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Abstract 

 A Quantum Diamond Microscope (QDM) is a device that is used to image magnetic fields 

and temperature distributions with nitrogen-vacancy (NV) centers in a diamond chip. Because the 

QDM uses a laser to excite the NV centers, there can be significant heating of the diamond chip 

along with the samples that are being measured. As a result, some samples of interest may become 

damaged; thus, it is important to characterize the temperature distribution across the NV diamond 

sensor. Through the use of Optically Detected Magnetic Resonance (ODMR) spectroscopy, 

thermal distributions across the diamond chip are measured, and the thermal effects of different 

imaging conditions are characterized. For typical operating conditions of 2.4 W of laser power and 

a 2.10 mm diameter Gaussian laser beam, the maximum temperature across the diamond sensor is 

132 °C and the minimum temperature is 129 °C, and it takes about 4 minutes to reach thermal 

equilibrium. Thermal simulations are also conducted and experimentally verified in order to 

predict expected temperature distributions of the QDM. This work can serve as a starting point for 

developing methods to improve heat dissipation to be able to safely image samples that are 

sensitive to heat. 
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1. Introduction & Background 

 The Quantum Diamond Microscope (QDM) is a state-of-the-art device that takes 

advantage of the principles of quantum physics. By using nitrogen-vacancy (NV) centers in a 

diamond crystal, the QDM offers promising capabilities in the measurement and imaging of 

magnetic fields while also being able to perform measurements and imaging of temperature 

distributions. Unlike other magnetic field sensors such as the superconducting quantum 

interference device (SQUID) and magnetic force microscopy (MFM), the ensembles of NVs in 

diamonds utilized in QDMs provide reliable measurement capabilities at ambient temperatures 

and do not require special cooling [1]. QDMs can also be used at temperatures ranging from 

cryogenic to well over typical room temperatures. Importantly, the QDM offers a higher spatial 

resolution [1]. A QDM even has the ability to measure full-vector magnetic fields as well as the 

ability to measure slowly changing magnetic fields over time [2]. The extensive adaptability of the 

QDM setup allows for a broad range of applications across many different fields including studies 

of biological samples, geological samples, and electrical components among others [3, 4, 5]. 

 Of particular interest to this project is the goal of being able to image the magnetic fields 

of biological samples, which often are sensitive to high temperatures and may become damaged 

after long exposure to these conditions. By taking advantage of the temperature measurement 

capabilities of QDMs, temperature information was gathered and analyzed to serve as a starting 

point for developing methods to improve the heat dissipation from these samples of interest. 

 

1.1 The Quantum Diamond Microscope 

 A typical Quantum Diamond Microscope setup consists of several important components 

including an NV diamond sensor, Helmholtz coils or permanent magnets, a microscope objective, 

a camera, and a microwave loop. Two common QDM setups are shown below in Figure 1. While 

in both setups, a bias magnetic field is being generated, it is being done in two different ways. 

Setup A creates a bias magnetic field using two strong, permanent magnets, and setup B does this 

with Helmholtz coils oriented along the x, y, and z axes. A setup with Helmholtz coils similar to 

setup B is what is used in this work. The coils first cancel out the Earth’s natural magnetic field 

and then also generate a bias magnetic field along one of the NV axes. 

Other important parts of the QDM include a microscope objective and camera positioned 

above the NV diamond chip and sample in order to collect the fluorescence from the NV centers. 

Optical filters may also be used to help control what light is collected by the camera. A red-light 

filter is included in our setup to filter out all light with a wavelength below 650 nm. An excitation 

laser with a 532 nm wavelength is used to excite the NV centers while a microwave loop around 

the NV diamond chip is used to control the spin states of electrons in the NV centers. 
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Figure 1: Quantum Diamond Microscope configurations with two permanent magnets (A) or 

Helmholtz coils (B) to create a bias magnetic field. An excitation laser is used to excite the NV 

centers in a diamond chip. Fluorescence from the NV centers is collected through a microscope 

objective by a camera. A microwave loop around the diamond is used to control spin states in the 

NV centers, and a sample is placed just below the diamond chip. Image from [2]. 

 Together, these components of the QDM are used to perform Optically Detected Magnetic 

Resonance (ODMR) spectroscopy. Specifically, Continuous Wave Optically Detected Magnetic 

Resonance (CW ODMR) was used in all experiments described in this paper because it is a 

common method of magnetic imaging with a QDM and is the simplest to employ.  

In a quantum diamond sensor with nitrogen-vacancy centers, electrons are excited from 

their ground state by the 532 nm laser as explained further in Section 1.2.1 and pictured in Figure 

2. The amount of fluorescence that results from the decay back to the ground state is dependent on 

the spin states of the electrons in their ground state. Resonant microwave frequencies from the 

microwave loop can be used to flip the spin of the ground state electrons. By sweeping through a 

set of microwave frequencies and collecting the fluorescence from the NV centers, a spectrum can 

be generated like that pictured in Figure 3. 
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Figure 2: NV electron energy levels. The possible decay paths for electrons in the excited 3E state 

are shown with arrows. The radiative decay paths that result in red fluorescence are shown with 

red arrows. Non-radiative decay through the intermediate 1A1 and 1E levels is more likely for 

electrons in the 𝑚𝑠 = ±1 state. Image from [5]. 

 

 

Figure 3: Sample ODMR Spectrum that would be obtained by a QDM. Two peaks with hyperfine 

structure are present representing the 𝑚𝑠 = 0 → ±1 transitions. When a sample with a magnetic 

field 𝐵𝑠 is present, a Zeeman shift Δ𝑓 proportional to the total magnetic field 𝐵0 + 𝐵𝑠 occurs where 

𝐵0 is the bias magnetic field generated by the Helmholtz coils. Image from [5]. 

 The ODMR spectrum shows NV fluorescence as a function of microwave frequency. By 

determining where the fluorescence decreases along the ODMR spectrum, the frequencies at which 

the spin states of the electrons in the NV centers change can be determined. The exact resonance 
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frequencies at which these spin state changes occur are dependent on both magnetic field strength 

and temperature; this allows for these two values to be calculated using the ODMR spectrum. 

Magnetic field strength is a function of the difference between the resonance frequencies whereas 

temperature is determined by examining the overall common shift of all resonance frequencies. 

The exact relation between these frequencies, magnetic field strength, and temperature is discussed 

further in Section 1.2.2. 

 

1.2 Nitrogen-Vacancy Center Physics 

 Nitrogen-vacancy centers in diamond crystal structures are naturally occurring defects; 

however, these NV centers can also be intentionally created using techniques such as chemical 

vapor deposition (CVD) with nitrogen-doping to manufacture a diamond with a controlled 

concentration of NV centers. During the CVD process, thin layers of carbon atoms are deposited 

onto a substrate to gradually form a diamond crystal with the desired thickness. Throughout this 

process, nitrogen can be incorporated through nitrogen-doping as isolated-substitutional-nitrogen 

atoms in the crystal. These nitrogen substitution defects can then be converted to NV centers using 

irradiation and annealing techniques [6]. The diamond used in the experiments discussed in this 

paper is 4 mm x 4 mm x 1 mm in size. It was manufactured through chemical vapor deposition 

with a nitrogen-doping phase during the formation of the final layer in order to create a single layer 

of NV centers along one face of the crystal. 

 The geometry of an NV center can be described as a point defect in the crystal structure of 

a diamond (shown in Figure 4). It is a nearest-neighbor pair where a nitrogen atom has been 

substituted for one carbon atom and a neighboring point in the crystal lattice is left vacant. The 

free electrons that occupy this vacancy are the primary feature of the NV center that allow us to 

perform measurements using the QDM. Here, we specifically focus on the properties of negatively 

charged NV centers as these are the types of NVs used in these experiments. The free electrons of 

the NV consist of one electron each from the three carbon atoms adjacent to the vacancy, two 

additional electrons from the nitrogen atom, and one more electron from the lattice giving the NV 

its negative charge [2]. 
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Figure 4: Nitrogen-vacancy center crystal structure. A Nitrogen atom (blue) has been substituted 

for a carbon atom (black), and a neighboring point in the lattice has been left vacant (white). The 

orientation of the NV defect can be along the (111), (11̅1̅), (1̅11̅), or (1̅1̅1) axes. Here it is pictured 

in the (111) direction. 

1.2.1 Nitrogen-Vacancy Center Electron Transitions 

 Quantum Diamond Microscopes use the fluorescence that results from the decay of NV 

centers’ electrons to measure magnetic fields and temperatures. This is done by detecting changes 

to the ground state of the electrons that occupy the vacancies in the NVs. The ground state of these 

electrons is the spin triplet state 3A2, shown in Figure 2 in Section 1.1. The corresponding excited 

state is the 3E state with additional intermediate excited states 1A1 and E3, also pictured in the 

figure. Both the 3A2 and 3E states are composed of three fine structure states for 𝑚𝑠 = 0, 𝑚𝑠 =

−1, and 𝑚𝑠 = +1 which each additionally have their own three-level hyperfine structure 

(hyperfine structure is not shown in Figure 2) [2]. 

 Using the 532 nm laser beam, the NVs are excited from the 3A2 state to the 3E state. The 
3A2 state and 3E state are coupled together by a 637 nm zero-phonon line (ZPL), making the 
3E→3A2 transition a radiative transition where a red photon is emitted. [7]. This is the fluorescence 

that is captured by the camera in a QDM. In addition to the 3E→3A2 decay path, an excited electron 

in the 3E state may also follow the 3E→1A1→
1E→3A2 decay path. In this decay path, the 3E→1A1 

and 1E→3A2 transitions are referred to as intersystem crossing (ISC) transitions. Decay through 

the 3E→1A1→
1E→3A2 path is non-radiative meaning no photon is emitted, unlike what occurs 

during the 3E→3A2 transition. The probability of the 3E→1A1 ISC transition occurring is only 

negligible for electrons in the 𝑚𝑠 = 0 3E excited state. For electrons in the 𝑚𝑠 = ±1 3E states, this 
3E→1A1 ISC transition has a non-negligible probability of occurring and resulting in a non-

radiative decay [8]. This reduction in photon emission for NVs in the 𝑚𝑠 = ±1 states due to the 

ISC decay path is large enough to be observed by the QDM during measurements. A quantitative 

value called contrast can be assigned to the change in fluorescence, defined as the percent 

difference in fluorescence between NV centers in the 𝑚𝑠 = ±1 state and NV centers in the 𝑚𝑠 =

0 state. For a single NV, the contrast be as high as 20%, but for measurements performed for this 

project using an ensemble of NVs, a typical contrast was 1.3-1.5% [2]. 
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1.2.2 Nitrogen-Vacancy Center Hamiltonian 

 As mentioned in Section 1.1, the function of the microwave loop is to control the spin states 

of the electrons occupying the vacancies of the NV centers in order to carry out magnetic field and 

temperature measurements. The relation between these properties and the microwave frequencies 

that result in a spin flip can be accurately described by examining the following simplified 

Hamiltonian representing the energy of an electron in the 3A2 ground state 

 ℋ̂ = ℎ𝐷(𝑇)𝑆𝑧
2 − 𝝁 ∙ 𝑩 (1) 

where ℎ is the Planck constant, 𝐷(𝑇) is the Zero Field Splitting (ZFS) frequency given as a 

function of temperature, 𝑆𝑧 is the dimensionless spin-1 matrix along the z-axis, 𝝁 is the electron’s 

magnetic moment, and 𝑩 is the magnetic field at the electron [9]. The Hamiltonian can also be 

written using the spin vector 𝑺 = (𝑆𝑥, 𝑆𝑦 , 𝑆𝑧) containing all three dimensionless spin-1 matrices, 

and the electron gyromagnetic ratio 𝛾. 

 ℋ̂ = ℎ𝐷(𝑇)𝑆𝑧
2 − ℎ𝛾(𝑺 ∙ 𝑩) (2) 

It is important to note here that the z-axis is assumed to be oriented along the axis of the nitrogen-

vacancy defect. For ease of notation, it is generally assumed as being in the (111) direction 

according to the Miller Index used in crystallography to specify lattice planes and directions. 

 While the Hamiltonian described in Equations 1 and 2 is sufficient to describe an NV 

system for the purposes of measuring magnetic field strength and temperature, a complete 

Hamiltonian would include several additional terms. These additional terms include internal 

crystal stress in the diamond along with the interactions between the Nitrogen atom and the 

electrons as well as the effect of any present electric fields, but for our purposes these terms are 

negligible. The parts of the Hamiltonian included in Equations 1 and 2 are the Zeeman term 

because they can be used to describe the phenomenon of the Zeeman effect. The Zeeman effect is 

the shift in the resonance frequencies due to the introduction of a magnetic field. The bias magnetic 

field generated by the Helmholtz coils makes the Zeeman term dominant in the Hamiltonian and 

all other terms negligible. There is extensive documentation on the complete Hamiltonian for NV 

centers that will not be discussed in this work [2]. This simplified Hamiltonian leads to the equation 

giving the electron spin-flip probability as a function of microwave frequency, the shape of which 

can be graphically described as a Lorentzian curve [5]. 

 
〈𝑃0→±1〉 =

𝑓1
2

(𝑓 − 𝑓0′)2 + 𝑓1
2 (3) 

Here, 𝑓1 and 𝑓0′ are dependent on both the static magnetic field and oscillating magnetic field 

strength and direction. The static magnetic field is the combination of the bias field generated by 

the Helmholtz coils and the magnetic field introduced by the sample being measured by the QDM; 

the oscillating magnetic field is generated by the microwave loop. The value 𝑓0′ is of particular 
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interest as this is the resonance frequency for a spin-flip to occur. As 𝑓 approaches 𝑓0′, the 

probability of a spin-flip occurring approaches 1. The exact value of 𝑓0′ is given by 

 𝑓0
′ = 𝐷(𝑇) ± 𝛾𝐵𝑧 (4) 

where the resonance frequency corresponding to the 𝑚𝑠 = 0 to 𝑚𝑠 = −1 spin-flip is represented 

by 𝐷(𝑇) − 𝛾𝐵𝑧, and the 𝑚𝑠 = 0 to 𝑚𝑠 = +1 spin-flip is represented by 𝐷(𝑇) + 𝛾𝐵𝑧. The 

magnetic field 𝐵𝑧 is the sum of the bias field generated by the Helmholtz coils (𝐵0) and the 

magnetic field from the sample being measured by the QDM (𝐵𝑠) along the NV z-axis such that 

𝐵𝑧 = 𝐵0 + 𝐵𝑠. The difference between these two resonance frequencies is Δ𝑓 = 2𝛾𝐵𝑧 = 𝐵𝑧 ∙

5.60 𝑀𝐻𝑧/𝐺 [5]. This relation between the difference of the resonance frequencies (Δ𝑓) and the 

total magnetic field (𝐵𝑧) allows for the strength of the magnetic field from the sample of interest 

to be derived from the difference between resonance frequencies. By processing through a series 

of microwave frequencies surrounding the ZFS frequency, the resonance frequencies that induce 

transitions in NV centers from the 𝑚𝑠 = 0 to the 𝑚𝑠 = ±1 states can be found based on what 

frequencies result in reduced fluorescence. This is the principle that allows for the measurement 

of magnetic fields using a QDM. 

For this work, we placed an emphasis on measuring temperature using a QDM. As 

previously mentioned, the ZFS frequency 𝐷(𝑇) is given as a function of temperature, implying 

that temperature can be derived from its relation to the resonance frequencies. To create a more 

complete equation for the resonance frequencies (Equation 4) by accounting for temperature, we 

can use the approximation 𝐷 ≈ 2.87 𝐺𝐻𝑧 at 300 K and its rate of change 𝑑𝐷/𝑑𝑇 = 𝛽𝑇 =

−74.2 𝑘𝐻𝑧/𝐾 giving us the new equation [2, 10] 

 𝑓0
′ = 𝐷 + 𝛽𝑇𝛿𝑇 ± 𝛾𝐵𝑧 (5) 

𝑓0
′ = 2.87 [𝐺𝐻𝑧] − 𝛿𝑇 ∙ 74.2 [𝑘𝐻𝑧/𝐾] ± 𝐵𝑧 ∙ 2.80 [𝑀𝐻𝑧/𝐺] 

where 𝛿𝑇 is the change in Temperature from 300 K. By finding the frequency given by 𝐷 + 𝛽𝑇𝛿𝑇  

using the resonance frequencies, the temperature can be determined using the relation described 

by Equation 5. 

 

1.3 Objectives 

 When taking measurements using a Quantum Diamond Microscope, some samples of 

interest may become damaged or have their properties altered due to the exposure to high 

temperatures that can result from them being in direct line of the laser beam. The goal of this 

project was to take advantage of the temperature measurement capabilities of QDMs in order to 

gain an understanding of the thermal distribution across the NV quantum diamond sensor under 

various conditions such as different laser powers and laser beam diameter. In doing so, we are able 

to use the resulting temperature information as a starting point for developing methods to improve 
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heat dissipation from the quantum diamond sensor so that samples that are heat sensitive, such as 

biological samples, may be imaged while experiencing fewer damaging conditions. The objectives 

for this project are the following: 

1. To use the QDM to measure the temperature across the NV diamond sensor by creating a 

program that is able to calculate temperature measurements using the ODMR spectrum. 

2. To utilize the newly created program for temperature measurement to characterize the time 

needed for the NV diamond sensor’s temperature to reach equilibrium for various laser 

beam powers. 

3. To study the effects that laser beam power and laser beam diameter size have on the 

temperature measurements collected by the QDM. 

4. To utilize transient thermal analysis software to simulate the thermal distribution across 

the NV diamond sensor under the same conditions it experiences while being used in the 

QDM. This allows for the future testing of the thermal behavior of the NV diamond sensor 

under various experimental setups without the need for hours of data collection. 
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2. Temperature Measurements 

 In this chapter, we created a program to measure temperature using a QDM. We then used 

this program to perform experiments to determine the relation between laser power and 

temperature, to determine the amount of time required for the quantum diamond sensor to reach 

thermal equilibrium, and finally to examine the effect that laser beam diameter has on thermal 

distributions across the diamond. 

 

2.1 Measuring Temperature Using a QDM 

 While QDMs are most commonly used to measure magnetic field strength, the properties 

of the NV centers in the quantum diamond sensor used by QDMs allow for the measurement of 

temperature as well, the physics of which was described in Section 1.2. As shown previously in 

Equation 5, a value for temperature can be calculated using the resonance frequencies measured 

via ODMR spectroscopy using the QDM. The QDM in our lab was already set up to image 

magnetic fields which also relies on knowing the resonance frequencies. The existing MATLAB 

program used for measuring magnetic field strength generates two arrays containing the resonance 

frequency values for measured for every pixel of the microscope camera. This is done by fitting 

three Lorentzian curves to the hyperfine structure of each resonance frequency on the ODMR 

spectrum collected for each pixel by the microscope camera. The result is one array of all the first 

resonance frequencies corresponding to the 𝑚𝑠 = 0 to 𝑚𝑠 = −1 transition and another array of all 

the second resonance frequencies corresponding to the 𝑚𝑠 = 0 to 𝑚𝑠 = +1 transition. To measure 

temperature using the QDM, it was advantageous to first run the raw data through the existing 

MATLAB program for magnetic fields and use the resulting resonance frequency arrays. 

 The next step was to create a MATLAB program for temperature measurement that could 

take the resonance frequency arrays and use them to calculate temperature values. To do this, we 

wrote the relation described by Equation 5 in a form that would give temperature as a function of 

the Zero Field Splitting frequency. Since the two resonance frequencies are equidistant from the 

ZFS frequency, the ZFS frequency can be described as the average of the resonance frequencies: 

 
𝑓̅ =

𝑓2 − 𝑓1

2
 (6) 

 Here, 𝑓 ̅is the ZFS frequency and 𝑓1 and 𝑓2 are the first and second resonance frequencies 

respectively. Using this equation for the ZFS frequency and the relation described in equation 5, 

temperature as a function of the ZFS frequency can be written as 

 
𝑇(𝑓)̅ = 300 −

𝑓̅ − 𝐷

𝛽𝑇
× 106 = 300 [𝐾] −

𝑓̅ − 2.87 [𝐺𝐻𝑧]

74.2 [𝑘𝐻𝑧/𝐾]
× 106 (7) 
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 By implementing Equation 7 into a MATLAB program that uses the two previously 

generated arrays of the resonance frequencies, values for temperature in Kelvin can be calculated 

at every pixel of the microscope camera. These values are then easily convertible from Kelvin to 

any desired unit of temperature measurement such as degrees Celsius. We used this MATLAB 

program to analyze the ODMR spectrums collected for the following experiments in this chapter 

to measure temperature. 

 

2.2 QDM Temperature Measurement 

In Section 2.2.1, we determined the relation between laser power and temperature using 

temperature measurements made with the QDM. Next, in Section 2.2.2, we carried out 

experiments to determine the amount of time required for the quantum diamond sensor in the QDM 

to reach thermal equilibrium. Finally, in Section 2.2.3, we used the QDM to measure the effect 

that laser beam diameter has on thermal distributions across the diamond. 

2.2.1 Trends in Maximum Temperature Measurements 

 We carried out a study of the highest temperatures achieved at various laser powers first 

because understanding what the maximum expected temperature is for a given laser power is 

helpful when carrying out further experiments that are sensitive to high temperatures. To conduct 

this study, we repeatedly took measurements with no sample. We conducted measurements at 

different laser powers from lowest laser power to highest. This ensured that we did not take 

measurements with the NV diamond sensor starting at a temperature higher than what would 

otherwise be achieved at the specified laser power. 

 Prior to each measurement being carried out, we first set the laser power to the desired 

level and unblocked the beam so that it hit the diamond. We allowed this setup to sit without any 

interference for at least 45 minutes but up to 2 hours for the lower laser powers (i.e., 1.0 W and 

1.5 W) prior to any data being collected. Doing so ensured that the diamond sensor was already 

completely heated and had reached a steady state. This is to say that any further change in 

temperature over time was negligible and the temperature of the system was able to be considered 

constant. We can make this assumption due to the consistently low heat capacity of diamond. The 

constant pressure heat capacity of diamond at 300 K is given as 6.57 J/mol∙K as provided by the 

National Institute of Standards and Technology [11]. With a heat capacity this low, it is safe to 

assume that a diamond of this size will have fully finished heating prior to the 2-hour mark. This 

value is verified in Section 2.2.2 where the times required for the diamond to reach thermal 

equilibrium are examined in detail. 

 We took measurements for set laser powers in the range of 1.0 to 4.0 W at 0.5 W intervals 

(shown in Figure 5). Due to the fact that the beam passes through a beam splitter prior to it hitting 

the laser beam, there is a loss of power that occurs. Using a power meter from Thorlabs, we took 

measurements of the actual laser power after the beam splitter. We determined that the power is 
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reduced to approximately 80% of what it was set to. Therefore, if the laser power is set to 3.0 W 

of power, the actual laser power that is incident on the quantum diamond sensor is 2.4 ± 0.1 W. 

In this section and in following sections, the set laser powers being described are indicative of the 

value that the laser power was set to unless otherwise noted. For the range of 1.0 to 4.0 W at 0.5 

W intervals, the actual laser power that was incident on the diamond was 0.8, 1.20, 1.6, 2.0, 2.4, 

2.80, and 3.2 W. We collected each data set for a minimum of 6 hours but up to 10 hours to reduce 

noise in the data. 

 

Figure 5: Average Temperature vs. Laser Power. The blue dots are the temperature measurements 

made using the QDM with the power from the laser that is incident on the diamond being 0.8, 1.20, 

1.6, 2.0, 2.4, 2.80, and 3.2 W. Each dot is labeled with the exact temperature measured in degrees 

Celsius at each laser power. The red line is the trendline for the data with its equation displayed in 

the top left corner of the graph. The linear fit has an R2 value of 0.981. 

 The average measured temperatures followed a linear pattern going from 64 °C measured 

at 0.8 W to 168 °C at 3.2 W. By performing a linear fit on the data, we found an equation for 

temperature as a function of the set laser power. 

 𝑇(𝑃) = 43.8 ∙ 𝑃 + 26.3 (8) 

In Equation 8, 𝑇 is temperature in degrees Celsius and 𝑃 is the laser power in Watts. The value of 

R2 for this fit is 0.981. This formula can be used to predict the average temperature that would be 
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reached during an experiment using a specific laser power. It could also be solved for laser power 

as a function of temperature and used to figure out a laser power to use to achieve a certain average 

temperature while measurements are being taken. If it is known that a sample of interest is not 

viable above a certain temperature, knowing how hot it would become during measurements is 

important to avoid damaging the sample. 

 As a way of verifying that the temperatures being measured by the QDM are reasonable, 

we used a thermocouple to determine a temperature range in which the measured temperatures at 

0.8 W, 1.6 W, and 2.4 W would be expected to fall. A thermocouple is a device that can be used 

to measure temperature; it works by producing a temperature dependent voltage through two wires 

made of different metals. Two ends of the wires are soldered together and serve as the temperature 

measuring end. The other ends of the wires are attached to the voltage measuring system and kept 

at a reference temperature of 0 °C. The voltage is dependent on the difference in temperature 

between the hot end of the two connected wires and the cold end, so it is important to know what 

the cold reference temperature is. To measure the temperature dependent voltage, we used an 

Arduino UNO with an analog-to-digital converter (ADC) and coded a program in Arduino IDE to 

output temperature values. 

In order to avoid directly touching the quantum diamond sensor with the soldered end of 

the thermocouple, we took two measurements to determine a temperature range within which the 

diamond’s actual temperature would be expected to fall. After the diamond had reach its steady 

state temperature, we first placed the end of the thermocouple directly in the path of the laser beam 

above the diamond. Once the temperature there was measured, we touched the end of the 

thermocouple to the underside of the microscope slide that the diamond sits on directly underneath 

the diamond with the laser still on. These two measurements gave an upper and lower bound for 

the actual temperature of the diamond. For a laser power of 0.8 W, the thermocouple measurements 

gave a range of 57.5 ± 3 °C to 107.9 ± 3 °C. The QDM measured a temperature of 64 °C. For a 

laser power of 1.6 W, the thermocouple measurements gave a range of 60.2 ± 3 °C to 185.0 ± 3 

°C. The QDM measured a temperature of 96 °C. For a laser power of 2.4 W, the thermocouple 

measurements gave a range of 65.0 ± 3 °C to 285.1 ± 3 °C. The QDM measured a temperature of 

133 °C. The temperature ranges provided by the thermocouple are relatively large but can serve as 

a way of checking that the QDM measurements are not unreasonable. All of the temperatures 

measured by the QDM fall within the given ranges from the thermocouple, indicating that the 

QDM is providing reasonable measurements. 

2.2.2 Temperature Equilibrium Time Measurements 

 Taking temperature or magnetic field measurements while the temperature of the diamond 

is still changing can impact the accuracy of the measurements. Understanding how long it takes 

for the quantum NV diamond sensor in the QDM to reach thermal equilibrium for different laser 

powers is important to ensure that the measurements taken are accurate. For the second objective 

of this project, we conducted a study to determine the time required for the quantum diamond 

sensor to reach thermal equilibrium for several different laser powers. To do this, we collected 
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data sets over multiple intervals of time for each laser power, starting with shorter data collection 

times as low as 4 minutes and progressing to time intervals as long as 1.5 hours. 

 We performed experiments for set laser powers of 1.0 W, 2.0 W, 3.0 W, and 4.0 W. As 

explained in Section 2.2.1, the actual power that was incident on the diamond for these experiments 

would have been 0.8 W, 1.6 W, 2.4 W, and 3.2 W respectively. Prior to each experiment, we 

allowed the quantum diamond sensor to cool overnight from previous measurements to ensure that 

we observe the entire heating process during measurements. At the start of each experiment, we 

set the laser beam to the desired power level and started a timer as soon as the beam was unblocked 

so that it directly hit the diamond. We set the number of sweeps through the microwave frequencies 

to the desired amount corresponding to how long data would be collected. We recorded the time 

on the timer the moment data collection started; the experiment was monitored closely so that the 

time could be recorded again as soon as data collection ended. We then adjusted the number of 

sweeps and repeated the process until it could be assured that the diamond had reached equilibrium 

and that we had collected enough data to accurately represent the heating process. These periods 

of data collection for a single laser power ranged from 2 hours and 45 minutes up to 7 hours and 

15 minutes. 

 Following all data sets being collected for a single laser power and all timestamps being 

recorded, all sets of data were processed through the MATLAB code described in Section 2.1 to 

calculate the average temperature of the quantum diamond sensor during each data collection 

period. Next, we took the corresponding time value for each of these average temperature values 

to be the median of the time over which the data for that temperature was taken. For example, if 

data collection was started at 120 minutes and ended at 133 minutes, the corresponding time value 

for the average temperature calculated from that data would be 117.5 minutes. 

 We then plotted these temperature values in MATLAB and performed a fit using the 

custom curve fitting equation: 

 𝑇(𝑡) = 𝑎 − 𝑏 ∙ 𝑒−𝑐∙𝑡 (9) 

where 𝑇(𝑡) is the average temperature of the diamond in degrees Celsius, 𝑡 is the time that the 

laser has been hitting the diamond in minutes, and 𝑎, 𝑏, and 𝑐 are the fit parameters used to generate 

a fit equation for the heating of the quantum diamond sensor for each laser power. Figure 6 shows 

the resulting curve fits for each laser power that data was collected for. 
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Figure 6: Temperature vs. time that laser has been incident on the quantum diamond sensor for 1.0 

W (red), 2.0 W (green), 3.0 W (blue), and 4.0 W (pink). The temperature measurements at specific 

times are indicated with dots. A line showing the fit for the heating curve is included for each set 

laser power with the specific equation written in the box in the top right. 

 Based on the fits made using Equation 9, the final steady state temperatures for set laser 

powers of 1.0 W, 2.0 W, 3.0 W, and 4.0 W are 63.05 °C, 95.37 °C, 129.50 °C, and 164.40 °C 

respectively. These values for the maximum temperature reached at each laser power are all 0.79 

°C to 3.55 °C lower than the values measured in Section 2.2.1. This is due to the nature of the fit 

made using Equation 9 where its maximum value (𝑎) is drawn lower by the prior temperature 

points measured during the heating period. The more accurate values for the steady state 

temperature are those measured in Section 2.2.1 since they do not rely on a fit that is generated 

using measurements made during the heating process. The fit generated in this section is 

primarily helpful in determining the time required for the diamond to reach thermal equilibrium. 

 From these experiments we can conclude that the amount of time that the quantum diamond 

sensor needs to be exposed to the laser beam before it reaches its maximum temperature decreases 

rapidly as laser power is increased. Using the fitted heating curves to determine the amount of time 

necessary for the diamond to reach 99% of its maximum temperature relative to room temperature 

gives 116.96 minutes, 9.83 minutes, 6.98 minutes, and 4.05 minutes for set laser powers of 1.0 W, 

2.0 W, 3.0 W, and 4.0 W respectively. While it would have been beneficial to gather more data 

points closer to the start of the heating process, especially for 3.0 W and 4.0 W of set laser power, 
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temperature measurements with a QDM at these laser powers requires at least 3-4 minutes of data 

collection to obtain useable data. This is a potential limitation of using a QDM to measure 

temperature. However, due to the fact that even taking only 3-4 minutes of data at these highest 

laser powers yields temperatures already approaching thermal equilibrium, we can be confident 

that the majority of the heating would have occurred during these initial 3-4 minutes. Table 1 

shows the times needed for the quantum diamond sensor to reach 95% and 99% thermal 

equilibrium relative to room temperature at 1.0 W to 4.0 W of set laser power. 

Set Laser 

Power [W] 

Incident Laser 

Power [W] 

Time to 95% Thermal 

Equilibrium [min] 

Time to 99% Thermal 

Equilibrium [min] 

1.0 0.8 58.50 116.96 

2.0 1.6 5.19 9.83 

3.0 2.4 4.12 6.94 

4.0 3.2 2.31 4.05 

 

Table 1: Time before the quantum diamond sensor reaches 95% and 99% of the temperature for 

thermal equilibrium relative to the room temperature at 1.0 W to 4.0 W of laser power 

 Despite only having 4 data points each, both of these measurements of the time it takes for 

the diamond to reach a percentage of its thermal equilibrium appear to adhere to a power function. 

Figure 7 shows the values from Table 1 with two approximate power functions fit to the data. 
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Figure 7: Time to Reach 99% (blue) and 95% (red) Thermal Equilibrium Relative to Room 

Temperature vs. Laser Power. 

 Based on both of these trends, it can be conjectured that the time it takes for the quantum 

diamond sensor to reach thermal equilibrium approximately follows the proportionality relation 

 
𝑡𝐸 ∝

1

𝑃3
 (10) 

where 𝑡𝐸 is the time from the start of heating by the laser needed for the diamond to reach thermal 

equilibrium, and 𝑃 is power in Watts of the laser. While more experiments would be necessary to 

verify this relation shown in Equation 10, it is still conducive to providing insight into the thermal 

behavior to expect at different laser powers. If it is necessary to use a 1.0 W of laser power for an 

experiment in order to not damage a sample being measured, the quantum diamond sensor should 

first be allowed to heat for up to 2 hours so that it reaches thermal equilibrium. If a lower laser 

power is not necessary, or if it is desired to start taking measurements quickly, it may not be 

necessary to wait more than 4 minutes while using 4.0 W of set laser power to be sure that the 

diamond has reached its thermal equilibrium. Due to the time-consuming nature of these particular 

experiments, we were only able to conduct these experiments at the integer power levels. In future 

work, it would be suggested to conduct further experiments so as to be able to compare the heating 

of more laser power levels. 

               

                        

 

  

   

   

   

   

   

 
  

 
  
 
  
 

                                                   

                                      

                     

                                      

                      



17 

 

2.2.3 Effect of Laser Beam Size 

 The third objective involved studying the effects that laser beam diameter has on the 

temperature distribution across the NV diamond sensor. To complete this objective, we used a 

system of two consecutive convex lenses with different focal lengths to adjust the beam diameter. 

An optical image of the diamond was then taken and saved. After being processed through 

MATLAB, we determined the laser beam diameter using the image. The optical images of the 

diamond are shown in the left column of Figure 8. The colors in the optical images are not 

representative of the actual colors in the image. Instead, these colors are used to show relative 

brightness. Since the laser beam in the QDM hits the diamond at an angle, the profile of the area 

where the beam is incident on the diamond is not circular but elliptical. Let all mentions of the 

diameter or radius of the beam be assumed as referring to the larger diameter or radius of the 

elliptical profile. Based on the angle of incidence, the smaller diameter/radius of the elliptical 

profile is 92.22% of the larger diameter/radius. 

 For each new adjusted beam size, we took data using the QDM to create a thermal 

distribution map. For each experiment, we took data for 6 hours. The laser was kept at a set power 

of 3.0 W so that the resulting thermal maps could be compared with one another. The actual laser 

power that is incident on the quantum diamond sensor is 2.4 ± 0.1 W due to the loss of power 

from the beam splitter as described in Section 2.2.1. Understanding the actual power incident on 

the diamond is especially important when it comes to simulating these experiments (Chapter 3).  

Figure 8 shows the resulting thermal distributions across a 1.90 mm x 1.45 mm section of the 

quantum diamond sensor for laser beam diameters of 0.90 mm, 1.73 mm, and 2.10 mm. 
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Figure 8: Optical images of a laser beam on a quantum diamond sensor (left) and corresponding 

thermal maps of the quantum diamond sensor (right). We used laser beam diameters of 0.90 mm 
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(top row), 1.73 mm (middle row), and 2.10 mm (bottom row) in these experiments all at 2.4 W of 

power incident on the diamond. 

 The maximum temperature for the 0.90 mm diameter laser beam is approximately 126 °C 

and the minimum temperature is approximately 121 °C. For the 1.73 mm diameter laser beam, the 

maximum temperature is approximately 128 °C and the lowest temperature is approximately 125 

°C. For the 2.10 mm diameter laser beam, the maximum temperature is approximately 132 °C and 

the lowest temperature is approximately 129 °C. Based on these thermal maps, several conclusions 

can be drawn: 

1. The maximum measured temperature increases as the laser beam diameter increases. From 

the smallest beam diameter to the largest, there was a 166.7% increase in beam diameter 

with a 3.2% increase in maximum measured temperature. 

2. The range of temperatures across the diamond is larger for smaller laser beam diameters. 

With the 0.90 mm beam diameter, there was a difference of approximately 5 °C between 

the region where the beam was hitting the diamond and the region where it was not. For 

both the 1.73 mm and 2.10 mm beam diameters, there was a difference of approximately 

3 °C between the highest and lowest temperatures measured. 

3. The temperature gradient across the diamond is more evenly distributed for larger laser 

beam diameters. For the 0.90 mm beam diameter, temperatures across the diamond were 

primarily at either the highest (126 °C) or lowest (121 °C) temperatures measured with very 

little in between. For the two larger laser beam diameters of 1.73 mm and 2.10 mm, there 

was a more even distribution of temperatures with the majority of points being between the 

highest and lowest temperature values. 
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3. Simulations 

 For the fourth objective of this project, we simulated the thermal distribution across the 

quantum diamond sensor using SOLIDWORKS Transient Thermal Analysis software. We 

replicated experimental setups of the quantum diamond sensor described in Chapter 2 using this 

software and compared the results from the simulations with the experimental results. Performing 

these simulations served two primary roles: 

1. To develop a method for simulating the quantum diamond sensor that provides a reasonable 

approximation of the actual experiment and can be verified using actual measurements 

taken using the QDM. 

2. To be able to use this method for simulating the quantum diamond sensor under new 

experimental setups so as to provide insight into what we can expect the thermal behavior 

of the system to be without needed to take data with the QDM. 

The following sections describe the methods used to perform these simulations and the results. 

 

3.1 Simulating Temperature of a Diamond Illuminated with a Gaussian 

Laser Beam 

 In Section 3.1.1, we determined the material properties of diamond and assigned them to a 

SOLIDWORKS model of the quantum diamond sensor used in the QDM. In Section 3.1.2, we 

applied a method of simulating a laser beam with a Gaussian irradiance profile to the model in a 

SOLIDWORKS Transient Thermal Analysis simulation. Finally, in Section 3.1.3, we determined 

the remaining thermal boundary conditions and initial conditions for the diamond and assigned 

them in the simulation. 

3.1.1 Material Properties of Diamond 

 The first step to simulate the quantum diamond sensor was to create a 4 mm x 4 mm x 

1mm rectangular prism in SOLIDWORKS and assign the correct material properties of diamond 

to it (these are the dimensions of the quantum diamond sensor used in all experiments as first stated 

in Section 1.2). A fully accurate representation of the quantum diamond sensor would not be a 

perfectly smooth diamond. There would be minor surface defects across all faces of the diamond 

that cannot be consistently recreated in a SOLIDWORKS model. These minor defects to not have 

a significant impact on the thermal loads or boundary conditions experienced by the diamond, so 

it is assumed that these imperfections do not have a significant impact on the accuracy of the 

thermal simulations being performed. Performing simulations with a diamond that has perfectly 

smooth faces still provides accurate results that are comparable to the real quantum diamond 

sensor, as is shown in the results in Section 3.2. 
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 Due to the SOLIDWORKS material library not having diamond as a default material in its 

database, it was necessary to create a custom material in the library and manually assign all 

material properties. For this project, we took the material properties of diamond from the Ansys 

Fluent 2021 R2 material library since diamond is included in that software’s built-in database. We 

assigned these values to a new custom material in the SOLIDWORKS material library under the 

name “diamond”. A complete list of the values assigned for all material properties is shown below 

in Table 2: 

Property Value Unit 

Elastic Modulus 1.1272e+12 N/mm^2 

Poisson’s Ratio 0.2 N/A 

Shear Modulus 450000 N/mm^2 

Mass Density 3509.3 Kg/m^3 

Tensile Strength 1200 N/mm^2 

Compressive Strength 110000 N/mm^2 

Yield Strength 140000 N/mm^2 

Thermal Expansion Coefficient 1.0496e-06 /K 

Thermal Conductivity 1445 W/(m∙K) 

Specific Heat 528.95 J/(kg∙K) 

 

Table 2: Material Properties of Diamond [12] 

3.1.2 Simulating a Gaussian Beam 

 The 532 nm laser used in the QDM has a Gaussian irradiance profile. This means that the 

amount of laser power that the laser is outputting over an area is not uniform but instead follows a 

Gaussian distribution as shown in Figure 9. In order to emulate a Gaussian irradiance profile using 

a SOLIDWORKS Transient Thermal Analysis simulation, we used an estimation for the 

distribution of laser power. We can do this by breaking up the area where the laser beam is hitting 

the diamond into concentric rings and assigning the amount of power generation in that area to be 

proportional to the area under the corresponding section of a Gaussian curve in Equation 11. First, 

a gaussian curve must be fitted to the desired radius of the beam. It is accepted that the radius of a 

Gaussian beam can be defined as the point where the relative intensity of the beam is 1/𝑒2 or 

approximately 13.5% of the maximum intensity [13]. This point corresponds to two standard 

deviations or 𝑟 = 2𝜎. This means that to simulate a beam with a given diameter, the necessary 

standard deviation for the corresponding Gaussian curve is one quarter of the diameter. (As 

mentioned in Section 2.2.3, all mentions of diameter and radius are in reference to the larger 

diameter/radius of the elliptical beam profile incident on the diamond surface.) 
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𝑔(𝑥) =

1

𝜎√2𝜋
𝑒

−(
𝑥2

2𝜎2)
 (11) 

 

Figure 9: Irradiance Profile of a Gaussian beam. The waist of the beam is defined as the point 

where the relative intensity is 1/e^2 (~13.5%) of the maximum intensity. This value (𝑤) is the 

radius of the beam. Image from [13]. 

 Next, we can break down the area where the Gaussian beam is incident on the diamond 

into concentric elliptical rings at intervals defined as a fraction of the standard deviation. The 

reason for choosing to use elliptical rings instead of circular rings is explained in Section 2.2.3. 

Breaking the area under the beam into concentric elliptical rings allows for the defined radius of 

the beam (2𝜎) to be broken up into an integer number of parts. We can define the width of each 

ring as the outer radius minus the inner radius. For these simulations, we used a width of one half 

of a standard deviation such that 𝑟𝑜 − 𝑟𝑖 = 0.5𝜎. Let 𝑟𝑜 and 𝑟𝑖 be the outer and inner radius 

respectively. By making the divisions smaller, the simulation of the Gaussian distribution becomes 

more accurate. The most accurate ring width for simulating the Gaussian distribution would be 

represented as 

 
𝑟𝑜 − 𝑟𝑖 = lim

𝑛→∞

1

𝑛
𝜎 (12) 

Figure 10 shows the distribution of the Gaussian beam in each subdivision of the elliptical region. 
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Gaussian Distribution Over a 2D Area 

 

 

Figure 10: Distribution of a Gaussian beam over an elliptical region. The elliptical region is broken 

down into concentric elliptical rings each with a width of 0.5𝜎. The center of the elliptical region 

is shown in red and corresponds to the center of the Gaussian distribution with an inner radius of 

0 and an outer radius of 0.5𝜎. The outer ring of the elliptical region is shown in purple and 

corresponds to the outer rang of the Gaussian distribution with and inner radius of 2.5𝜎 and an 

outer radius of 3.0𝜎. The total radius of the elliptical region is 3.0𝜎. 

 The percentage of the laser power in each ring is equal to the area under the Gaussian curve 

that is over that region. While the accepted definition for the radius of the Gaussian beam is 2𝜎, 

the actual distribution of the laser power covers a larger area. By simulating the Gaussian beam 

over an elliptical area with a radius of 3𝜎, 99.73% of the total laser power is accounted for. This 
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means that for a simulation for a beam with 2.4 W of power, approximately 2.39 W of power 

would be accounted for in the simulation. This means that the simulated temperatures may be 

slightly lower than the actual measured temperatures due to the 0.01 W reduction in power. 

Inner 

Radius 

Outer 

Radius 

Percent of Gaussian 

Curve Over this Region 

Laser Power in this Region 

for 2.4 W Total Power 

0     σ 38.29 % 0.9190 W 

0.5 σ 1.0 σ 29.98 % 0.7195 W 

1.0 σ 1.5 σ 18.36 % 0.4406 W 

1.5 σ 2.0 σ 08.82 % 0.2117 W 

2.0 σ 2.5 σ 03.30 % 0.0792 W 

2.5 σ 3.0 σ 00.98 % 0.0235 W 

 

Table 3: Distribution of laser power for concentric regions of the area under the laser beam with 

0.5𝜎 width 

 Table 3 shows the distribution of laser power in each region of the elliptical beam profile. 

In the SOLIDWORKS simulation, we created a sketch of these six concentric elliptical regions 

(like that pictured in Figure 10) with the appropriate dimensions based on the desired beam 

diameter. We ran all simulations for the different beam sizes using 2.4 W of total laser power being 

incident on the quantum diamond sensor sense this was the case for the beam sizing experiments 

described in Section 2.2.3. We assigned the equivalent power for each region (listed in the fourth 

column of Table 3) to each corresponding section as a “Heat Generation” boundary condition in 

SOLIDWORKS. 

3.1.3 Simulating Thermal Boundary Conditions on a Diamond 

 After the creation of the Gaussian beam’s boundary conditions in the SOLIDWORKS 

simulation, it was necessary assign the remaining thermal boundary conditions and initial 

conditions to fully simulate the experimental setup. Many of these conditions are best estimates 

for the actual ones experienced by the quantum diamond sensor during an experiment. It is near 

impossible to perfectly simulate all the conditions that an object experiences in real life, but 

reasonable estimates for these conditions can be made, allowing us to come close to simulating the 

actual outcomes of the experiment. The information collected from these simulations is not exact, 

but it provides valuable insight into the actual thermal distribution across the quantum diamond 

sensor. 

First, we set an initial temperature to be 294 K. This is a reasonable estimate for room 

temperature in the lab. The actual temperature will vary slightly from day to day. 
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Next, we applied a convective heat transfer coefficient of 10 W/(m2∙K) to all exposed faces 

of the diamond (i.e., all four 1 mm x 4 mm faces and one of the two 4 mm x 4 mm faces). There 

is no forced convection occurring across the diamond so a convection coefficient in the range of 2 

W/(m2∙K) to 25 W/(m2∙K) is reasonable. The exact value for the convection coefficient is 

dependent on how the air is flowing in the lab over the course of an experiment. It is impossible 

in this scenario to perfectly determine what the convection coefficient for free air is without 

changing how the air is moving. Instead, we use an estimate of 10 W/(m2∙K). The exact outcomes 

from the thermal simulations might differ by a few degrees if a different convective heat transfer 

coefficient is used, but this change is not significant enough to be of concern. 

Finally, we applied a boundary condition to the last face of the diamond to account for 

conductive heat loss. In the experiments, we placed the quantum diamond sensor on top of a soda-

lime glass microscope slide. The slides used were Globe Scientific #1324 Glass Microscope Slides 

which have a thickness of 1 mm. It was assumed that the temperature of the air that the underside 

of the slide was exposed to remained at room temperature throughout the experiment while the 

backside of the diamond touching the slide was heated up. Since heat flux from conduction is 

dependent on difference in temperature, we derived an equation for heat flux and assigned it as the 

boundary condition for this face of the diamond. The general equation for heat flux 𝑞 is 

 
𝑞 =

−𝑘Δ𝑇

𝑑
 (13) 

where 𝑘 is the thermal conductivity of the material in W/(m2∙K), Δ𝑇 is the difference in 

temperature between the hot and cold side of the material, and 𝑑 is the thickness of the material. 

The create an equation for heat flux through the microscope slide as a function of the temperature 

of the temperature of the underside of the diamond, we used the following values [14]: 

𝑘 = 1.339 [𝑊/(𝑚2 ∙ 𝐾)] 

𝑑 = 1 [𝑚𝑚] 

Δ𝑇 = 𝑇𝑑𝑖𝑎𝑚𝑜𝑛𝑑 − 294 [𝐾] 

 Using these parameters, the following equation for heat flux through the microscope slide 

is generated: 

 𝑞(𝑇𝑑𝑖𝑎𝑚𝑜𝑛𝑑) = −1339(𝑇𝑑𝑖𝑎𝑚𝑜𝑛𝑑 − 294) [𝑊/𝑚^2] (14) 

To create the appropriate boundary condition for this face in SOLIDWORKS, we assigned a 

temperature dependent heat flux boundary condition defined using Equation 14. Figure 11 shows 

the heat flux curve generated by SOLIDWORKS using Equation 14. 
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Figure 11: Heat flux curve representing heat flux through a soda lime glass microscope slide as a 

function of temperature. 

 These thermal boundary conditions and initial conditions, along with the heat generation 

from the Gaussian beam described in Section 3.1.2, reasonably emulate the thermal conditions 

experienced by the quantum diamond sensor during experiments with the Quantum Diamond 

Microscope. There are more boundary conditions that are less predominant and more difficult to 

simulate such as the heat lost due to the fluorescence from the NV centers (described in Section 

1.2), or the energy lost as a result of some light from the laser beam reflecting off the diamond’s 

surface. The impact from such phenomenon will have a slight impact on the temperature 

distribution across the diamond, but not so much that the simulated temperatures are not 

comparable or useful in understanding the thermal behavior of the system. 

 

3.2 Thermal Simulations 

 We generated simulations in SOLIDWORKS for 2.4 W of laser power and laser beam 

diameters of 0.90 mm, 1.73 mm, and 2.10 mm. These laser beam diameters correspond to the three 

laser beam diameters used in the experiments described in Section 2.2.3. First, we adjusted the 

diameter of the heat distribution from the Gaussian beam accordingly for each simulation as 

described in Section 3.1.2. After that, we generated a mesh across the geometry of the model of 

the diamond, and then ran the simulations until they reached a steady state. Figure 12 shows a full 

picture of the simulated quantum diamond sensor after a transient thermal analysis was run on it. 

The beam diameter of this simulation was 0.90 mm. The resulting thermal distribution map shows 

a maximum temperature of 124.2 °C and a minimum temperature of 123.4 °C. 
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Figure 12: Full view of simulated 0.90 mm laser beam at 2.4 W of power. 

To best compare the simulations with the thermal distribution maps generated from the 

beam sizing experiments in Section 2.2.3, it is necessary to adjust the field of view on the 

simulations to match field of view used in the experiments. Figure 13 shows the zoomed-in fields 

of view for simulations of the 0.90 mm, 1.73 mm, and 2.10 mm beams with 2.4 W of laser power. 
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Figure 13: Simulated temperature maps of a 2 mm x 2 mm region of a diamond laser beam being 

hit by 0.90 mm (top), 1.73 mm (middle), and 2.10 mm (bottom) laser beam at 2.4 W of power. 
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 For the simulation of the 0.90 mm laser beam, the maximum temperature is 124.20 °C. 

When compared to the thermal map for the 0.90 mm beam experiment shown in Figure 8, the 

maximum temperature of the simulation is approximately 2 °C lower. The lowest temperature 

shown in this region of the simulation is 123.48 °C. This is approximately 2.5 °C higher than the 

lowest temperature measured by the QDM. In the experiment, temperatures were mostly 

concentrated around the highest or lowest measured values. It appears that in the simulation of the 

0.90 mm beam, the energy from the laser was more evenly distributed than it was in the 

experiment; the area between the point with the highest temperature and the point with the lowest 

temperature has a more continuous distribution. 

For the simulation of the 1.73 mm laser beam, the maximum temperature is 128.35 °C. 

When compared to the thermal map for the 1.73 mm beam experiment shown in Figure 8, the 

maximum temperature of the simulation is approximately 0.4 °C higher. The lowest temperature 

shown in this region of the simulation is 127.92 °C which is approximately 3 °C higher than what 

we measured using the QDM. Like the experimental measurements, the distribution of 

temperature for the 1.73 mm beam diameter is more evenly distributed than it was for the 0.90 

mm beam diameter. 

For the simulation of the 2.10 mm laser beam, the maximum temperature is 132.73 °C. 

When compared to the thermal map for the 2.10 mm beam experiment shown in Figure 8, the 

maximum temperature of the simulation is approximately 1 °C lower. The lowest temperature 

shown in this region of the simulation is 134.47 °C which is approximately 5.4 °C higher than 

what was measured by the QDM. The overall distribution of temperature for the simulation of 

the 2.10 mm beam diameter is very continuous and fairly evenly distributed across the surface of 

the diamond like it was in the experimental measurements. 

All values for temperature from these simulations lie within 5.4 °C of the experimental 

results from Section 2.2.3. The maximum temperature was more accurately simulated than the 

minimum temperature since all values for maximum temperature were within 2 °C of their 

corresponding experimentally measured temperatures. The overall range of temperatures in each 

simulation was less than what we observed in each of the measurements from the QDM. For the 

0.90 mm beam, the simulation showed a range of approximately 1 °C where the measurement 

with the QDM showed a range of approximately 5 °C. For the 1.73 mm beam and 2.10 mm 

beam, the simulation showed a range of approximately 0.5 °C and 0.3 °C respectively while there 

was a range of approximately 3 °C for both of these beam diameters in the measurements made 

with the QDM. This could be in part due to the noise in measurements with the QDM that is not 

present in a simulation. Additionally, the overall higher minimum temperatures in the simulation 

could indicate a need to use a slightly higher convection coefficient for the surface of the 

diamond. 

 These simulations prove that this method of simulating the temperature of the quantum 

diamond sensor provides reasonable representations of the actual temperature distributions that 

result from measurements with a QDM. The fact that all of these simulations are within 5 °C of 
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the experimental results shows that these simulations are acceptably accurate. Additionally, 

because the simulated thermal boundary conditions and initial conditions are only best estimates 

of the actual thermal boundary conditions and initial conditions actually acting upon the quantum 

diamond sensor, any simulation giving temperatures within a range of ±10 °C would provide 

confidence that the simulations of the measurements taken using the QDM are reasonable. 
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4. Conclusions and Recommendations 

 This work focused on the application of the temperature measurement capabilities of the 

Quantum Diamond Microscope to understand the thermal behavior of the quantum diamond sensor 

using various parameters of measurement including laser power and laser beam diameter. This 

allows us to have a better understanding of what temperature samples will be subjected to while 

they are being measured with the QDM. This knowledge can serve as a starting point for 

developing methods to further dissipate heat to be able to safely image samples that are sensitive 

to heat or may have their properties altered due to exposure to high temperatures. 

 We created program for measuring temperature using the ODMR spectrum generated by a 

QDM with the ability to measure the average temperature in the microscope’s field of view as well 

as generate images of the temperature distribution. This program was then successfully used to 

determine the effect that laser power has on the maximum average temperature reached by the 

quantum diamond sensor. We found that laser power and the average temperature of the diamond 

follow a linear relationship characterized by the equation 𝑇(𝑃) = 43.8 ∙ 𝑃 + 26.3 where 𝑇 is the 

temperature in degrees Celsius and 𝑃 is the set laser power in Watts. Following these 

measurements, we then used the QDM to determine the time required for the quantum diamond 

sensor to reach thermal equilibrium after it is first subjected to the laser beam set to various laser 

powers. Experiments showed that the time needed for thermal equilibrium to be reached is 

inversely proportional to the laser power cubed. To ensure the accuracy of measurements taken 

with 1.0 W of laser power, it is advised to wait up to 2 hours following the beam first hitting the 

diamond, while measurements taken with 4.0 W of power only need to be delayed by 4 minutes. 

To understand the thermal behavior of the quantum diamond sensor under exposure to different 

laser beam diameters, we conducted experiments to generate images of the temperature 

distributions across the diamond. A 166.7% increase in beam diameter resulted in a 3.2% increase 

in the maximum measured temperature. Additionally, we found that noise in measurements 

increases significantly in regions where the laser beam is not directly hitting the quantum diamond 

sensor, while in the regions where the laser beam is directly hitting the diamond, a higher 

concentration of laser power greatly reduces the noise in measurements.  

Following the experimentation with the QDM, we created a method for simulating the 

experimental conditions that the quantum diamond sensor is exposed to during measurements 

using SOLIDWORKS Transient Thermal Analysis software. We calculated the thermal initial 

conditions and boundary conditions of the diamond and recreated them using the simulation 

software. All simulated temperatures measured for all laser beam diameters were within 5 °C of 

the corresponding temperatures measured using the QDM. While the simulated minimum 

temperatures were generally higher than the minimum temperatures measured with the QDM, the 

maximum simulated temperatures were all within 2 °C of the maximum temperatures measured 

with the QDM. This deviation of 2 °C is smaller than the actual deviation in the temperatures 
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measured using the QDM. This verifies that we can use this method for simulating the quantum 

diamond sensor to test new experimental setups to provide insight into the expected thermal 

behavior. 

 This work could be continued by using the simulation setup to test the effectiveness of 

mount designs to aid in dissipating heat from the quantum diamond sensor to further reduce the 

thermal loads samples are exposed to. Multiple mount designs could be modeled using 

SOLIDWORKS, and multiple materials could be tested. Materials that are non-magnetic, such as 

silicon carbide, are necessary for the manufacturing of a mount for the quantum diamond sensor 

in a QDM so as not to interfere with the measurements. Additionally, it is understood that the 

microwave loop contributes slightly to the heating of the quantum diamond sensor. Further testing 

of the thermal behavior of the quantum diamond sensor could be done to quantify the effect that 

heating from the microwave loop has on the sensor. 
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