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Abstract 

Cancer is a disease that affects nearly 40% of the United States population. The current 

diagnosis process can take several days, and a highly trained pathologists must allocate time to 

observe and classify all samples collected from biopsies. Occasionally, biopsy samples do not 

even have enough cellular material to make a proper diagnosis, and the patients must undergo a 

secondary procedure before a confident cancer diagnosis can be composed. This project aims to 

accelerate the process by using an automated microscope outfitted with image-processing 

artificial intelligence to complete a preliminary stage of diagnosis to determine if adequate 

amounts of cell clusters have been collected from the procedure. A prototype integrated with 

regional convolutional neural networks was constructed that successfully images microscope 

slides and places bounding boxes around cell clusters found in fine needle aspirations. This 

device is expected to greatly assist pathologists in providing faster more accurate diagnoses. This 

prototype also serves as a development tool that can be easily configured with different neural 

network architectures, and be adapted to employ different imaging techniques.  
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Executive Summary 

Introduction 

There are many existing technologies that support the diagnosis of cancer. Pathological 

studies, however, remain among the most common ways of detecting cancer, and are often 

crucial for an accurate diagnosis. In many cases, a tissue sample, or biopsy, is required to 

determine if a patient is positive for particular diseases. A fine needle aspiration is a procedure 

where a needle and syringe are used to extract soft tissue or fluid from the body, and is 

commonly used to retrieve thyroid samples for cancer diagnosis. 

Once the samples have been stained, they can be viewed under the microscope by 

pathologists to identify any specific characteristics or abnormalities. A pathology report is 

created for each specimen tested in the lab, and results are added to other medical records in 

order to make a proper diagnosis. The microscopy portion of a pathology report assesses size, 

shape, organization, mitotic rate, and staining characteristics of cells. The pathologist determines 

grade, stage, tumor margin, whether the cancer is invasive, and if the cancer is in lymph nodes 

all within the pathology report [1]. A wealth of knowledge is collected from these 

histopathological inspections and used to support diagnosis and treatment methods. This process 

currently takes between 2 and 10 days for the pathologist to prepare the sample and take a 

diagnosis [2]. The diagnosis could take even longer if the sample taken does not have enough 

data to make an accurate diagnosis, thus possibly delaying the necessary treatment if the patient 

has cancer. 

In order to expedite this process, medical professionals believe that artificial intelligence 

may be used on site in order to see if the sample is valid, and conduct a preliminary diagnosis on 
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the sample. Artificial intelligence has been evolving over the years, and one form of artificial 

intelligence that seems promising for this application is a Region-Based Convolutional Neural 

Network (RCNN). This is a form of machine learning which overlays a support vector network 

(also known as support vector machine, or SVM) in order to classify the image [3]. This works 

similarly to a line of best fit, where the input variables include contour vectors and colors. 

Design Approach 

The core design requirement for the automated microscope was to autonomously image a 

microscope slide and reliably identify and quantify cell clusters. Additional requirements include 

having a compact size, fast scanning and processing time, changeable imaging equipment, low 

cost, and ability to be run without operation by a trained specialist. The imaging feed from the 

device had to also be processed on site, as opposed to cloud computing. These requirements were 

recognized by designing a three axis gantry system capable of focusing and moving the entire 

area of a standard microscope slide beneath a camera.  

Final Prototype  

The frame of the prototype was constructed from 10x10mm extruded aluminum, which 

provides solid support and convenient mounting locations. The volume of the device is 

200x250x250mm. The gantry mechanism was implemented by employing three sets of 8mm 

diameter lead screws and linear rails. The lead screws are powered by NEMA 17 stepper motors. 

An Arduino outfitted with a 3 axis GRBL driver shield is used to drive the motors. The Arduino 

receives G-code commands from Python programs via serial port connection to control the X-Y 

motion of the microscope slide holder and controls the Z axis to focus the images. A 12V, 240W 

power supply provides power to the motors through the shield. A CMOS digital microscope is 
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utilized in this project to capture images at an approximate 10x magnification. This microscope 

camera was mounted to the moveable platform above the slide area. Images from the USB 

microscope are sent to and saved in a Nvidia Jetson. The Jetson executes the motor control code 

and processes the images within the neural network.  

Training and Testing: 

Functionality of the prototype was tested by training the neural network with preliminary 

samples, and verified by testing new samples. The pathology division at University of 

Massachusetts Medical School provided biopsy specimens from fine needle aspirations. These 

samples were collected to test patients for thyroid cancer. Ten slides were scanned using the 

device, and employed for training and initial verification. All of the images were visually 

inspected for cell clusters, and coordinates of the boxes input into the training algorithms of the 

region-based convolutional neural network. The neural network is trained through back 

propagation, by passing forward and back images through many convolutional layers in order to 

extract specific characteristics associated with the desired regions. The neural network is 

optimized or trained by reducing the error in epoch after epoch, as the desired outcomes are 

predetermined. 20 percent of bounded samples were not included in the training sets and used to 

validate accurate identification of cell clusters by the neural network. After the neural network 

had been trained, it was loaded on the NVIDIA Jetson to provide immediate identification of cell 

clusters on newly scanned samples. 

Results 

The team successfully produced an automated microscope with an artificial intelligence 

post-processing. The device takes approximately two and a half minutes to scan an entire 
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microscope, and an additional three minutes to process the images through the artificial 

intelligence. If internet connection is available, the device will upload the files to Google Drive, 

however the speed of that is limited by the internet connection in the current area of operation. 

The artificial intelligence is able to identify clusters of cells in many different shapes, 

sizes and colors, however it struggles with smaller or lighter cell clusters even though they were 

included in the sample. This is adequate for the device’s desired operation. A secondary 

segmentation deep learning architecture that was also investigated, which demonstrated 

improved performance in identifying clusters.  

Future Work 

This project is the first step towards what could be a possible breakthrough in the field of 

medicine. The artificial intelligence can be adapted to identify any kind of cell (stained or 

unstained) given the proper camera and magnification. This could identify cancer cells, sickle 

cells, and anything you are able to place under a microscope. 

This project could be enhanced by outfitting the prototype with a secondary camera of 

higher magnification. This allows the cell clusters to be identified more easily by the low 

magnification camera, allowing for faster and more accurate analysis This would support much 

more analysis at the cellular level, and support greater confidence in classification.  

Additionally, more training data for the artificial intelligence postprocessing is always 

beneficial. Future work could implement training on unstained samples so that the staining 

process can be omitted altogether, allowing for immediate diagnosis. The mechanism that drives 

the automated microscope could also be improved by having its size decreased and using quieter 
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motors. Additionally, if a camera with a high enough framerate is used, the device will not have 

to stop to take a picture and instead run continuously. 
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Chapter 1: Introduction 

There exists a great need for fast and accurate cancer diagnosis. The National Cancer 

Institutes that approximately 1,685,210 Americans will be diagnosed with cancer each year [4]. 

Millions more are screened each year, as it is important to find and treat cancer as early as 

possible. Though, cancer diagnosis is a very intensive and monotonous process. Patients may not 

receive the results of biopsies for weeks because each must be handled by a pathology lab and 

evaluated by experienced professionals. Additionally, if adequate specimens were not collected 

from the biopsy, patients will have to undergo the procedure a second time, delaying possible 

treatments for those that have cancer. The evaluation time and secondary procedures place a 

significant burden on hospitals and health centers as well. 

This project focused specifically on improving the evaluation process for thyroid cancer. 

Patients who may be positive for thyroid cancer undergo a fine needle aspiration (FNA) to 

extract a biopsy from the thyroid. A large needle is inserted into the neck, and cellular material 

from the thyroid extracted. These samples are smeared onto microscope slides and sent to 

pathologists for staining and evaluation. This process can be improved by having a device to 

evaluate slides on the spot to determine if enough cellular material has been collected to make a 

proper diagnosis.  

A prototype automated microscope was developed in order to complete a pre-diagnosis of 

stained fine needle aspirations. The device was programmed to scan the entire area of a 

microscope slide, and used deep learning in order to identify cell clusters in the collected images. 

This quickly informs doctors if enough cellular material has been collected, and the locations of 

identified clusters.  
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Doctors are often hesitant to rely solely upon Artificial intelligence for cancer diagnosis, 

which is why this device simply offers a preliminary stage of processing of cell cluster 

identification. In the future, the device could easily be adapted to include a secondary lens of 

higher magnification to image at the cellular level, and be trained to recognize cells exhibiting 

cancerous traits. Hesitation to rely on artificial intelligence in the medical community stems from 

the inability to conceptualize the specific algorithms and results that a neural net may return. 

Though, certain standards such as ISO/IEC JTC 1/SC 42 on Artificial intelligence exist which 

can support for greater confidence in processing that relies on neural networks [5]. Meeting these 

certifications means that serious consideration has been made for network architecture and 

computational methods, big data, societal concerns, and trustworthiness. Implementing systems 

equipped with artificial intelligence often require additional translation and communication about 

factors that contributed to decisions made.  

The use of deep learning within the medical field is a very recent proposition, and FDA 

just approved the first diagnostics process relying upon artificial intelligence over the course of 

this project [6]. On April 11, 2018, the FDA approved a device call IDx-DR that screens and 

diagnoses patients with diabetic retinopathy. This is the first device that diagnoses a medical 

condition using artificial intelligence without relying upon a clinician to look at images or data 

from the patient [7]. This is a major development for the artificial intelligence market, and 

medical devices equipped with artificial intelligence are on the cutting edge of technology.  
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Chapter 2: Background 

Presentation of Cancer 

Cancer is the given name for a collection of over 100 diseases in which mutated cells                

divide uncontrollably and may invade neighboring tissues [8] [9].  The mutation in a cell is               

occurs when the DNA is unintentionally modified during cell division.  These mutations can be a               

predisposition of genetics, however it is more commonly caused by exposure to a carcinogen              

[10].  Carcinogens are a class of substances which “are directly responsible for damaging DNA”              

[1]. 

There are four key types of genes that may lead to cancer when mutated.  These are:                

oncogenes, tumor suppressor genes, cell suicide genes, and DNA repair genes [1].  The             

oncogenes contain instructions that tell the cell when to divide.  Tumor suppressor genes contain              

instructions that tell the cells when not to divide.  Some genes control apoptosis, also known as                

programmed cell death, thus mutations to these genes can remove the pre-defined cell control              

instructions normally contained in these genes [11].  The fourth type of gene is the DNA repair                

gene, which instructs a cell when to repair damaged DNA.  Mutations to any of these four types                 

of genes can lead to the rapid reproduction of cells, thus forming an invasive growth of cells                 

called a malignant neoplasm [12], more commonly known as a cancerous tumor. 

Due to the broad definition of cancer, the disease may present numerous symptoms             

depending on what kind of cell is mutated.  However, most forms of cancer present themselves               

similarly on the cellular level [13].  Cancerous cells may be of irregular size and/or shape, as                

they do not function as intended and normal cells are specially shaped to help them carry out                 

their designated task.  This also affects the arrangement of cancerous cells, as many cell              
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structures are in place to aid with the typical function of the cells. The nuclei of cancer cells may                   

be also abnormal- this is most commonly presented in the form of a darker and/or larger nucleus,                 

as the nucleus of a cancer cell tends to contain more DNA than the average cell. These physical                  

anomalies presented by cancer cells are what allow medical professionals to identify cancer cells              

optically. 

Pathological Diagnosis of Cancer 

There are many existing technologies that support the diagnosis of cancer. Pathological            

studies, however, remain among the most common ways of detecting cancer, and are often              

crucial for an accurate diagnosis. In many cases, a tissue sample, or biopsy, is required to                

determine if a patient is positive for particular diseases. The three main types of biopsies are                

excisional biopsies, incisional biopsies, and fine needle aspirations [13]. Excisional biopsies are            

tissue removals where an entire lump or affected area is removed, while only a section is                

removed during incisional biopsies. A fine needle aspiration is a procedure where a needle and               

syringe are used to extract soft tissue or fluid from the body.  

The samples from fine needle aspirations can be smeared onto glass slides, but other              

types of biopsies must be treated before they can be examined under a microscope. There are two                 

common strategies for slicing a specimen and preparing it for a histopathological examination.             

One method involves freezing the sample before it decays, and sectioning it using a device called                

a cryostat [14]. This is a relatively fast procedure, and used in situations such as surgery where                 

results need to be promptly delivered. Quality of frozen samples can sometimes be impaired. If a                

cleaner slice is required, or if the specimen must be preserved, it can alternatively be treated with                 

a fixative and then infiltrated with paraffin wax [13]. 
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After samples have been reduced to single-cell thickness, they can be immunostained.            

The routine staining procedure involves using hematoxylin and eosin (H&E). H&E staining            

enhances the visibility of cellular structure and provides much greater detail to support diagnosis.              

Hematoxylin is a basic dye that colors the nucleus and organelles containing DNA or RNA a                

purple or blue. Eosin is an acidic dye that stains acidophilic parts of the cell such as the                  

cytoplasm or cell walls pink or red [15]. The combination of these two dyes supports a much                 

more comprehensive understanding of cellular structure within a biopsy sample. There are also a              

wide variety of special staining techniques that have been developed for specific types of cancer               

detection. Immunocytochemistry, for example, is often used to observe specific proteins and            

antigen in cells in order to identify tumor histogenesis and subtype [16]. This sort of information                

is used to tailor treatments to specific patients and cases.  

 Once samples have been stained, they can be viewed under the microscope by             

pathologists to identify any specific characteristics or abnormalities. A pathology report is            

created for each specimen tested in the lab, and results are added to other medical records in                 

order to make a proper diagnosis. The microscopy portion of a pathology report assesses size,               

shape, organization, mitotic rate, and staining characteristics of cells. The pathologist determines            

grade, stage, tumor margin, whether the cancer is invasive, and if the cancer is in lymph nodes                 

all within the pathology report [17]. A wealth of knowledge is collected from these              

histopathological inspections and used to support diagnosis and treatment methods.  

Artificial Intelligence, Deep Learning & Image Recognition 

In order to understand the purpose of an artificial intelligence-based system, you must             

first understand how it operates. Artificial intelligence (AI) is defined as “[t]he theory and              
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development of computer systems able to perform tasks normally requiring human intelligence,            

such as visual perception, speech recognition, decision-making, and translation between          

languages” [18]. Modern day artificial intelligence applications fall under the concept of Narrow             

artificial intelligence, which is a technology that performs a specific task [19]. 

One subset of artificial intelligence called machine learning (ML) uses a algorithms to             

parse through large amounts of data, learn from the data, then makes a prediction or               

determination about the data with a certain confidence [19]. The “learning” in machine learning              

comes from its attempt to optimize the results by using algorithms that recognize successes and               

errors in the outcome [20]. These algorithms determine successes/errors by using predefined            

identifiers. machine learning is commonly used in the form of computer vision i.e. image              

recognition; however, this still requires coding additional identifiers in order for the machine             

learning to fully and accurately complete the program’s objective [19].  

In order to minimize the hard-coding needed and maximize the accuracy of the outcome,              

a structure called a neural network is used. This is based on a framework which manipulates                

inputs with different weight factors in order to get a better understanding of the implication of                

each input [20]. The artificial neurons are structured in layers, where once one neuron interprets               

the data, it sends it to the next layer of neurons. The program then draws conclusions based on                  

the modified inputs, while a cost function determines if it the output is correct or not. At first the                   

initial outputs are wrong and are compared to outputs that are known to be correct, such as                 

imputed data that has been examined by a human and predetermined to have the desired output.                

This allows the program to measure how correct its outputs are, and it can modify the algorithm                 

in an attempt to reduce errors. The accuracy is represented by a probability vector (i.e. a highly                 
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educated guess), and this accuracy becomes greater each time data is passed through the neural               

network [19]. 

As more neurons are used in the neural network, the amount of data it can process                

increases thus increasing the speed at which the neural network learns. Deep learning is a subset                

of machine learning that refers to the use of neural networks with many layers of artificial                

neurons. Additionally, there can be multiple layers of these ‘neurons,’ which allows the AI to               

deepen its understanding. Each layer allows the neural network to devise both a larger quantity               

of and more precise concepts for identification [21]. The output of the first neuron becomes the                

input to the neurons in the next layer, and so on and so forth. This revolutionized the field of AI                    

and machine learning, as instead of having one large recognition computation, the neurons divide              

the single complex algorithm into a series of much simpler calculations [21]. ““With traditional              

methods, the machine just compares the pixels. Deep learning allows learning on more abstract              

features than pixel values, which it will build itself” [21]. 

RCNN and Image Recognition 

Regions with Convolutional Neural Networks, or RCNN, was the first stepping stone for             

image recognition using artificial intelligence. It was developed in 2014 by Ross Girshick, Jeff              

Donahue, Trevor Darrell and Jitendra Malik [22]. By using a CNN to detect the image features,                

such as color intensities, within a designated region, they created an artificial intelligence which              

was able object recognition. This CNN accounts for the shapes and colors of the item in a given                  

region, thus allowing a quantification of data and a way of pattern detection for the given region.                 

These color intensities and patterns are processed through a Support Vector Machine (SVM) in              
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order to categorize certain shapes and color vectors [3]. An example of this would be detecting                

the relatively straight lines that the edges of a tree trunk has. 

RCNN is designed to detect more than one kind of object at a time. This is what is called                   

a class, and it can consist of just about anything- a dog, an apple, or an airplane. By using                   

machine learning to train the artificial intelligence on different classes, RCNN has nearly             

limitless image detection possibilities. Some examples of RCNN in academia include facial            

recognition and detecting if someone is using their phone while they are driving [23]. 

Further research by the same team lead them to develop faster versions of RCNN, aptly               

name Fast RCNN followed by Faster RCNN [25] [26]. After Faster RCNN, some of the team                

members sought to further increase the processing speed of the RCNN, so they developed a new                

artificial intelligence called RetinaNet [27]. Though they initially wanted to trade accuracy for             

speed, the end product was both faster and more accurate than their Faster RCNN [27]. 

Automated Cancer Diagnosis 

Recent advances in deep learning have opened new opportunities for advancement within            

the medical field [28] [29]. Pathological and cytological examinations are very monotonous and             

time consuming and require careful attention from highly trained physicians and technicians.            

These laboratory examinations are costly and time consuming, as many health clinics must             

outsource examinations to other departments, and place limitations on the level of care that can               

be provided. In response to these challenges, some industry leaders and researchers have been              

attempting to integrate automated imaging techniques into the healthcare system to speed up the              

diagnosis process and provide thorough and consistent pathological evaluations.  
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Automated cancer diagnosis is typically divided into 3 stages consisting of           

pre-processing, feature extraction, and diagnosis [30]. Preprocessing mainly consists of          

identifying which parts of a sample slide is background or white space and which areas must be                 

examined in greater detail. A computer aided diagnosis study completed by researchers at MIT              

found that on average 82% of whole slide biopsy images were covered with white space [31].                

Adequate focusing is required for the pre-processing and later stages in automated cancer             

diagnosis. There is a delicate balance between the magnification required to extract pertinent             

information from a sample and the processing time or memory required to image a specimen at                

high resolution. In many cases the pre-processing stage is crucial for determining which zones              

are significant and which can be ignored. A major challenge while competing this, and all               

imaging aspects of automated diagnosis, is that a clear and focused view must be extracted for                

detection. Typically this is accomplished using image contrast methods utilizing images           

collected by altering the distance between the samples with respect to the lens. However, other               

strategies exist to focus images at a much faster rate. UCONN’s Smart Imaging lab has devised a                 

technique using two pinhole modulated cameras to instantly detect focal planes [33]. Recurrent             

neural networks offer another alternative for processing images and instantly reacting to maintain             

focus [33] [34].  

Feature extraction is the next step in completing an automated cancer diagnosis. Features             

can either be extracted at the tissue or cellular level. Different information relevant to diagnosis               

is presented at both the cellular level and wider assortment of cells. RPI researchers classified               

samples into five main categories consisting of morphological features, textural features,           

fractal-based features, topological features, and intensity-based features when attempting to build           
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a program to automatically diagnose cancer [30]. One major challenge other than extracting             

these features is weighting them and determining confidence margins. A paper released by             

researchers at Villanova and University of Pennsylvania specifically focused on image retrieval            

and classification of thyroid cytopathology [35]. Features used to classify FNA biopsies as either              

benign or malignant included looking at cell patterns, cellular characteristics, nucleus size and             

shape, and background material [35]. Some observations that fall into these categories include             

colors, cellular density and position, and roundness. One major challenge that complicates            

classification and identification of cellular characteristics though, is that there are many different             

techniques for preserving, staining, and viewing biopsies. Any automated cancer diagnosis           

system must be thoroughly trained to handle specific types of cancer and treatment methods.  

The culmination of the preprocessing and feature extraction stages is the final cancer             

diagnosis and communication of results. There are a multitude of ways to evaluate the data               

collected by these imaging techniques, but the two most common include statistical analysis and              

machine learning [30]. The statistical approach consists of drawing together information from            

feature extraction phase and using complex equations to determine the probability of cancer. The              

more recent and promising approach involves using neural networks to diagnose. This method             

involves training a system to use deep learning to identify cancer. Numerous samples are              

processed by the neural network such that it can “learn” what each variation of healthy specimen,                

benign abnormality, or malignant cancer may look like. Each result is classified as either true               

positive, false positive, true negative, or false negative in order for the network to reconfigure               

weightings and reduce error [30]. This method yields a confidence margin that indicates the              

likelihood of cancer. The MIT research group developed an evaluation system that delivered             
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very high confidence margins and proved to be very accurate. It was noted in their paper that                 

when the automated cancer diagnosis was paired with that of a physician’s pathology             

examination, the overall accuracy in diagnosis was much higher than both parties independent             

[31]. This supports the concept that the results form automated cancer diagnosis could prove              

invaluable to the medical industry.  
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Chapter 3: Goals and Specifications 

Customer Requirements 

Through discussion with the project advisor, the MQP team devised the initial customer             

requirements for the deep learning based imaging system for point-of-care cancer diagnosis: 

● Inexpensive  

● Automated process 

● Compact & portable 

● Reliable & consistent results 

● Fast operation 

 

Inexpensive to build: 

The customer requests that the device is inexpensive to manufacture, as it would make              

the device more commercially accessible. The ideal price point for this product is less              

than $700, however due to the scope of this project the team will simply be keeping costs                 

to a minimum. 

Automated process: 

The customer requests that this device should be simple enough for average medical             

personnel to operate. This requires the data collection to be automated. The request of the               

customer is to use a lens system with a camera to take pictures of blood samples, so this                  

must be done in an automated fashion using artificial intelligence. 
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Device must be compact: 

As the device will be point-of-care, it must be small enough to easily transport between               

different locations.  

Reliable & consistent results: 

It is critical that the cell count of this system is accurate, reliable, and consistent as a slide                  

with an insufficient sample will cost the patient and the hospital thousands of dollars. 

Fast operation: 

The device must be able to quickly produce the cancer diagnosis of the inputted sample.               

This time must be approximately 5 to 10 minutes. 

 

Design Concepts 

After consulting with Dr. Ali Akalin and Dr Young Kim at UMASS Medical School as               

well as the advisor, the team developed the initial plans for the design. All of the design                 

requirements were assess, and attempted to be met in the fullest extent. The block diagram for                

this design can be seen in Figure 1 on the following page. 
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Figure 1: Control Block Diagram 

As requested by the advisor, the team used the NVIDIA Jetson TX2 as the base control                

system for the entire device. The NVIDIA Jetson was chosen as it allows for a compact yet very                  

powerful system for artificial intelligence implementations. It has the following specifications           

[39]: 

● GPU: NVIDIA Pascal with 256 CUDA cores 

● CPU: 2.0 GHz 

● Memory: 8GB 

● Storage: 30GB 

This allows the team to have a single device to both control the automated microscope as                

and use artificial intelligence to process the collected data. This is important as having a single                

device capable of all allows the system to be transported easily, which is requested by the                

customer.  
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Chapter 5: Methodology and Design 

Mechanical Design Considerations 

Many possible designs were evaluated while determining what method was best for            

creating an automated system to image a microscope slide. The concept of a three axis system                

was decided because the microscope required an X and Y axis to scan the entire area of the slide,                   

and a Z axis to focus the images. The proposed microscope has the X and Y axes mounted                  

together on the base of the device. This is the case because it allows complete left and right,                  

forward and back, motion of the test bed carrying the slide beneath a “fixed” camera and lens                 

position. The Z axis holds the microscope lens and camera, and is capable of moving in the up                  

and down relative to the slide test bed. The axes were isolated as such in order to minimize                  

shake, to preserve high quality images. The base material used for the frame is 10mm by 10mm                 

beams of MakerBeam extruded aluminum. These are T-slot pieces of aluminium which provide             

stability and ease of connectivity. The mechanical design was created using the 3D modeling              

software Solidworks. A rendering of the model can be found in Figure 2 on the following page.  
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Figure 2: Solidworks Model of Automated Microscope 

Mechanical motion of the axes is completed through the use of NEMA 17 stepper 

motors, T8 lead screws, and anti-backlash nuts. The chosen motors are suitable for the task 

because they have 26 Ncm of torque and support 200 steps per rotation. NEMA 17 is also a 

standard mounting size, which simplifies the design. The axis are moving very small loads, so 

the 26 Ncm of torque is sufficient. The microscope requires very fine incremental control, so the 

the 200 steps per rotation is also required. When paired with a T8 lead screw and 8 increments of 

microstepping capability from the Synthetos driver shield, each axis can attain a resolution of 5 

microns. This is far more precise than even needed for this application. Additionally, the 

anti-backlash nut is required in order to prevent slippage, and guarantee that the nut always 

returns to the expected location after moving back and forth. Limit switches were not included 

with this design, but could be placed at the ends of the axis to detect when each axis has returned 

home. This would ensures that numerous trials are consistent with each other. Linear rails are 
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used opposite the lead screw on each axis in order to support smooth and stable motion.  

A Synthetos gShield V5 Driver Board was chosen due to its incorporation of 3 axis and 

integration with GRBL Arduino. The Synthetos shield was attached to an Arduino Uno, which 

was flashed with GRBL. GRBL allows for the arduino to interpret G-Code over serial port 

connection. G-Code is a numerical control language that is commonly used in computer aided 

manufacturing. The G-Code allows for configuration of speed, acceleration, and travel distance 

for the motors. The shield also supports up to 8 microsteps and can regulate power delivered to 

each motor.  

The Alunar ALSP20A05 12V 20A 240W Power Supply was chosen at it meets the 

requirements to power the Synthetos Shield as well as the Nema 17 motors. The input voltage 

required for the shield driver is between -0.5 and 29V, so 12V is sufficient. From the shield, each 

motor will draw 0.4ARMS and 12V, for a total system required power of approximately 21W. 

Though 240W is more than necessary, this particular power supply costs less than others and has 

easy-access outputs for development purposes. The jetson relies upon its own independent power 

supply.  

The microscope used in this project was a Monoprice USB digital microscope. The 

microscope has a CMOS sensor and a maximum resolution on 1600x1200 pixels. The effective 

viewing area of the microscope was approximately 4x6mm. In order to image an entire slide 

area, not including patient label, 54 photos had to be taken. The test bed for the slide will also be 

a custom part and include a holder for the microscope slide. Below the slide there will be a LED 

lamp. The light source is covered with a thin white plastic material in order to adequately diffuse 

the light and illuminate the sample.  
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Neural Network Development 

For the artificial intelligence used for the device, the team needed to have an image-based 

deep learning system. The two choices available are a regional convolution neural network 

(RCNN), or a segmentation-based artificial intelligence. The team decided to use an RCNN, as it 

would be faster to process and have potential uses for future works. If an RCNN is used to box 

potential areas, it would allow for a segmentation artificial intelligence to process only in the 

designated areas, thus decreasing the total processing time for the segmentation artificial 

intelligence. 

The chosen RCNN was Keras RetinaNet [36]. This is a Keras-based RCNN which uses a 

Tensorflow backend. It is based off of RetinaNet [27], however it uses Keras instead of Caffe. 

The team chose to use a Keras-based system as the lab the project was based in has been using 

Keras for their other projects and is familiar with how it works [37]. Tensorflow was chosen as 

the backend over Theano for this same reason [38].  

The training method chosen was region-based Pascal VOC, as the team was familiar with 

this particular method. In order to train the RCNN, the team had to acquire image scans of cell 

samples and designate the regions of interest on each image. This was done by using the photo 

editing software GIMP to record the pixel coordinates of the corners of each region. By 

recording two points (upper right and lower left), the RCNN is able to analyze and train on a 

rectangular region of the given image. 

The dataset that the artificial intelligence was trained on consisted of no more than three 

significant images taken from a twenty-four slides. Each slide was comprised of fifty-four 

images, and not every slide had visible cell clusters on three slides. Some had over twenty 
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images with visible cell clusters, while others had one or zero images with visible cell clusters. It 

is important to note that on samples of patients with cancer, there were significantly more cells. 

This means that there is more training data on cancerous cell clusters than there are with benign 

cell clusters. In total, there were 854 cell cluster boxed for training the RCNN. This process took 

approximately 30 man hours.  

In order to process the data through the RCNN, the team needed hardware which has a 

powerful graphics card. The device chosen was the NVIDIA Jetson TX2, as the customer 

requested it. It has a very powerful NVIDIA Pascal GPU with 256 CUDA cores, 8GB of 

memory and up to 2.0GHz processing speed [39]. Though the NVIDIA Jetson is optimized for 

processing neural networks, it does not have the CPU required to train the artificial intelligence. 

Therefore, the team used an Ubuntu machine with an NVIDIA Titan X GPU card to train the 

neural network. This device was designed for the use of cell cluster prediction using artificial 

intelligence, and its compact size makes it ideal for our system. 

As the customer gave the team the NVIDIA Jetson TX2 Development Kit to use, it came 

loaded with not just GPIO but a full operating system environment. This is ideal for the team, as 

the programming for the motor control and artificial intelligence can be loaded and tested on the 

system using Python. 

Once the prototype was constructed, training samples were collected in order to teach the 

the neural network to extract and recognise cell clusters. The pathology division at University of 

Massachusetts Medical School provided biopsy specimens from fine needle aspirations. These 

samples were originally collected to test patients for thyroid cancer. Ten slides were scanned 

using the device, and used for training and initial verification. Since the purpose of this network 
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was to simply identify cell clusters, not all of the samples scanned were positive for cancer. Five 

subjects had benign colloid nodes, two had papillary thyroid cancer, and three had lymphocytic 

thyroiditis. A maximum of 3 images of the 54 from each scan were selected for inclusion in the 

training set. All of the images were visually inspected for cell clusters, and coordinates of the 

boxes input into the training algorithms of the region-based convolutional neural network.  

The neural network is trained through back propagation, by passing forward and back 

images through many convolutional layers in order to extract specific characteristics associated 

with the desired regions. The neural network is optimized or trained by reducing the error in each 

iteration and epoch after epoch, as the desired outcomes are predetermined. 20 percent of the 

slides were not included in the training sets and instead used to validate accurate identification of 

cell clusters by the neural network. After the neural network had been trained, it was loaded on 

the NVIDIA Jetson to provide immediate identification of cell clusters on newly scanned 

samples. 
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Chapter 6: Results and Analysis 

Prototype Operation 

The user must first plug in and power on the NVIDIA Jetson. The USB from the Arduino 

Uno must be plugged into the USB3 port on the NVIDIA Jetson Development Kit, and the USB 

camera must be plugged into the USB2 port on the NVIDIA Jetson Development Kit using the 

MicroUSB/USB connector. Then, the Arduino shield must be connected to the Arduino Uno, and 

the automated Microscope is then to be powered on. Ensure that the NVIDIA Jetson is connected 

to the internet via ethernet or wireless connection. At this time, the microscope slide of the 

desired sample may be placed into the slide holder. If the slide has an information sticker on it, it 

must be placed on the side of the microscope holder which faces outwards. After waiting one 

minute for the NVIDIA Jetson to boot up, the button S2 (volume down) on the Development 

Board must be pressed. After waiting an additional five seconds, the button S3 (recovery) must 

be pressed. After a delay of approximately twenty seconds, the automated microscope will begin 

to take pictures of the slide. The processing time for each step can be seen in Table 1 below: 

 Step Time to Process 

 Image Microscope Slide ~2:30 minutes 

 AI Post-Processing ~3:00 minutes 

 Upload to Google Drive Internet Dependent (~6:00 minutes) 

 Table 1: Device Operation Time 

The speed at which it does this is dependant on the internet speed of the current location 

of the device, however you are able to check the progress by watching the files upload to your 

Drive, and after all fifty-four images are uploaded, the process is done. If you wish to run another 
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sample, you may load another slide and press the button S3 (recovery) to repeat the scanning 

process. 

Results Overview 

After training, the artificial intelligence performs adequately. The device was taken back 

to UMASS Medical School and tested against five new samples. Three subjects had benign 

colloid nodes, and two had papillary thyroid cancer. Though it consistently identifies clear cell 

clusters, it struggles to pick up on lighter colored or less defined cell clusters as seen in Figure 3. 

Additionally, it struggles with oddly shaped cell clusters, often putting multiple boxes around the 

cell or segmenting the cell into multiple sections as seen in Figure 4. These issues can be solved 

by acquiring more data to train the artificial intelligence with. Even with these issues, the 

artificial intelligence performs well given the relatively small data set it received. 

 
Figure 3: Testing Results Image A 
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Figure 4: Testing Results Image B 

Analysis 

The R-CNN was trained using 726 bounding boxes found in 8 images. The validation set 

used included 128 bounding boxes found in 18 images. It was trained for a total of 8 epochs. The 

regression loss was found to be 0.0272. Secondary tests were also completed test the RCNN’s 

learning capability. The regression loss from two smaller groupings consisting of 144 and 134 

bounding boxes were compared after a single epoch. The resulting loss was 0.3491 and 0.1942 

respectively. These two values were relatively close, supporting the idea that the RCNN can be 

trained successfully on comparable data. The RCNN also substantially improves with more 

training data and epochs, as evidenced by the much smaller regression loss of the original 

training. More comprehensive analysis was not conducted as processing time took days to train 

the R-CNN, and further analysis was conducted on vU-net as its results were substantially better.  
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Sample # # of Images 
Used 

Sample Quantity Epochs 
Completed 

Regression Loss 

1(Official) 8 726 8 0.0272 

2 4 144 1 0.3491 

3 2 134 1 0.1942 

5 (Validation) 18 128 Validation Set Validation Set 

Table 2: Regression Loss 

vUnet Evaluation 

The first stage of this evaluation was to develop a training set for the vU-net.  This 

training set included images from fine needle aspirations from 15 different patients. The 

automated microscope was used to collect these images. Each sample scanned by the microscope 

generated 54 images, but only one image from each subject was used to train the vU-net. In order 

to train the vU-net to recognize desired cell clusters, masks were generated in order to draw 

attention of the algorithms to strictly specific zones. These masks were developed using an open 

source photo-editing tool called Gimp. Cell clusters were denoted in white, and all background 

denoted in black. The images below demonstrate an example of a mask that was generated in 

order to train the vU-net. A mask was created for each of the 15 training images. 
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Figure 5: Sample Image 

  

Figure 6: Mask Created for Sample Image 

After creation of the masks, the vU-net was trained for 32 epochs on 12 of the images and 

masks. The remaining 3 images and masks were used for validation. This training was used to 

generate images to compare to the RCNN. A 5-fold cross validation was also completed in order 

to verify the robustness of the vU-net. In order to complete this computation, the 15 training 

images were divided into 5 groups of 3. Each group was rotated through to be used as the 

validation set. Training out to 5 epochs was completed for each set. The final loss errors were 

averaged together in order to yield the overall loss for the cross validation.  
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The following figures are plots of the loss and dice coefficient of the training and 

validation sets over the course of the 32 epochs. The final validation loss was 0.0157.  This is 

generally considered a good fit, because the final validation error is very close to the training 

error. Note that the validation loss is actually lower than the training set initially. 

 
Figure 7: Training Loss Function, 0.0157

 

Figure 8: Dice Coefficient, 0.971 
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Figure 8 below is a plot of the validation loss curves for the 5-fold cross validation test. 

Note that 4 of the curves are very close, and that one has significantly more error. This indicates 

that the vU-net generally does a good job fitting to training and validation data, but is still 

challenged by difficult validation sets. The average error for the cross validation was 0.0391. 

 
Figure 9: 5-Fold Cross Validation, 0.0391 

 

After the vU-net was trained, it was tested against the R-CNN on testing images that were 

also collected from UMASS Medical School. The testing data had no truth masks generated, but 

allowed for visual inspection of results, and comparison to the output bounding boxes from 

R-CNN. The boundaries created by the vU-net were overlaid onto the original image using 

Gimp. Figure 5 is the output image generate by the RCNN, and Figure 6 is the image generated 

by the vU-net. Figure 7 shows comparison of RCNN on the left, and vU-net on the right.  
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Figure 10: R-CNN Boxes 

 

 
Figure 11: vU-net Segmentation 
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Figure 12: R-CNN vs. vU-net 
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Chapter 5: Recommendations 

Enable Focusing 

Future improvements should include the automated focusing of the microscope. The 

prototype is designed with a third axis to support this fine focusing. The current system is set to 

remain a constant distance from the sample for the entire course of the scanning, as the focus 

remains relatively constant throughout. This distance is set prior to the scanning, and controlled 

by sending G-Code commands to the Z-axis. However, this focusing could be controlled by the 

software as well. Images could be taken at two different distances, compared, and then evaluated 

for how much and in what direction the scope should be moved to focus the image. This could be 

accomplished by using the integrated artificial intelligence, or using other algorithms to calculate 

intensity or other characteristics.  

Additional High Magnification Camera 

This prototype could be greatly enhanced by outfitting the device with a secondary 

microscope of greater magnification. The current microscope is used as a scanning device and 

identifies clusters at the tissue level. A secondary scope should be added in order to provide 

images that the cellular level. It would be impractical to image the entire microscope area with a 

lens of 100x or 200x magnification, but after the cell clusters have been quickly identified, the 

secondary camera could image strictly the clusters in much greater detail. This additional scope 

would allow training and possible diagnosis of cancer using the integrated artificial intelligence. 

Benign colloid node cells could be compared to those with papillary thyroid cancer.  
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Other Applications 

Due to the modularity of the artificial intelligence post processing, the designed system 

has nearly limitless capabilities for the field of pathology. The only limit is what kind of data the 

artificial intelligence is trained on, and the quantity of the data used to train it. Some noteworthy 

applications include training the AI to accomplish the following: to detect cell clusters of 

different types of cells; to detect cancerous cells and benign cells (however this would likely 

require a higher magnification camera); to detect cell clusters or make preliminary cancer 

diagnoses on unstained cells; and to tell if there are enough cell clusters of the correct size in the 

sample to warrant an accurate diagnosis. Whatever application a pathologist is needed, this 

device can be adapted in order to suit that need.  
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Chapter 6: Conclusions 

Though a capstone, his project taught the team much about artificial intelligence, deep 

learning, and embedded systems. With the team’s only relevant background consisting of 

introduction to embedded systems and introduction to programming, each member of the team 

learned much more about these field as well as the field of artificial intelligence. Though it was 

challenging, the end result is rewarding. 

The team successfully created an automated microscope with an artificial intelligence 

post-processing that is able to detect cell clusters. Furthermore, the team went beyond the 

standard requirements by giving the device the capabilities to send the results wirelessly to other 

devices.  

This project acts as a proof-of-concept and stepping stone for automation in the field of 

pathology. Though the current design only detects cell clusters, with time the system can be 

adapted to do more significant things like diagnose cancer without a pathologist or even count 

cell clusters and diagnose cancer on unstained samples. This advancement has the potential to 

save many lives by getting the patients their treatment faster, and the team is very proud to have 

a part in this design. 
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