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Abstract

A continuous top-k query retrieves thek most preferred objects from a data stream ac-

cording to a given preference function. These queries are important for a broad spectrum

of applications from web-based advertising, network traffic monitoring, to financial anal-

ysis. Given the nature of such applications, a data stream may be subjected at any given

time to multiple top-k queries with varying parameter settings requested simultaneously by

different users.

This workload of simultaneous top-k queries must be executed efficiently to assure

real time responsiveness. However, existing methods in theliterature focus on optimizing

single top-k query processing, thus would handle each queryindependently. They are thus

not suitable for handling large numbers of such simultaneous top-k queries due to their

unsustainable resource demands.

In this thesis, we present a comprehensive framework, called MTopS for Multiple Top-

K Optimized Processing System. MTopS achieves resource sharing at the query level by

analyzing parameter settings of all queries in the workload, including window-specific pa-

rameters and top-k parameters. We further optimize the shared processing by identifying

the minimal object set from the data stream that is both necessary and sufficient for top-k

monitoring of all queries in the workload. Within this framework, we design the MTop-

Band algorithm that maintains the up-to-date top-k result set in the size of O (k), wherek

is the required top-k result set, eliminating the need for any recomputation.

To overcome the overhead caused by MTopBand to maintain replicas of the top-k result

set across sliding windows, we optimize this algorithm further by integrating these views

into one integrated structure, called MTopList. Our associated top-k maintenance algo-
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rithm, also called MTopList algorithm, is able to maintain this linear integrated structure,

thus able to efficiently answer all queries in the workload. MTopList is shown to be mem-

ory optimal because it maintains only the distinct objects that are part of top-k results of

at least one query. Our experimental study, using real data streams from domains of stock

trades and moving object monitoring, demonstrates that both the efficiency and scalability

in the query workload of our proposed technique is superior to the state-of-the-art solutions.
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Chapter 1

Introduction

With the continuous proliferation of web applications and digital devices, the input data

rates of streams arriving at a data stream management system(DSMS) have grown by leaps

and bounds. Naturally, there is thus critical requirement to process these huge volumes of

data so as to generate real time results by reducing the lag between data acquisition and

acting on the acquired data.

1.1 Motivation

Top-k queries are critical for large number of applicationsranging from web advertising,

financial analysis to network traffic monitoring. A top-k query returns thek most preferred

objects from a datasetP according to a given preference functionF . Since streaming data

is infinite while the notion of top-k can only be defined based on a finite number of objects,

window constraints are usually adopted to make top-k queries applicable to data streams

[14, 15, 16] Such a window can be time based or tuple-count based. Time based sliding
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windows assume that tuples arrive with a time stamp and remain in the buffer as long

as their time stamp belongs to a fixed time period covering themost recent time stamps.

Tuplecount based sliding windows contain the most recent N records [14].

Thus top-k queries are not only parametrized by the parameter settingk but also win-

dow properties such as window type, size and slide. Analystsmay be interested in different

top-k volatile stocks of the same financial data while imposing customized time windows

and refresh rates. For example, a financial analyst may ask for the top-10 most volatile

stocks in the last 1 hour with a refresh rate of 10 minutes. Another analyst may want

to look at the top-200 most volatile stocks in the last 30 minutes with a refresh rate of 5

minutes.

In fact, even a single analyst may at times submit multiple queries with different pa-

rameter settings with the intent to further analyze retrieved result sets so to derive a well

supported conclusion. Real time systematic processing of such workloads of top-k queries

is essential.

As motivated above, a stream processing system should be able to accomodate a work-

load of numerous top-k queries, and thus successfully calculate the correct top-k results at

the required output moments for each of these queries. In this work, we focus on process-

ing multiple top-k queries with arbitrary query parameter settings, while still achieving real

time results for each of these queries as needed by any streamprocessing system.

1.2 State-of-Art

Top-k query processing has been extensively studied in conventional databases [2, 8, 20].

These techniques cannot be directly applied nor easily adapted to fit streaming environ-
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ments. This is because the key problem they solve is, given huge volumes of static data,

how to pre-analyze the data to prepare appropriate meta information to subsequently an-

swer incoming top-k queries efficiently [2, 8]. Streaming data however is dynamic with its

characteristics dramatically changing over time. Given the real-time response requirement

of streaming applications, relying on static algorithms tore-compute the top-k results from

scratch for each window is not feasible in practice [15].

In the streaming scenario, research has primarily focussedon single top-k query pro-

cessing [14, 15, 16, 17]. These methods focus on only one query registered in the system

at a time. However, simultaneous processing of large numbers of top-k queries, as would

be experienced by applications as motivated above, remainsa challenging open problem to

date.

1.3 Challenges

One major challenge associated with multi top-k query processing is to support workload

of queries with possibly arbitrary parameter settings. More specifically, the parameters of

the queries in the query group may be arbitrary, thus not allowing any obvious sharing of

computations among distinct queries. We thus set out to analyze characteristics of these

queries so as to identify t subprocesses as well as what system resources amongst these

queries may be shared.

Given the real time response requirement of the top-k query processing, serving a work-

load with possibly arbitrary parameters in a single system is highly resource intensive. The

naive method of executing each of the queries independentlyfor a huge workload has pro-

hibitively high demands on both computational and memory resources. The optimal state-
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of-art top-k query processing method may take 10 s to update the query result for each

window slide (100K new tuples) for 1M- tuple window slide andk equal to 1K tuples[16].

In this scenario 1000 such queries with refresh rates of 5 minutes each were to be executed

one after the another, it may take time more than two hours to generate the top-k result for

all queries; obviously failing to answer most of the queriesat the required refresh rate.

1.4 Proposed Solution

We present a comprehensive framework ’MTopS’ for “Multi Top-K OptimizedProcessing

System, to achieve simultanous execution of a workload of parameterized top-k queries

with arbitrary window parameter settings, namely (win andslide) and the top-k parameter

k.

Within this framework we introduce several innovations essential for optimizing multi-

query top-k processing by effictively sharing the availableCPU and memory resources.

1. First, we carefully analyze the workload so as to generatea single meta query to

represent all the workload queries. As discussed in SectionV, as a first processing step we

successfully remodel the problem of maintaining multiple queries into the execution of a

single query.

2. We propose an execution strategy that drives the single meta query to process the

complete workload under the high speed input data rate so as to generate real time top-k

results required by each of the queries. As discussed in Section VI, our execution strategy

achieves not only completely incremental computation but also memory utilization in the

order of query parameter k.

We identify the minimum object set that is both necessary andsufficient for generating
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accurate and timely rop-k results. We maintain this top-k result set in our proposed data

structure MTopBand. The key idea is to precompute and maintain metadata namely, the set

of objects that have potential to belong to the top-k result in one or more of the future output

windows. This is determined based on expiration times of objects and keeping sufficiently

many objects for each future expiration moment. We introduce MTopBand maintenance

algorithm for updating the top-k result setsin real time with the arrial of new objects at the

system and expiration of objects in the existing top-k result sets

3. We further improve the performace by analyzing interrelationships among consecu-

tive top-k result sets. We observe that majority of the objects in the adjacent future windows

tend to overlap due to which our first proposed algorithm MTopBand usually maintains

some multiple copies of one top-k object. We thus design an integrated maintenance mech-

anism that maintains only the distinct copy of an object in a linear data structure, MTopList

across all queries and all window time slices. This mechanism avoids storing overlapping

results multiple times and also enables us to design algorithms to update them linearly

rather than updating them indiidually for each window. Futhermore, we also provide a

detailed complexity analysis for our techniques.

4. Lastly, we utilize seperate algorithms to generate runtime instructions for meta query

execution and exact result extraction for each of the queries in the query group at a required

output moment.

5. We conduct extensive experiments on both real and synthetic data sets to demonstrate

the efficiency and the scalability of our techniques. Experimental evaluation(Section XI)

shows that the MTopS comfortably handles a workload in the order of 1000 queries with the

average processing time ranging between 4-30 ms/object depending on the query parameter
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settings. We demonstrate that resource consumption in our approach is not proportional to

the size of workload as is the case with the state-of-art approach of optimally monitoring

top-k queries[16]. Hence our approach achieves far superior performance with increasing

workload.
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Chapter 2

Problem Definition

Top-k Queries in Sliding Windows. In a sliding window scenario, the continuous top-

k query Q(S,win,slide,k) returns top-k objects within each query windowWi on the data

stream S. We use the term ’object’ to denote a multi-dimensional tuple in the input data

stream. The objects that participate in the top-k results ofa given window are referred to

as the ’top-k elements’ of that window. A query window is a substream of objects from

stream S that can be either count-based or time-based. The windowwin periodically slides

after a fixed amount of objects have arrived (count-based) ora fixed time has passed (time-

based) to include new objects from S and to remove expired objects from the previous

windowWi−1. The top-k results are always generated based on the objectsthat are alive in

the current windowWi.

Multiple Top-k Queries. Given a query workloadWLwith n top-k queriesQ1(S,win1,slide1,k1),

Q2(S,win2,slide2,k2),. . . , Qn(S,winn,sliden,kn) querying the same input data stream S

while all the other query parameters, i.e,win, slide, k may differ.

We focus on executing all the registered queries simultaneously such that each query
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is answered accurately at their respective output moments.More specifically, we continu-

ously output the reuired top-k results for each query at their corresponding slide sizes. Our

goal is to minimize both the average processing time for eachobject and the peak memory

space needed by the system.
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Chapter 3

The MTopS Framework

We now introduce the architecture of the MTopS framework shown in Figure 3.1, while

details of the techniques used in each block are discussed inChapters 4, 5, 6, 7, and 8.

Figure 3.1: MTopS System Architecture
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Multi Query Analyzer (MQA). The functionality of MQA is to analyze the similarity

among the member queries in the workload, and thus organize them at the compilation

stage with the goal of maximizing the resource-sharing for the later runtime execution. In

particular, we propose to use a “meta query strategy”, whichbuilds a single meta query

Qmeta to integrate all the member queries in the given workload. Namely, the input of

MQA is a workload of top-k queries with arbitrary parameter settings, and the output of

MQA is single meta query. The meta queryQmeta has the following key characteristics.

1)The query window ofQmeta always covers all objects in the stream that are necessary

to answer every member query. 2) The slide size ofQmeta is no longer fixed but rather

adaptive during the execution, depending on the nearest time point that any member query

needs to output or to conduct a new window addition or expiredwindow removal. The

specific algorithm of building such a meta query is discussedin Chapter 4.

Runtime Infrastructure (RINF) and Its Instantiator (IINS) . To execute the meta query

generated by MQA, we need an infrastructure to physically hold the meta data, namely the

top-k candidates, during the meta query execution. We call this infrastructure as Runtime

Infrastructure (RINF) in our system.

In this work, we propose two data structure designs for RINF,which do not simply

collect the top-k candidates, but also encode them into efficiently updatable formats. These

two designs are the independent window representation and integrated window representa-

tion respectively. We prove that by using those carefully designed data structures, our RINF

maintains the minimum object set that is necessary and sufficient for answering all member

queries, while any unnecessary object can be discarded immediately when it arrives at the

system.
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RINF is instantiated by its Instantiator (IINS) at the compilation stage. At the runtime

execution, RINF will be continuously updated as the input stream arrives by Meta Query

Executor (MQE) (will be discussed later). Also the query results for each member query

will be extracted from RINF by Query Result Extractor (QRE) whenever they are needed.

Runtime Meta Query Scheduler (RMQS).As we discussed earlier in Multi-Query An-

alyzer,Qmeta needs to adapt its slide size to meet the time points for output, to build new

windows or delete expired windows, for member queries. To guide this slide adaption pro-

cess ofQmeta, we build a Runtime Meta Query Scheduler (RMQS) to calculatethe nearest

time point that is needed next by either of those three operations.

Such schedule information will decide the behavior of otherquery execution modules,

namely MQE and QRE. In particular, RMQS sends instructions to MQE and QRE at sched-

uled window-addition/deletion time points or output time points, and thus tells them to

conduct the corresponding operations at proper time. Such instructions guarantee that the

RINF is properly updated and the top-k results of all member queries are output as the

queries demand.

Meta Query Executor (MQE). MQE is the key online computation module which exe-

cutes the meta queryQmeta by incrementally updating the top-k candidates held in RINF

as the input stream passing by. Such update process include two aspects, namely handling

the newly arrived objects and purging the expired objects.

When handling newly arrived objects, for each new objectonew, MQE first evaluates

whether it has the potential to appear in the output ofQmeta, in other words, whether it

is possible foronew to make the top-k result of any member queries. If yes,onew will be

used to update RINF. Otherwise,onew will be discarded immediately to avoid unnecessary
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computation and storage.

When purging expired objects, MQE checks which objects are “completely expired”

for the meta query, meaning that they are no longer in the query window of any member

queries. Those “completely expired” objects will be purgedfrom RINF immediately, while

those are expired for some queries but still valid for at least one member query will still be

kept in RINF.

Query Result Extractor (QRE). The functionality of QRE is to extract the top-k results

from RINF for each member query at the moment when the output of this particular query

is needed. This result extraction process is non-trivial, because the top-k candidates for all

member queries are encoded in a single data structure in RINF. During the result extraction

process, by analyzing the specific top-k candidate encodingused by RINF, QRE in our

system guarantees that it only touch the objects that will beoutput for at least one query.
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Chapter 4

Analyzing the Multi Top-K Query

Workload

We now discuss our analysis of workload that transforms the workload of many queries

into a single meta query.

4.1 Notion of Predicted Views

It is well recognized that in the sliding window scenario, query windows tend to partially

overlap (Qmeta.slide < Qmeta.win). This is because usually the life time of an object is

much larger than the arrival rate of new objects. For example, in a typical scenario, an

analyst interested in objects arriving in last 24 hours but retrieves the output after every 5

minutes. Therefore, if an object participates in the top-k result of windowWi, it may also

participate in the top-k results of some of the future windowsWi+1, Wi+2, , Wi+n until

the end of its life span. Thus based on our knowledge at timeWi, and the slide sizeslide,
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we can exactly predict the specific subset of the current objects that will participate in each

of the future windows. We call these predicted subsets of future windows as “predicted

views”.

With this knowledge, we can predetermine (partial) query results for each of these

future windows based on the objects in the current window that already accounted for the

object expiration. Thus, these predicted top-k results will have to be updated only if any

new object that arrives to the system will be capable of beinga part of the top-k result.

Otherwise, these predicted top-k result sets can be the actual result sets for future windows.

Figure 4.1: Predicted views of three consecutive windows atW0

Figure 4.1 (left) shows the current windowW0 and predicted views of two future win-

dowsW1 andW2 with window sizewin = 12 and the slide sizeslide= 4. The predicted

view W1 contains those objects fromW0 those are still alive after the window slides. In

Figure 4.1 (left), the numbers shown in the white circles represent the objects’ scores. when

a window slides, following updates are done: 1: a new window is created, 2: a new object

is inserted only if the new object is eligible to make it to thetop-k of already full window,

3: an old window is deleted. As the window expires, the top-k result of the expired window

W0 are no longer valid and is updated based on the new current window ( nowW1).

Figure 4.2 (left and right) shows the updated predicted views just afterW0 has expired.
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At time t = 12 s, the top-3 result is extracted from the 12 objects active in the current

windowW0, namely,o1-o12.

In every window the k objects with the highest preference scores will make the top-k

objects for that particular window. Based on the objects inW0, we cannot only calculate the

top-k result inW0 for k=3, but also predetermine the potential top-k results for the future

windowsW1 andW2, until the end of the lifespan of all objects inW0.

Figure 4.2 (right) shows the three top-3 results calculatedfor W0, W1 andW2 respec-

tively. The predicted top-k results for current window are generated based on objects active

in the current windowW0, namely,o1-o12, future windows are calculated based on smaller

and smaller subsets of the objects belonging toW0 that are known not to expire yet inW1

nor inW2, namely,o5-o12 in W1 ando8-o12 in W2. As the window expires, the top-k result

of the expired windowW0 are no longer valid and is updated based on the new current

window ( nowW1). Figure 4.2 (left and right) shows the updated predicted views just after

W0 has expired. At time t = 12 s, the top-3 result is extracted from the 12 objects active in

the current windowW0, namely,o1-o12.

Figure 4.2: Updated predicted views of three consecutive windows atW1
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4.2 Sharing with Varying Top-k Parametersk

Consider all the window parameters, i.e.,win andslideare same for all queries while the

top-k parameterk is different. This implies only the number of objects to be output by each

query differs.

Lemma 4.2.1 Given a workload WL with all member queries having same slidesize slide

and same window size win but arbitrary top-k parameters k,Qi.k maintained in each of the

predicted view will be sufficient to answer all each query such thatQi.k is the query with

largest top-k parameter among WL.

Proof. Lemma 4.2.1 holds because the predicted views built for the different queries in

the workload are overlapped as thewin andslide values are same for all the queries. This

means that the life time of an object and the output schedulesfor all queries are same.

Thus if objects equivalent to the largest top-k parameter are maintained in a predicted

view , it is sufficient to answer the queries with smaller top-k parameter as well.

Example 4.2.1 if Q1.win = Q2.win = Q3.win = 8s; Q1.slide =Q2.slide =Q3.slide = 2s;

andQ1.k = 4, Q2.k = 3, andQ3.k = 2. In this case, MQA builds the meta query such that

Qmeta.WIN = 8,Qmeta.SLIDE = 2 andQmeta.K = 4. Thus, MQA builds only 4 predicted

views in total; starting at moments 00:00:00, 00:00:02, 00:00:04, 00:00:06 respectively;

instead of 16 predicted views as would have been needed if theeach of these queries were

executed independently.

Thus, the number of predicted views that need to be built by the meta query are in-

dependent of the number of queries in the WL. Clearly, in thisscenario a full sharing is

achieved compared to the independent execution of individual queries.
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4.3 Varying Slide Sizesslide.

In this scenario, all queries in the workload WL have the samewindow sizeswin and same

top-k parameterk but their slide sizesslide may differ. For ease of explanation, let us

assume that all the queries start simultaneously. Since their window sizes of all queries

are equal , at any given time they are querying the same portion of the input data stream.

The only difference between the queries is that they need to generate output at different

moments.

Example 4.3.1 Given three queriesQ1,Q2,Q3 such thatQ1.win = Q2.win = Q3.win = 8s;

Q1.slide = 6s,Q2.slide = 2s, andQ3.slide = 3s; andQ1.k = Q2.k = Q3.k = 3. Each query

are required to output their result, i.e., top-k set at every6, 2, and 3 seconds respectively.

As consequence, each of these queries will need to maintain different predicted views so as

to generate output at different slides. Figure 4.3 shows thepredicted views that need to be

maintained for each of these three queries independently, versus those by the meta query

at wall clock time 00:00:08.

MQA builds a single meta queryQmeta that integrates all member queries in workload

WL to avoid maintaining separate set of predicted views for each query. Qmeta has the

same window size as all the member queries inWL while its slide size is no longer fixed

but rather adaptive during the execution. The slide size ofQmeta at a particular moment is

the nearest moment at which at least one of the queries need tobe answered.

Example 4.3.2 For three member queries, MQA builds a meta queryQmeta with WIN =

8s. At wall clock time 00:00:08, the slide size ofQmeta will be 2s as 00:00:10 will be

the nearest time at which the member queryQ2 is to be answered. At 00:00:10, its slide

18



Figure 4.3: Predicted views needed for processing queryQ1 (top left),Q2 (top right),Q3

(bottom left) independently and combined view for meta query Qmeta (bottom right)

sizes are adapted to 1s, 1s and 2s so to output at 00:00:11 (Q3), at 00:00:12 (Q2), and at

00:00:14 (Q1 andQ2).

Thus, we can now build up all predicted views at 00:00:08 withdistinct output points

as determined by the meta query. That is, we build 6 predictedviews starting at 00:00:02,

00:00:03, 00:00:04, 00:00:06, and 00:00:08 respectively,many of which serve multiple

queries. For example a the predicted view starting at 00:00:06 is serving all the member

queries (Q1,Q2 andQ3). Since the top-K result set to be output by any of the querieswould

be exactly the same,Qmeta.K= Q1.k = Q2.k = Q3.k = 3. We thus maintain only the 3 top

ranking objects in each of the predicted views.

4.4 Varying Window Sizeswin and Top-k parameter k

In this case, the window sizeswin vary while the correspondingslide value and thus the

moments to produce output for each query remain identical. Here we first use the simpli-
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fying assumption that all the window sizes of the member queries are multiples of their

common slide size. We now observe an important characteristic as below.

Lemma 4.4.1 Given a query group QG with member queries having the same slide size

slide but arbitrary window sizes win (multiples of slides),the predicted views maintained

for Qi with Qi.win the largest window size among WL will be sufficient to answer all

member queries in WL.

This is because the predicted views maintained forQi will cover all the predicted win-

dows that need to be maintained for all the other queries.

Example 4.4.1 If slide sizes and top-k parameter k are equal for the three queries ,Q1.slide

= Q2.slide = Q3.slide = 2s;Q1.k = Q2.k = Q3.k = 3 while Q1.win = 4s,Q2.win = 6s

andQ3.win = 8s. At wall clock time 00:00:08, the predicted views built by Q3 start from

00:00:00, 00:00:02, 00:00:04 and 00:00:06 respectively; those forQ2 start from 00:00:00,

00:00:02, and 00:00:04; and those forQ3 from 00:00:00 and 00:00:02. Clearly, the pre-

dicted views needed byQ1 andQ2 overlap with those built byQ3.

Discussion. If the window sizes of the queries are not in multiples of their common

slide size, the predicted views maintained forQi will still cover all the other queries. For

example, if the slide sizes of each of the queries are the sameas above (2s) while the

window sizes areQ1.win = 6s,Q2.win = 7s, andQ3.win = 8s. The predicted views built

at moment 00:00:08 will be sufficient to answer all these queries. These windows will

start from 00:00:00 (servingQ3), 00:00:01 (servingQ2), 00:00:02 (servingQ1 andQ3),

00:00:03 (servingQ2), and 00:00:04 (servingQ1 andQ3) and so on.

20



In summary, even if the window sizes of the queries in the workloadWL are not multi-

ples of their common slide sizes, the predicted views generated forQi (query with largest

window size) are sufficient to answer all the queries. Clearly, full sharing is achieved.

4.5 Varying Window sizes and Varying Slide Sizes

Next we consider, when both the window sizeswin and the slide sizesslide of all the

member queries are arbitrary. Here, we show that a single meta query with window size

equal to the largest window size amongst all the member queries and adaptive slide sizes is

sufficient to answer all such queries.

Example 4.5.1 Consider,Q1.win = 8s, Q2.win = 6s andQ3.win = 4 s; Q1.slide=4s,

Q2.slide=3s,Q3.slide = 2s; andQ1.k = Q3.k = Q3.k = 2. Assuming that all the predicted

views for the queries end at the largest window size, we builda meta queryQmeta such that

Qmeta.WIN = 8 andQmeta.SLIDE = ADAPTIVE,Qmeta.K= 2 (same for all queries).

Thus, in this meta setup, the window size and top-k parameterare now fixed while

the slide size of the meta query is adaptively adjusted. At wall clock time 00:00:08, 5

predicted views are created, starting from 00:00:00 (serving Q1), 00:00:02 (servingQ2),

00:00:04 (serving bothQ1 andQ3), 00:00:05 (serving queryQ2), and 00:00:06 (serving

queryQ3). Clearly, only 5 windows need to be maintained instead of the 9 windows that

would here been needed if each query were to be executed independently.
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4.6 The Most General Case

Finally, we consider the general case with all parameters with arbitrary settings. In this

case, we build a meta query with window sizeQmeta.WIN= Qi.win, the largest window size

among WL;Qmeta.SLIDE = ADAPTIVE, as explained in the previous subsection. Lastly,

Qmeta.K = ADAPTIVEas explained below.

We now introduce an adaptivek strategy to achieve memory efficient processing. To be

more precise, in a particular window we save the top-k objects such that k is equal toQi.k

whereQi is the query served by that window. In case one view serves more than one query

thenk for that window is equivalent to the maximum of the top-k of the queries served by

this view.

Example 4.6.1 For a workload of three queries with arbitrary window and top-k param-

eter settings,Q1.win = 8s,Q2.win = 6s andQ3.win = 4 s; Q1.slide = 4s,Q2.slide = 3s,

andQ3.slide = 2s; andQ1.k = 3 ,Q2.k = 2,Q3.k = 1. The meta query builds 5 windows at

time t = 8s,namely current windowW0 starting at 00:00:00 (forQ1) and predicted views

W1, W2, W3 and W4 at 00:00:02 (forQ2), 00:00:04 (servingQ1 andQ3), 00:00:05 (for

Q2), and 00:00:06 (servingQ3) respectively. Thus, k = 3 inW0 (Q1.k = 3), and k = 2 in

W1(Q2.k = 2), and k = 3 objects inW2 etc.
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Chapter 5

Independent Top-k Result-sets

Infrastructure: Design and Maintenance

Once the single meta-queryQmeta, has been designed that logically encapsulates a full

workload of queries, we instantiate a runtime infrastructure for managing the meta data

needed for execution ofQmeta. We call this infrastructure the MTopBand.

5.1 The MTopBand Structure Design

The MTopBand data structure stores only the top-k objects for the current and those for

each of the predicted views, as generated by the meta queryQmeta. These predicted views,

as discussed in the Section III, are generated based on the meta query logic and thus repre-

sent all the member queries in the workload WL.

For each predicted view only a list of top-k objects is maintained, while all other objects

that have no chance of participating in the top-k results of current or any of the future views
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are discarded immediately. We recall that top-k parameterQmeta.K is adaptive based on

the query/queries that require output at the moment when a particular window ends. Thus,

for each window we maintain only those top-k tuples eligibleto be the output for one or

more queries at the time point when the window slides. This means, each window may

have different number of tuples as the top-k result sets, depending on the the query in the

workload that outputs when the window slides. Each of these result sets are sorted based

on the object scoresFscores.

Figure 5.1: Physical view of MTopBand structure

Figure 5.1 shows the MTopBand structure based on the workload WL of three queries

Q1, Q2, andQ3 introduced in Example 4.2.1.

We maintain the corresponding top-k results sets,Qmeta.W0.K = 3, Qmeta.W1.K =

2,Qmeta.W2.K = 3, Qmeta.W3.K = 2, andQmeta.W4.K = 1, for current windowW0, and

each of the predicted views. Thus, in this example only five objects with the scores 12, 11,

9, 6, and 5 are maintained in the MTopBand structure, while the other three objects, in the

input data stream, with the scores 1, 2, and 3 were discarded immediately.

In practice, the window sizes could be orders of magnitude higher than K. For example,

a window sizeWIN = 1,000,000 andK = 10 would be typical. But the set of top-k result
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set maintained in the MTopBand structure is minimal and is independent of the potentially

very large window size of the queries.

Theorem 5.1.1 At any time, the top-k result set maintained in the MTopBand structure

constitute the minimal object set that is necessary and sufficient for accurate top-k moni-

toring.

Proof. We first prove the sufficiency of the objects in the predicted top-k result sets for

monitoring the real time top-k results for each of the queries in the workload WL. For each

of the future windowsWi (the ones that the life span of any object in the current window

can reach), the predicted top-k results maintainQmeta.Wi.K objects with the highestFscores

for eachWi based on the objects that are in the current window and are known to participate

in Wi. This indicates that any other object in the current window can never become a part of

the top-k results inWi, as there are already at leastWi.K objects with larger F scores than

it in Wi. So, they dont need to be kept. Then, even if no new object comes intoWi in the

future or all newly arriving objects have a lower F score, thepredicted top-k results would

still have sufficient (Qmeta.Wi.K ) objects to answer the queryQi for Wi. This proves the

sufficiency of the predicted top-k results.

Next we prove that any object maintained in the predicted top-k results are necessary

for accurate top-k monitoring. This would imply that this object set is the minimal set that

any algorithm needs to maintain for correctly answering allthe top-k queries in the given

workload WL. Any object in the predicted top-k result for a windowWi may eventually

be a part of its actual top-k results for one of the queries if no new object comes intoWi

or all new objects have a lowerFscore. Thus discarding any of them may cause a wrong

result to be generated for a future window. This proves the necessity of keeping each of
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these objects. Based on the sufficiency and necessity we havejust proved, the objects in

the predicted top-k results constitute namely the minimal object set that is necessary and

sufficient for accurate top-k monitoring of all queries in the workload WL.

5.2 The MTopBand Maintenance.

The dynamic maintenance of the MTopBand structure requiresupdating the top-k results

for each of the current and predicted views, that include allthe queries in the WL, in

two scenarios. First, when a new object arriving at the system is eligible to participate in

the top-k result sets for one or more queries being served by one or more windowsWi

. Secondly, when a window slides some of the objects in the existing top-k result sets

may expire and thus require updating the MTopBand data structure. Next, we discuss the

proposed algorithms to update the MTopBand structure in theabove two scenarios.

Figure 5.2: Updating the multi top-k results in MTopBand

When a new object arrives at the system, we first check if any ofthe queries in the
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workload needs output. This verification can be easily done by utilizing the meta-query

logic. We recall that, a window slides at the next nearest output moment, based on the

adaptive slides as logically defined byQmeta to capture the timely output for one or more

queries in the workloadWL. If a window slides, we update the MTopBand top-k result

sets in the following two steps.

At step 1, we remove the top-k result set corresponding to theexpired window. For

example, Figure 5.2 depicts the MTopBand structure maintenance based on our running

Example 4.2.1. After time t = 8s, when current windowW0 expires, top-k results ofW0

are purged, andW1 is the new current window. It is easy to see that the effect of window

expiration was already taken into account while building the predicted views/ predicted

future windows.

At step 2, we create a new empty MTopBand top-k result set corresponding to the

newest predicted view (W5 in figure 5.2 (top right)) for the next future window to cover the

whole life span of the incoming objects. The number of predicted top-k objects maintained

by new window will depend on the top-k parameter (Qmeta.Wi.K) of the query that needs

output at the moment when this newly created window will output. Once the empty window

is created , each new object coming in will participate in thecurrent window and all future

windows that are currently listed in the MTopBand structure.

After the window slide is taken care of, we attempt to insert the newly arrived object

Onew in each of the current and future window. TheFscore of eachOnew is compared with

the object with minimumFscore, called asOmin henceforth, in each of the current and

predicted top-k result set. If theFscore of Onew is larger thanOmin of any of the current and

future windows, this object is inserted as one of the top-k results of that particular window.
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Before inserting theOnew into any of these result sets, we must find the correct position

of this new object, as each top-k result sets/lists are sorted by Fscores in the MTopBand

structure. This is a simple operation, we continue comparing theFscore of Onew with each

of the top-k results within a particular list till we find an object withFscore larger thanFscore

of Onew. Onew is inserted just below this object in the top-k result list. Now, theOmin is

deleted from this particular list asOmin is no more a part of top-k results for this window.

The object immediately above theOmin in the result set/ list becomes the newOmin. Any

new object arriving at the system will now be compared with this newOmin. Every arriving

object, regardless of itsFscore, is inserted in the newly created windowWi until the window

has not reached the size ofQmeta.Wi.K.

Example 5.2.1 In Figure 5.2 (bottom left), two new objects withFscores 4 and 10 arrive,

while the object withFscore 10 replaces objects withFscore 9, 6 and 9 inW1, W2 andW3

respectively. However, it is discarded byW4 as itsOmin hasFscore = 11 which is larger

than 10. The object withFscore 4 is discarded immediately by each of the active windows

for the same reason. Figure 5.2 (bottom right) shows the updated MTopBand structure.

Both the objects withFscores 4 and 10 are inserted as top-k results for the new windowW5.

5.3 Complexity Analysis.

Memory Costs.The memory costs of MTopBand structure depend mainly on two factors,

the number of top-k result sets/lists which depends on the number of active predicted views

at a given moment and the size of each result set/list. Complexity wise, the memory re-

quirement of the MTopBand structure is in O(Nact*Qmeta.Wi.K), whereNact is the number
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of active windows at a given time andQmeta.Wi.K is the adaptiveK for a given window in

the query workload.

Lemma 5.3.1 M-MTopBand maintains expected O(Qmeta.Wi.K*Nact)objects.

Since an object may participate as a top-k result for its complete life time, it usually

participates in multiple subsequent active windows. we maintain only one physical copy

and multiple references of any objects which participates in multiple windows. As proved

in Theorem 5.1.1, we maintain minimal set in the MTopBand structure.

Computational Costs. Computationally, there are two major actions that contribute to

the cost of updating top-k results in the MTopBand structure. We recall that, we first

search if the newly arrived object belongs to any of the top-kresult sets. This a constant

cost operation, that is a total ofNact comparisons in the worst case. Second, the cost for

positioning new object in the top-k result set, if it makes into this result set, is O(log(k)) in

the best case. The cost of inserting this object into top-k result set and deleting the smallest

score object from the existing top-k result set is in O(log(k)) again.

Thus, the overall processing costs for handling all new objects for each window slide is

O(Nnew * Nactnew * log(k)), with Nnew the number of new objects coming to the system

at this slide, andNactnew is the number of windows each object is predicted to make top-k

when it arrives at the system. As the object expiration process is trivial, this constitutes the

total cost for updating the top-k result at each window slide.

Conclusion.As discussed above, MTopBand structure maintains a minimalobject set and

also achieves absolute incremental computation. Evidently, we do not need to hold the

number of tuples equivalent to the complete window size at any stage for computing the

top-k results, rather all the computation is done incrementally. This is a clear win over the
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existing methods for top-k query computation that need to recompute top-k results from

scratch periodically [15, 17].

However, we observe that the resource requirements of MTopBand structure grows

with Nact, the number of predicted views to be maintained. More specifically, since M-

MTopBand stores top-k result sets for each of the predicted views independently/individually,

its memory and CPU consumption grows with the number of predicted top-k result sets to

be maintained.

Example 5.3.1 Consider a three query workload with window sizesQ1.win = 100,Q2.win

= 1000 andQ3.win = 1000000; slide sizesQ1.slide = 10,Q2.slide = 10 andQ3.slide =

100; andQ1.k = 10, Q2.k = 100 andQ3.k = 200. Here, the meta-queryQmeta gener-

ates approximately 10020 predicted views and amongst them around 1000 future windows

will maintain 200 objects (Q3.k = 200) each. Thus, around 2 million objects needs to be

maintained in the M-MTopBand for generating accurate top-kresults when maximumK

required is only 200.

We confirm this inefficiency of MTopBand structure when the number of predicted

views grow large in the experimental study discussed in Chapter 9. Next, we discuss var-

ious properties of the MTopBand structure and utilizing these observations, we further

design the optimized integrated compact structure MTopList structure. We then discuss the

maintenance and cost analysis of our proposed structure MTopList.
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Chapter 6

Optimized Top-k Result-sets

Infrastructure: MTopList.

To tackle these shortcomings, we now analyze the propertiesof MTopBand to further de-

sign a data structure with resource requirements independent of not only the size of the

workload WL and the window size of the meta queryQmeta, but also the number of future

windows. Next, we discuss various properties of the MTopBand structure and utilizing

these observations, we further design the optimized integrated compact structure MTopList

structure. We then discuss the maintenance and cost analysis of our proposed structure

MTopList.

Observation 1. The MTopBand’s top-k results in adjacent predicted views tend to

partially overlap, or even be completely identical.

Explanation. Top-k results for the current window are computed based on the scores

of the objects within the complete window. Yet, the top-k results of the first predicted view

are computed based on exactly the same set of objects except for those few objects that will
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expire with the first slide. This means that the subsequent predicted views inherit subsets

of top-k results from their previous windows.

The top-k result sets of the adjacent predicted views will beidentical when 1. the

objects that expired after the slide were never a part of the top-k result set,Oexp.Fscore ¡

Ocurr.Fscore; 2. All the newly arriving object in the current window have an object score

smaller than objects that are alive from previous window,Oexp.Fscore ¡ Ocurr.Fscore.

Observation 2.An object may disappear first and then may reappear later in the top-k

result sets of subsequent predicted views in its life time.

Explanation. By Theorem 5.1.1, top-k results for multiple queries are maintained

concomitantly in the MTopBand structure, such that only theminimal object sets that may

participate as top-k results for one or more queries are kept[Theorem 5.1.1]. We also recall

that the predicted views in the MTopBand structure are builtsuch that each view ends at an

output moment of one or more top-k queries [Section 4.1].

Since the top-k parameterk of each of these queries may differ, the number top-k

objects maintained in each predicted view may also differ. This implies that if an object

Oi’s rank in the top-k result set is greater thanksmallest, the smallest top-k parameter of any

queryQi in the workload, it will disappear from the top-k result setsof all those predicted

views that end at the output moment of the queryQi. Oi may reappear in the subsequent

predicted views that end at time points when other queries with top-k parameter greater

thanksmallest need output. ObjectOi will reappear only if it is still alive and no other new

object with anFscore greater thanOi has arrived at the system.

Observation 3. If object oi andoj both participate in the predicted top-k result sets of

more than one windows, then the relative positions betweenoi andoj remains the same in
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each of the predicted top-k result set .

Explanation. First, theFscore for any object is fixed. Second, the top-k objects in any

predicted view are sorted by theirFscores. Thus,oi will always have a higher rank thanoj

in any window in which they both participate, ifF(oi) > F(oj).

6.1 Integrated Infrastructure: MTopList

Given these properties, we now develop an integrated data structure to represent MTopBand

top-k result sets for all predicted views. Our goal is to share the (1.) memory space among

views by maintaining by maintaining only distinct objects each of which may participate in

the predicted top-k results of possibly many queries; (2.) computation of positioning each

new object into the predicted top-k results of all predictedviews. This sharing leads us to

remarkable savings in CPU and memory resources as discussedbelow.

To achieve this goal, instead of maintainingNact independent predicted top-k result sets,

namely one for each window, we propose to use a single integrated structure to represent

the predicted top-k result sets for all windows. We call thisstructure MTopList.

The idea is to only maintain one copy of each of the distinct objects among the MTop-

Band top-k result sets across the current window and future windows in an integrated list

MTopList, rather than saving the overlapping results multiple times namely one for each

future window they participate in More specifically, each object in the MTopList may par-

ticipate in the top-k results of the current window and one ormore future windows.

MTopList is sorted byFscores of these distinct objects. Figure 6.1 shows the MTopList

structure based on the workload WL of the three queries Q1, Q2, and Q3 introduced in

Example 4.2.1. Note that Figure 5.1 depicts the MTopBand structure for the same example.
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Figure 6.1: Physical view of MTopList

MTopList shown in Figure 6.1 includes all the predicted top-k results in the MTopBand

structure. At time stamp t = 8s, a list of only 5 distinct objects withFscores 12, 11, 9 and 6,

and 5 are maintained instead of 5 independent top-k result sets for each of the current and

future windows with redundant objects between the windows as maintained by MTopBand

structure (Figure 5.1).

Clearly, in the MTopList structure an object may participate in more than one window,

and it is usually a part of the top-k results for more than one query. Next, we tackle the

problem of how to distinguish among and maintain top-k results for multiple windows and

multiple queries in this integrated MTopList structure.

Lemma 6.1.1 If top-k parameterk for all queries in WL is equal, then at the output time

of the windowWi, the object with the smallestFscore, sayOmin topk of the predicted top-k

results in any future windowWi+n(n > 0) has a smaller than or equalFscore to that of any

windowWi+m(0 ≤ m < n), i.e.Omin topk ≤ Wi+m.Omin topk.

Proof. When the top-k parameter for all queries is same, the number of predicted top-

k results maintained in each current and future window is exactly same. After a window

slides, some of the objects from the top-k result set in the current window may expire. The
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objects in the current windowWi that also participate inWi+n, DWi+n, is a subset of those

will participate inWi+m, DWi+m (m < n). Thus, the minimal F score of the top-k objects

selected from the object setDWi+m in Wi+n cannot be larger than the minimal F score of

the top-k objects selected from a super set ofDW i+ n, namely the object setDW i+m in

Wi+m.

Based on Lemma 6.1.1, we now introduce the first step to distinguish between the ob-

jects participating in different windows and in the top-k results of different queries. We call

this aswindow mark representation. More specifically, we represent two window marks

(window id) for each object in the MTopList, namely the startwindow mark and the end

window mark, which respectively represent the windows in which an object makes its first

and its last occurrence to be predicted as the part of top-k result respectively.

Example 6.1.1 Based on our running example (Example 4.2.1), Figure 6.1 shows the win-

dow marks associated with each object in the MTopList at timet = 8s. Object withFscore

12 participates in onlyW0, so both the start window mark and end window mark for 12 are

[W0, W0]. Similarly the window marks for objects withFscores 11, 9 and 6 are [W0, W3],

[W0, W4], and [W2, W2] respectively. Clearly, the number of window marks needed for

each object is always a constant, only 2. Interestingly it isnot dependent on the number of

windows an object is participating in.

Lemma 6.1.2 For given windowsWi+m serving a queryQm with top-k parameterQm.k

= X, Wi+n with Qn.k = Y , andWi+p with Qp.k = X such that0 < m < n < p and

X > Y > 0; top-k elements participating inWi+m with rank greater thatY ( based

on Fscore) will not participate inWi+n if the objects from rank1 throughY in Wi+m are
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still alive at the time of windowWi+n. The objects with rank greater thanY will again

participate inWi+p if they are all still alive.

Based on the Lemma 6.1.2, it can be seen that an object during its life time may par-

ticipate as part of predicted top-k results in windowsQn.k = X and disappear for windows

with top-k parameterQn.k = Y then reappear for the windows with parameterQn.k = X,

such thatQn.k = Y < Qn.k = X.

Thus, we observe that for all top-k results with rank greaterthan the top-k parameter

Qi.k such thatQi.k is the smallestk parameter among all queries in the workload, there is a

possibility of discontinuity in their participation as top-k results in the subsequent windows.

Hence, simply maintaining the first occurrence (start window mark) and the last occur-

rence (end window mark) would be insufficient to track in which windows among that

range, a particular object actually participates. To tackle this, we maintain a separate

pointer for each window at the lowest top-k object in the top-k result set so as to iden-

tify the actual top-k results in any particular window. We now introduce a minimumFscore

pointer,FPmin for each window in the MTopList. TheFPmin mark points to the object

with smallestFscore in a particular window. Thus the number ofFPmin marks maintained

within MTopList is equal toNact, namely one for each active window. We further utilize

this pointer for updating the MTopList with each newly arriving object in the data stream

as discussed in the next subsection.

Lemma 6.1.3 At any given time, utilizing the start window mark and the endwindow mark

of an object in the MTopList structure along with theFPmin mark for each window is

sufficient to generate the top-k result for any queryQi in the workload WL.
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6.2 The MTopList Maintenance

Figure 6.2: Updating the multi top-k results in integrated structure MTopList

Updating MTopList after expiration of existing objects. A careful mechanism is

needed for updating MTopList every time a window slides. As discussed before, each

object in the integrated structure may participate as a top-k result in more than one active

window. So, if the oldest windowW0 expires the corresponding objects inW0 cannot

simply be deleted from the list. We develop a strategy that uses the starting and ending

window marks to decide if an object needs to be physically removed from the MTopList

altogether after the window slides.

We observe that, the top-k objects of the current-to-be expired window are the first

Qmeta.K objects in the MTopList. We recall(Chapter 4) thatQmeta.K is equivalent toQi.k

whereQi is the query that needs output when the current window expires. If the window

serves more than one member query thenQmeta.K is the maximum top-k-parameter of

all the queries served by any window. The MTopList is sorted by objects’Fscore. So,

the current-to-expired window being the oldest window willcontainQmeta.K objects with
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highestFscore as compared to the other objects in the list.

After the window expires, we increment the starting window mark of all objects in that

window by 1. This indicates that window has expired as none ofthe objects in the list

participate in that particular window. After incrementingthe starting window marks if any

of the objects in the list has a starting window mark larger than the ending window mark

then we physically delete this object from the list because this object was participating only

in the window that already expired and thus is not needed any more.

Example 6.2.1 As shown in Figure 6.2 (top right), immediately after time t =8s,W0 ex-

pires and the starting window marks of objects withFscores 12, 11, 9 and 6 are incremented

fromW0 toW1. Now for object 12, the starting window mark isW1 and the ending window

mark isW0. This means that this object is not needed in any of the futurewindows and can

be physically deleted from the list. The list after deleting12 contains only 11, 9, and 6.

Updating MTopList after inserting newly arriving objects.

Every time a new object, namelyonew is eligible to participate as a top-k result(decided

based ononew’s Fscore ) we take the following steps to update MTopList. At step 1, wefind

the correct position ofonew in MTopList. At step 2, we updateonew’s starting and ending

window mark. Finally, we remove the object with the smallestFscore from the windows

that the new object is predicted to be part of their top-k results.

For positioning each object into the MTopList, if the predicted top-k result set of any

future window represented by the MTopList has not reached the size of k yet, or if its F

score is larger than that of any object in the MTopList, we insert it into the MTopList.

Otherwise it will be discarded immediately.
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The position ofOnew is easy to find utilizing theminFP marks.Onew.Fscore (Fscore of

the new objectOnew ) is compared each of theminFP starting from the lowest until an

object withFscore greater thanOnew is found.

If Onew is inserted at its correct position in the MTopList, it is in the predicted top-k

results of at least the one window in its life span, its endingwindow mark is set to be

the newest window Id the MTopList such thatOi.minFP .Fscore < Onew. Fscore, where

Oi.minFP .Fscore is theFscore of the object marked byminFP . The starting window mark

of a new object is simply the oldest window on the MTopList,Oi.minFP .Fscore < Onew

Fscore.

Once we haveOnew’s updated the starting window mark and ending window mark,

we remove the objects pointed byminFP marks from all those windows in whichOnew

is predicted to participate. We note that, here is thatOnew may not participate as a top-k

result in all windows from starting window mark to ending window mark(Observation 2).

Thus, only those objects are removed whoseOi.minFP .Fscore is smaller thanOnew Fscore;

Oi.startmark is greater than or equal toOnew.startmark andOi.startmark is smaller than or

equal toOnew.endmark.

Example 6.2.2 As shown in Figure 6.2 (bottom left), object withFscore 4 is compared

with object withFscore 6 (minFP of the newest window),4 being smaller than object with

Fscore 6 could not be a part of top-k results for windows [W1-W4]. Thus the starting and

ending window marks of this newly inserted object withFscore 4 are updated to [W5, W5].

When object withFscore 10 arrives, it is larger than theminFP objects in each of the

windows. Thus, the starting and ending window marks of object 10 are updated toW1 and

W5 respectively. Finally, we remove the object withFscore 9(marked byminFP in W1, W3,
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W4 ) from windowsW1, W3, W4 and object withFscore 6 (marked byminFP in W2) from

windowW2 respectively.

Next, we present the pseudo-code for MTopList maintenance algorithms.
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Onew: newly arriving object.
WL: input multi query workload.RMQSins: runtime instructions from scheduler.
Qi: member query in the workload WL that needs output when RMQSins = T imetoOutput.

ki: top-k parameter of queryQi OR maximum top-k parameter amongst all queries that need output.
Ocurr: current object count.
minFP : minimum score mark of each windowWi.
Omin: MTopList.Oi.minFP .Fscore.
Omax: MTopList.Oi.Fmaxscore.
Woldest/newest:oldest/newestW in MTopList.
startmark: window starting mark for an object.
endmark: window ending mark for an object.
Nact:Number of active windows
MTopList(S,RMQSins)

1 for each new objectOnew

// if time to slide, purge window
2 if RMQSins = T imetoOutput

3 OutputTopK(Qi);
4 PurgeExpiredWindow(Woldest);
5 AddNewWindow(Wnewest);
6 UpdateMTopList(Onew);

OutputTopK( Wi);
1 output firstki top-k objects from MTopList;

PurgeExpiredWindow(Woldest)
1 for first ki objects in the MTopList;
2 Oi.startmark = Oi.startmark + 1;
3 if Oi.startmark > Oi.endmark;
4 removeOi from the MTopList;
5 setWoldest.Ocurr = zero;

AddNewWindow(Wnewest)
1 if Woldest is expired;
2 create newest future windowWnewest;
3 setWnewest.Ocurr = zero;

Figure 6.3: MTopList Algorithm -part 1
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UpdateMTopList(Onew)

01 if Wall.Ocurr == ki
02 if F(Onew) < F(Omin)
03 discardOnew;
04 if F(Onew) > F(Omax)
05 Add Onew to MTopList asOmax;
06 UpdateOnew.startmark = Wi andendmark = WNact+i

;
07 UpdateminFP of each active windowWi;
08 if F(Onew) > F(Omin) F(Onew) < F(Omax).
09 positionOnew into MTopList.
10 UpdateOnew.startmark = Wi andendmark = WNact+i;
11 UpdateminFP of each active windowWi;

Figure 6.4: MTopList Algorithm -part 2
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Chapter 7

Extracting output for each member

query - Query Result Extractor(QRE)

QRE extracts the exact top-k results from the data structurefor each member query in

the query group at a given moment. QRE picks theQmeta output from integrated data

structure each time it is triggered by instructions from thedynamic scheduler RMQS. These

instructions are primarily 1. time to output, 2. query/queries that need output at the time

when the current window ends.

In the single query top-k processing the slide size is fixed which means query result at

any given output moment corresponds simply to the objects that are purged from the system

at the time of window slide. On the other hand, MTopList algorithm maintains all the top-k

results for many queries together. At the time of output, thecurrent-to-output window may

contain the top-k results for more than one query (each with different top-k parameters).

Thus the top-k results of different member queries are completely interleaved.

QRE separates the top-k results required for the given member query at a particular
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output moment in the following steps. First, RMQS triggers the QRE each time when one

or more member queries need output. The RMQS instructions contain the list of member

queries served by the next output window. Based on these instructions, QRE picks the

top-k objects from the current-to-expire window from MTopList. Second, based on the

top-k parameter of each query that needs output QRE separates the interleaved results and

generates the specific top-k results for each member query. Next we continue our running

Example 4.1 to explain the result extraction technique.

Figure 7.1: Final Top-k results for different member queries

Example 7.0.3 As shown in Figure 8.1 (top), RMQS instructs QRE: (1.) t = 8s - time to

outputW0, (2.) W0 servesQ1 (k=3),Q2 (k=2), andQ3 (k=1). Based on these instructions,

QRE picks the current top-k objects withFscores 12, 11, and 9 inW0(Qmeta results) from

MTopList.

Three different result sets, namely one for each of the member queries are generated

fromQmeta result. Object withFscore 12, which is top-1 object in the output windowW0 is

the final result forQ3 (Q3.k=1). Similarly, objects withFscores 12 and 11 (Q2.K=2); and

12,11, and 9 (Q1.k=3) are the final results for queriesQ2 andQ1 respectively.

Figure 8.1 (bottom) shows the next output moment, at time t=10(s), the RMQS triggers
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QRE with the instructions: (1.) t=10(s) - time to outputW1, (2.) windowW1 serves query

Q2.

The processing at QRE is straightforward in this case as the output windowW1 serves

only one query. So the finalQ2 result are objects 11, 9 which is exactly same as the objects

stored inW1 in the MTopList at time t=10s.

Once the exact query results have been successfully generated and given to the user,

QRE acknowledges the dynamic scheduler RQMS so that to send the next set of instruc-

tions correctly.
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Chapter 8

Related Work

Top-k queries on a static data set have been well studied in the literature. The top-k algo-

rithms,Onion [2] andPrefer [8], based on preprocessing techniques, require the com-

plete data set to be available in memory for computing the top-k objects.

[10] presents algorithms that reduce the storage and maintenance costs of materialized

top-k views in the presence of deletions and updates. Other works in relational databases

like [11,12] focus on multidimensional histograms and sampling-based technique to map

top-k queries into traditional ranges. [3,4,5] study top-kqueries in distributed data repos-

itories. In general, they minimize the communication cost for retrieving the top-k objects

from distributed data repositories.

Fagin et al. [13] introduce two methods for processing ranked queries. The TA al-

gorithm is optimal for repositories that support random access, while the NRA algorithm

assumes that only sorted access is available. Chang and Hwang [7] introduce MPro, a gen-

eral algorithm that optimizes the execution of expensive predicates for a variety of top-k

queries.
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All the above methods are based on the assumption that the relevant data set is available

at the compilation stage of query execution either locally or in distributed servers. Also they

are designed to report the top-k results only once. Thus these techniques are not suitable

for streaming environments where the data are not known in advance, rather they keep

changing as new tuples arrive and old ones expire.

More recently researchers have started to look at the problem of top-k queries in stream-

ing environments. Most of this work is focused on single top-k query processing where the

assumption is that at a time only one top-k query is registered in the system [6,14,16] .

Among these works, [16] presents an optimal technique for top-k query processing both

computationally and memory wise. Although optimal for single top-k query processing,

this technique does not handle multiple queries simultaneously registered in the system.

Our experiments show that our proposed sharing strategy by many orders of magnitude

outperforms the solution of executing top-k queries independently for multiple queries.

To the best of our knowledge, [15] and [17] are the only two works that handle simul-

taneously registered multiple top-k queries in streaming scenario. [15] tackles the problem

of exact continuous multiple top-k queries monitoring overa single stream. The proposed

techniques share only the indices among different registered queries by maintaining index

and bookkeeping structures. They introduce two algorithms. First, the TMA algorithm

computes the new answer for a query whenever some of the current top-k points expire.

Second, the SMA algorithm maintains a skyband structure” that aims to contain sufficient

number of objects so that it need not go back to the full data stream window.

However, unfortunately, neither of these two algorithms eliminates the recomputation

bottleneck from the top-k monitoring process. Thus, they both require full storage of all

47



objects in the query window. Furthermore, they both need to conduct expensive top-k

recomputation from scratch in certain cases, though SMA conducts recomputation less fre-

quently than TMA. While our proposed algorithm eliminates the recomputation bottleneck

altogether thus realize complete incremental computationand minimal memory usage.

Experiments conducted by the optimal technique for top-k query processing[16] shows

a significant CPU and memory resource saving over [15]. Our experimental results confirm

the improvements by many orders of magnitude achieved by ourproposed algorithm over

[16] for any workload with a size of 2 queries and greater. Thus, our proposed algorithm

achieves a clear win over each the state-of-art techniques.

[17] handles multiple top-k queries, but based on the probabilistic top-k model in data

streams. While we work with a complete and non-probabilistic model. Also their focus is

to achieve sharing among the queries on the preference function while we focus on other

important parameters of a continuous top-k query, namely window size, slide size and K. In

short, they in large target different problems from ours. Inparticular, the key fact affecting

the top-k monitoring algorithm design is the meta information maintained for real-time

top-k ranking and the corresponding update methods , which vary fundamentally by these

respective top-k models.
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Chapter 9

Experimental Evaluation

Our experiments are conducted on a Sony VIAO laptop with Intel Centrino Duo 2.6GHz

processor and 1GB memory, running Windows Vista. All the algorithms are implemented

in Eclipse IDE using C++.

Real Datasets.We used two real streaming data sets. The first data set, GMTI (Ground

Moving Target Indicator) data [18], records the real-time information of moving objects

gathered by 24 different data ground stations or aircrafts in 6 hours from JointSTARS. It

has around 100,000 records regarding the information of vehicles and helicopters (speed

ranging from 0-200 mph) moving in a certain geographic region. In our experiment, we

used all 14 dimensions of GMTI while detecting clusters based on the targets latitude and

longitude. The second dataset is the Stock Trading Traces data (STT) from [19], which has

one million transaction records throughout the trading hours of a day.

Alternative Algorithms. We compare our proposed algorithm MTopLists performance

with two alternative methods, namely, 1. state-of-the-artsingle query solution MinTopK

[16] for each member query in the workload WL without sharingany of the window or k
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parameters amongst these queries. 2. MTopBand, the basic algorithm we presented in this

work (Section IV).

Experimental Methodologies.We measure two common metrics for stream process-

ing algorithms, namely average processing time for each tuple (CPU time) and memory

footprint. Experiments are designed to compare the performance of the proposed algo-

rithm with the alternative algorithms.

First, we perform the scalability tests to verify the performance of the proposed algo-

rithms with the increasing number of queries in the input workload. We first evaluate at a

time three test cases, each varying on only one of the three query parameters. Then we test

the more general case with varying two parameters arbitrarily. Finally, we test the most

general case with all three parameterswin, slide, andk being arbitrary. For each experi-

ment, we vary window sizewin in the range of 100K to 1 M, slide sizeslidebetween 10K

to 100K, and top-k parameterk in the range of 10-1000.

Second, we conduct overhead evaluation tests to verify the performance of the pro-

posed algorithms while processing a single top-k query or with small workloads. Here, we

perform experiments for workload of 1, 2, and 5 queries each and compare the results of

MTopList with the state-of-art optimal single query solution[16].

9.1 Scalability Evaluation

Scalability tests with one arbitrary parameter. For each test case, we prepare three

workloads with 10, 100, and 1000 queries respectively by randomly generating one input

parameter (in a certain range) for each member query, while using common parameter

settings for the other two query parameters.
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Fixedwin, Fixedslide, and Arbitrary k. In this experiment, we evaluate performance

of our proposed algorithms as compared to the state-of-art algorithm [15] while executing

the workloads sized from 10 to 1000 queries. We usewin = 1M andslide= 100K, while

varyingk from 10 to 1000. We randomly generatek between the range 10 - 1000 for each

query.

Figure 9.1: CPU time used by three algo-
rithms with differentk values

Figure 9.2: Memory space used by three
algorithms with differentk values

As shown in Figures 11 and 12, both the CPU time and the memory space used by

the three algorithms using logarithmic scale. Clearly, performance of our two methods is

order of magnitude better. Amongst all three compared algorithms , MinTopK’s [15] CPU

time increases as a direct multiple of the size of workload. Naturally, the increase in the

CPU time is around 100 times when the number of queries increases from 10 to 1000. Put

differently, it does not scale well with the cardinality of the workload.

On the other hand , the CPU time required by MTopList to process one tuple increases

around 2 times when the number of queries grows one order of magnitude(10 to 100),

and then it increases around 1.5 times when number of queriesgrows another order of

magnitude(100 to 1000). Whereas the CPU time for the basic algorithm we presented in

this work, MTopBand, increases around 3 times when the number of queries increased from
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10 to 100, and it further increases around 2 times with cardinality 100 to 1000.

For the memory space used, MTopList has even better performance as its utilization

of memory space only increases 2.5 times when the number of queries increases from

10 to 1000, while such increase for MTopBand and MinTopK are 6times and 99 times

respectively.

We note that in this case only top-k parameterk is arbitrary. Thus, this is the best

possible case for our proposed algorithm as maximum sharingis achieved here. Next,

we discuss the experimental evaluation for the cases whenk is fixed, while other query

parameters,win or slideare varying.

Varying slide sizes. In this experiment, we usewin = 1M andk = 1000 , while we

randomly generateslidevalues between the range 100K - 1M.

Figure 9.3: CPU time used by three algo-
rithms with differentslide values

Figure 9.4: Memory space used by three
algorithms with differentslide values

As shown in Figures 13 and 14, both the CPU and memory usage of MTopList is

still significantly less than those utilized by state-of-art algorithm MinTopK [16] in all test

cases. In particular, for processing 100 queries , MTopListonly takes 0.0066 s to process

each object on average, while MinTopK needs 0.712 s for each object. This is as expected

and can be explained by the same reasons as in the previous test cases.

However, an important observation made from this experiment is that the performance
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of of our basic algorithm MTopBand can be affected by the win/slide ratio. We recall that

MTopBand maintains the predicted top-k results for each future window independently,

thus its resource utilization is expected to increase linearly with the number of future win-

dows maintained, which is equal towin/slide.

Thus, MTopBand’s increase in resource utilization is expected becauseslide is ran-

domly picked in this case, resulting in a large value ofwin/slide ratio for some of the

queries in the workload. On the other hand, the performance of MTopList remains un-

affected by the change in the win/slide ration. This is because MTopList only maintains

distinct top-k objects which are not dependent on number of predicted views.

Varying win sizes. In this experiment, we useslide = 100K, k = 1000 , while we

randomly generatewin between the range 100K - 1M.

Figure 9.5: CPU time used by three algo-
rithms with differentwin values

Figure 9.6: Zoomed in version of figure
15 - Comparison of CPU time used by
only MTopBand and MTopList

Both the CPU and memory usage of the state-of-art algorithm MinTopK increases dra-

matically as the number of queries increases while the usageof proposed algorithms MTo-

pList and MTopBand are still significantly less than MinTopK. More specifically, for pro-

cessing 1000 queries with varyingwin values, MinTopK takes a total of 3.112 seconds,

MTopBand takes.038 seconds and MTopList takes only .016 seconds. Thus our proposed
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algorithm MTopList takes around 1500 time less CPU time thanthe state-of-art algorithm

MinTopK.

An important observation made in the scenes of varying slidesizes are valid here as

well. More specifically, in this case as well the performanceof MTopBand is affected by

thewin/slide value of the queries. We note that, MTopList consumes at least 100 percent

less CPU time than MTopBand for processing 1000 queries.

Scalability tests with more than one arbitrary query parameters For each test case,

we prepare three workloads with 10, 100, and 1000 queries respectively by first randomly

generating two input parameters (in a certain range) for each member query, while using

common parameter settings for just one query parameters. Second, we evaluate the most

general case by randomly generating all three query parameters.

Arbitrary win, Arbitrary slide, and fixedk.

In this case, we usek = 100, while varyingwin from 100K to 1M andslide from 10K

to 100K.

Figure 9.7: CPU time used by three algo-
rithms with differentwin andslide values

Figure 9.8: Memory space consumed by
three algorithms with differentwin and
slide values

As shown in Figures 13, the CPU time consumed by MTopList per tuple increases
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4.1 times, when the number of queries increase from 10 to 100 and it further increases

around 2.3 times when number of queries increase from 100 to 1000. Whereas for the basic

proposed algorithm MTopBand the CPU time increases around 7times from 10 to 100 and

around 4.5 times from 100 to 1000 queries. Clearly, this increase in CPU consumption time

of the proposed algorithm with increase in the number of queries is modest as compared to

the alternative algorithms.

Although the ratio of increased CPU consumption time is 1.5 times more as compared

to the previous only one arbitrary parameter case. This is because two arbitrary query

parameters lead to decrease in the sharing amongst different queries, and thus increases the

maintenance costs of both MTopList and MTopBand.

General case: All Arbitrary Parameters. Finally, we evaluate the general case with

all three parameterswin, slide, andk being varied arbitrarily.

Figure 9.9: CPU time used by three al-
gorithms with arbitrarywin andslide pa-
rameters

Figure 9.10: Memory space consumed by
three algorithms with arbitrarywin an

Figure 19 and 20 show the performance of the three algorithmsin terms of CPU and

memory utilization. Clearly, MTopList wins over the other two algorithms for both CPU

and memory utilization in this case too. MTopList takes around 30-40 times less CPU time

55



to process 1000 queries as compared to MTopBand. Also, MTopList takes around 330

times less CPU time as compared to the state-of-art algorithm MinTopK. This saving is

less as compared to the previous cases where only one or at themost two parameters are

arbitrary. This is caused by too large variations on the parameter settings. The important

observation here is MTopList never performs worse than MTopBand for any workload.

9.2 Overhead Evaluation

Next, we compare the performance of the proposed algorithmsMTopList and MTopBand

in terms of both CPU and memory utilization with the state-of-the-art single query solution

for small workloads of size 1, 2 and 5 queries.

Figure 9.11: CPU time used by three
algorithms for processing 1, 2, and 5
queries

Figure 9.12: Memory space consumed by
three algorithms for processing 1, 2, and
5 queries

As shown in figure, we evaluate the overhead incurred by our proposed algorithms due

to simultaneous processing of multiple top-k queries. As discussed, in section IV before

actual top-k query processing, we first analyze the parameters of each of the input queries

in the workload so as to integrate all the queries into a single meta query.
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MTopList takes maximum CPU time amongst the three algorithms for processing sin-

gle query. More specifically, MTopList consumes 2.8 ms/tuple , while MTopBand and

MinTopK consume 2.1 and 1.3 ms/tuple respectively. This is expected as MinTopK algo-

rithm does not analyze the parameters to identify the sharing opportunity. MTopList takes

only 3.1 and 3.7 ms, while MinTopK requires 3.8 and 8.5 ms to process a workload of

cardinality 2 and 5 respectively. Thus we conclude that the CPU overhead incurred by our

proposed algorithms becomes negligible as we increase the cardinality of workload. This

is because the savings achieved in the actual top-k query processing supersedes the extra

analysis time consumed by our algorithms tremendously.

Memory wise, MTopList always maintains minimum amount of tuples and incurs no

overhead at all. Thus, for processing one query both MinTopKand MTopList require

equivalent memory space. While, our basic algorithm, MTopBand, consumes more mem-

ory space as it maintains multiple references for the same object if the object participates

in more than one window. However as the cardinality of workload is increase from 1

query to 2 queries, the memory space consumption of MinTopK becomes almost equal to

MTopBand and it increases to 1.5 times more than MTopList. For a workload of 5 queries

MinTopK consumes memory space 2.5 times and 5 times more thanMTopBand and MTo-

pList respectively.
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Chapter 10

Conclusion and Future Work

In this work, we present the MTopS framework for efficient shared processing of a large

number of top-k queries over streaming windows.

MTopS achieves significant resource sharing at the query level by analyzing the param-

eter settings. MTopS further optimizes the shared processing by identifying and maintain-

ing only the minimal object set from the data stream that is both necessary and sufficient

for top-k monitoring of all queries in the workload.

Our experimental studies based on both real and synthetic streaming data confirm the

clear superiority of MTopS to the state-of-the-art solution. We also confirm that MTopS’s

processing overhead attributed to query parameter analysis is minimal and it wins over

state-of-art solutions even for workloads of very small size. MTopS also exhibits excellent

scalability in terms of being able to handle thousands of queries under high speed input

streams in our experiments.

An important area of improvement is using this framework to scale-up considering mul-

tiple machines and grouping of workloads into sub-workloads to be assigned to different
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machines. We believe that the techniques proposed in this work, can be extended for such

parallel processing of multiple top-k queries.

Another major research direction is to study other data mining queries utilizing this

framework such as outliers, associations etc. The component based design of our frame-

work can be reused for shared processing of other types of multiple queries.
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