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Abstract

This thesis introduces a new tower field representation, optimal tower fields (OTFs), that

facilitates efficient finite field operations. The recursive direct inversion method presented

for OTFs has significantly lower complexity than the known best method for inversion in

optimal extension fields (OEFs), i.e., Itoh-Tsujii’s inversion technique. The complexity of

OTF inversion algorithm is shown to be O(m2), significantly better than that of the Itoh-

Tsujii algorithm, i.e. O(m2(log2 m)). This complexity is further improved to O(mlog2 3) by

utilizing the Karatsuba-Ofman algorithm. In addition, it is shown that OTFs are in fact

a special class of OEFs and OTF elements may be converted to OEF representation via a

simple permutation of the coefficients. Hence, OTF operations may be utilized to achieve

the OEF arithmetic operations whenever a corresponding OTF representation exists. While

the original OTF multiplication and squaring operations require slightly more additions than

their OEF counterparts, due to the free conversion, both OTF operations may be achieved

with the complexity of OEF operations. Furthermore, efficient finite field algorithms are

introduced which significantly improve OTF multiplication and squaring operations.

The OTF inversion algorithm was implemented on the ARM family of processors for a

medium and a large sized field whose elements can be represented with 192 and 320 bits,

respectively. In the implementation, the new OTF inversion algorithm ran at least six

to eight times faster than the known best method for inversion in OEFs, i.e., Itoh-Tsujii

inversion technique. According to the implementation results obtained, it is indicated that

using the OTF inversion method an elliptic curve scalar point multiplication operation can

be performed at least two to three times faster than the known best implementation for the

selected fields.
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my sisters Elif and Zeynep, and my brothers Selim and Oğuz. I learned a lot from them,
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Chapter 1

Introduction

1.1 Background

The use of elliptic curves in public key cryptography was first proposed independently by

Koblitz and Miller in 1980s. Since then, elliptic curve cryptography has been the focus of a

lot of attention and gained great popularity due to the same level of security they provide

with much smaller key sizes than conventional public key cryptosystems have.

The standard protocols in cryptography that utilize discrete logarithm problem have

analogues in elliptic curve cryptography. The standard discrete logarithm problem has sub-

exponential complexity, e.g. using a general number sieve method a discrete logarithm prob-

lem in F∗p can be solved in sub-exponential time [16]. Whereas, a discrete logarithm on an

elliptic curve E(Fq) has exponential complexity in the size n = dlog2 qe of the field elements,

e.g. using the Pollard’s Rho method, one of the best methods for solving discrete logarithm

problem on elliptic curves, one can solve the discrete logarithm problem only in time 2
n
2 [3].

Elliptic Curve Cryptosystems offer better security with smaller key sizes and compu-

tationally more efficient algorithms compared to traditional public key cryptosystems such

as RSA [17] and discrete logarithm based systems like ElGamal [5] and Diffie-Hellman [4]

algorithms. This makes them a good choice especially for constrained environments like

smart cards and hand-held devices where resources as power, processing time and memory

are limited.

1



CHAPTER 1. INTRODUCTION 2

1.2 Motivation

Elliptic curve cryptography relies on efficient algorithms for finite field arithmetic. For in-

stance, the elliptic curve digital signature algorithm requires efficient addition, multiplication

and inversion in finite fields of size larger than 2160. This poses a significant problem in em-

bedded systems where computational power is quite limited and public-key operations are

unacceptably slow [22]. Efficient algorithms for finite field operations have been closely inves-

tigated [18, 13]. Besides the standard basis, alternative representations such as the normal

bases [10, 11, 21], and dual bases [10, 7, 6, 9] have been studied. Optimal Extension Fields

[2, 1] have been found to be especially successful in embedded software implementations of

elliptic curve schemes. The arithmetic operations in OEFs are much more efficient than in

characteristic two extensions or prime fields due to the use of a large characteristic ground

field and the selection of a binomial as the field polynomial.

In the elliptic curve scalar point multiplication, a large number of field multiplications

and inversions are computed. Inversion is inherently more complex and at least several

times more costly than multiplication. One of the possible remedies is the use of projective

coordinates for representing the points on the curve in order to avoid inversions. On the

other hand, projective coordinates require significantly more temporary storage than affine

coordinates. Using projective coordinates is not necessary if the complexity of inversion

can be reduced significantly. The adaptation of Itoh-Tsujii method for standard basis [8],

particularly for Optimal Extension Fields [2], has been effective in achieving fast inversion.

However, despite recent improvements, inversion is still the slowest operation in elliptic curve

implementations. In this thesis, this issue is addressed by proposing a new inversion method.

1.3 Contribution of the Thesis

In this thesis, a specialized finite field representation is introduced for a class of finite fields,

named Optimal Tower Fields(OTFs). Efficient algorithms are introduced for performing

finite field operations in OTFs.

The most significant contribution of this thesis is the recursive direct inversion method

presented for OTFs which has significantly lower complexity than the known best method

for inversion in optimal extension fields (OEFs), i.e., Itoh-Tsujii’s inversion technique. The

complexity of the new OTF inversion algorithm is shown to be O(m2), as little as the
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complexity of multiplication and significantly better than the complexity of the Itoh-Tsujii

algorithm, i.e. O(m2(log2 m)). The complexity of OTF inversion algorithm is further im-

proved to O(mlog2 3) by utilizing the Karatsuba-Ofman algorithm. Furthermore, efficient

finite field algorithms are introduced which significantly improve OTF multiplication and

squaring operations.

It is shown that OTFs are in fact a special class of OEFs and the conversion between the

two field representations is a mere permutation. Hence, OTF operations may be utilized to

achieve fast OEF arithmetic whenever a corresponding OTF representation exists.

In order to practically verify the theoretical results obtained, the OTF inversion algorithm

was implemented on the ARM family of processors for a medium and a large sized field whose

elements can be represented with 192 and 320 bits, respectively. Theory exactly matched

practice. In the implementation, the new OTF inversion algorithm ran at least six to eight

times faster than the known best method for inversion in OEFs, i.e., Itoh-Tsujii inversion

technique. According to the implementation results obtained, it is indicated that using

the OTF inversion method an elliptic curve scalar point multiplication operation can be

performed at least two to three times faster than the known best implementation for the

selected fields.

1.4 Outline of the Thesis

Chapter 2 starts by describing Optimal Extension Fields and their arithmetic. This chapter

introduces a new theorem regarding the Frobenius Maps used for inversion in OEFs. The

chapter ends with the explanation of the direct inversion technique for extension fields in

standard basis.

Chapter 3 starts by introducing a new class of finite fields, Optimal Tower Fields(OTFs),

and presenting their existence conditions. The chapter proves that OTFs are a class of

OEFs, and the conversion between the two field representations is a mere permutation. The

chapter shows that the special field representation for Optimal Tower Fields allows extremely

efficient finite field arithmetic. This chapter introduces the recursive direct inversion method

for OTFs, gives the complexity analysis of OTF arithmetic and compares the complexities

of OTF and OEF arithmetic operations. This chapter also proposes using the Karatsuba

algorithm for improving the complexities of OTF arithmetic operations. Finally, the chapter

generalizes OTFs as Generalized OTFs to include a larger class of OEFs, yet conserving all
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the properties and advantages of OTFs.

Finally, Chapter 4 presents implementations of both the Itoh-Tsujii technique and the

OTF recursive direct inversion technique on the ARM family of processors for two selected

fields. This chapter ends by comparing the performance of the two inversion techniques and

making an estimate on how much faster an ECC scalar point multiplication can be performed

by merely using OTF inversion technique than by using Itoh-Tsujii inversion technique.

The Appendix gives lists of some OTFs and generalized OTFs. It also gives lists of com-

plexities of OEF, OTF and generalized OTF arithmetic for some practical values of extension

degrees.

Acknowledgement:

The implementations in Chapter 4 were done in collaboration with my colleague Gunnar

Gaubatz.



Chapter 2

Background

This chapter describes Optimal Extension Fields and their arithmetic. A new theorem is

introduced regarding the Frobenius Maps used for inversion in OEFs. The chapter ends with

the explanation of the direct inversion technique for extension fields in standard basis. The

direct inversion technique introduced in this chapter is used in Chapter 3 for performing

inversion in Optimal Tower Fields.

2.1 Optimal Extension Fields and their Arithmetic

Optimal extension fields were introduced by Bailey and Paar in [1]. The main idea is to use

a generating polynomial of the form P (x) = xm−w to construct the extension field GF (pm),

where p is selected as a pseudo-Mersenne prime given in the form 2k ± c with log2 c < bk
2
c.

The pseudo-Mersenne form allows efficient reduction in the ground field operations. Theorem

1 [14] provides a simple means to identify irreducible binomials that can be used in OEF

construction.

In this thesis, we write

a ≡ b (mod n)

to mean n|a− b. For example,

7 ≡ −13 (mod 10)

In contrast, we write

b = a mod n

5



CHAPTER 2. BACKGROUND 6

to mean b ≡ a (mod n) and 0 ≤ b < n. That is b is the canonical representative of a mod n.

This b is easily found by the division algorithm. We will do likewise for polynomials.

Theorem 1 ([14]) Let m ≥ 2 be an integer and a ∈ GF (q)∗. Then the binomial xm − a is

irreducible in GF (q)[x] if and only if the following three conditions are satisfied:

1. each prime factor of m divides the order e of a in GF (q)∗;

2. the prime factors of m do not divide q−1
e

;

3. q ≡ 1 (mod 4) if m ≡ 0 (mod 4).

The representation of OEF elements utilizes the standard basis. An element A ∈ GF (pm) is

represented as

A =
m−1∑
i=0

aix
i = a0 + a1x + a2x

2 + . . . + am−1x
m−1

where ai ∈ GF (p).

The OEF arithmetic operations are performed as follows.

Addition/Subtraction:

The addition/subtraction of two field elements A,B ∈ GF (pm) is performed in the usual

way, by adding/subtracting the polynomial coefficients in GF (p) as follows.

A±B =
m−1∑
i=0

aix
i ±

m−1∑
i=0

bix
i =

m−1∑
i=0

(ai ± bi)x
i

Multiplication:

Let A,B ∈ GF (pm). Their product C = A ·B is computed in two steps:

1. Polynomial multiplication:

C ′ = A ·B =
2m−2∑
i=0

c′ix
i

2. Modular reduction:

C = C ′ mod P (x)

=
2m−2∑
i=0

c′ix
i mod xm − w

=
m−1∑
i=0

(c′i + wc′i+m)xi
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Here we set c′2m−1 = 0. In the first step the ordinary product of two polynomials is computed.

In the reduction step the binomial P (x) = xm − w facilitates efficient reduction. The

reduction may be achieved using only m − 1 constant coefficient multiplications by w, and

m− 1 additions.

Inversion:

An elegant method for inversion was introduced by Itoh and Tsujii [11]. Let A ∈ GF (pm).

We want to find B = A−1 mod P (x). The algorithm works in four steps:

1. Compute the exponentiation Ar−1 in GF (pm), where r = pm−1
p−1

;

2. Compute the product Ar = (Ar−1) · A;

3. Compute the inversion (Ar)−1 in GF (p);

4. Compute the product Ar−1 · (Ar)−1 = A−1 .

For the particular choice of

r =
pm − 1

p− 1
,

Ar belongs to the ground field GF (p) [14]. This allows the inversion in Step 3 to be computed

in the ground field GF (p) instead of the larger field GF (pm). For the exponentiation Ar−1

in Step 1, we expand the exponent r − 1 as follows

r − 1 =
pm − 1

p− 1
− 1 = pm−1 + pm−2 + . . . + p2 + p .

The exponentiation requires the computation of powers Api
for 1 ≤ i ≤ m− 1. The original

Itoh-Tsujii algorithm proposes to use a normal basis representation over GF (2) which turns

these exponentiations into simple bitwise rotations. In [8], this technique was adapted to

work efficiently in the standard basis as well. In the same reference it was shown that Ar−1

can be computed by performing

#MUL = blog2(m− 1)c+ HW (m− 1)− 1

multiplications and

#pi − EXP = blog2(m− 1)c+ HW (m− 1)

pi-th power exponentiations in GF (pm), where HW (m) denotes the hamming-weight of m.

For the details of this algorithm the reader is referred to [8]. Instead, efficient computation
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of Api
is briefly outlined for the special case of OEFs. The information given here is based

on [2] and [8] which consider the computation of Api
in the standard basis. Api

is the i-th

iterate of the Frobenius map defined as σ(A) = Ap. The following properties of the Frobenius

map will be used:

• σ(A + B) = σ(A) + σ(B) for any A,B ∈ GF (pm) (Linearity Property),

• σ(a) = ap = a for any a ∈ GF (p) (Fermat’s Little Theorem).

Using these rules the exponentiation Api
= σi(A) is simplified as

Api

=

(
m−1∑
j=0

ajx
j

)pi

=
m−1∑
j=0

(ajx
j)pi

=
m−1∑
j=0

ajx
jpi

. (2.1)

Let’s focus on the powers xjpi
for 0 < i, j ≤ m − 1 in the summation. Theorem 2 allows

further simplification.

Theorem 2 ([8]) Let P (x) be an irreducible polynomial of the form P (x) = xm − w over

GF (p), e an integer, P (α) = 0 in GF (pm), and it is understood that p ≥ 3. Then

αe = wtαs

where s = e mod m and t = e−s
m

.

Hence, it is possible to precompute wt and s for all values the exponent e takes in the

summation in Equation (2.1), i.e., e = jpi for 0 < i, j ≤ m−1. Utilizing a lookup table with

entries

cj = w
jpi−(jpi mod m)

m mod p

one may realize the exponentiation Api
using only m− 1 constant coefficient multiplications

required to compute the terms cjaj for 0 < j ≤ m− 1 and some additions for properly col-

lecting the reduced terms of the polynomial in Equation (2.1). The lookup table is relatively

small in size, since for most OEFs m is small and ci ∈ GF (p). The following Claim was

made in [2] to further simplify the reduction.

Claim 1 ([2])

(xj)pi

mod P (x) = wtxj

where xj ∈ GF (p)[x], i is an arbitrary positive rational integer, and other variables are as

defined in Theorem 2.
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“Proof” Since P (x) is an irreducible binomial, by Theorem 1, m|(p − 1) which implies

p mod m = (p− 1) + 1 mod m = 1. Thus s mod m = jpi mod m = j. 2

The Claim states that the positions of the terms in the summation in Equation (2.1)

stay fixed when the pi-th power is taken. This means that in the summation no two terms

will have the same power and therefore no additions will be needed for the exponentiation.

However, there is a flaw in the proof. The proof begins by assuming that m divides p − 1

based on the first condition of Theorem 1. This will not always be correct. According to this

condition, each prime factor of m has to divide the order of w. If m has repeated factors,

that the order of w does not have with the same multiplicity, m will not divide the order

of w, and hence will not divide p− 1. The Claim may be fixed by explicitly requiring m to

divide the order of w.

When corrected, Claim 1 eliminates additions in the computation of Api
, however, it

adds yet another restriction to OEF construction. In this thesis, the following theorem is

introduced which shows that the exponentiation Api
may be achieved by a simple scaled

permutation of the coefficients of the polynomial representation of A.

Theorem 3 For an irreducible binomial P (x) = xm−w defined over GF (p) for constructing

GF (pm) , the following identity holds for an arbitrary positive integer i and A = a0 + a1x +

a2x
2 + · · ·+ am−1x

m−1 ∈ GF (pm),

Api

=

(
m−1∑
j=0

ajx
j

)pi

=
m−1∑
j=0

(ajcsj
)xsj

where sj = jpi mod m and csj
= w

jpi−sj
m . Furthermore, the sj values are distinct for 0 ≤ j ≤

m− 1.

Proof of Theorem 3 Let sj = jpi mod m. Then m|(jpi−sj) and the following expression

can be written

xjpi

= (xm)
jpi−sj

m xsj = w
jpi−sj

m xsj .

Assigning csj
= w

jpi−sj
m the summation

Api

=

(
m−1∑
j=0

ajx
j

)pi

=
m−1∑
j=0

ajx
jpi

=
m−1∑
j=0

(ajcsj
)xsj
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is obtained. Next, by contradiction it is proven that the sj values are distinct for 0 ≤ j ≤
m− 1. Assume there is a collision sj1 = sj2 with 0 ≤ j1 6= j2 ≤ m− 1 then

j1p
i = j2p

i (mod m)

(j1 − j2)p
i = 0 (mod m) .

According to Theorem 1, all prime factors of m divide p − 1. Thus m and p are relatively

prime and the above expression is satisfied only when j1 − j2 = 0, a contradiction. 2

Using the method in Theorem 3, exponentiations of degree pi may be implemented with

the help of a lookup table of precomputed csj
values, using not more than m − 1 constant

coefficient multiplications and no additions.

2.2 Direct Inversion

A method for the direct computation of an inverse B = A−1 in GF (qm) was introduced in [15].

The standard basis representation of A(x) ∈ GF (qm) is given as A =
∑m−1

i=0 aix
i, where ai ∈

GF (q), and similarly B =
∑m−1

i=0 bix
i. Consider the product C(x) = A(x)B(x) mod P (x) =

1, where P (x) denotes the generating polynomial for constructing GF (qm) over GF (q). This

means the first coefficient of the product A(x)B(x) mod P (x) is one and all other coefficients

are zeroes. By expressing the coefficients of the product in terms of the coefficients of A and

B, a system of m linear equations is formed. Solving these equations for the coefficients of

B yields the inverse expressed in terms of the coefficients of A. The main advantage of using

the Direct Inversion technique is that one may compute the inverse of an extension field

element by doing operations only in the ground field GF (q). This technique is illustrated

with the following two examples:

Example 1 Direct Inversion in GF (q2)

Let A(x) ∈ GF (q2) and A(x) = a0+a1x, where a0, a1 ∈ GF (q) are known, with the irreducible

field polynomial selected as P (x) = x2 − w, where w ∈ GF (q). Then

A(x)B(x) mod P (x) = (a0 + a1x)(b0 + b1x) mod P (x)

= (a0b0 + wa1b1) + (a0b1 + a1b0)x = 1 .

The coefficients yield the following system of equations
(

a0 wa1

a1 a0

)(
b0

b1

)
=

(
1

0

)
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Solving the system of equations gives

b0 = a0∆
−1 and b1 = −a1∆

−1 (2.2)

where ∆ = a2
0 − wa2

1.

Example 2 Direct Inversion in GF (q3)

Let A(x) ∈ GF (q3) and A(x) = a0 + a1x + a2x
2, where a0, a1, a2 ∈ GF (q) are known, with

the irreducible field polynomial selected as P (x) = x3 − w, where w ∈ GF (q). Then

A(x)B(x) mod P (x) = (a0 + a1x + a2x
2)(b0 + b1x + b2x

2) mod P (x)

= a0b0 + a1b2w + a2b1w + (a0b1 + a1b0 + a2b2w)x + (a0b2 + a1b1 + a2b0)x
2

= 1 .

The coefficients yield the following system of equations




a0 wa2 wa1

a1 a0 wa2

a2 a1 a0







b0

b1

b2


 =




1

0

0




Solving the system of equations gives

b0 = (a2
0 − a1a2w)∆−1 , b1 = (a2

2w − a0a1)∆
−1 , b2 = (a2

1 − a0a2)∆
−1 (2.3)

where

∆ = a3
0 − 3a0a1a2w + a3

1w + a3
2w

2 .



Chapter 3

Optimal Tower Fields

This chapter introduces a new class of finite field representations, Optimal Tower Fields(OTFs),

and presents their existence conditions. Next, it proves that OTFs are a class of OEFs, and

an OTF element can be converted to OEF representation via a simple permutation of the

coefficients. Hence, OTF operations may be utilized to perform OEF arithmetic whenever

a corresponding OTF representation exists. This chapter shows that the field representa-

tion for Optimal Tower Fields allows efficient finite field arithmetic. The chapter introduces

a new recursive direct inversion method for OTFs, gives the complexity analysis of OTF

arithmetic and compares the complexities of OTF and OEF arithmetic operations. The new

OTF inversion technique is shown to have O(m2) complexity which is similar to the com-

plexity of multiplication and a significant improvement over the O(m2 log2 m) complexity

of the known best inversion algorithm, i.e. Itoh-Tsujii algorithm, for OEFs. By using the

Karatsuba algorithm, the complexity of inversion is further reduced to O(mlog2 3). Finally,

OTFs are generalized as Generalized OTFs to include a larger class of OEFs, yet conserving

all the properties and advantages of OTFs.

The results of this chapter are used in Chapter 4 for implementing OEF inversion using

OTFs.

3.1 Optimal Tower Fields

A field obtained by repeatedly extending a ground field with a series of same degree irre-

ducible polynomials is commonly referred to as a tower field. To construct a tower field

GF (qtk), one needs k irreducible polynomials Pi(x) for 0 < i ≤ k, each of degree t and

12
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irreducible over GF (qti−1
). The selection of these polynomials determines the representation

and thus the efficiency of the field operations. In this thesis, we limit our attention to a

subclass of tower fields which is introduced as follows:

Definition 1 An Optimal Tower Field (OTF) is a finite field representation GF (qtk) such

that

1. q is a pseudo-Mersenne prime,

2. GF (qtk) is constructed by an ensemble of binomials Pi(x) = xt − αi−1 irreducible over

GF (qti−1
) with Pi(αi) = 0, for 0 < i ≤ k .

The definition requires a set of related irreducible binomials for the construction of Opti-

mal Tower Fields. Before presenting an explicit construction, the following theorems are

developed.

Lemma 1 If αr
i ∈ GF (qti−1

) with 0 ≤ r < t, then r = 0.

Proof of Lemma 1 Since Pi(x) is a minimal polynomial of αi over GF (qti−1
), the elements

1, αi, α
2
i , · · · , αt−1

i

are linearly independent over GF (qti−1
), so αr

i − β = 0 with β ∈ GF (qti−1
) forces r = 0. 2

Theorem 4 For an OTF GF (qtk) constructed using the binomials Pi(x) = xt − αi−1 with

Pi(αi) = 0, for 0 < i ≤ k, the binomial roots αi are related as

ord(αi) = t ord(αi−1) = tiord(α0) ,

where ord(a) denotes the order of a field element a.

Proof of Theorem 4 Consider the powers of αi: αi, α
2
i , α

3
i , . . . , α

t
i = αi−1. Note that,

the t-th power of αi yields αi−1. Likewise, t-th power of αi−1 yields αi−2 is t. This process

may be repeated, so that we may conclude by induction that αti−j

i = αj. We want to prove

that if αk
i = αj then k ≥ ti−j. We will do this by contradiction. Now suppose αk

i = αj with

0 < k < ti−j, j < i. Let’s write

k = tl(st + r)
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with 0 ≤ s, and 0 < r < t, i.e. tl||k. Then

αk
i = αtl(st+r)

i

= αs
i−l−1 · αr

i−l

= αj

giving

αr
i−l = αj(αi−l−1)

−s .

Now k < ti−j gives

k = tl(st + r) < ti−j ,

but st + r > 0, so

tl < ti−j

giving

l < i− j

and

j < i− l .

Note that αj and (αi−l−1)
−s both belong to GF (qti−l−1

). So αr
i−l = αj · (αi−l−1)

−s also

belongs to GF (qti−l−1
). According to Lemma 1, this is satisfied only when r = 0 which is

a contradiction with our assumption that r > 0. Our assumption that k < ti−j was wrong.

Therefore, ti−j is the first power of αi which gives αj. Hence, ord(αi) = ti−jord(αj) and

ord(αi) = tiord(α0).

2

Theorem 5 If there exists an irreducible binomial Q(x) = xt − a over GF (q), then qt−1
q−1

is

divisible by t.

Proof of Theorem 5 If Q(x) = xt−a is irreducible over GF (q), then all three conditions of

Theorem 1 are satisfied. Another binomial is constructed by choosing an arbitrary primitive

element a′ ∈ GF (q): P (x) = xt− a′. This binomial is irreducible over GF (q) since the three

conditions of Theorem 1 are satisfied, i.e.,

1. the order of a primitive element in GF (q) is q − 1. Since ord(a)|q − 1 and each prime

factor of t divides ord(a), each prime factor of t also divides ord(a′) = q − 1;



CHAPTER 3. OPTIMAL TOWER FIELDS 15

2. prime factors of t do not divide q−1
e′ = 1, where e′ = q − 1 is the order of a′;

3. t and q are the same for Q(x) and P (x); since the condition q ≡ 1 (mod 4) if t ≡ 0

(mod 4) was satisfied for Q(x), it will be satisfied for P (x) as well.

Now consider the root of P (x) = xt − a′. According to Theorem 4, the root of P (x) will

have order t(q − 1). The order of the multiplicative group of GF (qt) is qt − 1. Thus, the

order of x, i.e. t(q − 1), divides the multiplicative group order qt − 1. Consequently, qt−1
q−1

is

divisible by t. 2

Theorem 6 Let P (x) = xt − a be an irreducible binomial over GF (q) and t′ denote the

product of the prime factors of t (i.e., t′ is the square free part of t). Then qt ≡ 1 (mod t′t).

Proof of Theorem 6 Since P (x) is given as irreducible, the first condition of Theorem

1, i.e., t′|e is met. The order e always divides the group order q − 1, and therefore t′|q − 1.

According to Theorem 5, qt−1
q−1

is divisible by t or equivalently t(q− 1)|qt− 1. Hence t′t|qt− 1

and qt ≡ 1 (mod t′t). 2

The following theorem establishes necessary and sufficient conditions for the existence of

OTFs:

Theorem 7 Given an irreducible binomial P1(x) = xt − α0 over GF (q) with P1(α1) = 0 in

GF (qt), all binomials of the form Pi(x) = xt − αi−1 over GF (qti−1
), where Pi(αi) = 0 in

GF (qti) for i > 0, are also irreducible provided that none of the prime factors of t divides
qt−1

t(q−1)
.

Proof of Theorem 7 It needs to be proven that the conditions in Theorem 1 are satisfied

for all binomials Pi(x) = xt − αi−1 for i > 1. The first condition is always satisfied since

all ord(αi) are multiples of t for i > 0 (Theorem 4). The third condition is also always

satisfied, since it was satisfied for the first irreducible polynomial, i.e., if t ≡ 0 (mod 4) and

q ≡ 1 (mod 4), then always qn ≡ 1 (mod 4). It will now be proven that once the second

condition is satisfied for the first irreducible binomial P1(x), it will be satisfied for all the

other binomials, Pi(x) for i > 1, provided that none of the prime factors of t divides qt−1
t(q−1)

.

Induction is used for the proof. It will be proven that if no prime factor of t divides qtn−1
tn·ord(α0)

then no prime factor of t divides qtn+1−1
tn+1·ord(α0)

. The latter is factorized as follows.

qtn+1 − 1

tn+1 · ord(α0)
=

qtn − 1

tn · ord(α0)
·
∑t−1

i=0 qtni

t
(3.1)
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The first factor is not divisible by any prime factor of t. The second factor must be shown

to be not divisible by any prime factor of t either. For this the result of Theorem 6 is used,

i.e.,

qt ≡ 1 (mod t′t)

to simplify the summation for n > 0 as follows

t−1∑
i=0

(qt)tn−1i ≡
t−1∑
i=0

(1)tn−1i (mod t′t) ≡ t (mod t′t).

Hence,
t−1∑
i=0

qtni = k′t′t + t

for some integer k′ and ∑t−1
i=0 qtni

t
= k′t′ + 1

and therefore ∑t−1
i=0 qtni

t
mod u = 1

for any prime factor u of t. Hence
Pt−1

i=0 qtni

t
isn’t divisible by any prime factor of t. The

condition still remains for n = 0, i.e., qt−1
t(q−1)

should not be divisible by any prime factor of t.

2

Theorem 7 provides a simple means for checking the existence of OTFs for chosen values

of q, t, and α0. It should be noted that the existence condition is not dependent on k,

which greatly simplifies the construction. Table 5.1 and Table 5.2 (Appendix) provide lists

of practical OTF constructions for GF (q2k
) and GF (q3k

).

3.2 Conversion between OTFs and OEFs

An OTF GF (qtk) is isomorphic to an OEF GF (qm) if m = tk. Before explaining how an

associated OEF is obtained from a given OTF, the following theorem is introduced.

Theorem 8 For a given OTF GF (qtk), if t ≡ 2 (mod 4) then q ≡ 1 (mod 4).

Proof of Theorem 8 From Theorem 5, it is known that qt−1
q−1

is divisible by t. The

extension degree t is given as even (t ≡ 2 (mod 4)). Likewise, q − 1 is even since q is a
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prime. Note that q 6= 2 since for q = 2 there are no irreducible binomials (and OTFs) over

GF (q). Therefore, (q − 1)t and qt − 1 are divisible by 4. Since qt ≡ 1 (mod 4), then either

q ≡ 1 (mod 4) or q ≡ 3 (mod 4). Note that for q = 0 or q = 2, the equality qt ≡ 1 (mod 4)

is never satisfied. Next, it will be shown that q ≡ 3 (mod 4) is never satisfied either, hence

q ≡ 1 (mod 4).

If t ≡ 2 (mod 4), it can be written as t = 4r + 2 = 2(2r + 1) for some integer r ≥ 0.

According to Theorem 7, none of the prime factors of t divides qt−1
t(q−1)

, hence 2 does not divide

qt − 1

t(q − 1)
=

q2(2r+1) − 1

2(2r + 1)(q − 1)
=

(q2 − 1)(
∑2r

i=0 q2i)

2(2r + 1)(q − 1)
=

(q + 1)(
∑2r

i=0 q2i)

2(2r + 1)
.

Therefore 4 does not divide
(q + 1)(

∑2r
i=0 q2i)

2r + 1
,

and q + 1 is not divisible by 4. Since q 6≡ 3 (mod 4) it follows that q ≡ 1 (mod 4). 2

Constructing an equivalent OEF representation from a given OTF representation is es-

tablished by the following theorem.

Theorem 9 For a given OTF representation of GF (qtk) with Pi(x) = xt−αi−1 for 0 < i ≤
k, there exists an associated OEF representation with irreducible polynomial Q(x) = xm−w

such that Q(αk) = 0, m = tk and w = α0.

Proof of Theorem 9 Consider the set of relations Pi(αi) = αt
i − αi−1 = 0 for 0 < i ≤ k.

In the first relation P1(α1) = αt
1−α0 = 0, by repeatedly substituting αt

i in place of αi−1, the

following relation is obtained:

Q(αk) = αtk

k − α0 = 0 .

Hence, the binomial Q(x) = xtk−α0 with Q(αk) = 0 is obtained. This binomial has the form

of an OEF binomial xm − w, with w = α0 and m = tk. It will be shown that Q(x) satisfies

the three conditions of Theorem 1, hence is irreducible over GF (q) and generates the field

GF (qm). It is known that P1(x) = xt−α0 is irreducible and satisfies the three conditions of

Theorem 1. Since the prime factors of t and tk are the same, w = α0, and q is identical for

both of the binomials P1(x) and Q(x), the first two of the three conditions of Theorem 1 are

satisfied for Q(x) = xtk − α0 as well. For the third condition, if t ≡ 0 (mod 4) then tk ≡ 0

(mod 4), and therefore q ≡ 1 (mod 4) for both cases. On the other hand, if t 6≡ 0 (mod 4)

then there are three cases that need to be considered:
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• If t ≡ 1 (mod 4), then tk ≡ 1 (mod 4), hence condition 3 disappears for Q(x).

• If t ≡ 2 (mod 4), then tk ≡ 0 (mod 4), thus condition 3 applies in this case. Theorem

8 confirms that q ≡ 1 (mod 4) whenever t ≡ 2 (mod 4). Therefore, condition 3 is

satisfied.

• If t ≡ −1 (mod 4), then either tk ≡ 1 (mod 4) or tk ≡ −1 (mod 4), hence condition 3

disappears.

It has been proven that Q(x) satisfies the three conditions of Theorem 1, hence it is irreducible

over GF (q) and constructs an OEF. 2

In the above Theorem 9, it has been shown that the OTF construction leads to an associated

OEF representation. Likewise it is possible to construct an OTF representation from a given

OEF representation as introduced in the following theorem.

Theorem 10 For an OEF representation of a finite field GF (qm) with irreducible polyno-

mial Q(x) = xm − w, if m = tk and none of the prime factors of t divide qt−1
t(q−1)

then there

exists an OTF representation such that P1(x) = xt − α0 and α0 = w.

Proof of Theorem 10 The irreducibility of P1(x) = xt − w over GF (q) needs to be

shown, so that all the conditions of Theorem 7, which establishes the necessary and sufficient

conditions for the existence of OTFs, are satisfied. As stated, Q(x) = xm − w = xtk − w is

irreducible. Therefore, it satisfies the three conditions of Theorem 1. Since the prime factors

of t are identical to the prime factors of tk and w is same for Q(x) and P1(x), conditions 1

and 2 of Theorem 1 are both satisfied for P1(x) too. For condition three of Theorem 1 there

are two cases, either t ≡ 0 (mod 4) or t 6≡ 0 (mod 4). In the first case, tk ≡ 0 (mod 4) and

therefore q ≡ 1 (mod 4) for both cases. Alternatively, if t 6≡ 0 (mod 4) then the condition

disappears. It has been shown that P1(x) = xt − w is irreducible, hence all conditions of

Theorem 7 are satisfied. 2

In order to construct explicit conversion rules between the OTF and OEF representations,

some notation is briefly introduced. The OTF representation of an element A ∈ GF (qtk) is

given as follows.

A = a0 + a1αk + a2α
2
k + . . . + at−1α

t−1
k
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where ai ∈ GF (qtk−1
) for 0 ≤ i < t. Similarly, ai are represented as polynomials over

GF (qtk−2
) in the subfield:

ai =
t−1∑
j=0

aijα
j
k−1 , for 0 ≤ i < t . (3.2)

This process continues for k levels until the ground field is reached. Note that, in this

notation in each level a new value from the range [0, t− 1] is appended to coefficient indices.

Hence, a coefficient in the ground field GF (q) will have a k-digit t-ary number as index.

To obtain the standard basis representation of A each αi−1 is repeatedly replaced by αt
i

for 1 < i ≤ k until a univariate polynomial in αk with coefficients in the ground field GF (q)

is obtained. This polynomial is now in a standard basis representation over GF (q) with

Q(αk) = αtk

k −α0 as the modulus polynomial. The relation between the OTF representation

and the OEF representation defines the conversion. The following theorem constructs an

explicit rule for conversion.

Theorem 11 For a given OTF/OEF association the conversion from one representation to

the other is a simple permutation of the coefficients. The permutation maps a coefficient

a` of an element A ∈ GF (qtk)/GF (qm) to the corresponding coefficient in GF (qm)/GF (qtk)

whose index is determined by the t-ary value of the mirror image of `.

Proof of Theorem 11 The following observation is made in Equation (3.2). The index

` of an element a` determines its position and the power of αi it multiplies with in the

(k + 1− i)-th level of the OTF representation for 1 ≤ i ≤ k. For instance, in the (k + 1− i)-

th level, the i-th digit `i−1 of ` is appended to the index `. `i−1 gives the power of αi that

the coefficient a` multiplies with in this level. Collecting the αi in k levels, the following

multiplier is obtained for the coefficient a` in the ground field

k−1∏
i=0

αli
i+1 =

k−1∏
i=0

αtk−1−ili
k .

The RHS follows from αi = αtk−i

k . Considering the exponent tk−1−ili, notice that the list

l is effectively reversed. Therefore, a coefficient al is mapped to the location specified by

the mirror image of l. Since the indices of the coefficients are not repeated, neither will the

indices of the converted coefficients repeat and the conversion will always be a permutation.

2
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The conversion technique is illustrated by the following example.

Example 3 Let GF (q23
) denote an OTF. The binomials used in the construction are given

as P1(x) = x2 − α0, P2(x) = x2 − α1 and P3(x) = x2 − α2, defined over GF (q), GF (q2) and

GF (q22
) respectively, and P1(α1) = 0, P2(α2) = 0 and P3(α3) = 0. An element A ∈ GF (q23

)

has the following OTF representation

A = ((a000 + a001α1) + (a010 + a011α1)α2) + ((a100 + a101α1) + (a110 + a111α1)α2)α3

According to Theorem 11, the indices of the permuted coefficients are obtained by taking the

mirror image of their indices in the OTF representation. For instance, a011 will be mapped

to the coefficient whose index is the binary value of the mirror image of its index, (110)2 = 6,

and thus a011 will become the coefficient of α6
3. The OEF standard basis representation is

obtained as

A = a000 + a100α3 + a010α
2
3 + a110α

3
3 + a001α

4
3 + a101α

5
3 + a011α

6
3 + a111α

7
3

with field polynomial Q(x) = x8 − α0, and Q(α3) = 0. The result is easily verified by

converting the OTF representation directly by replacing α2 with α2
3 and α1 with α4

3.

3.3 Complexity Analysis

In this section the complexities for arithmetic operations in OTF representations are de-

rived for second and third degree extensions. The following notation is introduced for the

complexities:

• Ak: Complexity of addition operation in GF (qtk),

• Sk: Complexity of squaring operation in GF (qtk),

• Mk: Complexity of multiplication operation in GF (qtk),

• Ck: Complexity of multiplication of a GF (q) element with an element of GF (qtk),

• Ik: Complexity of inversion operation in GF (qtk).

Before deriving the computational complexities for OTF arithmetic operations, the following

observation is made. Let A ∈ GF (qti), where A = a0 + a1αi + a2α
2
i + a3α

3
i + · · ·+ at−1α

t−1
i
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and a0, a1, . . . , at−1 ∈ GF (qti−1
). Consider the product

Aαi =

(
t−1∑
j=0

ajα
j
i

)
αi =

t−1∑
j=0

ajα
j+1
i

= at−1αi−1 +
t−1∑
j=1

aj−1α
j
i (3.3)

The effect of multiplying an element A ∈ GF (q2i
) with αi is to rotate the coefficients

a0, a1, . . . , at−1 of A to the right and scale the first coefficient after rotation with αi−1. How-

ever, note that multiplication of the first coefficient after rotation with αi−1, i.e. at−1αi−1, will

be similarly transformed in the subfield. Hence, the transformation progresses until GF (q)

is reached where the modulus polynomial is α2
1 − α0 and scaling a coefficient in GF (q) with

α0 ∈ GF (q) means a constant multiplication in GF (q). The complexity of this operation is

denoted by C0.

3.3.1 Cost of GF (q2k

) Operations in OTF Representation

It is assumed that the tower field GF (q2k
) is constructed using a series of irreducible binomials

of the form Pi(x) = x2 − αi−1 over GF (q2i−1
) for 0 < i ≤ k where αi ∈ GF (q2i

) is a root of

Pi(x).

Addition: For A,B ∈ GF (q2i
) the addition operation

A + B = (a0 + a1αi) + (b0 + b1αi) = (a0 + b0) + (a1 + b1)αi

requires two GF (q2i−1
) additions, hence Ai = 2Ai−1 and complexity of GF (q2k

) addition in

non-recursive form is

Ak = 2kA0 .

Multiplication: The multiplication operation AB = (a0 + a1αi)(b0 + b1αi) becomes

AB = a0b0 + (a0b1 + a1b0)αi + a1b1α
2
i

= (a0b0 + a1b1αi−1) + (a0b1 + a1b0)αi .

The computation requires four subfield multiplications, two additions and the multiplication

of a1b1 ∈ GF (q2i−1
) by αi−1. Thus,

Mi = 4Mi−1 + 2Ai−1 + C0 .
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The nonrecursive form for the complexity of GF (q2k
) multiplication is obtained as

Mk = 4kM0 +
k∑

j=1

4k−j(2jA0 + C0)

= 4kM0 + (4k − 2k)A0 +
1

3
(4k − 1)C0 . (3.4)

The complexity may be improved by using the Karatsuba-Ofman algorithm [12]. In order

to achieve the four products only three multiplications will be needed:

AB = (a0b0 + a1b1αi−1) + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)αi . (3.5)

With the application of the Karatsuba method the complexity changes as follows.

MKOA
i = 3MKOA

i−1 + 5Ai−1 + C0

The complexity of GF (q2k
) multiplication with the Karatsuba technique is found as

MKOA
k = 3kM0 +

k∑
j=1

3k−j(2j−15A0 + C0)

= 3kM0 + 5(3k − 2k)A0 +
1

2
(3k − 1)C0 .

Squaring: The squaring operation A2 = (a0 + a1αi)
2 becomes

A2 = a2
0 + 2a0a1αi + a2

1α
2
i

= (a2
0 + a2

1αi−1) + 2a0a1αi

which may be achieved by two squarings, one multiplication, two additions in the subfield,

and one constant multiplication in the ground field:

Si = 2Si−1 +Mi−1 + 2Ai−1 + C0 .

Since the multiplication complexity Mi−1 depends on the use of the Karatsuba algorithm,

two non-recursive complexity equations are obtained for the cost of squaring in GF (q2k
):

Sk = 2kS0 +
k∑

j=1

2k−j(Mj−1 + C0 + 2jA0)

= 2kS0 +
1

2
(4k − 2k)M0 +

1

2
(k2k + 4k − 2k)A0 +

1

6
(4k + 3 · 2k − 4)C0 (3.6)
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SKOA
k = 2kS0 +

k∑
j=1

2k−j(Mj−1 + 2jA0 + C0)

= 2kS0 + (3k − 2k)M0 +
1

2
(10 · 3k − 3k2k − 10 · 2k)A0 +

1

2
(3k − 1)C0

Inversion: The inverse of an element in GF (q2i
) may be computed by the application of

the Direct Inversion technique as shown in (4.1):

b0 = a0(a
2
0 − αi−1a

2
1)
−1 and b1 = −a1(a

2
0 − αi−1a

2
1)
−1 .

The computation requires two squarings, one addition, one inversion, and two multiplications

in GF (q2i−1
), and one multiplication in the ground field. This can be expressed as follows.

Ii = Ii−1 + 2Si−1 + 2Mi−1 +Ai−1 + C0

The aggregate cost of inversion in GF (q2k
)is found as the summation

Ik = I0 +
k−1∑
j=0

(2Sj + 2Mj +Aj + C0)

which is simplified as follows.

Ik = I0 +(4k−2k)M0 +2(2k−1)S0 +(k2k +4k−4 ·2k +3)A0 +
1

3
(4k +3 ·2k−3k−4)C0 (3.7)

It is possible to slightly improve the number of constant multiplications by applying OEF

multiplication and squaring to OTF inversion. The conversion is a mere permutation and

therefore comes for free. The improved complexity is found as

Ik = I0 + (4k + 2k − 2)M0 + (4k + 2k+1 − 6k − 3)A0 + (2k+2 − 3k − 4)C0 . (3.8)

Instead, if the Karatsuba Algorithm introduced in (3.5) is used for all multiplications, the

complexity is further reduced to

IKOA
k = I0+2(3k−2k)M0+2(2k−1)S0+(10·3k−3k2k−13·2k+3)A0+(3k−k−1)C0 . (3.9)
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3.3.2 Cost of GF (q3k

) Operations in OTF Representation

In the OTF representation the tower field GF (q3k
) is constructed using a series of irreducible

binomials of the form Pi(x) = x3 − αi−1 over GF (q3i−1
) for 0 < i ≤ k where αi ∈ GF (q3i

) is

a root of Pi(x).

Addition: Similar to the GF (q2k
) case the addition operation in GF (q3i

) requires three

GF (q3i−1
) additions, hence Ai = 3Ai−1 and in non-recursive form the complexity of addition

in GF (q3k
) is

Ak = 3kA0 .

Multiplication: The multiplication AB = (a0 + a1αi + a2α
2
i )(b0 + b1αi + b2α

2
i ) may be

computed as

AB = a0b0 + (a0b1 + a1b0)αi + (a2b0 + a1b1 + a0b2)α
2
i + (a2b1 + a1b2)α

3
i + a2b2α

4
i

= a0b0 + (a2b1 + a1b2)αi−1 + (a0b1 + a1b0 + a2b2αi−1)αi + (a2b0 + a1b1 + a0b2)α
2
i .

Hence, the complexity of GF (q3i
) multiplication is

Mi = 9Mi−1 + 6Ai−1 + 2C0 .

The nonrecursive equation for the complexity of multiplication in GF (q3k
) is obtained as

Mk = 9kM0 +
k∑

j=1

9k−j(6 · 3j−1A0 + 2C0)

= 9kM0 + (9k − 3k)A0 +
1

4
(9k − 1)C0 . (3.10)

Using the ternary version of the Karatsuba method the complexity might be improved:

AB = D0 + (D5 −D1 −D2)αi−1 + (D3 −D1 −D0 + D2αi−1)αi + (D4 −D2 −D0 + D1)α
2
i

where

D0 = a0b0

D1 = a1b1

D2 = a2b2

D3 = (a0 + a1)(b0 + b1)

D4 = (a0 + a2)(b0 + b2)

D5 = (a1 + a2)(b1 + b2) . (3.11)
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This reduces the number of multiplications in exchange of extra additions. The complexity

of GF (q3i
) multiplication becomes

MKOA
i = 6Mi−1 + 15Ai−1 + 2C0 .

In nonrecursive form the complexity in GF (q3k
) is obtained as

MKOA
k = 6kM0 +

k∑
j=1

6k−j(3j−115A0 + 2C0)

= 6kM0 +
2

5
(6k − 1)C0 + 5(6k − 3k)A0 .

Squaring: The squaring operation of A ∈ GF (q3i
) is achieved as follows.

A2 = a2
0 + 2a0a1αi + (2a2a0 + a2

1)α
2
i + 2a2a1α

3
i + a2

2α
4
i

= a2
0 + 2a2a1αi−1 + (2a0a1 + a2

2αi−1)αi + (2a2a0 + a2
1)α

2
i .

This may be realized with complexity

Si = 3Si−1 + 3Mi−1 + 6Ai−1 + 2C0 .

The nonrecursive complexities for GF (q3k
) are obtained as

Sk = 3kS0 +
k∑

j=1

3k−j(3Mj−1 + 6 · 3j−1A0 + 2C0)

= 3kS0 +
1

2
(9k − 3k)M0 +

1

8
(9k + 4 · 3k − 5)C0 +

1

2
(9k − 3k + 2k3k)A0 (3.12)

SKOA
k = 3kS0 +

k∑
j=1

3k−j(3Mj−1 + 6 · 3j−1A0 + 2C0)

= 3kS0 + (6k − 3k)M0 +
2

5
(6k − 1)C0 + (5 · 6k − 3k3k − 5 · 3k)A0

Inversion: The inverse of an element A ∈ GF (q3i
) may be computed by the application of

the Direct Inversion technique as shown in (2.3):

b0 = ∆−1(a2
0 − a1a2αi−1) , b1 = ∆−1(a2

2αi−1 − a0a1) , b2 = ∆−1(a2
1 − a0a2)

where

∆ = a3
0 + ((a2

1 − 3a0a2)a1 + a3
2αi−1)αi−1 .
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The computation requires three squarings, six multiplications, seven addition, and one in-

version in GF (q3i−1
), and one multiplication in the ground field with the assumption that

multiplication by 3 is realized with two additions. The resulting complexity is expressed as

follows.

Ii = Ii−1 + 3Si−1 + 9Mi−1 + 8Ai−1 + 4C0

The aggregate cost of inversion in GF (q3k
) is expressed as the summation

Ik = I0 +
k−1∑
i=0

3Si−1 + 9Mi−1 + 8Ai−1 + 4C0

which is simplified as follows.

Ik = I0 +
3

2
(3k − 1)S0 +

1

16
(21 · 9k − 12 · 3k − 9)M0 +

1

64
(21 · 9k + 48 · 3k − 8k − 69)C0

+
1

16
(21 · 9k + 24 · 3kk − 56 · 3k + 35)A0 (3.13)

The complexity Ik in GF (q3k
) when OEF multiplication and squaring are utilized for all

multiplications and squarings is found as

Ik = I0 +
3

16
(7 · 9k + 4 · 3k − 11)M0 + 2(3k+1 − 4k − 3)C0 +

1

16
(21 · 9k + 4 · 3k − 25)A0.(3.14)

On the other hand if the Karatsuba Algorithm introduced in (3.11) is used for all multi-

plications, the complexity is further reduced to

IKOA
k = I0 +

3

2
(3k − 1)S0 +

1

10
(24 · 6k − 15 · 3k − 9)M0 +

1

25
(24 · 6k − 20k − 24)C0

+
1

4
(48 · 6k − 18 · 3kk − 77 · 3k + 29)A0 . (3.15)

3.4 Comparison of OTF and OEF Complexities

The treatment of OEFs is based on the detailed complexity analysis given in [1]. In the

derivation of the complexities small w values are assumed for OEFs and small α0 values

are assumed for OTFs, and therefore C0
∼= A0. It is also assumed that S0 = M0 for

simplification. Below, Table 3.1 summarizes the complexities compiled from [1] and from

Equations (3.4), (3.6), (3.7), (3.10), (3.12), (3.13). The complexities are derived in terms

of m, the extension degree for OEFs (GF (qm)), and m = tk for OTFs (GF (qtk)). To

differentiate OTFs of form GF (q2k
) and GF (q3k

), OTF2 and OTF3 are used, respectively.
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Operation M0 A0

M(m) (OEF) m2 m2 − 1
M(m) (OTF2) m2 1

3(4m2 − 3m− 1)
M(m) (OTF3) m2 1

4(5m2 − 4m− 1)
S(m) (OEF) 1

2(m2 + m) 1
2(m2 + 5m− 8), m even
1
2(m2 + 3m− 2), m odd

S(m) (OTF2) 1
2(m2 + m) 1

6(4m2 + 3m log2 m− 4)
S(m) (OTF3) 1

2(m2 + m) 1
8(5m2 + 8m log3 m− 5)

I(m) (OEF) (δ − 1)m2 + δ(m− 1) + 2m (δ − 1)(m2 − 1) + m− 1
I(m) (OTF2) m2 + m− 2 1

3(4m2 + 3m log2 m− 9m + 5)
I(m) (OTF3) 1

16(21m2 + 12m− 33) 1
64(105m2 − 176m− 8 log3 m + 96m log3 m + 71)

Table 3.1: Comparison of OEF and OTF complexities (δ = blog2(m− 1)c+ HW (m− 1))

Table 3.1 shows that the number of ground field multiplications used in performing

OTF multiplications and squarings are identical to those of OEF operations. Note that the

single inversion I0 in the ground field required for I(m) is not shown in the table. OEF

multiplication and squaring appear to be slightly more efficient than OTF multiplication and

squaring, due to a reduced number of additions. However, it was shown earlier that OTFs

can be converted to an OEF representation and back via simple permutation. Therefore, it

shall be assumed that the OEF multiplication and squaring algorithms are used to achieve

OTF multiplications and squarings with no overhead in the conversion. In Table 5.3 and

Table 5.4 (Appendix) the number of operations required for multiplication and squaring are

tabulated for practical values of m. These tables show that performing the two operations

in OTFs and OEFs can be considered to be of equal complexity for practical considerations.

For inversion the new algorithm presents a significant improvement over the OEF inver-

sion algorithm. In 3.1, the number of multiplications required for OEF inversion is given as

(δ − 1)m2 + δ(m − 1) + 2m. The value of δ depends on the bit length and the Hamming

weight of m − 1. By carefully selecting m, the Hamming weight may be minimized to 1,

leading to a blog2(m − 1)cm2 + (blog2(m − 1)c + 1)(m − 1) + 2m complexity. The number

of additions grows similarly with δ. In practical terms this means that the Itoh-Tsujii in-

version technique will cost at least log2(m− 1) field multiplications when applied to OEFs.

In elliptic curve implementations based on OEFs, typically an inversion/multiplication cost

ratio of larger than 4 is observed. On the other hand, as seen in 3.1, the inversion complexity

for OTFs grows linearly with m2, both in the number of multiplications and additions. For
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both GF (q2k
) and GF (q3k

) OTFs, the inversion/multiplication cost ratio is slightly larger

than one. The asymptotic complexity of the OTF inversion algorithm makes it even more

desirable for larger values of m. For instance, for m = 32 the complexity of inversion in OEFs

is found as I0 + 8535M0 + 8215A0, whereas for OTFs it is only I0 + 1054M0 + 1426A0.

The complexity of OTF inversion may be slightly improved by utilizing OEF multipli-

cation and squaring in implementing the OTF inversion. Then the complexity of GF (q2k
)

inversion is derived in Equation (3.8) as

I(m)∗ = I0 + (m2 + m− 2)M0 + (m2 + 2m− 6 log2 m− 3)A0 + (4m− 3 log2 m− 4)C0

and for GF (q3k
) in Equation (3.14) as

I(m)∗ = I0 +
3

16
(7m2 + 4m− 11)M0 + 2(3m− 4 log3 m− 3)C0 +

1

16
(21m2 + 4m− 25)A0 .

In Table 5.5 (Appendix) the number of ground field operations are summarized for practical

values of m.

These complexities are dramatically reduced by using the Karatsuba-Ofman algorithm

for multiplications, yielding the following inversion complexities in terms of the word length

m. For GF (q2k
), the complexity is derived in Equation (3.9) as

I(m)KOA = (2mlog2 3 − 2)M0 + (11mlog2 3 − 3m log2 m− 13m− log2 m + 2)A0

and for GF (q3k
) in Equation (3.15) as

I(m)KOA =
12

5
(mlog3 6 − 1)M0 + (

324

25
mlog3 6 − 9

2
m log3 m− 77

4
m− 4

5
log3 m +

629

100
)A0 .

Table 5.6 (Appendix) provides the number of ground field operations for several values of

m. For m = 32, the complexity of inversion is found as I0 + 484M0 + 1774A0, with a

significantly lower number of multiplications compared to the standard version of the OTF

inversion technique.

3.5 Generalization of OTFs

The OTF definition given in Section 3 restricts the ground field to GF (q), a prime field,

and the extension degree to a power of an integer. For instance, for an extension degree of

12 = 3 · 22 or 72 = 32 · 23 , Definition 1 does not allow an OTF construction. This may
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be too restrictive for certain applications. However, by allowing GF (q) to be an extension

field this restriction may be overcome. Note that GF (q) may itself be in a specialized field

representation, e.g. an OTF with GF (q) = GF (pt
k1
1 ). In this case, the roots of the irreducible

binomials constructing the two OTFs may be linked by choosing α0 of the OTF GF ((pt
k1
1 )t

k2
2 )

to be the root of the generating binomial of the OTF GF (pt
k1
1 ).

For such a generalization, the theorems introduced for OTF construction, i.e. Theorems

4, 5, 6 and 7, will still apply. Furthermore, the complexity analysis presented in Section 5

and the conversion rule described in Section 4, will continue to hold over GF (pt
k1
1 ). Rules for

conversion between the OTF GF ((pt
k1
1 )t

k2
2 ) and the OEF GF (pt

k1
1 t

k2
2 ) representations similar

to those described in Section 3.2 will apply. Conversion between the two field representations

becomes a simple permutation of the ground field GF (p) coefficients as before. Also, the

advantage shown in (3.3) still applies when multiplying α0 of the OTF GF (qt
k2
2 ), with an

element in GF (q).

It is possible to attain extension degrees of the form tk1
1 ·tk2

2 · · · tkn
n by repeatedly extending

OTFs, and by linking their representations through the constant term α0 as described earlier.

For instance, one may construct

• GF (pt
k1
1 ) by extending the prime field GF (p), with Pi(x) = xt1−α

(1)
i−1 and Pi(α

(1)
i ) = 0

for 1 ≤ i ≤ k1,

• GF ((pt
k1
1 )t

k2
2 ) by extending GF (pt

k1
1 ), with Pi(x) = xt2 − α

(2)
i−1 and Pi(α

(2)
i ) = 0 for

1 ≤ i ≤ k2,

• GF ((pt
k1
1 )t

k2
2 )t

k3
3 ) by extending GF ((pt

k1
1 )t

k2
2 ), with Pi(x) = xt3 − α

(3)
i−1 and Pi(α

(3)
i ) = 0

for 1 ≤ i ≤ k3 etc.

The second tower field GF ((pt
k1
1 )t

k2
2 ) is linked to the first tower field GF (pt

k1
1 ) by choosing

α
(2)
0 = α

(1)
k1

. Likewise, the third tower field is linked to the second by setting α
(3)
0 = α

(2)
k2

.

In general, the j-th tower field is linked to the (j − 1)-st by selecting α
(j)
0 = α

(j−1)
kj−1

. This

procedure is continued until the desired extension degree is reached. For the construction,

Theorems 1 and 7 may still be used with minimal or no change.

Table 5.7 and Table 5.8 (Appendix) give lists of p = 2n + c and a values constructing

generalized OTFs of the form GF ((p32
)2) where an OTF is constructed on top of the OTF

GF (p32
) with first irreducible binomial P1(x) = x3 − a, and GF ((p3)2k

) where an OTF is

constructed on top of the OEF GF (p3) with irreducible binomial x3 − a, for −5 ≤ c ≤ 5,
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7 ≤ n ≤ 16 and −5 ≤ a ≤ 5. Table 5.9 (Appendix) gives a list of q = 2n + c and a values

constructing generalized OTFs of the form GF ((q32
)2k

) where an OTF is constructed on

top of the OTF GF (q32
) with first irreducible binomial P1(x) = x3 − a, for −5 ≤ c ≤ 5,

7 ≤ n ≤ 16 and −5 ≤ a ≤ 5. The computational complexity of arithmetic operations for

some generalized OTFs of the form GF ((p3)2k
), GF ((q32

)2) and GF ((q32
)2k

) are listed in

Tables 8, 11 and 13 (Appendix).



Chapter 4

Fast OEF Inversion Using Optimal

Tower Fields

In this chapter OTF recursive direct inversion technique introduced in Chapter 3 is utilized

to perform OEF inversion. Both OTF inversion and Itoh-Tsujii inversion for OEFs are im-

plemented on the ARM family of processors and the timings are obtained. The performance

of the two inversion techniques are compared and finally an estimate is made on how long

an ECC scalar point multiplication would take depending on which inversion technique is

used.

4.1 Introduction

Elliptic curve point multiplication requires a large number of multiplications and inversions.

Hence, efficient arithmetic is very important for elliptic curve cryptography. Optimal Exten-

sion Field arithmetic is found to be efficient for elliptic curve implementations in embedded

systems [2]. Especially the adaptation of Itoh-Tsujii’s method in [8] has been effective in

achieving fast inversion. However, inversion is still the most costly operation and is several

times slower than multiplication. In this chapter, this problem is solved by implementing

OEF inversion by utilizing Optimal Tower Fields introduced in Chapter 3.

31



CHAPTER 4. FAST OEF INVERSION USING OPTIMAL TOWER FIELDS 32

4.1.1 Recursive Direct Inversion for Optimal Tower Fields

The information regarding OTF recursive direct inversion technique given in this section are

drawn from Chapters 2 and 3.

Let A(x) ∈ GF (q2) and A(x) = a0 +a1x, where a0, a1 ∈ GF (q), with the irreducible field

polynomial selected as P (x) = x2−w, where w ∈ GF (q). Then, writing the inverse A(x) in

GF (q2) as B(x) = b0 + b1x, where b0, b1 ∈ GF (q),

A(x)B(x) mod P (x) = (a0 + a1x)(b0 + b1x) mod P (x)

= (a0b0 + wa1b1) + (a0b1 + a1b0)x.

So A(x)B(x) mod P (x) = 1 yields the system

(
a0 wa1

a1 a0

)(
b0

b1

)
=

(
1

0

)
.

Solving the system of equations gives

b0 = a0∆
−1 and b1 = −a1∆

−1 (4.1)

where ∆ = a2
0−wa2

1. Hence, the inverse of A(x) = a0+a1x in GF (q2) is obtained by carrying

out an inversion only in GF (q) for computing ∆−1.

In this chapter, OTF recursive direct inversion technique is implemented for OTFs of

the form GF (q24
) and GF (q25

). This is achieved by recursively applying the direct inversion

technique 3 and 4 times for GF (q24
) and GF (q25

), respectively. Hence, inversion is performed

only in the ground field GF (q) which may be carried out by table lookup.

4.2 Construction of OTFs GF (q24
) and GF (q25

)

In this section, the construction of GF (q24
) and GF (q25

) is explained. For the construction

of OTFs, Theorems 1 and 7 are used.

4.2.1 Construction of GF (q24

)

GF (q24
) is constructed with q = 212 − 3 = 4093 and α0 = 2. For the selected q and α0, one

can easily check using Theorem 1 and Theorem 7 that the binomials Pi(x) = x2−αi−1 with
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Pi(αi) = 0 are irreducible over GF (q2i−1
) , for 0 < i ≤ 4, hence they construct the OTF

GF (q24
). The irreducible binomials Pi(x) satisfy Pi(αi) = 0 for 0 < i ≤ 4. Therefore the

following relations hold:

P1(α1) = α2
1 − 2 = 0

P2(α2) = α2
2 − α1 = 0

P3(α3) = α2
3 − α2 = 0

P4(α4) = α2
4 − α3 = 0 .

By repeatedly substituting α2
i in place of αi−1 for 2 ≤ i ≤ 4 in the first relation P1(α1) =

α2
1 − 2 = 0, the following relation is obtained

Q(α4) = α24

4 − 2 = 0 .

Hence, the binomial Q(x) = x24 − 2 is obtained with Q(α4) = 0. This binomial has the form

of an OEF binomial xm − w, with w = 2 and m = 24. Using Theorem 1 or Theorem 9 one

may verify in a straightforward manner that Q(x) is irreducible over GF (q) and generates

the OEF GF (qm).

It is shown above that the OTF GF (q24
) with α0 = 2 is associated with the OEF

GF (qm), for w = 2 and m = 24. In Chapter 3, Theorem 11 tells that in an OTF/OEF

association the conversion between the two field representations is a simple permutation of

the coefficients. The rest of this subsection explains how an element in OTF representation

maps to an element in OEF representation and vice versa using a simple permutation. An

element A ∈ GF (q24
) is represented as follows:

A = a0 + a1α1 + (a2 + a3α1)α2 + (a4 + a5α1 + (a6 + a7α1)α2)α3

+(a8 + a9α1 + (a10 + a11α1)α2 + (a12 + a13α1 + (a14 + a15α1)α2)α3)α4 .

In order to obtain the standard basis representation of A Theorem 11 may be used. Alterna-

tively, all αi may be substituted by α24−i

4 for 1 ≤ i ≤ 3, and by simple algebraic manipulation

a univariate polynomial in α4 with coefficients in the ground field GF (q) is obtained. A is

now in standard basis representation over GF (q) with Q(α4) = α16
4 − 2 as the modulus

polynomial:

A = a0 + a8α4 + a4α
2
4 + a12α

3
4 + a2α

4
4 + a10α

5
4 + a6α

6
4 + a14α

7
4 + a1α

8
4 + a9α

9
4 + a5α

10
4 + a13α

11
4

+a3α
12
4 + a11α

13
4 + a7α

14
4 + a15α

15
4 .
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4.2.2 Construction of GF (q25

)

The field GF (q25
) is constructed using the same procedure as explained in the previous

subsection with q = 210 − 3 = 1021 and α0 = 2. It can easily be verified using Theorem 1

and Theorem 7 that the binomials Pi(x) = x2 − αi−1 with Pi(αi) = 0 are irreducible over

GF (q2i−1
) , for 0 < i ≤ 5, hence they construct the OTF GF (q25

). The irreducible binomials

Pi(x) satisfy Pi(αi) = 0 for 0 < i ≤ 5, therefore the following relations hold:

P1(α1) = α2
1 − 2 = 0

P2(α2) = α2
2 − α1 = 0

P3(α3) = α2
3 − α2 = 0

P4(α4) = α2
4 − α3 = 0

P5(α5) = α2
5 − α4 = 0 .

In the first relation P1(α1) = α2
1 − 2 = 0, by repeatedly substituting α2

i in place of αi−1 for

2 ≤ i ≤ 5, the following relation is obtained

Q(α5) = α25

5 − 2 = 0 .

Hence, the binomial Q(x) = x25 − 2 is obtained with Q(α5) = 0. This binomial has the

form of an OEF binomial xm − w, with w = 2 and m = 25. As before, using Theorem 1 or

Theorem 9, it can be checked that Q(x) is irreducible over GF (q) and generates the OEF

GF (qm).

Having shown that the OTF GF (q25
) with α0 = 2 is associated with the OEF GF (qm),

for w = 2 and m = 25, it is easy to demonstrate how an element can be transformed from

one representation to the other by permutation. An element A ∈ GF (q25
) is represented as

A = A0 + A1α5

where

A0 = a0 + a1α1 + (a2 + a3α1)α2 + (a4 + a5α1 + (a6 + a7α1)α2)α3

+(a8 + a9α1 + (a10 + a11α1)α2 + (a12 + a13α1 + (a14 + a15α1)α2)α3)α4

and

A1 = (a16 + a17α1 + (a18 + a19α1)α2 + (a20 + a21α1 + (a22 + a23α1)α2)α3

+(a24 + a25α1 + (a26 + a27α1)α2 + (a28 + a29α1 + (a30 + a31α1)α2)α3)α4 .
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In order to obtain the standard basis representation of A, Theorem 11 may be used, or

alternatively all αi are replaced by α25−i

5 for 1 ≤ i ≤ 4 and a univariate polynomial in α5

with coefficients in the ground field GF (q) is obtained.

A = a0 + a16α5 + a8α
2
5 + a24α

3
5 + a4α

4
5 + a20α

5
5 + a12α

6
5 + a28α

7
5

+a2α
8
5 + a18α

9
5 + a10α

10
5 + a26α

11
5 + a6α

12
5 + a22α

13
5 + a14α

14
5 + a30α

15
5

+a1α
16
5 + a17α

17
5 + a9α

18
5 + a25α

19
5 + a5α

20
5 + a21α

21
5 + a13α

22
5 + a29α

23
5

+a3α
24
5 + a19α

25
5 + a11α

26
5 + a27α

27
5 + a7α

28
5 + a23α

29
5 + a15α

30
5 + a31α

31
5

This polynomial is now in standard basis representation over GF (q) with Q(α5) = α32
5 − 2

as the modulus polynomial.

4.3 Complexity Comparison of OTF vs. Itoh-Tsujii

Inversion

Based on Table 3.1, Table 4.1 summarizes the complexities of OEF and OTF inversion in

terms of m, the extension degree for OEFs (GF (qm)), and m = 2k for OTFs (GF (q2k
)).

Remember that inversion in ground field, I0, is ignored since it can be performed by table

lookup for moderate sizes of q. Also, it is assumed that S0 = M0 for simplification, and C0 =

A0 since multiplication with a small constant, e.g. 2, can be achieved with only an addition

or a shift operation. According to [8] an inversion in an OEF GF (pm), may be achieved

by computing δ − 1 multiplications in GF (pm), at most δ Frobenius maps in GF (pm), 2m

multiplications in GF (p), and m−1 additions in GF (p), where δ = blog2(m−1)+HW (m−1)c
and HW (m) denotes the hamming-weight of m.

Operation M0 A0

I(m) (OEF) (δ − 1)m2 + δ(m− 1) + 2m (δ − 1)(m2 − 1) + m− 1
I(m) (OTF) m2 + m− 2 1

3
(4m2 + 3m log2 m− 9m + 5)

Table 4.1: Comparison of OEF and OTF complexities

Below, Table 4.2 compares the complexities of OTF vs. Itoh-Tsujii inversion for the specific

cases of the OTFs GF (q24
), GF (q25

) and corresponding OEFs GF (q16), GF (q32).
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Field Itoh-Tsujii Inversion OTF Inversion

GF (q24
)/GF (q16) 1673M0 + 1545A0 270M0 + 355A0

GF (q25
)/GF (q32) 8535M0 + 8215A0 1054M0 + 1426A0

Table 4.2: Complexities of Itoh-Tsujii vs. OTF Inversion

4.4 Implementation

In order to verify the theoretical performance benefits of OTF inversion over OEF, arithmetic

routines for both methods have been implemented for the ARM7TDMI platform [19]. ARM

family of processors are popular platforms for embedded systems due to their low power

consumption and comparatively high performance. It is expected that OTF arithmetic

will primarily be used in constrained environments, with applications ranging from mobile

computing as in PDAs to smartcard security systems.

The arithmetic routines were developed in plain C using the ARM Developer Suite ver-

sion 1.0.1, which includes the Metrowerks Codewarrior compiler. The performance of the

arithmetic routines were measured using the “ARMulator” emulation engine. The emulation

engine reports a statistic of elapsed clock cycles which is made available through the AXD

debugger’s user interface.

4.4.1 Implementation of Field Arithmetic

The inversion operation was implemented for two extension fields for which an OTF represen-

tation exists. The sizes of these finite fields were selected as representative for elliptic curve

cryptosystems of medium and large size. In the first case the field GF (q24
) = GF (q16) was

selected, where the ground field is defined by the Pseudo-Mersenne prime q = 212−3 = 4093,

and the field elements are polynomials with 16 coefficients. Each coefficient is n = dlog2 qe =

12 bits long, and hence every field element can be represented in 192 bits. The second field

selected is GF (q25
) = GF (q32), with q = 210 − 3 = 1021. Each field element is now a

polynomial with m = 32 coefficients of n = 10 bits each.

Performing an arithmetic operation in GF (q) typically requires a regular integer oper-

ation followed by a modular reduction step. Using Pseudo-Mersenne primes as the field

characteristic facilitate efficient modular reduction in the ground field. Often, when multi-

plying or squaring extension field elements, a number of coefficients of length n = dlog2 qe
have to be multiplied and accumulated before the reduction step. Each multiplication results
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in no more than a 2n-bit product. During the computation of each coefficient of a polynomial

multiplication, at most m of these products are accumulated. The lengths of intermediate

results therefore exceed 2n by at most e = dlog2 me bits, i.e. 4 bits for GF (409316) and 5

bits in the case of GF (102132). Therefore, it can safely be assumed that an intermediate

result never exceeds 3n > 2n + e bits, and always fits into the 32 bits wide registers of the

ARM processor.

An intermediate result a can be represented as a number in base 2n, i.e. a = (a2a1a0)2n =

a22
2n + a12

n + a0. Considering that 2n ≡ c (mod q) and 22n ≡ c2 (mod q) for a Pseudo-

Mersenne prime q = 2n − c [16], the reduction can be performed simply as

a′ ≡ a (mod q)

≡ a2c
2 + a1c + a0 (mod q)

≡ a′12
n + a′0 (mod q)

where a′ does not exceed n + 4 bits for c = 3, and in a second step

a′′ ≡ a′ (mod q)

≡ a′12
n + a′0 (mod q)

≡ a′1c + a′0 (mod q).

At most one further subtraction of the modulus is required to fully reduce the result to be

in GF (q).

The implementation of OTF inversion was optimized for speed by unrolling the recursion

into a single section of linear code, and avoiding loops or additional function calls in order to

reduce overhead. The same effort was put into optimizing the code for Itoh-Tsujii inversion,

e.g. by loop unrolling and deferring modular reduction as much as possible.

The Multiply-Accumulate instruction, a feature commonly only found in DSP architec-

tures, enables a particularly efficient implementation, since multiplications and additions

constitute the majority of operations. Another benefit of the ARM architecture is that the

latency of multiplication is data dependent. The ARM possesses a 32 × 8 bit multiplier,

which requires between 2 and 7 clock cycles for a 32× 32 bit operation, dependent on which

bytes of the multiplier actually contain nonzero data. Since all coefficients fit into at most

two bytes, less than the maximum number of clock cycles are necessary.
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4.4.2 OEF Inversion using Itoh-Tsujii’s Method

Inversion in Optimal Extension Fields was implemented using the method by Itoh and Tsujii

[8]. Let A ∈ GF (qm). The algorithm to compute B = A−1 mod P (x) works in four steps:

1. Compute the exponentiation Ar−1 in GF (qm), where r = qm−1
q−1

2. Compute the product Ar = A · Ar−1

3. Compute the inversion (Ar)−1

4. Compute the product Ar−1 · (Ar)−1 = A−1

In Step 2, Ar is an element in the ground field GF (q) [14], thus the inversion in Step 3 also

takes place in GF (q). For the exponentiation Ar−1 in Step 1 the exponent is expanded as

r − 1 =
qm − 1

q − 1
− 1 = qm−1 + qm−2 + . . . + q2 + q.

Exponentiation of A to the (r − 1)-st power requires the computation of powers Aqi
for

1 ≤ i ≤ m − 1. This leads to an alternative representation of the exponent in basis q. For

the field GF (409316) where m = 16 one can write

r − 1 = (1111 1111 1111 1110)q

and for GF (102132) with 32 coefficients

r − 1 = (1111 1111 1111 1111 1111 1111 1111 1110)q.

These exponentiations can be implemented efficiently using Frobenius maps. Aqi
is the i-th

iterate of the Frobenius map defined as σ(A) = Aq. Applying an i-th iterate of the Frobenius

map can be viewed as shifting the exponent to the left by i digits, e.g.

σ4(A) = Aq4

= A(10000)q .

Consequently, for m = 16, one can perform exponentiation by r − 1 in the following steps:

1. B0 = Aq = A(10)q σ(A)

2. B1 = B0 · A = A(11)q Multiplication

3. B2 = Bq2

1 = A(1100)q σ2(A)
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4. B3 = B2 ·B1 = A(1111)q Multiplication

5. B4 = Bq4

3 = A(1111 0000)q σ4(A)

6. B5 = B4 ·B3 = A(1111 1111)q Multiplication

7. B6 = Bq8

5 = A(1111 1111 0000 0000)q σ8(A)

8. B7 = B6 ·B4 = A(1111 1111 1111 0000)q Multiplication

9. B8 = B7 ·B2 = A(1111 1111 1111 1100)q Multiplication

10. B9 = B8 ·B0 = A(1111 1111 1111 1110)q Multiplication

In the case of m = 32 the last three steps above are different and three additional steps are

needed:

8. B7 = B6 ·B5 = A(1111 1111 1111 1111)q Multiplication

9. B8 = Bq16

7 = A(1111 1111 1111 1111 0000 0000 0000 0000)q σ16(A)

10. B9 = B8 ·B6 = A(1111 1111 1111 1111 1111 1111 0000 0000)q Multiplication

11. B10 = B9 ·B4 = A(1111 1111 1111 1111 1111 1111 1111 0000)q Multiplication

12. B11 = B10 ·B2 = A(1111 1111 1111 1111 1111 1111 1111 1100)q Multiplication

13. B12 = B11 ·B0 = A(1111 1111 1111 1111 1111 1111 1111 1110)q Multiplication

Frobenius maps for OEFs can be implemented efficiently through the use of lookup tables

for permutation and scaling of the coefficients [8],[2]. For each coefficient of a field element one

table lookup determines the scaling factor by which that coefficient is multiplied. Another

table lookup determines the new position of the coefficient after permutation.

For GF (409316) there are only four different Frobenius maps to be computed and field

elements contain 16 coefficients, therefore the size of the lookup tables are sufficiently small

for practical implementations. In the case of GF (102132) the memory requirements are

slightly higher, albeit not significantly, since there are 32 coefficients and one additional

lookup table for the 16th order Frobenius map σ16(A).

The routines for multiplication of field elements have been implemented in a rather

straightforward fashion. The choice of a binomial P (x) = xm − w as the irreducible field
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polynomial proved helpful for fast modular reduction. Since w = 2, scaling by w can

be performed by a simple shift operation. On the ARM platform shift operations can be

performed simultaneously with other operations, due to the barrel-shifter that is integrated

in the data path of one of the source operands.

4.4.3 OTF Inversion

OTF Inversion is based on recursively performing direct inversion through solving a system

of linear equations, as described in Section 2.2. Before the recursion starts, the polynomial

A has to be converted from OEF into OTF notation through a simple permutation of the

coefficients.

Each level i of the recursion can be described in the following manner for k ≥ i ≥ 1.

Note that for each level Ai is the input polynomial, and Bi the resulting inverse:

1. Split Ai into an upper and a lower part Ai,h and Ai,l, which are elements of the under-

lying subfield

2. Compute the squares A2
i,h and A2

i,l in the subfield

3. Multiply A2
i,h with the root αi−1 of the subfield. This step can be easily integrated

with Step 2, since it is simply a permutation of the coefficients and one single ground

field multiplication with α0

4. Compute the determinant of the linear system ∆i = A2
i,l − αi−1A

2
i,h

5. Compute the inverse ∆−1
i , either by executing the next level of recursion, i.e. letting

Ai−1 = ∆i and ∆−1
i = Bi−1, or by using a lookup table once the ground field is reached

6. Compute the upper and the lower part of the inverse Bi,l = Ai,l∆
−1
i and Bi,h =

−Ai,h∆
−1
i by multiplication in the subfield and rejoin both halves of the polynomial to

form the inverse Bi

It would be easier to see how this method works if the recursion was unrolled into a linear

sequence of steps. The depth of recursion, k, is 4 and 5, for the fields GF (409316) and

GF (102132), respectively. Steps 1 through 5 are executed k times, with ∆i as the input to

the next round, until the ground field is reached (i = 1). After the inverse ∆−1
1 has been
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Field GF (409316) GF (102132)

OEF (Itoh-Tsujii) 23933 109259
OTF 3826 12780

Speedup 6.3 8.5

Table 4.3: Comparison between OTF and OEF inversion (clock cycles)

found through table lookup, Step 6 is repeated k times, working the way back up out of the

recursion. Each ∆−1
i is the previous round’s result Bi−1.

Since the result of this procedure is still in OTF notation, one last permutation is nec-

essary to bring it back into OEF representation. This, however is easily taken care of by

simply storing the coefficients of the results in permuted order.

4.4.4 Performance Analysis and Impact on ECC Operations

Table 4.3 gives the execution time of the two inversion methods as implemented in number

of clock cycles. It is clearly visible that OTF inversion is at least 6–8 times faster than OEF

inversion. The basic operation of Elliptic Curve Cryptosystems (ECC), i.e. the scalar point

multiplication, is typically implemented using the NAF method [20] in conjunction with

EC point doubling and point addition. Recall the equations for point addition and point

doublings using affine coordinates:

λ =





y2−y1

x2−x1
mod P (x) ; Point Addition

3x2
1+a

2y1
mod P (x) ; Point Doubling

(4.2)

x3 = λ2 − x1 − x2 mod P (x) (4.3)

y3 = λ(x1 − x3)− y1 mod P (x) (4.4)

It can be seen that point addition requires one inversion, two multiplications, one squar-

ing and six subtractions. Point doubling requires one inversion, two multiplications, two

squarings and six additions/subtractions. Based on these requirements one can determine

an estimate of how much faster an ECC implementation based on OTFs could be.

Table 4.4 shows the timings in clock cycles of the relevant OEF arithmetic operations,

which, in conjunction with inversion, are used to implement ECC point addition and dou-

bling. According to (4.2), (4.3) and (4.4), the time needed for an ECC point addition is

tECADD = tInv + 2tMul + tSq + 6tAdd
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Operation GF (409316) GF (102132)

Multiplication 3099 11598
Squaring 1763 6270
Addition/Subtraction 313 556

Table 4.4: Timings for OEF arithmetic operations (clock cycles)

Field GF (409316) GF (102132)

Inversion Method OEF OTF OEF OTF
ECADD 1 Inversion 23,933 3,826 109,259 12,780

2 Multiplications 6,198 23,196
1 Squaring 1,763 6,270
6 Add / Sub 1,878 3,336

ECADD cycles 33,772 13,665 142,061 45,582
ECDBL 1 Inversion 23,933 3,826 109,259 12,780

2 Multiplications 6,198 23,196
2 Squarings 3,526 12,540
6 Add / Sub 1,878 3,336

ECDBL cycles 35,535 15,428 148,331 51,852
# Point Doublings 192 320
# Point Add/Sub 64 107
Total clock cycles 8,984,128 3,836,736 62,666,447 21,469,914
Speedup factor 2.34 2.92

Table 4.5: Clock cycles for ECC scalar point multiplication

and that for an ECC point doubling is

tECDBL = tInv + 2tMul + 2tSq + 6tAdd .

It is clear that inversion and multiplication/squaring are the dominant operations.

For an improved implementation of the ECC scalar point multiplication Q = kP , the

integer k is typically transformed into non-adjacent form (NAF) [20]. The NAF represen-

tation uses signed digits and has the beneficial property that on average 2/3 of the digits

are zeroes. Therefore, for an integer k of length l = dlog2 ke, a scalar point multiplication

requires on average l point doublings and l
3

point additions (or subtractions).

For an elliptic curve over GF (409316), where inversion is 6.3 times faster, a full scalar

point multiplication with a 192 bit integer would require 192 point doublings and on average

64 point additions. Using OEF inversion, scalar point multiplication takes 8,984,128 clock

cycles, while it only takes 3,836,736 cycles using OTF inversion. This corresponds to a

speedup factor of 2.34.
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For a curve over GF (102132) and scalar point multiplication with a 320 bit integer, where

320 point doublings and 107 point additions are necessary on average, similar results are ob-

tained. With OEF inversion the scalar point multiplication takes 62,666,447 cycles. On the

other hand, OTF inversion is 8.5 times faster and thus the computation of a scalar point

multiplication only requires 21,469,914 cycles. This results in a speedup factor of 2.92, nearly

three times faster than with OEF inversion. Table 4.5 summarizes the necessary operations

and their timings in terms of clock cycles.
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Conclusion

5.1 Summary and Conclusions

In this thesis a new tower field representation, Optimal Tower Fields, is introduced and

a construction technique which establishes the conditions for their existence is outlined.

It is also shown that OTF elements can be converted to OEF representation and back

with a simple permutation. Thus, OTF operations (such as OTF inversion technique) are

accessible from the OEF representation whenever a suitable OTF exists. This also means

that cryptographic applications built over OTFs inherit the security characteristics of the

ones built over OEFs.

Multiplication and squaring operations in OEFs are found to be slightly more efficient (in

the number of additions) than the same operations in OTFs. However, since OEF operations

are directly accessible to OTFs via a simple permutation conversion that comes for free, these

two operations may be realized in OTFs with the same complexity as in OEFs.

The main advantage in using OTFs is in the recursive direct inversion method introduced.

It is determined that OTF inversion is at least a few times more efficient than the OEF Itoh-

Tsujii inversion technique, even when fast Frobenius maps apply. OTF inversion requires

m2 + m − 2 ground field multiplications, whereas an OTF multiplication may be realized

by using m2 ground field multiplications. Hence, for practical purposes OTF inversion

may be considered to have the same complexity as OTF/OEF multiplication, assuming the

ground field inversion may be realized efficiently. Furthermore, the asymptotic complexity

of OTF inversion, i.e. O(m2), is surprisingly lower than the O(m log2 m) complexity of Itoh-

Tsujii inversion technique. By using the Karatsuba-Ofman algorithm an improved version

of the OTF direct inversion algorithm is presented which achieves an even better O(mlog2 3)

44
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asymptotic complexity.

OTF inversion algorithm was implemented for the OEFs GF (409316) and GF (102132).

The implementation results show that OTF inversion is at least 6 to 8 times faster than

Itoh-Tsujii inversion algorithm for the selected fields. Furthermore, it is demonstrated that

this speedup in inversion results in a 2 to 3 times improvement in the speed of an ECC scalar

point multiplication. Hence, for the selected fields, an elliptic curve cryptosystem using OTF

inversion technique runs at least 2 to 3 times faster than one that uses any other inversion

algorithm.

5.2 Direction of Future Research

No weaknesses of using OEFs for elliptic curve cryptography have been found so far. The

security of OTFs and OEFs are related to each other in the sense that OTFs are a special

class of OEFs. Investigating the cryptanalytic properties of OTFs and showing how secure

or insecure they are for usage in elliptic curve cryptography may be an interesting research

topic.

In the construction of OTFs, binomials are used as irreducible polynomials. The avail-

ability of irreducible trinomials or irreducible polynomials of some other special type may

be investigated for similar constructions.



Appendix

n c α0 n c α0 n c α0 n c α0

8 1 −5 9 −3 2 11 5 2 14 −3 −2
8 1 −3 9 −3 3 11 5 5 14 −3 2
8 1 3 10 −3 −2 12 −3 −5 16 1 −5
8 1 5 10 −3 2 12 −3 −2 16 1 −3
9 −3 −3 11 5 −5 12 −3 2 16 1 3
9 −3 −2 11 5 −2 12 −3 5 16 1 5

Table 5.1: GF (q2k
) OTFs with q = 2n + c, 7 ≤ n ≤ 16; −5 ≤ c ≤ 5; −5 ≤ α0 ≤ 5.

n c α0 n c α0 n c α0 n c α0

7 −1 3 11 5 −4 12 3 2 14 −3 −4
7 −1 −3 11 5 −5 12 3 −2 14 −3 −5

10 −3 5 12 −3 5 12 3 −4 16 3 4
10 −3 −5 12 −3 4 12 3 −5 16 3 3
11 5 5 12 −3 2 14 −3 5 16 3 2
11 5 4 12 −3 −2 14 −3 4 16 3 −2
11 5 3 12 −3 −4 14 −3 3 16 3 −3
11 5 2 12 −3 −5 14 −3 2 16 3 −4
11 5 −2 12 3 5 14 −3 −2
11 5 −3 12 3 4 14 −3 −3

Table 5.2: GF (q3k
) OTFs with q = 2n + c, 7 ≤ n ≤ 16; −5 ≤ c ≤ 5 ; −5 ≤ α0 ≤ 5.

46
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m M(m) S(m) I(m)
8 64M0 + 77A0 36M0 + 54A0 I0 + 70M0 + 84A0

9 81M0 + 92A0 45M0 + 68A0 I0 + 111M0 + 136A0

16 256M0 + 325A0 136M0 + 202A0 I0 + 270M0 + 355A0

27 729M0 + 884A0 378M0 + 536A0 I0 + 975M0 + 1244A0

32 1024M0 + 1333A0 528M0 + 762A0 I0 + 1054M0 + 1426A0

Table 5.3: Number of GF (q) operations for OTF arithmetic

m M(m) S(m) I(m)
6 36M0 + 35A0 21M0 + 29A0 I0 + 140M0 + 110A0

8 64M0 + 63A0 36M0 + 48A0 I0 + 307M0 + 259A0

9 81M0 + 80A0 45M0 + 53A0 I0 + 293M0 + 248A0

12 144M0 + 143A0 78M0 + 98A0 I0 + 810M0 + 726A0

16 256M0 + 255A0 136M0 + 164A0 I0 + 1673M0 + 1545A0

18 324M0 + 323A0 171M0 + 203A0 I0 + 1758M0 + 1632A0

24 576M0 + 575A0 300M0 + 344A0 I0 + 4264M0 + 4048A0

27 729M0 + 728A0 378M0 + 404A0 I0 + 4610M0 + 4394A0

32 1024M0 + 1023A0 528M0 + 588A0 I0 + 8535M0 + 8215A0

36 1296M0 + 1295A0 666M0 + 734A0 I0 + 9424M0 + 9100A0

Table 5.4: Number of GF (p) operations for OEF arithmetic

m M(m) S(m) I(m)
8 64M0 + 63A0 36M0 + 48A0 I0 + 70M0 + 80A0

9 81M0 + 80A0 45M0 + 53A0 I0 + 111M0 + 136A0

16 256M0 + 255A0 136M0 + 164A0 I0 + 270M0 + 311A0

27 729M0 + 728A0 378M0 + 404A0 I0 + 975M0 + 1091A0

32 1024M0 + 1023A0 528M0 + 588A0 I0 + 1054M0 + 1166A0

Table 5.5: Number of GF (q) operations for OTF arithmetic with OEF multiplication and
squaring
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m M(m) S(m) I(m)
8 27M0 + 108A0 27M0 + 72A0 I0 + 52M0 + 120A0

9 36M0 + 149A0 36M0 + 95A0 I0 + 84M0 + 217A0

16 81M0 + 365A0 81M0 + 269A0 I0 + 160M0 + 489A0

27 216M0 + 1031A0 216M0 + 788A0 I0 + 516M0 + 1919A0

32 243M0 + 1176A0 243M0 + 936A0 I0 + 484M0 + 1774A0

Table 5.6: Number of GF (q) operations for OTF arithmetic with Karatsuba

n c a n c a n c a n c a
7 −1 3 12 −3 5 12 3 −4 16 3 2

11 5 5 12 −3 2 12 3 −5 16 3 −4
11 5 2 12 −3 −2 14 −3 2
11 5 −2 12 −3 −5 14 −3 −2
11 5 −5 12 3 2 16 3 3

Table 5.7: GF ((p32
)2) generalized OTFs with irreducible binomial P (x) = x3 − a for con-

structing GF (p3), p = 2n + c, 7 ≤ n ≤ 16; −5 ≤ c ≤ 5 ; −5 ≤ a ≤ 5.

n c a n c a n c a n c a
11 5 5 11 5 −5 12 −3 −2 14 −3 −2
11 5 2 12 −3 5 12 −3 −5
11 5 −2 12 −3 2 14 −3 2

Table 5.8: GF ((p3)2k
) generalized OTFs with irreducible binomial P (x) = x3 − a for con-

structing GF (p3), p = 2n + c, 7 ≤ n ≤ 16; −5 ≤ c ≤ 5 ; −5 ≤ a ≤ 5.

n c a n c a n c a n c a
11 5 −5 11 5 5 12 −3 2 14 −3 2
11 5 −2 12 −3 −5 12 −3 5
11 5 2 12 −3 −2 14 −3 −2

Table 5.9: GF ((q32
)2k

) generalized OTFs with irreducible binomial P (x) = x3 − a for con-
structing GF (q3), q = 2n + c, 7 ≤ n ≤ 16; −5 ≤ c ≤ 5 ; −5 ≤ a ≤ 5.
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m M(m) S(m) I(m)
6 36M0 + 39A0 21M0 + 31A0 I0 + 42M0 + 48A0

12 144M0 + 169A0 78M0 + 114A0 I0 + 156M0 + 195A0

18 324M0 + 387A0 171M0 + 247A0 I0 + 363M0 + 466A0

24 576M0 + 701A0 300M0 + 422A0 I0 + 600M0 + 774A0

36 1296M0 + 1585A0 666M0 + 918A0 I0 + 1353M0 + 1753A0

Table 5.10: Number of ground field operations for generalized OTF arithmetic

m M(m) S(m) I(m)
6 36M0 + 35A0 21M0 + 29A0 I0 + 42M0 + 48A0

12 144M0 + 143A0 78M0 + 98A0 I0 + 156M0 + 183A0

18 324M0 + 323A0 171M0 + 203A0 I0 + 363M0 + 412A0

24 576M0 + 575A0 300M0 + 344A0 I0 + 600M0 + 678A0

36 1296M0 + 1295A0 666M0 + 734A0 I0 + 1353M0 + 1483A0

Table 5.11: Number of ground field operations for generalized OTF arithmetic with OEF
multiplication and squaring

m M(m) S(m) I(m)
6 18M0 + 67A0 18M0 + 40A0 I0 + 36M0 + 66A0

12 54M0 + 232A0 54M0 + 160A0 I0 + 108M0 + 287A0

18 108M0 + 493A0 108M0 + 358A0 I0 + 228M0 + 715A0

24 162M0 + 757A0 162M0 + 577A0 I0 + 324M0 + 1084A0

36 324M0 + 1570A0 324M0 + 1246A0 I0 + 660M0 + 2436A0

Table 5.12: Number of ground field operations for generalized OTF arithmetic when
Karatsuba-Ofman algorithm is used
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