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Abstract 
 

This Major Qualifying Project investigates the performance benefits of using the 

Graphics Processing Unit for algorithmic trading. The accomplished work 

includes the design, development and rigorous testing of a financial application to 

analyze real-time market data. Comprehensive analysis and an elaborate 

discussion of the results show that the GPU outperforms the CPU by several 

factors. 
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1. Introduction 
 

1.1 Stock Market and Algorithmic Trading 
 

 

Definition of stock market is as follows: 

 

A stock market (or equity market), is a private or public market for the 

trading of company stock and derivatives of company stock at an agreed 

price; these are securities listed on a stock exchange as well as those 

only traded privately. The stock market is a type of listed market, in 

which security trades on exchanges, such as the New York Stock 

Exchange or the International Security Exchange for the public, are 

executed on an agency basis.  (Hagstrom, 2001) 

 

So brokers, who have no financial interest in the trade, execute the public order 

against other brokers and charges their clients a commission for the service. This 

is one way in which investment institutions make profits from the stock market. In 

order to get more benefits for their customers, companies need to achieve 

extremely low latency so that they could get the desired stock bid price and 

enough volume. Decades ago, competed with each other by flying over the 

country to conduct investment business. Upon entering 1990s, the commerce of 

electronic trading changed the trading world. The globalization of electronic 

trading raised the competition between companies to a next level: Simple routine 

trades were automatically handled by computer algorithms so that the human 
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traders could focus on more complex trades. It was no longer a competition 

between representatives, but a more intense competition between algorithms. In 

a sense, algorithmic trading reduced the human labor in the stock market and 

started an electronic era. Algorithmic trading is also less prone to human errors 

and can achieve faster executions 

 

Let us take a step back to have a better view of how electronic trading reached 

its zenith at the beginning of the 21st century. Electronic trading was one of the 

business factors that led to the globalization of capital markets. It brought a 

thorough revolution to trading strategies and transaction latencies. In a sense, 

electronic trading is a major reason why global markets got globalized. While 

companies are less likely to want to their international business suffering from 

geographical restrictions and trade barriers imposed by local governments, we 

witnessed the explosive growth of international e-commerce over the Internet. 

This is no surprise under the specified circumstances. Although electronic trading 

was originally designed to make convenient global transactions more convenient, 

companies then realized that this innovative trading system could benefit the 

domestic market as well for its competitive trading speed. Realizing this business 

opportunity, technology vendors started a new competition on low latency 

solutions, which encouraged the enthusiasm for consumer-based electronic 

trading (Norman, 2002).  
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With commerce being conducted increasingly over the Internet, we are entering a 

period of dynamic pricing because the pressure on sell-side businesses to 

reduce costs associated with e-commerce means that prices will inevitably fall. 

Dynamic pricing will force businesses to become more agile, efficient and 

technology-based. Technology-based business has been designated as a future 

business type with the rise of electronic trading. Wall Street is also holding 

annual conferences for technology vendors to introduce highly successful 

technologies, including software and hardware, for financial development. 

Technology is indispensable today for investment business operation and 

technology support. The increasing adoption of algorithmic trading -- "black box 

trading systems" -- is changing the way Wall Street works and is a source of new 

royalties to the tune of billions of dollars  

 

About a third of U.S. equities trading is already being done using algorithmic 

trading. “With that figure expected to soar to more than 50 percent by 2010”, said 

Brad Bailey, a senior analyst at the Boston-based researcher Aite Group. "I'm 

even afraid I'm underestimating that number," Bailey said. The London Stock 

Exchange estimates that around 40 percent of its trading is algorithmic. 

 

"It's becoming much more mainstream," said Guy Cirillo, manager of global sales 

channels for Credit Suisse's Advanced Execution Services unit, an algorithmic 

trading platform that serves major hedge funds and other buy-side clients. 
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"You are seeing the traditional firms that took longer to adopt have come in 

strong in the last year to two years," he said. "Realistically, if you are not using 

this type of technology you are at a serious disadvantage." (Ablan, 2007 ) 
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1.2 Hardware Acceleration 
 

 

The two main criteria for algorithmic trading are speed – that is the speed with 

which the same set of computations can be performed on multiple sets of data – 

and programmability. For this principle, general-purpose hardware – such as Intel 

Central Processing Unit (CPU) – is not suitable. The CPU is designed to execute 

commands in a linear fashion, however, the task at hand will benefit most from 

parallelization as the same calculations are required to be performed on multiple 

data; this is where parallelization and hardware acceleration come into play. 

Several groups have attempted using hardware acceleration to speed up 

financial calculations. Hardware acceleration is achieved by utilizating specific 

hardware to gain higher computational results than those provided by general 

purpose CPU. Most notable devices intended for intense calculations include 

Field-Programmable Gate Array (FPGA), IBM‟s Cell Broadband Engine 

Architecture (Cell BE or, simply, Cell) and Graphics Processing Units (GPUs). 

 

An FPGA is a custom integrated circuit that typically consists of a large number 

of identical logic cells connected to each other by a system of programmable 

switches (Stokes, 2007). Each logical cell is capable of handling a single task 

from a predefined set of functions. The customization of an FPGA is achieved by 

permanently burning instructions that implement functions to be accelerated onto 

an FPGA according to a design specified by a client‟s program. The program can 

also be loaded into an FPGA from an external source. The program is normally 

implemented with an assembly-type language and then translated by software 
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(supplied by manufacturer) into a design that will eventually appear on the FPGA 

(FPGA Basics, 2008). FPGAs excel at decision logic – branching and flow control 

– intensive tasks. However, FPGAs are limited to integer arithmetic due to the 

complexity associated with encoding floating point operations (Stokes, 2007). 

 

The Cell processor is an architecture jointly designed by Sony, Toshiba and IBM 

(the union abbreviated to STI). Among other applications it is used for vector 

processing – also known as SIMD technique that is executing single instruction 

on multiple data.  

 

Until recently GPU remained on fringes of HPC (high performance computing) 

mostly because of the high learning curve caused by the fact that low-level 

graphics languages were the only way to program the GPUs. Now, however, 

NVIDIA has come out with a new line of graphics cards – Tesla – which they 

claim to be world's only C-language development environment for the GPU (High 

Performance Computing (HPC), 2008). Software development for a Tesla GPU is 

based on a language called CUDA (Compute Unified Device Architecture) which 

is a set of libraries that extend the C programming language making it simple for 

developers that are unfamiliar with graphical languages. 

 

The Cell processor is similar in its capabilities to NVIDIA‟s Tesla GPUs since 

both are used for GPGPU (General Purpose computing on Graphics Processing 

Units).  The two devices share the same idea – using the power of graphics 
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processors in large-scale, parallelizable computations. The Cell processor and 

GPU are a good alternative to FPGA. While the computational speeds for the 

Cell processor and NVIDIA GPU are lower than those of FPGA the difference is 

not major. What Cell and Tesla GPU lack in speed they make up for in 

programmability. The two devices are far more flexible – in terms of scalability – 

and have a much steeper learning curve; both were designed for general 

purpose computing. 
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2. Technical Background 
 

 

NVIDIA‟s Tesla C870 GPU computing processor is at the heart of this Major 

Qualifying Project. It is a massively parallel processor architecture which delivers 

parallelization requirement necessary for efficiently analyzing streaming real-time 

market data. It is a multithreaded, many-core processor with performance topped 

off at 430 GFLOPS. Its 128 streaming processor cores operate at frequency of 

1.35 Ghz each and support IEEE 754 single floating point precision (NVIDIA 

CUDA Programming Guide, 2008). 

 

One of NVIDIA GPUs‟ main features is ease of programmability made possible 

with CUDA – Compute Unified Device Architecture. CUDA provides the means to 

compile and run code for NVIDIA‟s GPUs. With a low learning curve, CUDA 

allows developers to tap into enormous computing power of GPUs yielding high 

performance benefits. 

 

A typical structure of a CUDA program consists of host and device side code. 

Host code runs on CPU and can be either C or C++ code. Device code is 

restricted to C programming language and runs on GPU. Each device function is 

referred to as a kernel. Kernels are launched from the host in a fashion similar to 

calling a C function but with one distinction: every kernel call from host specifies 

addition parameters that describe the thread configuration of the call; in other 

words, the additional parameters specify how many threads will be spawned to 
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execute the same piece of device code (NVIDIA CUDA Programming Guide, 

2008). 

 

Kernel configuration organizes threads into blocks which are in turn organized 

into a grid. For convenience a thread block can have one-, two-, or three-

dimensions so as to facilitate indexing across elements of a vector, matrix or 

field. There are three different types of device memory: local (per thread) 

memory, shared (per block) memory and global memory (Figure 1). Threads of 

the same block have access to shared memory. Shared memory is low-latency 

due to its location near each processor. Its use greatly speeds up computations. 

The amount of shared memory available, serves as a limiting factor to the size of 

a thread block because all threads of a block are executed on the same 

processor core (NVIDIA CUDA Programming Guide, 2008). Figure 1 

demonstrates CUDA‟s memory hierarchy. 

 

As was mentioned earlier, blocks are organized into a grid which can be one- or 

two-dimensional. The purpose of the grid is to allow more threads to execute on 

the kernel which otherwise would be limited by the block size. The only 

requirement for having multiple thread blocks work on a kernel is that they are 

independent of each other. That is because there‟s no guarantee as to the order 

in which blocks will be executed. The size of the grid – number of thread blocks – 

is generally dictated by the amount of the data being processed as opposed to 

the number of processor cores on a GPU. In fact, CUDA is designed in such a 
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way that the number of thread blocks can greatly exceed the number of 

processors in the system (NVIDIA CUDA Programming Guide, 2008). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Memory Hierarchy 

 

 

Another important component of this Major Qualifying Project is Kdb+. Kdb+ is an 

in-memory, column-based database whose purpose in this project is to supply 

the GPU with real-time market data. Kdb+ functions based on a language called 
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K which is in turn derived from a much older A Programming Language 

(otherwise known as APL). Arthur Whitney, the developer of K, has put a great 

deal of emphasis on brevity in his design of the language. While K may seem 

somewhat obscure and obfuscated at first, it is actually extremely precise and, 

more importantly, fast. The succinct quality of K, unfortunately, also reflects in the 

language‟s error handling which is insufficient in Kdb+ (The Kdb+ Database, 

2006). 
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3. System 

3.1 Components 
 

As mentioned earlier, the Forecaster application is a financial program that 

analyzes the real-time market data. It includes five components: a Kdb+ 

database, two KdbAdapters (1 and 2), a HashMap and, the heart of the system, 

the Forecaster. Figure 2 depicts the data flow among these five components. 

 

Upon launch, the application is split into three separate processes – the parent 

and two children processes. Each child process is put in charge of one of the 

KdbAdapters, while the parent is associated with the Forecaster component that 

controls both the host and the device sides. The three processes communicate 

with each other by a means of C-style pipes. Two pipes – input and output – are 

created prior to spawning the three processes. The write end of the input pipe is 

handled by the KdbAdapter (I) and the read end of the output pipe is given to the 

KdbAdapter (O). The read end of the input pipe and the write end of the output 

pipe is handled by the Forecaster. 

 

The symbol data is stored on the GPU in a simple array. In order to facilitate data 

storage and management on the GPU, each symbol is assigned a unique integer 

id which serves as its index in the symbol data array on the GPU; this enables 

access to any given symbol in a constant time. The required mapping is done in 

the parent process by the HashMap component – its sole purpose is to map each 

symbol string from the subscription set to a unique integer within range [0, (set 
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size) - 1]. As mapping of a symbol to a unique integer id may become a possible 

bottleneck due to large volume of market data, fast hashing is imperative to the 

system‟s success. 

 

The purpose of the two KdbAdapters is to receive the real-time market data from 

and send algo results to the Kdb+ database. The KdbAdapter (I) establishes a 

connection with the Kdb+ and subscribes to a specified set of market symbols. 

Once the Kdb+ receives a subscription request, it immediately begins to send 

market data for the specified symbols to the KdbAdapter (I). The data is parsed 

and sent down the input pipe to the Forecaster. 

 

For each raw market data record received by the Forecaster from the read end of 

the input pipe a symbol string is converted to a unique integer by making a 

function call to the HashMap (in a fashion mentioned earlier). Then, a kernel call 

is made from the host and data from the record is copied into a correct place in 

the device‟s memory. As data accumulates on the device, the algos begin to 

launch. The algo results are copied from the device‟s memory to the host‟s 

whereupon the results are sent down through the write end of the output pipe to 

the KdbAdapter (O). 

 

Similarly to the KdbAdapter (I), the KdbAdapter (O) opens a connection to the 

Kdb+ database. Once the Forecaster begins sending algo results, the 

KdbAdapter (O) receives them from the read end of the output pipe and records 
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them to the Kdb+. For a structural illustration of the steps that occur in the 

Forecaster System see Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Data Flow 
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Figure 3 Forecaster Sequence Diagram 
 

3.2 KdbAdapter 
 

As stated earlier a KdbAdapter is the component that deals with moving 

the data between the Kdb+ database and the Forecaster System. Its functions 

include: constructor, connect, subscribe, kdbRead and kdbWrite. The constructor 

is called with a Kdb+ connection parameters – a host and a port number. When 

calling the connect function a KdbAdapter attempts to connect to a Kdb+ 
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database with parameters specified to the constructor. If the connection settings 

are invalid an error code is returned. The constructor and the connect methods 

must always be called in order for a KdbAdapter to function properly. Whether a 

KdbAdapter is used for reading the data from or writing it to a Kdb+ database 

determines what other functions will be called. 

If a KdbAdapter is used for supplying the system with the market data then 

the subscribe and the kdbRead functions are used. The subscribe function 

accepts a symbol set and a table name as its parameters. The symbol set is the 

set of symbols for which the real-time data will be obtained from a Kdb+ 

database. The table name is the name of the table from which to draw the data. 

The KdbRead function is called after subscription is complete; its parameter is 

the file descriptor, which is used for recording data from the Kdb+ database. 

If the role of a KdbAdapter is to write data to a Kdb+ database then only 

the kdbWrite function is used. Being a mirror image of the kdbRead, the kdbWrite 

function accepts a file descriptor which is used for outputting the data to a Kdb+ 

database.  

It should be noted that in order to minimize amount of code executed by 

the kdbWrite and the kdbRead methods and to avoid unnecessary system state 

checks neither function ever returns – except when the connection to a Kdb+ 

database is forcibly closed by an external source. In the Forecaster System, this 

issue is solved by manually “killing” the child processes prior to exiting the parent 

process. 
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3.3 HashMap 
 

HashMap provides Forecaster with the ability to quickly convert a symbol string 

to its appropriate unique integer id; in other words HashMap creates a minimal 

perfect hash. Constructor for HashMap takes in a file that contains a set of 

symbols to be analyzed by the system and creates a minimal perfect hash based 

on that set. 

 

HashMap servers as a wrapper to an application called CMPH. CMPH – C 

Minimal Perfect Hashing Library – is a free API (Advanced Programming 

Interface) that enables fast and efficient hashing of large sets of keys. CMPH 

was developed by Davi de Castro Reis, Djamel Belazzougui, and Fabiano 

Cupertino Botelho. 

 

3.4 Forecaster 
 

At the heart of the system is the Forecaster component. Its code is divided 

between the host (CPU) and the device (GPU) memory. The host code, executed 

on the CPU, handles reading of the market records from an input pipe, writing the 

algo results to an output pipe and transferring the data to and from the GPU. The 

device code, on the other hand, is responsible for storage and management of 

the market records (inside the GPU's memory) as well as the computations.  

 

The Forecaster's launch function accepts three parameters: two file descriptors – 

one for an input and other for an output streams – and an integer value that 
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specifies the Forecaster's run time in seconds. The Forecaster‟s launch method 

returns after the number of seconds specified by the run time constant. This and 

all other constants are supplied in a configuration file that is passed in as a 

parameter to the applications at launch time. 

The data is stored in the device memory in a sliding window fashion, essentially 

comprising a cyclical data structure – at any point during the execution of the 

Forecaster System the amount of data on the card is limited by a time constant 

specified by the user. The time window is stratified into time buckets – the 

number of buckets is also defined in the configuration file. For example, if the 

user chooses to keep fifteen minutes worth of data on the card divided into one-

minute buckets then, for the first fifteen minutes, data will be written to “empty” 

memory locations – every minute data will be written to a new bucket: 15(min) / 

1(min per bucket) = 15(buckets) – but when the fifteen minutes expire new 

market records will overwrite the old ones, starting with the first bucket. 

 

This design is implemented with a two-dimensional array (matrix), where each 

row represents a time bucket and each cell in a row may potentially contain a 

market record. The buckets are managed with a help of a variable that always 

points to the “current bucket” – the bucket to which the data is to be written to at 

that point in time. Using the previous example, in the beginning the variable 

points to row zero switching to the next row every minute and after the fifteen 

minutes it is again set to row zero. Refer to Figure 4 for a visual representation of 

the way data is stored in the device memory. 
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The algorithmic computations used in these project are VWAP and TWAP. In 

order to minimize communication between host and device, both algos are 

launched with one kernel – the fire kernel. The computations are launched 

according to a user-specified constant. For example, if the constant is set to ten 

milliseconds, then the fire kernel will be launched every ten milliseconds. The fire 

kernel is launched with the following thread configuration: 

 

blockSize.x = the number of buckets per symbol 

blockSize.y = 1 

gridSize.x = the number of symbols in the set 

gridSize.y = the number of algo types  

 

In this project the number of algo types is two – TWAP and VWAP. This 

configuration allows to perform both algorithmic calculations on each symbol 

(possibly at the same time). Each block will execute calculations appropriate to 

its algo type. First each thread in a block performs computations over a bucket 

corresponding to its index and records the results. Then one thread from each 

block computes overall results for a symbol based on the calculations done for 

each bucket. So, if there are 100 symbols and the desired number of buckets for 

each symbol is five, then the fire kernel will be launched with 200 blocks (2 algo 

types by 100 symbols) where every block contains five threads. The blocks will 

be split into two groups of 100 blocks each – one group for each algo. Within 

each block a thread will calculate results for an appropriate bucket and then one 

thread will perform final calculations using results for each bucket. 
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Figure 4 Data Storage 
 

3.5 Suggested Improvements 
 

The improvements discussed in this section are suggestions and are not used in 

the actual implementation of the system. 

 

Host-Device Communication Reduction 

The best way to optimize system performance is to minimize the communication 

between the host and the device as much as possible. One of the biggest system 

bottlenecks is copying each market record to the device memory as it is passed 

in to the Forecaster component. The best way to minimize the amount of copying 

of data from the host to the device memory is to use the interval between the 

algorithmic computations to the application's advantage; that is, storing the new 

records in the host memory for the length of the “quiet” interval and only coping 

the data to the device memory before the computations must be made. So, for 
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example, if an algo is set to fire every 100 milliseconds then the data should be 

accumulated in the host memory for the length of 100 milliseconds and only 

copied to the device memory just  before firing the algo. 

 

Asynchronous Device Code Execution 

Another change that may optimize system performance is to combine the method 

suggested above with asynchronous symbol data updates and algo firing. CUDA 

supports asynchronous kernel calls by using cudaStreams, which are essentially 

queues of “orders” to the device code. The cudaStream provides a form of 

synchronization as the commands in a cudaStream are executed in the FIFO 

(First In First Out) fashion. It would be beneficial to use the same cudaStream for 

updating the symbol data and firing the algos. There are three steps in the 

Forecaster component that can be queued into the same cudaStream to get the 

following flow of events: the new records, that were stored in the host memory for 

the interval between the algo executions, are asynchronously copied to the 

device memory; then using the same cudaStream the update kernel is launched 

to update the “old” symbol data with the new market records; finally, the algo 

kernel is launched with the same cudaStream, using it for the third time. In this 

scenario the only synchronization that will have to be done is calling the 

cudaStreamSynchronize() function on the cudaStream (that was used for the 

three asynchronous steps) before adding any new records to the host memory. 
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Host Memory Subdivision 

For further speed up, the new records can be added to two different memory 

locations. Alternating between these two locations will allow the 

cudaStreamSynchronize() function to be called later, right before the call that will 

copy the data from the host to the device memory thereby efficiently reducing the 

delay between handling the incoming records. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Improved Storage Scheme 
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memory where the new records will be temporarily copied to before being used 

to update the data for each symbol. The new records at location marked by 

“Tmp” will be considered valid until the update kernel is launched. Once the 

update kernel finishes – adding the records to the appropriate buckets of the 

corresponding symbols – the records are considered outdated and will be 

overwritten once the new set of records is copied from the host to the device 

memory. The summary of the flow of events is as follows: 

1. The cudaStream is synchronized – any previously unfinished instructions 

are waited upon – to make sure the previous commands were executed 

successfully 

2. The new records are copied from the host memory location “A” to the 

device memory location “Tmp” 

3. The update kernel is launched 

4. The algo kernel is launched 

5. The new incoming records are being recorded to the host memory location 

“B” until it‟s time for the algo calculations to begin 

6. Steps 1 through 5 are repeated for a lifetime of the application, alternating 

between the host memory locations “A” and “B” 
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4. Performance  
 

The performance of the GPU versus the CPU was determined by two tests. The 

dependent variable of each test was the average amount of time it takes to 

perform a computation. The independent variables were as follows: algo 

complexity and symbol set size. The results of all tests were in favor of GPU. 

4.1 Hypothesis 
 

Given the GPU‟s great potential for parallelization, it was theorized that the CPU 

will be outperformed in both tests by a factor of at least five. 

4.2 Procedure 
 

In the first test the algo complexity was varied to analyze calculation time. Algo 

complexity is defined by the number of calculations performed every time an algo 

is fired. To increase the complexity of an algo the computations are repeated a 

certain number of times by surrounding algo code with a simple loop. Therefore, 

complexity is determined by the number of iterations through an algo. The first 

test consisted of measuring the average time it takes – first on the GPU and then 

on the CPU – for an algo to complete calculations as the complexity (number of 

iterations) is increased. 

 

The second test was used to establish performance of host and device code, in 

terms of the amount of symbols used in the calculations. Let the symbol set be 

defined as the collection of symbols for which data will be processed (refer back 

to section 3.2 KdbAdapter). During each stage of this test the average time it 
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took to complete the algo calculations as size of the symbol set was increased 

was measured. 

4.3 Results 
 

The results of both tests showed that an algo running on GPU takes substantially 

less time to perform computations than on CPU. 

 

The results of tests one and two can be found in Tables 1 and 2; they are also 

graphically represented in Graphs 1 and 2, respectively. The results for each test 

show the same trend: as the independent variable was increased, the average 

time it took an algo to complete calculations also increased; however the rate at 

which the dependent variable was increased was much greater for tests run on 

the CPU as opposed to those on the GPU. 

 

 

Table 1 Compexity Test 
 

 

 

 

 

 

 

 

 

Complexity Test 

Complexity 
(# loops) 

Average Calculation Time 
(msec) 

GPU CPU 

1 1.759 20.667 

3 7.278 47.204 

5 7.881 67.533 

10 14.393 135.435 

15 23.937 186.139 

20 25.900 251.465 

25 54.235 302.182 

50 86.781 476.369 

75 149.788 754.237 

100 215.020 982.244 
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Table 2 Size Test 
 

 

 

 

 

 

 

Figure 6 Average Calculation Time vs. Complexity 

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 10 15 20 25 50 75 100

1.759 7.278 7.881 14.393 23.937 25.900
54.235

86.781

149.788

215.020

20.667 47.204
67.533

135.435

186.139

251.465

302.182

476.369

754.237

982.244

A
v

e
ra

g
e

 E
x

e
c

u
ti

o
n

 T
im

e
(m

s
e
c
)

Complexity
(# loops)

Average CalculationTime vs Complexity

GPU CPU

Size Test 

Set Size 
(# symbols) 

Average  Calculation Time 
(msec) 

GPU CPU 

100 1.759 20.667 

200 2.697 37.033 

300 3.686 51.421 

400 5.462 63.466 

500 6.660 77.130 
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Figure 7 Average Calculation Time vs. Symbol Set Size 

 

4.4 Conclusion 
 

The results of both test confirmed the hypothesis that the GPU can outperform 

the CPU by a factor of at least five in every test. It follows then, that it would be to 

any brokerage firm‟s great benefit to use the GPU for financial computations. 
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5. Algorithmic Trading Strategy 

5.1 Algorithmic Trading Strategy Overview 

As we know from the introduction chapter, algorithmic trading is a trading system 

that utilizes very advanced mathematical models for making transaction 

decisions in the financial markets. And algorithmic trading strategies are rules 

built into the models attempting to determine the optimal time for an order to be 

placed that will cause the least amount of impact on a stock's price. The essential 

concept of algorithmic trading strategy is to divide large blocks of purchasing 

requests into smaller blocks, allowing complex algorithms to decide when the 

smaller blocks are to be purchased. This basic strategy is called "iceberging". 

The success of this strategy may be measured by the average purchase price 

against the VWAP for the market over that time period.  

 

There are two elements of an algorithmic trading strategy: the decision of when 

to trade, or pre-trade analytics, and the decisions of how to trade, or the 

execution phase of the algorithm.  

 

The decision of when to trade is based on continuously re-calculated analytics. 

This could include, for example, a moving average crossover algorithm that 

calculates two moving averages, and analyses, in real time, when they cross one 

another. It then buys or makes the decision to buy or sell, depending on which 

average is higher. Volume-weighted-average-price strategy (VWAP) is a 
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methodology to determine when to trade by continuously re-calculating price 

average weighted on volume and comparing the average price to current price. 

 

The decision of how to trade, or the order execution element of the algorithm, 

can be just as complex as the decision of when to trade. For example, once an 

opportunity is identified by the pre-trade analytic to buy, for example, 10,000 

shares of IBM, the order execution element of an algorithmic trading strategy 

may slice the order up into smaller parts (blocks of 1,000 shares). In conjunction, 

it may place the order in multiple liquidity pools to take advantage of the prices 

and availability of liquidity across a „virtual‟ exchange with multiple participants 

(Jones, 2007). In conclusion, the decision of how to trade takes consideration of 

various real-time constraints, such as current market size, stock volatility, news 

feed on this company and so on. Time-weighted-average price is a strategy to 

minimize the impact on market volatility and assumes that stock shares are 

equally traded over the same period of time. 

 

VWAP and TWAP are two mostly often used strategies for algorithmic trading. 

There are still many more other strategies such as arbitrage strategy, 

implementation shortfall and trade cost analysis. 
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5.2 VWAP (Volume-weighted average price) Strategy 

 

- The VWAP Strategy reduces deviation to the Volume Weighted 

Average Price benchmark with customizable constraints. (MMVI 

TurboTrade Financial, 2006) 

 

The Volume Weighted Average Price (VWAP) strategy, as the mostly often used 

algorithmic trading strategy, helps to decide when to trade. VWAP is the most 

commonly used algorithmic trading strategy, as it provides a fair representation 

of prices throughout the trading period; but it is inherently an 'at market' strategy. 

VWAP allows you to achieve the best possible average execution price for a 

security in without adversely impacting the price. The orders generated by this 

strategy will vary in size and frequency throughout the duration of the trade. It is 

often used as a trading benchmark by investors who aim to be as passive as 

possible in their execution. Most pension funds and mutual funds fall into this 

category. The aim of using a VWAP trading target is to ensure that the trader 

executing the order trades in-line with volume on the market. VWAP is often used 

in algorithmic trading for its convenience and effectiveness.  
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The VWAP is calculated using the following formula: 

 

where:                    
 
PVWAP = Volume Weighted Average Price  

Pj = price of trade j  

Qj = quantity of trade j  

j = each individual trade that takes place over the defined period of time, 

excluding cross trades and basket cross trades.  

(VWAP, 2008) 

 

To determine whether a transaction is good or not using VWAP strategy is 

simple. If the current price is below the VWAP benchmark up to the end of a 

chosen time horizon, the current bid price is considered good for buying in but 

bad for selling out. Vice Versa, if the current price is above VWAP benchmark up 

to the point, current bid price is considered good for selling out but bad for buying 

in. How the rule is determined is also straightforward. As VWAP calculates 

average price weighted on volume, we buy in the stock shares if current price is 

lower than intra-day average so far and sell it out when the current price is higher 

than volume-weighted average price. If we could keep trading this way, we could 

keep ourselves above the market intra-day average, which means we will not 

lose in short term, as we keep a profit range by buying under the average and 

selling above the average.  
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Table 3 shows the way we apply VWAP strategy to real-world data, if we have 

stock AAA has bid price and traded volume at the following times: 

 
 

Table 3 Bid price and traded volume of AAA 
 

 

And if we graph the sample data, Figure 8 shows that we could see that the 

VWAP values are smoother than the raw market data values after weighted 

average. 

 
 

 
 

Figure 8 VWAP Strategy on Sample Data 

Time 
Bid 

Price 
Volume VWAP 

9:00 35 100 =35*100/100 = 35 

9:05 40     50 =(35*100+40*50)/(100+50) = 36.67 

9:10 45 100 =(35*100+40*50+45*100)/(100+50+100) = 40 

9:15 30 100 =(35*100+40*50+45*100+30*100)/(100+50+100+100) = 37.14 

9:20 30 100 =(35*100+40*50+45*100+30*100+30*100)/(100+50+100+100+100) = 35.56 
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5.3 TWAP Strategy (Time-weighted average price) 

 

- The TWAP Strategy distributes orders in a linear manner, balancing 

adverse selection and slippage in real-time. (MMVI TurboTrade 

Financial, 2006) 

 

The TWAP strategy is also an often used intra-day benchmark. It assumes that a 

stock volume follows a uniform distribution with respect to time, which means that 

transaction volumes are equally distributed within a given time horizon. TWAP is 

effective when we want to minimize the impact by the market volatility in a 

specified time horizon. TWAP is best for those who want to adhere to a regular 

trading schedule and execute in equal-size increments regardless of other trades 

in the market. 

 

TWAP (time-weighted average price) allows traders to time-slice a trade over a 

certain period of time. Unlike VWAP, which typically trades less stock when 

market volume dips, TWAP will trade the same number of shares at even 

intervals throughout the time-period you specify. TWAP is optimal for orders that 

must be completed by a specific time or for trades in illiquid stocks where you do 

not want your execution schedule to depend on volumes. This strategy is best 

utilized in situations where there are little or no liquidity concerns and the trade's 

executions can be evenly spread throughout the given timeframe. The 

cumulative volume profile for a TWAP trade is linear with a positive constant 
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slope of one, as we could see in the graph below. In addition, orders generated 

by this strategy tend to be small in size and occur with relatively frequency.  

 

Here is an example indicating how TWAP differs from VWAP. To achieve this 

Time Weighted Average Price, the BXS engine divides the Order Quantity 

equally over a number of equally-spaced slices. TWAP differs from the VWAP 

strategy in that a VWAP trade may buy or sell 30% of a trade in the first half of 

the day and then the other 70% in the second half of the day. With the TWAP 

strategy, the trade would most likely execute 50% in the first half and 50% in the 

second half of the day. (Stanley, 2007) From what is described above, we see 

that TWAP does not take market traded volume into consideration. If trader is 

selling under a TWAP strategy, the orders will be evenly time-sliced regardless of 

the market impact. 

 

A TWAP strategy example using the same data with VWAP is as follows: 

 

 
Table 4 Bid price and traded volume of AAA 

 

 
 

 

Time Bid Price Volume Volume Weighted 

9:00 35 (100+50+100+100+100)/5 = 90 20% 

9:05 40 90 40% 

9:10 45 90 60% 

9:15 30 90 80% 

9:20 30 90 100% 
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From the graph below, we could see that TWAP strategy is not based on the 

volume traded per period of time, but based on time slices. That is why TWAP is 

also called time-sliced trading strategy. 

 

 

 

 

Figure 9 TWAP strategy on Sample Data 

 

 

 

5.4 Profit and Loss Analysis 

5.4.1 Percentage Difference between Executed Quantity and Scheduled 
Quantity 

 

The percentage difference between the executed quantity and scheduled 

quantity provides us with a clearer view of how executed quantity differs from the 
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volume of shares that we planned to be. Ideally, all the brokers wish for what 

they exactly need. However, with market prices and volumes fluctuating 

continuously, it is impossible for brokers to get the desired volume with limited 

shares of stock in the market. That is why brokers need to run the formula to 

evaluate their deficiency in the actual executed quantity along the transactions, 

and adjust the algorithm to face the new situation if necessary. No matter what 

trading strategy we are using, we are short on purchase amount all the time due 

to market limitations. That is the reason why we need to know the difference, 

need to know how much we short and make up the deficiency in future trading. 

   
Table 5 Percentage Difference between Executed Quantity and Scheduled Quantity 

 

Sym 1 time TotExec SchdQty (Execqty-Schdqty)/SchdQty 2 

LEH 9:30:00 2600 4300 -39.53% 

LEH 9:30:10 1800 1800 0.00% 

LEH 9:30:20 1500 1500 0.00% 

LEH 9:30:30 3200 5300 -39.62% 

LEH 9:30:40 2000 3300 -39.39% 

LEH 9:30:50 1900 3200 -40.63% 

LEH 9:31:00 1000 1700 -41.18% 

LEH 9:31:10 700 1200 -41.67% 

LEH 9:31:20 700 1200 -41.67% 

LEH 9:31:30 1400 2300 -39.13% 

LEH 9:31:40 2800 4600 -39.13% 

LEH 9:31:50 2300 3900 -41.03% 

LEH 9:32:00 1500 2500 -40.00% 

LEH 9:32:10 1100 1800 -38.89% 

LEH 9:32:20 900 1500 -40.00% 

LEH 9:32:30 32100 53500 -40.00% 

LEH 9:32:40 9700 9700 0.00% 

LEH 9:32:50 6900 6900 0.00% 

LEH 9:33:00 7000 11700 -40.17% 

 
1
 Sym = Symbol name 

  Time = Transaction time for every 10 seconds 
  TotExec = Cumulated Executed Quantity within 10 seconds 
  SchdQty = Cumulated Scheduled Quantity within 10 seconds 
2 
(Execqty-Schdqty)/SchdQty calculates the percentage difference between cumulated 

executed quantity and cumulated scheduled quantity within 10 seconds 
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We are the seller‟s position in the table 5 above. For buyer‟s position, negative 

percentage rate indicates that demand volume is greater than supplied volume. 

So when the percentage difference between executed quantity and scheduled 

quantity is negative for buyers, the cumulated volume of buying requests is 

greater than that of selling requests. On the other hand, for seller side position, 

negative percentage rate indicates that supplied volume is greater than demand 

volume. At that time, cumulated volume of selling requests is greater than that of 

buying requests. Usually, we have the percentage rate controlled within the 

range of 10%. However, every entry of percentage rate is either negative or zero, 

which points to the fact that everyone is trying to sell the stocks, resulting in the 

great decline of the stock price. Below is a more straightforward diagram using 

data above. Figure 10 shows that most stock holders that day were trying to sell 

their shares so that there was no available stock buyer in the market. After 

analyzed the difference between executed quantity and scheduled quantity, we 

knew that how bad performances our orders were experiencing from the pure 

negative percentage rates honestly reflected on the diagram. Knowing how hard 

it was getting sold reminds us to change a trading strategy. As we could see in 

Figure 10, the seller‟s executed quantity could not reach the scheduled quantity 

for every single transaction.  Data source from Lehman Brothers, within 3 

minutes after market opens on Tue, Sept 23. 
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Figure 10 Percentage Difference between Executed Quantity and Scheduled Quantity 

 

5.4.2 Price Improvement 
 

Price improvement is different in constructing algorithm depending on which 

position we are at. When we are at buyer‟s position (indicated by number 1 when 

programmed in Excel Macro), price improvement = ask price – executed vwap 

price. Similarly, when we are at seller‟s position (indicated by number 2 when 

programmed in Excel Macro), price improvement = executed vwap price – bid 

price 

 

Figure 11 denotes how excel macro automatically generates price improvement 

result for a large amount of data. The algorithm in Excel Macro is compiled in 
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Visual Basic. The algorithm below shows how we judge our position at first and 

then calculate the price improvement per share.  

 
Figure 11 Excel Macro for Price Improvement Analysis 

 

What the algorithm basically produces is that it judges the trader‟s position, either 

a seller or a buyer, and then applies the price improvement formula according to 

the first-step judgment. The output price improvement will be located at column 

46. And column 43 indicates the executed price in the market recommended by 

VWAP strategy, while column 29 indicates the bid price that we desired to be. 

 

 

 

After we run the algorithm, the truncated price improvement result table looks as 

indicated in Table 5. 
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Table 6 Price Improvement Per Share 

time TotExec 1 VwapImpPerSh 

9:30:00 2600 -0.01180457 

9:30:10 1800 -0.01584118 

9:30:20 1500 0.1786206 

9:30:30 3200 0.02531019 

9:30:40 2000 0.0283421 

9:30:50 1900 -0.01259497 

9:31:00 1000 0.005915136 

9:31:10 700 -0.008636364 

9:31:20 700 -0.001304348 

9:31:30 1400 -0.03763335 

9:31:40 2800 -0.04418033 

9:31:50 2300 0.02314607 

9:32:00 1500 -0.01787879 

9:32:10 1100 -0.02409091 

9:32:20 900 0.02138085 

9:32:30 32100 0.02149423 

9:32:40 9700 -0.007844351 

9:32:50 6900 0.04710667 

9:33:00 7000 0.02960919 

 
  1 

TotExec = Cumulated Executed Quantity within 10 seconds 
   VwapImpPerSh = Price improvement per share under VWAP method 

 

 

 

With the data above, we could diagram the relationship between executed 

quantity and price improvement per share in Figure 12. 
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Figure 12 Executed Quantity and Price Improvement Per Share 
 
 

From Figure 12 above, the blue bar indicating total executed quantity follows the 

right-hand side axis and the red line follows the left-hand side axis. Data in 

Figure 12 also comes in on Oct 2, the night before news announced the new 

hope for the bailout plan. As we could see in Figure 12, data varies greatest from 

9:30:10 to 9:30:20 because most people in the market were trying to buy in stock 

shares since people found back confidence in the stock market. A while later 

between 9:32:30 and 9:32:40, actual transactions were made. 

 

Retrieving the price improvement per share, we multiply it by executed quantity 

to get the accumulated price improvement within 10 seconds. If we have to get 

total accumulated price improvement up to this moment, we could add up to this 

point to retrieve the accumulated price improvement .All the price improvement 

units are in dollar. .  
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In Figure 12, we applied price improvement method on the sample data which 

was 3 minute within the market opens. When analyzing the real data in Figure 

13, we weighed the price improvement rate so that the data will be less 

fluctuated. The way we weigh the data is to apply the following formula: 

 
  
 

   

 

 

Figure 13 Weighed-Average Price Improvement Per Share 
 
 

 
As we could see in Figure 13, weighted-average price improvement looks much 

smoother along the time comparing to Figure 12, and almost remains constant in 

the end. Price improvement per share in the above diagram follows right-hand 

side axis. The algorithm we ran to attain weighted-average price improvement is 
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very similar to the loop we used for participation rate calculation.  Figure 14 

below shows the main part of Excel Macro which aggregates data and calculates 

the weighted-average price improvement. 

Figure 14 Excel Macro for Weighted-average price improvement per share 
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5.4.3 Participation Rate Analysis 
 

 

First of all, there are two kinds of participation rates involved in our future 

calculation: period participation rate and cumulative participation rate. Period 

participation rate is the executed volume every 10 seconds weighted by the 

actual market volume every 10 seconds. Cumulative participation rate is the 

cumulative executed volume by the end of the time ticket weighted by the 

cumulative market volume by the end of the time ticket. Both formulas are listed 

as follows: 

 

 

 

 

 
 

 

 

 

Here we will raise a simple example to show how the actual calculation works to 

achieve both participation rates. Table 7 below shows how to calculate the 

cumulated participation rate, where intvol stands for current market volume, 

TotExec stands for current executed volume, SumIntVol stands for cumulative 

market volume by the end of the time ticket and SumTotExecQty stands for 

cumulative executed volume by the end of the time ticket. Table 8 below shows 

the calculation for period participation rate using the same data in Table 7, where 

10sIntVol stands for cumulative market volume for every 10 seconds and 

10sTotExec stands for the cumulative executed volume for every 10 seconds. 
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Table 7 Paticipation Rate on Sample Data 

  

time intvol TotExec SumIntVol SumTotExecQty Cumulative 
participation rate 

9:30:00 500 200 500 200 200/500 = 0.400 

9:30:08 900 300 500+900 = 1400 200+300=500 500/1400 = 0.357 

9:30:09 1000 600 1400+1000=2400 500+600=1100 1100/2400 = 0.458 

9:30:10 400 250 2400+400=2800 1100+250=1350 1350/2800 = 0.482 

9:30:11 300 50 2800+300=3100 1350+50=1400 1400/3100 = 0.452 

9:30:20 600 100 3100+600=3700 1400+100=1500 1500/3700 = 0.405 

 
 
 

 

Table 8 Participation Rate on Sample Data Ⅱ 

 

time 10sIntVol 10sTotExec Period Participation 
Rate 

9:30:00 500+900+1000=2400 200+300+600=1100 1100/2400 = 0.458 

9:30:10 400+300=1700 250+50=300 300/1700 = 0.176 

9:30:20 600 100 100/600 = 0.167 

 
 
 

 
The data we actually use is already aggregated for every 10 seconds. In the 

table below, intvol and TotExec are both aggregated values within 10 seconds. 

So for period participation rate, we could directly use intvol and TotExec values 

without any change. It is still the same way obtaining the cumulated participation 

rate. Since both entries are aggregated, we only need to apply formulas below to 

get both participation rates. And results are listed in Table 9. 
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Table 9 Period and Cumulative Participation Rate 

 

time intvol TotExec SumIntVol SumTotExecQty 
Cumulative 

participation rate 

Period 
Participation 

Rate 

9:30:00 3807 2600 3807 2600 68.30% 68.30% 

9:30:10 6372 1800 10179 4400 43.23% 28.25% 

9:30:20 34000 1500 44179 5900 13.35% 4.41% 

9:30:30 11235 3200 55414 9100 16.42% 28.48% 

9:30:40 14265 2000 69679 11100 15.93% 14.02% 

9:30:50 4212 1900 73891 13000 17.59% 45.11% 

9:31:00 3158 1000 77049 14000 18.17% 31.67% 

9:31:10 2200 700 79249 14700 18.55% 31.82% 

9:31:20 2300 700 81549 15400 18.88% 30.43% 

9:31:30 7893 1400 89442 16800 18.78% 17.74% 

9:31:40 12200 2800 101642 19600 19.28% 22.95% 

9:31:50 8900 2300 110542 21900 19.81% 25.84% 

9:32:00 3300 1500 113842 23400 20.55% 45.45% 

9:32:10 2200 1100 116042 24500 21.11% 50.00% 

9:32:20 36253 900 152295 25400 16.68% 2.48% 

9:32:30 23845 32100 176140 57500 32.64% 134.62% 

9:32:40 10498 9700 186638 67200 36.01% 92.40% 

9:32:50 22500 6900 209138 74100 35.43% 30.67% 

9:33:00 50818 7000 259956 81100 31.20% 13.77% 
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The algorithm which we applied to calculate both participation rates is simple. 

Basically, we just need to construct a loop that aggregates the cumulative sum 

for market volume and executed volume. The Excel Macro for this algorithm is 

shown in Figure 15. 

 

 
Figure 15 Excel Macro for Participation Rate 
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What is indicated in Figure 15 above is how we aggregates executed volume and 

total market traded volume. After retrieving the aggregated value, we need to 

judge whether the market traded volume is zero before division, for it is possible 

that no share was traded for a particular stock during a specified period of time. If 

the market traded volume is non-zero, we divide the executed volume by the total 

market traded volume to get cumulative participation rate. Period participation 

rate calculation uses the same way except that instead of total executed volume 

and total market volume, we use aggregated executed volume and market 

volume for every 10 seconds. Both cumulative participation rate and period 

participation rate will be compared to the configured rate, which is 10% as a 

constant, in the graphs below.  

 

The configured rate remains 10% as a constant, for it is an optimized number 

based on previous experiences. Given the above algorithm, we could graph data 

listed in Table 9 as shown in Figure 16. Notice that the data we used in Table 9 is 

truncated, which only contains 3-minute data after the market opens. In Figure 

17, we graphed complete data received on the particular morning. In the Figure 

17, it is more obvious that the cumulative participation rate looks smoother and 

closer to the configured rate, which is set as 10%, even though the period rate 

still maintains high volatility.  
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Figure 16 Participation Rate on Truncated Data 

 
Figure 17 Participation Rate on Complete Data 
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6. Future Analysis 
 

As we know, news-driven algorithms have recently become popular. News 

algorithms attempt to analyze news stories and make trades based on their 

predicted impact on the underlying stock. Traditional algorithmic trading system 

decides what to do after analyzing the market data. In other words, algorithmic 

trading system generates no result without history market data. However, market 

prices nowadays could change greatly in a millisecond, and company could even 

go bankrupt before people get a chance to sell the stock shares they hold. 

Another issue that brought to our concern is that news today has a greater 

impact on stock market than ever. Rumors about bankruptcy of United Air Lines 

on Sept. 26th caused UAL stock prices dipped 15% in 30 minutes. On Oct 8th, 

U.S. stocks plunged and the major indexes fell to five-year lows as traders acted 

on rumors and hopes about recapitalization for some of the biggest financial 

institutions in Britain and the U.S., including Morgan Stanley, Bank of America 

and Royal Bank of Scotland Group. The Chicago Board Options Exchange 

volatility index, which measures premiums paid for protection against stock-

market swings, closed at its highest level of the crisis, up 3.1% at 53.68 on that 

day (Curran, 2008). 

 

The Dow Jones company saw the necessity of upgrading the current algorithmic 

system due to the current market environment. That is how Dow Jones decided 

to cooperate with Ravenpack on the development of Dow Jones News Analytics 

project. DJ Analytics reads news posted on Dow Jones News Feed with an ultra-
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low latency. While Dow Jones News Feed covers world-wide financial news from 

Dow Jones Newswires, Wall Street Journal, Barron‟s and all other trust-worthy 

major news sites, DJ Analytics covers all headlines and full text of news stories 

completely and generates analysis for every piece of news indicating the impact 

on the oil price, bank interest rate, currency rate and other 21 major indexes and 

rates. While automated, computer-based trading is widely used to capture and 

leverage predictable events, the ability to correlate breaking news with streaming 

financial data in real time is the next frontier for algorithmic trading. We will be 

expecting a built-in news analytics as part of algorithmic trading system on GPU 

in the future. 
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Appendix A 
 

Forecaster Component 
 
 Forecaster(HashMap *hmap, int algoFireInterval) 

  The constructor; initializes the Forecaster component 

   hmap An initialized Hashmap of symbols 

   algoFireInterval The frequency of algorithmic computations 

 
 void launch(int inFd, int outFd, int runTimeSec, const char 

*memUsageFilepath) 

  Function to launch the Forecaster component 

   inFd The file descriptor to the input channel from 

which the market records are to be 

streamed real-time 

   outFd The file descriptor to the output channel into 

which the results of algorithmic 

computations will be recorded to 

   runTimeSec The amount of time in seconds the 

Forecaster component is to be launched 

for 

   memUsageFilepath The file path to where the symbol usage 

statistics will be recorded to 

 

 

HashMap Component 
 

 HashMap(const char *keysFilepath, int hashAlgoType=CMPH_BDZ) 

  The constructor; initializes the HashMap component 

   keysFilepath The file path to a set of keys for which a minimal 

perfect hash map is to be generated 

   hashAlgoType The type of algorithm to be used in generating 

the hash 

 
 const char **getKeys() 

  Returns the full set of keys in the HashMap 

 
 int getVal(const char *key) 
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  Returns a value of the specified key 

   key The key for which a value is requested 

 

 const char *getKey(int val) 

  Returns a key to which the specified value maps to 

   val The value for which a key is requested 

 
  int getSize()  

  Returns the size of the HashMap 

 

 int getMaxKeyLen() 

  Returns the maximum number of characters in a key 

 

 

KdbAdapter Component 

 

 KdbAdapter(const char *host, const int port) 

  The constructor; initializes the KdbAdapter component 

   host The hostname of the Kdb+ database 

   port The port to connect to 

 

 void connect() 

  Connect to a Kdb+ database using the parameters specified in the 

constructor 

 

 void subscribe(const char* tableName, const char **symSet, int symSetSize) 

  Subscribe to a certain set of symbols from the specified table 

   tableName The name of the table from which to get the data 

   symSet  The symbol set to subscribe to 

   symSetSize The number of symbols in the subscription set 

 

 void kdbRead(int inFd)  

  Continuously read the data for the subscribed symbols 

   inFd The file descriptor to a channel into which the subscription 

data will be recorded to 
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 void kdbWrite(int outFd) 

  Continuously write the data to the Kdb+ database 

   outFd The file descriptor to a channel into which the output 

data will be recorded to 

 


