
Continuing the Development of E-TRIALS
By

Tim McCarthy

18th of March, 2021

Presented to:
Dr. Neil Heffernan
Dr. Korinn Ostrow

Mr. Ryan Emberling

An Interactive Qualifying Project submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment
of the requirements for the degree of Bachelor of Science

1

Abstract
In the midst of the COVID-19 pandemic, online learning has become an essential means

of teaching students. In light of this, the importance of identifying how to best support students
learning remotely has never been more critical. One tool that allows researchers to accomplish
this is E-TRIALS (the EdTech Research Infrastructure to Advance Learning Science). Built on
top of the online learning system ASSISTments, E-TRIALS is an interactive web application that
allows researchers to run randomized controlled trials to contrast different learning interventions.
During a preceding IQP, the E-TRIALS team constructed a design for the E-TRIALS application
and began its development, supported by grant funding from Schmidt Futures. In this IQP report,
I describe the continued development process over the last 6 months and how the IQP and my
role have influenced development, the current status of E-TRIALS, and future directions. The
application has come a long way since the prior report, and although it is not finished yet, a
minimum viable product is slated to be released in April 2021.

2

Table of Contents

Abstract 1

Table of Contents 2

Introduction 4
The ASSISTments Platform 4
E-TRIALS 4

The Development of E-TRIALS 5
The 1.0 Builder 5
The First IQP 6

Development and Workflow 11
Team Workflow 11
The E-TRIALS Stack 12

Features 13
Frontend-Backend Integration 13

Goals 13
Design 13
Implementation 14

Simplifying Studies 15
Goals 15
Design 15
Implementation 17

Content Selection 18
Goals 18
Design 18
Implementation 19

Results 20

Discussion 28
E-TRIALS and the Road Forward 28
Final Thoughts 28

Appendix 30
ContentController.java 30
EtrialsContentManagerImpl.java 30
Content.java 31

3

ContentDao.java 34

Works cited 37

4

Introduction

The ASSISTments Platform
ASSISTments is an online learning system that helps teachers provide assistance to and

receive assessments of their students. Teachers can build their own educational content or draw
from certified textbook or Open Educational Resource (OER) materials, and assign those
materials to their students through an integrated learning management system, such as Google
Classroom or Canvas. After students complete their assignments, teachers receive student and
class reports that help them gauge their students’ ability and adjust their class instruction
accordingly (Ostrow, 2015). ASSISTments also provides a variety of student supports including
immediate feedback after completing problems, scaffolding (which breaks down a problem into
multiple substeps), hints (which progressively provide more information toward the correct
solution), and common wrong answer messages (which offer support tailored to specific wrong
answers). These student supports strengthen students’ ability to understand their mistakes
quickly and encourage them to keep trying to solve the problem. Currently, ASSISTments is
being used by more than 20,000 teachers to teach K-12 core math curricula to more than 500,000
students around the world (Ostrow & Emberling, 2020).

The ASSISTments platform is also unique in that it provides an underlying structure for
performing randomized controlled trials (RCTs). With this structure, researchers can perform
comparative AB testing at scale without extensive programming experience or knowledge of the
complexities of the ASSISTments architecture. However, the existing research structures that
comprise ASSISTments are still very complex and RCTs can be difficult to assemble. Not only
do researchers have to put in many hours to completely build a study, but in times of confusion,
the ASSISTments staff also have to lend their time to support researchers’ efforts. In order to
make learning science research more cost effective and scalable, members of the ASSISTments
project at WPI, together with The ASSISTments Foundation, are developing the E-TRIALS
application to streamline the process of experimental design and development. My IQP project,
as detailed herein, was in support of these efforts.

E-TRIALS
The ASSISTments platform provides for the ability to conduct RCTs through the

E-TRIALS (EdTech Research Infrastructure to Advance Learning Science) project. The new
E-TRIALS application is a learning research platform built to leverage many existing features of
the ASSISTments RCT structure. It allows researchers to design and deploy randomized
controlled trials. E-TRIALS provides researchers access to thousands of test subjects (student
users of ASSISTments) while remaining free or extremely inexpensive. Furthermore, E-TRIALS
maintains its own experimental structures, so researchers can worry less about how the study will
be built and focus more on the content of their experiment.

5

E-TRIALS can be broken down into two main functions: study creation and data
retrieval. When launched, the application will allow researchers to easily create studies to assess
methods of learning according to specially designed templates that work with ASSISTments.
E-TRIALS then generates, aggregates, and organizes data in order to help researchers understand
the results of the assessments.

The Development of E-TRIALS

The 1.0 Builder
Before development on the E-TRIALS application began, studies could be created in the

ASSISTments builder (hereafter referred to as the 1.0 builder), a barebones tool that researchers
used to launch their RCTs on the ASSISTments platform. While the 1.0 builder got the job done,
researchers had a difficult time developing their studies because the tool was meant to allow
teachers to build simple problem sets while also allowing researchers to utilize advanced
structures to build RCTs. This meant the builder had to incorporate features associated with both
content building and study building, which led to a user interface that was difficult to use, as
shown in Figure 1.

Figure 1: The user interface of the 1.0 builder.

In the 1.0 builder, studies are represented as tree structures that align with the internal
representation of the problem set’s structure in the ASSISTments platform. However, a
researcher with little computer science experience might instead imagine their study as a flow
chart logic model, thus making building their study in the 1.0 builder very difficult. Furthermore,

6

researchers that attempted to use the ASSISTments platform often had to meet with
ASSISTments team members to get help building their studies. To increase the efficiency of
researchers' and team members’ time when making studies, the E-TRIALS team decided to
recruit students for the first E-TRIALS IQP.

The First IQP
The first E-TRIALS IQP, completed by Mr. Nicholas Krichevsky and Mr. Kamryn

Spinelli under the guidance of Dr. Neil Heffernan, Dr. Korinn Ostrow, and Mr. Ryan Emberling,
focused on redesigning the study building process from the ground up. First, they individually
developed wireframe prototypes focused on guiding researchers through the study building
process, including those depicted in Figure 2.

(a) Mr. Krichevsky’s prototype (b) Mr. Spinelli’s prototype

Figure 2: Examples of prototype designs of E-TRIALS.

They determined that the most important parts of study design to simplify for users were
documentation, study visualization, and content selection, as these components were the most
confusing in the 1.0 builder. Then the prototypes were unified into a single design by Mr.
Emberling, in preparation for being implemented as a web application in the final term of the
first IQP.

When a researcher loaded the final prototype, the application displayed a home page with
studies that the researcher had created, as shown in Figure 3. From there, researchers could either
edit their existing studies or create a new one by clicking the big plus button.

7

Figure 3: The home page of the final prototype from the first IQP

After creating the study, the researcher followed a predetermined page flow for filling in
study information. First, the researcher input basic study information such as what the study
name and research question were, and whether subjects would be prompted with the study
directions or a media access verification question, as shown in Figure 4.

Figure 4: The basic information page

8

Then the researcher chose what assessments and conditions to add to the study, as shown
in Figure 5. Importantly, the prototype included a preview panel which showed a responsive
flowchart representation of the study that the researcher was building. This flowchart updated as
the researcher filled in information, and maintained a strong visual of the flow of the study to
keep the researcher informed.

Figure 5: The assessments and condition pages

Next, the researcher had to configure their data analysis settings, shown in Figure 6. This
determined the dependent variable of the study and what kinds of data the researcher received
after the study had completed.

9

Figure 6: The analysis panel

Finally, the researcher selected content. To minimize the amount of information on
screen, the content page displayed problem sets which could be refined by various filters, such as
grade level, average problem correctness, and average problems to mastery, as shown in Figure
7. Once a problem set was selected, the researcher chose problems and edited them to match
their previously selected experimental conditions, as shown in Figure 8. By clicking through the
graph view, the researcher selected which problems were used for each component of the study.

10

Figure 7: the content selection page and content filter

(a) The problem selection screen (b) The builder screen

Figure 8: Selecting and editing problems screens

11

Mr. Krichevsky and Mr. Spinelli finished their IQP by beginning the development of the
user interface. The resulting product was a user interface that closely resembled the final
prototype in looks and design, but lacked essential functionality, including the ability to save
studies and a user login system. At this point, the E-TRIALS team brought in Mr. Brian Rojas to
begin developing the backend server and my IQP began to continue work on the user interface,
as discussed in the remainder of this report.

Development and Workflow

Team Workflow
The E-TRIALS team developed the E-TRIALS application using the Agile Scrum

methodology, where updates are delivered incrementally instead of all at once. Updates were
delivered according to weekly development cycles, or “sprints.” Mr. Emberling acted as the
technical lead and ensured that each developer had tasks to complete for the sprint. Due to the
COVID-19 pandemic, work performed on the E-TRIALS application was completed entirely
online. On Mondays, the team held a sprint planning meeting and met over Zoom to discuss what
tasks were going to be completed that week. To keep track of the task backlog, the team used
Trello, a whiteboard-based collaboration tool shown in Figure 9 (Trello, n.d.). Trello helped the
team organize development process tasks by stage, log who was working on each task, and
prioritize the most important tasks. Agile Scrum also involves meeting everyday for about fifteen
minutes to discuss daily updates and potential problems. Usually, team members perform this
meeting standing up to make sure it is quick, and it is thus called a standup meeting. However,
instead of meeting everyday, the E-TRIALS team used Slack, a professional channel-based
messaging platform (Slack Team, n.d.), to communicate their tasks for the day in a channel
called “etrials_standup.”

12

Figure 9: The layout of the E-TRIALS Trello board

The E-TRIALS Stack
The E-TRIALS application is divided into two major pieces: the frontend and backend.

The frontend, or the user interface, is written in VueJS, a reactive Javascript framework for web
applications (Vue.js Team, 2020). Since the previous IQP resulted in a frontend written in Vue,
the team decided that it was easiest to continue working in the same programming language
instead of starting from scratch again. When started up, the frontend is run by a local NPM
(Node Package Manager) server, which handles hosting and maintains Javascript packages and
dependencies (Node.js Contributors, n.d.). NPM also handles running tests on the frontend. Unit
tests are written using the Jest framework (Facebook, 2020), and the end-to-end tests are written
using the Cypress framework (Cypress.io, 2020). Unit tests focus on breaking down the
application into small pieces and testing each piece, while end-to-end tests check all units of the
application at the same time and ensure compatibility between them.

The backend, or the server that handles the information from the frontend, is written in
Java to match the ASSISTments infrastructure. A local backend server can be launched using
Tomcat, a server container application (Tyson, 2019), but the backend also gets deployed to one
of WPI’s hosts and functions as the main development server. The backend also interfaces with a
PostgreSQL database to maintain user and study data. Finally, the team used Github for version
control to maintain the separation of each developer’s code. By breaking features into branches
using Github, each developer could work on and test their feature without worrying about
another feature that was in progress.

13

Features

Frontend-Backend Integration

Goals
The primary goal of integrating the frontend and backend was to evolve the prototype

into a more complete product. Prior to integration, the team developed the user interface and
server separately. Due to the nature of web design, the user interface was subject to many
iterations of redesigns and tweaks, so keeping it separate from the server allowed for numerous
updates. However, study data was stored only on the frontend, and thus could not be accessed at
different computers or even saved across multiple web-browsing sessions. By connecting the two
pieces together, the application would be able to save data across sessions, so researchers could
make a study, take a break, and resume working on the study.

A second benefit of integration was that the application could be tested to a greater
extent. The prototype’s tests dealt with navigating through the limited functionality of the
separated user interface. However, fully integrated end-to-end tests could more comprehensively
simulate user interactions and validate that the system was correctly integrated (What is
end-to-end (e2e) testing?..., 2019). Furthermore, an integrated application would also help
prepare for complex user testing. The original design was built and tested in Figma, a web-based
prototyping tool (About Figma, n.d.). While it allowed for rapid iteration on the E-TRIALS
design, it lacked certain functionality that made conducting thorough user tests with researchers
difficult if not impossible. A fully integrated application would be significantly more interactive
than the Figma prototype, and it could be deployed to a web server that researchers could access
on their own computer, as in-person user testing was impossible during the COVID pandemic.

Design
At the highest level, the E-TRIALS application adheres to the Model-View-Controller

(MVC) architectural pattern. MVC allows for independent development of its parts, which
speeds up the development process. In the case of E-TRIALS, the database functions as the
‘model,’ maintaining study and problem set data. The backend is the ‘controller,’ and it receives
user input from the frontend and updates the database. Lastly, the frontend acts as the ‘view,’ and
displays application data and the actions a user can take. When the user interacts with it, the
frontend interprets the input and sends it to the backend. Dividing up these sections of code
maintains the separation of concerns, where logic and data are organized and separated by
function. This simplifies the code structure and decreases the amount of code that developers
have to write since each feature is kept separate from the others (Viva, 2020).

The application also follows the Client-Server architecture, as it is a simple and cheap
option to employ across many users. The frontend acts as the ‘client’ and is deployed to any user

14

that requests its webpage. It is independent from other clients, so researchers can separately build
their own studies. When a researcher has made changes, the data can then be sent to the ‘server.’
The ‘server’ receives and stores data from all clients, so a researcher can access their studies
from any computer. The Client-Server architecture further maintains the separation of concerns,
as user-facing data is kept detached from server-side data and logic.

Implementation
The process of integration was broken up into three phases to ensure a comprehensive

transition from the user interface prototype to the full stack application. The slow development
also allowed the developers to learn about the mechanisms necessary to complete integration,
namely HTTP requesting. As the standard for most web-applications, HTTP (HyperText Transfer
Protocol) is a simple requesting protocol for sending web data between a server and client.

Phase one was devoted to sending single requests to the backend from the test page in
order to ensure that the backend correctly received the request and updated the database
accordingly. In phase two, the team built mock application pages and ensured that each page in
its entirety could properly interact with the backend. Finally, phase three was dedicated to fully
connecting the application to the backend and rewriting end-to-end tests to check for the
persistence of data across sessions in the database.

The frontend portion of the integration was built into the pre-existing UI (User Interface).
While little of the UI was updated, many changes were made to the Javascript under the hood.
Primarily, end points that accessed mock data were replaced with calls made by Axios, a node.js
HTTP request library (Axios, 2020). To access and update data from the backend, the store
creates a promise and then makes its request. The promise serves as a placeholder for a value
while the request is asynchronously performed. When the request is completed, the promise is
fulfilled and the value returned can be used in later execution (MDN contributors, 2021). After
the promise is returned, the store updates its values, which in turn updates the user view. This
process ensures that the data in the database, local frontend data, and what the user sees are all
synced together.

To be able to switch between various backend servers, an environment configuration file
was also added. The file allows the developer to launch the frontend server using different
backend servers, and differentiates between using the mock data, a locally run backend, the
development backend server, and the production backend server. Since the team used different
servers when working on different parts of the application, such as user interface development
versus end-to-end testing development, easily being able to switch between these servers
improves productivity.

In order to integrate, the E-TRIALS team had to build a new backend. Written on top of
the existing ASSISTments SDK (Software Development Kit) version 2.6, the backend serves as
a RESTful (REpresentational State Transfer) API that connects the frontend to the ASSISTments
database via HTTP requests. The backend is structured into a Model-View-Controller-Service
architecture, and is thus broken into 4 parts. The controller classes serve as the ‘view’ and relay

15

data between the ‘service’ layer and the frontend. The data from the controllers is then sent to the
manager classes, which function as the Service layer and deal with high level application logic
and pass that data to the Controller layer. Functioning as the Controller layer, the domain access
objects (DAOs) then directly update the database. Finally, the domain objects serve as the
‘model’ layer and represent the database objects in Java. An example of this structure can be
seen in the Appendix.

Some additional features were also required to fully integrate the backend with the
frontend. Prior to integration, any user could access any other users’ study data. Thus the team
added user authentication to prevent unauthorized users from updating or even accessing anyone
else’s study data. Unauthorized requests result in a “403: Forbidden error.” To support more
error codes, the team also added an exception handling controller. This controller receives errors
that occur on the server, resolves them, and then informs the user what the cause of error was.
Finally, the team wrote custom database queries to complete the end-to-end tests. Because the
testing process adds studies to the database on each run, the database frequently fills up with
many test studies. Thus, to prevent the end-to-end tests from accessing incorrect study data, the
tables are deleted completely before each run.

Simplifying Studies

Goals
At their base level, ASSISTments studies are very complicated. Because building studies

require intimate knowledge of specific experiment language and advanced building features in
ASSISTments, the E-TRIALS team wanted to simplify the process for researchers to increase the
volume and reduce the cost (in staff support time) of studies conducted. For example, in the
original 1.0 study builder, researchers had to nest complicated if-then-else structures to create a
study flow. This made the process difficult and time consuming to complete, and almost always
required the assistance of an E-TRIALS team member, even though - if given the right
environment - researchers should be able to design and implement a study on their own. Thus,
the team wanted to tailor E-TRIALS to the way researchers’ approach problems by incorporating
the ability to toggle small parts of a study. These modules would give researchers the freedom to
design their study the way they wanted while still concretely guiding them through the study
making process.

Design
A major part of the design involved translating frontend data structures into database

tables, as the mockup was not yet connected to a database. Since the objects on the frontend were
simple, the changes needed to translate them were small. For example, every study has a set of
conditions, so the team moved the condition object to its own table and connected it to its study
with a foreign key. This relationship is represented as the arrow that points from the ‘condition’

16

entity to the ‘study’ entity and goes through the ‘has’ relation in Figure 10. The same was true
for a study’s contributors, so a contributor table was also built.

Figure 10: the Entity Relationship Diagram of the E-TRIALS tables

Another issue that had to be factored into the database design was associating problems
with each study. To decrease the complexity of the tables, any problem that's associated with the
study is put in the same table called ‘WIP problem set.’ However, each study needs to have
different divisions of problems. To differentiate between parts of the study, i.e. pretest, post test,
and experimental conditions, an extra column was added to the table to distinguish between these
problem set types. This way, the relationship between problems and studies was simplified into
one table, but the problem set type column could differentiate between problems that were part
of conditions and those that were part of assessments.

Another challenge when dealing with these problems was the need to maintain the order
of the problems. In some types of studies the order of the problems might be important to the

17

researcher, so the team needed to account for that. Many suggestions were made including
ordering the problems using tree structures, singly-linked lists, and doubly-linked lists, each with
their own benefits and costs. For example, the linked lists worked well for maintaining problem
order, as one problem pointed to the next in the list, but accessing the whole list would take a
long time, because each problem would have to be accessed one after the other. In the end, the
team decided to use an index column, where the index represented the problem’s position in the
order of the study. As the simplest option, indexing maintains clarity and flexibility, and it also
could be ignored when querying the database because the frontend would order the problems
instead, saving time on accessing the database.

Implementation
Following this design, the team went on to implement the E-TRIALS database.

ASSISTments uses Table Definition Files (TDFs) to automatically generate database tables and
code associated with the database. Instead of writing each Structured Query Language (SQL)
query explicitly, TDFs organize table data into explicit sections, increasing the file’s readability.
On top of that, when tables need to be changed, a developer can easily update a line in the TDF,
whereas a query may need to be rewritten entirely to properly update the table. Figure 11
demonstrates the difference in clarity between a TDF and SQL query that accomplish the same
task.

(a) The Table Definition File that generates the conditions table

(b) The SQL query that generates the conditions table

18

Figure 11: A TDF and SQL query that generate the same database table

ASSISTments also uses the Spring framework to handle a lot of low level business logic
when developing enterprise applications, including setting up database connections and
maintaining proper SQL syntax when querying and updating the database (Spring Team, n.d.). In
the case of E-TRIALS, Spring serves as the connection between the Java API and the database,
and can generate tables in the database when they are not present at connection, which has saved
the team a lot of time in development and maintenance.

Content Selection

Goals
The process of selecting problems for a study is a central part of E-TRIALS, and ensuring

that researchers could quickly and easily pick content was critical. It was also important that the
process for associating content with parts of the study was clear and robust, leaving no space for
uncertainty. In particular, the team wanted to organize the content selection process to be more
contiguous. For example, in the previous IQP’s design, researchers were supposed to add a
post-test to their experiment, work on another part of the study, and then add problems to the
post-test. The separation of these two related tasks led to a disconnect in researchers’ train of
thought when assigning content to tests.

Furthermore, the graph of the study was a simple depiction of the study flow, but also
functioned as an interface for adding problems to the study. The dual use of the graph was
jarring, and did not support the “flow.” Finally, the team also wanted to future-proof the design
flow for future features. In particular, the team is making plans to add support for more complex
types of experiments to E-TRIALS, but as there is a deadline for the minimum viable product, it
has been tabled for now.

Design
The new design for content selection rests on the new page flow. After some basic

metadata is added, researchers add experimental conditions and then go straight to adding
problems to those conditions. This connects the action of making conditions to the content that
goes into them and keeps the process grounded. After some conditions are added, the researcher
then adds their assessment modules and fills them with assessment content. Selecting
assessments was moved after selecting conditions because choosing problems for conditions
helps researchers become familiarized with the constraints of E-TRIALS experiments. With
these constraints in mind, researchers can base their assessments on the conditions that they have
already made.

Another important part of the design was the content selector itself. Instead of being its
own page, problem sets now appear in a fullscreen modal when selecting content for a condition

19

or assessment. Like in the prototype design, problem sets are laid out in a table and showing
researcher-relevant metadata. Problem sets can also be filtered by using the filters on the right
bar of the modal. Once a researcher selects a problem set, they can click directly on it and a
smaller modal pops up, revealing all of the problems in that problem set. This approach, shown
in Figure 12, allows the researcher to focus on small pieces of content while simultaneously
giving them the freedom to explore as much content as they can.

Figure 12: The content selection modals as designed in Figma

Implementation
One important part of updating the page flow was fetching and displaying problem set

data. While the ASSISTments SDK had the functionality to return information about problem
sets, the team wanted to display aggregate data about each problem set in order to help
researchers understand which problem sets would best suit their experiments. For example,
researchers can select content based on the number of students that successfully completed a
problem set in the last year. However, calculating this data was problematic. A single calculation
on all problem sets took more than a full minute to return its results. Thus, all calculations on all
problem sets would take tens of minutes, which was unacceptable for a reactive web application.
To combat this, the team decided to run all of the calculations beforehand and add it to a separate
database. This way, data can be requested and returned instantly, as the server does not need to

20

perform costly calculations. While updating this aggregate data table will still be very slow,
updates only need to be performed sparsely. The E-TRIALS team is currently planning on
updating this table every six months.

Results
On its face, the current state of the E-TRIALS application closely mirrors the previous

IQP’s design. However, when the researcher first loads the application, they are met with the
login screen shown in Figure 13. From there they can login to their ASSISTments account using
their email.

Figure 13: The login screen of the application

After logging in, the researcher is presented with the home screen shown in Figure 14,
where they can view studies that are in development, ongoing, and completed. From here, the
researcher can create a new study, edit existing work, or deploy a finalized study.

Figure 14: The home screen with the user menu in the top right corner

21

If the researcher decides to create a new study, they can click on the big plus button and
the study creation modal pops up as shown in Figure 15. The researcher then fills in the study
name and research question and clicks the continue button. This begins the study building
process.

Figure 15: The study creation modal

Just like in the prototype design, the next step in the process is to select the recruitment
type and experimental paradigm, as shown in Figure 16. Also in the experimental paradigm page
in Figure 16 is an example of a loading icon. When a button is clicked, this icon appears to show
that the researcher’s input is being processed and will be finished soon.

22

(a) The recruitment page

(b) The experimental paradigm page with a loading icon

Figure 16: The recruitment page and paradigm pages

Once the basic study information has been filled in, the researcher can begin working on
the substance of the study. Figures 17, 18, and 19 show the three main pages for assembling the
flow of the study, where information changed in the Configure Study panel is immediately
updated in the Preview panel. The researcher can jump to any part of the study by either clicking
the page links in the study flow at the top of the application, they or can hit the navigation
buttons to go to the next or previous page and follow the study creation flow.

23

Figure 17: The study qualifiers page with directions selected

Figure 18: The study conditions page

24

Figure 19: The study assessments page

From the Conditions or Assessment pages, the researcher can add problems to their study
by clicking on the add problems button. This button opens up the full screen modal for problem
set selection shown in Figure 20. Just like in the prototype design, the researcher can filter
problem sets by various filters including grade level, average problem correctness, and average
problems to mastery.

25

Figure 20: The post test problem set modal

When the researcher selects a problem set, the problem modal opens up, as shown in
Figure 21. From here, the researcher can review each problem and choose whether or not to add
it to the component of the study they are working on.

26

Figure 21: The post test problem selector modal

The build and deploy pages, as shown in Figure 22 and Figure 23, are also still in
development. The current build page is left over from the previous IQP’s application, but will
become the page where researchers can edit problems to match their experimental conditions.
Similarly, the deploy page will become the page where researchers can double check the
structure of their study, register the study with Open Science Foundation (osf.io), and deploy
their study into ASSISTments.

27

Figure 22: The study content builder page

Figure 23: The study deploy page

28

Discussion

E-TRIALS and the Road Forward
Educational research can be very expensive, complicated, and bureaucratic. Researchers

normally need to coordinate between students and teachers, and also have to submit their
research plan before an Institutional Review Board (IRB), which is very time consuming.
E-TRIALS abstracts much of that process and gets the researcher doing the important stuff:
research. On top of that, due to the COVID-19 pandemic, more and more classrooms have turned
to online learning. With so many students learning online - in environments with little regulation
- it is imperative that researchers begin to assess the best methods for teaching in the 21st
century. Further development of the E-TRIALS application will cause an influx of research and
thereby produce outcomes that strengthen how material is taught online.

At this stage of E-TRIALS’ development, the application is not ready to be released.
There are two main features that still need to be implemented: the build and deploy pages. The
build page is currently on hold because it needs to interface with the TeacherASSIST student
support builder, which is still in development. The deploy page is also not finished because it
requires study structures to be fully fleshed out before they can be deployed, and those structures
depend on the ability to edit content, which takes place in the build page. Once these pages are
complete, the team will be ready to launch the minimum viable product to the world.

As outlined in the previous IQP, researchers commonly collaborate when working on
projects. Thus it would strongly improve the user experience if E-TRIALS included a
collaboration feature, where multiple accounts could access and edit the same study. There has
already been some development of the data structures needed to accomplish this, namely the
collaborators table in the database, but the feature has not yet been implemented in the
application.

One final thing the team could work on would be user testing. Once again, due the
COVID-19 pandemic, in person user testing was impossible, and online testing was also difficult
as the application could not be deployed to a researcher’s computer. Getting real researchers to
use E-TRIALS in its current state and provide feedback would solidify design decisions that the
team has made over the past year and give further insight on how to optimize the study creation
process. Launch plans include the recruitment of a limited cohort of grant funded researchers
who will participate in two distinct rounds of user testing and iterative design following
workshops that will be held for training and networking.

Final Thoughts
This IQP was particularly tough as I was the only undergraduate working on the project.

Despite that, I cannot stress enough how thankful I am for Mr. Emberling and Dr. Ostrow’s help
through this whole process. Without them, I would not have made it this far. I am also thankful

29

for my developer in crime, Mr. Rojas, without whom I would not have been able to expand my
developing horizons. I am fully confident in the team’s ability to finish making E-TRIALS a
one-of-a-kind application and wish them the best of luck.

30

Appendix

ContentController.java
package org.assistments.etrials.web;

@RestController

@RequestMapping("/content")

public class ContentController

{

@Autowired

private EtrialsContentManager cntMger;

@NeedsAuthority("USER")

@RequestMapping(value = "/getProblemSetData", method = RequestMethod.GET,

produces = MediaType.APPLICATION_JSON_VALUE)

public List<Content> getContent() throws NotFoundException

{

return cntMger.getProblemSetData();

}

@NeedsAuthority("USER")

@RequestMapping(value = "/getProblems", method = RequestMethod.POST, consumes =

MediaType.APPLICATION_JSON_VALUE,

produces = MediaType.APPLICATION_JSON_VALUE)

public List<ProblemRow> getProblems(@RequestBody IdClass sequenceWrapper) throws

NotFoundException

{

return cntMger.getProblemsFromSequenceId(sequenceWrapper.getId());

}

}

EtrialsContentManagerImpl.java
package org.assistments.etrials.manager;

@Component

public class EtrialsContentManagerImpl implements EtrialsContentManager

{

@Autowired

SequenceManager smgr;

@Autowired

ContentDao cntDao;

@Autowired

TutorProblemManager problemManager;

31

@Autowired

TutorProblemSetManager problemSetManager;

public List<Content> getProblemSetData() throws NotFoundException

{

return cntDao.findAllObjects();

}

public List<ProblemRow> getProblemsFromSequenceId(int sequenceId) throws NotFoundException

{

return problemManager.getProblemDatasByAssistmentIds(problemSetManager

.findAllAssistmentsIdsByHeadSectionId(smgr.findSequenceBySequenceId(sequenceId).getHeadSecti

onId()));

}

}

Content.java
package org.assistments.etrials.domain;

/*

* Generated code: Tim 2021-01-26T18:47:32.605Z

*/

public class Content extends DbObjectImpl

{

private String name;

private int grade;

private int numberOfProblemsInProblemSet;

private int numberOfStudentsThatCompletedProblemSetLastYear;

private double averagePercentStudentsCompletedProblemSetLastYear;

private double averageNumberOfHintsRequestedForProblemSetLastYear;

private String commonCoreStandard;

private int averageNumberOfProblemsCompletedToAchieveMastery;

public Content()

{}

public void setName(String name)

{

this.name = name;

}

public String getName()

{

return this.name;

}

public void setGrade(int grade)

{

this.grade = grade;

32

}

public int getGrade()

{

return this.grade;

}

public void setNumberOfProblemsInProblemSet(int numberOfProblemsInProblemSet)

{

this.numberOfProblemsInProblemSet = numberOfProblemsInProblemSet;

}

public int getNumberOfProblemsInProblemSet()

{

return this.numberOfProblemsInProblemSet;

}

public void setNumberOfStudentsThatCompletedProblemSetLastYear(int

numberOfStudentsThatCompletedProblemSetLastYear)

{

this.numberOfStudentsThatCompletedProblemSetLastYear =

numberOfStudentsThatCompletedProblemSetLastYear;

}

public int getNumberOfStudentsThatCompletedProblemSetLastYear()

{

return this.numberOfStudentsThatCompletedProblemSetLastYear;

}

public void

setAveragePercentStudentsCompletedProblemSetLastYear(double

averagePercentStudentsCompletedProblemSetLastYear)

{

this.averagePercentStudentsCompletedProblemSetLastYear =

averagePercentStudentsCompletedProblemSetLastYear;

}

public double getAveragePercentStudentsCompletedProblemSetLastYear()

{

return this.averagePercentStudentsCompletedProblemSetLastYear;

}

public void

setAverageNumberOfHintsRequestedForProblemSetLastYear(double

averageNumberOfHintsRequestedForProblemSetLastYear)

{

this.averageNumberOfHintsRequestedForProblemSetLastYear =

averageNumberOfHintsRequestedForProblemSetLastYear;

}

public double getAverageNumberOfHintsRequestedForProblemSetLastYear()

{

33

return this.averageNumberOfHintsRequestedForProblemSetLastYear;

}

public void setCommonCoreStandard(String commonCoreStandard)

{

this.commonCoreStandard = commonCoreStandard;

}

public String getCommonCoreStandard()

{

return this.commonCoreStandard;

}

public void setAverageNumberOfProblemsCompletedToAchieveMastery(int

averageNumberOfProblemsCompletedToAchieveMastery)

{

this.averageNumberOfProblemsCompletedToAchieveMastery =

averageNumberOfProblemsCompletedToAchieveMastery;

}

public int getAverageNumberOfProblemsCompletedToAchieveMastery()

{

return this.averageNumberOfProblemsCompletedToAchieveMastery;

}

@Override

public String toString()

{

StringBuilder sb = new StringBuilder(Content.class.getSimpleName())

.append(":").append(Util.NL)

.append(ToStringHelper.variableToString("id", super.getId(), true))

.append(ToStringHelper.variableToString("name", name, true))

.append(ToStringHelper.variableToString("grade", grade, true))

.append(ToStringHelper.variableToString("numberOfProblemsInProblemSet",

numberOfProblemsInProblemSet, true))

.append(ToStringHelper.variableToString("numberOfStudentsThatCompletedProblemSetLastYear",

numberOfStudentsThatCompletedProblemSetLastYear, true))

.append(ToStringHelper.variableToString("averagePercentStudentsCompletedProblemSetLastYear",

averagePercentStudentsCompletedProblemSetLastYear, true))

.append(ToStringHelper.variableToString("averageNumberOfHintsRequestedForProblemSetLastYear"

,

averageNumberOfHintsRequestedForProblemSetLastYear, true))

.append(ToStringHelper.variableToString("commonCoreStandard", commonCoreStandard,

true))

.append(ToStringHelper.variableToString("averageNumberOfProblemsCompletedToAchieveMastery",

averageNumberOfProblemsCompletedToAchieveMastery, true));

return sb.toString();

}

34

}

ContentDao.java

package org.assistments.etrials.dao;
/*

* Generated code: Tim 2021-01-26T18:47:32.594Z

*/

public interface ContentDao extends CommonDao<Content>

{

enum Field implements DaoField

{

ID(DbDataType.PK,

FieldModifier.PRIMARY_KEY, FieldModifier.REQUIRED),

NAME(DbDataType.TEXT,

FieldModifier.REQUIRED),

GRADE(DbDataType.INTEGER,

FieldModifier.OPTIONAL),

NUMBER_OF_PROBLEMS_IN_PROBLEM_SET(DbDataType.INTEGER,

FieldModifier.REQUIRED),

NUMBER_OF_STUDENTS_THAT_COMPLETED_PROBLEM_SET_LAST_YEAR(DbDataType.INTEGER,

FieldModifier.REQUIRED),

AVERAGE_PERCENT_STUDENTS_COMPLETED_PROBLEM_SET_LAST_YEAR(DbDataType.DOUBLE,

FieldModifier.REQUIRED),

AVERAGE_NUMBER_OF_HINTS_REQUESTED_FOR_PROBLEM_SET_LAST_YEAR(DbDataType.DOUBLE,

FieldModifier.REQUIRED),

COMMON_CORE_STANDARD(DbDataType.TEXT,

FieldModifier.OPTIONAL),

AVERAGE_NUMBER_OF_PROBLEMS_COMPLETED_TO_ACHIEVE_MASTERY(DbDataType.INTEGER,

FieldModifier.OPTIONAL);

private DbDataType dataType;

private List<Pair<FieldModifier, String>> modifierPairs;

public String name;

public FieldModifier[] modifiers;

private static final List<Pair<FieldModifier, String>> noModifierPairs =

new ArrayList<Pair<FieldModifier, String>>();

Field(DbDataType dataType, FieldModifier... modifiers)

{

35

this.dataType = dataType;

this.modifiers = modifiers;

this.name = this.name().toLowerCase();

}

Field(DbDataType dataType, List<Pair<FieldModifier, String>> modifierPairs,

FieldModifier... modifiers)

{

this(dataType, modifiers);

this.modifierPairs = modifierPairs;

}

@Override

public String getName()

{

return this.name;

}

@Override

public DbDataType getDbDataType()

{

return this.dataType;

}

@Override

public FieldModifier[] getModifiers()

{

return this.modifiers;

}

@Override

public List<Pair<FieldModifier, String>> getFieldModifierPairs()

{

if (this.modifierPairs == null)

{

return noModifierPairs;

}

return this.modifierPairs;

}

@Override

public QueryTerm getQueryTerm(Object value)

{

return new QueryTerm(this.name, value);

}

@Override

public QueryTerm getQueryTerm(RelationalOpType op, Object value)

{

return new QueryTerm(this.name, op, value);

}

36

@Override

public NVPair getNVPair(Object value)

{

return new NVPair(this.name, value);

}

}

static final String TableName = "content";

static final Set<String> MultiFieldConstraints = new HashSet<String>(Arrays.asList(

));

static final Set<Pair<String, String>> TableConstraints = new HashSet<>(Arrays.asList(

));

static final Set<String> AdditionalSQLs = new HashSet<String>(Arrays.asList(

));

static final Set<DaoField> UserXids = new HashSet<DaoField>(Arrays.asList(

));

}

37

Works cited
6 advantages of using MVC model for effective web application development. (n.d.). Retrieved

March 15, 2021, from
https://www.brainvire.com/six-benefits-of-using-mvc-model-for-effective-web-application-
development/

About Figma, the collaborative interface design tool. (n.d.). Retrieved February 25, 2021, from
https://www.figma.com/about/

Axios. (2020, December 1). Retrieved March 18, 2021, from
https://www.npmjs.com/package/axios

Burnett, A. (2020, November 29). Immediate feedback. Retrieved March 5, 2021, from
https://www.teachersgoinggradeless.com/blog/immediate-feedback

Cypress.io. (2020, May 5). Why cypress? Retrieved March 19, 2021, from
https://docs.cypress.io/guides/overview/why-cypress.html.

Facebook. (2020). Jest – delightful javascript testing. Retrieved March 19, 2021, from
https://jestjs.io/en/.

MDN contributors. (2021, March 16). Web technology for developers. Retrieved March 18,
2021, from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promi
se

Node.js Contributors. (n.d.). What is npm? Node.js. Retrieved March 19, 2021, from
https://nodejs.org/en/knowledge/getting-started/npm/what-is-npm/

Ostrow, K. S. (2015). A multifaceted consideration of motivation and learning within assistments
(Unpublished master's thesis). Retrieved March 7, 2021, from
https://digitalcommons.wpi.edu/etd-theses/1153

Ostrow, K. S. (2018). A Foundation for Educational Research At Scale: Evolution and
Application (Unpublished doctoral dissertation). WPI. Retrieved March 1, 2021, from
https://digital.wpi.edu/show/br86b377g

Ostrow, K. S. & Emberling, R. (2020, August 12). E-TRIALS: A web-based application for
educational experimentation at scale. In the Learning at Scale workshop on Educational
AB Testing at Scale.

38

Slack. (n.d.). What is Slack? Retrieved March 10, 2021, from
https://slack.com/help/articles/115004071768-What-is-Slack-

Spring Team. (n.d.). Spring framework. Retrieved March 18, 2021, from
https://spring.io/projects/spring-framework

Trello. (n.d.). What is trello? Retrieved March 10, 2021, from
https://help.trello.com/article/708-what-is-trello

Tyson, M. (2019, December 19). What is Tomcat? The original Java servlet container. Retrieved
March 19, 2021, from
https://www.infoworld.com/article/3510460/what-is-apache-tomcat-the-original-java-servl
et-container.html

Viva. (2020, December 21). 12 differences between object-oriented database and object-relation
database. Retrieved March 18, 2021, from
https://vivadifferences.com/12-differences-between-object-oriented-database-and-object-re
lational-database-plus-similarities/

Vue.js Team. (2020, February 24). Introduction – Vue.js. Retrieved March 10, 2021, from
https://v3.vuejs.org/

What is end-to-end (e2e) testing? All you need to know. (2019, August 22). Retrieved March 5,
2021, from
http://www.katalon.com/resources-center/blog/end-to-end-e2e-testing/#:~:text=The%20ma
in%20purpose%20of%20End,for%20integration%20and%20data%20integrity

