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Abstract

Context-aware applications adapt their behavior based on the user’s current situation,
targeting diverse domains, including smart homes, assisted living, fitness tracking, mil-
itary deployment, and mobile health. Human Context Recognition (HCR), the task
of detecting a user’s current situation that includes their activity, location, and other
semantic information, is a fundamental problem in context-aware applications. Smart-
phone HCR datasets for supervised machine learning are gathered using one of two
study designs: 1) Scripted studies in which users visit pre-planned contexts in a script
yield high-quality data with strong context labels but are unrealistic. 2) In-the-wild,
unscripted studies gathered as subjects live their lives and provide context labels pe-
riodically yield realistic datasets but are frequently imbalanced with missing or wrong
labels. Moreover, in-the-wild study designs are more vulnerable to attacks. For instance,
adversaries can send modified data samples to mislead the HCR model, causing wrong
predictions.

This dissertation presents HCR research that utilizes neural networks for HCR repre-
sentation learning to facilitate robust HCR on single datasets, enhance HCR robustness
to distributional shifts between multiple HCR datasets and mitigate perturbations mali-
ciously caused by adversaries. DeepContext, a novel proposed neural network for HCR,
utilizes joint learning with a parameterized compatibility-based attention mechanism to
focus on the most predictive parts of sensor data. Two lab-to-field methods are proposed
that learn a robust HCR model from a scripted dataset with strong labels to improve
performance on a weakly supervised, in-the-wild dataset with similar context labels. Co-
variate shifts between the scripted and in-the-wild context datasets present a challenge to
such lab-to-field methods. Positive Unlabeled Context Learning (PUCL) uses transduc-
tive learning with inaccurate supervision to address erroneous labels. Triple-DARE uses
a Domain Adaptation approach under incomplete supervision to utilize unlabeled, in-
the-wild data. Finally, an adversarial HCR approach that learns a robust representation
is proposed. This dissertation focuses on black-box evasion attacks that can generate
input samples with minor changes that result in high-confidence misclassifications. We
propose RobustHCR, which uses a duality-based method to improve neural network ro-
bustness, allowing it to be provably resilient to norm-bounded perturbations. Results
generated using a rigorous experimental plan are presented.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Context-Aware Systems

Context is defined as any information that can be used to characterize the situation

of users during their interactions with computer applications. Context informa-

tion is typically utilized to provide task-relevant information and/or services to

users [1]. Context-Aware (CA) systems adapt their behavior to the user’s current

context. Context awareness is crucial in enabling ubiquitous computing systems

to optimize usability, aligning with Mark Weiser’s vision of ubiquitous computing

[2]. In this dissertation, we focus on recognizing human behavioral contexts from

smartphone sensor data to support CA applications, a task referred to as "Human

Context Recognition" (HCR). A fundamental assumption in such a system is that

sensor data exhibit similar patterns in similar contexts [3]. CA applications target

various domains, including smart homes [4], assisted living [5], fitness tracking [6],

military deployment [7], and mobile health [8, 6, 9, 10].
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1.1.2 Human Context Recognition (HCR) for Context-Aware (CA)

Smartphone Healthcare applications

Traditionally, health monitoring and lifestyle treatments have relied on manual,

subjective reporting [11], sometimes supplemented by end-of-day recalling [12].

As a result, patient evaluations are infrequent, commonly months apart, and

frequently result in late diagnoses that exacerbate patients’ prognoses, causing

tremendous socioeconomic damage to a community. Many patients receive very

little care between scheduled hospital appointments. For example, it is anticipated

that under-resourcing mental health will cost the global economy $16 trillion be-

tween 2010 and 2030 due to the early onset of mental illnesses and accompanying

loss of productivity[13]. Due to the enormous societal costs, governments must

focus on early, preventive interventions. Given that, accurate HCR can facilitate

passive context-specific patient assessments and continuous monitoring, decreas-

ing operational costs [10]. Specifically, automatic context recognition will aid in

detecting critical ailment periods and facilitate the provision of prompt treat-

ment[14].

Smartphones have recently become popular for CA applications as they are ubiq-

uitous and often equipped with a plethora of built-in sensors. According to recent

studies, 85% of people in the U.S. own a smartphone as of Feb 2022, with a steadily

increasing number each year, even worldwide [15, 16]. We focus on CA and HCR

on smartphones that leverage passive smartphone sensing and facilitate passive

context-specific patient assessments and continuous monitoring, decreasing high

operational costs in traditional infrequent health assessments.
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1.1.3 HCR for Context-Aware Warfighter Health

The DARPA-funded Warfighter Analytics using Smartphone for Healthcare (WASH)

DARPA project [17] is investigating passive smartphone assessment of Traumatic

Brain Injuries (TBI) and infectious diseases. This will provide an up-to-date as-

sessment of the warfighter’s battle readiness. Target populations initially include

active duty service members and veterans, but the scientific discoveries made will

also apply to civilians. In the envisioned use case, the WASH smartphone app will

continuously gather smartphone sensor data passively throughout each day. Each

subject’s full day of smartphone data will be pushed to the cloud, where disease

inference models will analyze this data to generate a bioscore (or probability of

illness) for each warfighter[17].

1.2 Definition of Context

While there are many definitions of context in the literature, in this dissertation,

we define Human Context as the ⟨Activity, Prioception⟩ tuple, which consists

of the user’s current activity (e.g., walking, running) and the phone prioception

(placement) (e.g., in a pocket, hand, or bag). As human context frequently in-

cludes their current activity, it is essential to clarify that the Human Activity

Recognition (HAR) tasks, which involve recognizing the user’s current activity,

are related to Human Context Recognition (HCR) that this dissertation focuses

on.
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1.3 Scripted vs. In-the-wild Context Recognition Data Gath-

ering Studies

Most existing datasets for HCR were gathered in human subjects studies that

were either scripted or in-the-wild. In scripted studies, participants perform tasks

in a pre-planned order under the supervision of a human proctor while a smart-

phone app continuously records smartphone sensor readings. Afterward, the hu-

man proctors annotate users’ sensor data with labels of the contexts they visited.

In contrast, in-the-wild studies involve collecting data for several days in the real

world as subjects live their everyday lives. A smartphone app continuously gathers

sensor data and periodically prompts the smartphone owner to report their cur-

rent context, which is then used to annotate their sensor data. Scripted datasets

have accurate context labels, but user behaviors are not realistic. While realistic,

in-the-wild datasets often have wrong or missing labels as users stop labeling when

their lives get busy in the real world. We summarize the characteristics of each

type of data collection study in Figure (1.1).
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Context Recognition Data Gathering Studies

Scripted In-the-Wild

Fixed location (e.g., laboratory, campus)

Scripted instructions

Proctored annotations

Fixed phone types

Fixed phone placements

Natural environments  (wherever user goes)

Unscripted naturally (whatever activities user does)

Self-reported annotations

Use their own devices

Unconstrained phone placements

Figure 1.1: Scripted and In-the-wild approaches for Context Recognition Data Gather-
ing.

1.3.1 Existing Human Activity Recognition (HAR) and Human Con-

text Recognition (HCR) Datasets

Several smartphone-labeled HAR and context datasets have been collected for

creating machine and deep learning models and publicly released [18, 19, 20, 14].

The majority of these datasets were collected using study designs that were mainly

scripted and typically gathered data using one or a few smartphone models that

proctors used for the study. Analyzing data from diverse smartphones is vital as

prior work has found that sensor readings for the same activity or context can vary

by up to 30% across smartphone models. In such cases, models trained on data

from only one smartphone model do not generalize well to other smartphones [21].

Consequently, more recent datasets, such as the ExtraSensory dataset [14] were

gathered using a more realistic in the wild study design. Participants installed

data collection apps, which collected data passively from their smartphones and

7



Chapter 1: Introduction

smartwatches simultaneously as they lived their lives. Periodically, subjects were

prompted to annotate the activities they performed and contexts they visited using

the ExtraSensory app. In addition to being more realistic, these in-the-wild studies

gathered data using subjects’ smartphones that reflected diverse manufacturer

hardware. While the ExtraSensory dataset came close to meeting our project’s

needs, several context labels were sparse (subjects rarely performed them). Out

of 100 labels defined by the investigators, subjects provided labels for only 51

contexts in 2 weeks of participation in the study. Moreover, this dataset did

not gather data on several context labels our project aimed to recognize for our

infectious disease and TBI tests.

1.3.2 Our Novel Coincident Data Gathering Study Approach

Our innovative coincident study design approach conducted scripted and in-the-

wild gathering studies to gather labeled data in the same contexts shown in Table

(1.1). The coincident study facilitates the use of machine learning methods that

combine the accuracy of the scripted labels with the realistic context visit pat-

terns of the in-the-wild studies. Our in-the-wild context study was similar to

the Extrasensory study approach, illustrated in Figure (1.2). The smartphone

app continuously gathered sensor data on 103 subjects’ phones as they lived their

lives. Users were then prompted to self-report labels of contexts they visited. Our

scripted study was conducted in a specific laboratory, buildings, or routes on our

campus. The smartphone app collected data from 100 participants that visited the

listed contexts in Table (1.1) in a scripted fashion. The scripted data-gathering

session lasted approximately 1 hour per subject, and human proctors oversaw and
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Unlabeled
Target 
Dataset

Scripted 
Context Dataset

Proctored 
Labels

In-the-wild
Context Dataset

Self-reported  
Labels

Smartphone 
Sensors

Source 
Dataset

Covariate 
Shifts

Context 
Predictions

HCR model

Labeled
Source 
Dataset

Lab-to-Field
Training

Target 
Dataset

a)

b)

Figure 1.2: Our innovative coincident study design approach. (a) The two kinds of
smartphone context data used in this work. (b) Overview of the lab-to-field’s problem
and approach.

manually annotated the data.

Table 1.1: Contexts for which data was gathered in our WASH Study Collected Contexts
- Expanded into 25 binary labels.

Phone Placement

Phone in Bag Phone in Hand

Phone in Table Facing Down Phone in Table Facing Up

Phone in Pocket

Long activity

Walking Sitting

Jumping∗ Jogging

Lying Down Running
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Standing Sleeping

Stairs - Going Up Stairs - Going Down

Talking On Phone Trembling∗

Typing In Bathroom

Short activity

Coughing∗ Sneezing∗

Standing up (transition)∗ Laying Down (transition)∗

Sitting Down (transition)∗ Sitting Up (transition)∗

∗ : Labels associated with contexts collected in the scripted study only

1.4 HCR Challenges

Supervised machine learning classification HCR models typically achieve high ac-

curacy on scripted datasets due to their high-fidelity sensor data and high-quality

context labels. For instance, DeepContext, a state-of-the-art deep learning HCR

model, achieved 91.2% accuracy on a scripted dataset[22]. However, scripted

datasets are not realistic as the contexts visited and visit patterns are not repre-

sentative of real life. It is crucial that HCR models are accurate on in-the-wild

datasets, which are more representative of real-world deployment scenarios. How-

ever, HCR models achieve lower performance when trained directly on more real-

istic, in-the-wild datasets. For instance, Vaizman achieved 71.7% accuracy using

a Multi-Layer Perceptron (MLP) HCR model trained directly on an in-the-wild

dataset[23]. This represents a 19.5% drop in accuracy of state-of-the-art HCR
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models on scripted vs. in-the-wild datasets, which underlines the difficulty of the

problem of achieving robust, high HCR performance on in-the-wild datasets. Spe-

cific issues posed by in-the-wild datasets include Diversity of Causes (DoC) and

labeling issues. The approaches that train a robust HCR model on a scripted

dataset, which is then transferred to an in-the-wild dataset, face the additional

challenge of a covariate shift between the scripted and in-the-wild datasets. These

issues are now expounded upon.

1.4.1 In-the-wild HCR Dataset Challenges: Diversity of Causes (DoC)

Collecting smartphone sensor data in the wild often results in naturally occur-

ring variations in the data. While realistic, in-the-wild HCR datasets present

challenges due to the diversity of phone placements, smartphone models, human

behaviors and environments encountered. These challenges are known collectively

as Diversity of Causes (DoC).

1. Diversity of phone placements: or positions in which smartphones are placed

(prioceptions). Sensor signals have different sensor signatures for the same

activity when the phone is carried in different prioceptions [24]. In fact,

prioception is one of the most significant sources of variability in smartphone

context sensor data [14], as illustrated in Figure (6.2). Smartphone users may

choose to carry their smartphones in a bag, their hand, or their coat pocket

while performing a given activity (e.g., walking).

2. Diversity of smartphone models: Unlike scripted HCR studies where subjects

use a single study phone model provided by the proctor, subjects in in-the-
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wild HCR studies typically use their own phones. The sensor values recorded

for a given context by different smartphone models can differ by as much as

30% [25], presenting an additional challenge for machine learning classifiers.

3. Diversity of human behavior: In addition to the above existing diversities

in such data, humans, by nature, can perform activities differently. For

example, people may walk at a different pace depending on their age, gender,

or well-being. Even the same person may walk at different paces depending

on their mood. This results in a high inter-person variance in the captured

human behavior represented in smartphone sensor data[14, 26, 27, 28]. At

the same time, people might change their daily routine or how they use their

phone, e.g., people walk about at night due to insomnia, which is not part of

their usual routine. These unexpected changes and heterogeneous behaviors

can lead to biased representations of human behavior. The robustness of

models may be improved by data generation and synthesizing in place[29].

4. Diversity of environments: The contexts visited by subjects in the scripted

study and their context visit order and visit duration differ significantly from

in-the-wild scenarios. This results in significant changes in the data genera-

tion process from a data-centric perspective [26, 30].

1.4.2 Data Labeling Issues

Acquiring annotated sensor data, in general, is a complicated and expensive task.

There are specific issues with data labeling done in in-the-wild data gathering

studies, which presents a challenge for supervised machine learning algorithms
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[31].listed as the following:

1. Weakly assigned context labels: Sensor data preparations for HCR models

often rely on data segments taken from a sliding window, and since labels

are self-reported, segments that lie within provided times get assigned with

provided labels (see Chapter 4 - Section 4.3.1 for details). People might

forget or not be precise in their self-reported performed activity times. As a

result, segment timestamps may be wrong, and while training HCR models,

only particular sub-segment(s) are truly representative of the assigned label

within each training sensor segment. However, their exact duration and

location within the segment are unknown.

2. Imbalanced context labels: context labels in datasets generated by in-the-

wild gathering studies are weak and biased toward the user’s specific con-

texts. Subjects typically visit various contexts unequally. For instance, desk

workers will have more "sitting at desk" labels than construction workers.

Bias also occurs because specific contexts are easier to label than others.

For instance, "sitting at a desk" is easier for the participant to label than

"swimming," a hands-free activity. The labeling quality also depends on how

conscientious the study subject is, which is variable. Such poor, biased, and

varied quality of context labels poses a significant challenge for machine and

deep learning algorithms.

3. Noisy and missing context labels: as users stop providing labels when their

lives get busy, or worse yet, they may erroneously provide the wrong la-

bels [32]. As a result, most of the collected sensor data are unlabeled, which
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suggests the design of unsupervised HCR models capable of leveraging unla-

beled data and reducing impacts of mislabeled (corresponding to incomplete

and inaccurate supervision)[33].

Considering this fact about data labeling challenges, learning methods trained

under weak supervision are desirable. [34]. Additionally, we may also consider

increasing the amount of labeled data by using synthetic data generations.

1.4.3 Covariate Shifts Between Scripted and In-the-wild Datasets

When trying to leverage models trained on scripted data to improve performance

on an in-the-wild dataset with similar context labels, we encounter a data shift

problem known as covariate shift, where the distribution of features differs across

training and test scenarios. Specifically, the covariate shift problem is caused by

significant differences between the distribution of features extracted from scripted

vs. in-the-wild datasets [35, 36, 37]. More broadly, because real-world applications

must face some type of dataset shits, it is critical to address the covariate shift

problem for successful deployment of machine learning models in the wild [35].

1.4.4 Adversarial Attacks

Recent work has proven how vulnerable machine learning models are to adver-

sarial examples, small perturbations on inputs cause models to produce erroneous

classifications with high confidence [38, 39]. At the same time, machine learning

models showcase inconsistent and excessively confident performance on out-of-

distribution data (o.o.d), and adversarial examples are one kind of this extended
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problem [40]. These flaws negatively influence real-world applications in indus-

tries where safe and dependable predictions are critical, such as security [41] and

healthcare [42]. Importantly, Papernot et al.’s work demonstrated that adversar-

ial threats on a specific classifier could be easily transferred to other comparable

classifiers [38], adding to the severity of the problem. While researchers have stud-

ied these vulnerabilities in-depth in domains such as computer vision [43], natural

language processing [44], and speech recognition [45], the focus of adversarial de-

tection methods has only recently been shifted to time-series-based models [46,

47, 48] or sensory-based classifications [49, 50].

Threat Model

As we deal with such large-scale data collection, security concerns arise. Here we

describe our threat model briefly. First, the categorization of adversarial attacks

on machine learning models can be described as the following:

1. Poisoning attacks or training-stage attacks are essentially adversarial con-

tamination of training data. When adversaries have a way to access the

model’s training data, they may try to undermine the effectiveness of ma-

chine learning during deployment by manipulating the training data or its

labels. This typically happens by inducing the classifier to learn erroneous

associations between input and output [51, 52]. Since HCR data collected

in the wild rely on self-reported annotated data, using such data for train-

ing HCR models is vulnerable to adversarial contamination as it might not

always reflect actual events when data was collected.
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2. Evasion attacks Deployed HCR models can be targeted with inference-based

attacks, often referred to as evasion attacks [41], which are the most common

and well-studied types of attacks. Evasion attacks occur during deployment

when the attacker manipulates test data to fool previously trained classi-

fiers. Manipulating data for this purpose is often referred to as Adversarial

Examples in the literature [53, 54]. One example of potential evasion at-

tacks in our context detection model is when users try to fool HCR models

by supplying modified test data such that they pretend to perform activities

other than their current activities. While the severity of this type might not

be as critical as the poisoning attacks, evasion attacks test model robust-

ness against out-of-distribution (o.o.d) testing data subsets [40] or in other

applications where attackers might exploit the transferability property of

adversarial examples in launching attacks against pre-trained models, which

has been proven to work even in HAR datasets [50].

3. Model extraction or "model inversion" attacks are mainly concerned with

privacy aspects. By reverse-engineering the learning algorithm, these at-

tacks attempt to access confidential information about the system, its users,

or data [55]. Specific to HCR, personal information can be inferred from

sensor data used to train the model. The reason behind this is that people

tend to produce similar characteristics in the captured human behavior rep-

resented in smartphone sensor data corresponding to their age, gender, or

well-being [14, 26, 27, 28]. The severity of this attack depends on the privacy

aspect of sensor-based activity recognition [56]. This dissertation considers

poisoning and evasion attacks but not model extraction attacks.
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The poisoning and evasion attacks adversarial attacks described above can be

perpetrated by various types of subjects, including:

1. Sloppy or careless actors: These users have limited knowledge and no appar-

ent intention to degrade model performance. They carelessly provide labels

that do not reflect actual events during data collection [26, 57].

2. Adversary data scientists: These are expert users knowledgeable in applying

data science techniques with clear adversary intentions. They could inject

malicious data that could effectively degrade the training or test processes,

which could be detected easily by traditional anomaly detection or data

sensitization techniques [55, 54]. They could also craft adversarial examples

to fool HCR models into doing something else [50]. For instance, one subject

could bypass labeling quality procedures that ensure subjects are doing what

they are supposed to do in data-gathering studies.

In summary, it is critical to put in place security measures on both data and model

architectures to defend against various types of adversarial attacks.

1.5 Dissertation Objective

This dissertation presents HCR research in three broad areas (Illustrated in Figure

(1.3)):

1. Extraction and learning of robust, highly predictive features from sensor data:

overcoming the challenges posed by weak and noisy labeled context data.

17



Chapter 1: Introduction

30

Weakly assigned labels
Noisy Data

Diversity of Causes
Mislabeled, Unlabeled Data 

Security threats

Cha
lle

ng
es

Proposed Research

Robust Feature 
Extraction from 

Sensor Data

I
II Robust 

Representations 
under Adversarial 

Attacks

III
Imbalance Labels

Label Scarcity 

Improving 
Transferability of In-

lab models to the 
Real world

Robust Representation Learning for Weakly-supervised 
Mobile Sensed Data for Context Recognition Under Covariate-shifts

Figure 1.3: Dissertation challenges and objectives summary.

2. Improve transferability of in-lab models to the real world: Deploying HCR

models in the wild requires learning robust representations that ensure suc-

cessful transferability of models trained from high-fidelity data gathered in

the lab to real-world applications. Transferability is hindered by the challenge

of a covariate shift, which is a difference in the sensor and label distributions

between the in-lab study data and the in-the-wild study data. Moreover, the

in-the-wild dataset is highly noisy as they were self-reported by the smart-

phone user while living their lives.

3. Learn representations that are robust to adversarial attacks: HCR mod-

els deployed in the wild might be under adversarial threats such as data

poisoning or evasion attacks by bad actors. It is crucial to increase model

robustness and generalization to real-world data, using adversarial threats

as a measure of robustness.

The overarching goal of this dissertation is to design practical solutions to the

above problems using various representation learning techniques, a set of meth-
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Figure 1.4: A high-level overview of the proposed dissertation in a top-down approach,
including interdisciplinary research fields, scope, challenges, and proposed techniques.

ods that allow a system to automatically discover the representations needed for

performing machine learning tasks from raw data in a weakly-supervised-learning

setting. Figure (1.4) provides an overview of the research fields, challenges, and

types of techniques proposed as solutions.

1.6 Dissertation Contributions

In this dissertation, we propose a set of methods to tackle the challenges detailed

above and advance state-of-the-art mobile-sensing representation learning for HCR

systems. We aim to design methods to improve model robustness and transferabil-

ity from the lab to real-world applications in a weakly-supervised learning setting.

The findings of this dissertation are expected to aid academics in a variety of fields,

including ubiquitous computing, human-computer interaction, and machine learn-

ing. In this dissertation, we specifically make the following contributions to the

following aspects of HCRs:

1. Human Context Recognition under inexact supervision
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DeepContext has two significant innovations. First, DeepContext employs a

joint-learning fusion strategy that utilizes both domain-specific handcrafted

features with a Multi-Layer Perceptron (MLP) classifier and features that are

autonomously generated by a Convolutional Neural Network (CNN). Second,

DeepContext addresses the problem of coarse-grained labels by discovering

and giving higher importance to the most salient regions of the sensor data.

These regions have higher predictive value for specific contexts. This al-

lows our model to overcome potentially noisy inputs, which is achieved by

DeepContext’s Parametrized Compatibility-based attention mechanism [22].

2. Leveraging Coincident Context Data Gathering Study

Scripted datasets have accurate context labels, but user behaviors are not

realistic. In-the-wild datasets have realistic user behaviors but often have

wrong or missing labels. We proposed two methods that try to learn accurate

HCR models from scripted datasets to improve performance on a related in-

the-wild dataset, focusing on two settings:

(a) Inaccurate supervision using PUCL: Positive Unlabeled Context Learn-

ing [26]. PUCL uses a transductive positive unlabeled learning method-

ology to transfer knowledge from the highly-accurate labels of the scripted

dataset to the less accurate, more sparse but yet more realistic in-the-

wild dataset.

(b) Incomplete supervision using Triple-DARE : Triplet-based Domain Adap-

tation for Lab-to-field Human Context Recognition. Triple-DARE uti-

lized a transductive transfer learning method with triplet loss to adapt
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neural networks in various domains to mitigate covariate shifts.

3. Adversarial-Robust Human Context Recognition

We identify and propose defenses for two potential adversarial threats to

mobile-sensing in-the-wild gathering studies. Poisoning attacks are adver-

sarial contamination of training data, undermining the effectiveness of a

machine learning model during deployment. Evasion attacks are mainly

concerned with manipulating data to deceive pre-trained classifiers, caus-

ing them to misclassify data. We aim to improve model robustness and

transferability from the lab to real-world HCR applications by learning ro-

bust representations of both out-of-distribution testing data and adversarial

threats. Defensive approaches will be proposed using robust optimizations

and testing them against adversarial threats.
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Background

2.1 Context Sensor Data Collection Studies

Context datasets have either inaccurate labels or unrealistic user behaviors: HCR

datasets are collected using study designs that are either scripted [58] or in-the-

wild [59]. Scripted studies are typically conducted in a laboratory setting. Partic-

ipants perform scripted tasks in a fixed, pre-determined order while a smartphone

app continuously records reading from smartphone sensors. Human proctors an-

notate the users’ data with corresponding context labels. In unscripted ("or in

the wild") studies, data is collected for days in the real world as subjects live their

lives. A smartphone continuously records smartphone sensor data continuously

as subjects live their lives. Periodically, subjects annotate their data with labels

of the contexts they visited. While the scripted method for HCR data collection

yields exceptionally accurate and consistent labels suitable for supervised machine

or deep learning, the contexts visited and sensor data collected in each context are

not representative of real life. In-the-wild HCR studies yield more realistic data.
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However, some of the context labels may be missing as users forget to label them

when they get busy with their lives. Some labels may also be wrong due to human

labeling errors [32].

2.2 Attention Mechanisms

… …

Figure 2.1: The fundamental mechanism of attention.

Attention mechanisms are motivated by how humans pay visual attention only to

specific regions of a picture or correlating words in a sentence [60, 61, 62]. Al-

though some attention mechanisms are mainly used during post-hoc analysis of

neural networks, several trainable attention mechanisms have been influential not

only in increasing the neural network model’s performance but also in explaining

the final predictions by facilitating the visualization of attention scores. Attention

mechanisms try to focus on (weight) a few key features and select the most impor-

tant ones from a large set of options. The basic attention mechanism is depicted
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in Figure (2.1). The output feature hout is the weighted sum of each input feature

based on its relative importance as follows:

hout =
t∑

i=1

αihi, (2.1)

where h1, h2, . . . , ht1 and ht are input features, along with their corresponding

weights: a1,a2, . . . , at−1 and at. The number of input features is denoted by t.

αi is obtained by a softmax function along with a scoring function F (·), as the

following:

αi =
exp (F (hi))∑t
i=1 exp (F (hi))

(2.2)

There are two main types of attention mechanisms: 1) hard attention and 2) soft

attention [61]. Hard attention is a stochastic process and often cannot be trained

through back-propagation. Thus, the distribution of attention scores has to be

assumed and fixed a priori [61]. Soft attention uses a probabilistic distribution

function to apply attention scores to the source input [61], which makes it more

suitable for sensor data, where a fixed distribution of scores or the size and number

of attention regions to focus on cannot be assumed a priori. As shown in Figure

(2.2), we employ an attention mechanism in our robust feature generation method

in order to discover and focus on the most pertinent regions of the sensor data,

which exhibit patterns that predict particular contexts.
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(a) Phone In Hand, Sneezing (b) Phone In Hand, Typing

Figure 2.2: This figure illustrates how we use attention to identify representative sub-
segments in one instance of coarsely labeled sensor data. On top, only raw accelerometer
data is plotted (different colors represent the various trial axes). On the bottom, normal-
ized learned attention weights are plotted. More information is available in Chapter 4.

2.3 Covariate Shifts

The term "Covariate Shifts" was first introduced by Shimodaira [63], and is

described as changes in the distribution of the input x. While there are other

types of existing dataset shifts [35], the most researched type is covariate shift.

Covariate shift occurs when data is generated according to a model P (y|x)P (x)

and the distribution P (x) differs across training and test scenarios. While there

is some ambiguity in the definitions of covariate shift in the literature, we found

the definition provided by Moreno-Torres et al. [35] the most relevant, given by

the following conditions:

Ptr(y | x) = Ptst(y | x) and Ptr(x) ̸= Ptst(x), (2.3)

where Ptr(x) and Ptst(x) represents training and testing input distributions, re-

spectively. Collecting smartphone sensor data in the wild often results in natu-

rally occurring variations in the data. When trying to leverage models trained on

scripted data to perform well on a test set sampled from an in-the-wild dataset,

25



Chapter 2: Background

we are faced with covariate shifts, where the distribution of features differs across

training (scripted) and test (in the wild) scenarios.

2.4 Robustness

In a broad sense, robustness is an overused phrase that may be interpreted in a

number of different ways for machine learning models. This includes but is not

limited to preserving task performance on manipulated or changed inputs [64], gen-

eralization across domains [65], and resilience to adversarial attacks, also known

as adversarial robustness [66, 67, 68]. In our work, we aim to improve model

robustness in general and decrease prediction inconsistency under low changes

in the input using adversarial threats as a measure of model robustness because

we analyze mobile-sensed data that contain many naturally occurring variations.

Moreover, it has been demonstrated that adversarial robustness is closely con-

nected with covariate shift resiliences [69, 70, 65]; thus, researchers are urged to

evaluate adversarial robustness defensive measures against data with covariate

shifts. Adversarial attacks are a helpful way of analysis for generalizing under

the worst possible conditions, making them a viable instrument for evaluating the

robustness of models in general [71, 40]. Notably, the best practices for deploying

AI models in healthcare emphasized the need for robustness, safety, and security

while developing trustworthy AI systems [72, 73, 74].
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2.5 Motivating HCR Use Case: DARPA WASH Project

The DARPA-funded Warfighter Analytics using Smartphone for Healthcare (WASH)

DARPA project [17] is investigating passive smartphone assessment of TBI and

infectious diseases. This will provide an up-to-date assessment of the warfighter’s

battle readiness. Target populations include active duty service members and

veterans initially, but discoveries made will also apply to civilians.

In the envisioned use case, the WASH smartphone app will passively gather smart-

phone sensor data throughout each day. Each day of data is then pushed to the

cloud overnight for analysis. Disease inference models will analyze this data in the

cloud to generate a bioscore (or probability of illness) for each warfighter.

Program phases: The WASH program is divided into two distinct phases.

Phase one involves recognizing specific smartphone user contexts in which targeted

health assessments will be conducted. Phase two involves creating the methods

for the actual TBI and infectious disease assessments of smartphone users. In

phase one, we researched and created a list of smartphone biomarkers that were

predictive of TBI and infectious diseases and corresponding contexts. Our team

conducted user studies to collect labeled data for those contexts and created HCR

models to infer those contexts from labeled smartphone sensor data. Table 2.1(a)

shows the list of contexts, such as "walking, phone in hand" that our team gathered

labeled data on and created HCR models. The planned ailment-specific tests or

biomarkers corresponding to each of these contexts are listed in Table 2.1(b).

We created our list of ailment tests and contexts in consultation with TBI and

infectious disease experts from the University of Massachusetts Medical School
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(UMMS). As a concrete example, shaking hands is a sign of TBI. In phase one,

our team conducted user studies and created deep-learning models to detect the

smartphone user holding their phones. In phase two, we focus on assessing whether

the user’s hand is shaking. This dissertation focuses only on context recognition.

Research into the actual context-specific ailment assessments is not covered.

2.6 Weakly Supervised Learning (WSL)

In supervised learning tasks, predictive models are trained on annotated training

examples, common types of which are classification and regression models. A

training example is comprised of an input feature vector (or instance) and an

associated label (or ground truth). In many practical scenarios, such as in our

in-the-wild HCR study, it is challenging to gather adequate high-quality labels for

fully supervised learning due to the high costs of gathering labeled data. Various

types of weak (or inaccurate) labels can occur in such practical scenarios, including

several encountered in our mobile HCR scenarios, requiring innovative learning

methods. According to a recent survey by Zhou et al. [34], weakly supervised

learning can be categorized into three types:

1. Inexact supervision in which only coarse-grained labels are provided. Due

to the nature of the annotation process of sensor data, within each train-

ing sensor segment, only certain sub-segment(s) are truly representative of

the assigned label. However, their exact duration and location within the

segment are unknown.

2. Inaccurate supervision in which data labels are not always correct. For ex-
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Table 2.1: Context-specific ailment tests to detect TBI and infectious diseases and rele-
vant human contexts.

a)

Target Contexts

Laying Down, Phone on Table Exercising, Phone in Pocket
Toilet, Phone in Pocket Walking, Phone in Bag
Walking, Phone in Hand Walking, Phone in Pocket
Typing Sleeping
Sitting Running
Laying Down (state) Standing
Talking On Phone Bathroom
Phone in Pocket Phone in Hand
Phone in Bag Phone on Table, Facing Up
Phone on Table, Facing Down Stairs - Going Up
Stairs - Going Down Walking

b)

Traumatic Brain Injury
Ailment Test Test Context

Worse Reaction Time <Interacting with Phone, in Hand, *, *>
Increased Light Sensitivity <*, in Hand, *, *>
Unilateral Pupil Dilation <Interacting w/ Phone, in Hand, Texting, *>
Hands Shaking <*, in Hand, *, *>
Slurred Speech <Talking into Phone, *, *, *>

Infectious Diseases
Ailment Test Test Context

Increased Cough Frequency <Coughing, *, *, *>
Increased Sneezing <Sneezing,*, *, *>
Resting Heart Rate <Sitting, in Pocket, *, *>
Increased Toilet use Frequency <Using Toilet, *, *, *>
Change in respiration <Sleeping, on Table, *, *>

<Exercising, *, *, *>

Both TBI and Infectious Disease
Ailment Test Test Context

Increase In Activity Transition Time <Lying down, Phone In Pocket, *, *>
<Sitting, Phone In Pocket, *, *>
<Standing, Phone In Pocket, *, *>

Change in Sleep Quality <Sleeping, *, *, *>
Change in Gait <Walking, Phone in Pocket/Hand, *, *>
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ample, in-the-wild datasets often depend on self-reported labels. However,

users may erroneously provide wrong labels as they might not recall which

contexts they previously visited accurately.

3. Incomplete supervision that utilizes unlabeled training data. For instance,

some of the context labels in the dataset may be missing as users forget to

label them when they get busy with their lives.

2.7 Proposed Solutions to Address Weak Labeling

For these various forms of weak labeling, innovative learning methods that are

trained under weak supervision are desirable [34]. In this dissertation, we have

proposed solutions for Smartphone HCRs in each WSL category including:

1. Mitigating weak labeling in DeepContext: We proposed DeepContext,

an HCR system that uses neural networks to recognize smartphone user con-

texts under inexact supervision. DeepContext can extract salient discrimi-

native features under weakly labeled scenarios. Utilizing an attention mech-

anism, DeepContext can autonomously learn context-specific salient features

while suppressing potentially irrelevant parts of the input, tackling the issue

of coarse-grained labeling that usually exists in smartphone sensor data.

2. Mitigating mislabelled data in PUCL: Smartphone HealthBiomarkers:

focuses on Positive Unlabeled Learning of In-the-Wild Contexts. PUCL ad-

dresses the issue of mislabeled data in in-the-wild datasets by training a deep

neural network with a correcting factor learned from the high-fidelity scripted

dataset that puts less attention on instances that are most likely mislabeled.
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3. Domain adaptation across coincident HCR datasets in Triple-Dare:

We proposed Triple-Dare, a deep learning method that improves the perfor-

mance of HCR models by first training them on similar scripted datasets,

then adapting them for use in predicting context labels in in-the-wild datasets.

We utilized coincident scripted and in-the-wild HCR datasets in which sim-

ilar context labels were gathered in both studies. Triple-DARE can leverage

the tremendous amounts of unlabeled in-the-wild data, decreasing the need

for human-annotated labels.

In subsequent chapters, we describe these solutions in detail.
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Literature Review

In this chapter, we include the relevant research work.

3.1 Related Applications for Mobile-sensed Data

3.1.1 Human Context Recognition Using Smartphones

As it is typical for individuals to have their smartphone close by the majority of

the time, smartphones are an excellent tool for HCR [14, 26] and passive sens-

ing [75]. In order to capture realistic human behavior, smartphone HCR data

collection studies collect data while users live their lives, performing whatever ac-

tivities they choose [76, 77, 78, 14, 22]. Recently, Vaizman et al. collected and

analyzed a dataset containing a large number of participant-reported labels, com-

bining numerous smartphone and smartwatch sensor modalities, and identifying

human behavioral context using shallow neural network models with handcrafted

features [14]. Our definition of context ⟨Activity, Prioception⟩ incorporates the

user’s activity and thus relates to Human Activity Recognition (HAR), a well-
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studied research topic [79, 80]. As more data became available, numerous deep-

learning architectures utilizing smartphone sensor data have been proposed for

HAR [79, 80]. Nevertheless, these designs are only able to classify sensor data into

one of k possible labeled activities. In addition, these conventional HAR methods

are not applicable to real-world problems because most of them presume that the

sensor is located at a specific location on the body (waist, hip, or wrist) [81].

3.1.2 Smartphone-based Mission-Critical Applications

Smartphone-based recognition of user context and ambulatory activities [82] has

several practical, mission-critical applications. Compromising such systems could

have serious ramifications. For instance, smartphone-based HCRs may be utilized

to continuously track and monitor the health of soldiers or veterans to detect Trau-

matic Brain Injuries (TBI) or infectious diseases (e.g., Covid-19). By monitoring

smartphone health biomarkers, abnormal user behavior, physiological indicators,

activities, and context visit patterns can be identified [26]. Sun et al. showed that

smartphone-based activity recognition could detect aggravated assaults. They

created iProtect to identify abuse and kidnapping. iProtect uses smartphone ac-

celerometers to record and identify physical assaults. The importance of real-time

assault detection for personal safety cannot be overstated [83]. These applications

require accurate smartphone HCR predictions, which we aim to improve.
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3.2 Sensory Representation Learning

3.2.1 Handcrafted-features based Methods

Most prior work for sensory representation learning utilizes handcrafted features

to learn discriminative sensor features, which incorporates prior knowledge but

limits the learned representation’s capacity by reliance on human creativity [27,

84, 85, 86]. Such methods lack the power to capture underlying non-linear patterns

in low-level sensory inputs [28].

3.2.2 Deep-learning based Methods

While handcrafted features may suffice to recognize simple cases, deep learning

methods have been shown to be more effective in complex HAR tasks [87, 88, 89,

87, 90]. Deep learning has shown potential in HAR and HCR, extracting valuable

features for the target task automatically [28, 23, 22, 26]. However, the bias

and constraints introduced by traditional laboratory-based scripted mobile sensing

datasets may negatively affect the performance of both classic HAR approaches

and deep learning models in deploying HCRs for real-world use cases. Considering

limitations resulting from their scale, diversity, and ability to capture the richness

and complexity seen in in-the-wild, unconstrained data is crucial. Moreover, these

architectures classify sensor data into only one of k possible labeled activities [91,

92]. Moreover, these conventional human activity recognition methods are not

suitable for real-world problems since most of them assume that the sensor is

placed at a fixed location on the body (hip, wrist, or waist) [28]. The difficulty in

gathering labeled data outside of laboratory conditions only adds to the constraints
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of mobile sensing datasets [26, 93].

3.3 Weakly Supervised based Methods

In many practical scenarios, such as in our in-the-wild HCR study, gathering

adequate high-quality labels for fully supervised learning is challenging due to the

high costs of gathering labeled data. In such practical scenarios, various types of

weak (or inaccurate) labels can occur, requiring innovative learning methods that

can work under weak supervision, such as unsupervised learning methods (more

details are given in Chapter 2). While there exist a few HCR methods using

mobile-sensing data for supervised deep learning [14, 94], self-supervised learning

[95, 93, 96] or active-learning [97], they provide limited, or no, solutions to the

aforementioned data labeling or DoC naturally occurring variations challenges.

Additionally, there are several other existing prior works focused on leveraging

techniques that minimize data annotations [93, 98, 96] applied to HAR tasks.

However, exploring such methods to improve the performance of in-the-wild mobile

sensed HCR data is yet to be studied.

3.3.1 Positive Unlabeled (PU) Learning

In PU learning, only a subset of the dataset is labeled. The training dataset has

some labeled positive examples P and a set of unlabeled examples U that is a

mixture of positive and negative examples. The goal is to create a binary classifier

that can classify previously unlabeled instances or correct wrong labels in a test

set into the positive or negative class [99]. PU Bagging [99] is an ensemble method
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that creates a set of trees. Each tree is trained on a subset of the entire training set

and is used to classify the positive instances from the unlabeled instances. Next,

each tree scores all the remaining instances in the in-the-wild dataset except the

instances it was trained on. The average prediction probability from all trees for

each in-the-wild instance is then given as the probability that the instance is of

the positive class.

3.3.2 Domain Adaptation (DA)

Research has made substantial progress in adapting deep neural networks to var-

ious related domains [36]. Recent deep DA methods are either discrepancy-based

approaches that minimize a discrepancy metric over feature distributions [100,

101], or adversarial-based approaches [102] that aim to maximize domain confu-

sion. The Deep Adaptation Network (DAN) [100] minimized the mean distance

between two feature distributions in a reproducing kernel Hilbert space, effectively

matching the higher-order statistics of the two distributions. On the other hand,

the deep Correlation Alignment (CORAL) [101] technique proposed matching the

mean and covariance of two distributions. Other strategies have used an adver-

sarial loss to maximize domain confusion [102].

3.3.3 DA for Wearable Sensor Data

In ubiquitous computing, several DA techniques have been developed to trans-

fer a trained model to a new dataset with similar characteristics [24, 103, 104,

105]. Previous work has shown that DA can be used to unsupervisedly learn

domain-invariant accelerometer [24, 103] and gyroscope [24] features from sensor
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data by minimizing a discrepancy distance in the Convolutional Neural Network

(CNN) embedding, thereby mitigating the effects of variability in wearable sensor

placement. HDCNN [103] looked at whether or not a model pre-trained on smart-

phone data could be used with unlabeled smartwatch data. The researchers used

Kullback–Leibler (KL) divergence and a discrepancy-based technique to transfer

the trained model from smartphones to the unlabeled wristwatch data. Stratified

Transfer Learning (STL) [104] is a DA method for adapting on-body sensor-based

activity recognition tasks to various sensor placements (wrist, chest, leg, etc.). It

also maps source and target domain data into the same subspace where distances

can be computed, exploiting the intra-affinity of classes to transform intra-class

knowledge. UDA methods based on Variational Auto Encoders have been used

for adapting models to work on another dataset, and have been applied on binary

sensors for smart-homes applications [105]. DA was also used to adapt models

to subject variability [106], using multi-domain adaptation to address target label

shift by incorporating the target domain label distribution in the training process.

The majority of existing work solely focuses on domain-general feature represen-

tation learning with the goal of decreasing the global distribution disparity [103,

24]. While STL proposed a way to perform intra-class transfer by minimizing

the discrepancy between feature distributions of instances of the same class, this

approach does not scale well to large-scale datasets, especially datasets with a

large number of class labels. By employing a joint fusion triplet loss, our study

expands upon previous efforts to enhance intra-class compactness and inter-class

separability [107, 108]. A summary of this subsection related work is included in

Table (3.1).
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3.3.4 Mitigating Poor Labeling Quality

In order to mitigate missing labels, some prior mobile-sensed data collection meth-

ods include interfaces and mechanisms that subjects can utilize to label batches of

past contexts retrospectively whenever they have free time [59]. However, as sub-

jects often do not accurately remember some contexts or their start/end times,

recall bias diminishes the quality of labels. Careless subjects may also provide

many wrong labels [110]. Zeni et al. [111] devised an interactive machine-learning

framework for testing user trustworthiness by checking the consistency of the user-

provided annotations using available ground truth. Their work required contin-

uous feedback from the user, which is undesirable and focused on user location

only.

3.4 Adversarial Threats

Researchers have studied adversarial examples vulnerabilities in computer vi-

sion [43], natural language processing [44], and speech recognition [45], the focus

of exploring adversarial vulnerabilities has only recently shifted to time-series-

based models [46, 47, 48] or sensory-based classifications [49, 112, 50]. Sah et

al. recently studied utilizing wearables for activity recognition, investigating the

transferability and generation of adversarial examples. However, they did not pro-

pose any countermeasures [50]. Moreover, in comparison to wearables, the nature

of HCR data collected by smartphones is much more complicated. For instance,

sensor signals for the same activity have different characteristics when the phone

is held in various prioceptions [24, 25]. In fact, prioception has the most signifi-
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cant impact regarding differences in smartphone context sensor data [59]. When

performing a particular activity, smartphone owners may choose to either hold

the smartphone in their hand or place it in their pants or coat pocket. Therefore,

methods to evaluate the security of HCR data collected by smartphones in the

wild are needed, especially for large amounts of data with many diversities. To

understand the impact of this problem, imagine a detection algorithm failing to

detect an older person’s fall or a warfighter with TBI not being detected on time

due to an adversarial attack. There is a dire need to define and evaluate the effects

of adversarial examples for smartphone HCRs, which could have fatal outcomes if

perpetuated in CA systems for mobile health and behavioral medicine.

3.4.1 Potential Adversarial Attacks Specific to HCRs that we Focus

on

Poisoning and Evasion are two major adversarial attacks [41]. Poisoning or

training-stage attacks contaminate training data. When adversaries can access

a model’s training data, they may try to undermine the machine learning model

by manipulating the data or labels. Evasion attacks, or inference-based attacks,

are common and well-studied. This paper focuses on evasion attacks, which occur

when an attacker manipulates test data to fool classifiers. Adversarial attacks

can be divided into white-box and black-box attacks based on system knowledge

and access [41]. White-box attacks require model parameters [113, 53]. Black-box

attacks (listed in Figure (3.1)) require the ability to query the model with arbi-

trary inputs [114, 115]. We focus on score-based and label-based evasion attack

generation methods in accordance with plausible scenarios of possible adversarial
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Figure 3.1: Types of Evasion attacks according to the knowledge needed to carry out
the attack.

attacks. These methods can generate adversarial perturbations using only class

confidence scores (Zoo attack) or class decisions (HSJ attack).

41



Part II

Robust Feature Extraction from

Sensor Data
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Chapter 4

Human Context Recognition under inexact

supervision

4.1 Introduction

We proposed DeepContext, an HCR system that uses neural networks to recognize

the smartphone user contexts in which the TBI and Infectious diseases tests can

be performed (See the Background chapter). DeepContext has two major inno-

vations. First, DeepContext employs a joint-learning fusion strategy that utilizes

both domain-specific handcrafted features and features that are autonomously

generated by a Convolutional Neural Network (CNN). Second, DeepContext ad-

dresses the problem of coarse-grained labels by discovering and giving higher im-

portance to the most salient regions of the sensor data. These regions are expected

to correspond to a higher predictive value for specific contexts. This allows our

model to overcome potentially noisy inputs, which is achieved by DeepContext’s

parametrized compatibility-based attention mechanism.
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4.2 Prior Work

Prior studies have focused on the related problem of recognizing ambulatory hu-

man activities (e.g., sitting, walking, running, etc.), also called Human Activity

Recognition (HAR), though they typically classify the sensor data into only one

out of k possible labeled activities [86, 27]. However, while human context in-

cludes the person’s current activity, it is also critical to include other semantic

information such as their location and social situation. While there exist a few

HCR methods that aim to classify human behavioral context [14, 94], they still

do not address coarse-grained labeling.

4.3 DeepContext Approach

In this work, we use the scripted HCR dataset, manually annotated by proctors

who oversaw the study. The labels they assigned are however coarse-grained, not

fine-grained labels. Formally, in our training data set D = (X1, y1) , . . . , (Xm, ym)

where Xi = {xi1, . . . , xi,m} ⊆ X is a bag, xij ∈ X (j ∈ {1, . . . ,mi}) is an in-

stance, mi is the number of instances in Xi, yi ⊆ Y = {0, 1}, Xi is a positive

bag, i.e. yi = 1, if there exist(s) one or more positive xip, while p ∈ {1, . . . ,mi} is

unknown. In other words, within each training sensor segment, only certain sub-

segment(s) are truly representative of the assigned label. However, their exact

duration and location within the segment are unknown (corresponding to inexact

supervision) [34]. As many of our target activities can be performed concurrently

(e.g., walking and talking on the phone), DeepContext formulates the HCR prob-

lem as a multi-label classification problem in a manner similar to Vaizman et al.
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[116].

4.3.1 Overview

Our deep learning architecture for Human Context Recognition (DeepContext) is

comprised of two CNNs with the attention that jointly learn from raw smartphone

sensor data and handcrafted features in parallel, fusing their outputs. Our atten-

tion mechanism is inspired by a promising model proposed by Jetley et al. , an

end-to-end trainable attention mechanism for CNN for the task of object detec-

tion and localization [117]. Fig. 4.2 shows the overall architecture of DeepContext.

This joint learning fusion approach enables our model to learn not only discrim-

inative features from handcrafted features and raw sensor data, but also from a

shared representation, discovering complex cross-modality correlations. Moreover,

the attention mechanism utilized enables DeepContext to learn salient features,

giving higher weights (importance) to regions of the raw sensor data that con-

tain predictive features for context recognition. Figure (4.1) shows DeepContext’s

classification pipeline.

Figure 4.1: Classification Pipeline for Raw Sensor data - showing a CNN feature gener-
ation approach.

Figure (4.1) shows the classification pipeline for HCRs that utilizes sensory data.

Sensory data is initially segmented using sliding windows to generate training

instances, which are then input to CNN layers that extract feature vectors that
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are utilized for context prediction later in the pipeline [118]. Formally, we use a

sliding window N to generate segmented input vectors (e.g. accelerometer and

gyroscope ). For segmented sensor data input vectors x0
i = [xr1,...,xN ]. Thus, in

the first convolutional layer the output will be:

c1,ji = σ

(
b1j +

M∑
m=1

w1,j
m x0,j

i+m−1

)
(4.1)

σ being the activation function, bj is the bias introduced by the j the feature map,

M is the size of the kernel used, and wj
m is the weight associated with the feature

map j and the filter index m.

The design of our CNN feature extractor follows a separate-and-merge strat-

egy, which produces state-of-art performance on mobile-sensing data, as proposed

in[119], where data generated by each sensor is first passed into a single-sensor

CNN model that learns local interactions within each sensor. The outputs of

individual single-sensor CNNs are then concatenated together to form a cross-

modality representation that is then passed to additional CNN layers to learn

global cross-sensor interactions.

4.3.2 Parameterized Compatibility-Based Attention Convolution Neu-

ral Network (PAC-CNN)

The context labels that subjects assign to smartphone sensor data during data

gathering studies are often coarse-grained, making it challenging to create reliable

context classifiers. Specifically, only relatively small regions of data that a user

has assigned a given context label (e.g. walking) may actually be truly represen-
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N: Raw Data segment size. K: Handcrafted Features dimension

Figure 4.2: DeepContext architecture.

tative of that context. DeepContext’s attention mechanism tries to learn the most

relevant regions of the sensor data, which exhibit patterns that predict specific

contexts. The intuition behind the design of its attention mechanism is similar to

that proposed by Jetley et al. [117].

Figure 4.3: The attention mechanism assigns more importance to regions of data that
contain salient context-specific features extracted from raw sensor data. For instance, the
attention mechanism learns that the left side of the accelerometer signal better represents
Phone on Table context and assigns it higher weights.

In Fig (4.3), the attention model ignores parts of the sensor data when trying to

classify the "Phone on the table" context. The model learns predictive patterns
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and increases their influence, while simultaneously suppressing irrelevant and po-

tentially noisy parts of the data. As more data is utilized in training the model, it

learns representations that are more generalizable and work better in real-world

settings. The important regions detected within the data form saliency maps that

could be analyzed to interprete classifier outputs, improve its performance and

potentially facilitate the data-labeling process [120].

Ls = {ℓs1, ℓs2, · · · , ℓsn} are intermediate (local) features extracted by convolutional

layer s ∈ {1, 2, . . . , S}, where lis is extracted from the ith node out of a total of n

nodes, each corresponding to one spatial location in the local feature vector Ls.

In order to adapt the attention mechanism of Jetley et al. [117] that was designed

for images, to fit the multiple-modality nature of smartphone sensor data, we

considered s to be various intermediate layers in the seperate-and-merge [119]

CNN pipeline.

The flattened (global) feature vector G generated by the fully connected layer

is combined with the final set of CNN-extracted (local) features. The attention

mechanism tries to learn a compatibility score C
(
L̂s, g

)
= {cs1, cs2, . . . csn} between

the local features Ls and the global feature vector G, and replaces the final feature

vector with an attention-weighted local features [117]. In order to constrain the

parameters of the attention unit, concatenation can be reduced to an addition

operation due to the existence of free parameters between the local and global

feature descriptors [117].

To calculate the compatibility score, G and lis are concatenated using an addition

operation (additive attention [60]), followed by a dot product with a trainable
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weight vector u that can be expressed as [117]:

csi = ⟨u, lsi +G⟩ , i ∈ {1, n} (4.2)

These learned compatibility scores csi encourage the model to learn discrimina-

tive features tailored to different contexts. In order to utilize these learned com-

patibility scores C(Ls, G) = {cs1, c2s, . . . , csn} to produce a 1-dimensional vector

As = {as1, a2s, . . . , ans}, a down-sampling convolutional layer is first applied, then

the compatibility scores are normalized using a softmax function:

asi =
exp (csi )∑n
j exp

(
csj
) (4.3)

The last step involves producing the final attention estimation gs, replacing G, by

taking the element-wise weighted average of the corresponding normalized com-

patibility scores in As with each node in Ls.

In Fig (4.4) we show the CNN architecture used.

gs =
n∑

i=1

asi · lsi (4.4)

4.3.3 Joint-learning Fusion

Taking advantage of the joint-learning fusion strategy, we can accommodate var-

ious modalities that cannot be fed to a CNN directly. By learning a shared rep-

resentation between handcrafted features and CNN-generated features, our model

increases its ability to learn cross-sensor representations that are more discrimi-
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Figure 4.4: Applying the attention mechanism on the separate-n-merge CNN architec-
ture, where we use a separate CNN for each sensor modality, concatenating the result-
ing CNN outputs that are finally passed to the merged-sensors CNN. Only attention-
weighted features are used for subsequent classification layers.

nating for prediction tasks [121]. This shared representation can act as a regu-

larization technique and discover additional task-specific correlations between the

handcrafted and CNN-generated features. To generate this shared representation,

we first forward handcrafted features to a multi-layer-perceptron neural network,

which consists of two layers, 16 hidden nodes in each layer, and uses Rectified Lin-

ear Units (ReLU) as its activation function. Then, we concatenate the resulting

vector along with CNN-generated features after they are mapped to the same di-

mension. A sample list of handcrafted features[84] extracted from our smartphone

sensor data is provided in Table (7.2).
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Table 4.1: A sample list of handcrafted features used for our sensor data, applied on
accelerometer, gyroscope and magnetometer sensors, adopted from [14, 84].

Feature Formulation

Arithmetic mean s̄ = 1
N

∑N
i=1 si

Standard deviation σ =
√

1
N

∑N
i=1 (si − s̄)2

Median absolute deviation mediani (|si −medianj (sj)|)

Largest values in array maxi (si)

Smallest value in array mini (si)

Frequency signal Skewness E
[
(s−s̄)3

σ

]
Frequency signal Kurtosis E

[
(s− s̄)4

]
/E
[
(s− s̄)2

]2
Largest frequency
component

arg max i (si)

Average sum of the squares 1
N

∑N
i=1 s

2
i

Signal magnitude area 1
3

∑3
i=1

∑N
j=1 |si,j |

Interquartile range Q3(s)−Q1(s)

Signal Entropy
∑N

i=1 (ci log (ci)) , ci = si/
∑N

i=1 sj

Pearson Correlation
coefficient

C1,2/
√
C1,1C2,2, C = cov (s1, s2)

Frequency signal weighted
average

∑N
i=1 (isi) /

∑N
j=1 sj

Spectral energy of a
frequency band [a, b]

1
a−b+1

∑b
i=a s

2
i

s: signal vector, N: signal vector length Q: quartile

4.4 Evaluation

We conducted experiments to evaluate DeepContext’s performance on WASH

scripted dataset for various segmentation window sizes (in seconds). First, we de-

scribe the evaluation protocol and metrics used to assess the model’s performance,

given the imbalanced nature of the dataset. Then, we assess the effectiveness of

different components of DeepContext and discuss our empirical findings.
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4.4.1 Implementation

Our separate-n-merge CNN is has three layers per single-sensor CNN, and three

additional layers for the merged-sensors’ CNN. The number of feature maps gen-

erated in each CNN layer is 64. We also found that using larger filter sizes at

the beginning of the pipeline produced better results, so we selected 8, 6, and

4 respectively as our filter sizes. We utilized Rectified Linear Units (ReLU) as

our non-linear activation function. Our input batch size was 128 and we utilized

dropout regularization with a probability of 20%, batch normalization, as well as

L1/L2 normalization with a coefficient of 1e − 5. The model was trained for 100

epochs with early stopping if the validation loss stopped improving, to decrease

the chance of over-fitting. For visualizing compatibility scores, we followed the

same procedure used in [120].

4.4.2 Evaluation Protocol

To ensure that our model generalized well when utilized on data from new subjects,

previously unseen subjects during the training process, we adopted a user-level

cross-validation approach (5 folds). Similar to the user-level splitting approach

utilized by Vaizman et al. [116], all of a subject’s data may appear in either

the training or test set, but not in both. Our final output is a multi-label out-

put vector, where each label produced is a binary output (E.g walking vs not

walking). To address the class-imbalanced nature of our WASH study dataset,

we utilized Balanced Accuracy (BA), as our metric for evaluating our model’s

performance [122].
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BA(D) = 1

2

(
TP

TP + FN
+

TN

TN + FP

)

which is also:

BA(D) = 1

2
(Sensitivity + Specificity)

Also, in order to compute the BA of the context tuple after recomposition from the

binary labels, we adopted macro-averaging that treats all binary labels with equal

importance. That is, we calculate the BA score for each binary label separately

and report the average across all binary labels (macro BA).

BAmacro(D) =
∑
ci∈C

BA(D, ci)
|C|

.

When there are no annotated examples for ci, then BA(D, ci) is excluded from

BAmacro calculation.

We compared our model performance against state of the art deep learning HCR

(ExtraSensory MLP [23]) and HAR (DeepSense CNN-GRU [123]) models. To

ensure that our comparison was fair, we only utilized handcrafted features ex-

tracted from data from three sensors accelerometer, gyroscope and magnetome-

ter. DeepContext and the other models compared against are all implemented in

PyTorch [124], based on the authors’ published source codes. Each model was

then fine-tuned on our dataset and the same highly tuned number of layers and

feature maps hyper-parameters for CNN were used in the DeepSense architecture

to illustrate the efficiency of our attention mechanism. We generated results for a
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variety of window segmentation sizes to check that our models’ performance was

consistent.

4.4.3 Results

Figure 4.5: DeepContext performance compared to other state-of-the-art deep learning
methods.

The overall performance of all evaluated models on our WPI-WASH scripted

dataset can be observed in Fig (4.5), where we compare DeepContext to state-

of-the-art methods. Additionally, results for each label are reported in Table

(4.2).

In order to demonstrate the effectiveness of DeepContext, in Figs (4.6) and (4.7),

we evaluate the improvement that can be attributed to each component separately.

The two components are 1) Parameterized compatibility-based attention and 2)

Joint-learning fusion to incorporate handcrafted features. Those components were
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Table 4.2: Comparison of our Results with state-of-the-art methods for window size =
20 seconds.

Label DeepSense [119] ExtraSensory [116] DeepContext

Phone in Bag 0.8940 ± 0.020 0.7635 ± 0.045 0.8730 ± 0.036

Phone in Hand 0.8751 ± 0.028 0.7292 ± 0.037 0.8862 ± 0.002

Phone in Table, Facing Down 0.9406 ± 0.019 0.8720 ± 0.043 0.9370 ± 0.042

Phone in Table, Facing Up 0.9529 ± 0.012 0.8909 ± 0.042 0.9502 ± 0.024

Phone in Pocket 0.8201 ± 0.057 0.6838 ± 0.011 0.8409 ± 0.036

Walking 0.9074 ± 0.027 0.8936 ± 0.022 0.9191 ± 0.026

Sitting 0.9101 ± 0.037 0.8718 ± 0.032 0.9143 ± 0.025

Jumping 0.9250 ± 0.025 0.9004 ± 0.039 0.9396 ± 0.004

Jogging 0.9686 ± 0.004 0.9549 ± 0.006 0.9739 ± 0.004

Lying Down 0.9276 ± 0.017 0.8879 ± 0.011 0.9040 ± 0.022

Running 0.9267 ± 0.024 0.9193 ± 0.022 0.9586 ± 0.013

Standing 0.8224 ± 0.011 0.8266 ± 0.022 0.8520 ± 0.034

Sleeping 0.9370 ± 0.022 0.8732 ± 0.035 0.9175 ± 0.027

Stairs - Going Up 0.7997 ± 0.048 0.8160 ± 0.010 0.8944 ± 0.041

Stairs - Going Down 0.7408 ± 0.072 0.7860 ± 0.035 0.8455 ± 0.041

Talking On Phone 0.9499 ± 0.003 0.8581 ± 0.022 0.9152 ± 0.001

Trembling 0.8851 ± 0.114 0.8657 ± 0.065 0.9414 ± 0.004

Typing 0.9727 ± 0.020 0.9008 ± 0.045 0.9719 ± 0.017

Bathroom 0.9072 ± 0.035 0.8488 ± 0.038 0.8929 ± 0.004

Average 0.89804 0.84961 0.91197

placed on top of our core separate-n-merge CNN architecture. A magnified view

of the two proposed components can be seen in Fig (4.6) to clearly show the

usefulness of each one. The two proposed components are compared against our

core Separate-n-merge CNN, using the same number of layers and fine hyper-

parameters. We also experimented with various ways to increases the model’s

performance including 1) adding an LSTM layer after the final extracted features,

and 2) increasing the complexity of the model by placing residual skip links on

the merged-sensors CNN (Fig. 4.8)
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Figure 4.6: Evaluating the effectiveness of DeepContext components separately.

Figure 4.7: Evaluating the effectiveness of DeepContext components separately - magni-
fied view.
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Figure 4.8: Various ways to increase DeepContext’s performance.

4.5 Discussion

We can observe that DeepContext consistently outperforms the state-of-the-art

approaches for both HCR (ExtraSensory) and HAR (DeepSense) especially for

larger window sizes when the data captures more background noise, and the user-

provided ground-truth labeling becomes more coarse-grained and less accurately

associated with the entire training example. Additionally, from an application

perspective, accurate predictions for larger segments are more useful, which indi-

cates that more discriminative features have been learned regardless of the window

size utilized. Intuitively, as we increase the window size, there is a greater chance

for the attention mechanism to learn context-specific salient features, and more

effectively suppress background noise occurring in the sensor data.

We speculate that the performance drop when using only handcrafted features
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with the core Separate-N-Merge CNN classifier might be because of the difficulty

of capturing useful context-specific features when the window size gets larger.

In Fig (4.8), there was a slight improvement when we tweaked the DeepContext

architecture, by adding residual skip links [125], which demonstrates the potential

for achieving even better performance by using such mechanisms on sensor data.

We will explore residual skip links in future work. Figure (4.6) shows the significant

improvements that our proposed sub-modules achieves on top of the Separate-n-

merge architecture. By looking at the detailed reported results per label, where we

evaluated DeepContext’s performance in comparison to state-of-the-art methods.

DeepContext outperforms the other models for more than half of the labels. Even

for labels where another model outperforms DeepContext, it’s performance is very

close score to that of the winning model. We speculate that this is due to the

utilization of both deep learning based generated features and the domain-specific

handcrafted features. One of the most challenging activities to detect, Stairs -

Going Up and Stairs - Going Down, DeepContext is able significantly outperform

the other state-of-the-arts methods. Detecting whether the subject is avoiding

using stairs might provide useful insights about their mobility levels, which could

facilitate the identification of potential ailments [92].

4.6 Prior Work

Numerous attention mechanisms techniques have been proposed to improve clas-

sification accuracy and providing explainability in document classification, ma-

chine translation and recently for object detection and localization in images [117].
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Wang et al. [120] used an attention mechanism for human activity recognition

from accelerometer data, addressing the same weak supervision problem as Deep-

Context, but applied it to recognizing a relatively smaller set of mutually exclusive

labels. DeepContext’s attention model is similar to that of Wang et al. [120] but

uses a parameterized compatibility-based attention model on multi-sensor CNNs.

We also propose a new way of incorporating an attention mechanism on multiple

sensors by first using a separate-and-merge [119] CNN and applying attention lay-

ers on features generated by single-sensor CNNs as well as on features generated

by CNNs that analyzed the merged sensor outputs. The DeepContext multi-sensor

fusion framework is also motivated by the ability to learn cross-sensor correlations

using deep-learning on multiple modalities for ubiquitous computing [121]. The

two leading deep learning methods are: 1) ExtraSensory: multi-layer perceptron

context recognition architecture using handcrafted features and 2) DeepSense:

generic deep learning-based activity recognition model using raw sensor data.

These two methods do not address the challenge of coarse-grained labeling or

weakly supervised learning.

4.7 Chapter Summary

We demonstrated the applicability of DeepContext, a deep learning based archi-

tecture for detecting a smartphone user’s current context. Using a Convolutional

Neural Network (CNN) with parameterized compatibility-based attention, Deep-

Context is able extract salient discriminative features under weakly labeled sce-

narios. Utilizing an attention mechanism, DeepContext can autonomously learn
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context-specific salient features, while suppressing potentially irrelevant parts of

the input, tackling the issue of coarse-grained labeling that usually exists in smart-

phone sensor data. We have experimentally demonstrated the effectiveness of

jointly learning from a combination of handcrafted features and CNN-generated

features extracted from raw smartphone inertial sensor data. DeepContext con-

sistently outperforms state-of-the-art methods on smartphone context sensor data

gathered from 100 study participants.
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Improving Transferability of In-lab

models to the Real world
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Chapter 5

Leveraging coincident data gathering study for

Human Context Recognition under inaccurate

supervision

5.1 Introduction

Our envisioned context-specific assessments require accurate recognition of specific

smartphone user contexts. Existing context datasets were either scripted or in-

the-wild. Scripted datasets have accurate context labels but user behaviors are

not realistic. In-the-wild datasets have realistic user behaviors but often have

wrong or missing labels. We leveraged our novel coincident data gathering study

design in which data was gathered for the same contexts using both a scripted

and in-the-wild study. The coincident study tries to combine the accuracy of the

scripted labels with the realistic context visit patterns of the in-the-wild studies.

For more details about the coincident study data collection, we refer the reader

to the Background chapter.
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Challenges. In this chapter, we address two major challenges in our in-the-wild

dataset. First, the labels are extremely noisy, inaccurate and sparse. Secondly, it

is challenging to devise a robust methodology for transferring knowledge from the

scripted dataset to the much noisier, yet more true-to-life, in-the-wild dataset.

Specifically, discovering the most likely true labels of mislabeled or unlabeled

scripted data is a very challenging problem.

Prior work. To mitigate missing labels, some prior smartphone data collec-

tion methods include interfaces and mechanisms that subjects can utilize to label

batches of past contexts retrospectively whenever they have free time [59]. How-

ever, as subjects often do not remember some contexts or their start/end times

accurately, recall bias diminishes the quality of labels. Finally, careless subjects

may also provide many wrong labels [110]. Zeni et al. [111] devised an interac-

tive machine learning framework for testing user trustworthiness by checking the

consistency of the user provided annotations using available ground truth. Their

work required continuous feedback from the user, which is undesirable and focused

on user location only.

We propose methods to mitigate the above challenges, overcome poor label quality

and improve deep learning HCR models. We propose Positive Unlabeled Context

Learning (PUCL) a deep learning framework that leverages the coincident context

datasets. The coincident study tries to combine the accuracy of the scripted labels

with the realistic context visit patterns of the in-the-wild studies. PUCL improves

HCR model performance on the realistic but noisy in-the-wild data using intelli-

gence learned from the high fidelity labeling in the scripted dataset. Specifically,

PUCL uses a transductive positive unlabeled learning methodology to transfer
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knowledge from the highly-accurate labels of the scripted dataset to the less accu-

rate, more sparsely but yet more realistic in-the-wild dataset. Our methodology

that combines coincident data collection with PUCL outperforms state-of-the-art

deep learning HCR methods and is inspired by meta-learning approaches [126]. In

Figure (5.1), we show a high-level overview of PUCL, in addition to the envisioned

healthcare application’s use case. We refer the reader to [26] for a more detailed

description of our envisioned health application’s use case.

5.2 Prior Work: Knowledge Transfer for Labeling Sensor

Data

Several semi-supervised [127, 128] and transfer learning approaches [129, 130]

have previously been proposed to tackle the issue of limited annotated sensor

data. Chen et al. [128] utilized ensemble learning and majority voting for semi-

supervised learning, using a similar feature generation mechanism to ours that

uses attention to focus on salient regions in sensory inputs. Recently, an oppor-

tunistic sensor data knowledge transfer labeling mechanism was proposed, which

leverages a computer-vision mechanism to label sensor-based instances. However,

it requires the availability of activity recorded using a camera [130]. Additionally,

the generative auto-encoder based method has been utilized for stochastic feature

generation, utilized for cross-sensor classification of wearable data [129]. However,

these prior works were applied on HAR datasets, containing only singly-labeled

scripted activity data [129]. Our work focuses instead on phone context, which

includes activity but also includes other variables such as the phone’s placement.
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To the best of our knowledge, ours is the first work to apply PU learning on coinci-

dent scripted and in-the-wild smartphone datasets to improve HCR performance.

Our PUCL method demonstrates that data collected in laboratory settings can

be used to improve the performance of classifiers designed to infer context from

data gathered in the wild. PUCL does not require the use of external devices such

as cameras for annotation purposes, or interactive correction of wrong labels by

humans.

5.3 Positive Unlabeled (PU) Context Learning (PUCL): A

Novel Learning Methodology

In Figure (5.1), we show a high-level overview of PUCL, in addition to the envi-

sioned healthcare application’s use case. We refer the reader to [26] for a more

detailed description of our envisioned health application’s use case.

PUCL is a novel learning methodology that has two stages and is depicted in

Figure (5.2). In the first stage, we utilize a PU classifier with our correctly labeled

scripted dataset to correct inaccurate labels in our in-the-wild context dataset. In

the second stage, we train DeepContext, our novel deep learning architecture, on

the in-the-wild dataset with labels that have been corrected by our PU method

during the first stage. We now describe the two stages of PUCL in more detail.

5.3.1 Stage 1: Correcting The In-The-Wild Labels

In this stage, PUCL tries to learn reliable label-feature mappings from the more

reliable scripted dataset, allowing us to discover incorrect or missing labels in the
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Figure 5.1: a) High-level overview of PUCL. b) Our Envisioned Future Health applica-
tion, an overview of WASH-WPI’s TBI Infectious Disease BioScore Synthesis.
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Figure 5.2: Diagram for our Positive Unlabeled Context Learning (PUCL) showing a)
PU learning for coincident scripted and in-the-wild human context recognition. A PU
learner is fit to identify (+) and (-) instances in the WASH In-the-wild dataset. C1
instances are relabeled as positives due to their proximity to positively-labeled instances
of WASH Scripted Context Dataset in feature space2) C2 instances are relabeled as
negatives due to their distance from positive instances of the WASH Scripted Context
Dataset. b) DeepContext HCR model is trained using the pseudo labels generated as a
correcting factor.
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in-the-wild dataset. For each class Y that is present in both the scripted and

in-the-wild datasets, let P be the positively-labeled instances of that class in the

scripted dataset. Let U be the entirety of the in-the-wild dataset. We then train

a probabilistic PU classifier fpu to predict Pr(Y = 1|x ∈ U).

While our approach is flexible enough to utilize any PU learning method, we use

the PU Bagging algorithm as our classifier. After running the PU Bagging algo-

rithm, all in-the-wild instances would have now been associated with a probability

of belonging to the positive class. In addition to guessing the labels of unlabeled

instances, our PUCL method can also correct wrongly labeled instances in the in-

the-wild dataset. Positive instances that are wrongly labeled as negative can be

identified because the PU bagging algorithm will assign them a score that indicates

that they have a high probability of belonging to the positive class. Conversely,

negative instances that are wrongly labeled as positive will have a score assigned

by the PU bagging algorithm, which indicates that they have a low probability of

belonging to the positive class.

Building on this intuition, we formulate and estimate a correcting factor that

corresponds to how much an assigned label in the in-the-wild dataset should be

trusted. For each class, e.g. "walking", let yi be the label of that class associated

with the ith instance in the in-the-wild dataset and let PUi be the PU Bagging

score for the class associated with that instance. Then, the correcting factor CFi

is given as:

CFi = 1− |yi − PUi|
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If PUi is large while yi = 0, or if PUi is small while yi = 1, then CFi will be close

to 0. This means that the label associated with the ith instance should not be

trusted.

5.3.2 Stage 2: Context Recognition using DeepContext

The goal of this stage is to train a robust context classifier, DeepContext [22], a

novel deep learning based architecture for multi-label recognition of a smartphone

user’s current context. Utilizing an attention mechanism, DeepContext is able to

autonomously learn salient features that discriminate contexts, while suppressing

potentially irrelevant parts of the input.

We adapt DeepContext, our proposed context classification model but additionally

we utilize PUCL to mitigate the negative impact of the inaccurate and missing

labels in the in-the-wild dataset. Specifically, DeepContext uses the correcting

factor in stage 1 to improve its classification results on the in-the-wild dataset.

DeepContext takes as input both handcrafted-features generated using domain

knowledge as well as the raw-sensor values collected by the smartphone. Fur-

thermore, DeepContext utilizes state-of-the-art attention mechanisms to focus on

sub-components of the input data that are most predictive of each target class.

Classification accuracy is boosted as the noise present in each input is ignored.

In particular, DeepContext is trained using gradient descent on its parameters

(denoted as Θ) on the inexact and weakly labeled in-the-wild data by minimizing

the following cost function:
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Table 5.1: Comparison of our Results with state-of-the-art methods.

a) Results overall

Model BA Recall Precision Specificity F1-score

ExtraSensory MLP 0.780161 0.781946 0.339242 0.778377 0.472944
PU Context Learning (PUCL) 0.813777 0.713059 0.551373 0.914494 0.621843

b) Results per label

Label ExtraSensory PU Context Learning

Phone on Table, Facing Down 0.8416 ± 0.014 0.8707 ± 0.011

Stairs - Going Down 0.8051 ± 0.012 0.8429 ± 0.011

Sleeping 0.8294 ± 0.002 0.8419 ± 0.005

Stairs - Going Up 0.8141 ± 0.002 0.8414 ± 0.005

Laying Down, Phone on Table 0.7913 ± 0.018 0.8204 ± 0.010

Phone in Bag 0.7924 ± 0.018 0.8024 ± 0.010

Phone in Pocket 0.7878 ± 0.014 0.7994 ± 0.016

Typing 0.7736 ± 0.033 0.7945 ± 0.008

Walking, Phone in Bag 0.7763 ± 0.010 0.7910 ± 0.007

Walking, Phone in Pocket 0.7740 ± 0.008 0.7895 ± 0.010

Phone one Table, Facing Up 0.7563 ± 0.011 0.7888 ± 0.015

Walking 0.7602 ± 0.003 0.7796 ± 0.003

Exercising, Phone in Pocket 0.7532 ± 0.025 0.7711 ± 0.012

Laying Down 0.7410 ± 0.021 0.7701 ± 0.009

Walking, Phone in Hand 0.7519 ± 0.006 0.7654 ± 0.010

Sitting 0.7408 ± 0.008 0.7577 ± 0.018

Running 0.7551 ± 0.058 0.7539 ± 0.029

Phone in Hand 0.7436 ± 0.009 0.7512 ± 0.016

Bathroom, Phone in Pocket 0.7246 ± 0.019 0.7476 ± 0.010

Jogging 0.7720 ± 0.145 0.7437 ± 0.175

Exercising 0.7185 ± 0.037 0.7429 ± 0.008

Jumping 0.7176 ± 0.004 0.7260 ± 0.002

Standing 0.7037 ± 0.010 0.7256 ± 0.002

Bathroom 0.6614 ± 0.024 0.6957 ± 0.004
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C(Θ) =
1

N

N∑
i=1

ℓΨ(f(Xi), Yi),

where N is the number of training samples and ℓΨ is the loss function that is

weighted by the correcting-factor. More specifically,

ℓΨ =
∑
y∈Y

N∑
i=1

(
1

Pr(y)
+ CFi,y) · [yilog(f(xi)

+ (1− yi)log(i− f(xi))].

More intuitively, ℓΨ is simply the cross entropy loss (or any other deep learning loss

function) multiplied by a weighting factor. The weighting factor is a combination

of the inverse class frequency with the correcting factor. In order to account for

class imbalance, the weighting factor weights instances of infrequent classes higher

than instances of frequent classes and discounts the cost incurred from instances

that are likely to have been mislabeled by the annotator. This discounting is

applied so as not to punish the network for disagreeing with annotator-assigned

labels that are probably wrong.

5.3.3 Context Recognition Results

We compared our model performance against state of the art for HCR (ExtraSen-

sory MLP [59]), which has been applied for a very similar dataset to ours. Due

to class imbalance in our context datasets, we utilize Balanced Accuracy (BA) as
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the metric to evaluate the context recognition performance of DeepContext and

our novel PUCL method. BA is defined as:

BA(D) = 1

2

(
TP

TP + FN
+

TN

TN + FP

)

which is also:

BA(D) = 1

2
(Sensitivity + Specificity)

Our results are shown in Table (5.1)(a) demonstrate that our approach outper-

forms the state-of-the-art model on all metrics except recall with lower false pos-

itive rates. We speculate that the drop in recall may be due to the amount of

mislabeled annotated true positives. Intuitively, the PU Correcting Factor will

put less attention on instances that are most likely mislabeled. It would then be

expected that the true positive instances will be classified with a higher consis-

tency using guided knowledge gathered from the scripted dataset. Table (5.1)(b)

presents performance per label, showing that our approach consistently outper-

forms state-of-the-art methods across all labels, except Running and Jogging. As

can be seen in the results, Running and Jogging have the highest variability scores

among user splits. The poor performance in Running and Jogging can be a re-

sult of the increased noise resulting from such activities. Figure (5.3) - (a) and

(b) we compare confusion matrices showing that our approach achieves consistent

improvements over other state-of-the-art methods in detecting phone prioception

(placement). Lastly, in Figure (5.3) - (c), we evaluated the impact of the pro-

posed PUCL mechanism on both DeepContext and ExtraSensory MLP. We show

that utilizing the PU Correcting factor during training, we achieved a significant

72



Chapter 5: Leveraging coincident data gathering study for Human
Context Recognition under inaccurate supervision

increase in the Balanced Accuracy (BA) of classification in our evaluation of both

learning models: ExtraSensory MLP and our proposed model DeepContext.

5.4 Chapter Summary

Several issues reduce the performance of machine learning HCR models on in-

the-wild datasets, including weak, noisy, or missing labels. We leveraged our

coincident context gathering study in designing context recognition models under

the weakly supervised learning settings: inaccurate supervision. We introduced a

novel PUCL approach for applying transductive PU learning on coincident scripted

and in-the-wild human context recognition datasets.
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(a) Extrasensory MLP

(b) PU Context Learning (PUCL)

(c) Evaluating the contribution of the PU Correcting Factor

Figure 5.3: (a) and (b) shows confusion matrices for phone prioception, with normalized
scores. In (c): the impact of PU correcting factor on the used learning method is
depicted.

74



Chapter 6

Adapting models for Human Context Recognition

In the wild under incomplete supervision

We proposed Triplet-based Domain Adaptation for context REcognition (Triple-

DARE ), a deep learning method that is able to leverage the tremendous amounts

of unlabeled in-the-wild data, decreasing the need for human-annotated labels.

We also utilized coincident scripted and in-the-wild HCR datasets in which sim-

ilar context labels were gathered in both studies (Chapter 2). These coincident

datasets ensure that there exists a feature representation of contexts that is com-

mon between the scripted and in-the-wild datasets, a key requirement for this

approach.

6.1 Introduction

Lab-to-field methods have recently emerged as viable solutions to achieve good

HCR performance on in-the-wild datasets that have noisy, low-quality labels [37].

Lab-to-field approaches try to train highly accurate machine learning models on
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scripted datasets, which are adapted for in-the-wild datasets with the hope of

maintaining good performance. However, in general, the performance of HCR

models trained naively on scripted datasets often drops when tested on in-the-

wild datasets (Going from Lab-to-field). This performance drop is because in

addition to the in-the-wild dataset issues listed above, the contexts visited by

subjects in the scripted study, as well as their context visit order and visit duration

differ significantly from in-the-wild scenarios. Consequently, there are significant

differences between the distribution of features extracted from scripted vs. in-the-

wild datasets, also known as the covariate shift problem [35, 36, 37].

Domain Adaptation (DA) is a transductive transfer learning method and one

of the main solutions used to adapt neural networks to mitigate the covariate shift

problem. DA has been employed in various related domains, including object

detection in computer vision and the problems caused by the variability of wear-

able sensor placement in ubiquitous computing[36, 24]. Unsupervised DA (UDA)

tries to learn a deep learning model using a combination of a labeled source (e.g.

scripted dataset) and unlabeled target (e.g. in-the-wild) samples with different

distributions to achieve accurate predictions on previously unseen, unlabeled (e.g.

in-the-wild) samples [107, 24]. Figure (6.3) provides a high-level overview of the

problem, challenges, and our approach.

Challenges. Two key challenges must be addressed for using UDA for Lab-

to-Field generalization of smartphone context recognition. First, the previously

described data issues with in-the-wild datasets (the diversity of placements, weak

and noisy labels, and diverse smartphone types - Chapter 2) must be overcome.

Secondly, it is challenging to develop a robust method for transferring knowledge
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from a scripted dataset to a more realistic but considerably noisier in-the-wild

dataset with sparse labels.

State-of-the-art limitations. There is very little work on lab-to-field gener-

alization for HCR. Previously proposed lab-to-field methods include importance

re-weighting [37, 131] and Positive Unlabeled (PU) classifiers [132]. DA has pre-

viously been used to address the issue of variability in the placement of wearable

sensors [24, 103] but not for HCR. The majority of prior DA work for wearable sen-

sors focuses on reducing the global distribution discrepancy across domains while

learning common feature representations [103, 24]. However, we observe that even

if the global distribution is effectively aligned, samples from different domains with

the same label may be mapped widely apart in feature space. Thus, in addition to

using a domain alignment loss [100, 101], Triple-DARE improves intra-class com-

pactness and inter-class separability by utilizing a joint fusion triplet loss [107,

108] designed for multi-labeled datasets. Moreover, unlike other existing methods

for dealing with domain shifts [37, 103, 132, 133], we do not utilize target labels

in the target (in-the-wild) dataset, instead following the UDA problem setting in

[24].

Our approach. We are motivated by the recent empirical success of triplet loss

in face identification [108, 134], where variations of the same person’s face images

are mapped closely in the learned embedding space. We believe sensor data can

benefit from the same approach where there is often variation in sensor signatures

corresponding to the same context. Our belief is also consistent with Khaertdinov

et al.’s findings where triplet loss was applied recently to mitigate the effects of

subject heterogeneity and improve model generalizability [135].
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Figure 6.1: This figure demonstrates the reduction in the accuracy of predicting context
for models trained solely on context labels from a single subset of our context dataset.
SPrioception is denoted for the scripted context dataset and WPrioception for the in-the-wild
dataset, e.g. SBag refers to scripted contexts, annotated with "Phone In Bag".

We propose Triple-DARE, a deep Lab-to-field UDA method that is able to lever-

age the tremendous amounts of unlabeled in-the-wild smartphone HCR data, de-

creasing the need for human-annotated labels. To facilitate our DA approach, we

utilized coincident scripted and in-the-wild HCR datasets in which similar context

labels were gathered in both studies [132]. These coincident datasets and similar

context labels ensure that there exists a feature representation of contexts that

is common between the scripted and in-the-wild datasets, a key requirement for

the DA approach. We demonstrate our method’s applicability to HCR models

deployed in realistic environments by using context labels gathered in a scripted

study only during model development and using DA to mitigate the influence of

potentially noisy labels and retain HCR performance on an in-the-wild dataset.

Triple-DARE outperforms state-of-the-art baselines with 3.79% and 1.89% in-

creases in F1-score and classification accuracy, respectively, and also achieves im-

provements of 39% and 14.7% in F1-score and classification accuracy, respectively,

HCR models without Triple-DARE.

Contributions. The main contributions are:

1. We proposed Triple-DARE, a novel UDA deep-learning framework, which

utilizes a domain alignment loss to learn domain-invariant features, a clas-
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Figure 6.2: The influence of diverse phone placements on sensor data is observable in
triaxial accelerometer tracings for the same walking activity but with different priocep-
tions.

sification loss to maintain task-discriminative features, and a joint fusion

triplet loss to increase intra-class compactness and inter-class separation. A

scripted dataset is used to improve the HCR accuracy of predicting in-the-

wild contexts.

2. We rigorously evaluated Triple-DARE, comparing it to multiple state-of-the-

art unsupervised domain methods, including DAN [100], CORAL [101], and

HDCNN [103], and bench-marking improvements in HCR performance on

target domains in several use cases.

3. We demonstrate that Triple-DARE mitigates in-the-wild dataset challenges

when compared to state-of-the-art DA methods, achieving high prediction

scores on the target domain without the need for large amounts of source

labeled samples. Our ablation study demonstrates that all component of

Triple-DARE contributes non-trivially.
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Figure 6.3: a) The nature of the two smartphone context data we use in this work. b)
A high-level overview for Triple-DARE ’s problem and approach.

6.2 Related Work

6.2.1 Lab-to-field Generalization

Our Lab-to-field method tries to leverage a scripted dataset with high-quality, rel-

atively cheaper to obtain, ground truth labels to improve HCR model performance

on an in-the-wild dataset [37]. Lab-to-field methods previously proposed to handle

covariate shifts include importance re-weighting [37, 131] and Positive Unlabeled

(PU) classifiers [132]. There is very little work on lab-to-field generalization for

HCR. However, a related work that dealt with this problem on wearable elec-

trocardiogram (ECG) data [37], used importance re-weighting to adapt a linear

logistic regression model. However, these methods have achieved lower perfor-

mance when applied to deep neural networks [136]. Unlike other existing methods

for dealing with domain shifts [37, 103, 132, 133], our approach does not require
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target domain labels.

6.3 Proposed Triple-DARE Methodology

6.3.1 Problem Formulation

In this work, we utilize data from two context datasets: 1) a scripted dataset

(source) with high-quality labels and 2) an in-the-wild dataset (target) in which

data was annotated with the same context ⟨Activity, Phone Prioception⟩ labels

shown in Table 6.2. With regards to UDA, there are labeled samples for the

source domain and unlabeled samples for the target domain, which have different

data distributions. Our goal is to learn a classifier that generalizes well on the

target domain, using labeled source data and unlabeled target data. Formally, we

have labeled samples Ds = {(xs
i ,y

s
i )}ns

i=1 and unlabeled samples Dt = {(xt
i)}nt

i=1

where ns and nt represent the number of samples in source and target domains,

respectively. Both the source and the target domain share the same feature space

Xs = Xt and label space Ys = Yt, but they differ in the marginal distribution

(Ps(xs) ̸= Pt(xt)) and the conditional distributions are presumed to be equal

Ps(yt|xs) = Pt(yt|xt). We denote x as a feature vector and y as a human context

represented by a multi-label output vector, where each label produced is a binary

output (E.g walking vs not walking). The source and target tasks are presumed to

be the same. Initially, we train the HCR model using the labeled source dataset.

Afterward, the trained HCR model is utilized to recognize unlabeled contexts in

the target dataset by incorporating unlabeled data from the target dataset.
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6.3.2 Overview

The framework of Triple-DARE is illustrated in Figure (6.4). Triple-DARE has

two types of feature sources extracted from both the source scripted and target

in-the-wild datasets: 1) Time and frequency based handcrafted features handled

by a feed-forward network and 2) raw three axial sensors fed into a CNN that

extracts salient features from raw sensor data using a soft attention mechanism.

Triple-DARE has three major learning components: 1) A domain alignment loss

Ld to extract embeddings that are invariant across domains. 2) a classification loss

Lcls to maintain task-discriminative features, 3) a joint fusion triplet loss Ltri to

increase intra-class compactness and inter-class separation in the learned embed-

ding space by learning similar contexts represented by variations of sensor inputs.

The final output is used for multi-labeled context predictions. For example, based

on our definition of context as an <Activity, Phone placement>, a context could

be ⟨"Sitting","In Bathroom" with "Phone In Hand"⟩. In order to perform our

context predictions by learning discriminative and domain-invariant embeddings,

our final objective is to minimize the cost function C(·)

C(θ) = λ1Lθ
cls + λ2Lθ

d + λ3Lθ
tri, (6.1)

where θ are model parameters, λ1, λ2, and λ3 are balancing coefficients. This pro-

cess and each type of loss are described in more detail in subsequent subsections.
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6.3.3 Feature Generation

For a given smartphone context dataset, we create two views from the raw sen-

sory inputs. The first one is a vector obtained by applying handcrafted features

on all available sensors. These handcrafted features are used to construct a vec-

tor fed into a feed-forward network. A total of 188 features adopted from [14],

were utilized with some examples provided in Table (7.2). The second view con-

sists merely of the raw three-axial sensors. We use different feature encoders for

each type of input view. Specifically, 1) Multi-Layer Perceptron (MLP) encoder

for handcrafted features, which is adapted from [23], 2) attention-based CNN en-

coder [22] for raw sensor data. Finally, a joint fusion encoding is obtained by

concatenating the two produced feature encodings.

The raw sensor data from three axial sensors (accelerometer, gyroscope, and mag-

netometer) is utilized for CNN’s auto-learning features. Adapted from the Deep-

Context architecture [22], the CNN we leveraged has a soft attention mechanism

that helps learn salient features, giving higher weights (importance) to regions of

the raw sensor data that are more predictive of the user’s context. The intuition

behind the design of this attention mechanism is similar to that proposed by [117]

and [22]. The effectiveness of this architecture comes from applying attention lay-

ers on features generated by single-sensor CNNs and on features generated by

CNNs that analyzed the merged sensor outputs. This enables the model to high-

light discriminative CNN features for different contexts. For more details about

the DeepContext CNN architecture, we refer the reader to [22].
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Table 6.1: A sample list of handcrafted features used for our sensor data, adopted from
[84, 14].

Feature Formulation

Tri-axial sensors Features

Arithmetic mean s̄ = 1
N

∑N
i=1 si

Standard deviation σ =
√

1
N

∑N
i=1 (si − s̄)2

Frequency signal Skewness
E
[
(s−s̄)3

σ

]
Frequency signal Kurtosis E

[
(s− s̄)4

]
/E
[
(s− s̄)2

]2
Signal magnitude area

1
3

∑3
i=1

∑N
j=1 |si,j |

Pearson Correlation
coefficient

C1,2/
√
C1,1C2,2, C = cov (s1, s2)

Spectral energy of a
frequency band [a, b]

1
a−b+1

∑b
i=a s

2
i

s: signal vector, N: signal vector length Q: quartile, cov: covariance

GPS Features

Significant changes from the previous location state
Estimated speed
Changes in latitude and longitude

Phone State Features

Is phone screen unlocked? Is battery charging?
Is ringer mode set to
silent?

Is phone connected to WIFI?
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Figure 6.4: Triple-DARE ’s Framework.
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6.3.4 Domain Alignment Loss

The goal of the domain alignment loss is to map the source and target feature

encoding into a standard feature distribution space to learn common feature rep-

resentations across domains. For our approach, we utilize Multi Kernel Maximum

Discrepancy Mean (MK-MMD), an extension of the Maximum Discrepancy Mean

(MMD), introduced by Gretton et al. [137]. MMD is a non-parametric distance

measure that may be used to assess the discrepancy between marginal distri-

butions [100]. MMD maps the feature representations of the source and target

domains (Xs and Xt) to the Reproducing kernel Hilbert space (RKHS) and then

computes the mean distance between the two distributions in RKHS. MK-MMD

has been proposed as an optimal kernel selection approach for MMD because it

can find an ideal kernel created by a weighted combination of various kernels based

on the source and target datasets [100].

Let ϕ(·) be a feature map defined as a combination of G positive kernels ku with

their associated bandwidth βu ⩾ 0, given as the following:

k =
G∑

u=1

βuku, (6.2)

ϕ
(
xs, xt

)
= k

(
xs, xt

)
, (6.3)

where xs and xt represent feature embeddings for the source and target domain,

respectively. Then, the formulation of MK-MMD is defined as:

q(X s,X t) =
∥∥EX s [ϕ (xs)]− EX t

[
ϕ
(
xt
)]∥∥

H
, (6.4)
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where ∥.∥Hk
is the RKHS norm. The domain alignment loss can be obtained by:

Lθ
d =

∑
l∈N l

q2
(
X s

l ,X t
l

)
. (6.5)

MK-MMD is computed per network layer to measure the distance between the

source and target domain data representations. N l indicates the number of layers,

and we denote (X l
s,X l

t ) for the distributions of the source and target domains,

retrieved from the lth layer in the network. d
(
X l

s,X l
t

)
is the MK-MMD calculated

by Equation (6.4) between the source and target domain distributions evaluated

on the lth layer embeddings. Intuitively, the domain alignment loss is a regularizer

that minimizes the distance between the distributions generating source domain

data and target domain data.

6.3.5 Classification Loss

The classification loss aims to leverage source domain labels in discovering dis-

criminative features for context predictions. The context labels for classification

are the same in both domains. Optimizing our model for classifying contexts on

the source domain guides the overall learning process. Since the labels of Ds are

available, the classification loss is defined as:

Lθ
cls =

1

Ns

Ns∑
i=1

ℓΨ(fϕ(x
s
i ), y

s
i ), (6.6)

where fϕ(·) is a classifier, Ns is the number of labeled training samples and ℓΨ

is a binary cross-entropy function weighted by inverse class frequency to account

for class imbalance where infrequently occurring classes get higher weights than
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frequently occurring classes and (xis), ys) represents labeled context data sampled

from source domain data.

6.3.6 Triplet Loss

The triplet loss is mainly used to pull samples belonging to the same or similar

classes together and push away samples belonging to different classes in an embed-

ding space. It achieved empirical success in face identification, where variations of

the same person images are mapped closely in the learned embedding space [108,

134]. We believe sensor data can benefit from the same approach as numerous

variations in the sensor inputs can represent the same context. Given three types

of samples: 1) an anchor sample xa (i.e. a query sample), 2) a positive sample

xp (i.e., a sample shares the same class as the anchor), and 3) a negative sample

xn (i.e., a sample with a different class from the anchor). Along with a distance

function d, triplet loss is defined as the following:

Lθ
tri =

N∑
i

[
d(xi

a, x
i
p

)
− d(xi

a, x
i
n) + α]+ (6.7)

Where α is a parameter for the margin between positive and negative samples,

and x here is used to represent an embedding of x for notation simplicity. We

reduce the triplet loss by pushing d(xa
i , x

p
i ) towards zero and making d(xa

i , x
n
i ) to

be greater than d(xa
i , x

p
i )+α. In other words, pairs of positive samples are jointly

pulled together, while pairs of positive and negative samples are pushed away by

some margin α.
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6.3.7 Joint-Fusion Triplet Mining

Triplet mining is the process of constructing triplets (anchor, positive and nega-

tive) for triplet loss calculations.

Following the practice in [108], we adopt the online triplet mining strategy which

does not require a complete pass on the training set beforehand. Since finding

triplets across two domains mandates the existence of target domain labels, the

classifier trained on the source domain is used to construct pseudo labels for target

domain samples during training of the classifier, which is one of the most common

solutions for UDA problems [107]. During this procedure, it is vital to remember

that the pseudo labels generated may not be accurate. However, we re-assign

pseudo labels every few iterations because the classifier will steadily increase its

accuracy on the target dataset during training. Additionally, the domain align-

ment loss can also help improve the classifier’s accuracy on the target dataset by

lowering the distribution disparity. As a result, the quality of the pseudo label

can automatically improve.

Our joint-fusion triplet mining strategy works as the following: We create triplets

from two mini-batches of samples from the source and target domains after con-

catenating them into one mini-batch. For constructing triplets suitable to our

multi-labeling settings, we need a notion of similarity between multi-labeled vec-

tors. We first define a compatibility score between two contexts y1, y2 that are

both represented as binary labels, as the dot product between them:

c(y1, y2) = y1 · y2 (6.8)
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Because our dataset is overly imbalanced, we consider all the positive examples

in constructing the triplets. We follow a similar strategy to [108] that focuses

on triplets contributing the most to the learning process but modified using our

compatibility score to select triplets that satisfy this condition:

d(xa, xp) + α > d(xa, xn) & c(ya, yp) > c(ya, yn) (6.9)

Our triplet mining strategy is detailed in Algorithm (1).

Algorithm 1: Joint-fusion Online Triplet Mining finds triplets with
multi-labeled vectors.

Input: Number of samples in a batch m, classifier f(·), Ds, Dt , distance d,
compatibility score (Eq (6.8)) c, α, and sample size k

Output: List of triplets [(a, p, n)]
{xsi , ysi }mi=1 ← Read next mini-batch(Ds) ;
{xti}mi=1 ← Random sample mini-batch(Dt) ;
{yti}mi=1 ← Assign pseudo labels using f on {xti}mi=1;
{xzi , yzi }mi=1 ← concatenate({xsi , y

s
i }mi=1, {xti, yti}mi=1);

triplets ← {}
for each a, p in {xzi , yzi }mi=1 do

if a has positive labels And a ̸= p then
Q ← k Random samples from {xzi , y

z
i }mi=1;

N ← {};
for q in N do

//Negative example candidate selection:
if c(a, q) == 0 & d(a, q) < d(a, p) then

N .add(q);
end

end
for n in N do

Eq (6.9):
if d(a, p) + α > d(a, n) & c(a, p) > c(a, n) then

triplets.add ((a, p, n)) ;
end

end
end

end
return triplets
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Table 6.2: The percentage of positively labeled contexts.

Contexts Scripted % P In-the-wild % P

Bathroom 3.15% 2.17%
Jogging 2.04% 0.27%
Lying Down 1.10% 16.24%
Running 1.95% 0.37%
Sitting 11.99% 38.71%
Sleeping 2.19% 37.69%
Stairs - Going Down 2.52% 2.00%
Stairs - Going Up 0.89% 1.92%
Standing 1.71% 8.46%
Talking On Phone 1.41% 1.27%
Typing 3.65% 6.45%
Walking 64.00% 13.51%

Phone Prioceptions
Phone In Hand Phone In Pocket Phone In Bag

Datasets Notations

SPrioception Scripted context dataset
WPrioception In-the-wild context dataset
e.g. SBag refers to scripted contexts, annotated with "Phone In Bag"

6.4 Experiments

We evaluated Triple-DARE and baseline models for performing multiple UDA use

cases on scripted and in-the-wild smartphone HCR datasets. The overarching

goal was to use Triple-DARE to learn a robust representation from the scripted

dataset (source), which is then used to improve HCR on the in-the-wild dataset

(target). Figure 6.5 displays data extracted from the two datasets, displaying only

the accelerometer sensor readings for three context examples.

91



Chapter 6: Adapting models for Human Context Recognition In the
wild under incomplete supervision

0 100 200 300
10-seconds Window

0.0

0.1

0.2

0.3

Ac
ce

le
ro

m
et

er

SPocket - Walking
axis-x
axis-y
axis-z

(a) SPocket - Walking

0 100 200 300
10-seconds Window

0.10

0.05

0.00

0.05

Ac
ce

le
ro

m
et

er

SHand - Walking

axis-x
axis-y
axis-z

(b) SHand - Walking

0 100 200 300
10-seconds Window

0.2

0.0

0.2

0.4

Ac
ce

le
ro

m
et

er

SBag - Walking
axis-x
axis-y
axis-z

(c) SBag - Walking

0 100 200 300
10-seconds Window

0.25

0.00

0.25

0.50

0.75

Ac
ce

le
ro

m
et

er

SPocket - Jogging
axis-x
axis-y
axis-z

(d) SPocket - Jogging

0 100 200 300
10-seconds Window

0.4

0.2

0.0

0.2

Ac
ce

le
ro

m
et

er

SHand - Jogging

axis-x
axis-y
axis-z

(e) SHand - Jogging

0 100 200 300
10-seconds Window

0.2

0.0

0.2

0.4

0.6

0.8

Ac
ce

le
ro

m
et

er

SBag - Jogging
axis-x
axis-y
axis-z

(f) SBag - Jogging

0 100 200 300
10-seconds Window

0.2

0.1

0.0

0.1

Ac
ce

le
ro

m
et

er

SPocket - Stairs - Going Up

axis-x
axis-y
axis-z

(g) SPocket - Stairs - Going
Up

0 100 200 300
10-seconds Window

0.05

0.00

0.05

0.10

0.15

0.20

Ac
ce

le
ro

m
et

er

SHand - Stairs - Going Up

axis-x
axis-y
axis-z

(h) SHand - Stairs - Going
Up

0 100 200 300
10-seconds Window

0.1

0.0

0.1

Ac
ce

le
ro

m
et

er

SBag - Stairs - Going Up

axis-x
axis-y
axis-z

(i) SBag - Stairs - Going Up

0 100 200 300
10-seconds Window

0.00

0.05

0.10

0.15

Ac
ce

le
ro

m
et

er

WPocket - Walking

axis-x
axis-y
axis-z

(j) WPocket - Walking

0 100 200 300
10-seconds Window

0.2

0.0

0.2

Ac
ce

le
ro

m
et

er

WHand - Walking

axis-x
axis-y
axis-z

(k) WHand - Walking

0 100 200 300
10-seconds Window

0.3

0.2

0.1

0.0

0.1

Ac
ce

le
ro

m
et

er

WBag - Walking

axis-x
axis-y
axis-z

(l) WBag - Walking

0 100 200 300
10-seconds Window

0.2

0.0

0.2

0.4

Ac
ce

le
ro

m
et

er

WPocket - Jogging
axis-x
axis-y
axis-z

(m) WPocket - Jogging

0 100 200 300
10-seconds Window

0.025

0.050

0.075

0.100

0.125

Ac
ce

le
ro

m
et

er

WHand - Jogging

axis-x
axis-y
axis-z

(n) WHand - Jogging

0 100 200 300
10-seconds Window

0.1

0.0

0.1

Ac
ce

le
ro

m
et

er

WBag - Jogging

axis-x
axis-y
axis-z

(o) WBag - Jogging

0 100 200 300
10-seconds Window

0.00

0.05

0.10

0.15

Ac
ce

le
ro

m
et

er

WPocket - Stairs - Going Up

axis-x
axis-y
axis-z

(p) WPocket - Stairs Going
Up

0 100 200 300
10-seconds Window

0.2

0.1

0.0

0.1

0.2

Ac
ce

le
ro

m
et

er

WHand - Stairs - Going Up
axis-x
axis-y
axis-z

(q) WHand - Stairs Going Up

0 100 200 300
10-seconds Window

0.00

0.05

0.10

Ac
ce

le
ro

m
et

er

WBag - Stairs - Going Up

axis-x
axis-y
axis-z

(r) WBag - Stairs Going Up

Figure 6.5: Raw accelerometer tracings sampled from Walking, Jogging, and Stairs Going
up contexts within each dataset. 92
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6.4.1 Baselines

We compared Triple-DARE to state-of-the-art deep-learning based DA models :

1) CORAL [101]: A state-of-the-art UDA model that utilizing deep-coral discrep-

ancy loss as baseline. 2) DAN [100]: A model with only our MK-MMD domain

alignment loss. 3) HDCNN [103]: a state-of-the-art baseline DA method pre-

viously applied on smartphone sensor data. HDCNN is a transductive transfer

learning model with KL divergence loss on the obtained feature vectors across

domains. 4) SOURCE : A model trained on the source domain without any adap-

tation to the target domain. Our proposed model, Triple-DARE, which uses our

joint-fusion triplet loss.

6.4.2 Implementation and Experimental Settings

1) Hyper-parameters We tuned the hyper-parameters of MLP and CNN using grid

search. The learning rate is initialized at 1e-1, balancing coefficients are initialized

as λ1 = 1, λ2 = 0, and λ3 = 0. The balancing coefficients and the learning rate

are increased or decreased following the schedule mentioned in [102], making our

model highly confident on source labels and less sensitive to low-quality pseudo

labels at the early stages of the training. The batch size is set at 256. The

Adam optimizer was used. The back-bone layers used in our DA method are

shared across all experiments: handcrafted-features MLP with two layers, both

have 16 hidden dimensions, MLP domain classifier with one layer that has 32

hidden dimensions, and CNN that has attention blocks for separate and merged

sensors layers, followed by an average pooling layer, adapted from [22]. All raw
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Table 6.3: Overall context prediction.

Overall UDA Tasks Accuracy F1-micro

Triple-DARE 0.879 0.366
CORAL 0.806 0.302
DAN 0.673 0.294
HDCNN 0.816 0.3215
Source (no adaptation) 0.433 0.259

Lab-to-field UDA Tasks Accuracy F1-micro

Triple-DARE 0.845 0.188
CORAL 0.839 0.127
DAN 0.698 0.122
HDCNN 0.768 0.146
Source (no adaptation) 0.552 0.133

sensor data were input to a 3-layer CNN. Then their outputs are concatenated and

forwarded to another 3-layer CNN. Attention blocks are used to focus on salient

regions in inputs [117, 138]. Euclidean distance is used for computing pairwise

distances in triplet mining and α is set to 0.1. The final context prediction layer

has LeakyReLU activation, followed by Sigmoid activation.

2) Evaluation Protocol Due to the class imbalance in our context datasets, we

used the F1 metric to evaluate HCR performance in the UDA setting in addition

to reporting classification accuracy. As the sizes of the source and target domain

datasets might not be the same, we iterate through the target domain dataset

with random sampling. However, we evaluate our model on all samples in the

target domain dataset.

6.4.3 Results and Findings

1) Overall Results : In Table (6.3), we report the overall performance scores for

our Triple-DARE compared to baseline models. Triple-DARE outperforms the

baseline methods in the overall UDA tasks and Lab-to-field UDA task by 4.5%
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Table 6.4: F-1 scores - comparing different methods for scripted contexts with cross-
prioception UDA tasks, varying the amounts of used source labels.

Scripted contexts with cross-prioception UDA tasks

Training
%

Method
SBag

→
SHand

SBag

→
SPocket

SHand

→
SBag

SHand

→
SPocket

SPocket

→
SBag

SPocket

→
SHand

Avg

0.2 Triple-DARE 0.500 0.651 0.213 0.318 0.652 0.467 0.467
CORAL 0.357 0.328 0.357 0.428 0.352 0.378 0.367
DAN 0.341 0.436 0.285 0.265 0.418 0.403 0.358
HDCNN 0.341 0.492 0.472 0.470 0.468 0.380 0.437

0.4 Triple-DARE 0.557 0.617 0.444 0.492 0.767 0.511 0.565
CORAL 0.380 0.584 0.455 0.457 0.633 0.484 0.499
DAN 0.452 0.509 0.418 0.451 0.721 0.459 0.502
HDCNN 0.424 0.580 0.504 0.558 0.704 0.441 0.535

0.6 Triple-DARE 0.497 0.588 0.570 0.653 0.744 0.542 0.599
CORAL 0.577 0.688 0.505 0.505 0.754 0.448 0.580
DAN 0.540 0.634 0.428 0.459 0.653 0.429 0.524
HDCNN 0.345 0.561 0.575 0.540 0.645 0.445 0.518

Average Triple-DARE 0.518 0.619 0.409 0.488 0.721 0.507 0.544
CORAL 0.438 0.533 0.439 0.463 0.580 0.437 0.482
DAN 0.440 0.526 0.377 0.392 0.597 0.430 0.461
HDCNN 0.370 0.544 0.517 0.523 0.606 0.422 0.497

- No Adaptation 0.319 0.469 0.476 0.470 0.260 0.315 0.385

Bathroom Jogging Lying Down Running Sitting Sleeping Stairs - 
 Going Down

Stairs - 
 Going Up
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 On Phone
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Figure 6.6: Target predictions scores per label averaged across different UDA task do-
mains.

95



Chapter 6: Adapting models for Human Context Recognition In the
wild under incomplete supervision

Table 6.5: F-1 scores - comparing different methods for Lab-to-field UDA tasks, varying
the amounts of used source labels.

Lab-to-field UDA Tasks

Training
%

Method
SBag

→
WBag

SHand

→
WHand

SPocket

→
WPocket

Avg

0.2 Triple-DARE 0.101 0.080 0.326 0.169
CORAL 0.089 0.087 0.150 0.109
DAN 0.079 0.077 0.165 0.107
HDCNN 0.087 0.084 0.181 0.117

0.4 Triple-DARE 0.118 0.143 0.359 0.207
CORAL 0.092 0.075 0.165 0.111
DAN 0.101 0.093 0.244 0.146
HDCNN 0.106 0.108 0.266 0.160

0.6 Triple-DARE 0.111 0.112 0.341 0.188
CORAL 0.110 0.123 0.210 0.148
DAN 0.100 0.084 0.209 0.127
HDCNN 0.094 0.102 0.285 0.160

Average Triple-DARE 0.111 0.112 0.341 0.188
CORAL 0.097 0.093 0.173 0.122
DAN 0.096 0.087 0.198 0.127
HDCNN 0.096 0.098 0.244 0.146

- No Adaptation 0.108 0.110 0.180 0.133
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Figure 6.7: Scripted context data with cross-prioception UDA tasks.

increase in F1-score and 6.3% increase in classification accuracy. The results are

shown in Figure (6.6) demonstrate the performance per label aggregated over all

the UDA tasks, showing that our approach outperforms state-of-the-art methods

across several context labels. In general, the advantage of using UDA methods

can be observed over classifiers that are solely trained on the source domain with-

out leveraging unlabeled data. In particular, UDA methods helped a lot in the

Jogging, Running, Going Up and Down Stairs labels where the user is likely to

stop providing labels while performing these activities in the wild. However, our

approach takes advantage of the high fidelity labels acquired in the scripted study

and improves adaptation. We also can see that predictions for Sitting and Walking

are the most difficult compared to other labels, which could be due to a significant

difference in target label distributions (see Table (6.2)).

2) Scripted contexts with cross-prioception UDA tasks : In Figure (6.7), Triple-
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Figure 6.8: Scripted context to In-The Wild UDA tasks scores.

DARE consistently outperforms the baseline methods across the different cross-

prioception UDA tasks. The UDA tasks with "Phone In Hand" as the target

domain have significantly benefited from the adaptation process. This benefit is

due to the amount of signal noise introduced when the phone is not stationary.

We also notice that CORAL performs better than DAN in most cases.

3) Lab-to-field generalization UDA tasks : We report the scores for our lab-to-field

generalization UDA tasks in Figure (6.8). Another clue we get about diversity

placements is by looking at huge differences in the scores obtained from "Phone

in Pocket" compared to "Phone In Bag" and "Hand". We speculate that when

the phone is placed in a bag or in hand, the model can hardly map data collected

from scripted and in-the-wild datasets to a common feature space. However, we

see a noticeable improvement over state-of-the-art baseline methods in adapting

models learned on scripted data to make context predictions on in-the-wild data

with a "Phone in Pocket" prioception.

4) Training under insufficient labels : We studied the performance of our model

98



Chapter 6: Adapting models for Human Context Recognition In the
wild under incomplete supervision

SPocket WPocket SHand WHand SBag WBag SBag SPocket SHand SPocket SBag SHand SPocket SHand SPocket SBag SHand SBag
UDA Task

0.0

0.2

0.4

Si
lh

ou
et

te
 sc

or
e

Triple-DARE CORAL DAN HDCNN

Figure 6.9: Compactness measure on feature embeddings.

when the number of labels from the source domain is varied. In Figure (6.10),

we plot the prediction scores, obtained on multiple scripted cross-prioception do-

mains, averaged over different source domains. In Tables (6.4) and (6.5), a more

detailed version for this experiment is provided. We can see that our Triple-DARE

achieves higher prediction scores on the target domain, with minor amounts of

source labels, outperforming baseline methods in almost all UDA tasks.

5) Intra-class compactness and inter-class separation: To provide a measure of

compactness and separation in the learned feature embeddings, we utilized the

Silhouettescore Score = bi−ai
max(bi,ai)

, where bi is the shortest mean distance between

a point to all other points in any other cluster, whereas ai is the mean distance of i

and all data points from the same cluster. This score measures both compactness

and separation. To calculate the Silhouette scores on the learned feature embed-

dings, we assign each instance with cluster labels using one of the binary context

labels. Then, we average the scores over labels. The scores are reported in Figure

(6.9), which shows our Triple-DARE achieves better compactness and separation

scores in most UDA tasks. Also, CORAL achieves higher scores than DAN in

most cases. Additionally, we can visually see the quality of the learned feature

embeddings in Figure (6.11), which depicts the same context instances represented

by feature embeddings learned using DAN and Triple-DARE. The visualization
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Figure 6.10: Scores for each source domain in scripted contexts with cross-prioception
UDA tasks, averaged over each target, varying the number of labels from the source
domain.
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is obtained by projecting feature embeddings into a two-dimensional space using

the T-distributed Stochastic Neighbor Embedding (TSNE) [139].

(7) Ablation Study : We conducted an experimental ablation (shown in Figure

(6.12)) to rank the utility of Triple-DARE for a variety of UDA tasks. The best

results were seen when using all its parts together. To further understand the

relative impact of each component in this ablation investigation, we employed a

non-pretrained HCR model. While the triplet loss and the domain loss are both

useful, they do not provide as much insight as joint training.
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Figure 6.11: Visualization of the learned feature embeddings for TripleDARE (top) and
DAN (bottom), using TSNE dimensional reduction.
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Figure 6.12: Ablation study, evaluating the contribution of Triple-DARE ’s each compo-
nent.

6.5 Chapter Summary

Several issues reduce the performance of machine learning HCR models on in-

the-wild datasets, including the diversity of phone placements and smartphone

models. Lab-to-field methods try to improve the performance of HCR models by

first training them on similar scripted datasets, then adapting them for use in

predicting context labels in in-the-wild datasets. We designed DA strategies that

are susceptible to covariate shifts between the scripted and in-the-wild datasets,

improving lab-to-field generalization. We proposed Triple-DARE, a UDA deep-

learning model for HCR on smartphones, comprised of three parts: 1) domain

alignment loss using MK-MMD 2) a classification loss and, 3) joint-fusion triplet

loss designed for multi-labeled datasets. Triple-DARE learns domain-invariant

features common to both datasets, reducing the influence of highly noisy in-the-

wild data by using its attention mechanism to focus on salient regions in sensor

inputs, achieving a high F1-score for various UDA tasks on our scripted and in-
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the-wild context datasets. Using its domain alignment loss, Triple-DARE is able

to map the source and target feature encoding into a standard feature distribution

space with better performance than state-of-the-art baseline methods. Further-

more, the triplet loss improves discrimination, increasing intra-class compactness

and inter-class separation while leveraging massive amounts of unlabeled data.

Triple-DARE outperforms other state-of-the-art DA baselines, improving on their

F1-score and classification accuracy by 4.6% and 1.89%, respectively, and improv-

ing on models with no adaptations by 10.7% and 14.7%, respectively.
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Chapter 7

Adversarial Human Context Recognition: Evasion

Attacks and Defenses

7.1 Introduction

Recent state-of-the-art smartphone HCR methods utilize datasets gathered in the

wild, wherein sensor data is collected continuously from users’ smartphones as

they live their lives. Users then submit self-reports of contexts visited that are

used to annotate the sensor data [14, 26]. However, despite the fact that these

study designs collect more realistic data, they also make it easier for adversaries

to attack the system. Specifically, adversaries can send modified data samples

directly to the dataset aggregator to mislead the recognition system and produce

inaccurate results [140] . However, these samples meant to degrade the perfor-

mance can easily be detected by outlier detection methods [71, 140] unless these

samples are carefully adjusted and generated as adversarial examples, small per-

turbations on inputs cause models to produce erroneous classifications with high

confidence. It is also worth mentioning that the difference between adversarial
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perturbations and random noise is that adversarial examples are misclassified far

more frequently than samples that have been disrupted by random noise, even

though the quantity of random noise is substantially more significant than the

adversarial perturbation [141].

Figure 7.1: The general evasion adversarial attack problem.

Prior work and challenges. This work examines attacks and defenses against

HCR systems. Researchers have studied adversarial examples vulnerabilities in

computer vision [43], natural language processing [44], and speech recognition [45],

the focus of exploring adversarial vulnerabilities has only recently shifted to time-

series-based models [46, 47, 48] or sensory-based classifications [49, 112, 50]. Sah

et al. recently studied utilizing wearables for activity recognition, investigating the

transferability and generation of adversarial examples. However, they did not pro-

pose any countermeasures [50]. Moreover, in comparison to wearables, the nature

of HCR data collected by smartphones is much more complicated. For instance,

sensor signals for the same activity have different characteristics when the phone

is held in various prioceptions [24, 25]. In fact, prioception has the greatest impact

in terms of differences in smartphone context sensor data [59]. When performing a

particular activity, smartphone owners may choose to either hold the smartphone

in their hand or place it in their pants or coat pocket. Therefore, methods to eval-

uate the security of HCR data collected by smartphones in the wild are needed,
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especially for such large amounts of data with many diversities. To understand

the impact of this problem, imagine a detection algorithm failing to detect an

older person’s fall or a warfighter with TBI not being detected on time due to an

adversarial attack. Other sensor-based human activity recognition models, such

as WiFi-based models [142], are used in smart homes; malicious manipulation of

sensing data can deceive the access control system, posing a security risk. There

is a dire need to define and evaluate the effects of adversarial examples for smart-

phone HCRs, which could have fatal outcomes if perpetuated in CA systems for

mobile health and behavioral medicine.

Potential adversarial attacks. Poisoning and Evasion are two major adversar-

ial attacks [41]. Poisoning or training-stage attacks contaminate training data.

When adversaries can access a model’s training data, they may try to undermine

the machine learning model by manipulating the data or labels. Evasion attacks,

or inference-based attacks, are common and well-studied. We focus on evasion

attacks, which occur when an attacker manipulates test data to fool classifiers.

Adversarial attacks can be divided into white-box and black-box attacks based

on system knowledge and access [41]. White-box attacks require model param-

eters [113, 53]. Black-box attacks (listed in Figure (3.1)) require the ability to

query the model with arbitrary inputs [114, 115]. We focus on score-based and

label-based evasion attack generation methods in accordance with plausible sce-

narios of possible adversarial attacks. These methods can generate adversarial

perturbations using only class confidence scores (Zoo attack) or class decisions

(HSJ attack).

Problem description. HCR models deployed in the wild are vulnerable to
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adversarial threats such as data poisoning, which targets the training stage. or

evasion attacks that occur during model inference. Using adversarial threats as

a measure of model robustness is also crucial. Concerning the feasibility of these

threats, it is important to note what attacks an adversary can perpetuate on a

smartphone HCR classifier under two threat models: a) a score-based threat model

assumes access to class confidence scores; b) a label-based threat model assumes

only access to the predicted label. An adversary can query a pre-trained HCR

classifier with arbitrary inputs and observe model output (e.g., class confidence

scores or only class labels). During in-the-wild data collection, the adversary can

send sensor inputs and self-reported annotations. In Figure (7.1), we showcase a

scenario of an evasion attack against our smartphone HCR system and how that

can lead to a potential poisonous attack. Evasion attacks can be used to create

poisonous examples, particularly inputs that look similar to legitimate inputs but

have misleading labels. This study focuses on evasion attacks. To the best of our

knowledge, this is the first work that studies black-box based evasion attacks against

smartphone based HCRs.

Proposed research In this work, we formulate potential types of HCR evasion

attacks as well as propose and demonstrate the effectiveness of specific, practical

defenses. More broadly, our work is a step towards improving the robustness and

generalizability of HCR models when deployed in the real world. According to

Geirhos et al. , one way to evaluate how reliable and robust deep neural networks

are when deployed in natural environments is to test them against adversarial

examples, which motivated us even more to conduct this study [40].

Contributions. These are the primary contributions of this work:
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1. Rigorous formulation of the adversarial HCR problem

2. Definition of a suite of black-box adversarial evasive attacks of deployed

smartphone HCR models, which require minimal access to the HCR model

and data. Primarily, we experiment with black-box evasion attack generation

methods under two assumptions: a) if class confidence scores are available to

the adversary, we use the Zoo score-based method; b) if only class decisions

are available to the adversary, we use the HopSkipJump label-based method.

3. Comprehensive evaluation of the vulnerability of smartphone HCR models

to black box evasive attacks.

4. Definition of a suite of novel defenses to adversarial HCR attacks that are

based on provable defense strategies. We propose RobustHCR, which adapts

a duality-based method to improve the neural network’s robustness, which

can be provably resilient to norm-bounded perturbations [112].

5. Comprehensive evaluation via extensive empirical experiments of our pro-

posed method RobustHCR and comparisons to state-of-the-art baseline de-

fensive methods.

The remaining sections of this chapter are structured as follows. Section 7.2

lists related work. Section 7.3 contains our threat model. Section 7.4 introduces

our proposed approach. Section 7.5 demonstrates our evaluation. Results and

Discussion are presented in section 7.6. Finally, Section 7.8 summarizes all the

findings.
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7.2 Background & Related Work

7.2.1 Smartphone-based Mission-critical Applications

Smartphone-based recognition of user context and ambulatory activities [82] has

several practical, mission-critical applications. Compromising such systems could

have serious ramifications. For instance, smartphone-based HCRs may be utilized

to continuously track and monitor the health of soldiers or veterans to detect

Traumatic Brain Injuries (TBI) or an infectious diseases (e.g. Covid-19). By

monitoring smartphone health biomarkers, abnormal user behavior, physiological

indicators, activities, and context visit patterns can be identified [26]. Sun et

al. showed that smartphone-based activity recognition could detect aggravated

assaults. They created iProtect to identify abuse and kidnapping. iProtect uses

smartphone accelerometers to record and identify physical assaults. The impor-

tance of real-time assault detection for personal safety cannot be overstated [83].

These applications require accurate smartphone HCR predictions, which we aim

to improve.

7.2.2 Black-box Evasion Attacks

One of the following methods is used to launch a black-box evasion attack: 1)

Utilizing a transferable attack strategy [143, 50], an adversary may decide to

train a substitute model to imitate the original model. For weight estimation, the

attacker can use an architecture that is significantly superior to the original. In the

absence of a substitute model, however, the attacker opts for 2) a query feedback

mechanism [114, 115, 144], wherein the attacker continuously generates modified
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inputs while querying the model under attack. We focus on two common black-

box attacks that follow the query feedback mechanism (Zoo and HSJ), which were

employed to generate successful imperceptible adversarial images to the human

eye for image classification tasks [114, 115].

7.2.3 Evasion Defenses

There are three common types of evasion defense methods: 1) adversarial train-

ing, 2) provable defenses, and 3) regularization approaches [145]. Adversarial

training defense augments adversarial examples during training to improve model

robustness and stability [146]. Provable defenses aim to provide robust guarantees

that there are no adversarial examples within a lp-bounded region, which provides

reliable predictions, especially needed for critical applications [112, 145]. Regu-

larization techniques concentrate on making minor adjustments to the learning

algorithm so that it can generalize more effectively. With regards to achieving ro-

bustness to adversarial examples, regularization approaches concentrate on avoid-

ing small input variations that can result in algorithmic decision changes. This is

accomplished by either enlarging the decision boundaries or restricting changes in

the model’s gradient.

To protect against evasion attacks on sensor data, state-of-the-art methods pro-

posed include Adar [147] for data collected from wearable sensors and Robust-

Sense [142] for data collected via WiFi-based activity recognition. These two

methods employ adversarial training by incorporating adversarial examples during

training and attempting to reduce the disparity between the distributions of clean

and adversarial examples. In particular, Adar uses a white-box attack to generate
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adversarial examples that are then used in the data augmentation process [147].

Additionally, Yang et al. tried to minimize the sum of the Kullback-Leibler (KL)

divergences between every possible pair of clean and associated adversarial ex-

amples, with the goal of reducing the prediction gap and increasing the model’s

robustness [142]. Empirical evidence suggests that state-of-the-art approaches

have a good chance of success, but only provable defenses can ensure reliability.

7.3 Threat Model

Assumptions. In this section, we define specific aspects and assumptions for

our threat model [145] concerning smartphone HCRs. First, the timing of evasion

attacks is during inference, or more specifically, when an adversary queries a classi-

fier with arbitrary inputs. Second, in terms of accessible information, we consider

only the black-box threat model, where an adversary can query the pre-trained

HCR classifier with arbitrary inputs and observe model outputs. We test two pos-

sibilities, when class confidence scores are available and when only class decision

labels are available. At the same time, the adversary can have indirect access to

the training data by sending sensor inputs along with self-reported annotations

as part of the in-the-wild data-gathering study. Also, we consider the attack fre-

quency to happen without any constraints. Moreover, as a standard measure of

an attack’s effectiveness, we use a perturbation measurement of norm-bounded

perturbations [144, 112, 114, 115]. Generally, adversarial attacks are evaluated

based on the number of queries converging on model parameters. The attack will

be more effective with fewer queries, as the time required to initiate an attack will
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Training 
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Figure 7.2: Adversarial attack types within the context of our HCR framework: Eva-
sion: Attackers can launch evasion attacks by tampering with test data in an attempt
to deceive trained classifiers, Data poisoning: adversaries may manipulate the model’s
training data or labels to undermine machine learning during deployment, and Model
Extraction: involves a process of reverse-engineering the learning algorithm, seek to gain
unauthorized entry to a sensitive system, user, or data information where data security
and confidentiality are major concerns. This work focuses on Evasion attacks only.

be reduced. The perturbation norm is a standard metric of attack effectiveness,

along with the amount of time needed to construct the attack. Standard error

measures l2 and l∞ are the most frequently employed perturbation norms [144].

An adversary’s final objective is to design an adversarial example that causes the

HCR to make incorrect predictions, assuming that they already know the original

input and the label produced by the classifier.

Potential adversarial attackers: Evasion attacks described above can be per-

petrated by adversary data scientists: these are expert users knowledgeable in

applying data science techniques with clear adversary intentions. They could in-

ject malicious data that could effectively degrade the training or testing processes,

which could not be detected easily by traditional anomaly detection or data sen-

sitization techniques [55, 54]. They could also craft adversarial examples to fool

HCR models into doing something else [50]. For instance, in data collection stud-

ies, one subject could avoid labeling quality procedures that ensure subjects are
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doing what they are supposed to do. Another possibility for this attack is that

someone under remote health monitoring pretends to have some sort of infectious

disease by forcing the classifier to predict arbitrary labels (e.g., In Bathroom). In

Figure (7.2), a demonstration of adversarial attack types within the context of our

HCR framework is depicted.

7.4 Methodology

Inspired by the conceptual framework for building secure machine learning models

outlined by Biggio et al. [55], we propose the following research methods that are

aligned with the proactive approach, which involves simulating attacks on machine

learning systems and doing a comprehensive analysis of the security profile of these

systems by following these steps:

1. Identifying and describing significant evasion threats to an HCR machine

learning system under development

2. Modeling attacks matching such evasion threats.

3. Launching simulated evasion attacks against the HCR model.

4. Developing appropriate countermeasures to evasion attacks.

5. Repetitively evaluating the performance of the HCR system until the evasion

threat is mitigated prior to system deployment.

.

The methodology outlined above yields RobustHCR, our proposed method that has
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two major components: 1) simulating threats (Adversarial attacks generation) and

2) Adversarial defenses to evasion attacks, which put security measures in place.

7.4.1 HCR Evasion Attack Problem Formulation

First, we introduce essential notations and outline an optimization framework for

computing and defending against adversarial examples. With regards to smart-

phone HCRs, we have the dataset D = {(xs
i ,y

s
i )}mi=1 where x represents a feature

vector and y represents a human context, an output vector with multiple labels,

where each label generated is expressed in a binary form (E.g walking vs not

walking), and m represents the number of samples in the dataset. A deep neural

network fθ(x) that is able to recognize human contexts y given sensory inputs x,

is trained. In a standard supervised learning setting, in order to train the classifier

f(x) to recognize human contexts. The cross-entropy loss function is minimized

to achieve equation 7.1.

Lθ
cls =

1

m

m∑
i=1

ℓΨ(fϕ(xi), yi), (7.1)

where ℓ is a cross-entropy function.

Our main objective is to simulate possible evasion attacks against fθ(x) using ad-

versarial attack generation, evaluate potential damage to HCR model performance,

and then secure our model against this vulnerability with adversarial defenses that

defend not only against potential adversarial perturbation but also, more gener-

ally, improve the consistency of predictions generated by our HCR classifier when

given similar inputs.
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The objective of the adversarial attack generation stage is to provide samples that

resemble legitimate inputs, but cause the HCR classifier to make inaccurate pre-

dictions. Formally, given a target pre-trained model f(θ) and an original input x ∈

X with the associated class c, the goal is to produce an undetectable perturbation

δ to create an adversarial example x̄ = x + δ and let the target model classify x̄

as c̄ ̸= c. In order to ensure imperceptibility and to produce samples that look

similar to the legitimate input, the amount of perturbation allowed is constrained,

typically enforcing δ to be within lp ball such as l2 [114, 115] or l∞ [115]. On

the other hand, the goal of adversarial defense is instead of minimizing the loss

at only the legitimate examples; we utilize a standard robust optimization loss by

minimizing an upper bound on the worst possible perturbation in a p-ball around

each xi example, following the approach in [148]:

minimize
θ

N∑
i=1

max
∥∆∥p≤ϵ

L (fθ (xi +∆) , yi) (7.2)

However, this solution may be intractable for deep, non-linear neural networks.

Thus, we adopt an approximate solution based on duality-based networks [112],

which minimizes an upper bound on the worst-case adversarial example within a

perturbation region Bϵ(x) :

Bϵ(x) = {x+ δ : ∥δ∥p ≤ ϵ} , (7.3)

where p is l2 or l∞. Next, we provide details for each step.
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7.4.2 Adversarial Attacks Generation

The majority of prior research work on evasion attack generation methods ap-

plied to sensor data focused more on white-box settings [50, 112], which require

a level of system access that is impractical and hence make them rare in prac-

tice. In order to better align with more realistic scenarios, we instead focus on

black-box attack scenarios. Unlike prior work that exploits the transferability

property of adversarial examples [143, 50], We concentrate on methods that only

require access to query the model with an arbitrary input: 1) Zoo: zeroth order

optimization [114] which utilizes class confidence scores; and 2) Hopskipjump: a

label-based attack [115] that requires only the class decisions.

Zoo: Zeroth Order Optimization

The difficulty of optimizing a function f based only on access to function outputs

f(x), as opposed to gradient values ∆f(x), is known as zeroth-order optimization

[149, 150]. Chen et al. applied a zeroth-order algorithm that enables calculation of

the classifier gradient without having access to the classifier or utilizing the attack

transferability of surrogate models, making it perfect for generating adversarial

examples in a black-box scenario [114, 151]. This method uses the technique

of the symmetric difference quotient through two queries to estimate the model

gradients. Intuitively, model gradients in the direction of vector v can be estimated

by calculating the objective function values at two extremely close points f(x+ϵv)

and f(x− ϵv) using a small constant ϵ. As shown below, partial model gradients
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can be computed:

∂f(x)

∂xi

=
f (x+ ϵzi)− f (x− ϵzi)

2ϵ
(7.4)

where ϵ is a small constant (e.g., = 0.0001 in our experiments), and zi ∈{0, 1}n

represents a unit vector where i-th value is 1 and the rest are 0.

HopSkipJump (HSJ): a Query-efficient Label-based Black-box Attack

HSJ is a decision-based evasion attack proposed by Chen et al. and applied for

attacking image classification tasks in a black-box setting [115]. It is a decision-

based attack that only has access to the predicted output class and proposes a

new method for estimating the gradient direction along the decision boundary. In

terms of effectiveness, an HSJ attack can deceive an image classifier with a 6-bit

per pixel perturbation in 50% of time in a large-scale dataset [115]. The attack

is a decision-based attack that produces an adversarial example x̄ by solving the

subsequent optimization problem:

min
x̄
∥x̄− x∥p , s.t. ϕx (x̄) = 1, (7.5)

where x is the original instance, x̄ is the perturbed input, p is either l2 or l∞

distance and ϕx is given by the following:

ϕx (x̄) = sign (Sx∗ (x̄)) =


1, Sx∗ (x̄) > 1

−1, otherwise
, (7.6)

and Sx∗ is defined as
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Figure 7.3: Training robust models against adversarial examples using Convex Adver-
sarial Polytope. The idea is to bound the output of a neural network and find an upper
bound for worst-case adversarial examples.

Sx∗ (x̄) = max
c ̸=c⋆

Fc (x̄)− Fc⋆ (x̄) , (7.7)

where c⋆ is original classifier decision.

The algorithm uses the binary information at the decision boundary to estimate

the gradient direction, which is used to generate adversarial examples. Each itera-

tion of the method consists of two steps, and iterations are performed repeatedly.

The initial step entails conducting a binary search between the input and target

samples to identify the sample that is closest to the model’s boundary. Following

this, the obtained sample is randomly manipulated. These modified samples are

queried, and the resulting information is used to estimate the gradient using the

collected labels. Finally, the obtained gradient is applied to the boundary sample

to perturb it. All steps are performed until the maximum number of iterations

specified by the attacker has been reached.

7.4.3 Adversarial Defenses

To improve the neural network’s robustness and obtain performance guarantees,

we adapt a duality-based neural network, a technique for training deep ReLU
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networks that is demonstrably resistant to norm-bounded perturbations, as pro-

posed by Wong et al. [112]. This method is designed for ReLU-based neural

networks, and first they define an adversarial polytope for deep ReLU networks,

as illustrated in Figure (7.3), which is hard to optimize, so they come up with a

convex outer bound (green region), which can be solved using convex optimization.

However, for training robust models efficiently using backpropagation, we utilized

their approach using the dual problem of the corresponding linear program. By

leveraging this method, we aim to discover models for which we can guarantee

accuracy not only for the input example x, but also for the entire perturbation

region Bϵ(x). In particular, these methods can compute an upper bound J (x) for

a given neural network f subject to some perturbation set Bϵ(x) around input x.

max
z∈Bϵ(x)

f(z) · γ ≤ J(x; γ), (7.8)

for any constant γ ∈ {−1, 1} .

Specifically, let (ℓ, u) represent the lower and upper bounds on the output of a

network f subject to perturbations in Bϵ(x) near the example x:

ℓ ≤ min
z∈Bϵ(x)

f(z), max
z∈Bϵ(x)

f(z) ≤ u (7.9)

Eventually, the idea is that instead of trying to find an exact solution in (7.2),

we are able to find an upper bound for the worst-case adversarial example by

replacing the robust optimization loss with the following objective:
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minimize
θ

N∑
i=1

L
(
−J
(
xi, gθ

(
eyi1

T − I
))

, yi
)

(7.10)

where J (x, gθ(c)) is the dual objective, ey represents logit scores learned for class

y, I is the identity matrix, and gθ(c) is the bounded version of classifier f deter-

mined by the computed bounds obtained using an open-source package, see 7.5

Experimental Evaluation - Implementation section. Using that method, we can

guarantee that no adversaries can attack the model further with more extreme

examples than the worst found adversarial example.

7.5 Experimental Evaluation

RobustHCR and baseline models for context recognition were evaluated against

two black-box evasion attacks (Zoo and HSH) using multiple smartphone HCR

datasets. We examine the potential harm to the performance of HCR models that

could be caused by adversaries, as well as the trade-off between performance on

clean inputs and security against evasion attacks. Lastly, we assess the quality of

adversarial examples generated and how closely they resemble legitimate inputs.

7.5.1 Research Questions

We examine the subsequent research questions:

1. RQ1: How much does each of the adversarial attacks reduce the performance

of HCR classifiers?

2. RQ2: How similar are these adversarial examples to the original inputs?
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3. RQ3: How well does our proposed adversarial defense method improve the

robustness of HCR models against adversarial attacks?

7.5.2 Datasets

ExtraSensory dataset. Extrasensory is an HCR dataset collected from UCSD

college students’ smartphones and smartwatches as they went about their daily

lives. Statistical features were extracted, which correspond to at least one of 51

possible context classes [14]. However, only the smartphone sensor features were

used in our experiments.

Scripted and In-the-wild datasets. These datasets were collected by the

WASH team and closely followed ExtraSensory’s data collection and label anno-

tation methodology. The scripted data was collected in specific college buildings,

laboratories, and routes. The smartphone application collected information from

100 participants who performed 16 activities with four different phone placements.

During the data collection session, which lasted about one hour per subject, hu-

man proctors oversaw and manually annotated the data. In-the-wild dataset: 103

participants downloaded a smartphone app that passively collected data for two

weeks as they lived their daily lives. Periodically, subjects were asked to self-

report the context labels listed in Table (7.1) that they visited. By collecting

data using individuals’ smartphones, our in-the-wild dataset reflected a variety of

manufacturer hardware and realistic user contexts.
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Table 7.1: Contexts for which data was gathered in our Smartphone HCR Study Col-
lected Contexts.

Phone Placement

Phone in Bag Phone in Hand
Phone in Table Facing Down Phone in Table Facing Up
Phone in Pocket

Long activity

Walking Sitting
Jumping Jogging
Lying Down Running
Standing Sleeping
Stairs - Going Up Stairs - Going Down
Talking On Phone Trembling
Typing In Bathroom

Short activity (Scripted study only)

Coughing Sneezing
Standing up (transition) Laying Down (transition)
Sitting Down (transition) Sitting Up (transition)
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7.5.3 Data Preprocessing and Feature Extraction

All datasets were uniformly preprocessed. Segments were generated using a 20-

second time window, and contexts were formulated as multi-label vectors. We

used information gathered from five different sensors: the accelerometer, gy-

roscope, global positioning system (GPS), magnetometer, and the phone’s sta-

tus (discrete attributes such as whether or not the screen is locked on the de-

vice). Statistical, temporal, and frequency-based features were computed for each

sensor modality. Thereafter, Z-score normalization was applied by taking the

difference between the mean and the standard deviation and dividing by the

latter zi = xi−x̄
s

. To train a feed-forward network, these manually extracted

features are utilized to build a vector. Vaizman et al.’s open-source work on

github.com/cal-ucsd/ExtraSensoryAndroid was used to implement 188 new fea-

tures [14].

Table 7.2: A sample list of handcrafted features used on our sensor data [14].

Feature Formulation

Arithmetic mean s̄ = 1
N

∑N
i=1 si

Standard deviation σ =
√

1
N

∑N
i=1 (si − s̄)2

Frequency signal Skewness
E
[
(s−s̄)3

σ

]
Frequency signal Kurtosis E

[
(s− s̄)4

]
/E
[
(s− s̄)2

]2
Signal magnitude area

1
3

∑3
i=1

∑N
j=1 |si,j |

Pearson Correlation
coefficient

C1,2/
√
C1,1C2,2, C = cov (s1, s2)

Spectral energy of a
frequency band [a, b]

1
a−b+1

∑b
i=a s

2
i

s: signal vector, N: signal vector length Q: quartile
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Figure 7.4: The overall performance results were obtained using the Zoo (top) & HSJ
(bottom) (higher is better).

7.5.4 Evaluation Protocol

In order to improve the generalizability of our model to unseen participants, we

utilized subject-wise cross-validation, where all of a subject’s data appeared either

in the training or test sets but not both. In each adversarial HCR experiment,

we use 80% of the data to train the HCR and the remaining 20% data is used for

testing. We only use the testing data to create adversarial examples that capture

a real-world use case. Two metrics were used: Balanced accuracy and F-1 score.

Where balanced accuracy is defined as :

BA =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
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Figure 7.5: The overall drop in performance under the Zoo (top) & HSJ (bottom) attacks
(lower is better).

In each experiment, a binary classifier is trained for each label in the dataset.

Then, adversarial examples are generated using one of the mentioned black-box

attacks (Zoo and HSJ) using the testing split. Also, both the testing score and the

adversarial score, defined as the following (for Balanced accuracy) are reported:

BAADV = BAtesting −BAadversarial examples

7.5.5 Implementation

We implemented RobustHCR on a Dell R450 Poweredge server equipped with a

single NVIDIA V100 GPU. For training our neural networks, we used the Py-

torch auto differentiation framework. We used a feed-forward neural network
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with two ReLU hidden layers, each consisting of 16 nodes, adapted from Vaizman

et al.’s classifier used on the Extrasensory dataset [23]. For adversarial attack

generation, we utilized the Adversarial Robustness toolbox by IBM to generate

the Zoo and HSJ attacks [152]. The necessary parameters for producing an ad-

versarial attack are as follows: Zoo attack(learning rate=1e-, max iter=20, binary

search steps=10, initial const=1e-3, abort early=True, variable h=0.2) and Hop-

SkipJump(norm = 2, max iter = 50, max eval = 10000, init eval = 100, init size

= 100). All networks are optimized by a mini-batch Adam optimizer with a 0.01-

percent learning rate and a momentum of 0.90. We ran a total of 100 epochs using

a batch size of 64 in order to ensure sufficient training iterations for HCR tasks.

For the adversarial defense, the open-source implementation of the duality-based

method is used to compute the robust bounds for ReLU-based neural network:

github.com/locuslab/convex_adversarial. Through empirical evaluation, we dis-

covered the best size of the perturbation region to be robust against adversarial

examples, which was set at 0.1.

7.5.6 Baselines

We compare our work to Adar [147] and RobustSense [142], the two closest meth-

ods proposed to defend against evasion attacks on sensor data. During training,

Adar augmented adversarial examples generated by a white-box attack [147]. Yang

et al. proposed RobustSense, which is designed to defend WiFi-based Human Ac-

tivity Recognition against evasion attacks [142]. This method also falls under the

adversarial training category as it augments adversarial examples during training

and forces the model to generate consistent predictions for original inputs and
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Table 7.3: Adversarial F-1 scores per label on the Scripted HCR dataset were obtained
using the Zoo attack.

Method / Label Proposed Adar RobustSense Undefended
Bathroom 0.62 0.33 0.21 0.25
Coughing 0.65 0.40 0.36 0.30
Jogging 0.65 0.33 0.41 0.35
Jumping 0.71 0.33 0.41 0.30

Laying Down (action) 0.67 0.36 0.28 0.48
Lying Down 0.66 0.33 0.29 0.39
Phone in Bag 0.43 0.53 0.50 0.13
Phone in Hand 0.56 0.74 0.88 0.07
Phone in Pocket 0.53 0.66 0.44 0.11
Phone on Table 0.57 0.33 0.48 0.31

Running 0.65 0.33 0.27 0.29
Sitting 0.60 0.81 0.85 0.30

Sitting Down (action) 0.70 0.45 0.41 0.59
Sitting Up (action) 0.67 0.40 0.28 0.45

Sleeping 0.65 0.33 0.43 0.42
Sneezing 0.67 0.40 0.29 0.49
Stairs 0.66 0.34 0.17 0.34

Standing 0.65 0.33 0.17 0.41
Standing up (action) 0.70 0.44 0.57 0.46
Talking On Phone 0.65 0.33 0.25 0.25

Trembling 0.61 0.35 0.57 0.23
Typing 0.63 0.33 0.50 0.28
Walking 0.62 0.86 0.86 0.10

their adversarial variants by minimizing the sum of the Kullback–Leibler (KL)

divergences DKL(p∥q) =
∫
x
p(x) log p(x)

q(x)
dx between pairs of original inputs and

their adversarial form, which used to increase the model’s robustness and gently

minimize the prediction inconsistency. To ensure a fair comparison, we employed

the Projected Gradient Descent (PGD) white-box attack [66] in both cases. We

used the author’s provided code to run on our datasets.
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Table 7.4: Adversarial F-1 scores per label for the In-the-wild HCR dataset were obtained
using the Zoo attack.

Method / Label Proposed Adar RobustSense Undefended
Bathroom 0.65 0.33 0.34 0.39
Exercising 0.62 0.33 0.49 0.29
Jogging 0.65 0.33 0.51 0.28

Lying down 0.36 0.37 0.21 0.28
Phone in Bag 0.39 0.38 0.35 0.29
Phone in Hand 0.38 0.33 0.09 0.30
Phone in Pocket 0.48 0.62 0.46 0.22
Phone on Table 0.60 0.72 0.62 0.22

Running 0.63 0.33 0.32 0.27
Sitting 0.53 0.60 0.61 0.24

Sleeping 0.62 0.65 0.68 0.28
Stairs 0.65 0.33 0.37 0.24

Standing 0.37 0.33 0.22 0.38
Talking on Phone 0.69 0.33 0.27 0.28

Typing 0.39 0.34 0.50 0.36
Walking 0.38 0.48 0.50 0.33

7.6 Results & Discussion

1) Overall Results : Figures (7.4) and (7.5) illustrate our overall findings. In Figure

(7.4), we display the adversarial test scores (Adv F1, Adv BA), whereas in Figure

(7.5), we use a computed value representing the amount of reduction when switch-

ing from clean to adversarial inputs (e.g. Drop in F1 = F1 - Adv F1). Generally,

it can be observed that HSJ, which uses less information than the Zoo attack,

clearly produced a higher impact and, specifically, a higher drop in performance

(poor Adv F1 & Adv BA scores). The HSJ attack is significantly more effective

than the Zoo attack because fewer queries are required to reach convergence. We

obviously see that both sophisticated adversarial evasion attacks (Zoo and HSJ)

can significantly impair the accuracy of undefended HCR models, resulting in a

performance drop of up to 60(7.3) and (7.4), we present a sample of adversarial
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scores reported per label by the Zoo attack on both scripted and in-the-wild HCR

datasets. By achieving higher prediction scores for the original context labels, it is

evident that our proposed method outperformed baseline methods in most cases.

2) Robustness trade-off : In Table (7.5), we evaluated varying the epsilon param-

eter for the duality-based network on the scripted dataset, controlling the robust-

ness guarantees, where ε controls the size of l1 norm ball to be robust against

adversarial examples. Larger ε values reduce the amount of damage that could be

caused by adversarial examples by sacrificing a bit on the performance on clean

inputs.

3) Visualizing generated examples : In order to come up with a measure for im-

perceptibility and to evaluate the quality of the produced adversarial example

utilized, we consider the two sets of clean vs. adversarial examples as two clus-

ters, and we utilize a cluster evaluation score to test how similar these inputs

are to each other. Specifically, we utilized the Silhouettescore Score = bi−ai
max(bi,ai)

,

where bi is the average distance that is the shortest between a point and every

other point in any other cluster, whereas ai is the mean distance that is between i

and all data points that are from the same cluster. This score takes into consider-

ation both compactness and separation. The visualization is illustrated in Figure

(7.6) obtained by projecting feature embeddings into a two-dimensional space us-

ing the T-distributed Stochastic Neighbor Embedding (TSNE). In all cases, the

generated adversarial examples in our proposed method are further away from the

clean inputs, which means in case of an actual attack, there will be more likely

to be rejected and classified as data from bad actors. Bad actors are users who

carelessly (or maliciously) provide incorrect ground truth labels that do not reflect
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actual events during data collection.

Our findings showed that even in a black-box environment without access to model

parameters, smartphone HCRs are susceptible to evasion assaults. Through our

empirical analyses of three smartphone HCR datasets, we also demonstrate the

usefulness of our suggested defense technique in guarding against the evasion at-

tack threat.

7.7 Limitations and Future Work

In this work, we assumed that an adversary could tamper with the sensor data

before it was input to the HCR model, which is presumed to be located on a server

in the cloud. One of the exciting problems we may want to explore in the future is

the feasibility of these attacks running entirely on a smartphone device. We also

relied on a tabular view of the raw sensor data by extracting handcrafted features,

which were passed to a ReLU-based neural network. Additionally, future work

will expand our threat model to include the possibility of poisoning during data

collection in the wild and investigate corresponding defense strategies.

7.8 Chapter Summary

HCR models deployed in the wild are vulnerable to adversarial threats such as

data poisoning, which targets the training stage, and evasion attacks that are per-

petuated during model inference. In this study, we investigate adversarial evasion

attacks and defenses for smartphone-based HCR systems. We formally describe

and demonstrate the vulnerability of HCR systems to adversarial examples gener-
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Scripted Dataset

(a) Undefended - Zoo (0.117) (b) Undefended - HSJ (0.0268)

(c) RobustHCR - Zoo (0.193) (d) RobustHCR - HSJ - (0.134)
ExtraSensory Dataset

(e) Undefended - Zoo (0.188) (f) Undefended - HSJ (0.184)

(g) RobustHCR - Zoo (0.278) (h) RobustHCR - HSJ - (0.260)

Figure 7.6: t-SNE plots for clean vs. adversarial examples, with computed silhouette
scores.

ated in a black-box environment under two assumptions: the availability of class

confidence scores and the availability of only class decisions. The empirical find-
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ings demonstrate that adversarial attacks can degrade the performance of deep

models operating in HCR systems by up to 60

Table 7.5: Varying the epsilon parameter for the duality-based network tested on the
scripted dataset, controlling the robustness guarantees, where ε controls the size of l1
norm ball to be robust against adversarial examples. Larger ε values reduce the amount
of damage that could be caused by adversarial examples by sacrificing a bit of the
performance on clean inputs.

Dataset F1-score Adv F1-score
ε

Scripted 0.01 0.915 0.515
0.05 0.953 0.697
0.10 0.953 0.793
0.15 0.942 0.841
0.20 0.939 0.855
0.25 0.939 0.878
0.30 0.918 0.886
0.35 0.905 0.877
0.40 0.860 0.845

In-the-wild 0.01 0.758 0.478
0.05 0.732 0.629
0.10 0.716 0.697
0.15 0.698 0.686
0.20 0.682 0.675
0.25 0.661 0.657
0.30 0.664 0.650
0.35 0.654 0.646
0.40 0.627 0.627
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Chapter 8

Discussion and Findings

This chapter provides a summary of the research conducted for this dissertation

and an outline for future work, and discusses our significant findings. As stated

earlier in this dissertation, the overarching goal is to design practical solutions to

the challenges, as mentioned earlier, using various representation learning tech-

niques, a collection of techniques that enable automated discovery of the repre-

sentations required for weakly-supervised machine learning tasks from raw data.

A strong representation will help various downstream tasks of interest, such as

classification.

8.1 Accomplished Research Work

Human Context Recognition under inexact supervision DeepContext has

two significant innovations. First, DeepContext employs a joint-learning fu-

sion strategy that utilizes both domain-specific handcrafted features and fea-

tures that are autonomously generated by a Convolutional Neural Network

(CNN). Second, DeepContext addresses the problem of coarse-grained la-
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bels by discovering and giving higher importance to the most salient regions

of the sensor data. These regions are expected to correspond to a higher

predictive value for specific contexts. This allows our model to overcome

potentially noisy inputs, which is achieved by DeepContext’s parametrized

compatibility-based attention mechanism [22].

Leveraging Coincident Context Data Gathering Study Scripted datasets

have accurate context labels, but user behaviors are not realistic. In-the-wild

datasets have realistic user behaviors but often have wrong or missing labels.

We proposed two methods motivated by this fact that work in two settings:

1) Inaccurate supervision using PUCL: Positive Unlabeled Context Learning

[26] and 2) Incomplete supervision using Triple-DARE : Triplet-based Do-

main Adaptation for Lab-to-field Human Context Recognition. PUCL uses

a transductive positive unlabeled learning methodology to transfer knowl-

edge from the highly-accurate labels of the scripted dataset to the less ac-

curate, more sparse but yet more realistic in-the-wild dataset. Triple-DARE

utilized a transductive transfer learning method with triplet loss to adapt

neural networks in various domains to mitigate the covariate shift problem.

Adversarial-Robust Human Context Recognition Evasion attacks are mainly

concerned with manipulated data intended to deceive pre-trained classifiers

into misclassifications. We demonstrate model inference evasion attacks, in-

cluding adversarially calibrated input perturbations to fool classifiers. Black-

box evasion attacks only require arbitrary model queries, unlike white-box

methods. RobustHCR is a novel duality-based network defense framework

for black box evasion threats. RobustHCR reliably predicts whether its in-
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put is under attack, minimizing adversarial attacks. RobustHCR’s rigorous

evaluation of scripted and in-the-wild smartphone HCR datasets shows that

it can significantly improve the HCR model’s robustness and protection from

evasion attacks while maintaining acceptable performance on clean inputs.

8.2 Example of an Application Use Case

Mobile-sensed data-based HCRs can be utilized for several use cases. Smartphone-

based HCRs may be used to continuously track and monitor the health of soldiers

or veterans in order to detect Traumatic Brain Injuries (TBI) or infectious diseases.

(e.g., Covid-19). By monitoring smartphone biomarkers for health, abnormal user

behavior, physiological indicators, activities, and context visit patterns can be

identified. Additionally, in one of the most challenging contexts to detect, Stairs

- Going Up and Stairs - Going Down, we can significantly outperform the other

state-of-the-art methods with the help of our proposed method DeepContext. De-

tecting whether the subject is avoiding using stairs might provide valuable insights

about their mobility levels, which could facilitate the identification of potential ail-

ments [92].

8.3 Findings for Robust Feature Extraction

What distinguishes a typical classification task using sensory data from other data

types (e.g., images or text) is the necessary preprocessing steps on its inputs before

feeding them to the machine learning model. Sensory data is initially segmented

using sliding windows to generate training instances, which are then input to the
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feature generator model that extracts feature vectors utilized for context prediction

later in the pipeline.

The size of the sliding window plays a critical role in acquiring a helpful represen-

tation. The choice of small windows (e.g., 2 or 3 seconds) might produce signif-

icantly higher prediction performance for predicting ambulation activities using

sensory data. However, from an application perspective, accurate predictions for

larger segments are far more helpful in context predictions, where we find signifi-

cant improvements from using our proposed method, DeepContext. Also, having a

better-performing method under larger sliding windows implies the ability to learn

valuable features under significantly larger background noise. The user-provided

ground-truth labeling becomes more coarse-grained and less accurately associated

with the entire training example. The advantage of our proposed method comes

from its attention mechanism to learn context-specific salient features and more

effectively suppress background noise occurring in the sensor data. Additionally,

we speculate that the significant improvements we get in our feature extraction

method are due to the utilization of both deeplearning-based generated features

and domain-specific handcrafted features.

8.4 Findings for Transferability of In-lab Models to the Real

world

The contexts and patterns of visits in scripted datasets are not representative of

the real world. It is essential that HCR models are accurate on datasets collected in

the wild, which are more representative of actual deployment scenarios. However,
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HCR models perform less well when trained directly on more realistic datasets

collected in the wild. For example, using an HCR model trained directly on an

in-the-wild dataset, Vaizman achieved 71.7% accuracy [23]. This represents a

19.5% decrease in the accuracy of state-of-the-art HCR models on scripted versus

in-the-wild datasets, highlighting the difficulty of achieving robust, high HCR

performance on in-the-wild datasets. Diversity of Causes (DoC) and labeling

issues are specific challenges posed by in-the-wild data sets. Approaches that

train a robust HCR model on a scripted dataset and then transfer it to an in-the-

wild dataset face the additional difficulty of a covariate shift between the scripted

and in-the-wild datasets.

When attempting to use models trained on scripted data to improve performance

on an unscripted dataset with similar context labels, we encounter a data shift

problem known as covariate shift, where the distribution of features differs be-

tween training and test scenarios. Specifically, the covariate shift problem results

from significant differences in the distribution of features extracted from scripted

versus in-the-wild datasets [35, 36, 37]. More generally, because real-world appli-

cations must deal with some dataset shifts, addressing the covariate shift problem

is essential for successfully deploying machine learning models in the wild [35].

In-the-wild HCR data-gathering studies depend on self-reported labels. As users’

lives become hectic, they may stop providing labels, or worse, they may provide

incorrect labels [32]. Consequently, most collected sensor data are unlabeled,

necessitating the development of unsupervised HCR models capable of utilizing

unlabeled data and minimizing the effects of mislabeled data. We found that

applying positive unlabeled classifiers that leverage high-fidelity scripted datasets
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can reduce the impact of potential erroneous labeling found in in-the-wild datasets.

We significantly improved using DA methods to adapt pre-trained HCR models

for making predictions under DoC data. Specifically, using a triplet-loss-based DA

method help the model in finding a joint embedding space for not only reducing the

global discrepancy between the two dataset feature distribution but also improving

intra-class compactness and inter-class separability, which eventually improves

context recognition on the target dataset.

8.5 Findings for Robust Representations under Adversarial

Attacks

In the wild, HCR models are susceptible to adversarial attacks such as data poison-

ing, which targets the training phase or those that occur during model inference.

Using adversarial threats as a robustness metric is also essential. Concerning the

viability of these threats, it is essential to identify the types of attacks an ad-

versary can conduct against a smartphone HCR classifier based on two threat

models. A score-based threat model assumes access to class confidence scores,

whereas a label-based model only assumes access to the predicted label. An ad-

versary can submit arbitrary inputs to a pre-trained HCR classifier and observe its

output (e.g., class confidence scores or only class labels). During data collection in

the wild, an adversary may transmit sensor inputs and self-reported annotations.

Evasion attacks can be used to create poisonous examples, specifically inputs that

resemble valid inputs but have misleading labels. While our proposed methods

can be helpful for both types of attacks, we only focused on examining evasion
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attacks and defenses in this dissertation.

Even in a black-box environment without access to model parameters, smartphone

HCRs were vulnerable to evasion attacks. Our empirical analyses of three smart-

phone HCR datasets demonstrate the efficacy of our proposed defense against the

threat of evasion attacks.

8.6 Limitations of the Proposed Approaches

While our work is proposed for mobile-sensed HCRs, we evaluated our approaches

on smartphone sensory data that has multiple modalities. The generation of sensor

features from inputs with varying segment sizes is one area we did not investigate;

instead, we fixed the segment sizes in one experiment.

Also, when we performed the transferability of scripted to in-the-wild models, we

assumed the same sensors and number of extracted features were constant across

the two datasets as well as the context labeling vector.

Additionally, for our adversarial robustness work, we assumed that an adversary

could tamper with sensor data before it was input into the HCR model, which is

presumed to reside on a cloud-based server. The current design of RobustHCR

assumes that there is no limit on the number of queries that can be executed, and

we have ignored the time required to generate adversarial examples.
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8.7 Future Work

As part of future work, in order to reduce the reliance on human-annotated data,

we will use Dual-GANs to generate synthetic samples designed for mobile-sensing

data with DoC. To get over the restrictions of labeled datasets, we propose research

methods to advance state-of-the-art representation learning techniques for mobile

sensing data using contrastive-learning-based self-supervised learning techniques.

We aim to design approaches to extract beneficial features from unlabeled context

mobile sensing data.

The possibility of adversarial attacks functioning solely on a smartphone device

is one of the interesting problems we may want to investigate in the future. Our

threat model will be expanded in the future to incorporate the possibility of poi-

soning during data collection in the wild, and appropriate defense strategies will

be investigated.

Human Context Generation Our method aims to adapt a generative model

that has been trained on the source domain to produce synthetic samples in

the target domain using few or no labeled samples from the target domain.

We propose to use Dual-GANs with Elastic Weight Consolidation (EWC),

a regularization technique designed to mitigate catastrophic forgetting in

neural networks. This extends our previous work Triple-DARE, but we plan

to apply the domain adaptation technique on deep generative models instead

of context classification models.

Self-supervised Contrastive Learning In order to get over the restrictions of

labeled datasets, we propose research methods to advance state-of-the-art
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representation learning techniques for mobile sensing data using contrastive-

learning-based SSL techniques. Our envisioned approach is designed to ex-

tract highly useful features from unlabeled context mobile sensing data. Our

envisioned approach can also work with a provided supplementary labeled

dataset to learn task-relevant features and suppress the noise related to DoC

through contrastive learning. As a motivational use case, this approach could

enable visual representation tools with rich sensory representations by lever-

aging self-supervised learning, which can be critical for analyzing sensory

data on a large scale.
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Conclusion

Context awareness is crucial in enabling ubiquitous computing systems with op-

timal usability. Due to its ubiquity, smartphones will become more capable of

providing contextual information about their users, known as Human Context

Recognition (HCR), as technology becomes more integrated with the human ex-

perience. However, collecting smartphone sensor data in the wild often results in

naturally occurring variations in the data. When leveraging models trained on

scripted data, we encounter a data shift problem known as covariate shifts, where

the distribution of features differs across training and test scenarios. Deploying

such HCR models in the wild requires ensuring successful transferability from the

lab to real-world applications by learning robust representations, which are hin-

dered by several challenges residing in both inputs and labels due to the generation

process of mobile-sensing data in addition to how annotations are acquired that

is usually based on self-reporting.

This dissertation proposes designing practical solutions for filling research gaps in

the mobile sensing domain, fusing various representation learning techniques in a

144



Chapter 9: Conclusion

weakly-supervised-learning setting under covariate shifts. This endeavor attempts

to integrate HCRs that utilize mobile-sensed data into the analytical and decision-

making pipeline for a variety of motivational app use cases, including military

deployment, mobile health, and assisted living. Specifically, 1) we propose state-

of-the-art methods for sensor-based feature extractions with DeepContext that

addresses the problem of coarse-grained labels by discovering and giving higher

importance to the most salient regions of the sensor data using a parametrized

compatibility-based attention mechanism. 2) We demonstrate that it is help-

ful to leverage scripted datasets with accurate context labels to improve context

recognition in real-world applications through a coincident context data-gathering

study in which the same contexts were collected. We proposed two methods mo-

tivated by this fact that work in two settings: a) Inaccurate supervision using

PUCL: Positive Unlabeled Context Learning and b) Incomplete supervision using

Triple-DARE : Triplet-based Domain Adaptation for Lab-to-field Human Context

Recognition. PUCL uses a transductive positive unlabeled learning methodology

to transfer knowledge from the highly-accurate labels of the scripted dataset to the

less accurate, more sparse, yet more realistic in-the-wild dataset. Triple-DARE

utilized a transductive transfer learning method with triplet loss to adapt neural

networks in various domains to mitigate the covariate shift problem.

Finally, 3) We identify and propose defenses for potential adversarial threats to

mobile-sensing in-the-wild gathering studies, which are Evasion attacks. We con-

clude our dissertation with RobustHCR, a defensive approach using robust opti-

mizations by evaluating its performance against adversarial threats, increasing the

model’s robustness overall.

145



Bibliography

[1] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and Pete Steggles.

“Towards a Better Understanding of Context and Context-Awareness.” In: Handheld and Ubiq-

uitous Computing. Vol. 1707. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 304–307

(cit. on p. 3).

[2] Mark Weiser. “The computer for the 21st century.” In: ACM SIGMOBILE mobile computing

and communications review 3.3 (1999), pp. 3–11 (cit. on p. 3).

[3] Albrecht Schmidt. Ubiquitous computing-computing in context. Lancaster University (United

Kingdom), 2003 (cit. on p. 3).

[4] P. Rashidi and D.J. Cook. “Keeping the Resident in the Loop: Adapting the Smart Home to the

User.” In: IEEE Trans.Sys., Man, and Cybernetics - Part A: Systems and Humans 39.5 (Sept.

2009), pp. 949–959 (cit. on p. 3).

[5] Parisa Rashidi and Alex Mihailidis. “A Survey on Ambient-Assisted Living Tools for Older

Adults.” In: IEEE Journal of Biomedical and Health Informatics 17.3 (May 2013), pp. 579–590

(cit. on p. 3).

[6] Mashfiqui Rabbi, Predrag Klasnja, Maureen Walton, Susan Murphy, Meredith Philyaw-Kotov,

Jinseok Lee, Anthony Mansour, Laura Dent, Xiaolei Wang, Rebecca Cunningham, Erin Bonar,

and Inbal Nahum-Shani. “SARA: a mobile app to engage users in health data collection.” en. In:

Proc. ACM UbiComp ’17. Maui, Hawaii, 2017, pp. 781–789 (cit. on p. 3).

[7] Alfredo J. Perez, Miguel A. Labrador, and Sean J. Barbeau. “G-Sense: a scalable architecture

for global sensing and monitoring.” In: IEEE Network 24 (2010) (cit. on p. 3).

146



Bibliography

[8] Bruno M.C. Silva, Joel J.P.C. Rodrigues, Isabel de la Torre Díez, Miguel López-Coronado, and

Kashif Saleem. “Mobile-health: A review of current state in 2015.” en. In: J. Biomed. Inf. 56

(Aug. 2015), pp. 265–272 (cit. on p. 3).

[9] Youngki Lee, Junehwa Song, Chulhong Min, Chanyou Hwang, Jaeung Lee, Inseok Hwang, Younghyun

Ju, Chungkuk Yoo, Miri Moon, and Uichin Lee. “SocioPhone: everyday face-to-face interaction

monitoring platform using multi-phone sensor fusion.” en. In: Proc. ACM MobiSys ’13. Taipei,

Taiwan: ACM Press, 2013, p. 375 (cit. on p. 3).

[10] Mashfiqui Rabbi Xiaochao Yang Hong Lu Giuseppe Cardone Shahid Ali Afsaneh Doryab Ethan

Berke Andrew Campbell Tanzeem Choudhury. Mu Lin Nicholas D. Lane. “BeWell+: Multi-

dimensional Wellbeing Monitoring with Community-guided User Feedback and Energy Opti-

mization.” In: Wireless Health 2012 (Oct. 2012) (cit. on pp. 3, 4).

[11] Kelly Servick. Mind the phone. 2015 (cit. on p. 4).

[12] Mathias Basner, Kenneth M Fomberstein, Farid M Razavi, Siobhan Banks, Jeffrey H William,

Roger R Rosa, and David F Dinges. “American time use survey: sleep time and its relationship

to waking activities.” In: Sleep 30.9 (2007), pp. 1085–1095 (cit. on p. 4).

[13] David E Bloom, Elizabeth Cafiero, Eva Jané-Llopis, Shafika Abrahams-Gessel, Lakshmi Reddy

Bloom, Sana Fathima, Andrea B Feigl, Tom Gaziano, Ali Hamandi, Mona Mowafi, et al. The

global economic burden of noncommunicable diseases. Tech. rep. Program on the Global Demog-

raphy of Aging, 2012 (cit. on p. 4).

[14] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. “Recognizing Detailed Human Context

in the Wild from Smartphones and Smartwatches.” en. In: IEEE Pervasive Computing 16.4 (Oct.

2017), pp. 62–74 (cit. on pp. 4, 7, 11, 12, 16, 32, 35, 44, 51, 83, 84, 105, 122, 124).

[15] Andrew Perrin. Mobile Technology and Home Broadband 2021. 2021 (cit. on p. 4).

[16] Published by S. O’Dea and Feb 17. Smartphone users 2026. 2022 (cit. on p. 4).

[17] DARPA. DARPA WASH BAA. (accessed: 07.06.2020). url: https://beta.sam.gov/opp/

cfb9742c60d055931003e6386d98c044/view (cit. on pp. 5, 27).

[18] Pierluigi Casale, Oriol Pujol, and Petia Radeva. “Personalization and user verification in wearable

systems using biometric walking patterns.” In: Personal and Ubiquitous Computing 16.5 (2012),

pp. 563–580 (cit. on p. 7).

147

https://beta.sam.gov/opp/cfb9742c60d055931003e6386d98c044/view
https://beta.sam.gov/opp/cfb9742c60d055931003e6386d98c044/view


Bibliography

[19] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. “A

public domain dataset for human activity recognition using smartphones.” In: Esann. Vol. 3.

2013, p. 3 (cit. on p. 7).

[20] Daniela Micucci, Marco Mobilio, and Paolo Napoletano. “Unimib shar: A dataset for human

activity recognition using acceleration data from smartphones.” In: Applied Sciences 7.10 (2017),

p. 1101 (cit. on p. 7).

[21] Henrik Blunck, Sourav Bhattacharya, Allan Stisen, Thor Siiger Prentow, Mikkel Baun Kjær-

gaard, Anind Dey, Mads Møller Jensen, and Tobias Sonne. “ACTIVITY RECOGNITION ON

SMART DEVICES: Dealing with Diversity in the Wild.” In: GetMobile: Mobile Comp. and

Comm. 20.1 (July 2016), 34–38 (cit. on p. 7).

[22] A. Alajaji, W. Gerych, K. Chandrasekaran, L. Buquicchio, E. Agu, and E. Rundensteiner. “Deep-

Context: Parameterized Compatibility-Based Attention CNN for Human Context Recognition.”

In: 2020 IEEE 14th International Conference on Semantic Computing (ICSC). 2020, pp. 53–60

(cit. on pp. 10, 20, 32, 34, 69, 83, 93, 136).

[23] Yonatan Vaizman, Nadir Weibel, and Gert Lanckriet. “Context recognition in-the-wild: Unified

model for multi-modal sensors and multi-label classification.” In: Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies 1.4 (2018), pp. 1–22 (cit. on pp. 10,

34, 53, 83, 127, 139).

[24] Youngjae Chang, Akhil Mathur, Anton Isopoussu, Junehwa Song, and Fahim Kawsar. “A Sys-

tematic Study of Unsupervised Domain Adaptation for Robust Human-Activity Recognition.”

In: ACM IMWUT 4 (Mar. 2020), pp. 1–30 (cit. on pp. 11, 36–39, 76, 77, 106).

[25] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Prentow, Mikkel Kjærgaard, Anind

Dey, Tobias Sonne, and Mads Jensen. “Smart Devices are Different: Assessing and Mitigating

Mobile Sensing Heterogeneities for Activity Recognition.” In: Proc. Sensys. Nov. 2015, pp. 127–

140 (cit. on pp. 12, 39, 106).

[26] Abdulaziz Alajaji, Walter Gerych, Luke Buquicchio, Kavin Chandrasekaran, Hamid Mansoor, E.

Agu, and Elke A. Rundensteiner. “Smartphone Health Biomarkers: Positive Unlabeled Learning

of In-the-Wild Contexts.” In: IEEE Pervasive Computing 20 (2021), pp. 50–61 (cit. on pp. 12,

16, 17, 20, 32–35, 64, 65, 105, 110, 136).

148



Bibliography

[27] Oscar D. Lara and Miguel A. Labrador. “A Survey on Human Activity Recognition using Wear-

able Sensors.” In: IEEE Communications Surveys & Tutorials 15.3 (2013), pp. 1192–1209 (cit. on

pp. 12, 16, 34, 44).

[28] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. “Deep Learning for

Sensor-based Activity Recognition: A Survey.” In: Pattern Recognition Letters 119 (Mar. 2019).

arXiv: 1707.03502, pp. 3–11 (cit. on pp. 12, 16, 34).

[29] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. “Synthesizing and Reconstructing Missing

Sensory Modalities in Behavioral Context Recognition.” In: Sensors 18 (Sept. 2018), p. 2967

(cit. on p. 12).

[30] Yonatan Vaizman, Katherine Ellis, Gert Lanckriet, and Nadir Weibel. “ExtraSensory App: Data

Collection In-the-Wild with Rich User Interface to Self-Report Behavior.” en. In: Proceedings

of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal QC Canada:

ACM, Apr. 2018, pp. 1–12 (cit. on p. 12).

[31] Zhi-Hua Zhou. “A brief introduction to weakly supervised learning.” In: National Science Review

5.1 (2018), pp. 44–53 (cit. on p. 13).

[32] H. Mansoor, W. Gerych, L. Buquicchio, K. Chandrasekaran, E. Agu, and E. Rundensteiner.

“DELFI: Mislabelled Human Context Detection Using Multi-Feature Similarity Linking.” In:

2019 IEEE VDS. 2019, pp. 11–19 (cit. on pp. 13, 23, 139).

[33] Zhi-Hua Zhou. “A brief introduction to weakly supervised learning.” en. In: National Science

Review 5.1 (Jan. 2018), pp. 44–53 (cit. on p. 14).

[34] Zhi-Hua Zhou. “A brief introduction to weakly supervised learning.” en. In: National Science

Review 5.1 (Jan. 2018), pp. 44–53 (cit. on pp. 14, 28, 30, 44).

[35] “A unifying view on dataset shift in classification.” In: 45.1 (2012), pp. 521–530 (cit. on pp. 14,

25, 76, 139).

[36] Wouter M. Kouw. “An introduction to domain adaptation and transfer learning.” In: ArXiv

abs/1812.11806 (2018) (cit. on pp. 14, 36, 76, 139).

[37] Annamalai Natarajan, Gustavo Angarita, Edward Gaiser, Robert Malison, Deepak Ganesan, and

Benjamin M. Marlin. “Domain Adaptation Methods for Improving Lab-to-Field Generalization

149



Bibliography

of Cocaine Detection Using Wearable ECG.” In: Proc. Ubicomp. Heidelberg, Germany: ACM,

2016, 875–885 (cit. on pp. 14, 75–77, 80, 139).

[38] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey

Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, et al. “Technical report on the

cleverhans v2. 1.0 adversarial examples library.” In: arXiv preprint arXiv:1610.00768 (2016)

(cit. on pp. 14, 15).

[39] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing adver-

sarial examples.” In: arXiv preprint arXiv:1412.6572 (2014) (cit. on p. 14).

[40] Robert Geirhos, J. Jacobsen, Claudio Michaelis, R. Zemel, Wieland Brendel, M. Bethge, and

Felix Wichmann. “Shortcut Learning in Deep Neural Networks.” In: Nature Machine Intelligence

(2020) (cit. on pp. 15, 16, 26, 108).

[41] Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, and Jinwen He. “Towards security threats of

deep learning systems: A survey.” In: IEEE Transactions on Software Engineering (2020) (cit. on

pp. 15, 16, 40, 107).

[42] AKM Iqtidar Newaz, Nur Imtiazul Haque, Amit Kumar Sikder, Mohammad Ashiqur Rahman,

and A Selcuk Uluagac. “Adversarial attacks to machine learning-based smart healthcare systems.”

In: Proc. Globacom. IEEE. 2020, pp. 1–6 (cit. on p. 15).

[43] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deepfool: a simple and

accurate method to fool deep neural networks.” In: Proc. IEEE CVPR. 2016, pp. 2574–2582

(cit. on pp. 15, 39, 106).

[44] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. “Adversarial attacks on

deep-learning models in natural language processing: A survey.” In: ACM Trans. Intelligent

Systems and Technology (TIST) 11.3 (2020), pp. 1–41 (cit. on pp. 15, 39, 106).

[45] Nicholas Carlini and David Wagner. “Audio adversarial examples: Targeted attacks on speech-

to-text.” In: Security and Privacy Workshops (SPW). IEEE. 2018, pp. 1–7 (cit. on pp. 15, 39,

106).

[46] Samuel Harford, Fazle Karim, and Houshang Darabi. “Adversarial attacks on multivariate time

series.” In: arXiv preprint arXiv:2004.00410 (2020) (cit. on pp. 15, 39, 106).

150



Bibliography

[47] Fazle Karim, Somshubra Majumdar, and Houshang Darabi. “Adversarial attacks on time series.”

In: Trans. pattern analysis and machine intelligence (2020) (cit. on pp. 15, 39, 106).

[48] Izaskun Oregi, Javier Del Ser, Aritz Perez, and Jose A Lozano. “Adversarial sample crafting

for time series classification with elastic similarity measures.” In: International Symposium on

Intelligent and Distributed Computing. Springer. 2018, pp. 26–39 (cit. on pp. 15, 39, 106).

[49] Cezara Benegui and Radu Tudor Ionescu. “Adversarial Attacks on Deep Learning Systems for

User Identification based on Motion Sensors.” In: Proc. NIPS. Springer. 2020, pp. 752–761 (cit.

on pp. 15, 39, 106).

[50] Ramesh Kumar Sah and Hassan Ghasemzadeh. “Adversarial Transferability in Wearable Sensor

Systems.” In: arXiv:2003.07982 [cs, eess, stat] (July 2021). arXiv: 2003.07982 (cit. on pp. 15–17,

39, 106, 110, 113, 117).

[51] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,

Emil C Lupu, and Fabio Roli. “Towards poisoning of deep learning algorithms with back-gradient

optimization.” In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security.

2017, pp. 27–38 (cit. on p. 15).

[52] Chen Wang, Jian Chen, Yang Yang, Xiaoqiang Ma, and Jiangchuan Liu. “Poisoning attacks and

countermeasures in intelligent networks: Status quo and prospects.” en. In: Digital Communica-

tions and Networks (July 2021) (cit. on p. 15).

[53] Marco Melis, Ambra Demontis, Battista Biggio, Gavin Brown, Giorgio Fumera, and Fabio Roli.

“Is deep learning safe for robot vision? adversarial examples against the icub humanoid.” In:

Proceedings of the IEEE International Conference on Computer Vision Workshops. 2017, pp. 751–

759 (cit. on pp. 16, 40, 107).

[54] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,

Giorgio Giacinto, and Fabio Roli. “Evasion attacks against machine learning at test time.” In:

Joint European conference on machine learning and knowledge discovery in databases. Springer.

2013, pp. 387–402 (cit. on pp. 16, 17, 113).

[55] Battista Biggio and Fabio Roli. “Wild patterns: Ten years after the rise of adversarial machine

learning.” en. In: Pattern Recognition 84 (Dec. 2018), pp. 317–331 (cit. on pp. 16, 17, 113, 114).

151



Bibliography

[56] Im Y Jung. “A review of privacy-preserving human and human activity recognition.” In: Int’l

Journal on Smart Sensing & Intelligent Systems 13.1 (2020) (cit. on p. 16).

[57] Hamid Mansoor, Walter Gerych, Luke Buquicchio, Kavin Chandrasekaran, Emmanuel Agu, and

Elke Rundensteiner. “DELFI: Mislabelled Human Context Detection Using Multi-Feature Sim-

ilarity Linking.” In: 2019 IEEE Visualization in Data Science (VDS). Vancouver, BC, Canada:

IEEE, Oct. 2019, pp. 11–19 (cit. on p. 17).

[58] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster, Gerhard

Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, et al. “Collecting complex

activity datasets in highly rich networked sensor environments.” In: Proc. INSS 2010. IEEE.

2010, pp. 233–240 (cit. on p. 22).

[59] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. “Recognizing detailed human context

in the wild from smartphones and smartwatches.” In: IEEE Pervasive Computing 16.4 (2017),

pp. 62–74 (cit. on pp. 22, 39, 40, 63, 71, 106).

[60] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation by

Jointly Learning to Align and Translate.” In: arXiv:1409.0473 [cs, stat] (May 2016). arXiv:

1409.0473 (cit. on pp. 23, 48).

[61] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov,

Richard Zemel, and Yoshua Bengio. “Show, Attend and Tell: Neural Image Caption Generation

with Visual Attention.” In: arXiv:1502.03044 [cs] (Apr. 2016). arXiv: 1502.03044 (cit. on pp. 23,

24).

[62] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. “Learning

Deep Features for Discriminative Localization.” In: arXiv:1512.04150 [cs] (Dec. 2015). arXiv:

1512.04150 (cit. on p. 23).

[63] Hidetoshi Shimodaira. “Improving predictive inference under covariate shift by weighting the log-

likelihood function.” In: Journal of statistical planning and inference 90.2 (2000), pp. 227–244

(cit. on p. 25).

[64] Alexander Robey, Hamed Hassani, and George J Pappas. “Model-based robust deep learning:

Generalizing to natural, out-of-distribution data.” In: arXiv preprint arXiv:2005.10247 (2020)

(cit. on p. 26).

152



Bibliography

[65] Christina Heinze-Deml and Nicolai Meinshausen. “Conditional variance penalties and domain

shift robustness.” In: arXiv preprint arXiv:1710.11469 (2017) (cit. on p. 26).

[66] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.

“Towards deep learning models resistant to adversarial attacks.” In: arXiv preprint arXiv:1706.06083

(2017) (cit. on pp. 26, 128).

[67] Nathan Drenkow, Numair Sani, Ilya Shpitser, and Mathias Unberath. “A systematic review of ro-

bustness in deep learning for computer vision: Mind the gap?” In: arXiv preprint arXiv:2112.00639

(2021) (cit. on p. 26).

[68] Gayatri Sravanthi Kuntla, Xin Tian, and Zhigang Li. “Security and privacy in machine learning:

A survey.” In: Issues in Information Systems 22.3 (2021) (cit. on p. 26).

[69] Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. “Adversarial examples are a natural

consequence of test error in noise.” In: arXiv preprint arXiv:1901.10513 (2019) (cit. on p. 26).

[70] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Alek-

sander Madry. “Adversarial examples are not bugs, they are features.” In: Advances in neural

information processing systems 32 (2019) (cit. on p. 26).

[71] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-

low, and Rob Fergus. “Intriguing properties of neural networks.” In: arXiv preprint arXiv:1312.6199

(2013) (cit. on pp. 26, 105).

[72] Khansa Rasheed, Adnan Qayyum, Mohammed Ghaly, Ala Al-Fuqaha, Adeel Razi, and Junaid

Qadir. “Explainable, trustworthy, and ethical machine learning for healthcare: A survey.” In:

Computers in Biology and Medicine (2022), p. 106043 (cit. on p. 26).

[73] Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou. “Trust-

worthy ai: From principles to practices.” In: ACM Computing Surveys 55.9 (2023), pp. 1–46

(cit. on p. 26).

[74] Brendon G Anderson, Tanmay Gautam, and Somayeh Sojoudi. “An Overview and Prospective

Outlook on Robust Training and Certification of Machine Learning Models.” In: arXiv preprint

arXiv:2208.07464 (2022) (cit. on p. 26).

153



Bibliography

[75] Anind K Dey, Katarzyna Wac, Denzil Ferreira, Kevin Tassini, Jin-Hyuk Hong, and Julian Ramos.

“Getting closer: an empirical investigation of the proximity of user to their smart phones.” In:

Proceedings of the 13th international conference on Ubiquitous computing. 2011, pp. 163–172

(cit. on p. 32).

[76] Raghu Kiran Ganti, Soundararajan Srinivasan, and Aca Gacic. “Multisensor fusion in smart-

phones for lifestyle monitoring.” In: 2010 International Conference on Body Sensor Networks.

IEEE. 2010, pp. 36–43 (cit. on p. 32).

[77] Adil Mehmood Khan, Ali Tufail, Asad Masood Khattak, and Teemu H Laine. “Activity recog-

nition on smartphones via sensor-fusion and KDA-based SVMs.” In: International Journal of

Distributed Sensor Networks 10.5 (2014), p. 503291 (cit. on p. 32).

[78] Yujie Dong, Jenna Scisco, Mike Wilson, Eric Muth, and Adam Hoover. “Detecting periods of

eating during free-living by tracking wrist motion.” In: IEEE journal of biomedical and health

informatics 18.4 (2013), pp. 1253–1260 (cit. on p. 32).

[79] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiaoli Li, and Shonali Krishnaswamy. “Deep

convolutional neural networks on multichannel time series for human activity recognition.” In:

IJCAI. Vol. 15. Buenos Aires, Argentina. 2015, pp. 3995–4001 (cit. on p. 33).

[80] Nils Y Hammerla, Shane Halloran, and Thomas Plötz. “Deep, Convolutional, and Recurrent

Models for Human Activity Recognition Using Wearables.” In: IJCAI. arXiv: 1604.08880. Apr.

2016 (cit. on p. 33).

[81] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. “Deep learning for sensor-

based activity recognition: A survey.” en. In: Pattern Recognition Letters 119 (Mar. 2019), pp. 3–

11 (cit. on p. 33).

[82] Charissa Ann Ronao and Sung-Bae Cho. “Human activity recognition with smartphone sensors

using deep learning neural networks.” en. In: Expert Systems with Applications 59 (Oct. 2016),

pp. 235–244 (cit. on pp. 33, 110).

[83] Zehao Sun, Shaojie Tang, He Huang, Zhenyu Zhu, Hansong Guo, Yu-e Sun, and Liusheng Huang.

“SOS: Real-time and accurate physical assault detection using smartphone.” In: Peer-to-Peer

Networking and Applications 10.2 (2017), pp. 395–410 (cit. on pp. 33, 110).

154



Bibliography

[84] Jorge-L. Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. “Transition-

Aware Human Activity Recognition Using Smartphones.” en. In: Neurocomputing 171 (Jan.

2016), pp. 754–767 (cit. on pp. 34, 50, 51, 84).

[85] Wanmin Wu, Sanjoy Dasgupta, Ernesto E Ramirez, Carlyn Peterson, and Gregory J Norman.

“Classification accuracies of physical activities using smartphone motion sensors.” In: Journal of

medical Internet research 14.5 (2012), e130 (cit. on p. 34).

[86] Seyed Amir Hoseini-Tabatabaei, Alexander Gluhak, and Rahim Tafazolli. “A survey on smartphone-

based systems for opportunistic user context recognition.” en. In: ACM Computing Surveys 45.3

(June 2013), pp. 1–51 (cit. on pp. 34, 44).

[87] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiaoli Li, and Shonali Krishnaswamy. “Deep

Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition.”

In: IJCAI. 2015 (cit. on p. 34).

[88] Valentin Radu, Catherine Tong, Sourav Bhattacharya, Nicholas D. Lane, Cecilia Mascolo, Ma-

hesh K. Marina, and Fahim Kawsar. “Multimodal Deep Learning for Activity and Context Recog-

nition.” en. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-

nologies 1.4 (Jan. 2018), pp. 1–27 (cit. on p. 34).

[89] Nils Y. Hammerla, Shane Halloran, and Thomas Ploetz. “Deep, Convolutional, and Recurrent

Models for Human Activity Recognition using Wearables.” In: arXiv:1604.08880 [cs, stat] (Apr.

2016). arXiv: 1604.08880 (cit. on p. 34).

[90] Francisco Ordóñez and Daniel Roggen. “Deep Convolutional and LSTM Recurrent Neural Net-

works for Multimodal Wearable Activity Recognition.” en. In: Sensors 16.1 (Jan. 2016), p. 115

(cit. on p. 34).

[91] Seyed Amir Hoseini-Tabatabaei, Alexander Gluhak, and Rahim Tafazolli. “A survey on smartphone-

based systems for opportunistic user context recognition.” en. In: ACM Computing Surveys 45.3

(June 2013), pp. 1–51 (cit. on p. 34).

[92] Oscar D. Lara and Miguel A. Labrador. “A Survey on Human Activity Recognition using Wear-

able Sensors.” In: IEEE Communications Surveys & Tutorials 15.3 (2013), pp. 1192–1209 (cit. on

pp. 34, 58, 137).

155



Bibliography

[93] Chi Ian Tang, Ignacio Perez-Pozuelo, Dimitris Spathis, Soren Brage, Nick Wareham, and Cecilia

Mascolo. “SelfHAR: Improving Human Activity Recognition through Self-Training with Unla-

beled Data.” In: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5.1 (Mar. 2021) (cit. on

p. 35).

[94] Aaqib Saeed, Tanir Ozcelebi, Stojan Trajanovski, and Johan Lukkien. “Learning behavioral con-

text recognition with multi-stream temporal convolutional networks.” en. In: arXiv:1808.08766

[cs, stat] (Aug. 2018). arXiv: 1808.08766 (cit. on pp. 35, 44).

[95] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. “Multi-task Self-Supervised Learning for Hu-

man Activity Detection.” In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiq-

uitous Technologies 3.2 (June 2019). arXiv: 1907.11879, pp. 1–30 (cit. on p. 35).

[96] Bulat Khaertdinov, Esam Ghaleb, and Stylianos Asteriadis. “Contrastive Self-supervised Learn-

ing for Sensor-based Human Activity Recognition.” In: 2021 IEEE International Joint Conference

on Biometrics (IJCB). ISSN: 2474-9699. Aug. 2021, pp. 1–8 (cit. on p. 35).

[97] Rebecca Adaimi and Edison Thomaz. “Leveraging active learning and conditional mutual infor-

mation to minimize data annotation in human activity recognition.” In: Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies 3.3 (2019), pp. 1–23 (cit. on p. 35).

[98] Harish Haresamudram, Irfan Essa, and Thomas Plötz. “Contrastive Predictive Coding for Human

Activity Recognition.” en. In: Proceedings of the ACM on Interactive, Mobile, Wearable and

Ubiquitous Technologies 5.2 (June 2021), pp. 1–26 (cit. on p. 35).

[99] Fantine Mordelet and J-P Vert. “A bagging SVM to learn from positive and unlabeled examples.”

In: Pattern Recognition Letters 37 (2014), pp. 201–209 (cit. on p. 35).

[100] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. “Learning Transferable Fea-

tures with Deep Adaptation Networks.” In: ArXiv abs/1502.02791 (2015) (cit. on pp. 36, 38, 77,

79, 86, 93).

[101] Baochen Sun and Kate Saenko. “Deep CORAL: Correlation Alignment for Deep Domain Adap-

tation.” In: ECCV Workshops. 2016 (cit. on pp. 36, 38, 77, 79, 93).

[102] Yaroslav Ganin, E. Ustinova, Hana Ajakan, Pascal Germain, H. Larochelle, F. Laviolette, M.

Marchand, and V. Lempitsky. “Domain-Adversarial Training of Neural Networks.” In: J. Mach.

Learn. Res. 17 (2016), 59:1–59:35 (cit. on pp. 36, 93).

156



Bibliography

[103] Md Abdullah Al Hafiz Khan, Nirmalya Roy, and Archan Misra. “Scaling Human Activity Recog-

nition via Deep Learning-based Domain Adaptation.” en. In: 2018 IEEE International Conference

on Pervasive Computing and Communications (PerCom). Athens: IEEE, Mar. 2018, pp. 1–9 (cit.

on pp. 36–38, 77, 79, 80, 93).

[104] Yiqiang Chen, Jindong Wang, Meiyu Huang, and Han Yu. “Cross-position activity recognition

with stratified transfer learning.” en. In: Pervasive and Mobile Computing 57 (July 2019), pp. 1–

13 (cit. on pp. 36–38).

[105] Andrea Rosales Sanabria and Juan Ye. “Unsupervised domain adaptation for activity recognition

across heterogeneous datasets.” en. In: Pervasive and Mobile Computing 64 (Apr. 2020), p. 101147

(cit. on pp. 36–38).

[106] Garrett Wilson, Janardhan Rao Doppa, and Diane J. Cook. “Multi-Source Deep Domain Adap-

tation with Weak Supervision for Time-Series Sensor Data.” en. In: Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event CA

USA: ACM, Aug. 2020, pp. 1768–1778 (cit. on pp. 37, 38).

[107] Weijian Deng, Liang Zheng, and Jianbin Jiao. “Domain Alignment with Triplets.” In: (Dec. 2018)

(cit. on pp. 37, 76, 77, 89).

[108] Florian Schroff, D. Kalenichenko, and James Philbin. “FaceNet: A unified embedding for face

recognition and clustering.” In: IEEE CVPR (2015), pp. 815–823 (cit. on pp. 37, 77, 88–90).

[109] Annamalai Natarajan, Gustavo Angarita, Edward Gaiser, Robert Malison, Deepak Ganesan, and

Benjamin M. Marlin. “Domain adaptation methods for improving lab-to-field generalization of

cocaine detection using wearable ECG.” en. In: Proceedings of the 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing. Heidelberg Germany: ACM, Sept. 2016,

pp. 875–885 (cit. on p. 38).

[110] Benoît Frénay and Michel Verleysen. “Classification in the presence of label noise: a survey.” In:

IEEE transactions on neural networks and learning systems 25.5 (2013), pp. 845–869 (cit. on

pp. 39, 63).

[111] Mattia Zeni, Wanyi Zhang, Enrico Bignotti, Andrea Passerini, and Fausto Giunchiglia. “Fixing

Mislabeling by Human Annotators Leveraging Conflict Resolution and Prior Knowledge.” In:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3.1 (Mar. 2019) (cit. on pp. 39, 63).

157



Bibliography

[112] Eric Wong and Zico Kolter. “Provable defenses against adversarial examples via the convex outer

adversarial polytope.” In: Proc. ICML. PMLR. 2018, pp. 5286–5295 (cit. on pp. 39, 106, 109,

111, 112, 116, 117, 120).

[113] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. “Adversarial examples: Attacks and defenses

for deep learning.” In: IEEE Trans. neural networks and learning systems 30.9 (2019), pp. 2805–

2824 (cit. on pp. 40, 107).

[114] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. “Zoo: Zeroth order op-

timization based black-box attacks to deep neural networks without training substitute models.”

In: Proc. ACM workshop on artificial intelligence and security. 2017, pp. 15–26 (cit. on pp. 40,

107, 110–112, 116, 117).

[115] Jianbo Chen, Michael I Jordan, and Martin J Wainwright. “Hopskipjumpattack: A query-efficient

decision-based attack.” In: 2020 ieee symposium on security and privacy (sp). IEEE. 2020,

pp. 1277–1294 (cit. on pp. 40, 107, 110–112, 116–118).

[116] Yonatan Vaizman, Nadir Weibel, and Gert R. G. Lanckriet. “Context Recognition In-the-Wild:

Unified Model for Multi-Modal Sensors and Multi-Label Classification.” In: IMWUT 1 (2017),

168:1–168:22 (cit. on pp. 45, 52, 55).

[117] Saumya Jetley, Nicholas A. Lord, Namhoon Lee, and Philip H. S. Torr. “Learn To Pay Attention.”

In: arXiv:1804.02391 [cs] (Apr. 2018). arXiv: 1804.02391 (cit. on pp. 45, 47–49, 58, 83, 94).

[118] Frédéric Li, Kimiaki Shirahama, Muhammad Nisar, Lukas Köping, and Marcin Grzegorzek.

“Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable

Sensors.” en. In: Sensors 18.3 (Feb. 2018), p. 679 (cit. on p. 46).

[119] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek F. Abdelzaher. “DeepSense: A

Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing.” In: WWW.

2016 (cit. on pp. 46, 48, 55, 59).

[120] Kun Wang, Jun He, and Lei Zhang. “Attention-based Convolutional Neural Network for Weakly

Labeled Human Activities Recognition with Wearable Sensors.” In: IEEE Sensors Journal 19.17

(Sept. 2019). arXiv: 1903.10909, pp. 7598–7604 (cit. on pp. 48, 52, 59).

158



Bibliography

[121] Valentin Radu, Catherine Tong, Sourav Bhattacharya, Nicholas D. Lane, Cecilia Mascolo, Ma-

hesh K. Marina, and Fahim Kawsar. “Multimodal Deep Learning for Activity and Context Recog-

nition.” en. In: ACM J. Interactive, Mobile, Wearable and Ubiq. Tech. 1.4 (Jan. 2018), pp. 1–27

(cit. on pp. 50, 59).

[122] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M. Buhmann.

“The Balanced Accuracy and Its Posterior Distribution.” In: Int’l Conf. on Pattern Recognition

(2010), pp. 3121–3124 (cit. on p. 52).

[123] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek F. Abdelzaher. “DeepSense: A

Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing.” In: WWW.

2016 (cit. on p. 53).

[124] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. “Automatic differentiation in

PyTorch.” In: (2017) (cit. on p. 53).

[125] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image

Recognition.” In: arXiv:1512.03385 [cs] (Dec. 2015). arXiv: 1512.03385 (cit. on p. 58).

[126] M. Dehghani, A. Severyn, Sascha Rothe, and J. Kamps. “Learning to Learn from Weak Super-

vision by Full Supervision.” In: ArXiv abs/1711.11383 (2017) (cit. on p. 64).

[127] Ming Zeng, Tong Yu, Xiao Wang, Le T Nguyen, Ole J Mengshoel, and Ian Lane. “Semi-supervised

convolutional neural networks for human activity recognition.” In: 2017 IEEE International Con-

ference on Big Data (Big Data). IEEE. 2017, pp. 522–529 (cit. on p. 64).

[128] Kaixuan Chen, Lina Yao, Dalin Zhang, Xianzhi Wang, Xiaojun Chang, and Feiping Nie. “A

semisupervised recurrent convolutional attention model for human activity recognition.” In: IEEE

transactions on neural networks and learning systems 31.5 (2019), pp. 1747–1756 (cit. on p. 64).

[129] Ali Akbari and Roozbeh Jafari. “Transferring activity recognition models for new wearable sen-

sors with deep generative domain adaptation.” In: Proceedings of the 18th International Confer-

ence on Information Processing in Sensor Networks. 2019, pp. 85–96 (cit. on p. 64).

[130] Valentin Radu and Maximilian Henne. “Vision2sensor: Knowledge transfer across sensing modali-

ties for human activity recognition.” In: Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies 3.3 (2019), pp. 1–21 (cit. on p. 64).

159



Bibliography

[131] Hirotaka Hachiya, Masashi Sugiyama, and Naonori Ueda. “Importance-weighted least-squares

probabilistic classifier for covariate shift adaptation with application to human activity recogni-

tion.” In: Neurocomputing 80 (2012). Special Issue on Machine Learning for Signal Processing

2010, pp. 93–101 (cit. on pp. 77, 80).

[132] Abdulaziz Alajaji, Walter Gerych, Luke Buquicchio, Kavin Chandrasekaran, Hamid Mansoor, E.

Agu, and Elke A. Rundensteiner. “Smartphone Health Biomarkers: Positive Unlabeled Learning

of In-the-Wild Contexts.” In: IEEE Pervasive Computing 20 (2021), pp. 50–61 (cit. on pp. 77,

78, 80).

[133] Garrett Wilson, Janardhan Rao Doppa, and D. Cook. “Multi-Source Deep Domain Adaptation

with Weak Supervision for Time-Series Sensor Data.” In: Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining (2020) (cit. on pp. 77, 80).

[134] Alexander Hermans, Lucas Beyer, and B. Leibe. “In Defense of the Triplet Loss for Person

Re-Identification.” In: ArXiv abs/1703.07737 (2017) (cit. on pp. 77, 88).

[135] Bulat Khaertdinov, Esam Ghaleb, and Stylianos Asteriadis. “Deep Triplet Networks with Atten-

tion for Sensor-based Human Activity Recognition.” In: 2021 IEEE International Conference on

Pervasive Computing and Communications (PerCom). IEEE. 2021, pp. 1–10 (cit. on p. 77).

[136] Jonathon Byrd and Zachary Chase Lipton. “What is the Effect of Importance Weighting in Deep

Learning?” In: ICML. 2019 (cit. on p. 80).

[137] Arthur Gretton, Bharath K. Sriperumbudur, D. Sejdinovic, Heiko Strathmann, Sivaraman Bal-

akrishnan, Massimiliano Pontil, and Kenji Fukumizu. “Optimal kernel choice for large-scale two-

sample tests.” In: NIPS. 2012 (cit. on p. 86).

[138] A. Alajaji, W. Gerych, K. Chandrasekaran, L. Buquicchio, E. Agu, and E. Rundensteiner. “Deep-

Context: Parameterized Compatibility-Based Attention CNN for Human Context Recognition.”

In: 2020 IEEE 14th International Conference on Semantic Computing (ICSC). 2020, pp. 53–60

(cit. on p. 94).

[139] L. V. D. Maaten and Geoffrey E. Hinton. “Visualizing Data using t-SNE.” In: Journal of Machine

Learning Research 9 (2008), pp. 2579–2605 (cit. on p. 101).

160



Bibliography

[140] Abdur R Shahid, Ahmed Imteaj, Peter Y Wu, Diane A Igoche, and Tauhidul Alam. “Label

Flipping Data Poisoning Attack Against Wearable Human Activity Recognition System.” In:

arXiv preprint arXiv:2208.08433 (2022) (cit. on p. 105).

[141] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-

low, and Rob Fergus. “Intriguing properties of neural networks.” In: arXiv preprint arXiv:1312.6199

(2013) (cit. on p. 106).

[142] Jianfei Yang, Han Zou, and Lihua Xie. “SecureSense: Defending Adversarial Attack for Secure

Device-Free Human Activity Recognition.” In: IEEE Transactions on Mobile Computing (2022)

(cit. on pp. 107, 111, 112, 127).

[143] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-

thram Swami. “Practical black-box attacks against machine learning.” In: Proc. ACM Asia con-

ference on computer and communications security. 2017, pp. 506–519 (cit. on pp. 110, 117).

[144] Siddhant Bhambri, Sumanyu Muku, Avinash Tulasi, and Arun Balaji Buduru. “A survey of

black-box adversarial attacks on computer vision models.” In: arXiv preprint arXiv:1912.01667

(2019) (cit. on pp. 110, 112, 113).

[145] Samuel Henrique Silva and Peyman Najafirad. “Opportunities and challenges in deep learning

adversarial robustness: A survey.” In: arXiv preprint arXiv:2007.00753 (2020) (cit. on pp. 111,

112).

[146] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. “Improving the robustness of

deep neural networks via stability training.” In: Proc. IEEE CVPR. 2016, pp. 4480–4488 (cit. on

p. 111).

[147] Ramesh Kumar Sah and Hassan Ghasemzadeh. “Adar: Adversarial activity recognition in wear-

ables.” In: Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

IEEE. 2019, pp. 1–8 (cit. on pp. 111, 112, 127).

[148] Alexander Robey, Hamed Hassani, and George Pappas. “Model-Based Robust Deep Learning.”

In: (May 2020) (cit. on p. 116).

[149] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. “Online convex optimiza-

tion in the bandit setting: gradient descent without a gradient.” In: arXiv preprint cs/0408007

(2004) (cit. on p. 117).

161



Bibliography

[150] Yurii Nesterov and Vladimir Spokoiny. “Random gradient-free minimization of convex functions.”

In: Foundations of Computational Mathematics 17.2 (2017), pp. 527–566 (cit. on p. 117).

[151] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. “Black-box adversarial attacks

with limited queries and information.” In: Proc. ICML. PMLR. 2018, pp. 2137–2146 (cit. on

p. 117).

[152] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wis-

tuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, et al. “Adversarial

Robustness Toolbox v1. 0.0.” In: arXiv preprint arXiv:1807.01069 (2018) (cit. on p. 127).

162


	I Dissertation Introduction
	Introduction
	Motivation
	Context-Aware Systems
	Human Context Recognition (HCR) for Context-Aware (CA) Smartphone Healthcare applications
	HCR for Context-Aware Warfighter Health

	Definition of Context
	Scripted vs. In-the-wild Context Recognition Data Gathering Studies
	Existing Human Activity Recognition (HAR) and Human Context Recognition (HCR) Datasets
	Our Novel Coincident Data Gathering Study Approach

	HCR Challenges
	In-the-wild HCR Dataset Challenges: Diversity of Causes (DoC)
	Data Labeling Issues
	Covariate Shifts Between Scripted and In-the-wild Datasets
	Adversarial Attacks

	Dissertation Objective
	Dissertation Contributions

	Background
	Context Sensor Data Collection Studies
	Attention Mechanisms 
	Covariate Shifts
	Robustness
	Motivating HCR Use Case: DARPA WASH Project
	Weakly Supervised Learning (WSL)
	Proposed Solutions to Address Weak Labeling

	Literature Review
	Related Applications for Mobile-sensed Data
	Human Context Recognition Using Smartphones
	Smartphone-based Mission-Critical Applications

	Sensory Representation Learning
	Handcrafted-features based Methods
	Deep-learning based Methods

	Weakly Supervised based Methods
	Positive Unlabeled (PU) Learning
	Domain Adaptation (DA)
	DA for Wearable Sensor Data
	Mitigating Poor Labeling Quality

	Adversarial Threats
	Potential Adversarial Attacks Specific to HCRs that we Focus on



	II Robust Feature Extraction from Sensor Data 
	Human Context Recognition under inexact supervision
	Introduction
	Prior Work
	DeepContext Approach
	Overview
	Parameterized Compatibility-Based Attention Convolution Neural Network (PAC-CNN)
	Joint-learning Fusion 

	Evaluation
	Implementation
	Evaluation Protocol
	Results

	Discussion
	Prior Work
	Chapter Summary


	III Improving Transferability of In-lab models to the Real world
	Leveraging coincident data gathering study for Human Context Recognition under inaccurate supervision
	Introduction
	Prior Work: Knowledge Transfer for Labeling Sensor Data
	Positive Unlabeled (PU) Context Learning (PUCL): A Novel Learning Methodology
	Stage 1: Correcting The In-The-Wild Labels
	Stage 2: Context Recognition using DeepContext
	Context Recognition Results 

	Chapter Summary

	Adapting models for Human Context Recognition In the wild under incomplete supervision
	Introduction
	Related Work
	Lab-to-field Generalization

	Proposed Triple-DARE Methodology
	Problem Formulation
	Overview
	Feature Generation
	Domain Alignment Loss
	Classification Loss
	Triplet Loss
	Joint-Fusion Triplet Mining

	Experiments
	Baselines
	Implementation and Experimental Settings
	Results and Findings

	Chapter Summary


	IV Robust Representations under Adversarial Attacks
	Adversarial Human Context Recognition: Evasion Attacks and Defenses
	Introduction
	Background & Related Work
	Smartphone-based Mission-critical Applications
	Black-box Evasion Attacks
	Evasion Defenses

	Threat Model
	Methodology
	HCR Evasion Attack Problem Formulation
	Adversarial Attacks Generation
	Adversarial Defenses

	Experimental Evaluation
	Research Questions
	Datasets
	Data Preprocessing and Feature Extraction 
	Evaluation Protocol
	Implementation
	Baselines

	Results & Discussion
	Limitations and Future Work
	Chapter Summary


	V Dissertation Findings
	Discussion and Findings
	Accomplished Research Work
	Example of an Application Use Case
	Findings for Robust Feature Extraction
	Findings for Transferability of In-lab Models to the Real world
	Findings for Robust Representations under Adversarial Attacks
	Limitations of the Proposed Approaches
	Future Work

	Conclusion


