduced in Section 3.4, manage the test environment. The 

ELTB can be utilized for pure calibration using two USRP2‘s in a test environment. In the ELTB 

a user is allowed to traverse through four sheets of information containing imported results, a test 

bench for ToA enhancing, a test bench for RSSI enhancing, and a sheet that uses our localization 

algorithm to determine the MS‘s position and displays results. The other tool we created is the 

Post Processing Localization Database, which maintains a history of all test results while 

suggesting calibration data based on environmental characteristics. In the next section we go into 

the organization of our quality assurance tools.  



89 

 

3.10.2 Excel Localization Test Bench 

 The Excel Localization Test Bench was created in order to experiment and manipulate 

our results primarily for calibration between two sensors in the environment. Using Excel was a 

preliminary processing scheme that we decided to use until a method of logging real time data 

was established. This takes in results in the form of a CSV file, created by our logger files, which 

were developed in C++ and Python. The excel file contains multiple sheets that compute results 

based on the preceding sheet labeled ―RESULTS‖. The ―RESULTS‖ tab is where we import 

calibration test results via the importing CSV process in Microsoft Excel. 

This test bench also automatically manipulates the results in order to display 

characteristics of the environment such as average path loss gradient and average latency of our 

system. The different sheets are the RESULTS, TEST_BENCH_TOA, TEST_BENCH_RSSI, 

and LOCALIZATION. On the sheets are cells that correspond to initialization inputs along with 

suggested outputs. Below is a description and sample image the actual sheets and fields 

associated with them. 

 

RESULTS 

The RESULTS tab is strictly for importing new data. This updates every sheet with the 

appropriate fields and calculations. 

 

TEST_BENCH_TOA 

For our TOA calculations we needed to be able to determine our average timing 

difference. We also need to be able compensate for the timing deviation which is a more precise 

offset added to help calibration. Below are the contents of TEST_BENCH_TOA. 
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TEST_BENCH_RSSI 

We need three variables for RSSI calculations. The variables are the alpha that pertains to 

the path loss gradient of the environment, the standard deviation of our RSSI results, and the 

transmit power at 1 meter. When testing two USRP2s we can find average values of RSSI, 

pathloss, and distance along with a new standard deviation to help calibrate our system. Below 

are the contents of TEST_BENCH_RSSI. 

 

LOCALIZATION 

Although not a functionality of the original design, localization has found its way into the 

ELTB. In order to accomplish these tasks the system required that excel distinguished between a 

calibration test and a regular test. The additional steps introduce a variable that requires the user 

to designate what type of test is being conducted allowing you to classify the results and 

successfully distinguish between the two. 

Localization requires five inputs and should return an XY location that pertains to the 

position of a user. The inputs are the average distance measurements at each of the three sensors 

and the XY location at each of the nodes. The distance measurements are either from ToA results 

or RSSI results so there are two different localization results for each test.    

3.10.3 Post Processing Localization Database 

 The use of databases has become extremely common in the design of major projects due 

to the excellent capabilities it provides a user when storing and information querying. Because of 

the nature of our project there are multiple initial conditions that require calibration based on the 

propagation of the environment. The Post Processing Localization Database allows us to conduct 

various different projects in multiple different test environments and review the results of each 
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project. The PPLD additionally observes the nature of these probabilistic signals and averages 

the environmental conditions in order to enhance calibration settings as each test gets added to 

the PPLD. 

 One of the more important design features is the automated data population of each test 

as they are conducted. It allows the database to update our calibration settings automatically.  

This is due to a behind the scenes interaction between the database and CSV files.. In this project 

we identify groups of information by project and environment. This becomes very powerful, as 

multiple CSV‘s are stored on our computers in order to provide our design with bi-directionality 

capabilities. Recall that the CSV‘s initial responsibility was to provide our python test modules 

with the proper calibration settings. Meanwhile our database serves as an auto-updating 

calculator that our modified 80211BBN code can call upon during runtime in order to retrieve 

updated values.  

 One of the main concerns brought to our attention was the security of this information. 

Seeing as this information may contain sensitive results due to the constant updating of 

calibration data we do not want unauthorized users to alter any of the data. This calls for a 

security protocol that only allows access to authorized users. Microsoft Access is capable of 

adding security to our project and it also can create a new table containing authorized users in the 

process. This not only allows us to add security to our system but we can track who has 

conducted test or modified any data. We can also create multiple bios for our staff members. 

Multiple groups of people may need to access the data but not necessarily make changes sp we 

decided to add different levels of access such that each user may contain a varying level of read 

and write privileges. It is clear that organizing test data and creating relationships allows us to 

introduce a multitude of functionality to our system. 
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 The database relies heavily on tables that organize data but requires advanced preparation 

before attempting to build. The database is made up of six tables. These tables are the PPLD 

Master Table, Input Controller, Environment Table, Mac Table, BSSID Frequency Offset, and 

the RSS Error Table. Each Table is connected via some identifier in order to establish a 

relationship between data. This becomes helpful because we can identify the fields that affect 

each other, for example, if we received an administrator id of 1, we could use that information to 

figure out who used the database from the employee table. It also allows us to safe guard 

unnecessary personal information when transmitting data such as a person‘s name. Table 15 

provides a brief description of each of the major tables. 

Table 15: PPLD table descriptions 

Name of Table Description of Table 

PPLD_Master_Table This table contains all imported data associated with any projects. 

Input_Controller This table contains the control functions that used to alter initializations 

such as time offset or test location (used when calibrating). 

Environment_Table This contains a list of environments along with their pathloss gradient‘s, 

and any associated standard. 

Mac_Table This table contains a list of all Mac Address previously entered in the 

system as well as its XYZ location.  

BSSID_Frequency_Offset This table contains a list of base station id‘s allotted to each Mac Address 

along with the frequency offsets of each. 

Employee_Table This table is used to lookup test administrators via admin_id. 

Master_Distance_Calculator Calculates predicted distancesand assigns error identification. 

Calibration_RSS_ToA Error table used to track average distance error by actual test result. 

 

Figure 17 shows the complete PPLD database architecture. 
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Figure 17: Relationships of PPLD parameters 
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In general, calculation based queries are used when multiple inputs are needed to reach a 

desired result such as to perform mathematical algorithms. Form based queries are prepared 

queries containing the data a form will need. For instance, if you were doing calibration 

initialization you would only need to see the fields that relate to calibration. A cross tab 

requirement is created when a report requires us to analyze the change between two different 

fields. An example would be, tracking monthly shipping cost by shipping categories, which is 

more sophisticated than just analyzing total monthly shipping cost. Report based queries are used 

for reporting such as graphs, finalized tables or cross tab queries. Table 16 contains a list of our 

queries followed by their desired purpose.  
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Table 16: List of queries and descriptions 

Query Name Query Type Description 

Actual Distance Calculations Calc. Based/ 

Repor.t Based 

Compared Measured and Post Processed Distances 

Actual Time Delay Calculations Calc. Based Lookup query to compare Time Delays 

Calibration RSS ToA Calc. Based Contains Calibration results 

Employee Project Diagnosis Form. Based Used for Employee Forms 

Auto Correct Distance Filter Calc. Based Corrects Distances based on environment &error 

Distance vs RSSI Measurement Report. Based Distance vs. RSSI chart 

Distance vs Toffset Comparison Report. Based Compares various Time delays  

Mac Specific Time Statistics Report. Based Average Time delay by Mac 

Pathloss interpretation Report. Based Slope and Y intercept of RSSI pathloss 

ToA/RSSI Average distance Error Report. Based Average Errors associated with distances 

Validation Select Master Sensor Form. Based Master Sensor Identifier Validation 

Localization Cross Tab. Sequential Non Real Time localization Calculation 

 

As an example, we show the result of the Actual Distance Calculation Query in Figure 

18. This displays the predicted distances of both RSSI and ToA for 1 to 10 meters, as well as the 

post processed distances which reveal the correct enhanced distances. 
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Figure 18: Actual distance calculations of PPLD 

 

With the fundamentals established the next step was creating a graphical user interface. 

The production of the graphical user interface is done within Microsoft Access using a 

combination of VBA and SQL code. This allows us to view input forms, data oriented reports, 

graphs of data and many other useful tools that reveal information about our project. 

The creation of this database gives our SDR project flexibility. Not only can we 

manipulate and expand upon the type of data the database receives, we also have limitless 

possibilities to manipulate and enhance our design. The PPLD is interchangeable when it comes 

to SDRs. As long as the imported data to the PPLD is consistent with that of the Master Table, 

and initializations such as sensor locations are set, the PPLD will provide as test bench and 

report analysis tool for many future SDR projects to come.  

 

3.10.4 Summary of ELTB and PPLD 

The goal of the ELTB and PPLD was to provide post processing abilities that enhance 

our overall localization system design. They are also to help determine optimal calibration 
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settings as well as provide us with a report that shows the path of an unauthorized device.  The 

two creations interact with our data differently providing us with multiple testing options and 

opportunities. 

The ELTB allows us to determine important calibration information quickly while at the 

same time allowing us to manipulate the results to see how inputs may affect them. With a few 

tweaks we are also able to group the imported file and create a table containing the XY 

coordinates of an unauthorized user and plot the path taken. The PPLD allows us to implement 

the exact same functionality of the ELTB plus much more. With the PPLD we are not limited by 

the design of an excel spreadsheet so we can always expand our tables to collect additional 

fields. The PPLD also allows us to choose from advanced queries, forms, and reports that have 

been originally created whereas the ELTB is more of just a reporting tool that utilizes form input 

fields. The tradeoff is that the ELTB is straightforward and takes little time understanding, 

whereas the PPLD covers more ground, therefore takes more time to understands but provides us 

with the ability to update multiple computer readable files that can interact with our modified 

80211BBN code.   

3.11 Summary 

The capabilities of software defined radio were employed to track unauthorized 

transmitters within a network of stationary sensors. Both time of arrival and received signal 

strength are employed to calculate the distances to the mobile node, while our localization 

algorithm is able to calculate the position of the node and provide a level of confidence in the 

calculation‘s accuracy. An existing 802.11b implementation within GNU Radio was extended to 

meet our design specifications, with new functionality being implemented to collect data and 

allow for easier parameter configuration.  
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4 System Deployment and Testing 

 To test the performance of our system, we deployed it in a variety of locations. These 

tests were to provide examples of the system‘s data output as well as to evaluate the accuracy. 

Preliminary testing allowed some offsets to be found and accounted for in later testing. Large 

scale testing used four USRP2s and was the most complete method of testing the system as a 

whole. 

4.1 Test Locations 

Each particular test environment may alter the propagation of waves through the air. In 

order to test our system under these varying conditions, we conducted tests in several locations, 

each with different properties. These locations included on and off campus housing as well as 

several locations on campus. Table 17 compares the properties of each test site. 

 

Table 17: Comparison of testing sites 

 Off-Campus 

Apartment 

East Hall 

Apartment 

Atwater Kent 

Labs 

Bowling 

Center 

Size Small Small Medium Large 

Obstructions Some Some Many None 

Other Wireless 

Activity 

Medium Medium High Low 

Signal Strength Medium Medium Low High 

 

 By testing in these locations, we subject our system to different types of conflicts such as 

non-line-of-sight, physical and wireless interference, multipath, and low signal strength, each of 

which could affect the performance of the system.  
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4.2 Sensor and Transmitter Configuration 

 Although the location of each sensor should not affect the performance of the system, we 

conducted testing with a variety of arrangements. In general, it is best to have the sensors spread 

out equally in somewhat of a triangle. This provides a route from the transmitter in all directions, 

as well as the easiest integration with our localization algorithm.  

4.2.1 Frequency Offset 

 Each USRP2 has a unique and sometimes varying frequency offset for both its 

transmitter and receiver. In order for a pair of two USRP2s to communicate successfully, the 

offset must be compensated for. To do this, we simply transmitted a signal at a known frequency 

from one USRP2. On another, we can look at the FFT to realize what the offset is. We used a 

frequency of 2.49 GHz for all testing. Figure 19 shows an example of this procedure. 



100 

 

 

Figure 19: FFT for frequency offset detection 
  

As shown in the figure, the signal is not being received at the frequency of 2.49 GHz that 

it was transmitted at. Due to a frequency offset in the receiver, it appears to be receiving at 

roughly 2.489985 GHz. Since our testing involves one transmitter and three receivers, it is 

easiest to transmit at a known frequency and adjust the receiving frequency to compensate for 

the offset of each USRP2. For the USRP2 used to obtain the figure, it would have to receive at 

2.489985 GHz in order to properly receive the data transmitted at 2.49 GHz. This process can be 

repeated for each of the sensors to find at what frequency the receivers must be set to. The results 

of one of these tests are shown in Table 18. 
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Table 18: Frequency offset test results 
Sensor Offset 

EDU-003 -11 kHz 

EDU-008 -32 kHz 

EDU-009 -17 kHz 

 

These results were used during our testing that allowed us to implement communication 

between the intruder and sensors. Using these offsets and a 2.49 GHz transmit frequency, these 

sensors need to be set to receive at 2.489989, 2.489968, and 2.489983 GHz respectively. 

Although these offsets worked for the duration of our test, they can vary over long periods of 

time and are specific to each set of radios used. Until an automatic frequency compensation 

mechanism is implemented for BBN80211, the offset must be determined before each test. 

Although using these offsets allowed us to communicate with all sensors simultaneously, 

there were times when the receive frequency needed to be adjusted. If a sensor stopped receiving 

data consistently, we can simply look at the FFT to confirm the frequency offset and adjust 

accordingly. 

4.2.2 Gain 

 Due to the variable nature of our testing, the gain of each sensor is also something to keep 

an eye on as conditions change. If one sensor is far away or behind walls, then it will need to 

have a higher gain applied to it than a sensor that is close or in the line of sight of the intruder. 

Similar to the frequency offset, this can also be addressed by looking at the FFT of each 

sensor. As the gain is changed in the FFT window, the received waveform will generally 

increase or decrease in amplitude. If it is too low, then the receiver might not be able to hear the 

transmission clearly enough to decode it. If it is too high, then any noise will also be amplified to 
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the point that it can interfere with the data being received. Figure 20 shows a waveform that has 

too much gain applied to it. 

 

Figure 20: FFT showing effect of too much gain 

 

Also like the frequency offset, the gain may need to be adjusted throughout the course of 

testing. Since the tests were performed with the transmitter at different locations, the gain needed 

to be considered for each of these locations. Using the FFT and some preliminary testing, we 

found that a gain of 29 consistently received data. During testing, each sensor started with a gain 

of 29. If any sensor was failing to receive data, the gain would be increased until it was able to 

receive the transmission successfully and consistently. This could also be verified at any time by 

again looking at the FFT of the receiver. 
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4.3 Time Synchronization 

In order to send accurate timestamps so we can calculate distance we must be 

synchronized to each other‘s clocks, otherwise we are completely wrong in our calculations. We 

must also take into account drift, which occurs in the system as well. In order to establish time 

synchronization between our units we decided to look into Network Time Protocols so that we 

can use a server‘s atomic clock, similar to what GPS currently does in order to sync computers. 

We set up NTPD on the computers and the results were successful. The protocol not only 

syncs the time to the server but it determines our computers offset to the server and has an 

algorithm that over time tracks the drift. This shows how to track and adapt our system based on 

incoming data that is similar to the research conducted in cognitive radio.  

The benefits from synchronization via NTPD is that our system times are synced so we 

can have greater accuracy when calculating distance and we don‘t have to establish bidirectional 

communication for the purpose of round trip time synchronization. After looking into the NTPD 

documentation we may be able to develop a system that establishes time synchronization 

however NTPD does the job we need in order to conduct more reliable experiments so we 

utilized it.  

4.4 Packet Protocol 

Our packet protocol helps us determine how to decode data correctly at the receiver. We 

have developed multiple stages of packet protocol testing. One is conducted in Python while the 

other is conducted in C++. The python testing is the preliminary stage that we use to verify that 

our design will work. This section pertains only for the testing in Python.  

Looking into the BBN code we have acknowledged that packet length, RSSI value, 

Source ID, time since the receiver was turned on and data rate is initially passed in. The packet 
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contents also contained a payload, which is where we decided to pass the additional information 

we needed. The additional information we transmitted was the MAC address and a timestamp at 

the point of transmission. Once the information is successfully passed into the receiver we must 

parse the message so that we can utilize each piece of data accordingly. Figure 21 shows both the 

transmitter and receiver message being processed.  
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Figure 21: Packet protocol test 
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5 Results of Data Analysis 

 This chapter will discuss the results from our research and testing and present an analysis 

of the data. Also included is a brief discussion on what the data means and an explanation of the 

errors encountered. 

 We ran several different tests to get a variety of data for our system. First, we ran some 

preliminary tests between only two USRP2s to check for any consistency or correlation. Using 

this data, we were able to put it through an extensive database solver that calculates useful data 

such as averages, standard deviations, and offsets. We also ran a large scale test using four 

USRP2s in an attempt to localize one of them. 

5.1 Preliminary Tests 

 A test consisting of only two USRP2s (one transmitter and one receiver) was conducted 

at varying distances apart from each other. The distance between the two can be calculated by 

simply multiplying the difference in the timestamps by the speed of light. However, this is a very 

sensitive method and does not account for any delays in propagation or hardware.  

Results from this test showed that the time difference was not linear with distance. This is 

partially due to the fact that both of the timestamps are not placed at the correct time. The 

receiver timestamp is placed when the entire packet has been received, causing a large delay 

while the data comes in and is processed. An alternate solution to this problem could be to place 

a timestamp the instant an increase in energy is seen at the receiver. After it has been confirmed 

that a packet was successfully received, the timestamp can then be associated with that data and 

logged. 
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5.1.1 Time of Arrival Testing 

 This test consisted of getting a large amount of data at several different distances between 

a pair of USRP2s. Several graphs present the data gathered during this test. 

 

 

Figure 22: Average timing offsets from data 

 

 Figure 22 shows the average timing offsets at each distance. These were found by 

calculating the actual time difference and comparing it with the theoretical time difference, 

which is known since the distance in between them is known. As shown in the figure, the offset 

is relatively constant for all distances, which shows that it is mainly caused by hardware delays, 

or the fact that the receiver timestamps are placed too late. The slightly different offset at 1 meter 

can be attributed to the fact that it is a very small distance for a very high speed wave to travel. 
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 Using the same data, the average distance can be found from the average time 

differences. These raw results are shown in Figure 23. 

 

Figure 23: Raw distance results 

 

 As shown in the figure, the results from the raw values are not very accurate. However, 

after putting the data through the calculations to find the offsets, we are able to vastly improve 

the results, as shown in Figure 24. 
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Figure 24: Corrected distance results 

 

 The offsets appear to be correcting for the delays in the system and resulting in very 

accurate calculations. 

5.1.2 RSSI Testing 

 We also ran the same data through the solver using the RSSI from each of the trials. 

These results are presented below. 
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Figure 25: RSSI standard deviation 

 

 Figure 25 shows the standard deviation of the RSSI values at each distance during the 

test. As you can see, the environment becomes much more unpredictable, causing unreliable 

results. The raw results from the RSSI test are shown in Figure 26. 
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Figure 26: Raw RSSI distance results 

 

 The raw RSSI distance results were not very accurate since the RSSI values did not vary 

very much from test to test. There is, however, a clear correlation of increasing RSSI calculated 

distance as the actual distance increases. Again using some calculated offsets and initializations, 

we can adjust for the changing environment and varying RSSI values. These results are shown in 

Figure 27. 
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Figure 27: Corrected RSSI distance results 

 

 The figure clearly shows that the initializations improved the RSSI distance results to the 

correct values. 

 

5.2 Test Results 

Now that our packets were being decoded and parsed correctly we are able to add 

formulas to our python code at the receiver in order to calculate distance measurements. These 

formulas convert distance to time and are also used to calculate the offset in time needed to help 

the system robustness.  We also print out the data as its modulated so that we can track the 

process on the screen.  Below in Figure 28 is an example of a Python test result for one packet.  
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Figure 28: Python test receiver screenshot 

 

Our results are initially inaccurate because we were not working in an ideal environment, 

and the system is also not perfect in terms of hardware delays and placing timestamps. Since the 

system suffers from large time delays due to misplaced timestamps, hardware delay, and low 
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precision, we must increase the accuracy of our system outside of the system. This will be done 

after gathering the results during which initial values, offsets, and standard deviations will 

increase the accuracy. 

5.3 Localization Test Results 

 During testing, it became clear that there was significant clock drift between the 

transmitter and receiver. By finding the slope of a line of best fit to the raw data, shown in Figure 

29, we are able to compensate for the drift. 

 

Figure 29: The raw data with best-fit line, clearly showing clock drift 

 

 To correct the clock drift, the raw data is added to a function of the slope of the line of 

best fit as shown in Equation 10. 
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Equation 10: Multiplying raw data by slope of beste fit line to normalize 

 

 The raw data is added to the slope of the best fit line multiplied by the packet number. 

The result of this is new data being approximately constant. However, the data is still very 

inaccurate due to a large timing offset. An average offset can be calculated and subtracted from 

the data in order to increase accuracy. The result of this is shown in Figure 30. 

 

 

Figure 30: Normalized data to correct for clock drift to be made nearly constant 

  

 Now that the data has been corrected for clock drift and timing offset, each data point for 

individual packets remains to be possible very inaccurate, but the average of a large sample of 

data will produce a better result. After this is repeated for each of the three sensors, we have 
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three calculated distances, along with the known coordinates of the sensors. Plugging these 

values into the localization algorithm yields the calculated coordinates of the transmitter. Figure 

31 shows the location of each sensor (circle), the calculated radius from each sensor, the 

calculated location of the transmitter (+), and the actual location of the transmitter (*). 

 

Figure 31: Localization test results showing sensor location and known and estimated transmitter locations 

 

5.4 Summary  

  Although our raw data was not very accurate, we were still able to use our custom 

database and solver to set offsets and initializations to correct for any delays and other errors. 

However inaccurate our data may be, combined with our research and testing, we are able to 

come to several conclusions on how to advance in this field, particularly in the pursuit of 

accurate high-precision timestamp data.  
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6 Conclusions and Recommendations 

 In conclusion, we designed a wireless localization solution for indoor environments using 

both ToA and RSSI propagation methods. Initial measurements proved to be very inaccurate, 

however through post processing of the raw test data, and through classifying the environments 

through unique identifiers, we were able to learn about the propagation characteristics of our 

environment and create a trained database to update calibration parameters within our modified 

code that significantly improved the result of localization in the test environment. The system 

was fully compatible with Ettus Research‘s USRP2‘s, which through adding modular coding 

modifications to the BBN80211 code we could provide a foundation for localization on SDR 

platforms.  

6.1 Conclusions 

Through our research, testing, data gathering, and analysis, we have come to a few main 

conclusions on the topic of our project. 

 Nanosecond-precise timestamps are difficult to achieve 

o Our system was simply unable to provide a reliable timestamp with the precision 

required for accurate distance calculations.  

 Time synchronization is difficult to achieve 

o Even the slightest bit of clock offset between any two sensors will result in a 

noticeable error in the distance calculations. 

 Inserting a timestamp into outbound packets is a problem 

o This adds considerable delay between when the timestamp is created and when 

the packet is sent, while not accurately representing IEEE 802.11 packets. 

 Time of arrival localization methods are very sensitive to error 
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o As with the timestamps and synchronization, any time based method of 

calculating distance is very sensitive when dealing with transmissions traveling at 

the speed of light. 

 RSSI does a considerably better, though modest, job of localizing transmitter nodes once 

the RSSI at a known location has been calculated. 

o An improved system might want to exploit the sensors‘ stationary locations to 

continuously generate path-loss maps for higher accuracy. 

 

6.2 Recommendations 

 In order to produce an accurate and reliable indoor localization system, several main 

components must be addressed and improved. First, the sensitivity of timestamps proves to be 

the biggest obstacle in obtaining accurate distance measurements. Due to the high speed that 

wireless signals travel at, even a very small timing offset will cause a very large distance error. 

This is also a problem when considering the precision of timestamps. It is very difficult to 

achieve timestamps that provide the precision to accurately localize. Because of these issues, a 

sample counting method would be a major improvement over the timestamping method. 

 Synchronization is also very important when considering such a time-sensitive system. 

Again, it is very difficult to achieve synchronization between the transmitter and each of the 

sensors in order to avoid significant distance errors. Sample counting, along with the 

establishment of a point-to-point mesh network, could make synchronization much easier. This 

way, the sensors could be synchronized with each other through their own mesh network, as 

opposed to using some external network clock.  
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 There is also an option for a more involved and complex localization algorithm. Our 

system only used a direct calculation for each individual packet. A complex algorithm that 

considered several packets at a time could provide more accuracy. Increasing the number of 

sensors in the network could also provide more data, giving a better estimate of distances and 

location. 

6.3 Topics for Future Work 

Future work could implement software for playing back saved experimental data to the 

RTLS or use BBN80211 as a LAN without modifying the RTLS so long as they use the same 

socket-based interface. 

In order for our system to achieve the NRL‘s objectives, more research and system 

development is needed. A full system would employ more reliable, possibly interchangeable 

localization solver tools that draw from advanced research and correct for additional non-ideal 

conditions such as undetected direct paths. Better synchronization between the sensors would 

need to be implemented. Our project began work on a real-time GUI that overlays results onto a 

map of the environment; we advocate that future work complete that secondary project and 

subsequent work improve it and make that GUI ready for field deployment. In order for our 

system to be truly suitable for the NRL‘s application, the localization technique would need to be 

modified to handle uncooperative transmitters that do not insert any timestamp data into 

outbound packets. This would also improve timing accuracy, as one major source of error is the 

delay between timestamp insertion and packet transmission. Finally, additional and likely 

classified work would need to be conducted to ensure that the final system is completely secure 

and ready for deployment in a security setting. 
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Research using SDR platforms has increased dramatically in the last decade, and the full 

potential of these systems has yet to be fully exploited. With nearly all of the radio‘s parameters 

accessible to programmers, SDR enables both rapid prototyping as well as adaptive and 

cognitive approaches. Since a single SDR can be used for many different applications, SDR can 

potentially reduce costs through large-scale mass production. Localization remains a pivotal 

research challenge, remaining a high priority for countless applications. Ours is but one of many 

challenges that would benefit from reliable, cost-effective indoor localization. As the research 

becomes more mature and advances in materials and mass production lower costs, SDR and 

localization both have bright futures. 
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Appendix A – Localization Math 
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