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Welcome to Your Probability Note-Taking Adventure!

Drawing from the esteemed “Elementary Probability for Application” textbook authored by Rick
Durret, this activity book serves as an invaluable supplement to traditional lecture notes.

What you can expect:

• Interactive Blank Lecture Notes:
The book provides structured lecture notes that align with the core content of Durret’s textbook,
ensuring clarity and coherence in understanding fundamental probability principles. Gone are
the days of passive note-taking! The activity book incorporates sections for students to fill in
their own notes, encouraging active participation and reinforcing comprehension as they engage
with the material directly.

• Supplementary Exercises:
Practice makes perfect, and this book doesn’t skimp on opportunities for practice. It features
extra exercises to challenge students and reinforce their understanding of probability theory.

• Detailed Solutions:
Learning from mistakes is just as important as getting things right the first time. That’s why
the book includes comprehensive solutions to all exercises, providing invaluable feedback and
guidance for students as they work through the material.

This Student Activity Book on Probability is not just another resource; it’s a dynamic tool for active
learning, designed to empower students to master probability concepts with confidence. Whether
used alongside lectures, as part of a study group, or for independent study, it’s a must-have for anyone
seeking to deepen their understanding of probability theory and its practical applications.

Author: I.M.L. Nadeesha Jayaweera
Contributers: Buddika Peiris, Tharindu De Alwis
Organization: Mathematical Sciences, Worcester Polytechnic Institute (WPI)



4 •

Acknowledgment
I would like to express my deepest gratitude to everyone who contributed to the successful completion
of the Women’s Impact Network (WIN) - funded Open Educational Resources (OER) Development
grant project at WPI, particularly in the creation of the Student Activity Book based on Lecture Notes
and exercises in Probability for Applications.

First and foremost, I am immensely thankful to Prof. Buddika Peiris and Dr. Tharindu De Alwis for
their unwavering support and invaluable guidance throughout the development of the lecture notes.
Their expertise and encouragement were instrumental in shaping the content and structure of the ma-
terials, ensuring their relevance and educational value.

I am also indebted to Prof. Marja Bakermans and Ms. Lori Ostapowicz-Critz, the mentors of the OER
project, whose constructive feedback and dedicated mentorship were pivotal in refining the educa-
tional resources. Their commitment to fostering open education initiatives has been truly inspiring. I
extend my appreciation to Vikranth Vilas, our diligent computer assistant, for his technical expertise
and assistance with the project.

Furthermore, I extend my appreciation to all the individuals who provided encouragement, feedback,
and assistance at various stages of this endeavor. Your collective efforts have played an integral role
in making this project a success.

Lastly, I would like to acknowledge the funding support provided by the EMPOwER (Engaging More
Powerfully, Openly with Educational Resources) grant at WPI, which made this project possible and
contributed to the broader goal of advancing open educational resources in our academic community.

Thank you all for your unwavering support, guidance, and commitment to enhancing educational
resources for our students.

I.M.L. Nadeesha Jayaweera
Department of Mathematical Sciences
Worcester Polytechnic Institute (WPI)



Content

8 Chapter 01: Basic Results

1.1 What Is Probability? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Random Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Sample Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Probability Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Properties of Probability Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.1 The Probability Mass Function (PMF) . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.2 Geometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.3 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.4 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6.5 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

42 Chapter 02: Combinatorial Probability

2.1 Multiplication Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Permutations (Order matters/ordered subset) . . . . . . . . . . . . . . . . . . . . . 44
2.3 Combinations (Order does not matter/unordered subset) . . . . . . . . . . 46
2.4 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5 Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6 Multinomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8 Poisson Approximation of Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

67 Chapter 03: Conditional Probability

3.1 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Multiplication Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5



6 • Content

3.3 Two Stage Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Total Probability Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.2 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Discrete Joint Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Marginal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.6 Functions of Multiple Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Independence of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

88 Chapter 05-06: Continuous Random Variables
& Limit Theorems

4.1 Probability Density Function (pdf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Expectated Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6 Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.8 The Standard Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.9 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9.1 Sample Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.9.2 Sample Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.9.3 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

119 Appendix

5.1 Standard Normal Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

122 Solutions for Exercises

6.1 Solutions: Chapter 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Solutions: Chapter 02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Solutions: Chapter 03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4 Solutions: Chapter 05-06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



This page is intentionally left blank.



Chapter 01: Basic Results

Outline 1. Overview:

• Random Experiment, Sample Space and Events

• Probability of an Event and Axioms

• Properties of Probability

• Conditional Probability

• Independence of Events

• Random Variable

• Probability Mass Function

• Geometric Distribution

• Expectation

• Variance

1.1 What Is Probability?
• The study of probability is the study of random phenomena. More specifically, in this course
we will study probabilistic models: mathematical models of random phenomena.

• Such models can be used to quantify, explain, and to some extent at least, predict random phe-
nomena.

The probability models we will consider are based on the notion of a random experiment.
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1.2 Random Experiment

A random experiment is a process that results in exactly one of a collection of possible outcomes,
but whose actual outcome cannot be known with certainty in advance.

1.2.1 Sample Space

The set of possible outcomes is called the sample space, and will be denoted Ω.

Example: 1. Tossing a Coin Three Times:
Consider tossing a coin three times and recording the side that ends facing up.

Example: 2. Tossing a Coin until a Tail is Appeared:
Consider tossing a coin until a tail is appeared and recording the all the results in order.

Example: 3: Oil Leaks:
In a long stretch of an oil pipeline, the number of leaks in a given year serious enough to require a
special repair crew is considered a random experiment.

Example: 4. Lifetime of a bulb
Measuring the lifetime of a light bulb is considered a random experiment.
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1.2.2 Events

Definition 1.1. An event is any subset of the sample space Ω. Looked at another way, an event
is a set of possible outcomes of the random experiment.

Here are some fundamental operations on events:

Complementation
If A is an event, so is its complement

Ac = {ω ∈ Ω|ω /∈ A}

.

Union
If A and B are events, so is their union

A ∪ B = {ω ∈ Ω|ω ∈ A or ω ∈ B}

Intersection
If A and B are events, so is their intersection

A ∩B = {ω ∈ Ω|ω ∈ A and ω ∈ B}
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.
Example: Tossing a coin Three Times

If we define two events, A - getting a head on the second toss, B - getting exactly two heads,

• Ω =

• A =

• B =

• Ac =

• Bc =

• A ∪ B =

• A ∩ B =

NOTE: The union and intersection operations extend to any number of events:

If A1, A2, . . . Am are events then so are

•
∪m

n=1 An = {ω ∈ Ω|ω ∈ An for some n ∈ {1, . . . ,m}}

•
∩m

n=1 An = {ω ∈ Ω|ω ∈ An for all n ∈ {1, . . . ,m}}

And if there are an infinite number of events, A1, A2, . . .,

•
∪∞

n=1 An = {ω ∈ Ω|ω ∈ An for some n}

•
∩∞

n=1 An = {ω ∈ Ω|ω ∈ An for all n}

Here is some more terminology about events:
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• An event A is contained in event B if every outcome ω ∈ A is also in B. We write A ⊂ B.

• Two events A and B are equal (A = B) if and only if A ⊂ B and B ⊂ A.

• Ω, the entire sample space, and ∅, the set with no outcomes are events.

• Two events A and B are called disjoint if A ∩B = ∅.

• Events A1, A2, . . . are pairwise disjoint (i.e., mutually exclusive) if Ai ∩ Aj = ∅ for each
i ̸= j.

• A collection of events {A1, A2, . . .} is exhaustive if
∪

n An = Ω.

• A collection of events {A1, A2, . . .} is a partition of Ω if it is exhaustive and A1, A2, . . . are
pairwise disjoint.



Random Experiment • 13

The Algebra of Events

Combining the operations of complementation, union and intersection results in algebraic relations on
events. Assuming B and {A1, A2, . . .} are events, here are some examples:

• B ∪ Bc = Ω

• B ∩ Bc = ∅

DeMorgan’s Laws:

• (
∪

n An)
c =

∩
n A

c
n

• (
∩

n An)
c =

∪
n A

c
n

Example: Tossing a coin Three Times

Consider two events:
A = getting a head on the second toss, B = getting exactly two heads. Then,

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT }
A = {HHH,HHT, THH, THT}
Ac = {HTH, TTH,HTT, TTT}
B = {HHT,HTH, THH}
Bc = {HHH,HTT, THT, TTH, TTT }

A ∪ B = {HHH,HHT,HTH, THH, THT}
A ∩ B = {HHT, THH}

• (A ∪ B)c =

• (A ∩ B)c =
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1.3 Probability Function

Event Space

The event space A is the set of all events of the sample space Ω.

Probability of an Event

• The probability law (or the probability function), P (·), is a function that assigns to any event A
a non-negative real number.

• P (A), called the probability of event A.

• P (A) measures how likely it is that the outcome of the random experiment is one of the out-
comes in A.

The probability law must satisfy the following three axioms:

1. (Nonnegativity) P (A) ≥ 0 for every event A.

2. (Additivity)

(a) (Finite Case) If {A1, A2, . . . , Am} are pairwise disjoint events, then

P

(
m∪

n=1

An

)
=

m∑
n=1

P (An)

(b) (Infinite Case) If {A1, A2, . . . , } are pairwise disjoint events, then

P

(
∞∪
n=1

An

)
=

∞∑
n=1

P (An)

3. (Normalization) P (Ω) = 1.
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NOTE:

1. P (ϕ) = 0.

2. If an event A consists of a finite or countably infinite set of outcomes A = {ω1, ω2, . . .}, then
the additive axiom results in

P (A) =
∑
n

P (ωn).

Definition 1.2. (Probability of an event): If the sample space consists of a finite number
of equally likely outcomes, the probability of an event A:

P (A) =
number of outcomes in A
number of outcomes in Ω

=
n(A)

n(Ω)

3. 0 ≤ P (A) ≤ 1 for any event A.

• 0: impossibility of the event (0% chance)

• 1: certainty (100% chance)

• Higher the probability of an event: the more likely it is that the event will occur
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Example: Consider an experiment of rolling a pair of 4 sided fair dice. What is the probability of,

1. A = sum of the rolls is even.

2. B = the sum of the roll is odd.

3. C = the first roll is equal to the second roll.

4. D = the first roll is larger than the second roll.

5. E = at least one roll is equal to 2.
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1.3.1 Properties of Probability Laws
1. If A and B are events, A ⊂ B implies P (A) ≤ P (B).

NOTE:

(a) P (A ∩B) ≤ min {P (A), P (B)}

(b) P (A ∪B) ≥ max {P (A), P (B)}

2. P (B) = P (A ∩B) + P (Ac ∩ B) and P (A) = P (A ∩B) + P (A ∩ Bc).

Proof:
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3. P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

Proof:

4. P (A ∪ B) ≤ P (A) + P (B)
Proof:

NOTE: This formula is used to approximate the probability of the union when the prob-
ability of the intersection unknown.

5. For any event A, P (Ac) = 1− P (A).

Example: Let P (A) = 0.7, P (B) = 0.5, P (A ∩ B) = 0.4. Find P (A ∪ B).

Example: Let P (A) = 0.7, P (B) = 0.2. Find P (A ∪B).



Probability Function • 19

Probabilities of Unions

Recall: For any events A and B,

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

This can be extended to three events.

Definition 1.3. For any three events A,B and C,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

Example: Suppose that we roll 6-sided 3 dice. What is the probability that we get at least one 4?

General Union

Definition 1.4. For any events A1, A2, A3, · · · , An,

P (∪ni=1Ai) =

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak) + · · ·+ (−1)n+1P ((A1 ∩A2 ∩A3 · · · ∩ An).
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1.4 Conditional Probability
Additional information about a random experiment can change both the sample space and probability
law. To see how, consider the following example.

Example: Consider tossing three coins experiment. Find the probability of getting exactly two heads
if the first toss is a head.

Definition 1.5. (Conditional Probability) If A and B are events, with P (B) > 0, then the
probability of A given B is defined as;

P (A|B) =
P (A ∩ B)

P (B)
.

Definition 1.6. (Multiplication Rule): If A and B are events,

P (A ∩B) = P (A|B)P (B).
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Example: Find the probability that a single toss of a balanced die results in a number less than 4 if,

1. no other information is given.

2. it is given that the toss resulted in an odd number.

1.5 Independence

Idea : Two events, A and B are said to be independent if the occurrence of one does not affect the
probability that the other occurs.

Definition 1.7. (Independence): If P (B) > 0, A and B are said to be independent iff

P (A) = P (A|B) =
P (A ∩B)

P (B)

Another Result: A and B are are independent iff

P (A ∩ B) = P (A)P (B)
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Independence : General Results

There are two type of independence when we consider more than two events:

Mutually Independence

The events {Ai}ni=1 aremutually independent if

P

(∩
i∈S

Ai

)
=
∏
i∈S

P (Ai), for every subset S ⊂ {1, . . . , n}

Pairwise Independence

The events {Ai}ni=1 are pairwise independent if

P (Ai ∩ Aj) = P (Ai) · P (Aj), for all i, j ∈ {1, . . . , n} and i ̸= j

Example: Tossing a Coin Three Times

If the coin is fair, the probability of a head on any one toss is 1/2, the same as the probability of a tail.

Let Hj (Tj) be the event we get a head (tail) on toss j. If the tosses are done independently, the
probability of getting the sequence HTT is:

P ({HTT}) =

This computation shows that each of the eight outcomes is equally likely, a result we obtained previ-
ously by assumption.

Example: Tossing a Coin Three Times Ctd...

Now suppose the coin is not necessarily fair, but has on each toss,

P (Hj) = p, P (Tj) = 1− p = q

Then we can compute,

P ({HTT}) =

Thus, the independence assumption allows us to model a wider range of random behavior.
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Example: Weight/Height

This table relates the weights and heights of a group of individuals participating in an observational
study.

Weight/Height Tall Medium Short Total
Obese 18 28 14 60
Normal 20 51 28 99
Underweight 12 25 9 46
Total 50 104 51 205

Are the events Obese and Tall independent?

Example: Drawing Two Cards

Consider the random experiment of drawing two cards from a regular card deck. What is the proba-
bility that both are clubs?
(Regular card deck (52 cards): 13 -Spades, 13-Clubs, 13- Hearts, 13- Diamonds)
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Example: Birthdays

Consider the three events:
A - Alice and Betty have the same birthday,
B - Betty and Carol have the same birthday,
C - Carol and Alice have the same birthday.

(a) Are A,B,C pairwise independent?

(b) Are A,B,C mutually independent?
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1.6 Random Variables

Idea: You can think of a random variable as a numerical measurement assigned to each outcome of
a random experiment.

Example: If you bet $100 on red in a spin of a roulette wheel, the outcome of the random experiment
(the spin of the wheel) is one of {red, black, neutral}, but you are probably more interested in X , the
amount you gain:

X({red}) = 100, X({black}) = X({neutral}) = −100.

Here, X is a random variable.

Definition 1.8. Given a sample space Ω, a random variableX is a function that assigns to each
outcome ω ∈ Ω a real number X(ω).

NOTE:

1. A random variable is discrete if its possible values (its range) form a finite or countably infinite
set of real numbers. For definiteness, letR(X) denote the range of X .

2. Random variable is continuous if it can takes values in an interval.

3. Random variables are denoted by capital letters while their values are denoted by lower case
letters.

E.g:- X- random variable, x- value; X(ω) = x.
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Examples:

1. Tossing a coin 3 times.
Let X be the number of tails in each outcome.

2. Rolling two six sided dice.
Let X - the sum of the two numbers.

3. Rolling a die until a 3 appears.
Let X - the number of rolls.

4. Time Length.
Let T be the length of time it takes a truck driver to go from Worcester to Boston.
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1.6.1 The Probability Mass Function (PMF)

Definition 1.9. Probability distribution of a discrete random variable is called as probability mass
function (PMF) and it is defined as the probability of the event {X = x}.

i.e., P (x) = P (X = x) = P ({ω ∈ Ω|X(ω) = x}) x ∈ R(X).

Properties of PMFs:

• 0 ≤ P (x) ≤ 1

•
∑

x∈R(X) P (x) = 1

•
∑

x∈A∩R(X) P (x) = P (X ∈ A), for every subset A of real numbers.

Example: Among a sample of 50 families, 10 families had 2 members, 13 families had 3 members,
21 families had 4 members and rest of the families had 5 members. LetX be the number of members
in the family.

1. Find the PMF of X .

2. Compute the probability that a family has 3 or more members.
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1.6.2 Geometric Distribution

Consider a sequence of independent and identical trials such that each trial has only two outcomes
(Success and failure) with,

P (successs) = p on each trial (i.e., binary trials)

Definition 1.10. Let X be number of trials to come up (until) the first success. Then X follows
a geometric distribution (X ∼ Geometric(p)) and its probability distribution (or PMF) is given
by,

P (X = x) = P (x) = (1− p)x−1p : x = 1, 2, 3, · · · .

Example: A certain product is produced by a machine which has a 4% defective rate. Let X be the
number of items inspected until the first defective occurs.

1. Find the PMF of X .

2. What is the probability that the first defective occurs at the third item inspected?

3. What is the probability that the first defective occurs in the first three inspections?
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Example: In a football event, the first team to win three games wins the championship.(Suppose there
are only two teams and each team has same chance to win any of the games). What is the probability
distribution of number of games?

1.6.3 Expected Value

Idea: Expected value describes the long-term average level of a random variable based on its proba-
bility distribution. Expectation measures the center of a distribution.

Definition 1.11. The expected value of random variable X (mean of X or expectation of X or
average of X) is denoted by E(X) and defined as

E(X) =
∑
x

xP (X = x) =
∑
x

xP (x)
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Example: 1. If you play roulette and bet $1 on black then you win $1 with probability 18/38 and you
lose $1 with probability 20/38. What is the expected win?

Example: 2. Find the expectation of Geometric distribution with parameter p.
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NOTE: 1. Expectation of a function of a random variable.

Let g(X) be a function of random variable X , then

E(g(x)) =
∑
x

g(x)P (x)

Example :

Consider P (X) =


1/16, : x = 0,

6/16, : x = 1,

9/16 : x = 2.

FindE(X2).

2) If a and b are constants,
E(aX + b) = a · E(X) + b

Proof:

3) If X1, X2, X3, · · · , Xn are random variables and a1, a2, a3, · · · , an are constants. Then

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE(Xi)

Specially,

E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi)
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1.6.4 Variance

Idea: Variance measures the spread of a distribution. It determines the degree to which the values
of a random variable differ from the expected value.

Definition 1.12. The variance of random variableX is denoted by V ar(X) or V (X), and defined
as

V ar(X) = E
[
(X − E(X))2

]
.

NOTE:

1) V ar(X) = E(X2)− [E(X)]2

Proof:

2) V ar(aX + b) = a2 · V ar(X)

Proof:
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1.6.5 Standard Deviation

Definition 1.13. Standard deviation of random variable X is denote by σ(X), and defined as

σ(X) =
√
V ar(X).

Example :
Let X be the amount of memory of purchased in a flash drive (GB). The PMF of X is given in the
below. Find the mean and the standard deviation of the following distribution.

X = x 1 2 4 8 16
P (X = x) 0.05 0.10 0.35 0.40 0.10
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NOTE:

If X ∼ Geometric(p), then

E(X) =
1

p
V ar(X) =

1− p

p2
.

Example : Let X ∼ Geometric(p = 0.2). Then,

1. E(X) =

2. V ar(X)
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1.7 Summary

Summary 1. Chapter 01: Basic Results

• Experiment: an action whose outcome cannot be predicted with certainty.

• Event: Some specified result that may or may not occur when an experiment is performed.
Can be denoted as capital letters, A,B, . . .

Suppose an experiment has N = n possible outcomes, all equally likely. An event that
can occur in f ways

Probability of an event A =
Number of ways event occur
Total number of outcomes

=
n(A)

n(Ω)
=

f

N

• Relations among events

– Ac : (not A) : the event A does not occur
– A ∩ B : (A&B) : the event both A and B occur
– A ∪ B : (A or B) : the event either A or B or both occur

• Two events are disjoint if A ∩ B = ∅

• EventsA1, A2, . . . , An are pairwise disjoint ifAi∩Aj = ∅ for each pair i, j = 1, 2, 3, . . . , n

• A is a subset of B if every outcome is also in B, A ⊂ B.

• De-Morgan’s Law

– (
∪

n An)
c =

∩
n A

c
n

– (
∩

n An)
c =

∪
n A

c
n

• Probability

– (Nonnegativity) P (A) ≥ 0 for every event A.
– (Additivity)

* (Finite Case) If {A1, A2, . . . , Am} are pairwise disjoint events, then

P

(
m∪

n=1

An

)
=

m∑
n=1

P (An)

* (Infinite Case) If {A1, A2, . . . , } are pairwise disjoint events, then

P

(
∞∪
n=1

An

)
=

∞∑
n=1

P (An)

– (Normalization) P (Ω) = 1.
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• Some rules on Probability

– Complement Rule: P (A) = 1− P (A)

– P (A ∩B) ≤ min {P (A), P (B)}
– P (A ∪B) ≥ max {P (A), P (B)}
– P (B) = P (A ∩ B) + P (Ac ∩B).

– Addition Rule: P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

– P (A ∪B) ≤ P (A) + P (B)

Conditional Probability
• The conditional probability of A given B is,

P (A|B) =
P (A ∩B)

P (B)
, P (B) > 0

• The conditional probability of B given A is,

P (B|A) = P (B ∩ A)

P (A)
, P (A) > 0

• The Multiplication rule

P (A ∩ B) = P (A|B)P (B) or P (A ∩ B) = P (B|A)P (A)

Independence of events
• Events are independent of each other if and only if

P (A ∩ B ∩ C ∩ . . . ) = P (A) · P (B) · P (C) · . . .

• The events {Ai}ni=1 aremutually independent if

P

(∩
i∈S

Ai

)
=
∏
i∈S

P (Ai), for every subset S ⊂ {1, . . . , n}

• Events {Ai}ni=1 are pairwise independent if

P (Ai ∩ Aj) = P (Ai) · P (Aj), for all i, j ∈ {1, . . . , n} and i ̸= j
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Random Variables
• Random variable: a numerical description of any outcome of an experiment.

X(ω) = x

• Bernoulli Random variable: random variable whose only possible values are 0 and 1.

• Types: Discrete random variables and Continuous random variables.

Probability Mass Function (PMF)
• Definition:

P (x) = P (X = x) = P ({ω ∈ Ω|X(ω) = x}) x ∈ R(X).

• Properties:

– 0 ≤ P (x) ≤ 1

–
∑

x∈R(X) P (x) = 1

–
∑

x∈A∩R(X) P (x) = P (X ∈ A), for every subset A of real numbers.

Geometric Distribution
(Can use if we have infinite outcomes in the sample space)

• Each trail is binary (2 outcomes: success or failure)

• Each trial is independent.

• X be number of trials to come up the first success and p = P (success).

ThenX follows a geometric distribution. (X ∼ Geometric(p)) and its probability distribution
is given by

P (X = x) = P (x) = (1− p)x−1p : x = 1, 2, 3, · · · .

Let X ∼ Geometric(p). Then,

E(X) =
1

p
, V ar(X) =

1− p

p2
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Expected Value
• Expected Value

E(X) =
∑
x

xP (X = x) =
∑
x

xP (x)

• Let g(X) be a function of random variable X , then

E(g(x)) =
∑
x

g(x)P (x)

• If a and b are constants,
E(aX + b) = aE(X) + b

• If X1, X2, X3, · · · , Xn are random variables and a1, a2, a3, · · · , an are constants. Then

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE(Xi)

Variance and Standard Deviation
• Variance:

V ar(X) = E
[
(X − E(X))2

]
.

• Shortcut Formula
V ar(X) = E(X2)− [E(X)]2

• Properties:
V ar(aX + b) = a2V ar(X)

• Standard Deviation:
σ(X) =

√
V ar(X).
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1.8 Exercises

1. Two six-sided dice are rolled. What is the probability that

(a) the two numbers will differ by 1 or less and

(b) the maximum of the two numbers will be 5 or larger? [Page 26; Durret, 2009]

2. In a group of students, 25% smoke cigarettes, 60% drink alcohol, and 15% do both. What
fraction of students have at least one of these bad habits? [Page 27; Durret, 2009]

3. Two students, Alice and Betty, are registered for a statistics class. Alice attends 80% of the
time, Betty 60% of the time, and their absences are independent. On a given day, what is the
probability that

(a) at least one of these students is in class and

(b) exactly one of them is there? [Page 28; Durret, 2009]

4. How many times should a coin be tossed so that the probability of at least one head is ≥ 99%?
[Page 29; Durret, 2009]

5. The population of a particular country consists of three ethnic groups. Each individual belongs
to one of the four major blood groups. The accompanying joint probability table gives the
proportions of individuals in the various ethnic group–blood group combinations. Suppose
that an individual is randomly selected from the population, and define events by A− type A
selected, B− type B selected, and C− ethnic group 3 selected.

(a) Calculate P (A), P (C), and P (A ∩ C).

(b) Calculate both P (A|C) and P (C|A), and explain in context what each of these probabil-
ities represents.

(c) If the selected individual does not have type B blood, what is the probability that he or
she is from ethnic group 1?

6. Let X has PMF given by P (X = x) = 1
5
for x = −2,−1, 0, 1, 2 and 0 for otherwise. Find the

PMF of Y = 2X + 1.

7. Determine the constant k, so that the following PMF of the random variable is a valid probability
mass function:

P (x) =

{
k · (7x+ 3) ; x = 1, 2, 3

0 ; otherwise

8. You play a game of chance that you can either win or lose (there are no other possibilities) until
you lose. Your probability of losing is p = 0.57. Let X be the number of games you play until
you lose (includes the losing game).

(a) What is the probability that it takes five games until you lose?

(b) What is the probability that it takes at least three games until you lose?

(c) Find E(X) and V ar(X).
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9. A mail-order computer business has six telephone lines. Let X denote the number of lines in
use at a specified time. Suppose the PMF ofX is as given in the accompanying table. Calculate
the probability of each of the following events.

x 0 1 2 3 4 5 6
P (x) 0.10 0.15 0.20 0.25 0.20 0.06 0.04

(a) {at most three lines are in use}
(b) {fewer than three lines are in use}
(c) {at least three lines are in use}
(d) {between two and five lines, inclusive, are in use}
(e) {between two and four lines, inclusive, are not in use}
(f) {at least four lines are not in use}

10. Use the PMF of X in the previous question. Then find the following.

(a) E(X)

(b) V ar(X)

(c) σ(X)

(d) E(2X + 1)

(e) V ar(3X − 1)
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Chapter 02: Combinatorial Probability

Outline 2. Overview:

• Recall: Probability of an events with equally likely outcomes

• Multiplication Rule

• Factorial

• Permutation

• Combination

• Binomial Theorem

• Partition

• Binomial Distribution

• Multinomial Distribution

• Poisson Distribution

• Poisson Approximation of Binomial

Recall from Chapter 01:

• If the sample space Ω consists of finite equally likely outcomes, then the probability of event
A is,

P (A) =
n(A)

n(Ω)
.

• In order to compute probabilities, it is often necessary to count the number of possible outcomes
in a random experiment or an event.

We use some counting principles and formulas as below.

42
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2.1 Multiplication Rule

Definition 2.1. If a process has r stages with n1 results for stage 1, n2 results for stage 2 and so
on, then the total number of results for the entire process is

n1 × n2 × · · · × nr =
r∏

i=1

ni.

Example: If each license plate in a state consists of three letters followed by four integers, how many
different license plates are possible?

Example:
How many ways can 5 people stand in line?

Note: General Formula:

Definition 2.2. Total number of ways to arrange n different objects on a line is: n!.

Factorial

Definition 2.3. Let n be a non negative integer. Then the factorial n is,

n! =

{
1 : n = 0,

n× (n− 1)× (n− 2)× · · · × 1 : n > 0.
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Note:

0! =1

1! =1

2! =2× 1 = 2

3! =3× 2× 1 = 6

n! =n× (n− 1)× (n− 2)× · · · × 1

n! =n× (n− 1)!

n! =n× (n− 1)× (n− 2)!

...
n! =n× (n− 1)× (n− 2)× · · · × (n− k + 1)× (n− k)!

2.2 Permutations (Order matters/ordered subset)
• Act of arranging objects or numbers in order.

Definition 2.4. Number of different ways to pick k objects out of n different objects and
arrange them on a line is denoted by nPk where,

nPk =
n!

(n− k)!
: k ≤ n.

Note:

• When k = 0, nP0 =
n!

(n−0)!
= n!

n!
= 1

• When k = n, nPn = n!
(n−n)!

= n!
0!
= n!

• nPk =
n!

(n−k)!
= n×(n−1)×(n−2)×···×(n−k+1)×(n−k)!

(n−k)!
= n× (n− 1)× (n− 2)× · · · × (n− k + 1)
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Example: A little league baseball team has 15 players on its roaster. Home many ways are there to
select 9 players to form a starting lineup?

Example: A student activity club at a college has 24 members. In how many different ways can the
club select a president, a vice president, a treasurer, and a secretary?

Example: In how many ways can 3 novels, 2 mathematics books and a chemistry book be arranged
on a shelf if,

1. the books can be arranged in any order?

2. the mathematics books must be together and the novels must be together?
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2.3 Combinations (Order does not matter/unordered subset)
• A way of selecting objects or numbers from a group of objects or collections.

Definition 2.5. Number of different ways to pick k objects out of n objects (do not arrange)
is denoted by nCk or

(
n
k

)
where,

nCk =

(
n

k

)
=

n!

k!(n− k)!
: k ≤ n.

Note:

• nC0 =
n Cn = 1, for any positive integer n

• nCm =n Cn−m, for any positive integerm ≤ n

Proof:

• n−1Ck−1 +
n−1 Ck =

n Ck

Proof:

• nCr values can be obtained from the Pascal’s triangle.
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Pascal’s Triangle

1 ← n = 0
1 1 ← n = 1

1 2 1 ← n = 2
1 3 3 1 ← n = 3

1 4 6 4 1 ← n = 4
1 5 10 10 5 1 ← n = 5

...
...

...
...

...

Example: A group of 4 students is to be chosen from 15 member class to represent the class on the
student council. How many ways can this be done?

Example: Consider flipping 4 fair coins. What is the probability distribution of random variable X ,
where X be the number of tails out of 4 flips?
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Binomial Theorem

• A method of expanding an expression that has been raised to any finite power.

• For any real numbers x, y, and positive integer n,

(x+ y)n =
n∑

m=0

nCm · xn−mym =n C0 · xn +n C1 · xn−1y + · · ·+n Cn−1 · xyn−1 +n Cn · yn.

Example: (x+ y)3 =

Example: From a group of 16 graduates and 20 undergraduates, a researcher wants to randomly select
5 graduates and 6 undergraduates for a study. In how many ways can the study group be selected?
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2.4 Partitions

Suppose a set of n elements is divided into r disjoint subsets such that ith subset has ni elements,
i = 1, 2, 3, · · · , r, and n1 + n2 + · · ·+ nr = n.

Then the total number of different choices

=n Cn1 ×n−n1 Cn2 ×n−(n1+n2) Cn3 ×n−(n1+n2+n3) Cn4 × · · · ×n−(n1+n2+···+nr−1) Cnr

=
n!

n1!× (n− n1)!
× (n− n1)!

n2!× (n− (n1 + n2))!
× (n− (n1 + n2))!

n3!× (n− (n1 + n2 + n3))!
×

· · · × (n− n1 − n2 − · · · − nr−1)!

nr!× (n− n1 − n2 − · · · − nr−1 − nr)!

=
n!

n1!× n2!× n3!× · · · × nr!

=

(
n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!

NOTE :

• nCr =
(
n
r

)
is called the binomial coefficient.

•
(

n
n1,n2,...,nr

)
is called themultinomial coefficient.

• Partition: used to find the number of arrangements when all the objects are not different (i.e.,
when some of them are same).

Definition 2.6. Suppose there are n objects but n1 of them are same kind, n2 of them are
another kind and so on ( r groups ).

Then the total number of arrangements is:(
n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
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Example: There are 39 students in a class. In how many ways can a professor give out 9 A’s, 13 B’s,
12 C’s and 5 F’s?

Example: A house has 10 rooms. We want to paint 2 yellow, 3 blue, and 5 pink. How many ways
can this be done?

Example: How many different words can be obtained by rearranging the word
“MASSACHUSETTS”?.
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Example: A class consisting of 4 graduate students and 12 undergraduate students randomly divide
into four groups of 4. What is the probability that each group includes a graduate student?
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2.5 Binomial Distribution
Binomial Setting: A random experiment consists of n Bernoulli trails such that,

1. the trials are independent and identical.

2. each trial results in only two possible outcomes, success and failure.

3. P (Success) = p.

called a binomial experiment.

Definition 2.7. Let X be number of successes out of n trials.

• Then X follows a binomial distribution with parameters n and p.

• The probability distribution (PMF) is

P (X = x) =

(
n

x

)
px(1− p)n−x x = 0, 1, 2, . . . , n.

Note: If X ∼ Bin(n, p), then,

1.
∑

x P (X = x) =
∑n

x=0

(
n
x

)
px(1− p)n−x = 1.

Proof:

2. E(X) = np

Proof:
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3. V ar(X) = np · (1− p)

Example: Suppose that a 6-sided die is rolled 4 times. Let X be the number of threes.

1. Find the probability distribution of X .

2. What is the probability of getting exactly 2 threes?

3. What is the probability of getting at least one three?
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4. What is the probability of getting at most one three?

5. Find the expected value and the variance of the number of threes out of four trials.

Example: Recall the random experiment of tossing a coin 3 times. Suppose the probability of getting
a head is p. Let X is the number of heads.

Then X ∼ Bin(3, p) and has PMF,

P (x) =


(1− p)3, x = 0,

3p(1− p)2, x = 1,

3p2(1− p), x = 2,

p3, x = 3.

This is same as,

p(x) =

(
3

x

)
px(1− p)3−x x = 0, 1, 2, 3
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Example: A multiple-choice test has 10 questions, each with 5 choices. What is the probability that
by purely guessing, a student gets 70% of the questions correct?

2.6 Multinomial Distribution

Definition 2.8. Consider n identical and independent trials such that each trial has ‘‘k”(≥ 2)
outcomes with probabilities p1, p2, p3, · · · , pk. Then probability of getting ni outcomes of type i
with n = n1 + n2 + n3 + · · ·+ nk is

P (n1, n2, n3, · · · , nk) =
n!

n1!n2!n3! · · ·nk!
· pn1

1 pn2
2 pn3

3 · · · p
nk
k .

NOTE:

• Binomial distribution is a special case of Multinomial distribution where

k = 2, p1 = p, p2 = 1− p.
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Example: A baseball player gets a hit with probability 0.3, a walk with probability 0.1 and an out
with probability 0.6. If he bats four times during a game, what is the probability that he will get 1 hit,
1 walk and 2 outs?

Example: The output of a machine is graded excellent 70% of the time, good 20% of the time, de-
fective 10% of the time. What is the probability that a sample size 20 has 12 excellent, 5 good, and 3
defective items?
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2.7 Poisson Distribution
• Helps to predict the probability of certain events happening when we know how often the event
has occurred.

• It gives us the probability of a given number of events happening in a fixed interval of time.

Definition 2.9. Random variable X is said to have a Poisson distribution with parameter λ (or
X ∼ Poisson(λ)) if the PMF of X is

P (X = x) =
e−λλx

x!
: x = 0, 1, 2, 3, · · · .

Note:

• Poisson distribution is used to find number of successes when the average number of successes
is given.

• λ - average number of successes (parameter),

• X - actual number of successes (random variable),

•
∑∞

x=0 P (x) =
∑∞

x=0
e−λλx

x!
= e−λ

[
λ0

0!
+ λ1

1!
+ λ2

2!
+ · · ·

]
= 1

• E(X) = λ, V ar(X) = λ.

Proof:
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Example: Consider a computer system of job-arrival stream at an average of 2 per one minute (in any
one-minute interval). Let X be the number of jobs in any one-minute interval.

1. Find the probability distribution (PMF) of X .

2. Determine the probability that there are exactly two jobs in any one-minute interval.

3. Determine the probability that there are at most three jobs in any one-minute interval.

4. Let Y be the number of jobs in any two-minute interval. Then, find the probability distribu-
tion of Y .
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Example: In an oil pipeline, the number of leaks serious enough to require a special repair crew is
assumed to follow a Poisson distribution with mean of one leak every 10 miles. In a 50 mile section
of pipe, what is the probability there are at least three such leaks?
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2.8 Poisson Approximation of Binomial

Theorem 2.10. Suppose Sn has a binomial distribution with parameters n and pn. If pn → 0 and
npn → λ as n→∞ then,

P (Sn = x)→ e−λλx

x!

Idea:

For large n and small p, binomial probabilities can be approximated using Poisson distribution, with
λ = np.

Example: Suppose we roll two dies 12 times.

Let D be the number of times a double six appears. Find the exact and approximation values of
P (D = k) for k = 0, 1, 2.
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Example: Suppose there is a room full of 30 people. What is the probability that no one else has your
birthday? Calculate the exact and approximate probabilities.
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2.9 Summary

Summary 2. Chapter 02: Combinatorial Probability

Counting Techniques:

• Multiplication Rule (All objects are different!)
If a process has r stages with n1 results for stage 1, n2 results for stage 2 and so on, then
the total number of results for the entire process is

n1 × n2 × · · · × nr =
r∏

i=1

ni.

Total number of ways to arrange n different objects on a line is: n!.

• Permutation (Doing arrangements and order is matter)

Number of different ways to pick k objects out of n different objects and arrange them on
a line is denoted by nPk and

nPk =
n!

(n− k)!
: k ≤ n

• Combinations (No arrangements, order does not matter!)

Number of different ways to pick k objects out of n objects (do not arrange) is denoted by
nCk or

(
n
k

)
and

nCk =

(
n

k

)
=

n!

k!(n− k)!
: k ≤ n

• Partitions (All are NOT different, there are some same elements!)

Suppose a set of n elements is divided into r disjoint sbsets such that ith subset has ni

elements, i = 1, 2, 3, · · · , r, and n1 + n2 + · · ·+ nr = n,

Total number of ways =
n!

n1!n2! · · ·nr!
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The Binomial Distribution
• If a random experiment consist of n Bernoulli trails such that,

– trials are independent and identical,
– each trail has only two outcomes, ”success” and ”failure”,
– the probability of a success in each trail is p,

then, it is called a Binomial experiment and X ∼ Binomial(n, p). It has a probability
distribution,

p(x) = P (X = x) =

(
n

x

)
px(1− p)n−x ; x = 0, 1, 2, . . . , n

where (
n

x

)
=

n!

(n− x)!x!
for x = 0, 1, 2, . . . , n

• Mean: E(X) = np.

• Variance: V ar(X) = np(1− p).

Multinational Distribution
• Gives the probability of any particular combination of numbers of successes for the various
categories.

• Consider n identical and independent trials such that each trial has ‘‘n”(≥ 2) outcomes
with probabilities p1, p2, p3, · · · , pk.

• Then probability of getting ni outcomes of type i with n = n1 + n2 + n3 + · · ·+ nk is

P (n1, n2, n3, · · · , nk) =
n!

n1!n2!n3! · · ·nk!
· pn1

1 pn2
2 pn3

3 · · · p
nk
k .

The Poisson Distribution
• Useful for counting the number of occurrences of an event over a specified region or
specified period of time.

• A random variable X has a Poisson distribution with parameter λ, X ∼ Poisson(λ) and
the probability mass function of X ,

P (X = x) =
e−λλx

x!
, for x = 0, 1, 2, . . .

• Mean and variance: E(X) = V ar(X) = λ
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2.10 Exercises
1. Find the number of words, with or without meaning, that can be formed with the letters of the

word “CHAIR”.

2. Find the number of arrangements of the letters of the word INDEPENDENCE. In how many of
these arrangements,

(a) do the words start with P
(b) do all the vowels always occur together
(c) do the vowels never occur together
(d) do the words begin with I and end in P?

3. In how many ways can a committee of 1 man and 3 women can be formed from a group of 3
men and 4 women?

4. Find the number of words, with or without meaning, that can be formed with the letters of the
word “SWIMMING”?

5. 18 mice were placed in two experimental groups and one control group, with all groups equally
large. In how many ways can the mice be placed into three groups?

6. From a group of 7 men and 6 women, five persons are to be selected to form a committee so
that at least 3 men are there on the committee. In how many ways can it be done?

7. A particular telephone number is used to receive both voice calls and fax messages. Suppose
that 25% of the incoming calls involve fax messages, and consider a sample of 25 incoming
calls. What is the probability that,

(a) At most 6 of the calls involve a fax message?
(b) Exactly 6 of the calls involve a fax message?
(c) At least 6 of the calls involve a fax message?
(d) More than 6 of the calls involve a fax message?
(e) Find E(X) and V ar(X).

8. A bowl has 2maize marbles, 3 blue marbles and 5 white marbles. Amarble is randomly selected
and then placed back in the bowl. You do this 5 times. What is the probability of choosing 1
maize marble, 1 blue marble and 3 white marbles?

9. The article “ExpectationAnalysis of the Probability of Failure forWater Supply Pipes” proposed
using the Poisson distribution to model the number of failures in pipelines of various types.
Suppose that for cast-iron pipe of a particular length, the expected number of failures is 1 (very
close to one of the cases considered in the article). ThenX , the number of failures, has a Poisson
distribution with λ = 1.

(a) Obtain P (X ≤ 5).
(b) Determine P (X = 2).
(c) Determine P (2 ≤ X ≤ 4).
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(d) What is the probability thatX exceeds its mean value bymore than one standard deviation?

10. The article “Reliability-Based Service-Life Assessment of Aging Concrete Structures” suggests
that a Poisson process can be used to represent the occurrence of structural loads over time.
Suppose the mean time between occurrences of loads is 0.5 year.

(a) How many loads can be expected to occur during a 2-year period?
(b) What is the probability that more than five loads occur during a 2-year period?
(c) How long must a time period be so that the probability of no loads occurring during that

period is at most 0.1?
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Chapter 03: Conditional Probability

Outline 3. Overview:

• Conditional Probability: Definition

• Tree Diagrams

• Total Probability Theorem

• Bayes’ Theorem

• Discrete Joint Distributions

• Discrete Marginal Distributions

• Functions of Multiple Random Variables (Discrete)

• Independence of Random Variables

3.1 Conditional Probability

Definition: For any event A and B with P (A) > 0, the probability B will occur given that A has
occurred is

P (B|A) = P (A ∩B)

P (A)
: P (A) > 0.

Conditional Probability also follows probability axioms.

1. P (Ω|B) = 1.

Proof:

67
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2. If A1 and A2 are disjoint (i.e., A1 ∩ A2 = ϕ)

P (A1 ∪ A2|B) = P (A1|B) + P (A2|B).

Proof:

3. P (Ac|B) = 1− P (A|B).

Example: Suppose that five good fuses and three defective ones have been mixed up. To find the
defective fuses, we test them one by one, at random and without replacement. What is the probability
that we are lucky and find both of the defectives in the first two test?
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3.2 Multiplication Rule

Definition 3.1. For any events A1, A2, A3, · · · , An,

P (∩ni=1Ai) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An| ∩n−1
i=1 Ai).

Example: Three cards are drawn from an ordinary 52-card deck without replacement. Find the prob-
ability that none of the three card is a diamond.
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3.3 Two Stage Experiments

Definition 3.2. A collection of events A1, A2, · · · , An is called a partition of Ω if ∪ni=1Ai = Ω
and Ai ∩ Aj = ϕ for all i, j = 1, 2, · · · , n and i ̸= j.

3.3.1 Total Probability Theorem

Theorem 3.3. Let A1, A2, · · · , An be a partition of Ω. Then for any event B,

P (B) =
n∑

i=1

P (B|Ai)P (Ai).

Proof:

NOTE:

• If n = 2

• If n = 3
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Example:
You enter to a chess tournament where your probability of winning a game is 0.3 against half of the
players (call them type 1), 0.4 against the quarter of the players (call them type 2), and 0.5 against
the remaining quarter of the players (call them type 3). You play a game against a randomly chosen
opponent. What is the probability of winning?
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Example:
We roll a four-sided fair die. If the result is one or two, we roll once more but otherwise, we stop.
What is the probability that the sum of the rolls is at least four?
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3.3.2 Bayes’ Theorem

Theorem 3.4. (Bayes’ Theorem) LetA1, A2, · · · , An be a partition of Ω such that P (Ai) > 0 for
all i = 1, 2, · · · , n. Then for any event B,

P (Aj|B) =
P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

=
P (B|Aj)P (Aj)

P (B)
, j = 1, 2, · · · , n.

Proof:

NOTE:

• If n = 2

• If n = 3
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Example: (Recall the Chess Tournament Problem!)

Consider the chess tournament problem: (Ai- had a type i opponent (i = 1, 2, 3), B- won the game).

P (A1) = 0.5, P (A2) = 0.25, P (A3) = 0.25

P (B|A1) = 0.3, P (B|A2) = 0.4, P (B|A3) = 0.5

Assume that P (B) = 0.375 (from the previous example). Suppose you won the game, what is the
probability that you had a type 1 opponent?

Example:

We roll a four-sided fair die. If the result is one or two, we roll once more but otherwise, we stop. (Ai-
The first roll is i (i = 1, 2, 3, 4), B- the sum is at least four)

P (Ai) = 1/4 (i = 1, 2, 3, 4)

P (B|A1) = 1/2, P (B|A2) = 3/4, P (B|A3) = 0, P (B|A4) = 1

Assume that P (B) = 9/16.

1. Suppose the sum is at least four, what is the probability that the first roll is two?
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2. Suppose the sum is less than four, what is the probability that the first roll is one?

Example:
Three factories (label 1, 2, and 3) make 20%, 30%, and 50% of the computer chips for a company
respectively. The probability of a defective chip is 0.04, 0.03, and 0.02 for three factories. We have a
defective chip. What is the probability that it came from factory 2?
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3.4 Discrete Joint Distributions

Definition 3.5. LetX and Y are two random variables associated with the same random experi-
ment. Then the joint distribution of X and Y is given by

P (x, y) = P (X = x, Y = y) = P ({X = x} ∩ {Y = y}})

NOTE:

• P (x, y) ≥ 0 for any x and y.

•
∑

x,y P (x, y) = 1.

Example:

Roll pair of four sided pair dice. Let X be the maximum of the two numbers and Y be the sum.
a) Find the joint distribution of X and Y .
b) Find P (X ≤ 2, Y ≤ 3).
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3.5 Marginal Distributions

Definition 3.6. Suppose P (x, y) is the joint distribution of random variables X and Y . Then,

• The marginal distribution of X is given by

P (x) = P (X = x) =
∑
y

P (x, y).

• The marginal distribution of y is given by

P (y) = P (Y = y) =
∑
x

P (x, y).

Example:
Suppose we draw 2 balls out of an urn with 6 red, 5 blue and 4 green balls.

Let X = # of red balls and Y = # of blue balls.

1. Find the joint distribution function of X and Y .
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2. Find the marginal distributions of X and Y.

3.6 Functions of Multiple Random Variables

Definition 3.7. Let X and Y be two random variables and g is a function of X and Y . Then
Z = g(X,Y ) is also a random variable and probability distribution of Z is given by

P (z) = P (Z = z) =
∑

{(x,y)/g(x,y)=z}

P (x, y),

NOTE:

• E(Z) = E(g(X,Y )) =
∑

x

∑
y g(x, y) · P (x, y).

• E(aX + bY + c) = a · E(X) + b · E(Y ) + c, a, b, c be constants.

• More generally, for any sequence of randomvariables,X1, X2, · · · , Xn and constants a1, a2, · · · , an,

E(a1X1 + a2X2 + · · ·+ anXn) = a1 · E(X1) + a2 · E(X2) + · · · an · E(Xn).

Especially,
E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn)
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Example: Consider the joint distribution function of X and Y .

X Y 1 2
1 1/5 1/5
2 2/5 1/5

Marginal Distributions:

P (X = x) =

{
2/5 ; x = 1,

3/5 ; x = 2.

P (Y = y) =

{
3/5 ; y = 1,

2/5 ; y = 2.

a) Let Z = X + 2Y , find the PMF of Z.

b) Find E(Z).
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3.7 Independence of Random Variables

Definition 3.8. Two random variables X and Y are independent (i.e., X ⊥ Y ) iff

P (X = x, Y = y) = P (X = x) · P (Y = y), for all x and y.

NOTE:

1. If X and Y are independent,
E(XY ) = E(X)E(Y ).

Proof:

2. If X and Y are independent,

V ar(aX + bY + c) = a2 · V ar(X) + b2 · V ar(Y ).

3. More generally, if X1, X2, · · ·Xn are independent events and a1, a2, · · · , an are constants,

V ar(a1X1 + a2X2 + · · ·+ anXn) = a21 · V ar(X1) + a22 · V ar(X2) · · ·+ a2n · V ar(Xn)

Especially,

V ar(X1 +X2 + · · ·+Xn) = V ar(X1) + V ar(X2) + · · ·+ V ar(Xn).
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Example: Suppose we have the following joint distribution ofX and Y . AreX and Y independent?

X Y Y = 0 Y = 1 P (X = x)
X = 0 0.5 0.3
X = 1 0.2 0

P (Y = y)

Now consider the new distribution. Are X and Y independent?

X Y Y = 0 Y = 1 P (X = x)
X = 0 0.42 0.28
X = 1 0.18 0.12

P (Y = y)
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Example: Find the expectation and the variance of the Binomial Distribution with parameters n and
p.
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3.8 Summary

Summary 3. Chapter 03: Conditional Probability

Conditional Probability

For any event A and B with P (A) > 0, the probability B will occur given that A has occurred is

P (B|A) = P (A ∩B)

P (A)
: P (A) > 0.

• P (Bc|A) = 1− P (B|A)

• P (Ω|B) = 1

• If A1 and A2 are disjoint (i.e., A1 ∩ A2 = ϕ)

P (A1 ∪ A2|B) = P (A1|B) + P (A2|B).

• Partition: A collection of events A1, A2, · · · , An is called a partition of Ω if ∪ni=1Ai = Ω
and Ai ∩ Aj = ϕ for all i, j = 1, 2, · · · , n and i ̸= j.

• Total Probability Theorem:
Let A1, A2, · · · , An be a partition of Ω. Then for any event B,

P (B) =
n∑

i=1

P (B|Ai)P (Ai).

• Bayes’ Theorem
Let A1, A2, · · · , An be a partition of Ω such that P (Ai) > 0 for all i = 1, 2, · · · , n. Then
for any event B,

P (Aj|B) =
P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

=
P (B|Aj)P (Aj)

P (B)
, j = 1, 2, · · · , n.

Discrete Joint Probability
• LetX and Y are two random variables associated with the same random experiment. Then
the joint distribution of X and Y is given by

P (x, y) = P (X = x, Y = y) = P ({X = x} ∩ {Y = y}})

• P (x, y) ≥ 0 for any x and y.

•
∑

x,y P (x, y) = 1.

• Suppose P (x, y) is the joint distribution of random variables X and Y . Then,
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– The marginal distribution of X is given by

P (x) = P (X = x) =
∑
y

P (x, y).

– The marginal distribution of y is given by

P (y) = P (Y = y) =
∑
x

P (x, y).

• Functions of Multiple Random Variables

– Let X and Y be two random variables and g is a function of X and Y .
– Then Z = g(X,Y ) is also a random variable and probability distribution of Z is
given by

P (z) = P (Z = z) =
∑

{(x,y)/g(x,y)=z}

P (x, y),

– E(Z) = E(g(X,Y )) =
∑

x

∑
y g(x, y) · P (x, y).

– E(aX + bY + c) = aE(X) + bE(Y ) + c, a, b, c be constants.
– For any sequence of random variables,X1, X2, · · · , Xn and constants a1, a2, · · · , an,

E(a1X1 + a2X2 + · · ·+ anXn) = a1E(X1) + a2E(X2) + · · · anE(Xn).

• Independence of Random Variables

– Two random variables X and Y are independent (i.e., X ⊥ Y ) iff

P (X = x, Y = y) = P (X = x) · P (Y = y), for all x and y.

If at least one joint probability does not hold above property, two random variables
are NOT independent.

– If X and Y are independent,

E(XY ) = E(X)E(Y ).

– If X and Y are independent,

V ar(aX + bY + c) = a2V ar(X) + b2V ar(Y ).

– If X1, X2, · · ·Xn are independent events and a1, a2, · · · , an are constants,

V ar(a1X1 + a2X2 + · · ·+ anXn) = a21V ar(X1) + a22V ar(X2) · · ·+ a2nV ar(Xn)
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3.9 Exercises
1. Suppose you draw 5 cards out of a deck of 52 and get 2 spades and 3 hearts. What is the

probability that the first card drawn was a spade? [Page 105; Durret, 2009]

2. Suppose 60% of the people subscribe to newspaper A, 40% to newspaper B, and 30% to both.
If we pick a person at random who subscribes to at least one newspaper, what is the probability
that she subscribes to newspaper A? [Page 106; Durret, 2009]

3. You are going to meet a friend at the airport. Your experience tells you that the plane is late 70%
of the time when it rains, but is late only 20% of the time when it does not rain. The weather
forecast that morning calls for a 40% chance of rain. What is the probability that the plane will
be late? [Page 108; Durret, 2009]

4. Imagine you are a financial analyst at an investment bank. According to your research of
publicly-traded companies, 60% of the companies that increased their share price by more than
5% in the last three years replaced their CEOs during the period. At the same time, only 35%
of the companies that did not increase their share price by more than 5% in the same period
replaced their CEOs. Knowing that the probability that the stock prices grow by more than 5%
is 4%, find the probability that the shares of a company that fires its CEO will increase by more
than 5%.

5. You are about to have an interview for Harvard Law School. 60% of the interviewers are conser-
vative and 40% are liberal. 50% of the conservatives smoke cigars but only 25% of the liberals
do. Your interviewer lights up a cigar. What is the probability that he is a liberal?

6. A cab was involved in a hit-and-run accident at night. Two cab companies green and blue
operate 85% and 15% of the cabs in the city respectively. A witness identified the cab as blue.
However, in a test only 80% of witnesses were able to correctly identify the cab color. Given
this what is the probability that the cab involved in the accident was blue? [Page 109; Durret,
2009]

7. An undergraduate student has asked a professor for a letter of recommendation. He estimates
that the probability he will get the job is 0.8 with a strong letter, 0.4 with a medium letter, and 0.1
with a weak letter. He also believes that the probabilities that the letter will be strong, medium,
or weak are 0.5, 0.3, and 0.2. What is the probability that the letter was strong given that he got
the job?

8. Suppose we draw two tickets from a hat that contains tickets numbered 1, 2, 3, 4. LetX be the
first number drawn and Y be the second.

(a) Find the joint distribution of X and Y .

(b) Find the marginal distribution of X and Y .

(c) Are X and Y independent?

9. Using the clues given below, fill in the rest of the joint distribution of X and Y .

• P (Y = 2|X = 0) = 1/4.

• X and Y are independent. (There is only one answer)
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Y X = 0 2 4
1 a b c
2 0.1 0.05 d

10. The table below shows the joint distribution of two discrete random variables X and Y .

Y X = 1 2 3 4
1 6c 3c 2c 4c
2 4c 2c 4c 0
3 2c c 0 2c

(a) Find c.
(b) Find P (X = 1, Y = 3).
(c) Compute the marginal distribution of X and Y .
(d) Find E(X) and E(Y ).
(e) Find P (X ≤ 2, Y < 3).

(f) Find P (X = 2|Y = 1).
(g) Find P (Y = 1|X = 3)

(h) Are X and Y independent?
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Chapter 05-06: ContinuousRandomVariables
& Limit Theorems

Outline 4. Overview:

• Probability Density Function (pdf) (Sec 5.1)

• Uniform Distribution (Sec 5.1)

• Exponential Distribution (Sec 5.1)

• Cumulative Distribution Function (cdf) (Sec 5.2)

• Normal Distribution (Sec 6.4)

• Central Limit Theorem (CLT) (Sec 6.5)

4.1 Probability Density Function (pdf)
• When a random variable can take any value in an interval, it is called a continuous random
variable.

• Probability distribution of a continuous random variableX is called a probability density func-
tion (pdf).

Definition 4.1. (pdf) A continuous random variable X is said to have a probability density
function (pdf) if and only if for all a ≤ b

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

NOTE:

1. P (X = a) = 0, for any constant a.

2. For any constants a and b

P (a ≤ X ≤ b) = P (a < X ≤ b) = P (a ≤ X < b) = P (a < X < b).

Proof: P (a ≤ X ≤ b) = P (X = a) + P (a < X < b) + P (X = b) = P (a < X < b)

88
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3.
∫∞
−∞ f(x) · dx = 1 (Total probability!).

Example: Let f(x) =

{
a√
x

: 0 ≤ x ≤ 1

0 : otherwise
, is a pdf. Find the constant a.

Example: Let f(x) =

{
c : a ≤ x ≤ b

0 : otherwise
, is a pdf. Find the constant, c.
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4.2 Expectated Value

Definition 4.2. Expected value of a continuous random variable X is

E(X) =

∫ ∞

−∞
xf(x)dx.

Definition 4.3. If g is a function of X , then ,

E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx.

NOTE:
E(Xk) =

∫ ∞

−∞
xkf(x)dx kth moment of X.

4.3 Variance

Definition 4.4. Variance of a continuous random variable X is

V ar(X) = E[(X − E(X))2] =

∫ ∞

−∞
(x− E(X))2f(x)dx.

NOTE: Properties of expectation & variance

For any constant a and b,

• V ar(X) = E(X2)− [E(X)]2

• E(aX + b) = a · E(X) + b

• V ar(aX + b) = a2 · V ar(X)
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Example: Find the mean, variance of the random variable X if the pdf is given by:

f(x) =

{
a√
x

: 0 ≤ x ≤ 1

0 : otherwise
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4.4 Uniform Distribution
• Describes an experiment where there is an arbitrary outcome that lies between certain bounds.

• Defines equal probability over a given range for a continuous distribution.

Definition 4.5. X follows a uniform distribution with parameters a and b if the pdf is given by

f(x) =
1

b− a
: a ≤ x ≤ b,

Note: Let X ∼ Uniform(a, b). Then, E(X) = a+b
2
.

Proof:

Note: Let X ∼ Uniform(a, b). Then, V ar(X) = (b−a)2

12
.

Proof:
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4.5 Exponential Distribution
Exponential distribution is used to model time between two successive events.

E.g:

1. Time between two calls.

2. Time between two hurricanes.

Definition 4.6. Random variable X follows an exponential distribution with parameter λ if the
pdf is given by:

f(X) =

{
λ · e−λx : x ≥ 0

0 : otherwise.

where

• X is the time between two events,

• 1
λ
is the average time between two events.

NOTE: If X ∼ Exp(λ),

1. Probability Density Function (PDF) is legitimate.

Proof:

2. E(x) = 1
λ

Proof:
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3. V ar(X) =
1

λ2
.

Proof:

4. P (X > a) = e−λa, a > 0 constant.

Proof:
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Example: The time until a small meteorite first lands anywhere in the Sahara desert is modeled as
an exponential random variable with a mean of 10 days. The time is currently midnight. What is the
probability that a meteorite first lands sometime between 6 a.m. and 6 p.m. of the first day?
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4.6 Cumulative Distribution Function

Definition 4.7. Cumulative distribution function (cdf) of a random variable X is given as

F (x) =

{∑
k≤x F (k) : X is discrete,∫ x

−∞ f(t)dt : X is continuous.

Properties of cdfs

1. limx→−∞ F (x) = 0, and limx→∞ F (x) = 1.

2. F (x) is non-decreasing (constant or increasing).

3. F (X) is right continuous (i.e., limx→−a+ F (x) = F (a))

4. P (X < a) = P (X ≤ a) = F (a).

5. P (X > a) = P (X ≥ a) = 1− F (a).

6. P (a < X < b) = P (a ≤ X ≤ b) = F (b)− F (a).

7. For a discrete random variable, the cdf is always a step function.

8. Usually for a continuous random variable, cdf is an increasing function.
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Example : Let P (x) = 1/3 : x = 1, 2, 3. Find the cdf of X .

Example : Let X be a continuous random variable with PDF,

f(x) =

{
3
8
· x2 ; 0 < x < 2

0 ; otherwise

1. Compute the CDF of X .

2. Find P (X = 2).

3. Find P (X < 1).
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4. Find P (X > 1.5).

5. Find P (0.5 ≤ X ≤ 1).
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Example: Let X ∼ Geometric(p). Find the cdf of X .

Example: Let X ∼ Exp(λ). Find the cdf of X .
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4.7 Normal Distribution

Definition 4.8. A continuous random variable X is said to have normal distribution (i.e., Gaus-
sian distribution) with parameters µ and σ2 (i.e.,X ∼ N(µ, σ2)) if

f(x) =
1√
2πσ

e
−
(x− µ)2

2σ2 −∞ < x <∞, −∞ < µ <∞, σ > 0.

NOTE: If X ∼ N(µ, σ2),

1.
∫∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1.

2. E(X) = µ and V ar(X) = σ2 (standard deviation =σ(X) = σ)

3. Graphs:

4. If X ∼ N(µ, σ2) and Y = aX + b (a,b -constants), then Y ∼ N(aµ+ b, a2σ2).
Proof:
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4.8 The Standard Normal Distribution

Definition 4.9. A normal random variable Z has a mean 0 and a variance of 1.

i.e., E(Z) = 0 and V ar(Z) = 1

The distribution of Z is called the standard normal distribution.

NOTE:

• The pdf of Z : f(z) = ϕ(z) = 1√
2π
e−z2/2 −∞ < z <∞,

• The cdf of Z : F (z) = Φ(z) =
∫ z

−∞
1√
2π
e−t2/2dt −∞ < z <∞,

• Values of Φ(z) are tabulated for different values of z.



102 • The Standard Normal Distribution

Use of the Standard Normal Table:

1. Z value needs to be rounded to 2 decimal places.

2. The first 2 numbers tells us the row of the standard normal table.

The third number tells us the column of the table.

3. The Z value is positive, so we go to the positive z value page, then find the row. Then you can
find the corresponding probability.

Example: Find the following probabilities using the standard normal table.

1. P (Z ≤ 1.76352)

2. P (Z ≤ 1.06)
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3. P (Z > 2.32)

4. P (Z < −2.56)

5. P (−2.56 < Z < 1.06)
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Standardize

Let X ∼ N(µ, σ2) then Z = X−µ
σ
∼ N(0, 1), then

E(Z) = E

(
X − µ

σ

)
=

1

σ
(E(X)− µ) =

1

µ
(µ− µ) = 0

V ar(Z) = V ar

(
X − µ

σ

)
=

1

σ2
(V ar(X)) =

1

σ2
σ2 = 1,

(Normality will be proved later).

Then

• P (X < a) = P
(
X−µ
σ

< a−µ
σ

)
= P

(
Z < a−µ

σ

)
= Φ

(
a−µ
σ

)

• P (X > a) = P
(
X−µ
σ

> a−µ
σ

)
= P

(
Z > a−µ

σ

)
= 1− Φ

(
a−µ
σ

)

• For constants a and b,

P (a < X < b) = P

(
a− µ

σ
<

X − µ

σ
<

b− µ

σ

)
= P

(
a− µ

σ
< Z <

b− µ

σ

)
= Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)
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Example: 1. The annual snowfall at a particular geographic location is modeled as a normal random
variable with a mean of 60 inches, and a standard deviation of 20 inches. What is the probability that
this year’s snowfall will be at least 80 inches?

Example: 2. Suppose that the blood chloride concentration (mmol/L) has a normal distribution with
mean 104 and standard deviation 5. Find the probability of the blood concentration is less than 100.36
mmol/L.
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4.9 Central Limit Theorem

Definition 4.10. (Random Sample) A sequence of independent and identically distributed ran-
dom variables X1, X2, · · · , Xn is called a random sample.

Idea:

• Suppose we take a sample of k students from our probability class and assume there are n
students in the class.

• Then our sample is one of the
(
n
k

)
possible samples.

• Suppose we consider all the possible samples.

• Then the random sample is the variable for all the possible samples.

4.9.1 Sample Total
Let X1, X2, · · · , Xn be a random sample from a population with mean µ and variance σ2.

Let Sn = X1 +X2 + · · ·+Xn, then

E(Sn) = E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn)

= µ+ µ+ · · ·+ µ (∵ identically distributed)
= nµ.

V ar(Sn) = V ar(X1 +X2 + · · ·+Xn)

= V ar(X1) + V ar(X2) + · · ·+ V ar(Xn) (∵ independent)
= σ2 + σ2 + · · ·+ σ2 (∵ identically distributed)
= nσ2.
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4.9.2 Sample Mean
Let X1, X2, · · · , Xn be a random sample from a population with mean µ and variance σ2.

Let X̄ = Mn = X1+X2+···+Xn

n
= Sn

n
, then

• the expected value:

E(X̄) = E(Mn) = E

(
X1 +X2 + · · ·+Xn

n

)
= E

(
Sn

n

)
=

1

n
· E(Sn) =

1

n
· nµ = µ.

• the variance:

V ar(Sn) = V ar

(
X1 +X2 + · · ·+Xn

n

)
= V ar

(
Sn

n

)
=

1

n2
· V ar(Sn) =

1

n2
· nσ2 = σ2/n.

Theorem 4.11. LetX1, X2, · · · , Xn ∼ N(µ, σ2). (i.e.,X1, X2, · · · , Xn be a random sample from
a normally distributed population with mean µ and variance σ2 ). Then

a) Sn ∼ N(nµ, nσ2) ⇒ Sn − nµ√
nσ

∼ N(0, 1) Standard Normal

b) Mn ∼ N(µ, σ2/n) ⇒ Mn − µ

σ/
√
n
∼ N(0, 1) Standard Normal

Problem: Howdowe find the distribution of the sample total or the samplemeanwhen the distribution
of the population is unknown ( or not normal)?

Answer: Use Central Limit Theorem (CLT).
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4.9.3 Central Limit Theorem

Theorem 4.12. Let X1, X2, · · · , Xn be a random sample from a population with mean µ and
variance σ2. Assume n is large (i.e, n ≥ 35, Rule of Thumb for our class). Then,

1. If Sn = X1 +X2 + · · ·+Xn is the sample total, then

Sn − nµ√
nσ

∼ N(0, 1)

2. IfMn = X1+X2+···+Xn

n
= Sn

n
is the sample mean, then

Mn − µ

σ/
√
n
∼ N(0, 1)

Example 1: Sampling from N(528.8, 137.22)
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Example 2: Sampling from Exp(1)

Example 3: Sampling from Uni(0, 1)
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Example: We load on a plane 100 packages whose weights are independent random variables that are
uniformly distributed between 5 and 50 pounds. What is the probability that the total weight exceeds
3000 pounds?
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Example: The income of college students is distributed with a mean income per year is $12, 000 and
a standard deviation of $6, 000. If we randomly sample 50 college students,

1. What is the expected average income of our sample?

2. What is the variance of the average income of our sample?

3. What is the probability that the average income of our sample is less than $10, 000?
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4.10 Summary

Summary 4. Chapter 05-06: Continuous Random variables and Limit Theorems

Continuous Random Variables
• Probability Density Function (PDF):
For any pdf f(x), then,

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

• Total probability: ∫ ∞

−∞
f(x)dx = 1

Cumulative Distribution Function (CDF)
• Probability that observed value of X will be at most x:

– X is continuous:
F (x) = P (X ≤ x) =

∫ x

−∞
f(t)dt

– X is discrete:

F (x) = P (X ≤ x) =
x∑
k

p(k)

• In general, for a continuous random variable, X ,

P (X < a) = P (X ≤ a) = F (a)

P (X > a) = 1− P (X ≤ a) = 1− F (a)

P (a ≤ x ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a)

Expected Values

• Expected value of X: E[X] =
∫∞
−∞ x · f(x)dx.

• Expected value of g(X): E[g(X)] =
∫∞
−∞ g(x) · f(x)dx.

• Variance of X .

V (X) =

∫ ∞

−∞
(x− E(X))2f(x)dx = E[(x− E(X))2]

Shortcut formula (easy method)

V (X) = E(X2)− [E(X)]2
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• Standard Deviation, σ(X) =
√

V ar(X)

Continuous Distributions

Uniform Distribution: X ∼ Uniform(a, b)

• The probability density function:

f(x) =

{
1

b−a
; a ≤ x ≤ b

0 ; otherwise

• The cumulative distribution function:

F (x) =


0 ; x ≤ a
x−a
b−a

; a ≤ x ≤ b

1 ; x ≥ b

• E(X) =
a+ b

2
and V ar(X) =

(b− a)2

12

Exponential Distribution: X ∼ Exp(λ)

• The probability density function:

f(x) =

{
λ · e−λ·x ; x > 0

0 ; otherwise

• The cumulative distribution function:

F (x) =

{
1− e−λ·x ; x > 0

0 ; otherwise

• E(X) =
1

λ
and V ar(X) =

1

λ2

• P (X > a) = e−λ·a for constant a.
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Normal Distribution
• The probability density function, X ∼ N(µ, σ2):

f(x) =
1√
2πσ2

exp
(−(x− µ)2

2σ2

)
, −∞ < x <∞

• The probability density function for the standard normal distribution, X ∼ N(0, 1)

f(z) =
1√
2πσ2

exp
(−z2

2

)
, −∞ < z <∞

• The cumulative distribution for standard normal distribution:

Φ(x) = P (Z ≤ z)

Refer to the Standard Normal Table to find left probabilities, P (Z < z) = P (Z ≤ z).

– Write z value with 2 decimal places.
– Consider first two numbers including the sign as the row and the third number with
decimal as the column.

– Then, find the intersect value which gives from the row and the column in the body
of the table.

• Standardizing normal distribution

– Use the transformation,
Z =

X − µ

σ

– To find the probability,

P (a ≤ X ≤ b) = P

(
a− µ

σ
≤ Z ≤ b− µ

σ

)
= Φ

(b− µ

σ

)
− Φ

(a− µ

σ

)

P (X ≤ a) = Φ
(a− µ

σ

)
P (X ≥ b) = 1− Φ

(b− µ

σ

)
• If X ∼ N(µ, σ2), then the distribution of,

– Sample Total: Sn ∼ N(nµ, nσ2)

– Sample Mean: Mn = X̄ ∼ N(µ, σ2/n)
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Central Limit Theorem
Consider the population mean is µ, the population standard deviation is σ, and sample size is n.

• Use Normal approximation for large n ≥ 35 (Rule of Thumb!).

• Mean of sample mean, X̄ is: µX̄ = µ

• Variance of sample mean, X̄ is: σ2
X̄
= σ2

n

• Standard Deviation of sample mean, X̄ is: σX̄ = σ√
n

• The distribution of sample total, Sn and sample mean, X̄:

– If X is normally distributed, then

Sn ∼ N(nµ.nσ2), X̄ ∼ N

(
µ, σ2

X̄ =
σ2

n

)

– If X is not normally distributed, then

* If n ≥ 35, then, Sn, X̄ is approximately Normal.

Sn ∼̇ N(nµ.nσ2), X̄ ∼̇ N

(
µ, σ2

X̄ =
σ2

n

)

* If n < 35, we can’t find the distribution of X̄ .

• Standardizing:

Z =
X̄ − µX̄

σX̄

Then, use standard normal table to find the probabilities.
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4.11 Exercises

1. The time between buses on Elm Street is 12 minutes. Therefore the wait time of a passenger
who arrives randomly at a bus stop is uniformly distributed between 0 and 12 minutes.

(a) Find the probability that a person randomly arriving at the bus stop to wait for the bus has
a wait time of at most 5 minutes.

(b) Find the mean and standard deviation of waiting time.

2. On the average, a certain computer part lasts ten years. The length of time the computer part
lasts is exponentially distributed.

(a) What is the probability that a computer part lasts more than 7 years?

(b) Find the cdf of the time that a computer part last.

(c) Using part (b), answer the part (a).

(d) Calculate the mean and the standard deviation of the time that a computer part last.

3. Suppose X is a discrete random variable. Let the pmf of X be equal to:

P (X = x) =
5− x

10
; x = 1, 2, 3, 4

Find the cumulative distribution function (CDF) of X .

4. The length of a telephone call made to a company is denoted by the continuous random variable
T . It is modeled by the probability density function,

f(t) =

{
kt ; 0 ≤ t ≤ 10;

0 ; otherwise

(a) Find the constant k such that the given pdf is legitimate.

(b) Find P (T > 6).

(c) Calculate the expect value, E(T ) and and the variance, V ar(T ).

(d) Find the cumulative distribution of X , F (t).

(e) Using part (d), find the value of part (b).

(f) Using part (d), find P (3 < T < 8).

5. Determine the following standard normal probabilities.

(a) P (Z ≤ 2.4378)

(b) P (Z > 2.44)

(c) P (Z ≤ −0.2534)
(d) P (−0.3222 < Z < 1.2523)

(e) P (Z < 0)
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6. The average number of acres burned by forest and range fires in a large New Mexico county is
4,300 acres per year, with a standard deviation of 750 acres. The distribution of the number of
acres burned is normal.

(a) What is the probability that more than 4,200 acres will be burned in any given year?
(b) What is the probability that between 2,500 and 4,200 acres will be burned in any given

year?

7. Suppose that the data concerning the first-year salaries of WPI graduates is normally distributed
with the population mean $60000 and the population standard deviation $15000.

(a) Find the probability of a randomly selected WPI graduate earning less than $45000 annu-
ally.

(b) Find the probability of randomly selecting a WPI graduate that makes more than $80000
a year.

8. A population has mean 72 and standard deviation 6.

(a) Find the mean and standard deviation of the mean for samples of size 45. Also determine
the probability distribution of mean.

(b) Find the probability that the mean of a sample of size 45 will differ from the population
mean 72 by at least 2 units, that is, is either less than 70 or more than 74.

9. An unknown distribution has a mean of 90 and a standard deviation of 15. A sample of size 80
is drawn randomly from the population. Find the probability that the sum of the 80 values (or
the total of the 80 values) is more than 7,500.

10. Survey found that the American family generates an average of 17.2 pounds of glass garbage
each year. Assume the standard deviation of the distribution is 2.5 pounds.

(a) Find the probability that the mean of a sample of 55 families will be between 17 and 18
pounds.

(b) Why the central limit theorem can be applied?
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5.1 Standard Normal Table
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Table 3  Areas Under the Normal Curve

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

−2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0722 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0 z

Area
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Table 3  Areas Under the Normal Curve (continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998



Solutions for Exercises

6.1 Solutions: Chapter 01
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6.2 Solutions: Chapter 02

















Solutions: Chapter 03 • 139

6.3 Solutions: Chapter 03
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6.4 Solutions: Chapter 05-06
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