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Abstract

A continuous top-k query retrieves tlhemost preferred objects from a data stream ac-
cording to a given preference function. These queries apaitant for a broad spectrum
of applications from web-based advertising, network ttaffionitoring, to financial anal-
ysis. Given the nature of such applications, a data streaynb@aubjected at any given
time to multiple top-k queries with varying parameter sgjti requested simultaneously by
different users.

This workload of simultaneous top-k queries must be execeféciently to assure
real time responsiveness. However, existing methods ifitdrature focus on optimizing
single top-k query processing, thus would handle each qudgpendently. They are thus
not suitable for handling large numbers of such simultasdop-k queries due to their
unsustainable resource demands.

In this thesis, we present a comprehensive framework,ccMBpS for Multiple Top-
K Optimized Processing System. MTopS achieves resouraenghat the query level by
analyzing parameter settings of all queries in the work|oaduding window-specific pa-
rameters and top-k parameters. We further optimize theedhaiocessing by identifying
the minimal object set from the data stream that is both rsacgsnd sufficient for top-k
monitoring of all queries in the workload. Within this framerk, we design the MTop-
Band algorithm that maintains the up-to-date top-k restlirsthe size of OK), wherek
is the required top-k result set, eliminating the need fgrr@eomputation.

To overcome the overhead caused by MTopBand to maintaiicasf the top-k result
set across sliding windows, we optimize this algorithmHartby integrating these views

into one integrated structure, called MTopList. Our asstec top-k maintenance algo-



rithm, also called MTopList algorithm, is able to maintamstlinear integrated structure,
thus able to efficiently answer all queries in the workloadldgList is shown to be mem-
ory optimal because it maintains only the distinct objebtt are part of top-k results of
at least one query. Our experimental study, using real degaras from domains of stock
trades and moving object monitoring, demonstrates thdt that efficiency and scalability

in the query workload of our proposed technique is supeoithié state-of-the-art solutions.
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Chapter 1

Introduction

With the continuous proliferation of web applications angditdl devices, the input data
rates of streams arriving at a data stream management s{B&WS) have grown by leaps
and bounds. Naturally, there is thus critical requiremergrocess these huge volumes of
data so as to generate real time results by reducing the tageée data acquisition and

acting on the acquired data.

1.1 Motivation

Top-k queries are critical for large number of applicatioasging from web advertising,
financial analysis to network traffic monitoring. A top-k queeturns theé: most preferred
objects from a datasét according to a given preference functiéh Since streaming data
is infinite while the notion of top-k can only be defined basea@dinite number of objects,
window constraints are usually adopted to make top-k geeapplicable to data streams

[14, 15, 16] Such a window can be time based or tuple-courddagime based sliding



windows assume that tuples arrive with a time stamp and remathe buffer as long
as their time stamp belongs to a fixed time period coveringribst recent time stamps.
Tuplecount based sliding windows contain the most recergddnds [14].

Thus top4 queries are not only parametrized by the parameter séiting also win-
dow properties such as window type, size and slide. Anaiystgbe interested in different
top-k volatile stocks of the same financial data while imposingauszed time windows
and refresh rates. For example, a financial analyst may askéotop-10 most volatile
stocks in the last 1 hour with a refresh rate of 10 minutes. tA@oanalyst may want
to look at the top-200 most volatile stocks in the last 30 rreswith a refresh rate of 5
minutes.

In fact, even a single analyst may at times submit multiplergps with different pa-
rameter settings with the intent to further analyze re@tkeresult sets so to derive a well
supported conclusion. Real time systematic processingaf workloads of tope: queries
is essential.

As motivated above, a stream processing system should eécatcomodate a work-
load of numerous top-k queries, and thus successfully lz&the correct top-k results at
the required output moments for each of these queries. $nbik, we focus on process-
ing multiple top-k queries with arbitrary query parameteitiags, while still achieving real

time results for each of these queries as needed by any spremessing system.

1.2 State-of-Art

Top-k query processing has been extensively studied in convaltidatabases [2, 8, 20].

These techniques cannot be directly applied nor easilytadap fit streaming environ-
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ments. This is because the key problem they solve is, givge kalumes of static data,
how to pre-analyze the data to prepare appropriate metematon to subsequently an-
swer incoming top-k queries efficiently [2, 8]. Streamingedaowever is dynamic with its
characteristics dramatically changing over time. Givenréal-time response requirement
of streaming applications, relying on static algorithmsge@ompute the top-k results from
scratch for each window is not feasible in practice [15].

In the streaming scenario, research has primarily focuseesingle top-k query pro-
cessing [14, 15, 16, 17]. These methods focus on only ong/gagistered in the system
at a time. However, simultaneous processing of large nusniieiop-k queries, as would
be experienced by applications as motivated above, reraaihallenging open problem to

date.

1.3 Challenges

One major challenge associated with multi top-k query pgsicey is to support workload
of queries with possibly arbitrary parameter settings. &gpecifically, the parameters of
the queries in the query group may be arbitrary, thus nowalig any obvious sharing of
computations among distinct queries. We thus set out toyaaalharacteristics of these
gueries so as to identify t subprocesses as well as whatnsystources amongst these
gueries may be shared.

Given the real time response requirement of the top-k querggssing, serving a work-
load with possibly arbitrary parameters in a single syst&highly resource intensive. The
naive method of executing each of the queries independimtlyhuge workload has pro-

hibitively high demands on both computational and memosypueces. The optimal state-
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of-art top-k query processing method may take 10 s to updetejtiery result for each
window slide (100K new tuples) for 1M- tuple window slide akndqual to 1K tuples[16].
In this scenario 1000 such queries with refresh rates of hutegneach were to be executed
one after the another, it may take time more than two hoursnegte the top-k result for

all queries; obviously failing to answer most of the quesaethe required refresh rate.

1.4 Proposed Solution

We present a comprehensive framework 'MTopS’ foM Glti Top-K O ptimizedProcessing
System, to achieve simultanous execution of a workload c&mpaterized top-k queries
with arbitrary window parameter settings, namedyrn(andslide) and the top-k parameter
k.

Within this framework we introduce several innovationssessl for optimizing multi-
guery top-k processing by effictively sharing the availabi®8J and memory resources.

1. First, we carefully analyze the workload so as to geneaagegle meta query to
represent all the workload queries. As discussed in Sebtias a first processing step we
successfully remodel the problem of maintaining multipleges into the execution of a
single query.

2. We propose an execution strategy that drives the singta qeery to process the
complete workload under the high speed input data rate so gsrerate real time top-k
results required by each of the queries. As discussed inoBe¢t, our execution strategy
achieves not only completely incremental computation kg enemory utilization in the
order of query parameter k.

We identify the minimum object set that is both necessarysarfiicient for generating
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accurate and timely rop-k results. We maintain this topdulteset in our proposed data
structure MTopBand. The key idea is to precompute and maintatadata namely, the set
of objects that have potential to belong to the top-k resubiie or more of the future output
windows. This is determined based on expiration times oféctisjand keeping sufficiently
many objects for each future expiration moment. We intredMdopBand maintenance
algorithm for updating the top-k result setsin real timehwitie arrial of new objects at the
system and expiration of objects in the existing top-k resets

3. We further improve the performace by analyzing intetreteships among consecu-
tive top-k result sets. We observe that majority of the aigjecthe adjacent future windows
tend to overlap due to which our first proposed algorithm MBapd usually maintains
some multiple copies of one top-k object. We thus design &grated maintenance mech-
anism that maintains only the distinct copy of an object imedr data structure, MTopList
across all queries and all window time slices. This meclmarmigoids storing overlapping
results multiple times and also enables us to design algositto update them linearly
rather than updating them indiidually for each window. Futhore, we also provide a
detailed complexity analysis for our techniques.

4. Lastly, we utilize seperate algorithms to generate nm@instructions for meta query
execution and exact result extraction for each of the gaénithe query group at a required
output moment.

5. We conduct extensive experiments on both real and syottegt sets to demonstrate
the efficiency and the scalability of our techniques. Expental evaluation(Section XI)
shows that the MTopS comfortably handles a workload in tdeioof 1000 queries with the

average processing time ranging between 4-30 ms/objeenhdérg on the query parameter



settings. We demonstrate that resource consumption inpgoach is not proportional to
the size of workload as is the case with the state-of-artagmr of optimally monitoring
top-k queries[16]. Hence our approach achieves far supeeidormance with increasing

workload.



Chapter 2

Problem Definition

Top-k Queries in Sliding Windows. In a sliding window scenario, the continuous top-
k query Q(Swin,slidek) returns top-k objects within each query windd¥ on the data
stream S. We use the term 'object’ to denote a multi-dimeraituple in the input data
stream. The objects that participate in the top-k resuls given window are referred to
as the 'top-k elements’ of that window. A query window is a sifeam of objects from
stream S that can be either count-based or time-based. Hadewiwin periodically slides
after a fixed amount of objects have arrived (count-based)fieed time has passed (time-
based) to include new objects from S and to remove expireeictbfrom the previous
window IW;_;. The top-k results are always generated based on the othattre alive in
the current window//;.

Multiple Top-k Queries. Given a query workloatlvVL with n top-k queriesQ) (Swiny,slidey,k;),
Q2(Swing,slides,ks),. .., Qn(Swin,,slide,,k,) querying the same input data stream S
while all the other query parameters, weén, slide k may differ.

We focus on executing all the registered queries simultasigsuch that each query

8



is answered accurately at their respective output mométdse specifically, we continu-
ously output the reuired top-k results for each query at tta@iresponding slide sizes. Our
goal is to minimize both the average processing time for edpbct and the peak memory

space needed by the system.



Chapter 3

The MTopS Framework

We now introduce the architecture of the MTopS frameworknsh Figure 3.1, while

details of the techniques used in each block are discus<€lapters 4, 5, 6, 7, and 8.

@

Multi Query Workload (@)

Q1:.. [WIN1, SLIDE1, K1]

Q2:.. [WIN2, SLIDE2, K2] W
—

Q3:.. [WIN3, SLIDE3, K3]

l single Runtime Meta Query
Meta Query Analyzer | et Scheduler/Manager
query
t t Top-K results streams
Input R1
-I Meta Query Query Result kG
Executor Extractor
Data Stream - R3

updates top-K extracts top-K
dynamically objects
Infrastru.cture Runtime Infrastructure
Instantiator

Figure 3.1: MTopS System Architecture
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Multi Query Analyzer (MQA). The functionality of MQA is to analyze the similarity
among the member queries in the workload, and thus orgahera &t the compilation
stage with the goal of maximizing the resource-sharingHerlater runtime execution. In
particular, we propose to use a “meta query strategy”, wbiglds a single meta query
Qmeta t0 Integrate all the member queries in the given workload mblyg, the input of
MQA is a workload of top-k queries with arbitrary parametettings, and the output of
MQA is single meta query. The meta quepy,... has the following key characteristics.
1)The query window of),,... always covers all objects in the stream that are necessary
to answer every member query. 2) The slide siz&)pf;, is no longer fixed but rather
adaptive during the execution, depending on the nearestgomt that any member query
needs to output or to conduct a new window addition or expivedlow removal. The
specific algorithm of building such a meta query is discusséthapter 4.

Runtime Infrastructure (RINF) and Its Instantiator (IINS) . To execute the meta query
generated by MQA, we need an infrastructure to physicallg Hee meta data, namely the
top-k candidates, during the meta query execution. We lellimfrastructure as Runtime
Infrastructure (RINF) in our system.

In this work, we propose two data structure designs for RIMfich do not simply
collect the top-k candidates, but also encode them intaexiily updatable formats. These
two designs are the independent window representatioméeglr-ated window representa-
tion respectively. We prove that by using those carefullsigieed data structures, our RINF
maintains the minimum object set that is necessary and muffifor answering all member
gueries, while any unnecessary object can be discardeddmatey when it arrives at the

system.
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RINF is instantiated by its Instantiator (IINS) at the cotapon stage. At the runtime
execution, RINF will be continuously updated as the inptegash arrives by Meta Query
Executor (MQE) (will be discussed later). Also the queryutessfor each member query
will be extracted from RINF by Query Result Extractor (QRE)emever they are needed.
Runtime Meta Query Scheduler (RMQS).As we discussed earlier in Multi-Query An-
alyzer,Q,..;, needs to adapt its slide size to meet the time points for outpuiouild new
windows or delete expired windows, for member queries. Tidgthis slide adaption pro-
cess 0f),,..:., We build a Runtime Meta Query Scheduler (RMQS) to calculmenearest
time point that is needed next by either of those three ojpeiat

Such schedule information will decide the behavior of otinggry execution modules,
namely MQE and QRE. In particular, RMQS sends instructiodM®E and QRE at sched-
uled window-addition/deletion time points or output timeirgs, and thus tells them to
conduct the corresponding operations at proper time. Ssthuctions guarantee that the
RINF is properly updated and the top-k results of all memhesrigs are output as the
gueries demand.

Meta Query Executor (MQE). MQE is the key online computation module which exe-
cutes the meta quer®,,.... by incrementally updating the top-k candidates held in RINF
as the input stream passing by. Such update process in@odespects, namely handling
the newly arrived objects and purging the expired objects.

When handling newly arrived objects, for each new objget, MQE first evaluates
whether it has the potential to appear in the outpuf®gf.,, in other words, whether it
is possible foro,.,, to make the top-k result of any member queries. If ygs, will be

used to update RINF. Otherwisg,.., will be discarded immediately to avoid unnecessary

12



computation and storage.

When purging expired objects, MQE checks which objects aosipletely expired”
for the meta query, meaning that they are no longer in theygwardow of any member
gueries. Those “completely expired” objects will be purffeth RINF immediately, while
those are expired for some queries but still valid for attleae member query will still be
keptin RINF.

Query Result Extractor (QRE). The functionality of QRE is to extract the top-k results
from RINF for each member query at the moment when the outiphi®particular query
is needed. This result extraction process is non-trivieddoise the top-k candidates for all
member queries are encoded in a single data structure in. RiNtg the result extraction
process, by analyzing the specific top-k candidate encodéeg by RINF, QRE in our

system guarantees that it only touch the objects that wiluiput for at least one query.
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Chapter 4

Analyzing the Multi Top-K Query
Workload

We now discuss our analysis of workload that transforms tbeklwad of many queries

into a single meta query.

4.1 Notion of Predicted Views

It is well recognized that in the sliding window scenariogeguwindows tend to partially
overlap @Qnetq-Slide < Q,.ci0-Win). This is because usually the life time of an object is
much larger than the arrival rate of new objects. For exampla typical scenario, an
analyst interested in objects arriving in last 24 hours btrieves the output after every 5
minutes. Therefore, if an object participates in the togdult of windowlV;, it may also
participate in the top-k results of some of the future windoW:, ., W,.», , W;., until

the end of its life span. Thus based on our knowledge at imeand the slide sizslide,

14



we can exactly predict the specific subset of the currentctbjat will participate in each
of the future windows. We call these predicted subsets afréutvindows as “predicted
views”.

With this knowledge, we can predetermine (partial) quesults for each of these
future windows based on the objects in the current windowdlraady accounted for the
object expiration. Thus, these predicted top-k results h@lve to be updated only if any
new object that arrives to the system will be capable of beinqart of the top-k result.

Otherwise, these predicted top-k result sets can be thalaetult sets for future windows.

Predicted
Deta -9 {2 3_AT°3 .6 3 7 810 top3in

e @@@.“@@@@..\
Do @@@OOQQQ|
prodacs [t)*eelco o ";:;*:d

Figure 4.1: Predicted views of three consecutive window§ at

Figure 4.1 (left) shows the current winddW, and predicted views of two future win-
dowsWW; and W, with window sizewin = 12 and the slide sizslide= 4. The predicted
view ¥, contains those objects frofi, those are still alive after the window slides. In
Figure 4.1 (left), the numbers shown in the white circlesespnt the objects’ scores. when
a window slides, following updates are done: 1: a new windoereated, 2: a new object
is inserted only if the new object is eligible to make it to thp-k of already full window,
3: an old window is deleted. As the window expires, the topduit of the expired window
W, are no longer valid and is updated based on the new curredowignowi1;).

Figure 4.2 (left and right) shows the updated predicted sigst aftedl’;, has expired.
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At time t = 12 s, the top-3 result is extracted from the 12 olgjexctive in the current
window W, namely,01-015.

In every window the k objects with the highest preferenceexwill make the top-k
objects for that particular window. Based on the objecidjnwe cannot only calculate the
top-k result inl¥, for k=3, but also predetermine the potential top-k resutslie future
windowsV; andWs,, until the end of the lifespan of all objects i#,.

Figure 4.2 (right) shows the three top-3 results calcul&dedV,, 1W; andW, respec-
tively. The predicted top-k results for current window aemgrated based on objects active
in the current window//,,, namely,0;-0,, future windows are calculated based on smaller
and smaller subsets of the objects belongingtpthat are known not to expire yet i;
nor in Wy, namely,05-015 in W7 andog-o15 iIn W5. As the window expires, the top-k result
of the expired window/;, are no longer valid and is updated based on the new current
window ( nowW;). Figure 4.2 (left and right) shows the updated predictesvsijust after
Wy has expired. Attime t = 12 s, the top-3 result is extractethftbe 12 objects active in

the current windowV,,, namely,0;-015.

_____________________________________________________

2 00000000000

& @® m%
010,

Curent  Predicted  Predicied
Top3in W1 1op-31n W1 top-3in W2

Figure 4.2: Updated predicted views of three consecutivelaws atil;
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4.2 Sharing with Varying Top-k Parametersk

Consider all the window parameters, i.@in andslide are same for all queries while the
top-k parametek is different. This implies only the number of objects to béput by each

query differs.

Lemma 4.2.1 Given a workload WL with all member queries having same slizie slide
and same window size win but arbitrary top-k parameterg,kk maintained in each of the
predicted view will be sufficient to answer all each queryhstiat );.k is the query with

largest top-k parameter among WL.

Proof. Lemma 4.2.1 holds because the predicted views built for iffereint queries in
the workload are overlapped as thén andsi:de values are same for all the queries. This
means that the life time of an object and the output schedotes| queries are same.

Thus if objects equivalent to the largest top-k parametemaaintained in a predicted

view , it is sufficient to answer the queries with smaller toparameter as well.

Example 4.2.1if Q;.win = QQ,.win = @)3.win = 8s; ();.slide = Q,.slide = Q3.slide = 2s;
and@..k =4, Q-,.k =3, and@s.k = 2. In this case, MQA builds the meta query such that
Qmeta-WIN = 8, Q,ct0.SLIDE = 2 and@,,,....K = 4. Thus, MQA builds only 4 predicted
views in total; starting at moments 00:00:00, 00:00:02,@m04, 00:00:06 respectively;
instead of 16 predicted views as would have been neededetttteof these queries were

executed independently.

Thus, the number of predicted views that need to be built eyntleta query are in-
dependent of the number of queries in the WL. Clearly, in sosnario a full sharing is

achieved compared to the independent execution of indiigiueries.
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4.3 Varying Slide Sizeslide.

In this scenario, all queries in the workload WL have the sammelow sizesvin and same
top-k parametek but their slide sizeslide may differ. For ease of explanation, let us
assume that all the queries start simultaneously. Sindewhedow sizes of all queries
are equal , at any given time they are querying the same parfithe input data stream.
The only difference between the queries is that they neecnemgte output at different

moments.

Example 4.3.1 Given three querie®, (02, ()3 such that),.win = ()5.win = ()5.win = 8s;

@, .slide = 6s,0Q),.slide = 2s, and?;.slide = 3s; and@;.k = 1.k = Q3.k = 3. Each query
are required to output their result, i.e., top-k set at evéyy®, and 3 seconds respectively.
As consequence, each of these queries will need to maintiaredt predicted views so as
to generate output at different slides. Figure 4.3 showgtiedicted views that need to be
maintained for each of these three queries independemtgug those by the meta query

at wall clock time 00:00:08.

MQA builds a single meta query,,..;, that integrates all member queries in workload
WL to avoid maintaining separate set of predicted views fohegpgery. Q... has the
same window size as all the member querie®inwhile its slide size is no longer fixed
but rather adaptive during the execution. The slide siz@,0f,, at a particular moment is

the nearest moment at which at least one of the queries ndedaswered.

Example 4.3.2 For three member queries, MQA builds a meta qu@ry.;, with WIN =
8s. At wall clock time 00:00:08, the slide size®@f,.;, will be 2s as 00:00:10 will be

the nearest time at which the member quéxyis to be answered. At 00:00:10, its slide

18
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Figure 4.3: Predicted views needed for processing qagritop left), Q, (top right), Q3
(bottom left) independently and combined view for meta gug,.;, (bottom right)
sizes are adapted to 1s, 1s and 2s so to output at 00:0@1), &t 00:00:12 (,), and at
00:00:14 (21 and@-).

Thus, we can now build up all predicted views at 00:00:08 wlitinct output points
as determined by the meta query. That is, we build 6 predigexis starting at 00:00:02,
00:00:03, 00:00:04, 00:00:06, and 00:00:08 respectivehany of which serve multiple
gueries. For example a the predicted view starting at 000680s serving all the member
gueries (01, Q2 and(@)s). Since the top-K result set to be output by any of the quercedd
be exactly the samé),,.....K= @Q1.k = Q2.k = 3.k = 3. We thus maintain only the 3 top

ranking objects in each of the predicted views.

4.4 Varying Window Sizeswin and Top-k parameter k

In this case, the window sizegin vary while the correspondinglide value and thus the

moments to produce output for each query remain identicate kve first use the simpli-
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fying assumption that all the window sizes of the member iggesire multiples of their

common slide size. We now observe an important characteaistelow.

Lemma 4.4.1 Given a query group QG with member queries having the sarde size
slide but arbitrary window sizes win (multiples of slide)e predicted views maintained
for Q; with @;.win the largest window size among WL will be sufficient towaarsall

member queries in WL.

This is because the predicted views maintainedpwill cover all the predicted win-

dows that need to be maintained for all the other queries.

Example 4.4.11f slide sizes and top-k parameter k are equal for the threrigs ,(Q, .slide
= ()o.slide = Qs.slide = 2s; 1.k = Q2. k = 3.k = 3 while Q;.win = 4s, (),.win = 6S
and @)s.win = 8s. At wall clock time 00:00:08, the predicted viewdltoy ()5 start from
00:00:00, 00:00:02, 00:00:04 and 00:00:06 respectivehgge forQ), start from 00:00:00,
00:00:02, and 00:00:04; and those f@r; from 00:00:00 and 00:00:02. Clearly, the pre-

dicted views needed ly; and ), overlap with those built by)s.

Discussion. If the window sizes of the queries are not in multiples of tlttmmon
slide size, the predicted views maintained éarwill still cover all the other queries. For
example, if the slide sizes of each of the queries are the smrabove (2s) while the
window sizes aré),.win = 6s, ();.win = 7s, and@s;.win = 8s. The predicted views built
at moment 00:00:08 will be sufficient to answer all these gser These windows will
start from 00:00:00 (servin@s), 00:00:01 (servingy),), 00:00:02 (serving); andQs),
00:00:03 (serving)-), and 00:00:04 (servin@; and()3) and so on.
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In summary, even if the window sizes of the queries in the Yoad#\WL are not multi-
ples of their common slide sizes, the predicted views geeerdar ); (qQuery with largest

window size) are sufficient to answer all the queries. Cledull sharing is achieved.

4.5 Varying Window sizes and Varying Slide Sizes

Next we consider, when both the window sizem and the slide sizeslide of all the
member queries are arbitrary. Here, we show that a single megry with window size
equal to the largest window size amongst all the member egiarid adaptive slide sizes is

sufficient to answer all such queries.

Example 4.5.1 Consider,Q;.win = 8s, (Q;.win = 6s and@s.win = 4 's; (,.slide=4s,
Q-.slide=3s,(Q)5.slide = 2s; and@;.k = Q3.k = Q3.k = 2. Assuming that all the predicted
views for the queries end at the largest window size, we lauifeta query), ... such that

Qmeta-WIN =8 and@),,,c1o.SLIDE = ADAPTIVEQ,.c:o.K= 2 (same for all queries).

Thus, in this meta setup, the window size and top-k paransetnow fixed while
the slide size of the meta query is adaptively adjusted. At @ack time 00:00:08, 5
predicted views are created, starting from 00:00:00 (sgr¢l;), 00:00:02 (servingy-),
00:00:04 (serving botld); and@)s), 00:00:05 (serving querg),), and 00:00:06 (serving
query(@s). Clearly, only 5 windows need to be maintained instead ef2lwindows that

would here been needed if each query were to be executedeindeptly.
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4.6 The Most General Case

Finally, we consider the general case with all parametetis anbitrary settings. In this
case, we build a meta query with window si2g.;..WIN= Q;.win, the largest window size
among WL;Q,,.....SLIDE = ADAPTIVE as explained in the previous subsection. Lastly,
Qmeta-K = ADAPTIVEas explained below.

We now introduce an adaptikestrategy to achieve memory efficient processing. To be
more precise, in a particular window we save the top-k objsath that k is equal 1Q;.k
where(); is the query served by that window. In case one view serves than one query
thenk for that window is equivalent to the maximum of the top-k of tjueries served by

this view.

Example 4.6.1 For a workload of three queries with arbitrary window and tkgparam-
eter settings();.win = 8s, )>.win = 6s and@s.win = 4 s; ();.slide = 4s,(),.slide = 3s,
andQ@s.slide = 2s; and@;.k =3, 2.k = 2, Q3.k = 1. The meta query builds 5 windows at
time t = 8s,namely current windoW, starting at 00:00:00 (forQ),) and predicted views
Wi, Wa, W3 and W4 at 00:00:02 (for),), 00:00:04 (serving?; and @3), 00:00:05 (for
@2), and 00:00:06 (serving)s) respectively. Thus, k =3 i, (Q;.k=3),and k=2 in
W1(Q2.k = 2), and k = 3 objects iV, etc.
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Chapter 5

Independent Top-k Result-sets

Infrastructure: Design and Maintenance

Once the single meta-query,,...., has been designed that logically encapsulates a full
workload of queries, we instantiate a runtime infrastruetior managing the meta data

needed for execution @p,,..,. We call this infrastructure the MTopBand.

5.1 The MTopBand Structure Design

The MTopBand data structure stores only the top-k objeatshf® current and those for
each of the predicted views, as generated by the meta qugry. These predicted views,
as discussed in the Section Ill, are generated based on thegoery logic and thus repre-
sent all the member queries in the workload WL.

For each predicted view only a list of top-k objects is mamad, while all other objects

that have no chance of participating in the top-k resultsiofent or any of the future views
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are discarded immediately. We recall that top-k param@igr,,. K is adaptive based on
the query/queries that require output at the moment whemteylar window ends. Thus,
for each window we maintain only those top-k tuples eligitaidoe the output for one or
more queries at the time point when the window slides. Thiamageach window may
have different number of tuples as the top-k result setseni@ipg on the the query in the
workload that outputs when the window slides. Each of thesalt sets are sorted based

on the object scorek,.,;..

12 11 11 11 6
predicted
" 5 5 5 tap-1 in
Wi
predicted predicted
9 top-2 in 5 top-2 in
W W3
Current predicted
top-3 in top-3 in
W W2

Figure 5.1: Physical view of MTopBand structure

Figure 5.1 shows the MTopBand structure based on the watkloa of three queries
@1, Q2, andQ)s introduced in Example 4.2.1.

We maintain the corresponding top-k results sé€ls.:...Wo.K = 3, Qmneta-W1.K =
2,QmetaWa. K = 3, Qneta-W3.K = 2, andQ,,,..«. W4. KK = 1, for current windowi,, and
each of the predicted views. Thus, in this example only fijeab with the scores 12, 11,
9, 6, and 5 are maintained in the MTopBand structure, whieother three objects, in the
input data stream, with the scores 1, 2, and 3 were discandeediately.

In practice, the window sizes could be orders of magnitugbdrithan K. For example,

a window sizel// I N = 1,000,000 ands = 10 would be typical. But the set of top-k result
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set maintained in the MTopBand structure is minimal anddependent of the potentially

very large window size of the queries.

Theorem 5.1.1 At any time, the top-k result set maintained in the MTopBanactire
constitute the minimal object set that is necessary andcgrififor accurate top-k moni-

toring.

Proof. We first prove the sufficiency of the objects in the predictgmtk result sets for
monitoring the real time top-k results for each of the quemethe workload WL. For each
of the future windows/V; (the ones that the life span of any object in the current windo
can reach), the predicted top-k results mainéin.,.IV;.K objects with the highedt,.,,.
for eachlV; based on the objects that are in the current window and arerkteoparticipate
in W;. Thisindicates that any other object in the current windawever become a part of
the top-k results inl;, as there are already at ledk}. K objects with larger F scores than
itin W;. So, they dont need to be kept. Then, even if no new object samelV; in the
future or all newly arriving objects have a lower F score, ghedicted top-k results would
still have sufficient Q,,.....W;.K ) objects to answer the que€y; for ;. This proves the
sufficiency of the predicted top-k results.

Next we prove that any object maintained in the predictedktopsults are necessary
for accurate top-k monitoring. This would imply that thigedtt set is the minimal set that
any algorithm needs to maintain for correctly answeringradl top-k queries in the given
workload WL. Any object in the predicted top-k result for andow 17; may eventually
be a part of its actual top-k results for one of the querie®ifhaw object comes intd/;
or all new objects have a lowéf,.,... Thus discarding any of them may cause a wrong

result to be generated for a future window. This proves tleessty of keeping each of
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these objects. Based on the sufficiency and necessity wejlbstveroved, the objects in
the predicted top-k results constitute namely the minintgéct set that is necessary and

sufficient for accurate top-k monitoring of all queries ie thorkload WL.

5.2 The MTopBand Maintenance.

The dynamic maintenance of the MTopBand structure requipeigting the top-k results
for each of the current and predicted views, that includehal queries in the WL, in
two scenarios. First, when a new object arriving at the sysgeeligible to participate in
the top-k result sets for one or more queries being servednkyoo more windowsV;

. Secondly, when a window slides some of the objects in thstiegi top-k result sets
may expire and thus require updating the MTopBand datatsteicNext, we discuss the

proposed algorithms to update the MTopBand structure imlioee two scenarios.

i Immediately after time stamp t=8s, W0
At time stamp =85 expires, new windaw ‘W5 is created

PR

W owl w2 Wi wWd w Wil Wz W3 w4 Ws

At time stamp t=10¢, new objects  Immediately after time stamp t=10s, W1
4 and 10 arrived, W5 is filled expires, new window VW6 is created

______________________________

1] [1][1] [10][10] [ [11][11] 0] 0]
o] 4] [A[w0][10] |4
o | L] 9| |
W1 W2 W3 W4 Wh W1 W2 W3 Wi WS We
Figure 5.2: Updating the multi top-k results in MTopBand

When a new object arrives at the system, we first check if anpefqueries in the
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workload needs output. This verification can be easily donethizing the meta-query
logic. We recall that, a window slides at the next nearespuutnoment, based on the
adaptive slides as logically defined by,..;, to capture the timely output for one or more
queries in the workloadlV’ L. If a window slides, we update the MTopBand top-k result
sets in the following two steps.

At step 1, we remove the top-k result set corresponding tcexpered window. For
example, Figure 5.2 depicts the MTopBand structure maamtea based on our running
Example 4.2.1. After time t = 8s, when current winddWy expires, top-k results aft;,
are purged, and@l; is the new current window. It is easy to see that the effectiotiow
expiration was already taken into account while building ghredicted views/ predicted
future windows.

At step 2, we create a new empty MTopBand top-k result seiespanding to the
newest predicted viewA5 in figure 5.2 (top right)) for the next future window to coviet
whole life span of the incoming objects. The number of prdi¢op-k objects maintained
by new window will depend on the top-k parametér, (....WW;.K) of the query that needs
output at the moment when this newly created window will otit®nce the empty window
is created , each new object coming in will participate incdbeent window and all future
windows that are currently listed in the MTopBand structure

After the window slide is taken care of, we attempt to inske mewly arrived object
Oyew In €ach of the current and future window. Thg,,.. of eachO,,.,, is compared with
the object with minimum#,.,,.., called asO,,;, henceforth, in each of the current and
predicted top-k result set. If th&,.,,.. of O, is larger tharO,,,;,, of any of the current and

future windows, this object is inserted as one of the topskilits of that particular window.
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Before inserting th&,,.,, into any of these result sets, we must find the correct positio
of this new object, as each top-k result sets/lists are ddyer’.,.. in the MTopBand
structure. This is a simple operation, we continue compgate F.,,.. of O,..,, with each

of the top-k results within a particular list till we find anjebt with F,,.. larger thanF.,,..

of O,e- Opew 1S inserted just below this object in the top-k result lisoviy theO,,;,, is
deleted from this particular list as,,;,, is no more a part of top-k results for this window.
The object immediately above tlig,,;, in the result set/ list becomes the néw,;,,. Any
new object arriving at the system will now be compared wite tewO,,,;,,. Every arriving
object, regardless of it&,.,,., iS inserted in the newly created winddW; until the window

has not reached the size @f,,c;.. W;. K.

Example 5.2.1In Figure 5.2 (bottom left), two new objects wikf)..,..s 4 and 10 arrive,
while the object withF,.,,.. 10 replaces objects with,.,,.. 9, 6 and 9 inil;, W, and W3
respectively. However, it is discarded by, as itsO,,,;,, has F.... = 11 which is larger
than 10. The object witlt,..,.. 4 is discarded immediately by each of the active windows
for the same reason. Figure 5.2 (bottom right) shows the tguti&TopBand structure.

Both the objects witlk,...; 4 and 10 are inserted as top-k results for the new windigy

5.3 Complexity Analysis.

Memory Costs. The memory costs of MTopBand structure depend mainly on aetofs,
the number of top-k result sets/lists which depends on thebau of active predicted views
at a given moment and the size of each result set/list. Codtpleise, the memory re-

quirement of the MTopBand structure is in O(.;* Q,,c:..W;.K), whereN, ., is the number
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of active windows at a given time ardgl,..;,.IW;.K is the adaptives for a given window in

the query workload.
Lemma 5.3.1 M-MTopBand maintains expected@..,.W;.K* N,.;)objects.

Since an object may participate as a top-k result for its detagife time, it usually
participates in multiple subsequent active windows. wentaan only one physical copy
and multiple references of any objects which participatemultiple windows. As proved
in Theorem 5.1.1, we maintain minimal set in the MTopBanddtire.

Computational Costs. Computationally, there are two major actions that contalio

the cost of updating top-k results in the MTopBand structuvée recall that, we first
search if the newly arrived object belongs to any of the tapdult sets. This a constant
cost operation, that is a total &f,., comparisons in the worst case. Second, the cost for
positioning new object in the top-k result set, if it make®ithis result set, is O(log(k)) in
the best case. The cost of inserting this object into topsllteset and deleting the smallest
score object from the existing top-k result set is in O(IQpégain.

Thus, the overall processing costs for handling all newabjfor each window slide is
O(WVnew * Nact,ew * log(k)), with V.., the number of new objects coming to the system
at this slide, andV,, .., iIs the number of windows each object is predicted to makektop-
when it arrives at the system. As the object expiration gecetrivial, this constitutes the
total cost for updating the top-k result at each window slide
Conclusion. As discussed above, MTopBand structure maintains a mirobjaktt set and
also achieves absolute incremental computation. Evigewt# do not need to hold the
number of tuples equivalent to the complete window size gtsdage for computing the

top-k results, rather all the computation is done incre@@ntThis is a clear win over the
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existing methods for top-k query computation that need tomgute top-k results from
scratch periodically [15, 17].

However, we observe that the resource requirements of Maong@Bstructure grows
with N,., the number of predicted views to be maintained. More spadlfi since M-
MTopBand stores top-k result sets for each of the prediaeglsindependently/individually,
its memory and CPU consumption grows with the number of pteditop-k result sets to

be maintained.

Example 5.3.1 Consider a three query workload with window sizgswin = 100,(Q),.win

= 1000 and@s.win = 1000000; slide size®),.slide = 10,(Q,.slide = 10 and@;.slide =
100; and@;.k = 10, @;.k = 100 and@s.k = 200. Here, the meta-query,,.;. gener-
ates approximately 10020 predicted views and amongst tleamd 1000 future windows
will maintain 200 objects@;.k = 200) each. Thus, around 2 million objects needs to be
maintained in the M-MTopBand for generating accurate togdults when maximuriy’

required is only 200.

We confirm this inefficiency of MTopBand structure when thenfer of predicted
views grow large in the experimental study discussed in @& Next, we discuss var-
ious properties of the MTopBand structure and utilizingsth@bservations, we further
design the optimized integrated compact structure MTdtiscture. We then discuss the

maintenance and cost analysis of our proposed structurgpM3o
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Chapter 6

Optimized Top-k Result-sets

Infrastructure: MTopList.

To tackle these shortcomings, we now analyze the propetidSlopBand to further de-
sign a data structure with resource requirements indeperadenot only the size of the
workload WL and the window size of the meta quély,..., but also the number of future
windows. Next, we discuss various properties of the MTopBsinmucture and utilizing
these observations, we further design the optimized iategrcompact structure MTopList
structure. We then discuss the maintenance and cost analysur proposed structure
MToplList.

Observation 1. The MTopBand’s top-k results in adjacent predicted viewslt&o
partially overlap, or even be completely identical.

Explanation. Top-k results for the current window are computed based erstiores
of the objects within the complete window. Yet, the top-kulesof the first predicted view

are computed based on exactly the same set of objects ercéipb$e few objects that will
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expire with the first slide. This means that the subsequesttigied views inherit subsets
of top-k results from their previous windows.

The top-k result sets of the adjacent predicted views wilidentical when 1. the
objects that expired after the slide were never a part ofapektresult setO.,,.Fscore i
Ocurr-Fscore; 2. All the newly arriving object in the current window have abject score
smaller than objects that are alive from previous WindOW,,. Fscore i Ocurr-Fiscore-

Observation 2. An object may disappear first and then may reappear lateeitogh-k
result sets of subsequent predicted views in its life time.

Explanation. By Theorem 5.1.1, top-k results for multiple queries arentsned
concomitantly in the MTopBand structure, such that onlyrtheimal object sets that may
participate as top-k results for one or more queries are[Kéyatorem 5.1.1]. We also recall
that the predicted views in the MTopBand structure are Buith that each view ends at an
output moment of one or more top-k queries [Section 4.1].

Since the top-k parametér of each of these queries may differ, the number top-k
objects maintained in each predicted view may also diffdris Tmplies that if an object
O;’s rank in the top-k result set is greater thap,..;;..:, the smallest top-k parameter of any
query(@; in the workload, it will disappear from the top-k result setsll those predicted
views that end at the output moment of the qu@ry O; may reappear in the subsequent
predicted views that end at time points when other queri¢ls top-k parameter greater
thank,,..i.s: Need output. Objead; will reappear only if it is still alive and no other new
object with anF..,,. greater thar®); has arrived at the system.

Observation 3. If objecto; ando; both participate in the predicted top-k result sets of

more than one windows, then the relative positions betwgando; remains the same in
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each of the predicted top-k result set .
Explanation. First, theF.,.. for any object is fixed. Second, the top-k objects in any
predicted view are sorted by théit...;. Thus,o; will always have a higher rank than

in any window in which they both participate,f{(o;) > F(o,).

6.1 Integrated Infrastructure: MTopList

Given these properties, we now develop an integrated datztste to represent MTopBand
top-k result sets for all predicted views. Our goal is to stthe (1.) memory space among
views by maintaining by maintaining only distinct objecék of which may participate in
the predicted top-k results of possibly many queries; (@rpgutation of positioning each
new object into the predicted top-k results of all prediotesivs. This sharing leads us to
remarkable savings in CPU and memory resources as discosked

To achieve this goal, instead of maintainiNg.; independent predicted top-k result sets,
namely one for each window, we propose to use a single inegjsdructure to represent
the predicted top-k result sets for all windows. We call gtrsicture MTopList.

The idea is to only maintain one copy of each of the disting¢cts among the MTop-
Band top-k result sets across the current window and futiumdaws in an integrated list
MToplList, rather than saving the overlapping results rpldttimes namely one for each
future window they patrticipate in More specifically, eacheabin the MTopList may par-
ticipate in the top-k results of the current window and onenore future windows.

MTopList is sorted byF,.,,..s of these distinct objects. Figure 6.1 shows the MTopList
structure based on the workload WL of the three queries Q1,aQ@ Q3 introduced in

Example 4.2.1. Note that Figure 5.1 depicts the MTopBangire for the same example.
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Figure 6.1: Physical view of MTopList

MTopList shown in Figure 6.1 includes all the predicted topgsults in the MTopBand
structure. At time stamp t = 8s, a list of only 5 distinct obgawith F.,,... 12, 11, 9 and 6,
and 5 are maintained instead of 5 independent top-k regslf@eeach of the current and
future windows with redundant objects between the windesusaintained by MTopBand
structure (Figure 5.1).

Clearly, in the MTopList structure an object may particgoat more than one window,
and it is usually a part of the top-k results for more than onerg Next, we tackle the
problem of how to distinguish among and maintain top-k ressiolr multiple windows and

multiple queries in this integrated MTopList structure.

Lemma 6.1.1 If top-k parameter: for all queries in WL is equal, then at the output time
of the windowlV;, the object with the smallest..,,.., SayO,,, 1 Of the predicted top-k
results in any future window’; ,,(n > 0) has a smaller than or equdl;..,.. to that of any

WindOWVVi-I—m(O S m < TL), Ie Omin_topk S I/Vi—i-m-Omin_topk:-

Proof. When the top-k parameter for all queries is same, the nunfiedicted top-
k results maintained in each current and future window ic#xaame. After a window

slides, some of the objects from the top-k result set in tmeeat window may expire. The
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objects in the current windoW’; that also participate iiW;_,,, Dw, ., IS a subset of those
will participate inW,,,,, Dw+mm (M < n). Thus, the minimal F score of the top-k objects
selected from the object séy. ., in W,,, cannot be larger than the minimal F score of
the top-k objects selected from a super sebgfi + n, namely the object sddy i + m in
Wit

Based on Lemma 6.1.1, we now introduce the first step to digist between the ob-
jects participating in different windows and in the top-kués of different queries. We call
this aswindow mark representationMore specifically, we represent two window marks
(window id) for each object in the MTopList, namely the starhdow mark and the end
window mark, which respectively represent the windows inclifan object makes its first

and its last occurrence to be predicted as the part of togtktreespectively.

Example 6.1.1 Based on our running example (Example 4.2.1), Figure 6.Wshbe win-
dow marks associated with each object in the MTopList at tim8s. Object withF ..

12 participates in onlyV,, so both the start window mark and end window mark for 12 are
[Who, Wo]. Similarly the window marks for objects witfi..,..; 11, 9 and 6 are |V, W3],
[Who, W4, and [W,, Ws] respectively. Clearly, the number of window marks neeaed f
each object is always a constant, only 2. Interestingly itasdependent on the number of

windows an object is participating in.

Lemma 6.1.2 For given windows/V;,,,, serving a query,,, with top-k parameter),,.k
= X, Wip, with @,,.k =Y, and W, with ,.k = X such thatd < m < n < p and
X > Y > 0; top-k elements participating i®V; ., with rank greater thaty” ( based

on Fi....) will not participate inW,,, if the objects from rank throughY in W;,, are
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still alive at the time of windowV; ,,. The objects with rank greater than will again

participate inW,, if they are all still alive.

Based on the Lemma 6.1.2, it can be seen that an object dusitifeitime may par-
ticipate as part of predicted top-k results in windawsk = X and disappear for windows
with top-k parametef),, .k = Y then reappear for the windows with parametgrk = X,
suchthat), k=Y < Q, k= X.

Thus, we observe that for all top-k results with rank gre#ttan the top-k parameter
Q;.k such that); .k is the smallesk parameter among all queries in the workload, there is a
possibility of discontinuity in their participation as tdgresults in the subsequent windows.

Hence, simply maintaining the first occurrence (start wmdaark) and the last occur-
rence (end window mark) would be insufficient to track in whigindows among that
range, a particular object actually participates. To t&adklis, we maintain a separate
pointer for each window at the lowest top-k object in the kopesult set so as to iden-
tify the actual top-k results in any particular window. Weanimtroduce a minimung..
pointer, F'P,,;, for each window in the MTopList. Thé'P,,;, mark points to the object
with smallestF;..,,.. in a particular window. Thus the number BfP,,;,, marks maintained
within MTopList is equal toN,.;, namely one for each active window. We further utilize
this pointer for updating the MTopList with each newly amig object in the data stream

as discussed in the next subsection.

Lemma 6.1.3 At any given time, utilizing the start window mark and the esretlow mark
of an object in the MTopList structure along with ti#&P,,;, mark for each window is

sufficient to generate the top-k result for any quéryin the workload WL.
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6.2 The MTopList Maintenance
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Figure 6.2: Updating the multi top-k results in integratedsture MTopList

Updating MTopList after expiration of existing objects. A careful mechanism is
needed for updating MTopList every time a window slides. Ascdssed before, each
object in the integrated structure may participate as &tmgsult in more than one active
window. So, if the oldest windowl,, expires the corresponding objectsliry cannot
simply be deleted from the list. We develop a strategy thasuke starting and ending
window marks to decide if an object needs to be physicallyowad from the MTopList
altogether after the window slides.

We observe that, the top-k objects of the current-to-beregpivindow are the first
Qmeta-I< Objects in the MTopList. We recall(Chapter 4) tldat,.... KX is equivalent ta)); .k
where(@); is the query that needs output when the current window expifehe window
serves more than one member query thgn.,.K is the maximum top-k-parameter of
all the queries served by any window. The MToplList is sortgdobjects’ Fi..... SO,

the current-to-expired window being the oldest window wihtain(,,..... /X objects with
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highestF..,,.. as compared to the other objects in the list.

After the window expires, we increment the starting windoarknof all objects in that
window by 1. This indicates that window has expired as nonthefobjects in the list
participate in that particular window. After incrementitige starting window marks if any
of the objects in the list has a starting window mark largantthe ending window mark
then we physically delete this object from the list becabsedbject was participating only

in the window that already expired and thus is not needed amg.m

Example 6.2.1 As shown in Figure 6.2 (top right), immediately after time 8s; W, ex-
pires and the starting window marks of objects with,,., 12, 11, 9 and 6 are incremented
from W, to ;. Now for object 12, the starting window markii§ and the ending window
mark isWW,. This means that this object is not needed in any of the futimdows and can

be physically deleted from the list. The list after deletli@ycontains only 11, 9, and 6.

Updating MTopList after inserting newly arriving objects.

Every time a new object, namety,.,, is eligible to participate as a top-k result(decided
based o,,..,’s Fi..r. ) We take the following steps to update MTopList. At step 1 fivd
the correct position oé,,..,, in MTopList. At step 2, we update,..,’s starting and ending
window mark. Finally, we remove the object with the smallgst,.. from the windows
that the new object is predicted to be part of their top-k itesu

For positioning each object into the MTopList, if the pradit top-k result set of any
future window represented by the MTopList has not reachedsike of k yet, or if its F
score is larger than that of any object in the MTopList, weerh$t into the MTopList.

Otherwise it will be discarded immediately.
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The position ofO,,.,, is easy to find utilizing theninzp marks. O,,c.,. Fscore (Fscore Of
the new objec,,.,, ) is compared each of theinpp starting from the lowest until an
object with F,,.. greater thar®,,., is found.

If O, IS inserted at its correct position in the MTopList, it is metpredicted top-k
results of at least the one window in its life span, its endingdow mark is set to be
the newest window Id the MTopList such th@t.mingp.Fsore < Opnew. Fscore, Where
O; minpp.Fyeore 1S the Fy... Of the object marked byhingp. The starting window mark
of a new object is simply the oldest window on the MTopLiSt,mingp.Fscore < Onew
Fcore-

Once we have),,.,’s updated the starting window mark and ending window mark,
we remove the objects pointed byinrp marks from all those windows in whicf,,..,
is predicted to participate. We note that, here is that, may not participate as a top-k
result in all windows from starting window mark to ending wow mark(Observation 2).
Thus, only those objects are removed wh@seningp.F.... IS smaller tharO,,.., Fscore;
O;.startq.1 1S greater than or equal 0,,.,.start ., aNAO;.start .« 1S sSmaller than or

equal to0,,c.,.endark-

Example 6.2.2 As shown in Figure 6.2 (bottom left), object wiif).... 4 is compared
with object withF.,,.. 6 (minrp of the newest window),4 being smaller than object with
Fcore 6 could not be a part of top-k results for windowd’{-1/,]. Thus the starting and
ending window marks of this newly inserted object With,.. 4 are updated tol[/’5, Ws].
When object withF.,,.. 10 arrives, it is larger than theninzp objects in each of the
windows. Thus, the starting and ending window marks of olj@are updated tdl; and

W5 respectively. Finally, we remove the object with,.. 9(marked byningp in Wy, Wi,
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W, ) from windowsi;, W3, W, and object withF.,,.. 6 (marked bymingp in ;) from

window ¥, respectively.

Next, we present the pseudo-code for MTopList maintenalymithms.
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Onew: Newly arriving object.
W L: input multi query workload RM Q) S;,,s: runtime instructions from scheduler.
@;: member query in the workload WL that needs output when RMQS TimetoOutput.
k;: top-k parameter of quer; OR maximum top-k parameter amongst all queries that nequit
Ourr: CUrrent object count.
mingp. Minimum score mark of each window;.
Onmin: MTopList.O;. mingp.Ficore.
Onmaz: MTOpLISt.O;. oz score-
Wotdest/mewest-0ldest/neweslt)” in MTopList.
startq-1- Window starting mark for an object.
end .. Window ending mark for an object.
N,...Number of active windows
MTopList(S, RMQS;,s)

1 for each new objedD,,..,

/[ if time to slide, purge window
2 if RMQS;,s = TimetoOutput
3 OutputTopK(Q,);
4  PurgeExpiredWindow(WW,4est);
5 AddNewWindow(W,cwest);
6 UpdateMTopList(O,ew);

OutputTopK( W;);
1 output firstk; top-k objects from MTopList;

PurgeExpiredWindow(W y4est)

1 for first k; objects in the MTopList;
2 O;.startgr = O;.start e + 1,
3 if O;.start,gi. > Oi.endmari;

4 removeQ; from the MTopList;

S) SetWoldest-Ocurr = zero,

AddNewWindow(W,,cwest)

1 if Wygest 1S €Xpired,;

2 create newest future windoW,,..pes;
3 setW,cwest-Ocurr = 2€7°0;

Figure 6.3: MTopList Algorithm part 1
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UpdateMTopList(O,cw)

01 if Wall-Ocurr == k;

02 if F(O,ew) < F(Onin)

03 discardO,,..;

04 if F(Onew) > F(Onmaz)

05 AddO,,, to MTopList asO,,,4z;

06 UpdateO,,c,.start o, = Wi andend,orn, = Wi,
07 Updatemingp of each active window/;;

08 if F(Onew) > F(Omm) F(Onew) < F(Omtw)

09 positionO,,.,, into MTopList.

10 UpdateO, ., .start,er = Wi andend, ok = Wi,,vi
11 Updateminyp of each active window/;;

Figure 6.4: MTopList Algorithm part 2
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Chapter 7

Extracting output for each member

guery - Query Result Extractor(QRE)

QRE extracts the exact top-k results from the data strudtureach member query in

the query group at a given moment. QRE picks €hg.;, output from integrated data

structure each time itis triggered by instructions fromdigeamic scheduler RMQS. These
instructions are primarily 1. time to output, 2. query/dasrthat need output at the time
when the current window ends.

In the single query top-k processing the slide size is fixettlvmeans query result at
any given output moment corresponds simply to the objeatsdte purged from the system
at the time of window slide. On the other hand, MTopList aition maintains all the top-k
results for many queries together. At the time of outputdireent-to-output window may
contain the top-k results for more than one query (each witbrdnt top-k parameters).
Thus the top-k results of different member queries are cetajyl interleaved.

QRE separates the top-k results required for the given megquery at a particular
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output moment in the following steps. First, RMQS triggdrs QRE each time when one
or more member queries need output. The RMQS instructiontgicothe list of member
gueries served by the next output window. Based on theseiatisins, QRE picks the
top-k objects from the current-to-expire window from MTagl. Second, based on the
top-k parameter of each query that needs output QRE sepdhatenterleaved results and
generates the specific top-k results for each member quet We continue our running
Example 4.1 to explain the result extraction technique.

t=8g+, W0 (serves Q1,02 03 ) outputs

Meta wties | (2179 @Lrﬁnefet Query 12119 ] Chrasuts
3 ot
Ouery » » Resut 1211 | Chresuls
Exzcutor Indfint RINF Etractor
17| Qs
t=10s+ W1 {serves Q1 ) outputs
Qmeta
Meta Quar
it -119 ¥
Query R ML Rasut Chresuts
Exscutor Indfnt RINF Extractr

Figure 7.1: Final Top-k results for different member querie

Example 7.0.3 As shown in Figure 8.1 (top), RMQS instructs QRE: (1.) t = 8snetto
outputily, (2.) W, serves?); (k=3),Q- (k=2), and@; (k=1). Based on these instructions,
QRE picks the current top-k objects wik).,..s 12, 11, and 9 inV,(Q,,es. results) from
MToplList.

Three different result sets, namely one for each of the mequeries are generated
from Q... result. Object withF,.,,.. 12, which is top-1 object in the output winddW, is
the final result forQ; (Qs.k=1). Similarly, objects with¥.,..; 12 and 11 (),.K=2); and
12,11, and 9@, .k=3) are the final results for querig3; and (), respectively.

Figure 8.1 (bottom) shows the next output moment, at tim@¢s)1 the RMQS triggers
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QRE with the instructions: (1.) t=10(s) - time to outplit, (2.) windowWW; serves query
Q2.

The processing at QRE is straightforward in this case asutmubwindowlV; serves
only one query. So the fin&), result are objects 11, 9 which is exactly same as the objects
stored inl¥; in the MTopList at time t=10s.

Once the exact query results have been successfully gedeaatl given to the user,
QRE acknowledges the dynamic scheduler RQMS so that to senaeixt set of instruc-

tions correctly.
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Chapter 8

Related Work

Top-k queries on a static data set have been well studieceihténature. The top-k algo-
rithms, Onion [2] and Prefer [8], based on preprocessing techniques, require the com-
plete data set to be available in memory for computing thektopjects.

[10] presents algorithms that reduce the storage and nmainte costs of materialized
top-k views in the presence of deletions and updates. Otbdtsan relational databases
like [11,12] focus on multidimensional histograms and skmgpbased technique to map
top-k queries into traditional ranges. [3,4,5] study togtleries in distributed data repos-
itories. In general, they minimize the communication castrétrieving the top-k objects
from distributed data repositories.

Fagin et al. [13] introduce two methods for processing rdnigeeries. The TA al-
gorithm is optimal for repositories that support randomessg while the NRA algorithm
assumes that only sorted access is available. Chang andHWantroduce MPro, a gen-
eral algorithm that optimizes the execution of expensivedmates for a variety of top-k

queries.
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All the above methods are based on the assumption that thargldata set is available
at the compilation stage of query execution either localipalistributed servers. Also they
are designed to report the top-k results only once. Thusttehniques are not suitable
for streaming environments where the data are not known varagk, rather they keep
changing as new tuples arrive and old ones expire.

More recently researchers have started to look at the probieop-k queries in stream-
ing environments. Most of this work is focused on single kagiery processing where the
assumption is that at a time only one top-k query is regidterehe system [6,14,16] .
Among these works, [16] presents an optimal technique fptktguery processing both
computationally and memory wise. Although optimal for sentpp-k query processing,
this technique does not handle multiple queries simultasigaegistered in the system.
Our experiments show that our proposed sharing strategydyyrarders of magnitude
outperforms the solution of executing top-k queries inael@atly for multiple queries.

To the best of our knowledge, [15] and [17] are the only twoksdhat handle simul-
taneously registered multiple top-k queries in streama@pario. [15] tackles the problem
of exact continuous multiple top-k queries monitoring oaesingle stream. The proposed
techniques share only the indices among different regidtqueries by maintaining index
and bookkeeping structures. They introduce two algorithfisst, the TMA algorithm
computes the new answer for a query whenever some of thentuo@k points expire.
Second, the SMA algorithm maintains a skyband structurat' @ams to contain sufficient
number of objects so that it need not go back to the full da&ast window.

However, unfortunately, neither of these two algorithmsiglates the recomputation

bottleneck from the top-k monitoring process. Thus, thethlvequire full storage of all
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objects in the query window. Furthermore, they both needotodact expensive top-k
recomputation from scratch in certain cases, though SMAlgots recomputation less fre-
guently than TMA. While our proposed algorithm eliminates tecomputation bottleneck
altogether thus realize complete incremental computai@hminimal memory usage.

Experiments conducted by the optimal technique for topgrgprocessing[16] shows
a significant CPU and memory resource saving over [15]. Opermental results confirm
the improvements by many orders of magnitude achieved bpmmposed algorithm over
[16] for any workload with a size of 2 queries and greater. sfaur proposed algorithm
achieves a clear win over each the state-of-art techniques.

[17] handles multiple top-k queries, but based on the pritistib top-k model in data
streams. While we work with a complete and non-probalilistodel. Also their focus is
to achieve sharing among the queries on the preferencedanehile we focus on other
important parameters of a continuous top-k query, nametgaw size, slide size and K. In
short, they in large target different problems from ourspénticular, the key fact affecting
the top-k monitoring algorithm design is the meta inforrmatmaintained for real-time
top-k ranking and the corresponding update methods , whachfundamentally by these

respective top-k models.
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Chapter 9

Experimental Evaluation

Our experiments are conducted on a Sony VIAO laptop withl I@entrino Duo 2.6GHz
processor and 1GB memory, running Windows Vista. All theodatgms are implemented
in Eclipse IDE using C++.

Real Datasets We used two real streaming data sets. The first data set, G&Bfoufd
Moving Target Indicator) data [18], records the real-timéormation of moving objects
gathered by 24 different data ground stations or aircraf® hours from JointSTARS. It
has around 100,000 records regarding the information ofcleshand helicopters (speed
ranging from 0-200 mph) moving in a certain geographic regim our experiment, we
used all 14 dimensions of GMTI while detecting clusters Hasethe targets latitude and
longitude. The second dataset is the Stock Trading Tracag8aT) from [19], which has
one million transaction records throughout the tradingrbad a day.

Alternative Algorithms. We compare our proposed algorithm MTopLists performance
with two alternative methods, namely, 1. state-of-thesargle query solution MinTopK

[16] for each member query in the workload WL without sharamy of the window or k
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parameters amongst these queries. 2. MTopBand, the bgsittlain we presented in this
work (Section IV).

Experimental Methodologies.We measure two common metrics for stream process-
ing algorithms, namely average processing time for eacle {fpPU time) and memory
footprint. Experiments are designed to compare the pedooa of the proposed algo-
rithm with the alternative algorithms.

First, we perform the scalability tests to verify the penfiance of the proposed algo-
rithms with the increasing number of queries in the inputkl@mad. We first evaluate at a
time three test cases, each varying on only one of the thresy gparameters. Then we test
the more general case with varying two parameters arbytrafinally, we test the most
general case with all three parametetis, slide, andk being arbitrary. For each experi-
ment, we vary window sizein in the range of 100K to 1 M, slide siztide between 10K
to 100K, and top-k paramet&iin the range of 10-1000.

Second, we conduct overhead evaluation tests to verify ¢énfgmance of the pro-
posed algorithms while processing a single top-k query dn amall workloads. Here, we
perform experiments for workload of 1, 2, and 5 queries eachcmmpare the results of

MTopList with the state-of-art optimal single query sotutj16].

9.1 Scalability Evaluation

Scalability tests with one arbitrary parameter. For each test case, we prepare three
workloads with 10, 100, and 1000 queries respectively bgaoarly generating one input
parameter (in a certain range) for each member query, wiilegucommon parameter

settings for the other two query parameters.
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Fixed win, Fixed slide, and Arbitrary k. In this experiment, we evaluate performance
of our proposed algorithms as compared to the state-ofgotithm [15] while executing
the workloads sized from 10 to 1000 queries. We wge= 1M andslide= 100K, while
varyingk from 10 to 1000. We randomly gener&®etween the range 10 - 1000 for each
query.

100000 1 ®MinTopk

W Mtopband
10000 | Mtoplist
1000 |

100 1000
Numberof(luerles

10000
W MinTopk

W MTopView

1000 MToplist

-
1=}
=}

-
o

o

a

-

H
Memory Footprint{KB) on Log scale
=
o
=1

CPU time ftuple {ms) on Log scale

10 100 1000
Number of queries

Figure 9.1: CPU time used by three algo- Figure 9.2: Memory space used by three
rithms with differentt values algorithms with different: values

As shown in Figures 11 and 12, both the CPU time and the menpagesused by
the three algorithms using logarithmic scale. Clearlyfqrenance of our two methods is
order of magnitude better. Amongst all three compared d@lgos , MinTopK'’s [15] CPU
time increases as a direct multiple of the size of workloadtukally, the increase in the
CPU time is around 100 times when the number of queries isesstom 10 to 1000. Put
differently, it does not scale well with the cardinality dietworkload.

On the other hand , the CPU time required by MTopList to precae tuple increases
around 2 times when the number of queries grows one order ghituale(10 to 100),
and then it increases around 1.5 times when number of qugriees another order of
magnitude(100 to 1000). Whereas the CPU time for the bagarigthm we presented in

this work, MTopBand, increases around 3 times when the nuoflapieries increased from
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10 to 100, and it further increases around 2 times with catiyn100 to 1000.

For the memory space used, MTopList has even better perfar@nas its utilization
of memory space only increases 2.5 times when the number exfeguincreases from
10 to 1000, while such increase for MTopBand and MinTopK aten@s and 99 times
respectively.

We note that in this case only top-k parameéitas arbitrary. Thus, this is the best
possible case for our proposed algorithm as maximum shasiaghieved here. Next,
we discuss the experimental evaluation for the cases Whsrixed, while other query
parametersyin or slideare varying.

Varying dlide sizes. In this experiment, we us&in = 1M andk = 1000 , while we

randomly generatslidevalues between the range 100K - 1M.
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W MinTopK

u MTopBand
10000 - Mtoplist
1000 -

100 1000
Numberof Queries
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B MTopBand
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Memory Feotprint(KB) on Log scale
.
=
- e

CPU time/tuple on Log scale
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Numberof Queries

Figure 9.3: CPU time used by three algo- Figure 9.4: Memory space used by three
rithms with differentslide values algorithms with differentiide values

As shown in Figures 13 and 14, both the CPU and memory usageTopMst is
still significantly less than those utilized by state-of-@gorithm MinTopK [16] in all test
cases. In particular, for processing 100 queries , MTophmdy takes 0.0066 s to process
each object on average, while MinTopK needs 0.712 s for et This is as expected
and can be explained by the same reasons as in the previbuages.

However, an important observation made from this experinsathat the performance
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of of our basic algorithm MTopBand can be affected by the slidé ratio. We recall that
MTopBand maintains the predicted top-k results for eachrauwvindow independently,
thus its resource utilization is expected to increase figemth the number of future win-
dows maintained, which is equal i@ n/slide.

Thus, MTopBand’s increase in resource utilization is expedecausaslide is ran-
domly picked in this case, resulting in a large valueuah/slide ratio for some of the
queries in the workload. On the other hand, the performanddTopList remains un-
affected by the change in the win/slide ration. This is beeadTopList only maintains
distinct top-k objects which are not dependent on numberedipted views.

Varying win sizes. In this experiment, we usslide = 100K, k = 1000 , while we

randomly generateiin between the range 100K - 1M.
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_ _ Figure 9.6: Zoomed in version of figure
Figure 9.5: CPU time used by three algo- 15 - comparison of CPU time used by

Both the CPU and memory usage of the state-of-art algorithnTdpK increases dra-
matically as the number of queries increases while the usig®posed algorithms MTo-
pList and MTopBand are still significantly less than MinTapg¥ore specifically, for pro-
cessing 1000 queries with varyingn values, MinTopK takes a total of 3.112 seconds,

MTopBand takes.038 seconds and MTopList takes only .016nsksc Thus our proposed
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algorithm MTopList takes around 1500 time less CPU time ti@nstate-of-art algorithm
MinTopK.

An important observation made in the scenes of varying dides are valid here as
well. More specifically, in this case as well the performant& TopBand is affected by
thewinl/slide value of the queries. We note that, MTopList consumes at 3 percent
less CPU time than MTopBand for processing 1000 queries.

Scalability tests with more than one arbitrary query parameters For each test case,
we prepare three workloads with 10, 100, and 1000 querigecésely by first randomly
generating two input parameters (in a certain range) fon @ember query, while using
common parameter settings for just one query parametecmn8ewe evaluate the most
general case by randomly generating all three query paeamet

Arbitrary win, Arbitrary slide, and fixed k.

In this case, we usk = 100, while varyingwin from 100K to 1M andslidefrom 10K
to 100K.
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_ _ _ Figure 9.8: Memory space consumed by
Figure 9.7: CPU time used by three algo- i ree algorithms with differentsin and
rithms with differentwin andslide values slide values

As shown in Figures 13, the CPU time consumed by MTopList pptetincreases
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4.1 times, when the number of queries increase from 10 to h@Otafurther increases
around 2.3 times when number of queries increase from 10000. Whereas for the basic
proposed algorithm MTopBand the CPU time increases arouimies from 10 to 100 and
around 4.5 times from 100 to 1000 queries. Clearly, thissase in CPU consumption time
of the proposed algorithm with increase in the number ofigges modest as compared to
the alternative algorithms.

Although the ratio of increased CPU consumption time is itrf@$ more as compared
to the previous only one arbitrary parameter case. This ¢awme two arbitrary query
parameters lead to decrease in the sharing amongst diffpreries, and thus increases the
maintenance costs of both MTopList and MTopBand.

General case: All Arbitrary Parameters. Finally, we evaluate the general case with

all three parametersin, slide, andk being varied arbitrarily.
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Figure 9.9: CPU time used by three al-
gorithms with arbitrarywin andslide pa-
rameters

Figure 9.10: Memory space consumed by
three algorithms with arbitranyin an

Figure 19 and 20 show the performance of the three algorithrterms of CPU and
memory utilization. Clearly, MTopList wins over the otherd algorithms for both CPU

and memory utilization in this case too. MTopList takes awbB0-40 times less CPU time
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to process 1000 queries as compared to MTopBand. Also, Misophdkes around 330
times less CPU time as compared to the state-of-art algoritinTopK. This saving is

less as compared to the previous cases where only one or @otewo parameters are
arbitrary. This is caused by too large variations on thepatar settings. The important

observation here is MTopList never performs worse than MBeogl for any workload.

9.2 Overhead Evaluation

Next, we compare the performance of the proposed algoritifegpList and MTopBand
in terms of both CPU and memory utilization with the statetad-art single query solution

for small workloads of size 1, 2 and 5 queries.
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Figure 9.11: CPU time used by three Figure 9.12: Memory space consumed by
algorithms for processing 1, 2, and 5 three algorithms for processing 1, 2, and
queries 5 queries

As shown in figure, we evaluate the overhead incurred by aygsed algorithms due
to simultaneous processing of multiple top-k queries. Asuw$sed, in section IV before
actual top-k query processing, we first analyze the parasmeteach of the input queries

in the workload so as to integrate all the queries into a singgta query.
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MTopList takes maximum CPU time amongst the three algorstfon processing sin-
gle query. More specifically, MTopList consumes 2.8 mskupivhile MTopBand and
MinTopK consume 2.1 and 1.3 ms/tuple respectively. Thixmeeted as MinTopK algo-
rithm does not analyze the parameters to identify the shamportunity. MTopList takes
only 3.1 and 3.7 ms, while MinTopK requires 3.8 and 8.5 ms tcess a workload of
cardinality 2 and 5 respectively. Thus we conclude that tR& ©verhead incurred by our
proposed algorithms becomes negligible as we increaseatidéality of workload. This
is because the savings achieved in the actual top-k quecgegsing supersedes the extra
analysis time consumed by our algorithms tremendously.

Memory wise, MTopList always maintains minimum amount gflas and incurs no
overhead at all. Thus, for processing one query both MinTapd MTopList require
equivalent memory space. While, our basic algorithm, MTapd consumes more mem-
ory space as it maintains multiple references for the sarjexbib the object participates
in more than one window. However as the cardinality of waaklos increase from 1
query to 2 queries, the memory space consumption of MinTogtOimes almost equal to
MTopBand and it increases to 1.5 times more than MTopList.aReorkload of 5 queries
MinTopK consumes memory space 2.5 times and 5 times moreMfiiapBand and MTo-

pList respectively.
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Chapter 10

Conclusion and Future Work

In this work, we present the MTopS framework for efficientreltaprocessing of a large
number of top-k queries over streaming windows.

MTopS achieves significant resource sharing at the queey yvanalyzing the param-
eter settings. MTopS further optimizes the shared proeggsy identifying and maintain-
ing only the minimal object set from the data stream that ih Im@cessary and sufficient
for top-k monitoring of all queries in the workload.

Our experimental studies based on both real and syntheti@msing data confirm the
clear superiority of MTopS to the state-of-the-art solntidVe also confirm that MTopS'’s
processing overhead attributed to query parameter asakysninimal and it wins over
state-of-art solutions even for workloads of very smalesiiTopS also exhibits excellent
scalability in terms of being able to handle thousands ofigeeunder high speed input
streams in our experiments.

An important area of improvement s using this frameworko@le-up considering mul-

tiple machines and grouping of workloads into sub-work®ambe assigned to different
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machines. We believe that the techniques proposed in this, wan be extended for such

parallel processing of multiple top-k queries.
Another major research direction is to study other data mgirqiueries utilizing this

framework such as outliers, associations etc. The compdrased design of our frame-

work can be reused for shared processing of other types dipteudjueries.
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