Anatomically Accurate Motorized Shoulder Model

A Major Qualifying Project submitted to the Faculty of Worcester Polytechnic Institute in partial
fulfillment of the requirements for the Degree of Bachelor of Engineering.

Submitted By:
Gray Rahm

Sean Merone

Authorship:
Gray Rahm
Sean Merone

Cameron Leffler

Date:
March 22nd, 2024

Project Advisor:

Professor Fiona Levey

This report represents the work of one or more WPI undergraduate students submitted to the
faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports
on its site without editorial or peer review.

Abstract

Despite its significance within the body, educational tools effectively modeling the
intricacies of the shoulder joint are scarce. Seeking to address this void, our team continued the
development of a life-sized model comprising the scapula, humerus, and a removable clavicle.
Our model aims to more accurately replicate the nuanced scapulohumeral rhythm observed
during abduction of the humerus, a process integral to understanding the shoulder joint. The
scapulohumeral rhythm, orchestrating the coordinated movement between the scapula and
humerus during various shoulder motions, particularly abduction, is paramount for maintaining
shoulder joint stability and functionality. Our developed rig serves as an excellent foundation for
future teams to supplement. A clear path forward is laid for any future teams to fully develop a
valuable educational resource for students, healthcare professionals, and medical enthusiasts

seeking a comprehensive understanding of the human shoulder.

Acknowledgements

Our team would like to thank several individuals for their efforts in aiding us in
completing our project. We would like to thank Pradeep Radhakrishnan for providing us with a
space where our team could thrive and construct the model. We would additionally like to thank
Peter Hefti in providing us the tools we needed to build the final model. Finally, we’d like to

thank our advisor, Fiona Levey, for her incredible guidance and support throughout this project.

Authorship

Our MQP project in creating an anatomically accurate motorized shoulder model was
completed through the efforts of Gray Rahm, Cameron Leftler, and Sean Merone. Each member
contributed towards the research behind the construction of the model and the materials
necessary for the project. Construction of the model’s cage, design, schematics, and circuitry was
a team effort led by Gray Rahm. The code for the project was developed by Cameron Leffler.
The final report submitted to the standards of the WPI MQP report guidelines was a team effort
led by Sean Merone.

Cameron Leffler will continue to work on the project for the remainder of the academic
year and will submit his MQP report at the conclusion of the academic year. He will be working

on creating a 3D animation of the scapulohumeral rhythm using Blender.

Table of Contents

N ¢ =3 1 - T 0

AcCKNOWIEAGEMENTS........ooiiieiire i ———— 1

UL 3 T =] o 1 o TS 3

B2 1 o L= o 0T o s 1= 41 4

L= 1 o1 = o o 11 6

B 1 (=3 0 - 1 oo 8

1.0 INTrOdUCTION.........ccoeeeeeeeee e 9

720 = - T2 (e T o 11 3 U S 10

2.1 Scapulohumeral RelationShip........ccuuiiiiiii e 10

2.2 Previous Work on the Model...........cooooiiiii 14
2.2.1 2021-2022 MQP: Anatomically Accurate Motorized Shoulder Model with Scapula

[0 1Y =T 41T o | PRSPPI 15

b I TG 1 o 1 1 (=T =T = 16

2.2.1.2 Mounting the Bones and MOtOrs..........ooooiiiiiiiiiii e 19

2.2.1.3 2021-2022 Team’s Final Product and Data Collection..........cccccccvvvivviiiiieniinnnnn.. 21

2.2.2 2022-2023 MQP: Realistic Shoulder Model with Soft Tissue Attachments........... 22

SC T 0 811 =1 d 3 T Yo Fo e T)70 RS 23

3.1 Design Goals and Constraints...........cccccooooii 23

3.2 Rig DeSigN CONCEPES. ...ccoiiiiiieiiiiiee ettt 24

3.2.1 Channel DeSign CONCEPL........uuiiiiiiiiiiiiie et e e 24

3.2.2 Cage Design CONCEPL.......eeiiiiiiiiiiii e 25

CIRC IS Tor= o]0 F= 1l 2o = 111] o P 30

3.4 Humeral ADAUCHION. ...ttt ettt e e et e e e e e e e e e e eeeeeeeeeeens 33

3.5 Material SEIECHON..... ...ttt ettt e e e e e e e e e e e e e e e e e eeeeees 40

3.5.1 MOtOr SEIECHON.ot e e e e e e e e e e e e e e e e eeaeeaes 40

3.5.2 CONNECHING WIIES.....eeeiiiieiiiiiieee ittt e e e e et e e e e e e e e e e e e e e aannes 43

3.5.3 MOLOr DIIVEI ... 46

3.6 Cage Construction and Implementing a Matlab Code.........................., 48

3.6.1 THE CAGE... ittt 48

3.6.2 Coding and the MATLAB MOEL.........c.uiiiiiiiiiieee e 52

3.6.3 CHrCUIT DESIGN.....eeeeiii et e e et e e e e e e e e e e e e e e e e annes 57

B T =1 1] Vo 61

3.7.1 Testing Relative POSItION.........cooo i e 62

3.7.2 Motor Calibration. ... 62

3.7.3 Testing INdividual MOTOFS........ccoiiiiiiiii e 62

3.7.4 TroublESNOOTING.eeiiiii i e e e e 63

G =T 1| 63

3.8.1 Partially Completed Rig.........uuuuuiiiiiiiiiiiiiiiieiieeieeeeeee et e e e e e e e e e e 63

3.8.2 Interactive Scapula Position Graph..............oooi oo 64

4

4,0 DS CUSSION...iieuiiteeriirieiireesirressirensrrnsssrenssrrasssrenssrrasssrenssssassssenssssnssssenssssensssenssssenssrennsssensssnnns 65

4.1 Motor Location and FUNCHON.........coo et e e e e e eeeas 65
4.2 Materials SEleCHON.........ooiiiii 65
5.0 Broader IMPacts..........coooeiiiiiiiiiiiirrinnnnssssss s e 66
5.1 ENGINEEriNG EthiCS......coiiiiiieee e 66
5.2 Social and GIlobal IMPaCL.........ccooo e e 67
5.3 Environmental IMPaACL.........ooooiiiiii e 68
T 38 =toTo] g] o1 o /4] = Lo A 69
6.0 Conclusions and Future WOrK...........oo i rrsse s s s e e s e e s smms s s s s e e e e nnnn 70
A0 Y o o L= Lo 1= 71
A8 A= 1 = o X o o = R 71
L0 = (=T =T 4T 93

Table of Figures

Figure 1: Depiction of the Scapula and its varying regions (Teach Me Anatomy, 2022).............. 10
Figure 2: Depiction of the Scapula Ridge and its varying joints (Teach Me Anatomy, 2022)....... 11
Figure 3: Depiction of the Humerus and its varying regions (Teach Me Anatomy, 2022)............ 11
Figure 4: The type A pattern of scapulohumeral rhythm. (Bagg, 2016)..........cccccuiiieeeieiiiiiiinnnen. 12
Figure 5: The type B pattern of scapulohumeral rhythm. (Bagg, 2016)................c..cceeeeiieiniennn. 13
Figure 6: The type C pattern of scapulohumeral rhythm. (Bagg, 2016)............cevvvereeveeeereeeeeeenen. 13
Figure 7: Sketch of the Secondary Rod Preliminary Design (Deane et al., 2022)....................... 15
Figure 8: Sketches of top, Front and side view of the Scapulothoracic Joint utilized within the
Secondary Rod Design (Deane et al., 2022)............oooriieiiiiiiiiiiiee e 16
Figure 9: Sketches of top, front, and side view of the unique slot feature representing the
Scapulothoracic joint (Deane et al., 2022)...........coiiiiiiii e reee e 16
Figure 10: Front and back view of model true to scale (Biomedical Modeling Inc.)..................... 17
Figure 11: Left and right view of the model true to scale (Biomedical Modeling Inc.).................. 17
Figure 12: Front and Side Views of Full Shoulder Rig Assembly without Soft Tissue (Deane et

| B 1 TR PR 17
Figure 13: Front and Right-side View of Rib Connections (Deane et al., 2022)..............ccc....... 18
Figure 14: Corresponding digital plot (left) that was transferred to the plywood (right) for
accurate bone positioning (Deane et al., 2022)..........ccoooiiiiiiiii 19
Figure 15: Clavicle and plywood attachments (Deane et al., 2022).............cccceeeiiiiiiiiiieeeeinnnne 20
Figure 16: Second stationary motor mount designed to secure a single Planetary Gearbox
Nema 17 stepper motor to the top of the t-slot beam (Deane et al., 2022)..........coovvvvvevreevveennnn. 20
Figure 17: Sketch of glenohumeral joint design (Deane et al., 2022)..................cccceeeiiiinn. 20
Figure 18: Sketch of glenohumeral joint design (Deane et al., 2022)...................cccceeiiiiinn. 21
Figure 19: Isolated sketch of sternoclavicular joint design (Deane et al., 2022)...............cc........ 21
Figure 20: Side, top, and front view of shoulder model (Deane et al., 2022).............ccevvveeeenneee. 22
Figure 21: Humeral and Scapular MOtION...........cooiiiiiiiiiieee e 23
Figure 22: Channel Design CONCEPL.......ccccoiiiiii e e e e e e e eeeeeees 25
Figure 23: Model iN the Cage.........uuueiii i a e e e eeaaens 26
Figure 24: Vertice motor design (left) and track method design (right)..........cccccoviiiiiiiiiiinnnnee. 27
Figure 25: Motor placements along the faces of the cage..........ccccooviiiiiiiiiii, 28
Figure 26: Constructed and Realized Cage..........ccooiiiiiiiiiiiiiiiei e 29
Figure 27: Potential movements of the Scapula (Physiotutors, 2023)........................ccl. 30
Figure 28: A simplified view of each of the motor attachment points.............cceevviiviiiiiiiiiiiinnnnn. 32
Figure 29: Key Points of Mass Distribution within the Scapula..............cccccooiii, 32
Figure 30: An example of the Rodrigues’ Rotation Formula. (YouTube channel Mathoma)........ 33
Figure 31: All Angles and Lengths during Humeral Abduction.............ccccccooviiiiiiieiee e, 35
Figure 32: The model 17HS13-0404S-PG27 data sheet (StepperOnline, 2020)....................... 42
Figure 33: The NEMA model 17HS19-1684S-PG27 motor (StepperOnline, 2020).................... 43
Figure 34: The NEMA model 17HS13-0404S-PG27 motor (StepperOnline, 2020).................... 44

Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:

The Young’s modulus (1076 psi) of different materials similar to collagen................. 45
ST o [=To I] a1 o T T = 46
Braided Fishing Line attached to @ 17HS13 MOtOr..........oeviiiiiiiii e 47
The figure of the driver (Pololu, 2024)............ouiiiiiieiie e 48

How to adjust current limit potentiometer............ooooii e 49
Posterior View of the Cage........cccooiiiiiiii e 50
Lateral View Of the Cage..........uuuiiiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt a e 51
Lateral Midline View of the Cage...........coooiiiiiiiiiiii e 52
TOP VIeW Of the Cage.....ccoiiiiiiiieiiee e 52
Bottom View of the Cage.......oooiiiiiiiiiiiei e 52
Supporting Bars of the Cage.........oooooo i 53
A simplified view of each of the motor attachment points..................................... 54
Acceleration of point A over degrees AbdUCHON............ccooiiiiiiiiiiiiiii 55
Acceleration of point B over degrees AbducCtion..............ooociiiiiiiiiiiiiiiie 56
Acceleration of point C over degrees AbdUCtiON..............evviiiiiiiiiiiii e 57
Acceleration of point D over degrees Abduction.............cccoiiiiiiiiiiiiiiiiics 57

Acceleration of point E over degrees Abduction...........cc.cccc 57
Acceleration of point F over degrees AbdUCHION.............ccooiiiiiiiiiiiiiiiiiieeeee e 58
The 2022-2023 Team’s Fully Assembled Physical Circuit (McEvilly et al., 2022)...... 59
Second lteration of the CirCUItIY...........ooiii i 60
Updated Schematic of the Circuitry................ooo i, 62
Zoomed in Schematics of the ArduiNoS..........coovviiiiiiiie e 63
The Interactive Scapula Position Graph............cccccooiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee 67

Table of Tables

Table 1: Abduction Ratio (Average Arm Rotation:Scapular Rotation) (Bagg, 2016)................... 12
Table 2: Rib Connection Points (Deane et al., 2022).............coooiiiiiiiiiiieee e 18
Table 3: Total rotation of the scapula in all three directions during 30° increments of abduction
under “control” (Yabata, 2022).........ccooiuiiiiiiie et a e e e 31
Table 4: Total rotation of the scapula in all three directions during 30° increments of flexion
under “control” (Yabata, 2022).........coooviiiiiiiiii e, 31
Table 5: Nomenclature Table for Humeral ADAUCLION..............ooiiiiiiiii e, 34
Table 6: Solving for the Necessary Force and the Position of the Motor..................................... 36
Table 7: Rotation of the Humerus during Abduction and Flexion (Yabata, 2022)........................ 37
Table 8: The chosen orientation of the wires from the motor to the driver...............ccooocne. 48
Table 9: Details of Aluminum EXtrusion ROAS.........ccoiiiiiiiiiiiiie e 50
Table 10: Cost of Materials Used to Modify the Rig.........ccuumiiiiiiii e 73

1.0 Introduction

The human shoulder stands as a marvel of anatomical complexity, functioning as a
pivotal joint essential for a wide range of movements. Despite its significance, educational tools
that effectively model the intricacies of the shoulder joint are scarce. In response to this gap, we
have continued the mechanization of a life-sized model encompassing the scapula, humerus, and
clavicle. This creation aims to replicate the nuanced motion observed during abduction, a process
integral to understanding the scapulohumeral rhythm.

The scapulohumeral rhythm refers to the coordinated movement between the scapula (the
shoulder blade) and the humerus (the upper-arm bone) during various shoulder motions,
particularly abduction. This rhythm plays a crucial role in maintaining the stability and
functionality of the shoulder joint. Our mechanization of the model seeks to provide a tangible
and visually instructive representation of this intricate interplay, offering a valuable educational
resource for students, healthcare professionals, and anyone interested in comprehending the
complexities of the human shoulder.

By combining anatomical accuracy with a focus on motion dynamics, our model offers a
hands-on approach to learning about the scapulohumeral rhythm. Through its open and spacious
design, users can gain a tangible understanding of the spatial relationships and articulations
involved in shoulder abduction. This educational tool not only serves as a valuable asset in
academic settings but also contributes to a broader appreciation of human anatomy and
biomechanics.

In the subsequent sections, we will delve into the key components of our contribution to
the shoulder model’s development through accurate relative motion, visual representation,
exploring the anatomical principles it embodies, and elucidating the educational benefits it
presents. From biomechanical insights to practical applications, this life-sized shoulder model is
poised to enhance the understanding and appreciation of one of the body's most intricate and

essential joints.

2.0 Background

2.1 Scapulohumeral Relationship

The movement of the shoulder consists of two primary bones, those being the the scapula
and the humerus, with the clavicle factoring in largely as support and a connection to the sternum
in the center of the ribcage. Understanding the relationship of movement between these two
bones is key towards accurately modeling and displaying how the shoulder joint functions. The
joints connecting these bones are equally as integral to this system, with the two most prominent
in the system being the glenohumeral joint, which serves to connect the scapula and the humerus,

and the acromioclavicular joint, which connects the scapula and the clavicle.

Acromion

Coracoid process

Glenoid fossa

Subscapular
fossa

© teachmeanatomy

Figure 1: Depiction of the Scapula and its varying regions (Teach Me Anatomy, 2022)

10

Supraglenoid
tubercle

Glenoid fossa

Infraglenoid
tubercle

©' teachmeanatomy

Figure 2: Depiction of the Scapula Ridge and its varying joints (Teach Me Anatomy, 2022)

Anatomical
neck

Greater
tuberosity

Surgical
neck

(i) Posterior Face

Humeral
o~ head

-4

Intertubercular
groove

| Lesser
tuberosity

|
|
|
|
l
\

Deltoid
tuberosity

|

(ii) Anterior Face

Figure 3: Depiction of the Humerus and its varying regions (Teach Me Anatomy, 2022)

Upon abduction of the humerus, the scapula transitions and rotates to accommodate the
movement in several stages, however, where the humerus exists and moves on a two dimensional
plane assuming there is no antepulsion or retropulsion, the scapula shifts and rotates in a three
dimensional manner, with each stage of movement being met with a different facet of rotation.
Nikita Igoshin’s 2022 Independent Study Project (ISP) focused heavily on these different stages
of movement. Igoshin’s ISP based its findings on the work from “A Biomedical Analysis of

Scapular Rotation During Arm Abduction in the Scapular Plane” written by Stephen D. Bagg,

MD, MSc and William J, Forrest MD, MSc. with their results displayed below in Table 1.

11

Range Average Arm Rotation (AA) : Scapular
Rotation (SR)
0-20.8° 1:0
20.8-81.8° 4.29:1
81.8-139.1° 1.71:1
139.1-170° 4.49:1
20.8-170° 2.25:1

Table 1: Abduction Ratio (Average Arm Rotation:Scapular Rotation) (Bagg, 2016)

The results displayed indicate the ratio of movement between the humerus and the
scapula, with the first range being especially of note as until the humerus meets a 20.8° angle
with the horizontal axis, there is negligible movement in the scapula. As abduction of the
humerus continues, transitional movement of the scapula and rotational movement of the scapula
differentiate. The angle of the scapula was found to follow one of three patterns in its rotational
movement with respect to the angle of the humerus through the analysis of a large number of

subjects. The patterns are depicted below in figures 4, 5, and 6.

195 SCAPULAR ANGLE vs. ARM ANGLE
,g SubJ'ch g8,
401
3
|]
15t
=z
o
110
S
=
L1
%..

€0 % 120 50 180
ARM ANGLE (dt.srus)

Figure 4: The type A pattern of scapulohumeral rhythm. (Bagg, 2016)

12

1554 SCAPULAR ANGLE vs. ARM ANGLE
«-—g\ Sub_j.r.ci’ 1
S 140+
\-:314&
"
2 st
= 1251
oL
<
3
E 10+
<
A
ﬁ_.
%0 6 % 10 150 180
ARM ANGLE (dtgru.s)

Figure 5: The type B pattern of scapulohumeral rhythm. (Bagg, 2016)

51 SCAPULAR ANGLE vs. ARM ANGLE
Fg‘ SUh_jct:f‘ 6.
\Lgm
"%12&
<L
=
=10t
('
<r
9

%..

3B @ % 120 %0 160
ARM ANGLE (degrees)

Figure 6: The type C pattern of scapulohumeral rhythm. (Bagg, 2016)

The beginning position of the scapula and the point at which the scapula begins to rotate
in accordance with the movement of the arm differ greatly between the three patterns, with

patterns A and C beginning at a starting angle of around 85 degrees to the vertical axis with

13

pattern B beginning at 95 degrees to the vertical axis. The rate at which the scapula rotates and
shifts, while not uniform between the patterns, is largely comparable at the later stages of
rotation, with an arm angle of 60 to 80 degrees being the point where the three patterns begin to
line up. These results indicate that while the scapulohumeral rhythm differs between individual
subjects, it can be approximated and averaged to produce tangible and uniform results.
Understanding this, the team opted to use the ratios found by Nikita Igoshin for the

scapulohumeral rhythm as the foundation for the project.

2.2 Previous Work on the Model

This project is a continuation of two previous MQP efforts. Two prior teams similarly
conducted their own work and tackled the project with different concepts. The 2021-2022 team
was largely centered around the development of the bones and structure that the model would
rest on and the construction of a rig to demonstrate scapulohumeral rhythm during abduction
from 0 to 60 degrees. The group of students procured 3D models of the bones of the shoulder,
the scapula, the humerus, and the clavicle as well as the rib cage; to which they added blocks for
mounting. The team then 3D printed the models out of PLA (Polylactic acid; a common 3D
printing filament). They then mounted the rib cage on to plywood and created a simple rig
focused on replicating abductional movement of the shoulder through nylon threads and motors,
with partial success.

The 2022-2023 team continued construction of the model, this time focusing on the
addition of ligaments and altering motor attachment points to properly replicate the components
of an anatomical shoulder. Their team intended to select materials that accurately replicated the
function of shoulder tendons, ligaments, and muscles, utilizing a number of different materials to
replicate the movement of the humerus.

Our team similarly continued the construction of a rig to replicate movements, utilizing
the models produced by the 2021-2022 team and the ideas of an extraneous point of connection
from the 2022-2023 team. This was the foundation that our team worked from, building and
improving upon their previous designs and accounting for facets and complications the previous

teams did not have the time to consider.

14

2.2.1 2021-2022 MQP: Anatomically Accurate Motorized Shoulder Model with

Scapula Movement

The 2021-2022 team gave a clear indication of their design process throughout their
project. The shoulder joint, including the scapula, humerus, clavicle, and rib cage would be
mounted on a supporting board with motors providing the force needed to conduct movement of
the humerus and scapula. Their primary designs were as follows: a secondary rod design and a

pulley system trailing the length of the humerus.

Base Plate

| Primary Rod

| Secondary Rod
Humerus
Clavicle

[Scapula
Glenohumeral Joint
Sternoclavicular Joint
Scapulothoracic Joint

WD 0e =0 | LA | k[

Figure 7: Sketch of the Secondary Rod Preliminary Design (Deane et al., 2022)

The above figure displays the shoulder joint in its entirety alongside the secondary rod
system, with each part labeled within the table on the left. The Secondary Rod was intended to
function as another source of support as well as a guiding hand for scapular rotation. It would
achieve these goals by connecting to the scapula through a ball and joint socket in a slot
displayed below in figure 8 and figure 9. The slot is curved and hollow so as to allow the scapula
to rotate during translation throughout the humeral abduction process. During the rotation and
translation of the scapula, the ball is free to slide through the hollow interior of the slot from the
center to the edges to accurately mimic the movement of the scapula within the shoulder joint.

Similarly during humeral flexion, the ball is free to return to its initial position.

15

Figure 8: Sketches of top, Front and side view of the Scapulothoracic Joint utilized within the
Secondary Rod Design (Deane et al., 2022)

T >

Figure 9: Sketches of top, front, and side view of the unique slot feature representing the
Scapulothoracic joint (Deane et al., 2022)

The secondary rod idea was ultimately scrapped by the 2021-2022 team due to the
additional parts that would be required to provide the force necessary to replicate the motion of
the scapula and humerus. These additional parts physically intersected the secondary rod,
preventing the motion from completion. However, this idea of another point of connection is
something our team sought to continue with our project. The 2021-2022 team’s second primary
design was the development of a pulley system that trailed the length of the humerus and scapula

as described in section 2.2.1.3.

2.2.1.1 3D Printed Bones

The 2021-2022 team purchased files of the bones that they then 3D printed (Figure 10
and Figure 11). In order to fasten the ribcage to the plywood, a 0.75in x 0.75in rectangular

segment was added to each rib at varying lengths to meet at one plane. These fastenings are

16

shown in Figure 12 and Figure 13. The points of these connections are displayed below in Table
2 and Figure 14.

Figure 10: Front and back view of model true to scale (Biomedical Modeling Inc.)

Figure 11: Left and right view of the model true to scale (Biomedical Modeling Inc.)

Figure 12: Front and Side Views of Full Shoulder Rig Assembly without Soft Tissue (Deane et al.,
2022)

17

Figure 13: Front and Right-side View of Rib Connections (Deane et al., 2022)

Y Z Y Z
38.8411 277.6354 160.753 105.5732
15.2039 238.4864 168.1988 142.0047
5.6789 204.5192 170.3961 171.297

0 164.5711 177.8404 196.7875

0 132.4797 177.8404 223.5691
22.1709 103.6558 165.7629 248.0114
29.3163 74.9135 160.8711 268.1104
42.4981 44.6453 160.8711 290.4167
59.4609 14.6593 149.1488 312.0448
117.1742 0 130.0988 325.9589
145.7492 24.1843 126.6992 345.0089
149.1488 76.648 59.4608 322.4804

Table 2: Rib Connection Points (Deane et al., 2022)

18

Rib Plot

350 .

300

r
%)
(=]

L]

y position (mm)
¥
8

150

50

o] 50 100 150 200
X position (mm)

Figure 14: Corresponding digital plot (left) that was transferred to the plywood (right) for
accurate bone positioning (Deane et al., 2022)

2.2.1.2 Mounting the Bones and Motors

The bones were mounted and secured to 3D printed blocks which were then fastened to
the points on the plywood above as designated in section 2.2.1.1, the clavicle and motors were
mounted differently due to their differing functions. The clavicle was mounted to a plywood
block through a ball and socket joint that allowed for limited rotational movement. The motors
and circuits of the 2021-2022 team were mounted to the rear side of the plywood to not obstruct
the movements or visual of the shoulder during its abduction, however, doing so introduced a
large amount of friction between the plywood board and the nylon monofilament fishing line
utilized in their pulley system as they travel over the top of the plywood. The mounts utilized are

displayed below in Figures 15 through 19.

19

Figure 15: Clavicle and plywood attachments (Deane et al., 2022)

Figure 16: Second stationary motor mount designed to secure a single Planetary Gearbox Nema
17 stepper motor to the top of the t-slot beam (Deane et al., 2022)

%
fumecus J/

Figure 17: Sketch of glenohumeral joint design (Deane et al., 2022)

20

Figure 18: Sketch of glenohumeral joint design (Deane et al., 2022)

Figure 19: Isolated sketch of sternoclavicular joint design (Deane et al., 2022)

2.2.1.3 2021-2022 Team’s Final Product and Data Collection

The 2021-2022 team unfortunately did not have the time to flesh out a fully functioning
system to induce movement in the arm, as their project focused much more heavily on creating
the models of the bones and bringing them to fruition. That being said, their motorized design
had numerous aspects that our team built upon. Their design utilized a motor system that trailed
the length of the arm and was attached to the other side of the wooden board used to hold and
support the ribcage. While the use of a motor system is the most cost-effective option available,

the angle the force was delivered made vertical movement of the arm incredibly intensive, as a

21

vast majority of the force was pulling the arm into the shoulder socket rather than upwards to

display abduction.

N

Figure 20: Side, top, and front view of shoulder model (Deane et al., 2022)

2.2.2 2022-2023 MQP: Realistic Shoulder Model with Soft Tissue Attachments

The 2022-2023 team focused far more heavily on the addition of materials that would
replicate biological functions within the shoulder. The team 3D printed several slabs of polymer
materials and attached them to the areas of important tendons and muscle groups to simulate
restrictions the shoulder would experience. However, these materials had difficulty remaining
attached in the intended manner and often blocked visibility of the more important movements of
the model. The inefficiency and other problems introduced by these design options were heavily

accounted for when forming our own designs for the rig.

22

3.0 Methodology

3.1 Design Goals and Constraints

Our team focused our project around numerous different smaller scale goals, each of
which were focused on completing our overarching goal of improving upon the design of the two
previous MQP team’s models to more accurately reflect shoulder movement through abduction
of the humerus. To achieve this goal, our team had to operate under a number of constraints,
primarily seeking to minimize the cost of the project so as to make the final product as accessible
and affordable as possible. Other constraints such as accessible materials and machines to shape
these materials would additionally limit the abilities of the team to develop the final product.
Further constraints including the size and the transportability of the rig similarly limited potential
designs. Our overarching objective would be completed through our other goals which were
similar to the previous MQP team’s goals in developing an efficient rig that would provide
adequate force to lift the humerus whilst rotating and transitioning the scapula appropriately in
response to the humerus’s position. The rig should additionally be capable of completing the
motion displayed in figure 21 an indefinite number of times without requiring frequent

replacement of parts.

Figure 21: Humeral and Scapular Motion

Our first goal was to calculate and replicate accurate motion of the scapula. The scapula
shifts and rotates on a three dimensional plane and has a constantly shifting center of rotation

alongside a complex geometric shape that can make accurately replicating its movement

23

difficult. Our efforts to reflect this movement are detailed in section 3.3 Scapular Rotation. Our
second goal was to achieve the full desired range of motion, raising the humerus from 0° to 120°
with the vertical axis. Our final goal to improve the previous design of the model was to
accurately replicate relative motion between the scapula and humerus. While the movements of
the scapula and humerus aren’t causing relative motion between one another in the model like
they would in the body, the motors in our rig would accurately replicate the relative movement of
the bones associated with the scapulohumeral rthythm described in our design concepts and rig

designs in section 3.2.

3.2 Rig Design Concepts

To achieve the scapulohumeral rhythm and motion desired, our team created two

preliminary design concepts with a number of smaller variations.

3.2.1 Channel Design Concept

One preliminary design concept our team focused on was the idea of implementing a
channel to follow the length of the humerus, mimicking the design of the previous MQP team’s
final implemented design. Where the previous teams had the wires and supporting materials on
the outside surface of the humerus, this design would involve drilling a channel into and along
the length of the humerus and a portion of the scapula, where the wires would be run through and
over the collar into the plywood board supporting the model where the motors would pull from.

This design is displayed below in figure 22.

24

PO

Figure 22: Channel Design Concept

The channel design allows for a much cleaner final model without the clutter of the
previous team’s approach in attaching motors, wires, and other materials to the exterior of the
humerus and allows for the most visibility of the bones as they complete their motions. However,
the channel design invites a number of complications including the question of force vector

angles and friction of the internal wires as they travel through the bones and their connections.

3.2.2 Cage Design Concept

Our other preliminary design focused on creating a structure surrounding the bones to
avoid the complications of the motor weights on the bones and suboptimal force vector angles.
We referred to this structure as the cage. The bones of the ribcage and shoulder would be
surrounded by a cage as shown in Figure 23 with the dimensions 0.5 meters x 0.8 meters x 0.8

meters, with the width of the cage being the shortest dimension of the cage.

25

7

il

A7

]

Figure 23: Model in the cage

Along the faces of the cage, motors would be placed and supported by beams with wire
connections to the humerus and scapula to pull on the bones with adequate forces and angles to
accurately replicate shoulder movement and scapulohumeral rhythm. The original placements of
the motors were at the vertices of the cage where they would pull a final motor along the open
face of the cage to guarantee the optimal angles for force vectors, however, this would restrict
visibility and introduce difficulties in reinforcing the motor under its own force as well as simply
being inefficient. Other placements were considered such as a moving track along the face of the
cage, however, the final placements were decided to be constrained to one position and
unmoving throughout the shoulder movements. These original motor placements and design

concepts are shown below in figure 24.

26

CD 1 \A wolor at
€ath vefex

%‘Aﬁ!
or He sopie

W
£
k.

2 é
*"K bow to ol it Guees

N in the g-axs pe 21
Figure 24: Vertice motor design (left) and track method design (right)

The exact placements of these motors are displayed in Figure 25 below. The materials
utilized for the wires and the models of motors are discussed in sections 3.5.2 and 3.5.1
respectively. The motors were mounted to the cage through the use of 3D printed motor mounts
left by the previous team. Additional mounts were printed using the same file the previous team

used.

27

D&\ Db DI—:

C+\5

2 -
|£ 5 . FC—ICi“j pear

Figure 25: Motor placements along the faces of the cage

The primary benefits of the cage design were the visibility of the model and its

movements it provided due to the lack of additional items cluttering up the humerus and scapula,

28

which additionally made it much more efficient to design methods to move the humerus and
scapula since factors such as the weight of the motors did not have to be considered when

focusing on the movement of the bones.

Figure 26: Constructed and Realized Cage

29

3.3 Scapular Rotation

Calculating how the scapula will rotate while the humerus abducts and flexes was vital to
this project. The scapula’s unorthodox shape and uneven distribution of mass caused the process
to be complex, with the numerous directions of movement and constant uneven shifts of the

scapula discussed in section 2.1 further complicating the process.

Elevaton
/ A%
- ¥
i S
{r i \
II -_If-,
J_.(
Retrachon | / Prolrackon
/
|I !
N
\}
~| Depreszion

Figure 27: Potential movements of the Scapula (Physiotutors, 2023)

The position of the scapula was found by calculating where all five motor attachment
points, A, B, C, D, and E, will be relative to the initial position of motor attachment point A. The
attachment points are displayed below in figure 28. The amount of scapular rotation in each
direction—upward rotation, anterior tilt, and external rotation—in 30° increments of humeral
rotation were taken from tables 3 and 4. The team then assumed that rotation during each 30°
increment was linear in its rotation, with the positions indicated on the scapula transitioning in a

consistent fashion within the 30° periods.

30

Difference amount of change in scapula angle during shoulder abduction

Humeral Upward rotation angle (°)* Anterior tilt angle (°)° External rotation angle (°)°
abdction
angle Control ~ Thorax Thorax Control Thorax Thorax Control ~ Thorax Thorax
flexion extention flexion extention flexion extention
0°-30° 339+ 1.60 + 2.05 + -6.04+ 495+ DD DE 129 + 0.93 + 1.19 +
423 323 5.38 2155 Il 3.28 1.65 1.50 1.72

30°-60° 2634+ 17.89 + hilics —wmiaidcs pillgicn sflan S0EIcC 6.45 + 4.51 +
11.94 8.98 14.78 7.55 7.66 8757/ 2.90 3.66 3.63

60°-90° 4125+ 34.09 + seiolce gildSce slaBcs —plaalion Bt 8.92 + 6.09 +
9.22 9.32 15.45 11.47 12.994 10.80 4.52 AL Shils)

90°-120° 5085+ 4580 % 42.58 + 3349+ 4624+ -2697x 1071x 1569+ 6.46 +
11.20 10.60 16.34 16.02 sl 14.55 6.08 4.95¢ 5.94

Table 3: Total rotation of the scapula in all three directions during 30° increments of abduction
under “control” (Yabata, 2022)

Difference amount of change in scapula angle during shoulder flexion

Humeral Upward rotation angle (°)* Anterior tilt angle (°)° External rotation angle (°)°
flexion
angle Control Thorax Thorax Control Thorax Thorax Control Thorax Thorax
flexion extention flexion extention flexion extention

0°-30° 155+ 220 e (1S 3E-ERS SIS BN 828+ i@iles ZyEiaeally Slildas Sjlhex -1.38 +

2.52 2555 2.38 3.45 1552 1.76 1.07
30°-60° 9.14 + 914+ 791+698 008+ s JWlas6Er SillEae Slgsias —2.89 +
5.03 583 6.01 8.65 1.76 -3.09 2.97
60°-90° 15.03+ 1450% 14.85 + -380+ 465+ —kpfiles SllERics SJlORa: —E37/1l o2
5.60 5.62 8.01 9.15 12.99 9.61 3.69 3.69 4.27
90°-120° 2635+ 2484+ 2309+ 1116+ -1499x -6.74x 0.22 + 3.61 + —3.47 =
7.02 5.99 8.62 13.45 16.86 13.52 4.49 5.64¢ 5.88

Table 4: Total rotation of the scapula in all three directions during 30° increments of flexion
under “control” (Yabata, 2022)

31

A e

-F

Figure 28: A simplified view of each of the motor attachment points

The team then defined two axes of rotation, one for upward rotation and one for anterior
tilt, IJ and IK respectively. These axes of rotation were formed from the vector between two
points on the scapula as displayed in figure 29. External rotation of the scapula is centered

around a point called the instantaneous center of rotation, or the ICR.

Figure 29: Key Points of Mass Distribution within the Scapula

32

The team then applied the Rodrigues’ Rotation Formula, a formula for rotating a vector
around a normal vector being used as an axis of rotation, for each direction of rotation in
increments of 0.1° of humeral abduction or flexion up to 120°, and averaged the three outputs to
find the new position of each motor attachment point. This strategy was also applied to points I,
J, and K, so that the axes of rotation stayed within the scapula. An example of the Rodrigues’
Rotation Formula is shown below. In this case, vector v is being rotated around the normal vector
n by theta degrees to create vector v prime. The equation is the form of the Rodrigues’ Rotation

Formula the team used in their math.

Figure 30: An example of the Rodrigues’ Rotation Formula (YouTube channel Mathoma)

3.4 Humeral Abduction

Scapulohumeral rhythm was modeled for both humeral abduction and flexion. Humeral
movement was confined to a two dimensional plane in its movements while it is moving in each
direction, with additional safeguards in attached motors ensuring the humerus does not stray
from its path of movement. The force required to lift the humerus was calculated through

trigonometry utilizing a number of variables displayed in the nomenclature table below.

Variable Definition (unit)

Ly Length of the humerus (meters)

Wy Mass of the humerus (kilograms)

Q; Initial angle between the humerus and the vertical axis (°)
0, Initial angle between the humerus and the thread (°)

33

Angle between the humerus and the thread post humeral abduction (°)

Ly Initial thread length (meters)

Ly Thread length following humeral abduction (meters)

Aa Desired change in angle alpha (°)

t Time (seconds)

L Distance between the top of the humerus and the motor (meters)
B Initial angle between the motor wire and the humerus (°)

B’ Angle B after abduction of the humerus (°)

Aot Distance traveled by the bottom of the humerus (meters)

Vibot Velocity of the bottom of the humerus (meters/second)

Qprbot Acceleration of the bottom of the humerus (meters/second?)
Foopp The force of gravity opposite to the direction of movement (Newtons)
Fret Net force acting on the humerus (Newtons)

Frequired Required force to lift the humerus (Newtons)

Table 5: Nomenclature Table for Humeral Abduction

34

o \ g' (A

Figure 31: All Angles and Lengths during Humeral Abduction

The steps to solve for the force necessary to lift the humerus and the ideal position of the

motor are displayed below in table 6.

Step Description Equation

Beginning with the length of the humerus, the value Ly = \/(LH2 + Ly? - 2LyLyicos®))

for Ly, can be found using the law of cosines:

Using other given variables, Ly;, Ly, and ©; the team (sinf;)/Ly; = (sin®;)/Ly
can similarly solve for fB;

With the initial value for the angle found, the team B>=pB;i-Aa
can then find the angle after the abduction of the

humerus, ’:

With these variables defined, the desired thread Ly = V(L + L - 2LyLycosp’)

length following humeral abduction can be found:

35

With this final thread length determined, other
values can be solved to determine the other
kinematics needed to solve for the force required to

lift the humerus.

®’ = sin(Lyysinp’/Ly")

With the new angle found, the team can then solve
for the distance, velocity, and acceleration of the

humerus.

dypot = AanL,/180
Vot = Qrpor’t
Vc = 2VHbot

Aypot — Vc/ t

New angles, E and C, must first be defined to relate

C=90-(q;+Aa)

F, and solve for the force: E=0®+C)-90

Now with all values known, the force can be solved F,=9.8Wy

for using Newton’s Second Law: Fyopp = FocOSE
Fnet = WHaHbot

Frequired = Fnet + Fgopp

Table 6: Solving for the Necessary Force and the Position of the Motor

To track the position of the humerus, the team calculated where motor attachment point F
will be relative to the initial position of motor attachment point A. This was done by setting the
center of rotation at motor attachment point B and applying the Rodrigues’ Rotation Formula and
calculating the positions of motor attachment point F in increments of 0.1° of abduction and

flexion up to 120°. In order to account for the movement of point B during this rotation, the team

used geometry to “drag” the attachment point to its proper final position.

Givens:

All values are in meters and degrees. All distances are measured from the origin which is set at

the bottom left corner of the cage as seen in figure 40.

Initial Wire Attachment Points: Initial Axes Points:

A =1[0.073;0.507;0.445]; I=[0.074; 0.508; 0.434];
B = [0.203; 0.509; 0.458]; J=1[0.2; 0.508; 0.434];

36

Motor Placement:

motorA = [-0.045;.534;0.825];
motorB = [0.18;0.534;0.825];

C =10.083;0.525;0.312]; K =10.074; 0.508; 0.313]; motorCPosY = [0.44;0.852;0.54];

D =10.154;0.522;0.383]; motorD = [0.185;0;0.5];
E =10.077;0.524;0.388]; motorE =[0.19;0.852;0.366];
F=10.11;0.035;-0.3696]; motorFZ = [0.405;0.534;0.825];

motorFPosY =[0.57;0.852;0.54];
motorFNegY = [0.505;0;0.48];

The variation in angle of the bones was based on a study (Yabata, 2022), where the angles

are measured in cartesian coordinates relative to an origin.

Angle of Abduction | Total Upward Total Anterior Tilt Total External
Rotation Rotation

0-30° -3.39° 6.04° 1.29°

30-60° -22.95° 16.24° 4.46°

60-90° -14.91° 9.17° 2.99°

90-120° -9.60° 2.04° 1.79°

0-30° -1.55° -1.82° -1.13°

30-60° -7.59° 1.74° 0.80°

60-90° -5.89° 3.88° -0.02°
90-120° -11.32° 7.36° 2.17°

Table 7: Rotation of the Humerus during Abduction and Flexion (Yabata, 2022)

Calculations:

1. How to rotate the scapula. The example provided will be point E moving as the humerus
abducts from 0° to 10°. Each step calculated by the code is 0.1°; the 10° increment is
used for illustrative purposes.

I1.1. Find how much E externally rotates during this interval using the table and step
size.

1.1.1. 1.29°/(30/10) = 0.43°

37

1.2.

1.3.

Find the normal axis of rotation, I/I? in this case
1.2.1. Move the origin to |
1.22. I =[0.074; 0.508; 0.434] — [0.074; 0.508; 0.434] = [0; 0; 0]
K = [0.074; 0.508; 0.313] — [0.074; 0.508; 0.434] = [0; O; -
0.121]
E =[0.077; 0.524; 0.388] — [0.074; 0.508; 0.434] = [0.003;0.016;
-0.046]

1.2.3. Find IK

123.1. IK=[0; 0; -0.121] - [0; 0; 0] =[0; 0; -0.121]

124, TFindIK

1241, |IK|=/0*+0° + (= 0.121)° = 0.121

IK =10; 0; -0.121]/0.121 =[0; 0; -1]
Derive the Rodrigues Rotation Formula: a formula for rotating a point a desired

number of degrees around any normal axis

)

1.3.1. = component of E that is parallel to I/I?

parallel
—

= component of E that is perpendicular to IK

)

perpendicular

- - -

E = E
parallel + perpendicular

- -

1.32. E' =
3 parallel parallel
- - -
1.3.2.1. E'= + E' ,
parallel perpendicular

1.33. O = angle from1.1

1331. E=E + cos® * E + sin® * (IK x E)
parallel parallel
1.332. E'=(1 — cos®) *E + cosO * E + sin® * (IK X E)

parallel

1.3.4. Final Rodrigues Rotation Formula

134.1. E =(1— cos®) * (EIK) *IK + cos® *E +
sin® * (IK x E)

38

1.4. Using the Rodrigues Rotation Formula

141, E' =1 - cos(0.43)) * ([0.003; 0.016; -0.046] - [0; 0; -1]) * [0; 0; -1] +
c0s(0.43) * [0.003; 0.016; -0.046] + sin(0.43)*([0; 0; -1] x [0.003; 0.016;
-0.046))

E- [0.00288; 0.01602; -0.046]
1.5. Move the origin back

-

1.5.1. E'IK = [0.00288; 0.01602; -0.046] + [0.074; 0.508; 0.434] = [0.07688;

0.52402; 0.388]
1.6. Repeat steps 1.1, 1.2, and 1.4 with the axes as 1J and the axis through the ICR
orthogonal to the plane containing I, J, and K, making sure that the origin is

moved to the correct point, I for 1J and the ICR.

1.6.1. E_')U =10.077; 0.52238; 0.38747]

-

E'ICR =10.07836; 0.524; 0.38929]
1.7. Average the three E values

1.7.1. E= [0.07741; 0.52347; 0.38825]
1.8. Repeat 1.1 - 1.7 for points A, B, C, D, 1, J, K, and the ICR
1.9. Repeat 1.1 - 1.8 until total abduction angle is 120° while always using the most
recent I, J, K and ICR values

1.10. Repeat 1.1 - 1.9 to find all points for flexion

2. How to find how point F rotates. The example used will also be the humerus abducting
from 0° to 10°.
2.1. Move the origin to B, as this is where the humerus is rotating around
2.1.1. B=[0.203; 0.509; 0.458] - [0.203; 0.509; 0.458] = [0; 0; 0]
F=10.21; 0.515; 0.13] - [0.203; 0.509; 0.458] = [0.007; 0.006; -0.328]
2.2. Set the axis of rotation for abduction
221, n=[0;-1;0]

2.3. Use the Rodrigues Rotation Formula

39

2.3.1. F = (1 - cos(10)) * ([0.007; 0.006; -0.328] - [0; -1; O]) * [0; -1; O] +
cos(10) * [0.007; 0.006; -0.328] + sin(10)*([0; -1; 0] x [0.007; 0.006;
-0.328]) =[-0.05001; 0.006; -0.32423]
2.4. Move origin back

24.1. I;) = [-0.05001; 0.006; -0.32423] + [0.203; 0.509; 0.458] = [0.15299;
0.515; 0.13377]
2.5. Now the team must account for the movement of the humeral head in the XZ
plane
2.5.1. B’ - B =1[0.2029; 0.509; 0.4589] - [0.203; 0.509; 0.458] = [-0.0001; 0;
0.0009]
252. F - (B - B) = [0.15299; 0.515; 0.13377] - [-0.0001; 0; 0.0009] =
[0.15309; 0.515; 0.13287]
2.6. Now the team must account for the movement of the humeral head along the
y-axis while keeping F in the same XZ plane.
2.6.1. Create a circle, in the same XZ plane as F, of all possible locations of F
with the knowns of the length of the humerus and the location of the
humeral head at B’
2.6.1.1. Center of Circle = [X5-; 0.515; Z5-] =[0.2029; 0.515; 0.4589]

f- (v, - 0.515) "=

Humerus

2.6.1.2. Radius of Circle = \/Length

1/0.3683% — (0.509 — 0.515)% = 0.13561
2.6.2. Create a vector from the center of the circle to the current position of F

and normalize it

262.1. R = [02029; 0.515; 0.4589] - [0.15309; 0.515; 0.13287] =
[0.04981; 0; 0.32603]

2.6.2.2. |I?| = [0.04981; 0; 0.32603] / 0.32894 = [0.15173; 0; 0.98842]
2.6.3. Find the closest point on the circle to the current position of F. This point
on the circle is F’
2.6.3.1. F =[0.15309; 0.515;0.13287] + 0.3683 * [0.15173; 0; 0.98842] =
[0.20897; 0.515; 0.49691]

40

2.7. Repeat 2.1 - 2.6, using the correct B and B’, until the total abduction angle is 120°
2.8. Repeat 2.1 - 2.7, using [1; 0; 0] as the axis of rotation, to find the values of F for

flexion

3.5 Material Selection

3.5.1 Motor Selection

The motors used by the 2021-2022 and 2022-2023 teams were the Nema 17 Stepper
Motor model number 17HS19-1684S-PG27, which will be shortened to the 17HS19 model for
the duration of the report. The 17HS19 model has a number of specifications that allows for
efficiency, however, our team had concerns in utilizing these motors due to the amperage
requirements of 1.2 Amps. To circumvent this issue, our team looked for other models of Nema
17 motors and decided on the use of the 17HS13-0404S-PG27 motor, which will similarly be
shortened to the 17HS13 model. The qualities that make the 17HS13 motor the ideal are the
rated current and the maximum permissible torque. The specifications for the 17HS13 motor are

given in figure 32 below.

41

A2.3MAX 2041 3AMAX
3102 |
é) 1520.25
al 3 of 1 1]
33 5 I
o o &
M 8l 4504
d o—F @55012
4-M3 ; M o 2
GEPTH =
4.5MIN m]] s U]][
2
SPECIFICATION CONNECTION BIPOLAR TYPE OF CONNECTION
(EXTERN) MOTOR
AMPSIPHASE 0.40
RESISTANCE/PHASE(Ohms)@25°C 30.00£10% FINNO BIPOLAR LEADS WINDING
INDUCTANCE/PHASE(mH)@1KHzZ 37.00:20% ” o — Bk a
HOLDING TORQUE(Nm]{Ib-In] 0.26[2.26]
2 A GRN A
STEP ANGLE(") 1.80
3 — RED
STEP ACCURACY{NON-ACCUM) £5.00% B B i
ROTOR INERTIA(g<m?) 35.00 4 B- — BLU B
WEICHT(Kg) — FULL STEP 2 PHASE-Ex., BiK
TEMPERATURE RISE:MAX.B0°C ({ MOTOR STANDSTILL;FOR 2PHASE ENERGIZED) WHEN FACING MOUNTING END (X)
AMBIENT TEMPERATURE -10°C~50°C[14°F~122°F] STEF A+ | B+ | A | B cow O
INSULATION RESISTANCE 100 Mohm (UNDER NORMAL TEMPERATURE AND HUMIDITY) R l i
INSULATION CLASS B 130°C[266°F] 2 i I T p"n"n’]
DIELECTRIC STRENGTH 500VAC FOR 1MIN.(BETWEEN THE MOTOR COILS AND THE MOTOR CASE) N I N N) ow
AMBIENT HUMIDITY MAX.85%(NO CONDENSATION) 4 + - - * RED BLU
APVD 10.30.2020
a— — P STEPPER MOTOR
STEPPESRONLINE — =
e SONATURE oaTE 17HS13-04048

Figure 32: The model 17HS13-0404S-PG27 data sheet (StepperOnline, 2020)

The low rated current of 0.4 amps allows the motor to function on low currents, meaning
the circuit will need to involve fewer pieces and draw less current and power into the system,
exerting a lower strain on the equipment. The required voltage input for the motors was 12V. The
max permissible torque of 3 Newton meters for each motor is capable of pulling on the humerus
and scapula with adequate force to induce the rotation and transitions necessary to replicate
scapulohumeral rhythm in the shoulder. The two previous teams both used five of the model
17HS19 motors to pull the humerus along their trail of wire that led along the length of the

humerus.

42

Figure 33: The NEMA model 17HS19-1684S-PG27 motor (StepperOnline, 2020)

For our rig design, discussed in section 3.2, ten model 17HS13 motors were implemented
to ensure correct positioning and stability of the humerus and scapula during humeral abduction.
We attached the motors to the cage using 3D printed mounts. The locations of the motor

placement within the cage are similarly discussed in section 3.2.

43

Figure 34: The NEMA model 17HS13-0404S-PG27 motor (StepperOnline, 2020)

3.5.2 Connecting Wires

Utilizing the correct materials for each material that the team is trying to simulate is
crucial to the project’s success. The first team developed a shoulder model with the bones
properly assembled. For the material of the bones, they used PLA due to its rigid properties and
ease of molding through 3D printing into the desired shapes. Our team will be similarly utilizing
PLA for this aspect of the model.

The first team utilized nylon wires as a way of moving the bones to their desired location
due to their strength and flexibility, whilst still remaining cost-effective. However, this team did
not account for the issue of creep. The deformation caused by the creep changes the length of the
nylon wires and thus changes the calculations that must be done to pull on the bones with the
right force vectors. The second team utilized rubber threads to better operate under creep
conditions, however, the friction caused between the rubber threads and other components of the
rig hampered movements. To eliminate these issues, our team decided to change the material

used for the connecting wires.

44

0.65+

2
i
n

ﬂ Polylactide (PLA)
:Fcl;.-carccnate I'PC-::

=
E

H Cellulose nitrate (Celluloid) (CN)

e
w
th

=

Young's modulus (106 psi)

=1
P
th

0.2

0.15

H Starch-based thermoplastics (TPS)
/ Polyurethane (th;UR)
] __"JL" T _"-I}"_[i 7 _.ijo\yam\des {Mylons, PA)
Polyamide fiber (Nylon-6) . I //
Polyethylene terephthalate (PET) H Nylon 11 (PA-11)
" /
Polyester (UP)
H’”’ ﬁ': Ethylene vinyl acetate (EVA)
I Collagen

I - Ligapient
1 a

0.05

J Slllcche elastomers (SI. Q)

Polytetrafluoroethylene (Teflon, PTFE) lonomer (1) —

Figure 35: The Young's modulus (10™6 psi) of different materials similar to collagen

To decide on the material replacing the nylon wires, our team calculated the stress and
strain that the nylon is under while it is pulling on the bones and the temperature of the room the

model is in. With these two variables, the team calculated the strain rate of each nylon strand
using the equation € = Acnexp(;—g), where ¢ is the strain rate, A and n are material based

constants, o is the applied stress, Q is the activation energy of the creep mechanism, R is the gas

constant, and T is the ambient temperature in Kelvin. The applied stress, o, was calculated with

the equation 0 = %, where F is the applied force delivered to the wire from the motor and A is
the area of the wire that the force is delivered across. The area of the wire was calculated to be
0.00126 in? or 3.243 * 10°° m* with an applied load of 11 kg. These calculations were completed
in MatLab, with a final value of 3.4 MPa for the stress. We performed our calculations based on

a wire with a diameter of 0.04 inches and material constants A =3.73 * 107 and n = 4.

45

Several options for the connective wires were discussed including a number of polymers
and metals as well as the previously utilized nylon 6 wires, however, each material encountered
different issues. The nylon 6 wires, as discussed above, were susceptible to creep. Silver alloys
were too soft and could easily be damaged. Copper alloys would be susceptible to environmental
factors. Finally, various steels were similarly proposed but were too resistant to bending, far too
expensive, and had high friction coefficients, making their movements in the model more
difficult than necessary. With this in mind, our team considered PTFE coated wires to mitigate
friction between the wire and any surfaces contacted, however, a suitable product was not
commercially available.

Ultimately, the team utilized braided nylon fishing line to achieve a balance between all
sought characteristics. With the values attained, the wire would need to be capable of supporting
a maximum of 13.8 MPa without experiencing creep, whilst still being capable of repeatedly
bending in the process of pulling the shoulder model into position and not inhibiting the

movement of the humerus and scapula all of which braided fishing line achieves.

Figure 36: Braided Fishing Line

46

Figure 37: Braided Fishing Line attached to a 17HS13 motor

3.5.3 Motor Driver

We used a stepper motor driver in order to control the motors. The brand name for the
driver is ‘Allegro’s A4988 DMOS Microstepping Driver with Translator and Overcurrent
Protection’. We bought our driver from Amazon which was manufactured by Shenzhenshi
Yongfukang Technology Co. The A4988 has 16 pins of which our team utilized 10 pins. The
Vmot and GND are connected to a 9V battery. The 2B, 2A, 1A, and 1B pins are connected to the
four motor wires. Figure 39 below shows the corresponding colors to letters. The wiring of the
motor to the driver can be arranged in a multitude of variations as long as the one coil on the

motor is not connected to two different coil outputs on the driver.

47

motor power supply
(8—35V)

+
1 VMOT 100 pF
kol
2B ————
2A
1A
1B-
VDD e

oo

*|VDD

microcontroller

GND

logic power supply
(3-5.5V)

Figure 38: The figure of the driver (Pololu, 2024)

A4988 Motor Datasheet Color
1A A+ Green
1B A- Black
2A B+ Red
2B B- Blue

Table 8: The chosen orientation of the wires from the motor to the driver

In order to set up the motor driver we needed to adjust the current limit potentiometer.
The following equation is used to find the voltage reference for the driver.
Vit =8 * Inax * Res
The I, is the max current rated for the motors we were using which is 0.4A. R, is the
current sense resistance of the driver motor, R, = 0.1 Q. Therefore, our V.. would be 0.32V. The
figure below shows one of the ways to adjust the current limit potentiometer. For the VQ port we

used an alligator clip that was connected to a screwdriver that we turned the potentiometer with.

48

fritzing

Figure 39: How to adjust current limit potentiometer

Another important note about the A4988 motor driver is the temperatures it can operate
at. The maximum junction temperature is 150°C, attaching the heat sink to the motor driver aids
to lower the temperature but the drivers can still cause burns with direct contact at operational

temperatures.

3.6 Cage Construction and Implementing a Matlab Code

3.6.1 The Cage

The cage surrounding the rig was constructed utilizing aluminum extrusion rods present

available in the WPI MQP labs. The exact dimensions of the rods vary and are listed in table 9

below.
Part No. Aluminum Extrusion Rod Dimensions | Quantity
(Length X Width X Depth)
1010 T-Slotted Profile - Four Open 0.912m X 1.00” X 1.00” 2
T-Slots

49

1010 T-Slotted Profile - Four Open 2.44m X 1.00” X 1.00” 2
T-Slots

20-2020 T-Slotted Profile - Four Open 0.695m X 20mm X 20mm 2
T-Slots
1003-s Smooth Surface T-Slotted Profile - | 2.44m X 1.00” X 1.00” 1

Three Adjacent Open T-Slots
Table 9: Details of Aluminum Extrusion Rods

The minimum dimension of the cage is 0.5 meters by 0.8 meters by 0.8 meters. Different
views of the cage are displayed below in figures 39 through 43. The varying dimensions

displayed in the figures are from the different sizes of aluminum extrusion available to the team.

0.695m

0.912m Posterior View 0.811m

0.61m

Figure 40: Posterior View of the Cage

50

0.811m

0.811m

Lateral View

0.811m

0.912m

0.811m

Figure 41: Lateral View of the Cage

0.811m

Lateral Midline View

0.811m

51

0.912m

Figure 42: Lateral Midline View of the Cage

0.811m

L.

0.695m

Top View

0.811m

0.695m

Figure 43: Top View of the Cage

0.611m

0.811m

Bottom View

0.811m

0.611m

Figure 44: Bottom View of the Cage

52

Another issue we saw that was due to aging was wood rot in the original rib cage mount.
We replaced the old plywood with a % inch plywood. Additional bars were installed to further
support the cage under the weight of the rig and correctly position the motors in accordance with
Figure 25 in section 3.2.1 to pull on the 3D printed bones within. To minimize any clutter and
ensure visibility of the rig, the wires for each motor run along the bars of the cage where they

conjoin in the circuit on the backside of the board.

Figure 45: Supporting Bars of the Cage

3.6.2 Coding and the MATLAB Model

The team lead for this portion of the project was Cameron Leftler, who wrote MATLAB
code to calculate the positions of each of the six wire attachment points on the scapula and
humerus relative to the origin for every 0.1° of arm abduction and flexion. The following
documentation explains how the code calculates all of the relative positions of the wire
attachment points and wire lengths.

The Code is split into four scripts of code; Setup, Abduction, Flexion, and App code

scripts, all of which are run using Arduinos connected in the circuit. The setup code defines the

53

relative positions of the motors and of the motor attachment points for all possible angles of arm

abduction and flexion.

By
L |

-F

Figure 46: A simplified view of each of the motor attachment points

It does this in the manner stated in section 3.2 using the Rodrigues' Rotation Formula. It
then calculates the distance from each motor to the motor attachment point, giving the length of
thread between the attachment point and the motor and creates a global matrix of all thread
lengths given a desired abduction or flexion angle. The app script graphs the movement of the rig
through previous calculations and transmits that information to the abduction and flexion code.
The abduction and flexion scripts take an input of a desired angle of abduction or flexion and
change the thread length to the correct amount based on the desired abduction or flexion by
rotating the motors. Cameron then took these relative positions and made an interactive 3D plot
in MATLAB where a user can input an amount of abduction or flexion and the program will

show four views of where the wire attachment points will be in 3D space, one angled view from

54

behind and above, one view from straight on, one view from directly above, and one view
straight on from the side, as shown in Figure 56 in Section 3.8.2.

Using the MATLAB code we can determine the position of each point throughout
scapular and humeral movement. In figures 46 through 51, we determined the acceleration of
each point throughout abduction. The data for the graphs below is made up of over 10,000
calculated data points so the addition of variables was made to make the data more digestible in
an excel spreadsheet. The duration of abduction and flexion can be altered by changing the total
time and the degrees between data points can be altered to get an average of the data for each
point. We wanted to portray the change in acceleration of each point to convey the complexity of

the scapulohumeral rhythm.

Point A Acceleration

0.00005
0.00004
0.00003

0.00002

Ax

0.00001 Ay

Az

Point A Acceleration

14=710"13"16"1922-25"28"31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115118

-0.00001
-0.00002

-0.00003

Figure 47: Acceleration of point A over degrees Abduction

55

Point A Acceleration

Point A Acceleration

-0.00005

-0.0001

-0.00015

-0.0002

-0.00025

-0.0003

-0.00035

-0.0004

-0.00045

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

-0.0001

-0.0002

-0.0003

Point B Acceleration

Rm: 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115118

Figure 48: Acceleration of point B over degrees Abduction

Point C Acceleration

L

1 4 7 1013 16 19 22 25 28 34 37 40 4 58 61 64 6/ /0 /3 76779782785 uwl 94 97 100103106109112115118

56

— B
e By

s B7

Point A Acceleration

Point A Acceleration

0.00012

0.0001

0.00008

0.00006

0.00004

0.00002

-0.00002

0.00015

0.0001

0.00005

-0.00005

-0.0001

-0.00015

-0.0002

-0.00025

Figure 49: Acceleration of point C over degrees Abduction

Point D Acceleration

]

L
f 4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 838 9179497 I00T03TIOGTIOOTIZITSTIE

Figure 50: Acceleration of point D over degrees Abduction

Point E Acceleration

{

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 9

— |

94 97 100103106109112115118

Figure 51: Acceleration of point E over degrees Abduction

57

em—
— Y

s E 7

Point F Acceleration

0.02

0.015

0.01

0.005

Fx
Fy

1 ™7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97100103106109112115118 .

Point A Acceleration
o

-0.005
-0.01
-0.015

-0.02

Figure 52: Acceleration of point F over degrees Abduction

We can also use the thread lengths to check our work along with measuring the distances
by hand. We can measure xyz manually to make sure the ijk vectors are correct and measure the
thread length to confirm the overall vector acceleration. The wire we are using is not elastic

under the delivered force so we know that the delta thread length is relatively true.

3.6.3 Circuit Design

The circuitry utilized for the rig underwent a large change from the 2021-2022 team’s
circuit design. The 2021-2022 circuit design, displayed below in figure 54, is a simple parallel
circuit designed to deliver power and current to each motor simultaneously so as to ensure each
motor receives enough voltage to run, however, the equipment used to build the circuit was
inadequate to serve our purpose. The breadboard utilized to build the circuit was not built to
handle a current higher than 1 amp, which is almost doubled when all five motors are run
through the circuit. Additionally a single 9-volt battery is incapable of delivering enough power

to support five motors at once, let alone the ten our team would implement.

58

L]

Figure 53: The 2022-2023 Team's Fully Assembled Physical Circuit (McEvilly et al., 2022)

To resolve these issues, our team opted to implement a larger power source, with the
intention of utilizing numerous 9-volt batteries at once with plans to ultimately plug the system
into a wall outlet. Further alterations to the circuit include the addition of a second Arduino
board, to ensure enough pins were available for the ten microprocessor-motor systems. The next

iteration of the circuit design is displayed below in Figure 55.

59

fritzing

Figure 54: Second Iteration of the Circuitry

To circumvent the breadboard’s limitations, breadboards were removed from the circuit,
instead utilizing space studs, cable nail in clips, and terminal blocks to connect and complete the
circuit. The team also experienced trouble operating both Arduinos. This was due to the fact that
we had not adjusted the current limit potentiometer and we also had the power source of all ten
motor drivers connected to the Arduinos in series. This overloaded one of the Arduinos causing
it to short and turn off. To fix these issues we moved from breadboards to 10 circuit terminal
blocks instead of the breadboard. We added five more 9V batteries to power each motor

individually which we were hoping would improve our low voltage. To fix the shorting Arduino,

60

instead of all ten of the motor drivers being powered by the 5V output from the Arduino which
were run in one series we split it into two series of five. Each series is powered by their own 5V
Arduino output pin . The updated schematic is shown in Figure 56 below. One of our largest
oversights came with the needed voltage. The original consensus was that 9V would have been
enough to power the motors but that was for the previous model of motor used. The
17HS19-1684S-PG27 only needed 2.8V in order to turn, whereas the 17HS13-0404S-PG27

needed around 12V to properly run.

61

Figure 55: Updated Schematic of the Circuitry

62

Figure 56: Zoomed in Schematics of the Arduinos

On the A4988 motor driver the RESET pin needs to be HIGH so our team connected it to
the SLEEP pin which pulls HIGH by default. We also used a 100uF capacitor to regulate power
surges between our motor power supply and the driver. When picking a place for the capacitor
our team placed it as close to the driver as possible so there is less surge throughout the wire,

especially if the distance between the batteries and the motor drivers is larger.

63

3.7 Testing

The team successfully constructed the cage and attached the motors to the surrounding
frame. We were unable to conduct testing of the fully constructed rig due to time constraints.
While the team did not get all 10 motors rotating at once, the team did test to see if the motor
positions were able to achieve the correct relative positions of the 3D printed bones. In doing so,
all ten motors were tested for their ability to function as expected in the rig as described in the

following sections.

3.7.1 Testing Relative Position

The team chose to test the relative positions at rest, then in intervals of 30 degrees of
abduction and flexion, ending at 120 degrees of abduction and flexion. The team made this
decision as in between these checkpoints the motion of points on the scapula is linear. The team
manually set the thread lengths to their desired lengths and suspended the scapula and humerus

from the motors in order to show a proof of concept.

3.7.2 Motor Calibration

Motor calibration tests were based on finding out how much the motor changed the
thread length as a function of how many seconds the motor spun. The first step was finding the
angular velocity of the motor. To do this, the team made a simple MatLab code that can spin the
motor for an inputted number of seconds. The team then imputed one, five, and ten seconds and
measured the degrees of rotation with tape and a protractor. To refine this measurement, the team
made a MatLab code that inputted desired degrees of rotation and spun the motor as such. The
team ran the code to ten full rotations, or 3600 degrees, and manually changed the conversion
coefficient—that converts from degrees to seconds of rotation—until the motor could spin 3600
degrees within half a degree of precision. The team then calculated, based on the diameter of the
spool, how much thread the motor was moving per second and updated the conversion

coefficient—that converts from thread length moved to seconds of rotation—in the final code.

64

3.7.3 Testing Individual Motors

In order to test individual motors, the team wrote a simple MatLab code that talked to one
motor at a time and was easily switched between which motor was being tested. Motors were
identified to work upon the activation of the code, where the motor would begin to rotate in
accordance with the written script. Motors that did not rotate or did not rotate in accordance with
the script were identified as dysfunctional. Once it was determined if a motor was functioning
properly or not the team troubleshooted to identify the error, further details on the

troubleshooting process are provided in the following section.

3.7.4 Troubleshooting

Our team troubleshooted for errors throughout the process of constructing the rig. During
the construction of the cage, an angle bar was utilized to ensure proper angles within the cage as
well as physical exertion upon the bars to ensure they were properly secured and firm in their
placement. Motor tests revealed a number of faulty motors that were promptly replaced or
repaired through corrections within the code.

Throughout construction of the rig, circuitry for the rig proved to be the most complex to
troubleshoot, as the presence of numerous components, each with their own individual ability to
experience error, posed difficult to sort through. Removal of the breadboards, as described in
section 3.3, was the first correction to attempt to circumvent the amperage limit that was
imposed by the hardware. Further corrections to the circuitry were completed with the use of a
DC power supply, allowing the circuitry to experience a number of different amperes and
voltages combinations to expose further faults within the wiring by observing if the motors
would rotate with varying inputs. By providing a wider range of voltages and amperes, we were
able to identify what range of voltages and amperes worked with the circuit and ten 17HS13
motors. Additionally, a voltmeter was utilized to measure the voltage across circuitry
components, to ensure the proper distribution of voltage across all key components. Several

faulty capacitors were replaced in addition to corrections made to the Arduino boards.

65

3.8 Results

While relative motion of the scapular and the humerus was not achieved, the team made
progress that will be valuable for the continuation of this project, by Cameron Leffler, in D-term

and for future teams that continue the project.

3.8.1 Partially Completed Rig

The team constructed a nearly complete model, including the surrounding frame to
support the humerus and scapula. The cage is capable of supporting all necessary forces to
manipulate the bones to reproduce anatomically correct movements. The circuitry was similarly
completed and is capable of delivering sufficient power and commands from the MatLab scripts

to all ten motors of the rig.

3.8.2 Interactive Scapula Position Graph

The team lead for this portion of the project, Cameron Leffler, created an interactive
graph within MatLab that, with two inputs between 0 and 120 degrees, one for abduction and one
for flexion, would replicate the proper anatomical movements of a humerus and scapula within a
confined graph. This motion is viewable from numerous varying angles. The viewer can select a
degree from a bar located at the bottom of the window with intervals of 1 degree. Figure 57
shows the interactive app set at 90 degrees of humeral flexion. Due to constraints with setting the
camera in the MatLab app maker, the axes in the figure are not correct, however, the relative

motion is the same.

66

(4. MATLAB App — m]

£ AEH@TOAQRG
Angled View
04
02
0 '\\7
02
04
04 02 0
Side View Top View
04 04 l
02 02
0 "’ﬁ]u 0
02 02
04 04
04 03 02 01 0 01 -02 -03 -04 01 0 01 02 03 0.4 05

Humeral Abduction C‘

Y A S LR R NN L R R RN N R RN T TR R RN R AR T TR TRRTR NANT |
0 & 16 24 32 40 48 568 64 72 80 88 96 104 112 120
!

0 8 16 24 32 40 48 56 B4 72 80 88 96 104 112 120

[] Show Wires

Humeral Flexion

Figure 57: The Interactive Scapula Position Graph

67

4.0 Discussion

Through review of the results, the team was able to determine our successes and

shortcomings throughout the duration of the project.

4.1 Motor Location and Function

The team was successful in relocating the motors to positions that would more easily
allow freedom of movement for the rig through abduction and flexion. The surrounding motors
pulling from locations external to the humerus and scapula provided far more ideal force vectors
to manipulate the movement of the bones. The motors were summarily successful in their
calibration with the Arduino code to accurately rotate the correct amount and retract the correct
length of braided nylon fishing wire. Unfortunately, due to time constraints, a full test of the
motors system was unable to be completed, leaving a lack of experimental results to supplement

the theoretical calculations.

4.2 Materials Selection

The team was successful in selecting proper materials to mitigate complications during
humeral abduction and flexion. The removal of the restrictive materials placed on the model by
the 2022-2023 team, meant to simulate the muscles, ligaments, tendons, and other biological
material within the shoulder allowed for freedom in designing the rig, with a larger focus on
properly replicating the relative motion between the scapula and humerus. To minimize friction
from connection points between the motors and the scapula and humerus, a selection of nylon
braided fishing wire was utilized for the low friction coefficient alongside the durability
presented by the material. Similar to section 4.1, time constraints limited the team’s ability to

experimentally test the materials selected.

4.3 MatLab Code and Interactive Position Graph

The team was successful in writing MatLab code to control 10 motors to accurately
recreate the scapular humeral rhythm during humeral abduction and flexion and used MatLab to

create an interactive position graph showing the relative motion of the scapula and humerus

68

during humeral abduction and flexion. To the team's knowledge, both of these codes did not exist
before this project. The relative positions from the code will be saved and used by Cameron

Leffler to create a 3D animation of the scapular humeral rhythm during D-term.

69

5.0 Broader Impacts

5.1 Engineering Ethics

Over the duration of our project, we sought to be in accordance with the engineering code
of ethics implemented by the American Society of Mechanical Engineering. Our team strived to
use our understanding of engineering for the benefits of human welfare, increase the competence
and prestige of the engineering profession, and to act with honesty and impartiality when
developing this project. These fundamental principles integral to the engineering guidelines were
held to high standards as we completed our project. This project was completed with the goal of
aiding medical students through the use of an educational device, a goal created through the
intention of providing beneficial material for the betterment of others. Through this report, we
have strived to be truthful to establish integrity within our work. It is our sincere hope that our
efforts reflect well on the engineering field.

Our project was a continuation of two prior MQP teams' efforts on the shoulder model,
with great effort made to build off the foundation they created whilst respecting their own
accomplishments. Their results and data were supplemented by our own research and findings to
create a sufficient project that reflects the efforts of all the teams who have dedicated their work
towards this shoulder model.

Finally, we sought to complete this project to the fullest extent of our abilities and
produce the highest quality model we were capable of creating, utilizing numerous reputable

sources and our own engineering expertise to create as accurate a model as possible.

70

5.2 Social and Global Impact

The primary intention of this model is to be utilized as an educational tool for the
improved understanding of the shoulder joint and the complexities that lie within it. This
educational tool would go on to benefit a subset of people within society, primarily students
seeking to study human anatomy to become doctors. This tool would further these student’s
understanding of the complexities of the human shoulder, producing more educated doctors who
will go on to provide better treatment to patients suffering from injuries, conditions caused by
chronic illnesses or genetic defects. Additional applications towards injury prevention are

possible such as utilizing the model to explore protective gear for athletes.

71

5.3 Environmental Impact

The new materials used for the model and rig include braided nylon fishing line wires
and aluminum extrusion to construct the cage for the model. The aluminum extrusion used to
construct the cage was reused from previous projects. The braided nylon fishing line connecting
the bones to the 17HS13 motors is biodegradable and environmentally friendly. motors used
within the rig are composed of a number of metals and electronic components which are not
environmentally friendly. Finally, the current power source for the rig, 9V batteries are not
environmentally friendly, however, the rig can be modified to draw power from electrical outlets
to reduce this waste. The model is projected to be utilized over a large quantity of years without
requiring significant replacements to parts or significant upkeep, allowing a minimum amount of
materials to be wasted over the course of the model’s lifespan.

Materials utilized for our rig by the previous teams includes PLA 3D printed bones and
3D printed motor mounts which are biodegradable and will decompose in 12 weeks time when
disposed of. Other materials utilized by the previous teams included KT Tape, Formlabs Elastic
50A, Formlabs Flexible 80A, and Thermoplastic Polyurethane, all of which we removed from
our design and model to minimize waste and clutter of the rig, and reduce our environmental

impact.

72

5.4 Economic Impact

The cost of our modifications to the model was relatively low, and is tabulated below.
The braided fishing line and aluminum extrusion were inexpensive. The stepper motors
contributed to a far larger comparative expense. The electrical components consisting of the

arduino board and microprocessors along with all the other circuitry additionally contributed to

the cost.
Material Quantity Independent Vendor Cost

17HS13 Motors 10 Yes ~$300
A4988 Stepper Motor 10 Yes ~$13
Drivers
Braided Nylon 1 Yes ~$12
Fishing Line
Aluminum Extrusion 19 No Not Applicable
(Varying Sizes)
Cable Nail-in Clips 12 Yes ~$8
Terminal Blocks 12 Yes ~$120

Table 10: Cost of Materials Used to Modify the Rig

The projected cost of the model is about $453 USD. While initially costly, when
compared to current commercially available educational models, the model becomes far more
reasonable in price as most other models range from around $300 to $900, with varying features
included within the product. Most models on the lower end do not include any joints to display
movement, rather they are entirely static. Many models on the upper end of the range include

very detailed depictions of muscles and ligaments, but still do not display movement.

73

6.0 Conclusions and Future Work

The goal of this project was to demonstrate accurate scapulohumeral rhythm by revising
and improving upon the previous team’s iterations. To accomplish this, the team stripped the
model of the restrictive soft tissue materials and constructed a surrounding cage where motors
would deliver force upon the humerus and scapula to direct its movements to replicate the
scapulohumeral rhythm during abduction and flexion of the humerus. The team then wrote
MatLab scripts to direct movements of the motors to produce our desired motion. Although time
constraints prevented further testing of the model and developments of the system, the
modifications our team made to the model present potential for a fully realized system that
replicates proper anatomical movements.

With the aforementioned time constraints restricting the progress of the model, our team
believes that future teams can complete the construction of the rig and upon discovery of any
potential errors, can continue to develop it. Of the potential foci future teams can follow, we
suggest to first continue development of the current model, finalizing its testing to provide
experimental results to supplement theoretical calculations. Additionally, altering the power
source for the model from batteries to outlets to avoid repeated purchases of power sources is
heavily suggested. Other avenues of development involve a number of options. The development
of specialized printed bones to replicate medical conditions such as arthritis would allow for
easily swappable parts to bolster the versatility of the model. Adjustments to the model to
account for the removed materials from the 2022-2023 team could similarly be made to allow for
the biological materials that the 2022-2023 team sought to replicate in their model.

With a fully realized rig and modifications made to the power source, this model has
incredible potential as an educational tool. Medical experts that have a deeper understanding of
injuries of any type, are capable of treating a greater number of patients. The value in providing
medical students a deeper and more thorough understanding of the human shoulder cannot be

understated.

74

7.0 Appendix: MatLab Code

Provided below is the complete code written by our team. The team lead for this portion

of the project, as previously stated, was Cameron Leftler

| setup.m | abCodem | motortestz.m |+ |
|1 global currentAbIndex;
2 global currentFlexIndex;
3 global abMatrix;
4 global flexMatrix;
5
6 global xCoordsPositionMatrixib;
7 global yCoordsPositionMatrixAb;
8 global zCoordsPositionMatrixAb;
9 global FMasterXAb;
18 global FMasterYAb;
11 global FMasterZib;
12
13 global xCoordsPositionMatrixFlex;
14 global yCoordsPositionMatrixFlex;
15 global zCoordsPositionMatrixFlex;
16 global FMasterXFlex;
17 global FMasterYFlex;
18 global FMasterZFlex;
19
20 global masterPointAAb
21 gleobal masterPointBAb
22 gleobal masterPointCAb
23 gleobal masterPointDAb
24 global masterPointEAb
25 global masterPointFAb
26
27 global masterPointAFlex
28 global masterPointBFlex
29 global masterPointCFlex
30 global masterPointDFlex
31 global masterPointEFlex
32 global masterPointFFlex
33
34 global motord
35 global motorB -
36 PR) ,

75

| setup.m
™ 36
37
38
39
48
41
42
43
44
45
46
a7
48
49
5@
51
52
53
54
55
56
57
58
59
)
61
62
B3
b4
65
66
67
b8
69
7@
71

+ |

.| abCodem | motortest2.m

global motorCPosY
global motorChlegy
global motorCX
global motorD
global motorE
global motorFZ
global motorFPosY
global motorFNegy
1:

currentFlexIndex H

currentAbIndex = 1;

#%%Initial Positions

= [@8;8;0];

= [8.11; @.e35; 8.013];
= [8.03;-6.004;-8.141];
= [-2.815;8;-0.83];
[@.87;8;-8.83];

= [8.11;08.835;-8.3696];
= B;

= [e.01; @; -0.61];

= [@e.12; 8; -0.01];

= [@e.01; @; -0.15];

S I A N T B i = B =)
(]

motorA = [A(1); A(2); @.38283];
motorB = [B(1); B(2); @.38283];
motorCPosY = [C(1); 8.39; C(3)];
motorCNeg¥ = [C(1); -8.39; C(3)];
motorCX = [8.474; C(2); @];
motorD = [D(1); -8.39; D(3)];
motorE = [E(1); ©.39; E(3)];
motorFZ = [8.237; @; ©.38203];
motorFPosY = [@.237; 8.39; @];
motorFlegy = [@.237; -8.39; @];

T T SR PR g

| setup.m
| 71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
28
89
9@
91
92
93
94
95
96
97
98
99
100
1e1
1@2
1e3
104
185
186

| abCodem | motortest2m = | + |

fekniikdkikik Abduction

%#0ther starting conditions

armAnglelbduction = 8;

increaselbd = ©.1;

radIncreaseAbA = deg2rad(increasefibA);
armAngleAbductionMatrix = [armingleAbduction;@];

masterPositionMatrixAb = [A4,B,C,D,E,I,3,K];
xCoordsPositionMatrixAb = [0,0,08,8,0];
yCoordsPositionMatrixAb = [@,8,9,0,0];
zCoordsPositionMatrixhb = [0,0,0,8,0];
FMasterdb = [8.11;8.035;-8.3696];
FMasterXib = [@;8];

FMasterYAb = [8;0];

FMasterZAb = [@;@];

wirelLengthMatrixAb = allWirelLength(motord,motorB,motorCPosY,motorChegy, ..
motorCX,motorD,motorE,motorFPosY,motorFNegy¥,motorFZ,A,B,C,D,E,

threadlengthiMatrixdb = [8;@];
threadlengthBMatrixib = [8;@];
threadlLengthCPosYMatrixAb = [8;@];
threadlLengthCNegYMatrixAb = [8;0];
threadlengthCXMatrixAb = [@;0];
threadlengthDMatrixdb = [8;@];
threadlengthEMatrixib = [8;0];
threadlLengthFPosYMatrixAb = [8;@];
threadlLengthFNegYMatrixAb = [8;@];
threadlengthFZMatrixAb = [8;08];

counter = 4;
i=1;

while arméAngleAbduction <= 128

76

| setupm | abCodem * | motortest2m |+

1e7 ¥%¥k%Set correct angles or rotation
1es if armAngleAbduction <= 3@
1e9 %54 angles for ©-3@ degrees of AA
110 upwardRotation = deg2rad(-3.39);
111 anteriorTilt = deg2rad(6.04);
112 externalRotation = deg2rad(1.29);
113
114 upwardRotationStep = upwardRotation/(38/increaselbd);
115 anteriorTiltStep = anteriorTilt/(3@/increaselbl);
116 externalRotationStep = externalRotation/(38/increasedbd);
117
118 ICR = A;
119 end
120
121 if armAngleAbduction > 3@ && armAngleAbduction <= 6@
122 #SA angles for 39-6@ degrees of AA
123 upwardRotation = deg2rad(-26.34)-deg2rad(-3.39);
124 anteriorTilt = deg2rad(22.28)-deg2rad(6.84);
125 externalRotation = deg2rad(5.93)-deg2rad(1.29);
126
127 upwardRotationStep = upwardRotation/(38/increaselbA);
128 anteriorTiltStep = anteriorTilt/(3@/increaselbA);
129 externalRotationStep = externalRotation/(38/increaselbd);
13@
131 ICR = A;
132 end
133
134 if armingleAbduction > 6@ && armAngleAbduction <= 9@
135 %SA angles for 62-9@ degrees of AA
136 upwardRotation = deg2rad(-41.25)-deg2rad(-26.34);
137 anteriorTilt = deg2rad(31.45)-deg2rad(22.28);
138 externalRotation = deg2rad(8.92)-deg2rad(5.93);
139
148 upwardRotationStep = upwardRotation/(38/increasedbl);
141 anteriorTiltStep = anteriorTilt/(38/increaselbl);
142
| setupm 3| abCodem ¢ | motortest2m | + |
[142 externalRotationStep = externalRotation/({38/increaselbd);
143
144 ICR = A;
145 end
146
147 if armAngleAbducticn > 98 && armAngleAbduction <= 120
148 #SA angles for 90-128 degrees of AA
149 upwardRotation = deg2rad(-50.85)-deglrad(-41.25);
150 anteriorTilt = deg2rad(33.49)-deg2rad(31.45);
151 externalRotation = degZrad(10.71)-deg2rad(8.92);
152
153 upwardRotationStep = upwardRotation/(38/increaseAbd);
154 anteriorTiltStep = anteriorTilt/(3@/increaselbd);
155 externalRotationStep = externalRotation/(38/increaseAbA);
156
157 changeX = B(1) - A(1);
158 changeY = B(2) - A(2);
159 changeZ = B(3) - A(3);
160 ICR = [changeX/2;changeY/2;changeZ/2];
161 end
162
163 BforF = B;
164
165 masterPositionMatrixAb{counter:counter+2,:) = fullRotation(A,B,C,D,E,I,...
166 1,K,upwardRotationStep,anteriorTiltStep,externalRotationStep, ICR);
167 FMasterAb(counter:counter+2,1) = humeralAbduction(BforF,B,F,radIncreasefbd);
168
169 A = masterPositionMatrixAb(counter:counter+2,1);
17e B = masterPositionMatrixAb{counter:counter+2,2);
171 C = masterPositionMatrixAb{counter:counter+2,3);
172 D = masterPositionMatrixAb({counter:counter+2,4);
173 E = masterPositionMatrixAb{counter:counter+2,5);
174 I = masterPositionMatrixAb({counter:counter+2,6);
175 J = masterPositionMatrixAb(counter:counter+2,7);
176 K = masterPositionMatrixAb(counter:counter+2,8);
177 ea e . . A

77

| setupm O | abCodem | motortestZm | 4 |
177 F = FMasterfAb(counter:counter+2,1);
178
179 armAngleAbductionMatrix((counter-1)/3) = armAnglelbduction;
1s@
181 threadlengthAMatrixAb((counter-1)/3) = wirelengthMatrixAb(1,1);
182 threadlengthBMatrixAb({(counter-1)/3) = wirelengthMatrixAb(1,2);
183 threadlengthCPosYMatrixAb({counter-1)/3) = wirelengthMatrixAb(1,3);
184 threadlengthClegYMatrixAb({counter-1)/3) = wirelengthMatrixAb(1,4);
185 threadlengthCXMatrixAb((counter-1)/3) = wirelengthMatrixAb(1,5);
186 threadlengthDMatrixAb({(counter-1)/3) = wirelengthMatrixAb(1,6);
187 threadlengthEMatrixAb{(counter-1)/3) = wirelengthMatrixAb(1,7);
188 threadlengthFPosYMatrixAb((counter-1)/3) = wirelengthMatrixAb(1,8);
189 threadlengthFlegYMatrixAb({counter-1)/3) = wirelengthMatrixAb(1,9);
190 threadlengthFZMatrixAb((counter-1)/3) = wirelengthMatrixAb(1,18);
191
192 wirelLengthMatrixAb = allWirelength(motord,motorB,motorCPosY,motorChegy,|. ..
193 motorCX,motorD, motorE,motorFPosY,motorFNegY,motorFZ,A,B,C,D,E,F);
194
195 armAngleAbduction = armAngledbduction + increaseAbA;
196 counter = counter + 3;
197 4 end
198
199 [0 while i < size(masterPositicnMatrixAb,1)/3
200 xCoordsPositionMatrixAb(i,:) = masterPositionMatrixAb(i*3-2,1:5);
201 yCoordsPositionMatrixAb(i,:) = masterPositionMatrixAb(i*3-1,1:5);
202 zCoordsPositionMatrixAb(i,:) = masterPositionMatrixAb(i*3,1:5);
283
204 1= il
205 4 end
2086
207 i=1;
208
209 while i < size(FMasterdb,1)/3
218 FMasterXAb(i,:) = FMasterdb(i®*3-2,:);
211 FMasterYAb(i,:) = FMasterdb(i®*3-1,:);
212 P
| setupm o | abCodem * | motortestZm | + |
| 212 FMasterZAb(i,:) = FMasterdb(i*3,:);
213
214 i = 1i+1;
215 end
216
217
218 abMatrix = [threadlengthAMatrixAb,threadlengthBMatrixAb,threadlengthCPosYMatrixdb, . ..
219 threadlengthClNegYMatrixAb, threadlengthDMatrixAb,threadlengthEMatrixdb,...
22e threadlengthFPosYMatrixAb, threadLengthFiegYMatrixAb, threadlengthFZMatrixAb];
221
222
223 #%% Reset Initial Positions
224 A = [8;8;0];
225 B = [6.11; 0.835; ©.813];
226 C = [0.93;-0.004;-0.141];
227 D - [-8.815;0;-0.03];
228 E - [0.97;0;-08.03];
229 F - [0.11;0.035;-8.3696];
230 I=[06.01; 0; -0.01];
231] - [0.12; 8; -0.01];
232 K =[@8.81; 8; -0.15];
233
234 KrExERKRX% Flexion Time
235
236 wirelengthMatrixFlex = allWirelength(motorA,motorB,motorCPosY,motorCNegy, ...
237 motor(X,motorD,motorE,motorFPosY, motorFNegY,motorFZ,A,B,C,D,E,F);
238
239 # Other starting conditions
24e armAngleFlex = 8;
241 increaseflexh = @.1;
242 radIncreaseFlexA = deg2rad(increaseFlexA);
243 armAngleFlexMatrix = [armingleFlex;@];
244
245 masterPositionMatrixFlex = [A,B,C,D,E,I,7,K];
246 xCoordsPositionMatrixFlex = [@,0,0,0,0];
P - P [, S

78

| setup.m
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268 [
269
2708
271
272
273
274
275
276
277
278
279
280
281
282

1 \ abCodem ¢ | motortestzm | + \

yCoordsPositionMatrixFlex = [8,0,8,0,8];
zCoordsPositionMatrixFlex = [8,0,8,0,0];
FMasterFlex = [0.11;8.835;-0.3696];
FMasterXFlex = [9;8];

FMasterYFlex = [9;0];
FMasterZFlex = [9;0]

»

threadlengthAMatrixFlex = [@;8];
threadlengthBMatrixFlex = [@;8];
threadlengthCPosYMatrixFlex = [0;8];
threadlLengthClegYMatrixFlex = [0;8];
threadlLengthCXMatrixFlex = [8;8];
threadlLengthDMatrixFlex = [@;8];
threadlengthEMatrixFlex = [@;8];
threadlengthFPosYMatrixFlex = [0;8];
threadlengthFllegYMatrixFlex = [@;8];
threadlengthFZMatrixFlex = [8;@];

counter
i=1;

=4

while arméngleFlex <= 12@

#¥%Set correct angles or rotation
if armingleFlex <= 38

%5A angles for 9-30 degrees of AA
upwardRotation = deg2rad(-1.55);
anteriorTilt = degZrad(-1.82);
externalRotation = degZrad(-1.13);

upwardRotationStep = upwardRotation/(38/increaseFlexd);
anteriorTiltStep = anteriorTilt/(3@/increaseFlexd);
externalRotationStep = externalRotation/(38/increaseFlexd);

| setup.m

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
3ee
Je1
302
3e3
304
3a5
386
3e7
308
309
31e
311
312
313
314
315
316
317

|‘ abCodem * | motortest2.m | + |

end

ICR = A;

if armAngleFlex > 3@ && armAngleFlex <= 6@

end

#SA angles for 38-6@ degrees of AA
upwardRotation = deg2rad(-9.14)-deg2rad(-1.55);
anteriorTilt = degZrad(-©.088)-deg2rad(-1.82);
externalRotation = deg2rad(-1.93)-deg2rad(-1.13);

upwardRotationStep = upwardRotation/(38/increaseFlexA);
anteriorTiltStep = anteriorTilt/(38/increaseFlexd);

externalRotationStep = externalRotation/(38/increaseFlexA);

ICR - A;

if armAngleFlex > 6@ && armAngleFlex <= 9@

end

%5A angles for 62-9@ degrees of AA
upwardRotation = deg2rad(-15.83)-deg2rad(-9.14);
anteriorTilt = degZrad(3.88)-deglrad(-8.98);
externalRotation = deg2rad(-1.95)-deg2rad(-1.93);

upwardRotationStep = upwardRotation/(38/increaseFlexA);
anteriorTiltStep = anteriorTilt/(38/increaseFlexA);

externalRotationStep = externalRotation/(38/increaseFlexA);

ICR = A;

if armAngleFlex > 9@ && armAngleFlex <= 128

%SA angles for 98-1208 degrees of AA
upwardRotation = degZrad(-26.35)-deg2rad(-15.83);
anteriorTilt = degZrad(11.16)-deg2rad(3.80);
externalRotation = deg2rad(@.22)-deg2rad(-1.95);

79

| setupm

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

|‘ abCodem | motortest2m | 4 |

upwardRotationStep = upwardRotation/(38/increaseFlexA);
anteriorTiltStep = anteriorTilt/(3@/increaseFlexA);
externalRotationStep = externalRotation/(38/increaseFlexA);

changeX = B(1) - A(1);

changeY = B(2) - A(2);

changeZ = B(3) - A(3);

ICR = [changeX/2;changeY/2;changeZ/2];
end

EforF = B;
masterPositionMatrixFlex(counter:counter+2,:) = fullRotation(A,B,C,D,E,...

I,]1,K,upwardRotationStep,anteriorTiltStep,externalRotationStep,ICR)
FMasterFlex(counter:counter+2,1l) = humeralFlexion(BforF,B,F,radIncreaseFlexd);

masterPositionMatrixFlex(counter:counter+2,1);

= masterPositionMatrixFlex(counter:counter+2,2);
masterPositionMatrixFlex(counter:counter+2,3);

)
)
)
masterPositionMatrixFlex(counter:counter+2,4);
)
)
)
)

masterPositionMatrixFlex(counter:counter+2,5
masterPositionMatrixFlex(counter:counter+2,6
= masterPositionMatrixFlex(counter:counter+2,7
masterPositionMatrixFlex(counter:counter+2,8

B

3

3

3

M A A H MO0 W@
1

FMasterFlex(counter:counter+2,1);
armingleFlexMatrix((counter-1)/3) = armAngleFlex;

threadlengthAMatrixFlex({counter-1)/3) = wirelengthMatrixFlex(1,1);
threadlLengthBMatrixFlex({counter-1)/3) = wirelengthMatrixFlex(1,2);
threadlLengthCPosYMatrixFlex((counter-1)/3) = wirelengthMatrixFlex(1,3);
threadlengthCNeg¥MatrixFlex((counter-1)/3) = wirelengthMatrixFlex(1,4);
threadlengthCXMatrixFlex((counter-1)/3) = wirelengthMatrixFlex(1,5);
threadlengthDMatrixFlex({counter-1)/3) = wirelengthMatrixFlex(1,6);
threadlLengthEMatrixFlex({counter-1)/3) = wirelengthMatrixFlex(1,7);

80

| setupm | abCodem | motortestzm | + |
| 352 \ threadlLengthFPosYMatrixFlex((counter-1)/3) = wirelengthMatrixFlex(1,8);
353 threadlLengthFlegYMatrixFlex((counter-1)/3) = wireLengthMatrixFlex(1,9);
354 threadlengthFZMatrixFlex((counter-1)/3) = wirelengthMatrixFlex(1,18);
355
356 wirelengthMatrixFlex = alllWirelength(motorh,motorB,motorCPosY,motorCegy, . . .
357 motorCX,motorD, motorE,motorFPosY,motorFNegy,motorFZ,A,B,C,D,E,F);
358
359 armAngleFlex = armAngleFlex + increaseFlexh;
360 counter = counter + 3;
361 L end
362
363 [-] while i < size(masterPositionMatrixFlex,1)/3
364 xCoordsPositionMatrixFlex(i,:) = masterPositionMatrixFlex(i*3-2,1:5);
365 yCoordsPositionMatrixFlex(i,:) = masterPositionMatrixFlex(i*3-1,1:5);
366 zCoordsPositionMatrixFlex(i,:) = masterPositionMatrixFlex(i*3,1:5);
367
368 i =1i+1;
369 = end
370
371 i=1;
372
373 [E while i < size(FMasterFlex,1)/3
374 FMasterXFlex(i,:) = FMasterFlex(i*3-2,:);
375 FMasterYFlex(i,:) = FMasterFlex(i*3-1,:);
376 FMasterZFlex(i,:) = FMasterFlex(i*3,:);
377
378 i=1i+1;
379 L end
380
381 flexMatrix = [threadlLengthAMatrixFlex,threadlengthBMatrixFlex,...
382 threadlLengthCPosYMatrixFlex, threadlengthCHegYMatrixFlex, threadlLengthDMatrixFlex,...
383 threadlLengthEMatrixFlex, threadlengthFPosYMatrixFlex,threadlengthFleg¥MatrixFlex,...
384 threadlengthFZMatrixFlex];
385
386
387
3
388 masterPointAfb = [xCoordsPositionMatrixAb(:,1),yCoordsPositionMatrixAb(:,1),zCoordsPositionMatrixdb(:,1)];
389 masterPointBAb = [xCoordsPositionMatrixAb(:,2),yCoordsPositionMatrixAb(:,2)|,zCoordsPositionMatrixdb(:,2)];
398 masterPointCAb = [xCoordsPositionMatrixAb(:,3),yCoordsPositionMatrixAb(:,3)|,zCoordsPositionMatrixdb(:,3)];
391 masterPointDAb = [xCoordsPositionMatrixAb(:,4),yCoordsPositionMatrixAb(:,4),zCoordsPositionMatrixdb(:,4)];
392 masterPointEAb = [xCoordsPositionMatrixAb(:,5),yCoordsPositionMatrixAb(:,5)|,zCoordsPositionMatrixAb(:,5)];
393 masterPointFAb = [FMasterXAb(:,1),FMasterYAb(:,1),FMasterZAb(:,1)];
394
395 masterPointAFlex = [xCoordsPositionMatrixFlex(:,1),yCoordsPositionMatrixFlex(:,1),zCoordsPositionMatrixFlex(:,1)];
396 masterPointBFlex = [xCoordsPositionMatrixFlex(:,2),yCoordsPositionMatrixFlex(:,2),zCoordsPositionMatrixflex(:,2)];
397 masterPointCFlex = [xCoordsPositionMatrixFlex(:,3),yCoordsPositionMatrixFlex(:,3),zCoordsPositionMatrixflex(:,3)];
398 masterPointDFlex = [xCoordsPositionMatrixFlex(:,4),yCoordsPositionMatrixFlex(:,4),zCoordsPositionMatrixFlex(:,4)];
399 masterPointEFlex = [xCoordsPositionMatrixFlex(:,5),yCoordsPositionMatrixFlex(:,5),zCoordsPositionMatrixFlex(:,5)];
480 masterPointFFlex = [FMasterXFlex(:,1),FMasterYFlex(:,1),FMasterZFlex(:,1)];
481
482
3

81

B Editor - C \gr:

e\Documents\MATLAB\mgp'\rotation.m *

+'2 | motortestzm | allWireLength.m | fullRotation.m | humeralAbduction.m | humeralFlexion.m rotation.m * |+ |
1 function [outputVecter] = rotation(inputVector,thetalCR,thetall,thetalk,I,],K,ICR)
ZE %ROTATION Finds where a point will be after a rotation around all three

3 | Xaxes

a

5 %moving orgin to I

6 ICenteredl = [8;0;0];

7 ICentered] = [J(1)-I(1);3(2)-I(2);3(3)-1(3)1;

8 ICenteredk = [K(1)-I(1);K(2)-I(2);K(3)-I(3)]1;

9 ICenteredInputVector = [inputVector(1)-I(1);inputVector(2)-I(2);inputVector(3)-1I(3)];
1@

11 %Finding axis IJ and IK

12 IJ = ICentered] - ICenteredI;

13 magl) = sqrt((I3(1))"2+(I3(2))"2+(11(3))"2);

14 normalll = IJ/magll;

15

16 IK = ICenteredI - ICenteredk;

17 magIK = sqrt((IK(1))*2+(IK(2))"*2+(IK(3))"2);

18 normalIK = IK/maglIk;

19

20 %Rotation around I]

21 dotI] = dot{ICenteredInputVector,normalll);

22 crossI] = cross{normalll,ICenteredInputVector);

23

24 ICenteredMidVectorl = ((1-cos(thetall))*(dotIJ)*(normalll))+((cos(thetall))*...

25 (ICenteredInputVector))+((sin(thetall))*(crossI1));

26 midVectorl = [ICentersdMidVectorl(1)+I(1);ICenteredMidVectorl(2)+I(2);ICenteredMidVectorl{3)+I(3);];
27

28 %Rotation around JK

29 dotIK = dot{ICenteredInputVector,normallk);

3@ crossIK = cross{normallk,ICenteredInputVector);

31

32 ICenteredMidVector? = ((1-cos(thetalk))*(dotIK)*(normalIK))+((cos(thetalk))*...

33 (ICenteredInputVector))+((sin(thetalk))*(crossIK));

34 midVector2 = [ICentersdMidVector2(1)+I(1);ICenteredMidVector2(2)+I(2);ICenteredMidVector2(3)+I(3);];
35

36 %Moving Orgin to ICR

- IODE i [9s4% Trpeay.9s0y Teneay.9s9y Tensana

36 #Moving Orgin to ICR

37 ICRCentered] = [J(1)-ICR(L1);I(2)-ICR(2);I(3)-ICR(3)];

38 ICRCenteredk = [K(1)-ICR(L1);K(2)-ICR(2);K(3)-ICR(3)];

39 ICRCenteredICR = [8;0;0];

40 ICRCenteredInputVecteor = [inputVector(l)-ICR(1);inputVecter(2)-ICR(2);inputVector(3)-ICR(3)];
41

42 #Making ICR Axis

43 ICR] = ICRCentered] - ICRCenteredICR;

44 ICRK = ICRCenteredk - ICRCenteredICR;

45 axisICR = cross(ICRJ,ICRK);

46 magICR = sgrt({axisICR{1))"2+(axisICR(2))"2+(axisICR(3))"2);

47 normalICR = axisICR/magICR;

43

49 %Rotation around ICR

50 dotICR = dot(ICRCenteredInputVector,normallCR);

51 crossICR = cross(normalICR, ICRCenteredInputVector);

52

53 ICRCenteredMidVector3 = ((l-cos{thetalCR))*(dotICR)*(normalICR))+((cos(thetaICR}))...
54 ‘*(ICRCenteredInputVector‘))+{(sin(thetaICR))"(cr‘ossICR));

55 midVector3 = [ICRCenteredMidVector3(1)+ICR(1);ICRCenteredMidVector3(2)+ICR(2);ICRCenteredMidVector3(3)+ICR(3)];
56

57 #Calc the output

58 outputVector = (midVectorl+midVector2+midVactor3)/3;

59

6@ - end

82

+2 | abCodem

motortest2.m | allWireLengthm | fullRotation.m | humeralAbductionm | humeralFlexion.m * | + |

1[-] function [FPrime] = humeralFlexion(B,BPrime,F,armingleChange)

2 %humeralFlexion finds the position of the bottom of the humerus

3

4 BCenteredF = [F(1)-B(1);F(2)-B(2);F(3)-B(3)];

5

6 normaldxisofRotation = [1;8;0];

7

8 %Rotation around B

9 dotHumeral = dot(BCenteredF,normaldxisofRotation);
1@ crossHumeral = cross(normalAxisofRotation,BCenteredF);
11
12 BCenteredMidVector = ((l-cos(armingleChange))*(dotHumeral)*(normalAxisofRotation))+...
13 ((cos(armAngleChange) })*(BCenteredF))+((sin(armAngleChange))* (crossHumeral));
14
15
16 midVector = [0.11; BCenteredMidVector(2)+B(2);BCenteradMidVector(3)+B(3)];
17 midVector? = [8.11; midVector(2) + (B(2)-BPrime(2)); midVector(3) + (B(3)-BPrime(3))];
18
19 circleCenter = [8.11; BPrime(2); BPrime(3)];
20 radiusOfCircle = sgrt(abs(((0.3683)"2)-((BPrime(1)-8.11)"2)));
21
22 center2F = midVector2 - circleCenter;
23 maglenter2F = sqrt(center2F(2)"2+center2F(3)"2);
24 normalCenter2F = center2F/magCenteriF;
25 FPrime = [8.11;circleCenter(2)+(radiusOfCircle*normalCenter2F(2));circleCenter(3)+(radius0fCircle*normalCenter2F(3))];
26
27 L end

\ setupm ¥ | abCode.m | motortest2.m | allWireLength.m | fullRotationm ' humeralAbduction.m * | + |
1[-] function [FPrime] = humeralAbduction(B,BPrime,F,armAngleChange) ' \
2 %humeralAbduction finds the position of the bottom of the humerus

3

4 BCenteredF = [F(1)-B(1);F(2)-B(2);F(3)-B(3)];

5

6 normalAxisofRotation = [@;-1;8];

7

8 %Rotation around B

9 dotHumeral = dot(BCenteredF,normalAxiscfRotation);

1@ crossHumeral = cross(normalAxisofRotation,BCenteredF);

11

12 BCenteredMidVector = ((1-cos(armingleChange))*(dotHumeral)*{normalAxisofRotation))+. ..
13 |((cos(armAnglaChange)) *(BCenteredF))+((sin(armingleChange))*(crossHumeral));

14

15

16 midVector = [BCenteredMidVector(1)+B(1);@.0835;BCenteredMidVector(3)+B(3)];

17 midVector2 = [midVector(l) + (B(1)-BPrime(1)); @.0835; midVector(3) + (B(3)-BPrime(3))];
18

19 circleCenter = [BPrime(1l); ©.835; BPrime(3)];

20 radiusOfCircle = sqrt(((9.3683)"2)-((BPrime(2)-8.035)"2));

21

22 center2F = midVector2 - circleCenter;

23 maglenter2F = sgrt(center2F(1)"2+center2F(3)"2);

24 normalCenter2F = center2F/magCenter2F;

25 FPrime = [circleCenter(1)+(radiusOfCircle*normalCenter2F(1));8.9835;circleCenter(3)+(radiusOfCircle*normalCenter2F(3))];
26

27 - end

83

| setupm | abCodem | motortest2m | allWirelengthm | fullRotationm | 4 |

1[-] function [pesitionMatrix] = fullRotation(A,B,C,D,E,I,J,K,upwardRotation,anteriorTilt,externalRotation,ICR)
2 %FULLROTATION rotates all points around the three axes

3

4 rotatedA = rotation (A,upwardRotation,anteriorTilt,externalRotation,I,],K,ICR);

5 rotatedB rotation (B,upwardRotation,anteriorTilt,externalRotation,I,],K,ICR};

6 rotatedC rotation (C,upwardRotation,anteriorTilt,externalRotation,I,],K,ICR);

7 rotatedD rotation (D,upwardRotation,anteriorTilt,externalRotation,I,],K,ICR);

8 rotatedE rotaticn (E,upwardRotation,anteriorTilt,externalRotation,I,],K,ICR);

9 rotatedk rotation (K,upwardRotation,anteriorTilt,externalRotation,I,],K,ICR);

1e rotated] rotation (J,upwardRotation,anteriorTilt,externalRotation,I,],K,ICR);

11 rotatedl rotation (I,upwardRotation,anteriorTilt,externalRotation,I,],K,ICR);

12

e positionMatrix = [rotatedA,rotatedB,rotatedC,rotatedD,rotatedE, rotatedl, rotated], rotatedk];
14

15 end

84

setup.m | abCode.m | motortest2.m = | allWireLength.m | + |

|

1 function [wirelengths] = allWirelength(motord,motorB,motorCPosY,motorChegy, notorCX,motorD, motorE, motorFPosY, ...
ZE motorFlNegY,motorFZ,A,B,C,D,E,F)

3= %WIRELENGTH Finds the length of a wire given the motor and the attachment

4 - Zpoint

5

6 threadlengthA = sqrt((motorA(1)-A(1))"2+(motorA(2)-A(2))"2+(motorA(3)-A(3))"2);

7 threadlengthB = sgqrt((motorB(1)-B(1))"2+(motorB(2)-B(2))"2+(motorB(3)-B(3))"2);

8 threadlengthCPosY = sgrt((motorCPosY(1)-C(1))"2+(motorCPosY(2)-C(2))"2+(motorCPosY(3)-C(3))"2);

9 threadlengthClegY = sgrt((motorCleg¥(1)-C(1))"2+(motorCNeg¥(2)-C(2))"2+(motorCNegy(3)-C(3))"2);
10 threadlengthCX = sgrt({motorCX({1)-C(1))"2+(motorCX(2)-C(2))"2+(motorCX(3)-C(3))"2);
11 threadlengthD = sgrt({motorD(1)-D(1))"2+{motorD(2)-D(2))"2+{motorD(3)-D(3))"2);
12 threadlengthE = sgrt((motorE(1)-E(1))"2+({moterE(2)-E(2))"2+(motorE(3)-E(3))"2);
13 threadlengthFPosY = sgrt((motorFPosY(1)-F(1))"2+(motorFPosY(2)-F(2))"2+(motorFPosY(3)-F(3))"2);
14 threadlengthFlleg¥ = sgrt((motorFNegY(1)-F(1))"2+(motorFleg¥(2)-F(2))"2+(motorFlegY(3)-F(3))"2);
15 threadlengthFZ = sqrt((motorFZ(1)-F(1))*2+(motorFZ(2)-C(2))"2+(motorFZ(3)-F(3))"2);
16
17 wirelengths = [threadlLengthA,threadlengthB,threadlLengthCPosY,threadLengthClegy, threadlengthCX,threadlengthD, threadlengthE .
18 threadlengthFPosY,threadlengthFllegY,threadlengthFZ];
19 -~ end

85

| setup.m | abCodem * | motortestzm | + \
1[0 function [currentfAbIndex] = abCode(desiredIndex)
2
3 global currentAbIndex;
a4
5 global currentFlexIndex
[global abMatrix;
7
8 if currentFlexIndex > 1
9 flexCode(1)
10 end
11
12 al = arduino{'COMA', 'Unc');
13 a2 = arduino{'COM3", 'Unc')
14
15 pinDirA = "D12";
16 pinDirE = “D13";
17 pinDirCPosY = "D8";
18 pinDirCleg¥ = "D8";
19 pinDirCX = "D13";
20
21 pinDirD = “D12";
22 pinDirE = "D4";
23 pinDirFPosY = “"D7";
24 pinDirFNegy¥ = “"D7";
25 pinDirkFZ = "D4";
26
27
28
29 pintovA = "D1@";
3e pinMovB = “D11";
31 pinMovCPosY = “"D9";
32 pinMovCNegy¥ = "D9";
33 pinMovCX = "D11";
34
35 pinMovD = "D1@";
36 pinMovE = "D5";
setupm | abCodem | motortest2m | \
37 pinMovFPosY = "D6";
38 pinMovFlegy¥ = “D6";
39 pinMovFZ = "D5";
40
41
42 configurePin(a2,pinDird, 'DigitalOutput’)
43 configurePin(a2,pinDirB, 'DigitalOutput’)
44 configurePin(a2,pinDirCPosY, DigitalOutput’)
45 configurePin(al,pinDirCNeg¥, 'DigitalOutput')
46 configurePin(al,pinDirCX, 'DigitalOutput’)
47 configurePin(al,pinDirD, 'DigitalOutput’)
48 configurePin(a2,pinDirE, 'DigitalOutput’)
49 configurePin(al,pinDirFZ, 'DigitalOutput’)
50 configurePin(a2,pinDirFPosY, 'DigitalOutput’)
51 configurePin(al,pinDirFNeg¥, 'DigitalOutput')
52
53 configurePin(a2,pinMovA, "PuM")
54 configurePin(a2,pinMovB, "PUM")
55 configurePin(a2,pinMovCPosY, "PWM")
56 configurePin(al,pinMovClegy, " PWM")
57 configurePin(al,pinMovCX, 'PWM")
58 configurePin(al,pinMovD, 'PWM")
59 configurePin(a2,pinMovE, "PUM")
60 configurePin(al,pinMovFPosY, "PWM")
61 configurePin(a2,pinMovFlegy, ' PWM")
62 configurePin(al,pinMovFZ, 'PUM")
63
64
65
66 directionPinsl = [pinDirFZ, pinDirCNeg¥, pinDirFNeg¥, pinDirD, pinDirCX];
67 directionPins2 = [pinDirA, pinDirB, pinDirCPosY, pinDirFPosY, pinDirE];
63
69
70 movementPinsl = [pinMovFZ, pinMovCNegy, pinMovFleg¥, pinMovD, pinMovCX];
71 movementPins2 = [pinMovA, pinMovB, pinMovCPosY, pinMovFPosY, pinMovE];
72

86

| setupm | abCodem i | motortest2m = | + |

75 i=1;

76

77 if currentfbIndex < desiredIndex

78 [= while currentdbIndex < desiredIndex

79 E

8o [while i<=5

81 deltalength = abs(abMatrix(currentAbIndex,i)-abMatrix(currentAbIndex+1,i));
82

83 rotationDuration = deltalength*116.886;

84

85 if abMatrix(currentfbIndex+1,i) > abMatrix(currentAbIndex,i)
86 writeDigitalPin{al,directionPins1(i),1)

87 writeDigitalPin(a2,directionPins2(i),1)

88 else

89 writeDigitalPin(al,directionPins1(i),®)

2] writeDigitalPin(a2,directionPins2(i),@)

91 end

92

a3 writePWMDutyCycle(al,movementPins1(i),@)

94 writePWMDutyCycle(a2,movementPins2(i),a)

95 minDutyCycle = @.03;

96 maxDutyCycle = @.12;

97 writePWMDutyCycle(al,movementPins1(i),minDutyCycle)

98 writePWMDutyCycle(a2,movementPins2(i), minDutyCycle)

99

188 startTime = tic;

1e1

102 [-] while toc(startTime) < rotationDuration

183 % Adjust the duty cycle gradually to simulate rotation
104 currentDutyCycle = minDutyCycle + (toc(startTime) / rotationDuration)...
185 * (maxDutyCycle - minDutyCycle);

186 writePWMDutyCycle(al, movementPins1(i), currentDutyCycle);
107 writePWMDutyCycle{a2, movementPins2(i), currentDutyCycle);
103

189 % Add a small delay for smoother motion (adjust as needed)
118 pause(8.81);

87

| setupm | abCodem * | motortest2m | + |
111 [' end)
112
113 % Stop the servo motor by setting the duty cycle to @
114 writePWMDutyCycle({al, movementPins1(i), @);
115 writePWMDutyCycle(a2, movementPins2(i), @);
116 i = i+1;
117 | end
118 currentAbIndex = currentfbIndex + 1;
119 i=1;
120 | end
121 else
122 [while currentAbIndex > desiredIndex
123 E
124 [- while i<=5
125 deltalength = abs(abMatrix(currentAblndex,i)-abMatrix(currentAbIndex-1,1));
126
127
128 rotationDuration = deltalength*116.886;
129
130
131 if abMatrix(currentAbIndex-1,i) > abMatrix(currentAbIndex,i)
132 writeDigitalPin(al,directionPins1(1i),1)
133 writeDigitalPin(a2, directionPins2(i),1)
134 else
135 writeDigitalPin(al,directionPins1(1i),8)
136 writeDigitalPin(a2,directionPins2(1i),0)
137 end
138
139 writePWMDutyCycle(al, movementPins1(i),®)
140 writePWMDutyCycle(a2, movementPins2(1i),@)
141 minDutyCycle = 8.83;
142 maxDutyCycle = @.12;
143 writePWMDutyCycle(al, movementPinsl(i),minDutyCycle)
144 writePWMDutyCycle(a2, movementPins2(i), minDutyCycle)
145
146
147 startTime = tic;
148
149 while toc(startTime) < rotationDuration
158 % Adjust the duty cycle gradually to simulate rotation
151 currentDutyCycle = minDutyCycle + (toc(startTime) / rotationDuration})...
152 * (maxDutyCycle - minDutyCycle);
153 writePWMDutyCycle(al, movementPins1(i), currentDutyCycle);
154 writePWMDutyCycle(a2, movementPins2(i), currentDutyCycle);
155
156 % Add a small delay for smoother motion (adjust as needed)
157 pause(0.81);
158 end
159
160 % Stop the servo motor by setting the duty cycle to @
161 writePWMDutyCycle(al, movementPinsl(i), 8);
162 writePWMDutyCycle(a2, movementPins2{i), @);
163 i= il
164 |- end
165 currentAbIndex = currentAbIndex - 1;
166 i=1;
167 end
168 end
169 clear a1
17e clear a2
171 - end

88

| setup.m motortest2m | flexCode.m \ abCode.m | + |
1 function [currentFlexIndex] = flexCode(desiredIndex)
2
3 global currentFlexIndex;
4
5 global currentFlexIndex
6 global flexMatrix;
7
8 if currentFlexIndex > 1
9 flexCode(1l)
18 end
11
12 al = arduino('COM4", "Uno');
13 a2 = arduino('COM3", 'Unc');
14
15 pinDird = "D12";
16 pinDirB = "D13";
17 pinDirCPosY = "D3";
18 pinDirCNeg¥ = "D3";
19 pinDirCX = "D13";
20
21 pinDirD = "D12";
22 pinDirE = "D4";
23 pinDirFPosY = "D7";
24 pinDirFNegy = “D7";
25 pinDirkFZ = "D4";
26
27
28
29 pinMovA = "D1@";
EL pinMovB = "D11";
31 pinMovCPosY = "D9";
32 pinMovCNeg¥ = "Da";
33 pinMovCX = "D11";
34
35 pinMovD = "D1@";
36 pinMovE = "D5";
| setupm | motortest2m | flexCode.m | abCodem | + |
37 pinMovFPosY = "D&";
38 pinMovFlNeg¥ = "D&";
39 pinMovFZ = "D5";
48
41
42 configurePin(a2,pinbird, 'DigitalOutput’)
43 configurePin(a2,pinDirB, 'DigitalOutput')
44 configurePin(a2,pinDirCPosY, 'DigitalOutput’)
45 configurePin(al,pinDirCNegy¥, 'DigitalOutput’)
46 configurePin(al,pinDirCX, 'DigitalOutput’)
47 configurePin(al,pinDirD, 'DigitalOutput’)
43 configurePin(a2,pinDirE, 'DigitalOutput')
49 configurePin(al,pinDirFZ, 'DigitalOutput’)
58 configurePin(a2,pinDirFPosY, "DigitalOutput’)
51 configurePin(al,pinDirFNegY¥, 'DigitalOutput’)
52
55 configurePin(a2,pinMova, "PWM™)
54 configurePin(a2,pinMovB, "PWM")
55 configurePin(a2,pinMovCPosY, "PWM")
56 configurePin(al,pinMovChegy, "PWM")
57 configurePin(al,pinMovCX, "PWM")
58 configurePin(al,pinMovD, "PWM")
59 configurePin(a2,pinMovE, "PWM")
68 configurePin(al,pinMovFPosY, "PWM")
61 configurePin(a2,pinMovFlegy, 'PWM")
62 configurePin(al,pinMovFZ, "PUM")
63
64
65
66 directionPinsl = [pinDirFZ, pinDirCNeg¥, pinDirFMegy, pinDirD, pinDirCX];
67 directionPins2 = [pinDirA, pinDirB, pinDirCPosY, pinDirFPosY, pinDirE];
68
69
70 movementPinsl = [pinMovFZ, pinMowCHeg¥, pinMovFNeg¥, pinMovD, pinMovCX];
71 movementPins2 = [pinMovA, pinMovB, pinMovCPosY, pinMovFPosY, pinMovE];
72

&9

75 i-1;
76

77 if currentFlexIndex < desiredIndex

78 [while currentFlexIndex < desiredIndex

79 E

8o while i<=5

81 deltalength = abs(flexMatrix(currentFlexIndex,i)-flexMatrix(currentFlexIndex+1,i));
82

83 rotationDuration = deltalength*116.886;

84

85 if flexMatrix(currentFlexIndex+1,i) > flexMatrix(currentFlexIndex,i)
86 writeDigitalPin(al,directionPins1(i),1)

87 writeDigitalPin(a2,directionPins2(i),1)

88 else

89 writeDigitalPin(al,directionPins1(i),@)

L] writeDigitalPin(a2,directionPins2(i),@)

91 end

92

a3 writePWMDutyCycle(al,movementPins1(1i),@)

94 writePWMDutyCycle(a2,movementPins2(1),@)

95 minDutyCycle = @.03;

96 maxDutyCycle = 8.12;

97 writePWMDutyCycle(al, movementPinsl (i), minDutyCycle)

98 writePWMDutyCycle(a2,movementPins2(1),minDutyCycle)

99
188 startTime = tic;
181
102 [while toc(startTime) < rotationDuration
183 % Adjust the duty cycle gradually to simulate rotation
184 currentDutyCycle = minDutyCycle + (toc(startTime) / rotationDuration)...
185 * (maxDutyCycle - minDutyCycle);
106 writePWMDutyCycle(al, movementPinsl(i), currentDutyCycle);
187 writePWMDutyCycle(a2, movementPins2(i), currentDutyCycle);
188
189 % Add a small delay for smoother motion (adjust as needed)
118 pause(8.081);

\ setup.m | motortest2m | flexCodem abCode.m | + |
111 end
112
113 % Stop the servo motor by setting the duty cycle to @
114 writePWMDutyCycle(al, movementPinsl(i), @);
115 writePWMDutyCycle(a2, movementPins2(i), @);
116 3= i+l
117 end
118 currentFlexIndex = currentFlexIndex + 1;
119 i=1;
120 end
121 else
1221[- while currentFlexIndex > desiredIndex
12SE
124 - while i<=5
125 deltalength = abs(flexMatrix{currentFlexIndex,i)-flexMatrix(currentFlexIndex-1,1));
126
127
128 rotationDuration = deltalength*116.886;
129
13e
131 if flexMatrix(currentFlexIndex-1,i) > flexMatrix(currentFlexIndex,i)
132 writeDigitalPin(al,directionPins1(i),1)
133 writeDigitalPin(a2, directionPins2(i),1)
134 else
5 writeDigitalPin(al,directionPins1(i),®)
136 writeDigitalPin(a2,directionPins2(i),a)
137 end
138
139 writePWMDutyCycle(al,movementPins1(i),@)
148 writePWMDutyCycle (a2, movementPins2(1),0)
141 minDutyCycle = 8.83;
142 maxDutyCycle = ©.12;
143 writePWMDutyCycle(al,movementPins1(i),minDutyCycle)
144 writePWMDutyCycle(a2,movementPins2(1),minDutyCycle)
145
146

90

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
1e4
165
166
167
168
169
17@
171

startTime = tic;

=] while toc(startTime) < rotationDuration

% Adjust the duty cycle gradually to simulate rotation

currentDutyCycle = minDutyCycle + (toc(startTime) / rotationDuration)..

* (maxDutyCycle - minDutyCycle);
writePWMDutyCycle(al, movementPinsl{i),
writePWMDutyCycle(a2, movementPins2(i),

currentDutyCycle);
currentDutyCycle);

% Add a small delay for smoother motion (adjust as needed)

pause(@.081);

= end

% Stop the servo motor by setting the duty cycle to @

writePWMDutyCycle(al, movementPinsl{i), @);
writePWMDutyCycle(a2, movementPins2{i), @);

i=1i+1;

~ end

currentFlexIndex = currentFlexIndex - 1;
i=1;

~ end

end
clear al
clear a2

5 end

classdef i < matlab 5:

% Properties that correspond to app components
properties (Access = public)

UTFigure matlab. ui.Figure
Showiii resChecksox matlab. ui.control.CheckBox
Huneralflexionslider matlab.ui.control.Slider
HuneralFlexionsliderlabel — matlab.ui.control.Label
Huneralabductionslider matlab.ui.control.Slider
Huneralabductionslideriabel matlab.ui.control.Label
UIAxesTop matlab. ui.control.UTAxes
ULAxesside matlab. ui.control.UTAxes
ULAxesFront matlab. ui.control.UTAxes
UTAxesAngled matlab. ui.control.UTAxes
end
% Callbacks that handle component events
methods (Access = private)
% Code that executes after component creation
function startupFen(app)
setu
global xCoordsPositiontiatrixab
glabsl yCoordsPositioniiatrixab
globsl zCoordsPositioniiatrixab
global FHasterxab
globsl FasterVAb
globsl FasterZab
plot3(app .UTAxesAngled, [xCoordsPositiontatrixAb(1,1) xCoordsPositi ixAb(1,2) xC (1,5) xCoordsPositionatrixAb(1,3) xC 1,4) xC ftionatrixab(1,1)], ...
Itye itd ixAb(1,1) yCoordsPosi ixAB(1,2) yC it ixAb(1,5) yCoordsPosi ixAb(1,3) yC i ixAb(1,4) yC ontatrixAb(1,1)],
(=< iti ixAb(1,1) zCoordsPosi xAB(1,2) G iti ixAb(1,5) zCoordsPosi 1,3) =¢ i ixAb(1,4) zC ontlatrixab(1,1)]," .k
[x< iti ixAb(5,2) EN e fonhgtrixAb(s,2))], [z ftionMatrixAb(5,2) FasterzAb(1)], '.k-');
34
35
36 plot3(app .UTAxesFront, [xC i 1,1) xC it ixAb(1,2) xCoordsPositi 1,5) xC it ixAb(1,3) xCoordsPositionMatrixAb(1,4) xCoordsPositionfatrixab(1,1)], ..
37 [y< iti ixAb(1,1) yCoordsPosi 1xAB(1,2) ¥C it ixAb(1,5) yCoordsPosi (1,3) & i iXAb(1,4) ¥ onMatrixab(1,1)],
38 [zCoordsPositiontatrixab(1,1) zCoordsPositiontatrixab(1,2) zCoordsPositiontiatrixab(1,5) zCoordsPositionMatrixAb(1,3) zCoordsPositiontatrixAb(1,4) zCoordsPositionMatrixab(1,1)]," .k
39 [xCoordsPositiontatrixb(s,2) 1)1, [yCoordsPositiontiatrixab(s,2) 1)], [zCoordsPositionatrixab(5,2) Fiasterzab(1)], ".k-');
a0
a1 app.UIAxesFront. CameraPosition = [0.85,1,-0.075];
22 app.UlAxesFront. CameraTarget = [0.05,0,-0.075];
23
44 plot3(app.UTAxesSide, [xCoordsPositionfatrixab(1,1) xCoordsPositiontatrixab(1,2) xCoordsPositionMatrixAb(1,5) xCoordsPositiontatrixAb(1,3) xCoordsPositioniatrixab(1,4) xCoordsPositionMatrixAb(1,1)]s ...
a5 [¥< iti ixAb(1,1) yC i ixAb(1,2) yC iti ixAb(1,5) yCoordsPosi 1,3) yC i i i 1aab(1,1)],
a6 [=¢ iti ixAb(1,1) zC i ixAb(1,2) zC iti ixAb(1,5) zCoordsPosi 1,3) =C i $Ab(1,4) C: £aab(1,1)],"
a7 [iti ixAb(5,2) 1, [y i ixab(5,2) 1)1, [=C xAb(5,2) FasterZab(1)], *.k-');
a8
19 app. UlAxesSide.CameraPosition = [-1,0,-0.875];
50 app. UAxesSide. CaneraTarget = [0,0,-0.675];
51
52 plot3(app.UTAxesTop, [xCoordsPosi ixAb(1,1) xC i ixAb(1,2) xC i trixAb(1,5) xC i 1,3) xC 1,4) xCoordsPositionatrixAb(1,1)],
53 [y< iti ixAb(1,1) yC i 1xAb(1,2) yC iti ixAb(1,5) yCoordsPosi ixAb(1,3) yC i £Ab(1,4) yC b (1,1)],
54 [=¢ iti ixAb(1,1) zC i 1,2) =¢ iti ixAb(1,5) zCoordsPosi 1,3 i $xAb(1,4) =C b (1,1)],"
55 [xC iti ixAb(5,2) 1, [y i $xab(5,2) 1)1, [=C xAb(5,2) FasterZab(1)], '.k-');
56
57 app. UTAxesTop. CaneraPosition = [6.05,8,2];
58 app.UlAxesTop.CaneraTarget = [0.05,0,8];
59
0 global currentAbIndex
61 global currentFlexIndex
62
63 if currentabIndex > 1
64 abCode (1)
65 elseif currentflexindex > 1
66 flexCode(1)
67 end
68
6 end
70
71 % Value changed function: HumeralAbductionslider
7201 function HumeralAbductionsliderValueChanging(app, event)
73 global xCoordsPositioniiatrixib
74 global yCoordsPositioniiatrixib
75 global zCoordsPositioniiatrixib
76 global FilasterXab
77 global FasterVab
78 globsl FasterZab
79
s0 global masterPointAdb
81 global masterPointBAb
82 global masterPointCAb
83 global masterPointDAb
84 globsl masterPointEAb
85 globsl masterfointrab
86

91

global motorA

88 global motors
89 global motorCPosY

90 global motorChegy

o1 global motorcx

9 global motorD

03 global motorE

% global motorFz

o5 global motorFPosy

9 global motorflegy

o7

o5 changingValue = event.Value;

99 app.HumeralFlexionslider. Value = 5

100 getPoint = round((round(changingValue,1)/0.1)+1);

101

102 if app.showiiresCheckBox. Value

103 wireColor =

104 elseif app.Shounireschecksox.Value

105 uireColor = 'w:square’

106 en

107

108 plot3(app.UlAxesAngled, [masterPointAlb(getPoint,1) motora(1)], |masterPointAib(getPoint,2) motorA(2)], [masterPointAtb(getPoint,3) motorA(3)], wireColor, .

108 [nasterPointBAb(getPoint, 1) motorB(1)], [masterPointBAb(getPoint,2) motor8(2)], [masterPointBAb(getPoint,3) motord(3)], wireColor, ...

118 [nasterpointCAb(getPoint, 1) motorCPosY(1)], [masterPointCAb(gethoint,2) motorcPosy(2)], [masterPointCab(getPoint,3) motorcPos¥(3)], wireColor,

111 [masterpointCAb(getPoint, 1) motorClegY(1)], [masterPointCAb(getRoint,2) motorCNegy(2)], [masterPointCAb(getPoint,3) motorCeg¥(3)], wireColor,

112 [masterPointCAb(getPoint, 1) motorCX(1)], [mesterPointCAb(getPoint,2) motorCX(2)], [masterPointCAb(getPoint,3) motorcX(3)], wireColor,

113 [masterPointDAb(getPoint, 1) motorD(1)], [masterPointDAb(getPoint,2) motorD(2)], [masterPointDAb(getPoint,3) motord(3)], wireColor,

114 [masterpointEAb(getPoint, 1) motorE(1)], [masterPointEAb(getPoint,2) motort(2)], [mesterPointEdb(getPoint,3) motort(3)], wireColor,

15 [nasterpointFAb(getPoint, 1) motorFPosY(1)], [masterPointFAb(gethoint,2) motorFPosy(2)], [masterPointFAb(getPoint,3) motorFPos¥(3)], wireColor, ...

116 [nasterpointFAb(getPoint, 1) motorFliegY(1)], [masterPointFab(gethoint,2) motorFegy(2)], [masterPointFAb(getPoint,3) motorFlegy(3)], wireColor, ...

17 [rasterPointrab(getPoint,1) motorFZ(1)], [masterpointrab(getpoint,2) motorr2(2)], [nesterrointrab(getpoint,3) motorrZ(3)], wireColor,

118 [xc getPoint, 1) xC. itiontatrixab(getPoint,2) xCoordsPositiontiatrixAb(getPoint,5) xCoordsPasitiontatrixAb(getPaint,3) xC i getPoint, 4) xC i i SN DI
19 [yCoordsPositiontiatrixab(getPoint, 1) yCoordsPositiontiatrixab(getPoint,2) yCoordsPositiontiatrixab(getPoint,s) yCoordsPositiontatrixab(getPoint,3) y(rdsPositi ixAb(getPoint,4) yCoordsPositiontiatrixab(getPoint,1)],
120 [zCoordsPositiontatrixab(getPoint, 1) zCoordsPositiontatrixab(getPoint,2) zCoordsPositioniatrixab(getPoint,5) zCoordsPositioniatrixab (getPoint,3) zCoord: ixAb(getPoint,a) zCoordsPositioniatrixab(getroint,1)],"
121 [xCoordsPos itionhatrixab(getPoint,2) FHasterxab(getPoint,1)], [yCoordsPositioniatrixab(getPoint,2) FMasterYab(getPoint,1)], [z (uur-dsPus)t)unMatr‘)xAb(gEtPu)nt 2) Fiiasterzab(getPoint,1)], ".k-")

122

123

124 plot3(app.UlixesFront, [masterPointAAb(getPoint,1) motora(1)], [dasterPointAlb(getPoint,2) motorA(2)], [masterPointAtb(getPoint,3) motorA(3)], wireColor,

125 [nasterPointBAb(getPoint, 1) motorB(1)], [masterPointBAb(getPoint,2) motor8(2)], [mesterPointBib(getPoint,3) motorB(3)], wireColor,

126 [masterPointCAb(getPoint, 1) motorCPosY(1)], [masterPointCAb(getHoint,2) motorCPosY(2)], [masterPointCAb(getPoint,3) motorCPosY(3)], wireColor,

127 [nasterPointCAb(getPoint, 1) motorClegY(1)], [masterPointCAb(getRoint,2) motorCNegy(2)], [masterPointCAb(getPoint,3) motorCeg¥(3)], wireColor,

128 [masterPointCAb(getPoint, 1) motorCX(1)], [mesterPointCAb(getPoint,2) motorCX(2)], [masterPointCAb(getPoint,3) motorcX(3)], wireColor,

129 [nasterpointDAb(getPoint, 1) motorD(1)], [masterPointDAb(getPoint,2) motorD(2)], [mesterPointDAb(getPoint,3) motorD(3)], wireColor,

130 [masterpointeab(getPoint,1) motorE(1)], [1 12) motorg(2)1, [i getPoint,3) motorE(3)], wireColor, ...

131 [masterpaintFAb(getPoint,1) motorFPasy(1)], [masterPointFAb(gethaint,2) 2], [getPoint, 3) 3)1, wirecolor,

132 [masterpaintFAb(getPoint,1) motorfiegy(1)], [masterPointFAb(gethoint,2) 2], [getPoint, 3) gY(3)1, wireColor,

133 [masterpointFAb(getPoint,1) motorFZ(1)], [masterPointFAb(getPoint,2) motorfz(2)], [masterPointFAb(getPoint,3) motorFZ(3)], wireColor,...

134 [xCoordsPositioniat rixAb(getPoint,1) xCoordsPositioniatrixAb(gelPoint,2) xCoordsPositionMatrixab(getPoint,5) xCoordsPositioniatrixAb(getPoint,3) xCoordsPositioniatrixAb(getPoint,4) xCoordsPositiontatrixAb(getPoint,1)],
135 [yCoordsPositioniat rixAb(getPoint,1) yCoordsPositioniatrixAb(gelPoint,2) yCoordsPositionMatrixeb(getPoint,s) yCoordsPositioniatrixAb(getPoint,3) yCoordsPositioniatrixAb(getPoint,4) yCoordsPositionfatrixAb(getPoint,1)],
136 [zCoordspositiontiat rixAb(getPoint,1) zCoordsPositioniatrixAb(gelPoint,2) zCoordsPositiontatrixab(getPoint,s) zCoordsPositioniatrixAb(getPoint,3) zCoordsPositiontiatrixAb(getPoint,4) zCoordsPositiontatrixab(getPoint,1)],"
137 [xCoordspositioniat rixab(getPoint,2) Fiasterxab(getPoint,1)], [)CoordsPositioniatrixab(getPoint,2) FMastervAb(getPoint,1)], [zCoordsPositionMatrixab(getPoint,2) FasterZab(getPoint,1)], .k-")

138

139

140 app.UlAxesFront. Camerafosition = [0.05,1,-0.075];

1a1 app.UlAxesFront.CaneraTarget = [0.05,0,-0.675];

142

143 plot3(app.Ulaxesside, [masterPumtAAh(getPu)nt 1) motora(1)], [msterpointarb(getPoint,2) motorA(2)], [masterPointAlb(getPoint,3) motora(3)], wireColor,

144 [masterPointBAb(getPoint,1) motorB(1)], ,2) motor8(2)], [getPoint,3) motor8(3)], wireColor,

145 [masterpointCab(getPoint,1) maturcvusv(])], [masterPointCAb(gethoint,2) motorCPosY(2)], [masterPointCAb(getPoint,3) motorCPosY(3)], wireColor,

135 [masterpointCab(getPoint,1) motorClegy(1)], [masterPointCab(getfoint,2) motorCNeg¥(2)], [masterPointCAb(getPoint,3) motorChegy(3)], wireColor,

147 [masterPointCAb(getPoint, 1) motor(X(1)], [masterPointCAb(getPoint,2) motorCX(2)], [masterPointCAb(getPoint,3) motorCX(3)], wireColor, ...

148 [masterpointDab(getPoint, 1) motord(1)], [,2) motord(2)1, [getPoint,3) motord(3)], wireColor, ...

149 [masterPointEAb(getPoint, 1) motorE(1)], [i int,2) motorE(2)], [i getPoint,3) motorE(3)], wireColor, .

150 [masterPointFAb(getPoint, 1) motorFPos¥(1)], [masterPointFAb(gethoint,2) z)], [getPoint, 3) 3)], wireColor,

151 [masterPointFAb(getPoint, 1) motorFleg¥(1)], [masterPointFAb(gethoint,2) [i getPoint, 3) gY(3)], wireColor,

152 [nasterPointFAb(getPoint,1) motorf2(1)], [mesterpointFib(getboint,2) motorFZ(2)], [masterl’uu\tFAb(getPu)nt 3) motorF2(3)], wireColor,...

153 [xC getPoint,1) xC £xAb(gefPoint,2) xC: ixAb(getPoint, 5) xCoordsPositionitatrixAb(getPoint,3) xC: i £xib(getPoint,a) xC iti i int,1)],
154 [y it ixAb(getPoint,1) yC: iti £x4b(gefPoint,2) yC: iti ixAb(getPoint, 5) yCoordsPositionitatrixAb(getPoint,3) yC: i1 £xib(getPoint,a) yC iti i int,1)],
155 [z it ixib(getPoint,1) = its $xab(getPoint, 2) zC it ixab(getpoint,5) CoordsPositiontatrixib(getPoint,3) = i fxab(getPoint,a) zC iti i int,1)],
156 [xc il ixAb(getPoint,2) (getPoint,1)], [yc iti 1xb(getPoint, 2) getPoint,1)], [C i getPoint, 2) getpoint,1)], '

157

158

159 app.ULAxesside.CaneraPosition = [-1,0,-0.075];

160 app.UlAxesSide.CaneraTarget = [0,0,-0.075];

161

162 Plot3 (app-UTixesTop, [masterpointash (getpoint, 1) motora (1], [medterpointadd(getpoint, 2) motora(2)], [masterpointaib (getPoint,3) motora(3)], wireColor,

163 [masterPointBab(getPoint,1) motorB(1)], [,2) motorB(2)], [i getPoint,3) motorB(3)], wireColor, ...

164 [masterPointCab(getPoint,1) motorCPos¥(1)], [masterPointCAb(getioint,2) motorCPosY(2)], [masterPointCAb(getPoint,3) motorCPosY(3)], wireColor,

165 [mesterPointCAb(getPoint,1) motorCieg¥(1)], [masterPointCAb(gethoint,2) motorCNegY(2)], [masterPointCAb(getPoint,3) motorCNegY(3)], wireColor,

165 [masterPointCab(getPoint, 1) motorCX(1)], [masterPointCAb(getPoint,2) motorCX(2)], [masterPointCAb(getPoint,3) motorcX(3)], wireColor

167 [masterPointDAb(getPoint,1) motord(1)], [N int,2) motord(2)], [3 getPoint,3) motord(3)], wireColor, .

168 [masterPointEAb(getPoint,1) motorE(1)], [y int,2) motorE(2)], [3 getPoint,3) motort(3)], wireColor, .

169 [masterPointFab(getPoint, 1) motorFPos¥(1)], [masterPointFAb(getioint,2) 21, [getpoint, 3) 3)1, wireColor,

170 [masterPointFab(getPoint, 1) motorFleg¥(1)], [masterPointFAb(getioint,2) 21, [getPoint, 3) £Y(3)], wireColor,

171 [nasterpotntrib(getpoint, 1) motorfZ(1)], [mesterpointrab(getpotnt,2) moturFZ(Z)], [rasterPointFAb(getPoint,3) motorF2(3)], wirecolor,. ..

172 [xc i 134D (getPoint 1) xC $xab(getPoint, 2) xi ixab(getpoint,) CoordsPositionliatrixib(getPoint,3) xC i xAb(getPoint,4) xC: L)1
173

173 [yCoordspositioniiatrixab(getPoint, 1) yCoordsPositioniatrixAb(getPoint,2) yCoordsPositionlatrixAb(getPoint,5) yCoordsPositioniatrixAb(getPoint,3) yCoordsFositioniatrixAb(getPoint,a) yCoordsFositioniatrixAb(getPoint,1)],
174 [zCoordspositioniiatrixab(getPoint, 1) zCoordsPositioniatrixAb(getPoint,2) zCoordsPositiontiatrixab(getPoint,s) zCoordsPositioniatrixab(getPoint,3) zCoordsPositioniatrixab(getPoint,a) zCoordsPositioniatrixab(getPoint,1)]," .k
175 [xCoordsPositiontiatrixab(getPoint,2) FhasterXab(getPoint,1)], [yCoordsPositiontatrixab(getPoint,2) FasterYAb(getPoint,1)], [zCoordsPositiontatrixAb(getPoint,2) FasterZab(getPoint,1)], '.k-'

176

177

175 app.UlAxesTop. CameraPosition = [0.95,0,1];

179 app.UlAxesTop. CameraTarget = [2.65,0,0]5

180

181

182 global currentFlexIndex

183

184 if currentFlexIndex > 1

185 FlexCode(1)

186 abCode(getPoint(1))

187 else

185 abCode (getPoint (1))

189 end

190 end

191

192 % Value changed function: HumeralFlexionslider

103 function HumeralFlexionsliderValueChanging(app, event)

194

195 global xCoordsPositioniatrixFlex

196 global yCoordsPositioniatrixFlex

197 global zCoordsPositiontiatrixFlex

198 glabal FlasterxFlex

199 global FilasteryFlex

200 global Filasterzlex

201

202

203 global masterPointaFlex

204 global masterPointBFlex

205 global masterPointCFlex

206 global masterPointDFlex

207 global masterPointEFlex

208 global masterPointFFlex

209

210

211 global motora

212 global motord

213 global motorCPosy

214 global motorChegy

215 glabal motorcx

216

92

716 [global motorD
217 | global motore
215 | global motorfz
219 | global motorFPosy
220 | global motorFliegy
221
222 | changingvalue = event.Value;
223 | app. Humeralbductionslider.Value =
224 | getPoint = round((round(changingvalue,1)/8.1)+1);
225
226 | £f oppShovliiresCheckBox. Value
227 wireColor = 'r
225 | elseif app.ShouiirescheckBox Value
220 wireColor = ‘wisquare’;
230 | end
231
232
233 | plot3(app.UlAxesangled, [masterPointAFlex(getPoint,1) motora(1)], [masterPointAFlex(getPoint,2) motorA(2)], [masterPointaFlex(getPoint,3) motora(3)], wireColor, ...
234 | [masterPointBFlex(getPoint,1) motors(1)], [masterFointsFlex(getPoint,2) motors(2)], [masterfointbFlex(getPoint,3) motorB(3)], wireColor,
235 | [masterPointCFlex(getPoint,1) motorCPosY(1)], [masterPointCFlex(getPoint,2) motorCPosy(2)], [masterPointCFlex(getPoint,3) motorCPosy(3)], wireColor,
236 | [masterPointCFlex(getPoint,1) motorCliegY(1)], [masterPointCFlex(getPoint,2) motorCegy(2)], [masterPointCFlex(getPoint,3) motorCNegy(3)], wireColor,
237 | [masterPointCFlex(getPoint,1) motor(X(1)], [masterPoint(Flex(getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorX(3)], wireColor, ...
238 | [masterpointDFlex(getPoint,1) motord(1)], [masterPointDFlex(getPoint,2) motord(2)], [mesterPointdFlex(getPoint,3) motorD(3)], wireColor, ...
239 | [masterPointEFlex(getPoint,1) motort(1)], [masterPointEFlex(getPoint,2) motorE(2)], [masterPointEFlex(getPoint,3) motor€(3)], wireColor,
240 | [masterPointFFlex(getPoint,1) 11, [intFFlex(getPoint, 2) 2)]. [masterPointfF lex(getPoint,3) motorfPosv(3)], wirecolor,
241 | [masterpointFFlex(getPoint,1) 11, [intFFlex(getPoint, 2) 2)], [masterPointFflex(getPoint,3) motorflegY(3)], wireColor,
282 | [mesterpointFFlex(getPoint, 1) motorrz(1)], [masterPau\tFF]ex(get?c)nt 2) motorF2(2)], [nesterpointFFlex(getpoint,3) motore2(3)], wireColor, ...
243 | [xC Lex (getPoint,1) xC. 12) xC ixFlex(getPoint,5) xCoordsPositiontiatrixFlex(getPoint,3) xCoordsPositiontlatrixFlex(getPoint,4) xCoordsPositiontlatrixFlex(getPoint,1)],
284 | [yC i Lex(getPoint,1) v i 12) ¥C iti ixFlex(getPoint,5) yCoordsPositiontiatrixflex(getPoint,3) yCoordsPositiontatrixFlex(getPoint,4) yCoordsPositionHatrixFlex(getPoint,1)],
245 | [zCoordsPositiontatrixFlex(getPoint,1) ztunrdsPuilt)DnNatrlelex(getPu)nt 2) zCoordsPositionMatrixFlex(getPoint,5) zCoordsPositionfiatrixFlex(getPoint,3) zCoordsPositiontatrixFlex(getPoint,4) zCoordsPositiontiatrixFlex(getPoint,1)],"
246 | [xCoordsPositioniatrixFlex(getPoint,2) FMasterXFlex(getPoint,1)], [yCoordsPositionMatrixFlex(getPoint,2) FMasterYFlex(getPoint,1)], [2CoordsPositioniatrixFlex(getPoint,2) FMasterZFlex(getPoint,1)], '.k-")
247
248
249 | plot3(app.UlAxesFront, [masterPointAFlex(getPoint,1) motorA(1)], [masterPointAFlex(getPoint,2) motorA(2)], [masterPointAFlex(getPoint,3) motorA(3)], wireColor,
250 | [masterPointBFlex(getPoint,1) motor8(1)], [masterPoint8Flex(getPoint,2) motors(2)], [masterPointBFlex(getPoint,3) motorB(3)], wireColor,
251 | [masterPointCFlex(getPoint,1) motorCPosY(1)], [masterPointCFlex(getPoint,2) motorCPosY(2)], [masterPointCFlex(getPoint,3) motorCPosv(3)], wireColor,
252 | [masterPointCFlex(getPoint,1) motorCliegY(1)], [masterPointCFlex(getPoint,2) motorCliegy(2)], [masterPointCFlex(getPoint,3) motorCNegy(3)], wireColor,
253 | [masterPointCFlex(getPoint,1) motorcX(1)], [masterPointCFlex(getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorcX(3)], wireColor, ...
254 | [masterPointDFlex(getPoint,1) motord(1)], [masterPointDFlex(getPoint,2) motorD(2)], [masterPointDFlex(getPoint,3) motorD(3)], wireColor, ...
255 | [masterpointEFlex(getPoint,1) motor£(1)], [masterPointeFlex(getPoint,2) motorf(2)], [masterPointEFlex(getPoint,3) motorg(3)], wireColor,
256 | [masterpointFFlex(getPoint,1) motorFPosY(1)], [masterPointFFlex(getPoint,2) motorFPasy(2)], [masterPointfflex(getPoint,3) motorFPosy(3)], wirecolor, .
257 | [masterpointFFlex(getPoint,1) motorfliegY(1)], [masterPointFFlex(getPoint,2) motorFliegy(2)], [masterPointfflex(getPoint,3) motorFegy(3)], wireColor,
258 | [masterpointFFlex(getoint, 1) motorf(1)], [masterPointsF lex(getPoint,2) motorfZ(2)], [masterpointrFlex(getpoint,) motorf(3)], wireColor, ...
9| .
259 | [xCoordsPositiontiatrixFlex(getPoint,1) xCoordsPositionMatrixflex (getPoint,2) xCoordsPositionMatrixFlex(getoint,5) xCoordsPositioniiatrixFlex(getPoint,3) xCoordsPositioniatrixFlex(getPoint,d) xCoordsFositioniatrixFlex(getPoint,1)],
260 | [yCoordsPositiontiatrixFlex(getPoint,1) yCoordsPositionMatrixFlex(getPoint,2) yCoordsPositionMatrixFlex(getPoint,5) yCoordsPositioniiatrixFlex(getPoint,3) yCoordsPositioniatrixFlex(getPoint,4) yCoordsPositioniatrixFlex(getPoint,1)],
261 | [zCoordsPositionMiatrixFlex(getPoint,1) zCoordsPositionMatrixFlex(getPoint,2) 2CoordsPositionMatrixFlex(getPoint,s) zCoordsPositioniiatrixFlex(getPoint,3) zCoordsPositioniatrixFlex(getPoint,a) zCoordsPositioniatrixFlex(getPoint,1)]
262 | [xCoordsPositiontiatrixFlex(getPoint,2) FasterXFlex(getPoint,1)], [yCoordsPositionMatrixFlex(getPoint,2) FiasterYFlex(getPoint,1)], [zCoordsPositioniatrixFlex(getPoint,2) FlasterZFlex(getPoint,1)], ".k-")
263
264 | app.UlAxesFront.CameraPosition = [0.05,1,-0.075];
265 | app.UlAxesFront.CameraTarget = [0.05,0,-0.675];
266
267 | plot3(app.UlAxesSide, [masterPointAFlex(getPoint,1) motorA(1)]], [masterPointAFlex(getPoint,2) motorA(2)], [masterPointAFlex(getPoint,3) motorA(3)], wireColor,
268 | [masterPointBFlex(getPoint,1) motorB(1)], [masterPointBFlex(getPoint,2) motor8(2)], [mesterPoint8Flex(getPoint,3) motorB(3)], wireColor,
269 | [masterPointCFlex(getPoint,1) motorCPosY(1)], [masterPointCFlex(getPoint,2) motorCPos¥(2)], [masterPointCFlex(getPoint,3) motorCPos¥(3)], wireColor, ...
270 | [masterPointCFlex(getPoint,1) motorchegY(1)], [masterPointCFlex(getPoint,2) motorClieg¥(2)], [masterPointCFlex(getPoint,3) motorCNeg¥(3)], wireColor, ...
271 | [masterPointCFlex(getPoint,1) motorCX(1)], [masterPointCFlex(getPoint,2) motorCX(2)], [masterPoint(Flex(getPoint,3) motorCX(3)], wireColor, ..
272 | [masterPointDFlex(getPoint,1) motorD(1)], [masterPointDFlex(getPoint,2) motorD(2)], [mesterPointDFlex(getPoint,3) motorD(3)], wireColor,
275 | [mesterpointeFlex(getpoint,1) motork(1)], [masterpointerlex(getpoint,2) motore(2)], [resterpointtFlex(getPoint,3) motore(3)], wirecolor,
274 | [masterpointFFlex(getPoint,1) . ex(getPoint,2) 2)], [mesterPointFFlex(getPoint,3) motorFPosY(3)], wireColor, ...
275 | [masterpointFFlex(getPoint,1) intFFlex(getPoint,2) 2)], [mesterPointfFlex(getPoint,3) motorFlegy(3)], wireColor, ...
276 | [masterpointFFlex(getPoint,1) motorFz(1)], [masterPointFFlex(getPoint,2) motorFz(2)], [masterPointFFlex(getPoint,3) motorFz(3)], wireColor,...
277 | [xCoordsPositiontlatrixFlex(getPoint,1) xCoordsPositionMatrixFlex (getPoint,2) xCoordsPositionMatrixFlex(getPoint,5) xCoordsPositioniatrixFlex(getPoint,3) xCoordsPositiontatrixFlex(getPoint,4) xCoordsPositioniatrixFlex(getPoint,1)],
278 | [yCoordsPositiontatrixFlex(getPoint,1) yCoordsPositionMatrixFlex(getPoint,2) yCoordsPositionMatrixFlex{getPoint,5) yCoordsPositioniatrixFlex(getPoint,3) yCoordsPositiontatrixFlex(getPoint,4) yCoordsPositioniatrixFlex(getPoint,1)],
279 | [zCoordsPositiontatrixFlex(getPoint,1) zCoordsPositionMatrixFlex(getPoint,2) zCoordsPositionMatrixFlex(getPoint,5) zCoordsPositioniatrixFlex(getPoint,3) zCoordsPositiontatrixFlex(getPoint,4) zCoordsPositioniatrixFlex(getPoint,1)],
280 | [xCoordsPositionMlatrixFlex(getPoint,2) FlasterXFlex(getPoint,1)], [yCoordsPositionMatrixFlex(getPoint,2) FlasterYFlex(getPoint,1)], [zCoordsPositioniatrixFlex(getPoint,2) FllasterZFlex(getPoint,1)], *.k-")
281
282 | app.UlAxesSide.CameraPosition = [-1,0,-0.675];
283 | app.UlAxesSide.CameraTarget = [0,0,-0.675];
284
285 | plot3(app.UIAxesTop, [masterPointAFlex(getPoint,1) motorA(1)], [mesterPointAFlex(getPoint,2) motorA(2)], [mesterPointAflex(getPoint,3) motorA(3)], wireColor, .
286 | [masterPointBFlex(getPoint,1) motorB(1)], [masterPoint8Flex(getPoint,2) motors(2)], [mesterPoint8Flex(getPoint,3) motorB(3)], wireColor,
287 | [masterpointCFlex(getPoint,1) motorCPosY(1)], [masterPointCFlex(getPoint,2) motorCPosY(2)], [masterPointCFlex(getPoint,3) motorCPosY(3)], wireColor, ...
288 | [masterPointCFlex(getPoint,1) motorChegY(1)], [masterPointCFlex(getPoint,2) motorClieg¥(2)], [masterPointCFlex(getPoint,3) motorCNeg¥(3)], wireColor, ...
289 | [masterPointCFlex(getPoint,1) motorcX(1)], [masterPointCFlex(getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorcX(3)], wireColor,
290 | [masterPointDFlex(getPoint,1) motorD(1)], [masterPointDFlex(getPoint,2) motord(2)], [mesterPointDFlex(getPoint,3) motorD(3)], wireColor,
20| mesterroinerlex(getpoint, 1) motere(1)], [nasterpointerlen(getreint,2) actore(n)], [nesterrolnterlex(getpoint,s) motore(3)], wirecolor,
292 | [masterPointFFlex(getPoint,1 I, ex(getPoint,2) 2)], [mesterPointFFlex(getPoint,3) motorFPosY(3)], wireColor, ...
293 | [masterPointFFlex(getPoint,1) motorFlegY(1)], [masteer’ntFF]Ex(getPu)nt,Z) motorFlegY(2)], [masterPointfFlex(getPoint,3) motorfliegY(3)], wireColor, ...
204 | [masterPointFFlex(getPoint,1) motorFZ(1)], [masterPointFFlex(getPoint,2) motorFZ(2)], [masterPointFFlex(getPoint,3) motorFZ(3)], wireColor,...
295 | [xCoordsPositiontlatrixFlex(getPoint,1) xCoordsPositionMatrixFlex(getPoint,2) xCoordsPositionMatrixFlex{getPoint,5) xCoordsPositioniiatrixFlex(getPoint,3) xCoordsPositiontatrixFlex(getPoint,4) xCoordsPositioniatrixFlex(getPoint,1)],
296 | [yCoordsPositiontlatrixFlex(getPoint,1) yCoordsPositionMatrixFlex(getPoint,2) yCoordsPositionMatrixFlex{getPoint,5) yCoordsPositioniatrixFlex(getPoint,3) yCoordsPositioniatrixFlex(getPoint,4) yCoordsPositioniatrixFlex(getPoint,1)],
297 | [zCoordsPositiontatrixFlex(getPoint,1) zCoordsPositionMatrixFlex(getPoint,2) zCoordsPositionMatrixFlex(getPoint,5) zCoordsPositioniiatrixFlex(getPoint,3) zCoordsPositioniiatrixFlex(getPoint,4) zCoordsPositionfatrixFlex(getPoint,1)],"
298 | [xCoordsPositionMlatrixFlex(getPoint,2) FlasterXFlex(getPoint,1)], [yCoordsPositionMatrixFlex(getPoint,2) FlasterYFlex(getPoint,1)], [zCoordsPositioniiatrixFlex(getPoint,2) FllasterZFlex(getPoint,1)], *.k-'
299
300 | app.UlAxesTop.CameraPosition = [0.95,0,1];
301 | app.UlAxesTop.CameraTarget = [8.05,0,0];
se2 |
305 | global currentabIndex
306
367 | if currentAbIndex > 1
308 abCode(1)
309 FlexCode (getPoint (1))
310 | else
311 flexCode (getPoint (1))
312 | end
313 M
314
315 |falue changed function: ShowiresCheckBox
316Ehiction ShouliresCheckSoxValueChanged(app, event)
317 | global xCoordsPositioniatrixFlex
318 | global yCoordsPositiontatrixFlex
319 | global zCoordsPositiontlatrixFlex
320 | global FhasterXFlex
321 | global FHaster¥Flex
322 | global Fhasterzflex
323
324
325 | global masterPointAflex
326 | global masterPointBFlex
327 | global masterPointCFlex
328 | global masterPointDFlex
320 | global masterPointEFlex
330 | global masterPointFFlex
331
332 | global xCoordsPositioniiatrixib
333 | global yCoordsPositioniatrixib
334 | global zCoordsPositiontlatrixib
335 | global FHasterxab
336 | global FHastervAb
337 | global Fhasterzab
338
339 | global masterPointadb
340 | global masterPointBAb
381 | global masterPointCAb
382 | global masterPointDAb
343 | global masterPointEAb
344 | global masterPointFAb
345
346
347 | alohal morars

93

global motora

345 | global motors

349 | global motorCPosY

350 | global motorCNegy

351 | global motorcx

352 | global motord

353 | global motorE

354 | global motorfz

355 | global motorFPosy

356 | global motorFNegy

357

358 | value = app.ShowtiiresCheckBox.Value;

359 | if app.HumeralAbductionSlider.V

360 getPoint = round((round(app. imeratabuztionSlider Value,1)/0.1)41);

361

362 if value == 1

363 uireColor = 'r

364 elseif value

365 uireColor = "w:square’;

366 end

367

368 plot3 (app. UTAxesAngled, [masterPointasb(getPoint,1) motond(1)], [masterPointAdb(getPoint,2) motorA(2)], [masterPointAAb(getPoint,3) motorA(3)], wireColor, ...

369 [masterPointBab(getPoint,1) motors(1)], [masterPointsAb(getPoint,2) motors(2)], [masterPointBAb(getPoint,3) motors(3)], wireColor, ...

370 [masterPointCAb(getPoint, 1) motorCPosY(1)], [masterPointCAb(getPoint,2) motorCPosY(2)], [masterPointCAb(getPoint,3) motorCPosY(3)], wireColor, ...

371 [masterPointCAb(getPoint,1) motorCNegy(1)], [masterPointCAb(getPoint,2) motorCNegY(2)], [masterPointCAb(getPoint,3) motorChegY(3)], wireColor, ...

372 [masterPointCAb(getPoint,1) motorCX(1)], [masterPointCAb(getPoint,2) motorCX(2)], [masterPointCAb(getPoint,3) motorCX(3)], wireColor, ...

373 [masterPointDAb(getPoint,1) motord(1)], [masterPointDAb(getPoint,2) motorD(2)], [masterPointDAb(getPoint,3) motord(3)], wireColor,

374 [masterPointEAb(getPoint,1) motore(1)], [masterPointEAb(getPoint,2) motorE(2)], [mesterPointEAb(getPoint,3) motorE(3)], wireColor,

375 [masterPoint Fab(getPoint,1) motorFPosY(1)], [mesterPointFAb(getPoint,2) motorFPosy(2)], [masterPointFAb(getPoint,3) motormPasy(3)], wireColor,

376 [masterPointFAb(getPoint,1) motorFiegY(1)], [mesterPointFAb(getPoint,2) motorFNegY(2)], [masterPointFAb(getPoint,3) motorfNeg¥(3)], wireColor,

377 [rasterpoint Fab(getPoint, 1) motorf2(1)], [masterPointrab(getPoint,2) motorf2(2)], [nesterpointrab(getPoint,3) motorfZ(3)], wireColor, ...

378 [*CoordsPosi tionilat rixAb(getPoint,1) xC: $xab(getPoint,2) xC ixAb(getPoint,5) xC: i SxAb(getPoint,3) xC: (getPoint,4) xCoordsPositiontatrixAb(getPoint,1)],
379 [yCoordsPosi tionilat rixAb(getPoint,1) yC: i $xab(getPoint,2) yC iti ixAb(getPoint,5) yC i Sxab(getPoint,3) yC: (getPoint,4) yCoordsPositioniatrixAb(getPoint,1)],
380 [=CoordsPosi tionilat rixAb(getPoint,1) =C: i ixAb(getPoint,2) =C iti ixAb(getPoint,5) zC: i $xab(getpoint, 3) = (getPoint,4) zCoordsPositioniatrixAb(getPoint,1)]," .k
381 [*CoordsPosi tionilatrixAb(getPoint,2) FlasterXab(getPoint,1)], [yC ixAb(getPoint, 2) getPoint,1)], [2C ixAb(getPoint,2) getPoint,1)], °

382

383

384 plot3 (app. UTAxesFront, [masterPointAfb(getPoint, 1) motorA(1)], [masterPointAAb(getPoint,2) motorA(2)], [masterPointAAb(getPoint,3) motorA(3)], wireColor,

385 [masterPointBAb(getPoint,1) motor8(1)], [masterPointsAb(getPoint,2) motor8(2)], [mesterPointBAb(getPoint,3) motor8(3)], wireColor,

386 [masterPointCAb(getPoint,1) motorCPosY(1)], [mesterPointCAb(getPoint,2) motorCPosY(2)], [masterPointCAb(getPoint,3) motorCPosY(3)], wireColor,

387 [masterPointCAb(getPoint,1) motorCNegY(1)], [masterPointCAb(getPoint,2) motorCNegY(2)], [masterPointCAb(getPoint,3) motorCNeg(3)], wireColor,

388 [masterPointCAb(getPoint,1) motorCX(1)], [masterPointCAbl(getPoint,2) motorCX(2)], [masterPointCAb(getPoint,3) motorCX(3)], wireColor,

389 [masterPointDab(getPoint,1) motord(1)], [masterPointDAb(getPoint,2) motord(2)], [masterPointDAb(getPoint,3) motord(3)], wireColor,

30 | N
350 [nasterPointEAb(getPoint, 1) motorE(1)], [masterPointEAb (getPoint,2) motort(2)], [masterPointbAb(getPoint,3) motorE(3)], wireColor,

391 [masterPointFAb(getPoint, 1) motorFPosY(1)], [masterPointFAb(getPoint,2) motorfPosY(2)], [masterPointFAb(getPoint,3) motorFPosY(3)], wireColor, ...

392 [masterpointFAb(getPoint,1) eY(1)], [trAb(getPoint, 2) 2)], [masterPointrab(getPoint,3) motorflegy(3}], wireColor, ...

393 [nasterPointFAb(getPoint,1) motorFZ(1)], [masterPointFAb(getPoint,2) motorfZ(2)], [masterPaintFAb(getPoint,3) motorfZ(3)], wireColor, ...

394 [xCoordsPositioniatrixab (getPoint, 1) xCoordsPosi int,2) xC ixab(getPoint,5) xC: (getPoint,3) xC trixab(getPoint,4) xCoordsPositionfiatrixab(getPoint,1)], ...
395 [yCoordsPosi tionflatrixAb (getPoint,1) yCoordsPositi i int,2) yC iti ixAb(getPoint,5) yC: iti fxAb(getPoint,3) yC ixAb(getPoint,d) yCoordsPositiontiatrixab(getPoint,1)],
396 [zCoordsPositionflatrixAb (getPoint,1) zCoordsPositi i int,2) zC iti ixAb(getPoint,5) zC: i fxAb(getPoint,3) =G (getPoint,a) zCoordsPositiontlatrixAb(getPoint,1)],"
397 [x< i (getPoint,2) getPoint,1)], [yC: i ixAb(getPoint,2) getPoint,1)], [zCoordsPositiontiatrixAb(getPoint,2) FlasterZab(getPoint,1)], *

398

399

400 app.UTAxesFront.CameraPosition = [0.05,1,-0.075];

401 app.UTAxesFront.CameraTarget = [0.05,0,-8.075];

402

403 plot3 (app. UlAxesSide, [masterPointAdb (getPoint, 1) motorA(1)], [masterPointAfb(getPoint,2) motorA(2)], [masterPointAAb(getPoint,3) motorA(3)], wireColor,

402 [masterPointBAb(getPoint,1) motorB(1)], [masterPointBAb(getPoint,2) motors(2)], [masterPointBAb(getPoint,3) motor8(3)], wireColor,

05 [masterPointCAb(getPoint,1) motorCPosY(1)], [mesterPointCAb(getPoint,2) motorCPosY(2)], [masterPointCAb(getPoint,3) motorCPasY(3)], wireColor,

406 [masterPointCAb(getPoint,1) motorCNegY(1)], [masterPointCAb(getPoint,2) motorCegY(2)], [masterPointCAb(getPoint,3) motorCNegY(3)], wireColor,

407 [masterPointCAb(getPoint,1) motorCX(1)], [masterPointCAb(getPoint,2) motorCX(2)], [masterPointCAb(getPoint,3) motorCX(3)], wireColor,

08 [masterPointDAb(getPoint,1) motorD(1)], [masterPointDAb(getPoint,2) motord(2)], [masterPointDAb(getPoint,3) motorD(3)], wireColor,

409 [masterPointEAb(getPoint,1) motorE(1)], [masterPointEAb(getPoint,2) motorf(2)], [masterPointEAb(getPoint,3) motorE(3)], wireColor,

410 [masterPointFab(getPoint,1) 1)], i gethint 2) 2)], [masterPointFab(getPoint,3) motorFPosy(3}], wireColor,

411 [masterPointFAb(getPoint,1) [21, Treserrointib(gecroint,) rorormieg ()], wirecolor,

412 [masterPointFAb(getPoint, 1) notorF2(1 [master?c)ntFAb(getPcmt z) mcturFZ(!)] [mesterPointFAb(getPoint, 3) motorfZ(3)], wireColo

213 [*CoordsPositionilatrixAb(getPoint,1) xCoordsPositi int,2) xC i 1xAb(getPoint,5) xC: it Luab(getPoint,3) xC iti ixAb(getPoint,4) xCoordsPositiontlatrixib(getPoint,1)],
214 [yCoordsPositionilatrixAb (getPoint,1) yCoordsPositi i int,2) yC itd 1xAb(getPoint,5) yC: it fxAb(getPoint,3) yC i ixAb(getPoint,4) yCoordsPositiontlatrixib(getPoint,1)],
415 [2CoordsPosi tionlatrixib (getPoint, 1) zCoordsPositi i int,2) zC iti ixAb(getPoint,5) =C: iti i i £Point,4) 2CoordsPositiontletrixib(getPoint,1)], "
416 [xC (getpoint,2) getPoint,1)], [yC: i ixAb(getPoint,2) getPoint,1)], [z(nmrdsPsztmr\HatHxﬂb(getl’nmt 2) FhasterzAb(getPoint,1)], .k-")

17

18

a19 app.UTAxesSide. CameraPosition = [-1,0,-0.075];

420 app.UTAxesside. CameraTarget = [0,0,-0.075];

421

422 plot3 (app. UlAxesTop, [masterPointAfb(getPoint, 1) motora(1)], [masterPointAAb(getPoint,2) motora(2)], [masterPointAAb(getPoint,3) motorA(3)], wireColor,

423 [masterPointBAb(getPoint, 1) motorB(1)], [masterPointBAb(getPoint,2) motors(2)], [masterPointBAb(getPoint,3) motors(3)], wireColor, ...

424 [masterPointCAb(getPoint, 1) motorCPosY(1)], [masterPointCAb(getPoint,2) motorCPosY(2)], [masterPointCAb(getPoint,3) motorCPosY(3)], wireColor, ...

425 [masterPointCAb(getPoint, 1) motorCNegY(1)], [masterPointCAb(getPoint,2) motorCNegY(2)], [masterPointCAb(getPoint,3) motorCNegy(3)], wireColor, ...

426 [masterPointCAb(getPoint,1) motorCX(1)], [masterPointCAb(getPoint,2) motorCX(2)], [masterPointCAb(getPoint,3) motorCX(3)], wireColor,

427 [masterPointDAb(getPoint, 1) motorD(1)], [masterPointDAb(getPoint,2) motorD(2)], [masterPointDAb(getPoint,3) motorD(3)], wireColor,

428 [masterPointEAb(getPoint,1) motorE(1)], [masterPointEAb(getPoint,2) motorf(2)], [masterPointEAb(getPoint,3) motorE(3)], wireColor,

429 [masterPointFAb(getPoint,1)], [getPoint, 2) 2)], [masterPointFAb(getPoint,3) motorFPosY(3}], wireColor,

430 [masterPointFAb(getPoint,1) g1, [getPoint,2) 2)], [masterPointFAb(getPoint,3) motorfNeg¥(3}], wireColor,

431 [rasterPointFAb(getPoint, 1) motorFZ(1)], [mesterPointrAb(getPoint,2) motorf2(2)], [mesterPointFab(getPoint,3) motorfZ(3)], wireColor, ...

432 [xCoordspositiontiatrixtb (getPoint, 1) xCoordspositi int,2) xC i 14 (getpoint,5) xC £xab(getpoint,3) xC (getPoint,a) xCoordsPositiontiatrixAb(getPoint,1)],
a3 |, 3
433 [yCoordsPosi tionlatrixAb(getPoint, 1) yC; Ttiontatr int,2) yC il ixAb(getPoint,5) yC: il 1xAb(getPoint,3) yCoordsPositiontatrixAb(getPoint,4) yCoordsPositionflatrixAb(getPoint,1)],
434 [2CoordsPositionflatrixAb(getPoint,1) zC: fonMatr int,2) =C it ixAb(getPoint,5) 2C: iti b (getPoint,3) zCoordsPositiontiotrixab(getPoint,4) 2CoordsPositiontiatrixab(getpoint,)],k
435 [xC i (getPoint,2) getPoint, 1)], [yC i ixab(getPoint,2) int,1)], [=C getPoint, 2) (getpoint,1)],

436

437

438 app.UTAxesTop.CameraPosition = [0.05,0,1];

439 app.UTAxesTop.CameraTarget = [0.05,8,0];

240

441 | elseif app.HumeralFlexionSlider.Value >

242 getPoint = round((round(app.HuneralFlexionSlider.Value,1)/0.1}+1);

a3

2aa if value == 1

aas wireColor

446 elseif value

447 wireColor = 5

448 end

a9

50

451 plot3 (app. UlAxesAngled, [masterpointaFlex(getPoint, 1) motorA(1)], [mesterPointAFlex(getPoint,2) motorA(2)], [masterPointAFlex(getPoint,3) motora(3)], wireColor, ...

452 [masterPointBFlex(getPoint,1) motor8(1)], [masterPointBFlex(getPoint,2) motors(2)], [masterPointsFlex(getPoint,3) motors(3)], wireColor, ..

53 [masterPointCFlex(getPoint,1) motorCPosY(1)], [masterPointCFlex(getPoint,2) motorCPos¥(2)], [masterPointCFlex(getPoint,3) motorCPosy(3)], wireColor,

454 [masterPointCFlex(getPoint,1) motorChegy(1)], [masterPointCFlex(getPoint,2) motorCNeg¥(2)], [masterPointCFlex(getPoint,3) motorCNegy(3)], wireColor,

55 [masterPointCFlex(getPoint,1) motorcX(1)], [masterPointCFlex(getPoint,2) motorCX(2)], [mesterPointCFlex(getPoint,3) motorcX(3)], wireColor, ..

456 [masterPointDFlex(getPoint,1) motorD(1)], [masterPointDFLex(getPoint,2) motord(2)], [masterPointDFlex(getPoint,3) motorD(3)], wireColor,

as7 [masterPointEFlex(getPoint,1) motore(1)], [masterPointeFlex(getPoint,2) motort(2)], [masterPointeFlex(getPoint,3) motort(3)], wireColor,

as8 [masterPointFFlex(getPoint,1) motorFPosy(1)], [intFFlex(getPoint,2) (21, 1 intFFlex(getPoint,3) motorFPosy(3)], wireColor,

459 [masterPointFFlex(getPoint,1) motorflegy(1)], [intFFlex(getPoint,2) £¥(2)], lex(getPoint,3) motorfleg¥(3)], wireColor,

60 [masterPointFFlex(getPoint,1) motorF2(1)], [masterPointFFlex(getPoint,2) motorfZ(2)], [mesterPointFFlex(getPoint,3) motorfZ(3)], wireColor, ...

461 [*CoordsPositionilatrixFlex(getPoint,1) xCoordsPositiontatrixFlex(getPoint,2) xCoordsPositiontiatrixFlex(getPoint,5) xCoordsPos itiontiatrixFlex(getPoint,3) xC: lex(getPoint,4) xC: ex(getPoint,1)],
462 [yCoordsPositionflatrixFlex(getPoint,1) yCoordsPositiontatrixFlex(getPoint,2) yCoordsPositiontiatrixFlex(getPoint,5) yCoordsPositiontiatrixFlex(getPoint,3) ¥]Ex(get?cint,d) yc ex(getPoint,1)],
463 [=CoordspositionlatrixFlex(getPoint,1) CoordspositioniatrixFlex(getPoint,2) zCoordsositiontiotrixflex(getPoint,s) 2CoordsPos itionHatrixFlex(getPoint,3) x ex(getPoint,a) C: ex(getPoint,1)]," k-,
464 [*CoordsPositionflatrixFlex(getPoint,2) FilasterXF: D1, [yc Lex (getPoint,2) FMasterYFlex(getPoint,1)], [z CunrdSPQSlt)nnMatrlelex(getPa)nt 2) FMssterZF]ex(getPD)nt 1,

65

66

467 Tot N i int,1) motorA(1)], [intAFlex(getPoint,2) motora(2)], [masterPointAFlex(getPoint,3) motorA(3)], wireColor,

468 [masterPointBFlex(getPoint,1) motorB(1)], [masterPointSFlex(getPoint,2) motors(2)], [masterPointBFlex(getPoint,3) motor(3)], wireColor,

469 [masterPointCFlex(getPoint,1) motorCPosY(1)], [masterPointCFlex(getPoint,2) motorCPos¥(2)], [masterPointCFlex(getPoint,3) motorCPosy(3)], wireColor,

470 [masterpointCFlex(getPoint,1) motorChegY(1)], [masterPointCFlex(getPoint,2) motorCNegY(2)], [masterPointCFlex(getPoint,3) motorChegy(3)], wireColor, ...

471 [masterPointCFlex(getPoint,1) motorX(1)], [masterPointCFlex(getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorCx(3)], wireColor, ...

472 [masterPointDFlex(getPoint,1) motord(1)], [masterPointDFlex(getPoint,2) motord(2)], [masterPointdFlex(getPoint,3) motord(3)], wireColor, ...

473 [masterPointEFlex(getPoint,1) motorE(1)], [masterfointeFlex(getPoint,2) motore(2)], [masterfointeFlex(getfoint,3) motort(3)], wirecolor,

478 [masterpointFFlex(getPoint,1) motorFPosY(1)], [masterPointFFlex(getPoint,2) motorFPos¥(2)], [masterFointFrlex(getPoint,3) motorFRosy(3)], wireColor,

475 [nasterPointFFlex(getPoint, 1) motorFNegY(1)], [masterPointFFlex(getboint,2) motorFNeg¥(2)], [masterpointFFlex(getPoint,3) motorfiegy(3)], wireColor,

76| o - - o - - - 5

94

76 [masterpointFrlex(getPoint, 1) motorFZ(1)], [masterPointrFlex(getPaint,2) motorrZ(2)], [masterPointFFlex(getPoint,3) motorrZ(3)], wireColor,
477 [xCoordsPosi tioniat rixFlex (getPoint,1) xCoordsPositiontatrixF lex(getPoint,2) xCoordsPositionliatrixFlex(getPoint,5) xCoordsPositionlatrixFlex(getPoint,3) xCoordsPositioniiatrixF lex(getPoint,4) xCoordsPositioniatrixFlex(getPoint,1)],
478 [yCoordsposi tioniat rixFlex (getPoint,1) yCoordsPositiontatrixF lex(getPoint,2) yCoordsPositionliatrixFlex(getPoint,5) yCoordsPositioniatrixFlex(getPoint,3) yCoordsPositioniiatrixF lex(getPoint,a) yCoordsPositiontiatrixFlex(getPoint,1)],
479 [=CoordsPositionMat rixFlex (getPoint,1) zCoordsPositiontatrixFlex(getPoint,2) zCoordsPositioniatrixFlex(getPoint,5) zCoordsPositioniatrixFlex(getPoint,3) zCoordsPositionlatrixF lex(getPoint,d) zCoordsPositiontlatrixFlex(getPoint,1)]," k-',
50 [xCoordspositioniat rixFlex (getPoint,2) FilasterxFlex(getPbint,1)], [yCoordsPositiontatrixFlex(getPoint,2) FMasterYFlex(getPoint,1)], [zCoordsPositiontiatrixFlex(getPoint,2) FiasterzFlex(getPoint,1)], '.k-')
451
482 app.UTixesFront .Caneraposition = [0.05,1,-0.675];
453 app.UTixesFront .CaneraTarget = [0.05,8,-0.975];

50

85 plot3 (app. ULixesSide, [nasterPointAFlex(getPoint, 1) motori(1)], [masterPointAFlex(getPoint,2) motorA(2)], [masterPointAFlex(getPoint,3) motorA(3)], wireColor,

436 [masterPointsFlex(getPoint,1) motorB(1)], [masterPointsFlex(getPoint,2) motorB(2)], [masterPointsF lex(getPoint,3) motors(3)], wireColor,

457 [masterPointCFlex(getPoint,1) motorCPosY(1)], [masterPointCFlex(getPoint,2) motorCPosV(2)], [mesterPointCFlex(getPoint,3) motorCPosY(3)], wireColor, ..

488 [masterPointCFlex(getPoint,1) motorClegY(1)], [masterPointCFlex(getPoint,2) motorCNeg¥(2)], [mesterPointCFlex(getPoint,3) motorCNeg¥(3)], wireColor, ..

459 [masterPointCFlex(getPoint,1) motorCX(1)], [masterPointCFlex(getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorCX(3)], wireColor,

90 [masterPointDFlex(getPoint,1) motorD(1)], [masterPointDFlex(getPoint,2) motorD(2)], [masterPointDFlex(getPoint,3) motorD(3)], wireColor,

491 [masterPointEFlex(getPoint,1) motorE(1)], [masterPointeFlex(getPoint,2) motorf(2)], [masterPointEFlex(getPoint,3) motorE(3)], wireColor,

192 [masterPointFFlex(getPoint,1) WL [1 ,2) motorFPosv(2)], [x(getPoint,3) (3)], wireColor, ..

493 [masterPointFFlex(getPoint,1) £V (1)1, [i int,2) motorFNegv(2)], [i ex(getPoint,3) g¥(3)], wireColor, ..

e [masterPointFFlex(getPoint,1) motorFZ(1)], [masterPD)ntFFlex(gekPo)nt 2) notorF2(2)], [nesterPoint Flex(getPoint,) motorF2(3)], wireColor, ...

95 [xCoordsPosi tionMat rixFlex (getPoint,1) xCoordsPositioniatrixF lex(getPoint,2) xCoordsPositionliatrixFlex(getPoint,5) xCoordsPositionatrixFlex(getPoint,3) xCoordsPositionllatrixF lex(getPoint,4) xCoordsPositioniatrixFlex(getPoint,1)],
96 [yCoordsPosi tionMat rixFlex (getPoint,1) yCoordsPositiontatrixF lex(getPoint,2) yCoordsPositioniatrixFlex(getPoint,5) yCoordsPositionatrixFlex(getPoint,3) yCoordsPositionlatrixF lex(getPoint,4) yCoordsPositiontiatrixFlex(getPoint,1)], ..
97 [=CoordsPosi tionMat rixFlex (getPoint,1) zCoordsPositiontatrixFlex(getPoint,2) zCoordsPositioniatrixFlex(getPoint,5) zCoordsPositioniatrixFlex(getPoint,3) zCoordsPositionlatrixF lex(getPoint,4) zCoordsPositiontiatrixFlex(getPoint,1)]," k=",
498 [xCoordsPositionMat rixFlex (getPoint,2) FllasterXFlex(getPbint,1)], [yCoordsPositionHatrixFlex(getPoint,2) FMasterYFlex(getPoint,1)], [zCoordsPositiontlatrixFlex(getPoint,2) FiasterZFlex(getPoint,1)], '.k-')

499

500 app.UTixesSide. CameraPosition = [-1,0,-0.875];

s01 app.UTixesSide. CameraTarget = [0,0,-0.075];

502

503 plot3 (app. ULAxasTop, [masterPointaFlax(getPoint, 1) motorA(1}], [masterPointaFlex(getPoint,2) motora(2)], [masterPointAFlex(getPoint,3) mntur;\(!)], uireCalor,

504 [masterPoint8Flex(getPoint,1) motor8(1)], [masterPointBFlex(getPoint,2) motorB(2)], [masterPointsFlex(getPoint,3) motors(3)], wireColor

s05 [rasterPoint CFlex(getPoint 1) motorCPosy(1)], [masterPointCFlex(getPoint,2) motorchos¥(2)], [mesterPointCFlex(getPoint,3) motorCPosy(3)], wireColor, -.

506 [masterPointCFlex(getPoint,1) motorChieg(1)], [masterPointCFlex(getPoint,2) motorCNeg(2)], [masterPointCFlex(getPoint,3) motorcNegy(3)], wireColor, ..

s07 [masterPointCFlex(getPoint,1) motorCX(1)], [masterPointCFlex(getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorcX(3)], wireColor,

s08 [masterPointDFlex(getPoint,1) motorD(1)], [masterPointDFlex(getPoint,2) motorD(2)], [masterPointDFlex(getPoint,3) motorD(3)], wireColor,

s09 [masterPointEFlex(getPoint,1) motorE(1)], [masterPointEFlex(getPoint,2) motorE(2)], [masterPointEFlex(getPoint,3) motorE(3)], wireColor,

s10 [masterPointFFlex(getPoint,1) motorFPosy(1)], [masterPointFFlex(getPoint,2) motorFPos(2)], [masterPointFFlex(getPoint,3) motorfPosy(3)], wireColor, ..

511 [masterpointFFlex(getPoint,1) motorflegY(1)], [masterPointFFlex(getPoint,2) motorfNegY(2)], [masterPointFFlex(getPoint,3) motorfNegy(3)], wireColor, ..

512 [masterPointFFlex(getPoint,1) motorFZ(1)], [masterPointfFlex(getPaint,2) motorfZ(2)], [masterPointFFlex(getPoint,3) motorfZ(3)], wireColor,...

513 [XCoordsposi tioniat rixFlex (getPoint,1) xCoordsPositioniatrixf lex(getPoint,2) xCoordsPositioniatrixFlex(getPoint,5) xCoordsPositioniatrixFlex(getPoint,3) xCoordsPositioniatrixF lex(getPoint,4) xCoordsPositionfatrixFlex(getPoint,1)],
514 [yCoordsposi tioniat rixFlex (getPoint,1) yCoordsPositiontatrixF lex(getPoint,2) yCoordsPositioniatrixFlex(getPoint,5) yCoordsPositioniatrixFlex(getPoint,3) yCoordsPositioniatrixF lex(getPoint,4) yCoordsPositionfatrixFlex(getPoint,1)],
515 [zCoordsposi tioniat rixFlex (getPoint,1) zCoordsPositioniatrixFlex(getPoint,2) 2CoordsPositioniatrixFlex(getPoint,5) zCoordsPositioniatrixFlex(getPoint,3) zCoordsPositioniatrixF lex(getPoint,s) zCoordsPositioniatrixFlex(getPoint,1)],"
516 [xCoordspositioniat rixFlex(getPoint,2) FasterxFlex(getPbint,1)], [yCoordsPositioniatrixFlex(getPoint,2) FMasterYFlex(getPoint,1)], [2CoordsPositionfatrixFlex(getPoint,2) FiasterZFlex(getPoint,1)], '.k-')

517

518 app.UTAxesTop.CameraPosition = [0.05,0,1];

s19 S e

»

518 | app.ULAxesTop.CaneraPosition = [8.65,0,1];

519 | app.ULAxesTop.CaneraTarget = [0.85,0,0];

520

521 | elseif app.Huneralflexionslider.Value == 0 & app.Huneralabductionslider.Value

s22 getPoint = round ((round(app.HumeralFlexionslider.Value,1)/8.1)+1);

523

524 if value

525

s26

527

528

529

s30

531 plot3(app.UTAxesAngled, [nasterPointaFlex(getPoint, 1) motora(1)], [masterPointaFlex(getPoint,2) motorA(2)], [masterPointFlex(getPoint,3) motora(3)], wirecolor, ..

532 [masterpointBFlex(getPoint, 1) motorB(1)], [masteroint8Flex(getPoint,2) motor8(2)], [masterPointBFlex(getPoint,3) motor8(3)], wireColor,

533 [masterpointCFlex(getPoint, 1) motorCPosV(1)], [masterPointCFlex(getPoint,2) motorCPosY(2)], [masterPointCFlex(getPoint,3) motorCPosv(3)], wireColor, .

534 [masterPointCFlex(getPoint,1) motorCNegy(1)], [masterPointCFlex(getPoint,2) motorCNeg¥(2)], [masterPointCFlex(getPoint,3) motorCNegy(3)], wireColor, .

535 [masterPointCFlex(getPoint,1) motorCX(1)], [masterPointCFlex(getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorCX(3)], wireColor, ...

536 [masterPointDFlex(getPoint, 1) motorD(1)], [masterpointDFlex(getPoint,2) motorD(2)], [masterPointDFlex(getPoint,3) motord(3)], wireColor,

537 [mesterPointEFlex(getPoint, 1) motorE(1)], [mesterPointeFlex(getboint,2) motorf(2)], [masterPointFlex (getPoint,3) motor(3)], wireColor,

538 [masterPointFFlex(getPoint,1) motorFPosv(1)], [lex(getPoint,2) 2)], [lex(getPoint,3) 3)], wireColor, .

539 [masterPointFFlex(getPoint, 1) motorFNegy(1)], [intFFlex(getPoint,2) Ll intFFlex(getPoint,3) 3)], wireColor, .

548 [mestarPointFFLox(getPotnt 1) motorFZ(1)], [nesterPaintFFlox(gethoint,2) motort2(2)]. [mastsr?mntFFlex(getPn)nt 3) motorfZ(3)], wireColor, ..

sa1 [xCoordsPositiontlatrixFlex(getPoint,1) xCoordsPositibnatrixFlex(getPoint,2) xC int,5) xC i ixFlex(getPoint,3) xCoordsPositi 11 int,4) xC iti ixFlex(getPoint,1)],
542 [yCoordsPositiontlatrixFlex(getPoint,1) yCoordsPositibnatrixFlex(getPoint,2) yC iti i int,5) yC iti ixFlex(getPoint,3) yCoordsPositi 1xF1. int,4) yC iti ixFlex(getPoint,1)],
sa3 [=CoordsPositiontiatrixFlex(getPoint,1) zCoordsPositibntiatrixFlex(getPoint,2) zC it ? int,5) =C iti ixFlex(getPoint,3) zCoordsPositi 1l int,4) zC itd ixFlex(getpoint, 1)1, " k
sas [xCoordsPositiontatrixFlex(getPoint,2) FiiasterXFlex(getPoint,1)], [yCoordsPositionfiatrixFlex(getPoint,2) FllastervFlox(getPoint, 1)], [zCoordsPositiontiatrixFlox(getPoint,2) FiasterzFlex(getboint,)], k-')

sa5

sa5

sa7 plot3(app.UTAxesFront, [masterPointaFlex(getPoint,1) motorA(1)], [mesterPointAFlex(getPoint,2) motorA(2)], [masterPointiFlex(getPoint,3) motord(3)], wireColor, ...

sas [masterPointBFlex(getPoint, 1) motorB(1)], [masterPointsFlex(getPoint,2) motorB(2)], [masterPointBFlex(getPoint,3) motors(3)], wireColor,

sas [masterPointCFlex(getPoint, 1) motorcPosY(1)], [mesterPointCFlex(getPoint,2) motorCPosY(2)], [masterPointCFlex(getPoint,3) motorCPosy(3)], wireColor, -

sse [masterPointCFlex(getPoint,1) motorCNegY(1)], [masterPointCFlex(getPoint,2) motorCNeg¥(2)], [masterPointCFlex(getPoint,3) motorCNegy(3)], wireColor, .

551 [masterPointCFlex(getPoint,1) motorCX(1)], [masterpintCFlex(getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorCX(3)], wireColor,

552 [masterPointDFlex(getPoint, 1) motorD(1)], [masterPointDFlex(getPoint,2) motorD(2)], [masterPointDFlex(getPoint,3) motord(3)], wireColor,

553 [mes terPointEFlex(getPoint,1) motorE(1)], [masterpointeFlex(getpoint,2) motore(2)], [nasterPointErlex(getPoint,3) motorE(3)], wireColor,

554 [masterPointFFlex(getPoint, 1) motorFPosv(1)], [lex(getpoint,2) 2)1, [Lex(getPoint,3) 3)1, wireColor, .

555 [masterPointFFlex(getPoint, 1) motorFNegy(1)], [intFFlex(getPoint,2) 2)], [lex(getpoint,3) 3)], wireColor, .

ss6 [masterPointFFlex(getPoint,1) motorFZ(1)], [masterPointFFlex(getPoint,2) mnturFZ(Z)], [nasterPointFFlex(getpoint,3) motorfZ(3)], wirecolor, ..

557 [xCoordsPositiontatrixFlex(getPoint,1) xCoordsPositibniiatrixFlex(getPoint,2) x 15) xC ixFlex(getPoint,3) xCoordsPosi 11 int,4) xC iti ixFlex(getpoint, 1)1,
555 [yCoordsPositiontiatrixFlex(getPoint,1) yCoordsPositibntatrixFlex(getPoint,2) y(t : int,5) yC iti ixFlex(getPoint,3) yCoordsPosi 11 int,4) yC iti ixFlex(getpoint, 1)1, -
559 [=CoordsPositiontiatrixFlex(getPoint,1) zCoordsPositibniatrixFlex(getPoint,2) 2C t : int,5) =C its ixFlex(getPoint,3) zCoordsPosi 11 int,4) zC iti ixFlex(getpoint, 1)1, .
s60 [*CoordsPositiontiatrixFlex(getPoint,2) FHasterxFlex(getPoint,1)], [yCoordsPositiontatrixFlex(getPoint,2) FilasterYFlex(getPoint,1)], [zCoordsPositionatrixFlex(getPoint,2) FMasterZFlex(getPoint,1)], '.k-')

se1 | ¢ D
562 | app.UlAxesFront. CameraPosition = [0.05,1,-0.075];

563 | app.UlAxesFront. CameraTarget = [0.05,0,-0.075];

s64

565 | plot3(app.UTixesSide, [i int,1) motora(1)], [intAF lex(getPoint,2) motora(2)], [masterPointAFlex(getPoint,3) motora(3)], wireColor,

566 | [masterPointBFlex(getPoint,1) motorB(1)], [masterPointBFlex(getPoint,2) motorB(2)], [masterPointBFlex(getPoint,3) motorB(3)], wireColor, .

567 | [masterPointCFlex(getPoint,1) motorCPos¥(1)], [masterPointCFlex(getPoint,2) motorCPosy(2)], [masterPointCFlex(getPoint,3) motorCPos¥(3)], wireColor, .

565 | [masterPointCFlex(getPoint,1) motorCNeg¥(1)], [masterPointCFlex(getPoint,2) motorCNegy(2)], [masterPointCFlex(getPoint,3) motorCNeg¥(3)], wireColor, .

569 | [masterPointCFlex(getPoint,1) motorCX(1)], [masterPointCFlex(getPoint,2) motorcX(2)], [masterPointCFlex(getPoint,3) motorCX(3)], wirecolor, -

570 | [masterPointDFlex(getPoint,1) motorD(1)], [masterPointDFlex(getPoint,2) motorD(2)], [masterPointDFlex(getPoint,3) motorD(3)], wireColor, .

571 | [masterPointEFlex(getPoint,1) motorE(1)], [masterPointEFlex(getPoint,2) motorf(2)], [masterPointfflex(getPoint,3) motorE(3)], wireColor,

572 | [masterPointFFlex(getPoint,1) motorFPos¥(1)], [masterPointfFlex(getPoint,2) motorFPosy(2)], [masterPointFFlex(getPoint,3) motorFPosY(3)], wireColor, .

573 | [masterPointFFlex(getPoint,1) motorFNeg¥(1)], [masterPointfFlex(getPoint,2) motorFNegy(2)], [masterPointFFlex(getPoint,3) motorFNegy(3)], wireColor, .

572 | [mosterointfFlex(getPoint, 1) motorFZ(1)], [masterPaintFFlex(getpoint,2) motorr2(2)], [nasterpointeFlex(getpoint,3) motorrZ(3)], wirecolor, ..

575 | [xc Lex(getPoint,1) G Tex(getpoint, 2) xC: ex(getPoint,s) xC lex(getPoint,3) xCoordsPositiontatrixFlex(getPoint,4) xCoordsPositiontatrixflex(getPoint,1)], -
576 | [yc it £xFlex(getPoint,1) ¥ i ixFlex(getPoint,2) yC t ixFlex(getPoint,5) yC it ixFlex(getPoint,3) yCoordsPositiontlatrixFlex (getPoint,d) yCoordsPositiontiatrixFlex(getPoint,1)], .
577 | [z it £xFlex(getPoint, 1) i ixFlex(getPoint,2) zC t ex(getPoint,s) zC i ixFlex(getPoint,3) zCoordsPositiontatrixFlex(getPoint,d) zCoordsPositiontatrixFlex(getPoint,1)],"
578 | [xCoordsPositiontatrixFlex(getPoint,2) FMasterXFlex(wethnt 1)1, [yCoordsPositiontatrixFlex(getPoint,2) FilasterYFlex(getPoint,1)], [zCoordsPositiontatrixFlex(getPoint,2) FllasterZFlex(getPoint,1)], *.k-')

579

580 | app.UlAxesSide.CaneraPosition = [-1,0,-0.875];

551 | app.UlAxesSide.CameraTarget = [0,0,-0.075];

ss2

583 | plot3(app.UTAxesTop, [masterPointAFlex(getPoint,1) motorA(1)], [masterPointAFlex(getPoint,2) motorA(2)], [mesterPointAflex(getPoint,3) motorA(3)], wireColor,

584 | [masterPointBFlex(getPoint,1) motorB(1)], [masterPointBFlex(getPoint,2) motorB(2)], [masterPointBFlex(getPoint,3) motorB(3)], wireColor, .

585 | [masterPointCFlex(getPoint,1) motorCPos¥(1)], [masterPointCFlex(getPoint,2) motorCPosy(2)], [masterPointCFlex(getPoint,3) motorCPosY(3)], wireColor, .

586 | [masterPointCFlex(getPoint,1) motorCNeg¥(1)], [masterPointCFlex(getPoint,2) motorCNegy(2)], [masterPointCFlex(getPoint,3) motorCNeg¥(3)], wireColor, .

587 | [masterPointCFlex(getPoint,1) motorCX(1)], [masterPointCFlex{getPoint,2) motorCX(2)], [masterPointCFlex(getPoint,3) motorCX(3)], wirecolor, -

585 | [masterPointDFlex(getPoint,1) motorD(1)], [masterPointDFlex(getPoint,2) motorD(2)], [masterPointDF lex(getPoint,3) motord(3)], wireColor, .

589 | [masterPointEFlex(getPoint,1) motorE(1)], [masterPointEFlex(getPoint,2) motorE(2)], [masterPointEFlex(getPoint,3) motorE(3)], wireColor, .

5% | [masterPointFFlex(getPoint,1) motorFPos¥(1)], [masterPointfFlex(getPoint,2) motorFPosy(2)], [masterPointFFlex(getPoint,3) motorFPosY(3)], wireColor, .

591 | [masterPointFFlex(getPoint,1) motorFNeg¥(1)], [masterPointfFlex(getPoint,2) motorFNegy(2)], [masterPointFFlex(getPoint,3) motorFNeg¥(3)], wireColor, .

592 | mesterpointrtlex(getfolnt, 1) sotortZ(1)], [mestertaintr Flex(getboint,2) notorf2(2)), [nestercointflex(getpolnt,2) motorf2(3)], wireColor, -

593 | [xc Lex(getPoint,1) ex(getPoint,2) x ex(getPoint,s) xC lex(getPoint,3) xCoordsPositiontatrixFlex(getPoint,4) xCoordsPositiontatrixlex(getPoint,1)],
594 | [yc Lex(getPoint,1) v lex[get?wlnt 2) yc i ixFlex(getPaint,s) yC it ixFlex(getPoint,3) yCoordsPasitiontatrixFlex(getPaint,4) yCoordsPasitionMatrixFlex(getPoint,1)], .
ses | [z lex(getPoint,1) zc ixFlex(getPoint,2) zC i ixFlex(getPaint,s) zC ixFlex(getPoint,3) zCoordsPositiontatrixFlex(getPoint,4) zCoordsPositiontatrixFlex(getPoint,1)],"
59 | [xCoordsPositionietrixflex(getPoint,2) FMasterxFlex(getPoint,1)], [yCoordsPositionfatrixFlex(getPaint,2) FllasterYFlex(getPoint,1)], [zCoordsPositiontatrixlex(getPoint,2) FiasterZFlex(getPoint,1)], ' k-')

527

595 | app.UlAxesTop.CameraPosition = [2.65,0,1];

599 | app.UlAxesTop.CameraTarget = [0.25,0,8];

660

661

662

663

664

95

605 % Component initialization
606 methods (Access = private)
607
608 % Create UIFigure and components
660 L] function createComponents(app)
610
611 % Create UIFigure and hide until all components are created
612 app.UIFigure = uifigure('Visible’, "off’);
613 app.UIFigure. Position = [100 160 786 588];
614 app.UIFigure.Name = ‘MATLAS App';
615
616 % Create UIAxesAngled
617 app .UAxesAngled = uiaxes (app.UIFigure);
618 title(app.UlAxesAngled, 'Angled Vieu')
619 app .UAxesAngled . XLim = [-0.1 0.574];
620 app.UIAxesAngled.Yiim = [-0.49 0.49];
621 app .UTAxesAngled.ZLin = [-0.48 0.48];
622 app .UTAxesAngled.Position = [1 326 399 239];
623
624 % Create UIAxesFront
625 app .UAxesFront = uiaxes(app.UIFigure);
626 title(app.UTAxesFront, 'Front View')
627 app .UIAxesFront.XLin = [-0.1 0.574];
628 app .UIAxesFront.YLin = [-0.29 0.49];
629 app .UTAxesFront.ZLin = [-0.48 6.48];
630 app.UIAxesFront .Position = [399 326 388 239];
631
632 % Create UIAxesSide
633 app .UIAxesSide — uiaxes(app.UIFigure);
630 title(app.UTAxesSide, *Side View')|
635 o el;
636 [-0.1 0.574];
637 [-0.49 0.49];
638 [-0.48 0.48];
639 app .UIAxesside.Position = [20 107 380 220];
640
641 % Create UIAxesTop
642 app.UTAxesTop = uiaxes(app.UIFigure);
643 title(app.UlAxesTop, 'Top View')
644 app .UAxesTop . CaneraPosition = [0 @ 1];
645 app .UIAxesTop. CaneraTarget = [0 © 8];
646 app .UIAxesTop.XLim = [-0.1 8.574];
647 app .UTAxesTop.YLim = [-0.49 6.49];
647 app.UlAxesTop.YLim = [-0.49 0.49];
6458 app.UTAxesTop.ZLim = [-0.48 0.48];
649 app.UTAxesTop.Position = [376 167 387 220];
650
651 % Create HumeralAbductionsliderLabel
652 app.Humeralabductionslidertabel = uilabel(app.UTFigure);
653 app.Humeralabductionslidertabel. HorizontalAlignment = ‘right’;
654 app.Humeralabductionslidertabel. Position = [203 88 106 22];
655 app.Humeralabductionslidertabel. Text = ‘Humeral Abduction’;
656
657 % Create Huneralabductionslider
658 app.Humeralabductionslider = uislider(app.UIFigure);
659 app.Humeralabductionslider. Limits = [0 120];
660 app.Humeralabductionslider.ValueChangedFcn = createCallbackFen(app, @HumeralAbductionSliderValueChanging, true);
661 app.Humeralabductionslider. Position = [336 97 382 3];
662
663 % Create HumeralFlexionSliderLabel
664 app.HumeralFlexionsliderLabel = uilabel(app.UIFigure);
665 app.HumeralFlexionsliderLabel .HorizontalAlignment = 'right';
e85 app.HumeralFlexionsliderLabel.Position = [224 45 92 22];
667 app.HumeralFlexionSliderLabel . Text = ‘Humeral Flexion';
668
669 % Create HumeralFlexionSlider
670 app.HumeralFlexionSlider = uislider(app.UIFigure);
671 app.HumeralFlexionSlider. Limits = [0 120];
672 app.HumeralFlexionSlider.ValusChangedFcn = createCallbackFcn(app, @humeralflexionsliderValusChanging, true);
673 app.HumeralFlexionslider.Position = [337 54 381 3];
674
675 % Create ShovikiresCheckBox
676 app. ShowtiresCheckBox = uicheckbox(app.UIFigure);
677 app . Showtii resCheckBox. ValueChangedFcn = createCallbackFcn(app, @ShowiiresCheckBoxValueChanged, true);
678 app . ShowtiiresCheckBox. Text = *Show Wires';
679 app . ShowtiiresCheckBox.Position = [104 45 86 43];
680
681 % Show the Figure after all components are created
682 app.UTFigure.Visible = ‘on’
683 end
684 end
685
686 % App creation and deletion
687 methods (Access = public)
688
689 % Construct app
690 —
T
671 app HumeralFlexionslider. Limits = [0 126];
672 app .HumeralFlexionslider. ValueChangedFen = createCallbackFen(app, @HumeralflexionSliderValueChanging, true);
673 app .HumeralFlexionslider. Position = [337 54 381 3];
674
675 % Create ShowiresCheckBox
676 app . ShowtliresCheckBox = uicheckbox(app.UTFigure);
677 app . ShowtiresCheckBox.ValueChangedFcn = createCallbackFcn(app, @ShowdiresCheckBoxValueChanged, true);
678 app . ShowtiresCheckBox. Text = "Show Wires’;
679 app . ShowtiiresCheckBox.Position = [164 45 86 43];
680
681 % Show the Figure after all components are created
682 app .UTFigure.Visible = ‘on’;
683 en
684 end
685
686 % App creation and deletion
687 methods (Access = public)
688
689 % Construct app
690 function app = shoulderRotationdpp
691
692 % Create UIFigure and components
693 createComponents (app)
694
695 % Register the app with App Designer
696 registerapp(app, app.UIFigure)
697
698 % Execute the startup function
699 runStartupFcn(app, @startupFen)
780
781 f nargout == 0
702 clear app
703 end
704 end
705
706 % Code that executes before app deletion
707[function delete(app)
708
709 % Delete UTFigure when app is deleted
710 delete(app.UTFigure)
711 end
712 end
713 end

96

8.0 References

Anatomical Terminology. Anatomical Terminology | SEER Training. (n.d.). Retrieved March 14,

2024, from https://training.seer.cancer.gov/anatomy/body/terminology.html

Avin KG, Bloomfield SA, Gross TS, Warden SJ. Biomechanical aspects of the muscle-bone
interaction. Curr Osteoporos Rep. 2015 Feb;13(1):1-8. Doi: 10.1007/s11914-014-0244-x.
PMID: 25515697; PMCID: PMC4306629.

Bagg, S. D., & Forrest, W. J. (2016, March 4). A biomechanical analysis of scapula rotation
during arm abduction in the scapula plane. Academia.edu. Retrieved March 14, 2024, from
https://www.academia.edu/22798706/A_biomechanical analysis of scapula rotation duri
ng_arm_abduction in the scapula Plane?bulkDownload=thisPaper-topRelated-

sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover page

Bolsterlee, B., Veeger, D. H. E. J., & Chadwick, E. K. (2013). Clinical applications of
musculoskeletal modelling for the shoulder and upper limb. Medical & Biological

Engineering & Computing, 51(9), 953-963. https://doi.org/10.1007/s11517-013-1099-5

Bones of the shoulder. jointspecialists.org. (2017, March 27). Retrieved March 14, 2024, from

https://jointspecialists.org/bones-of-the-shoulder/

Chua, Chee Kai, and Wai Yee Yeong. “Impact Toughness.” Impact Toughness - an Overview
ScienceDirect Topics, www.sciencedirect.com/topics/engineering/impact-toughness.

Accessed 14 Mar. 2024.

Deane, Ella, et al. Worcester, Massachusetts, 2022, Anatomically Accurate Motorized Shoulder

Model with Scapula Movement.

Engelhardt, C., Camine , M., V., Ingram D., Miillhaupt P., Farron A., Pioletti D., Terrier A. (April
4,2014). Comparison of an EMG-based and a stress-based method to predict shoulder

muscle forces, Computer Methods in Biomechanics and Biomedical Engineering. Taylor&

Francis Online Journal, 1272-1279, DOI: 10.1080/10255842.2014.899587

97

https://training.seer.cancer.gov/anatomy/body/terminology.html
https://doi.org/10.1007/s11517-013-1099-5
https://jointspecialists.org/bones-of-the-shoulder/

Garofalo, Pietro. “Clavicular Component of Scapulo-Humeral Rhythm.” ResearchGate,
www.researchgate.net/figure/Clavicular-Component-of-Scapulo-humeral-Rhythm-Third-I11

-top-phase-of-scapulohumeral figl5 24019863. Accessed 14 Mar. 2024.

Igoshin, Nikita. Worcester, Massachusetts, 2022, Producing Accurate Relative Motion in a
Shoulder Model.

Mathoma. (July 26, 2016). “3D Rotations in General: Rodrigues Rotation Formula and
Quaternion Exponentials™ YouTube, https://www.youtube.com/watch?v=q-ESzg03mQc.

Accessed 12 Mar. 2024.

McEvilly, Fiona, et al. Worcester, Massachusetts, 2023, Realistic Shoulder Model with Soft

Tissue Attachments.

O'Leary S, Christensen SW, Verouhis A, Pape M, Nilsen O, McPhail SM. Agreement between
physiotherapists rating scapular posture in multiple planes in patients with neck pain:
Reliability study. Physiotherapy. 2015 Dec;101(4):381-8. doi:
10.1016/j.physi0.2015.01.005. Epub 2015 Jan 25. PMID: 25749493.

“Online Learning for Physiotherapists.” Physiotutors, 21 Feb. 2024, Physiotutors.com/.

OpenStax. “University Physics Volume 1.” 10.6 Torque | University Physics Volume 1,3 Aug.

2016, courses.lumenlearning.com/suny-osuniversityphysics/chapter/10-6-torque/.

Physics LibreTexts, Libretexts, 12 Mar. 2024,
phys.libretexts.org/Bookshelves/Conceptual Physics/Introduction to Physics (Park)/03%
3A Unit 2- Mechanics I - Energy and Momentum Oscillations and Waves Rotation
_and_Fluids/06%3A_Rotation/6.03%3A Dynamics of Rotational Motion- Rotational In

ertia.

“Pololu Robotics and Electronics.” Pololu Robotics & Electronics, www.pololu.com/. Accessed

14 Mar. 2024.

98

“Programming with Matlab.” MATLAB & Simulink,

www.mathworks.com/products/matlab/programming-with-matlab.html. Accessed 14 Mar.
2024.

Shelton, Stephen M., and William H. Swanger. Fatigue Properties of Steel Wire,
nvlpubs.nist.gov/nistpubs/jres/14/jresv14nlpl7_ Alb.pdf. Accessed 14 Mar. 2024.

Shojaei, Amir Mohammad. “Connect Two Arduino Boards Using 12C Communication
Protocol.” Electropeak, 28 May 2023,

electropeak.com/learn/connect-two-arduino-boards-using-i2c-communication-protocol/.

Singh, A. P. (n.d.) Muscles of Shoulder Region. Bones and Spine.
https://boneandspine.com/muscles-of-shoulder/

“StepperOnline.” STEPPERONLINE, StepperOnline.com/. Accessed 14 Mar. 2024.
“Tutorials.” Arduino, www.arduino.cc/en/Tutorial/ HomePage. Accessed 14 Mar. 2024.

Ultimaker Nylon: Technical Data Sheet. (2022, 20 Apr). Ultimaker. Retrieved March 14, 2024,
from https://ultimaker.com/materials/nylon

Ultimaker TPU 95A: Technical Data Sheet. (2022, 29 Apr). Ultimaker. March 14, 2024, from

https://ultimaker.com/materials/tpu-95a

“The Ultimate Resource for Healthcare Professionals & Medical Students.” TeachMeAnatomy,
teachmeanatomy.info/. Accessed 14 Mar. 2024.

“Unleashing the Power of Programming.” An Introduction To Coding,

www.arduino.cc/education/an-introduction-to-coding/. Accessed 14 Mar. 2024.

Yabata, Kazuyuki, and Tsutomu Fukui. “Characteristics of the Scapula Movement during
Shoulder Elevation Depend on Posture.” Journal of Physical Therapy Science, U.S.
National Library of Medicine, July 2022,
www.ncbi.nlm.nih.gov/pmc/articles/PMC9246406/.

99

http://www.mathworks.com/products/matlab/programming-with-matlab.html
https://boneandspine.com/muscles-of-shoulder/
https://ultimaker.com/materials/nylon
https://ultimaker.com/materials/tpu-95a

