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ABSTRACT

The goal of this project was to design and implement the software for a fully autonomous robotic system
to compete with in the Amazon Picking Challenge. The Amazon Picking Challenge is a robotics competition
with 32 teams from around the globe competing. The challenge is to program a robotic system to autonomously
locate requested Amazon products on a shelf, pick the objects up, and place them into an order bin as quickly
as possible. Our team at WPI is using a highly precise industrial Yaskawa Motoman robot with two 7-degree-
of-freedom arms and a rotating torso. Attached to the robot are Robotiq hands for manipulation and two
cameras with color and depth perception to perform object recognition. Our MQP team was responsible for
integrating manipulation software with the state machine and object recognition software using the ROS
framework. This involved developing a high-level strategy for controlling the robot behavior to complete the
task in the fastest possible way. We expect Team WPI to perform well at the competition, which will be held
in May at the IEEE International Conference on Robotics and Automation (ICRA) 2015 in Seattle, WA.
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INTRODUCTION

Amazon.com, Inc. is the largest e-commerce company in the United States with net sales reaching $89
billion in 2014. Its expanse is massive: having 270 million unique active accounts [1] in over 180 countries [2]
'and routing product orders through 130 active distribution centers [3]. To optimize warehouse logistics,
Amazon utilizes a robotic automation solution created by Kiva Systems [4, 5].

Kiva’s warehouse system uses mobile robots to transport shelving units around the warehouses [6].
Human workers occupy stationary workstations, and shelves are retrieved by the robots, so the workers can
remain in one place instead of walking around the warehouse [6]. Amazon currently utilizes over 15,000
mobile robots in ten of its warehouses [5].

The stationary workstation model makes a good candidate for further automation. However, designing
robust and reliable automated picking solutions for unstructured environments remains a challenge. For this
reason, Amazon and Kiva Systems have conceived the Amazon Picking Challenge (APC), a competition
between 32 international academic and commercial teams to spur the advancement of this technology [7].

The competition challenges teams by presenting a simplified version of the general task of picking items
from shelves within an allotted time.--the job a human worker would traditionally do. Successfully completing
the task requires utilizing object recognition, pose recognition, grasp planning, compliant manipulation, task
planning, task execution, and error detection & recovery [7]. This requires teams to have members with
various programming skills and experience. Team WPI has 10 members, a mix of undergraduate and graduate
students. The MQP team has been working as a subset within the larger team, spearheading robot
manipulation and module integration. Team WPI has been working on the challenge for several months now,

getting the system ready for the competition in late May of 2015.
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2.2

RESEARCH

Industrial Robots

Industrial robots are defined in ISO 8373 as an “automatically controlled, reprogrammable, multipurpose,
manipulator, programmable in three or more axes which can be either fixed in place or mobile for use in
industrial automation applications” with a certain degree of autonomy [8]. The reprogrammable criteria
implies that the robot is designed so that any programmed motions or auxiliary functions can be changed
without physical alteration of the robot. The robot must be multipurpose in that it must be capable of being
adapted to a different application with or without physical alteration. A serial manipulator is a mechanism
which consists of a series of jointed segments for the purpose of maneuvering an end effector with several
degrees of freedom (see Figure 1 - Serial Manipulator). Importantly, as mentioned earlier, industrial robots
must operate with partial autonomy, that is, having the ability to perform intended tasks based on current
state and sensing without human intervention. Common applications of an industrial robot include welding,
painting, assembly, pick and place, product inspection, product testing, and machine tending. A robotic system

is valuable if it is autonomous, robust, accurate, adaptable, accomplishes its task quickly, and is safe [8].

End Effector /

Serial Links

Figure 1 - Serial Manipulator

Grippers

Robotic systems achieve environment interaction typically through the use of an end effector. Attached
to the last link of a serial manipulator is an end effector --a device or tool specifically designed to interact with
the robot’s environment. Examples of end effectors include a spot welder, a camera, and a prehension device.
There are four categories that prehension devices (also known as grippers) fall into: impactive, ingressive,
astrictive, and contigutive [9]. Impactive grippers are characterized by grasping the object via physical direct
contact to the surface of the object --this is the most common, familiar, and intuitive type of prehension device.
Ingressive grippers also utilize direct physical contact, however, they are designed to penetrate the target

object (imagine a needle piercing the target object). Instead of pushing into the object to establish and maintain
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grip, astrictive grippers utilize a pulling, or suction force applied to objects surface. Such force can be achieved
via vacuum suction, magnetism, electroadhesion, etc. The final category, contigutive, achieves its grip by
utilizing adhesion via direct contact with the object with glue, surface tension, and freezing. The easiest to
implement, and widest available grippers is the impactive physical grasper, the type of which is made available
to Team WPI by Robotiq.

Inverse Kinematics

An industrial robot interacts with its environment by positioning the end effector via actuating its joints,
thereby changing the geometry of the arm. Very often, inside each joint, there is a sensor to provide positional
feedback to the robot controller. By knowing the angle of each joint, a geometric model can be constructed to
determine the position of the end effector --this is known as forward kinematics. In order to command the end
effector to move to a desired position, or in a desired motion, inverse kinematics is used. The input is the
desired position and orientation of the end effector, and the output is the set of joint angles for the manipulator.
The fundamental concept of inverse kinematics is that by working backward from the end effector and
applying the law of cosines to two adjacent links at a time, the desired relative angles for both joints are easily
obtained. The specific application of inverse kinematics to a given serial manipulator depends on how many
joints it has, what the joint limits are, the link lengths, the types of joints (revolute or prismatic), and the
configuration of the links. Generally speaking, manipulators with six joints - and therefore six degrees of
freedom - have a single joint configuration that will place the end effector at any given position and
orientation. Adding a seventh joint provides infinite, continuous joint configurations as solutions to any given
desired end effector pose [10]. In the case of having multiple joint configurations as solutions, a single
configuration can be chosen based on whatever criteria are desired for the application, such as minimizing

overall joint movement.
Motion Planning

Once a target position and orientation (pose) for an end effector is determined, a new problem arises --
maneuvering the end effector to that pose from the current joint state of the robot. This problem is known as
path planning or the piano-movers problem, can be defined by its inputs and outputs. The input being a task
description (geometry and physical properties of objects, and spatial relations --either user-provided or
sensed), and the output being a sequence of robot motions [11]. This problem is non-trivial when there are
objects in the workspace with which the manipulator could collide. That is, there could be solutions for a given
pose whereby the configuration of the joints would cause a collision with objects in the environment. Similarly,
there could be intermediate configurations between the current robot state and the target state such that the
manipulator would collide on the way to its goal. In the context of the Amazon Picking Challenge, it is
necessary for our system to minimize collisions at all times. Therefore the robotic system must find a list of
intermediary poses from the initial state to the goal state whereby physical constraints (i.e. collision avoidance,
speed limits, angle limits, etc.) are respected. Such a problem involves operating within multi-dimensional
problem space, and where an exhaustive search is far from ideal -A strong algorithm is required.

Rapidly Exploring Random Tree (RRT) is one of the quickest and most efficient obstacle free path finding
algorithm [12]. RRT-star (RRT*), an improved form of RRT, constructs a randomized data structure that is
designed for path planning problems [13-15]. This data structure is specifically designed to handle
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nonholonomic constraints and high degrees of freedom [14, 15]. The algorithm expands a graph randomly
explored in the configuration space, iteratively expanded and guided to the next random state by a set of
control inputs [14, 15]. The algorithm is asymptotically optimal implying it would take an infinite time to
achieve optimality. Users who utilize the RRT* algorithm for practical planning purposes set a timeout period
for which the algorithm would run. When the timeout expires, the algorithm returns the best result achieved.
Computing a trajectory ‘online’ would expectedly return a poor trajectory relative to computing a trajectory
‘offline’ due to the ability of the offline planner to use a timeout period much greater than the online planner.
Therefore, it is advantageous for a robotic system to pre-compute trajectories using the RRT* algorithm offline

with a large timeout period for any task configurations known prior to runtime.
Object Recognition

Robots that operate in unstructured environments need the ability to perceive the world. Introducing
image data allows opportunities for object recognition, visual servoing, and robot calibration. To extract
meaningful information from two-dimensional (2D) images, powerful algorithms need to be leveraged.
Fortunately, Bradski created a computer vision suite, commonly used in applications worldwide [16, 17].Recent
technology has allowed for high-fidelity, high-density depth sensing capabilities to be available for a relatively
cheap price --an example being the Kinect sensor. Such sensors result in a set of a data points, typically defined
as points in Cartesian space. The data is meant to represent the surface of objects in space from the viewpoint
of the sensor. Due to 2D and 3D’s sensing utility and value to robotic systems, a large scale, open project for
2D/3D image and point cloud processing, called The Point Cloud Library (PCL) was created by Willow Garage,
and supported by many organizations worldwide [18]. “The PCL framework contains numerous state-of-the
art algorithms including filtering, feature estimation, surface reconstruction, registration, model fitting and
segmentation. These algorithms can be used, for example, to filter outliers from noisy data, stitch 3D point
clouds together, segment relevant parts of a scene, extract key points and compute descriptors to recognize
objects in the world based on their geometric appearance, and create surfaces from point clouds and visualize
them” [18]. The creators analogize PCL to perception as the Boost libraries are to C++.

Useful algorithms for perception for the challenge include template matching, color matching, point cloud
stitching, and the Oriented Bounding Box (OBB). Template matching is an algorithm designed to find a part
of an image which match a template image. If the target object to be recognized has been learned into a
template, the algorithm can search the 2D RGB image for the learned sub-image, and thereby determine if the
target is located within the original image. Color matching is another object recognition algorithm where the
target object colors (values from an RGB camera) is learned, and then compared to another image. An object
would be recognized if there exists a set of pixels similar in color to the learned object’s color. Point cloud
stitching is a process intended to result in a more accurate and representative point cloud. The method takes
point cloud data from several sources and/or angles and transforms them into a common reference frame for
further processing. The OBB algorithm takes a set of point cloud data, and returns a minimum volume box in
three dimensional space with a definite position and orientation. Such objects can be used conjunctively to
recognize, differentiate, and locate objects, with just a 2D RGB camera, and a 3D depth sensor. Only recently
has the 3D depth sensor been used in conjunction with 2D RGB camera data been coupled with object
recognition. Combining these sensors can produce a “multi-modal object detector” [19]. Team WPI plans to

incorporate these methods into their system for the challenge.
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PROJECT SOLUTION

Competition Details

At the competition, setup bullpens will be arranged for teams to prepare their systems, perform practice
runs, and demonstrate their solutions to the ICRA audience. For the official scored attempt, or “run”, our Team
will have an hour of setup time to move the robot into place, calibrate the position of the shelf, and perform
any other necessary preparation tasks. Ten minutes before the start of the run, the shelf will be visibly blocked
off from the Team so that officials can pseudo-randomly place items in the shelf. To start the run, the shelf will
be uncovered, and the Team will be given a USB drive with a JSON file containing the information about the
contents of the shelf, as well as which items to pick (the work order), to which our software will read and act
on autonomously. The robot must retrieve the items on the work order and place the items in the order box
within the allotted time limit of twenty minutes. Points are awarded for successfully picked items and deducted

for dropping or damaging items, or for picking items that are not part of the work order.

3.1.1 SETUP

ey
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Figure 2 - Populated test shelf

The shelving system is a steel and cardboard structure, similar to the shelving units currently used in Kiva
warehouses (see Figure 2 - Populated test shelf). A 3D model of the shelf was provided to teams at the onset
of the challenge. Teams have used the model both to perform collision checking when planning trajectories
and to filter out points from the point cloud generated when one of the cameras is looking inside the shelf and
performing object segmentation and recognition. Although the shelf has two identical faces, only one face is
being used for the challenge. Twelve of the bins on the shelf will be used, as shown in the picture below, and

each bin will contain at least one item.
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Figure 3 - Model of shelf

In an official attempt, all twenty-five items may be placed in the shelf, or a partial subset of the items may
be used. Each team was given the set of items before the competition to conduct practice runs; however, Team
WPI purchased an additional set in the event that the items become too damaged to practice with (mainly
from dropping items, or crushing them with the grippers). All items on the shelf will be located such that they
could be grabbed by a person of average height (170 cm) with one hand. In December, the APC team from
Berkeley scanned all the challenge items using their BigBIRD scanning software [20] to create 3D models of
all the objects and kindly shared the models with all participants. This data has been invaluable for developing

and testing our software to perform both object recognition and grasp planning.

Figure 4 - Cat treats from BigBIRD Scanner

For each team at the competition, the items, their locations, and the work order will change. There will be
exactly one item in each bin that is part of the work order. The orientations of items will be pseudo-randomized
by the officials stocking the shelf. Items will not occlude one another, from a head-on approach. Additionally,
there will be at least two single-item bins, at least two double-item bins, and at least two multi-item bins (three

or more items). Duplicate items may be encountered, even in the same bin.
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Figure 5 - Workcell layout

The shelf will be placed in a stationary position one hour before the start of the attempt, as shown in the
diagram pictured above. Once the shelf and robot are moved into place, our team will calibrate the position of
the shelf. Teams are neither allowed to move nor permanently modify the shelf; however teams can place
temporary markers on it as long as they are removed prior to the run and don’t leave any residual. The entire
workcell is a square two meters wide with a gap of at least ten centimeters between the shelf and any part of
the robot at the start of the attempt. For safety, teams are required to have an emergency stop button for the
system easily accessible. The placement of the order box is up to the team, as long as it is in the workcell, but
the robot cannot be supporting the bin at the beginning or end of the run. Moving the order bin outside the
workcell will result in zero points for items in the bin.

Two minutes prior to the start of an attempt, we will be given a JSON file with the work order. The file
contains a list of the items that must be retrieved, as well as the contents of every bin on the shelf. This means
that for performing object detection and recognition for any given bin, the robot will know how many objects

are in the bin and what they are. Without this information, the challenge would be far more difficult.

RULES

An attempt is defined as a single scored run. An attempt is over when: the twenty minute time limit
expires, the team leader verbally declares the run is complete, or there is human intervention of any kind with
the robot or shelf. The items in the work order can be picked in any order; this does not affect the score of the
run. Because human intervention is prohibited, there can be no semi-autonomous operation or teleoperation.
The number of attempts available to teams will depend on the final number of participants at the competition
and the time available, but it will be unlikely to exceed one run.

The scoring rules are shown in Table 1 - Point Distribution. Points will be awarded for placing each item
in the work order into the order box. More points are awarded for retrieving items from double-item and
multi-item bins, and there will be bonus points (shown in Figure 6 - Pictures of items, and their associated
bonus points) for retrieving the more difficult items like the books. Points will be deducted for dropping or

damaging items. Teams will also be heavily penalized for picking items that are not part of the work order.



Moving a target item from a multi-item shelf bin into the order bin +20 points
Moving a target item from a double-item shelf bin into the order bin +15 points
Moving a target item from a single-item shelf bin into the order bin +10 points
Target Object Bonus +(0 to 3) points
Moving a non-target item out of a shelf bin (and not replacing it in the same bin) -12 points
Damaging any item or packaging -5 points
Dropping a target item from a height above 0.3 meters -3 points

Table 1 - Point Distribution

o o

champion_copper. plus_spark_plug

crayola_64_ct

rolodex_jumbo_pencil_cup

kong_ sitting_frog.dog_toy kong_air_dog_squeakair_tennis_ball

Figure 6 - Pictures of items, and their associated bonus points

3.2 System Overview

Team WPI is using a Yaskawa Motoman SDA10F robot as our primary hardware platform, with two
Robotiq 3-Finger Adaptive Grippers attached to the arms. There are also two Creative Senz3D cameras attached
to the arms to provide depth perception and color images for performing object detection and recognition.

Additionally, the Team has constructed a special tray tool that can be used to move or pick up items.



Figure 7 - Overhead of robot system

3.3 Motoman SDA10F

Figure 8 - Yaskawa Motoman SDA10F



The Motoman SDA10F industrial robot is a dual-arm system with seven degrees of freedom in each arm
and an actuated torso joint. Having the torso joint in addition to the arms means that Team WPI is able to plan
motion paths with eight degrees of freedom for either arm when necessary. The rated payload for each arm is
ten kg, which is more than necessary to grasp any object in the challenge. The end effectors on the arms can
be controlled with +0.1 mm precision, which is invaluable for our application, especially when the robot is
using the tray to pick up items. The robot can also move at extremely high speeds compared to non-industrial
robots. The torso joint, which has the slowest maximum angular velocity, can rotate at a rate of 120°/second.
The seventh joint in the arm, which has the fastest maximum velocity, can rotate at a rate of 400°/second. The
robot is capable of performing any trajectory within a timespan of several seconds. Therefore it is favorable
precompute as many trajectories as possible for the time the system will spend moving the robot (when the
robot is not inside the shelf moving slowly) would remain a relatively small percentage of the total time
allowed for the challenge.

The robot is controlled by the FS100 controller, also supplied by Yaskawa Motoman. The FS100 is the
interface between the manipulators and any external input intending to control the manipulators. The
controller performs the necessary computations to operate the robot, including control loops for its actuators,
supplying power to the manipulators, and it monitors the status of the robot. Connected to the FS100 controller
is a Programming Pendant, used to teach the robot to perform tasks in an industrial setting. For the purposes
of the challenge, the Programming Pendant is not used, but the host machine must interface with the FS100

controller in order to maneuver the robot.

3.4 Robotiq 3-Finger Adaptive Grippers

Figure 9 - Robotiq 3-Finger Adaptive Gripper
The Robotiq grippers have three identical underactuated three-joint fingers, meaning that a single motor

actuates three joints for each finger. The two fingers on the same side of the palm are each connected to an
additional joint so that they can be actuated toward or away from each other. The grippers have four grip
modes, as shown in the picture below. In Basic or Wide mode, the fingers remain straight until and unless the
first or second finger joints come into contact with an object, at which point the fingers curl around the object.
In Pinch mode, the gripper brings the two fingers (on the same side) up against each other and then tries to
grab an object with the fingertips. Because the fingers are in direct opposition to each other in this
configuration, they obviously cannot curl around an object. Scissor mode is used to pick up very small objects.

It is not as powerful as the other modes, but it is useful in certain situations.

10
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Figure 11 - Software system architecture

3.5.1 ROS

“The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a collection of
tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior
across a wide variety of robotic platforms” [21]. The basic components of ROS are nodes, topics, and services.
Nodes are software scripts, written in either C++ or Python (both are compatible with ROS). Nodes
communicate with each other using topics. Nodes can publish information to any number of topics, and nodes
can subscribe to any number of topics. With this framework, it is very convenient to pass any given node all
the information it needs to perform an action. Nodes can also call services. A service is a script that takes an
input message and returns an output message. The input and output message formats are specified by the

header file for that service. A service could do anything; it may perform an action or it may just return

12
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information. The ROS master node keeps track of all topics, publishers, subscribers, and services in order to
enable this inter-nodal communication [21].

In Team WPT’s system, ROS controls the interactions between all of the different software modules. The
FS100 controller, cameras, and force-torque sensors all stream data back to the computer, and the data is
published to various ROS topics. Any software created can subscribe to ROS topics to retrieve any needed
information. The Robotiq grippers have a ROS interface that is easy to utilize to send commands for grasp
mode, grasp force limit, and finger position. To interface to the robot, the FS100 controller has a custom ROS
server that accepts normal ROS Industrial messages and converts them into Yaskawa’s own language for
controlling the robot. To start the task, the software modules are launched, and the system receives the JSON
file containing the work order and other information about the contents of the shelf. It passes the file to the
scheduler, which generates a plan, and the state machine is started using the plan as input. The state machine
then governs the robot behavior according to the schedule.

Movelt! is a convenient user interface in ROS for developing software that controls robotic serial
manipulators [22] - in the Team’s case, the arms and torso of the Motoman robot. The Movelt! API provides
methods to quickly set various parameters and access different path planning algorithms, as well as methods
to query different pieces of data (like the position of the robot end-effector). It also takes care of setting up the
ROS publishers and subscribers, allowing nodes to easily control robot movement and read joint feedback. The
Team’s system does not necessitate Movelt!, but it has helped the Team develop and test software more quickly,
and is used for certain scenarios (e.g. generating the Cartesian path that the tray follows to scoop items).

ROS Visualization Tool (RVIZ) is a ROS package that visualizes robots and robot data, like point clouds,
coordinate systems, object collisions, SLAM grids, and anything else that can be represented visually [23].
RVIZ has a main window that displays all the data and a corresponding selection panel to hide or show any
specific information. It also provides a graphic user interface for path planning and execution, which is useful
for testing motions with a robot without having to write any software. When the system starts up, RVIZ is
launched; models for the robot, grippers, shelf, order box, and tray are loaded into the RVIZ module. The robot
model accurately shows the state of the robot in real time, and all the models are used to perform collision
checking during path planning. Also displayed are the point clouds and the RGB images from the cameras as
well as any useful coordinate frames. One very useful feature of RVIZ is that trajectories can be visualized

before execution, allowing the user to verify beforehand if the robot is going to perform the expected motion.

THIRD-PARTY LIBRARIES

“The Point Cloud Library (PCL) is a standalone, large scale, open project for 2D/3D image and point cloud
processing” [18]. It contains algorithms for numerous tasks, including filtering, feature estimation, surface
reconstruction, and segmentation. To locate items with the 3D data from the cameras, our system uses Point
Cloud Library algorithms. The point cloud data is processed to return the positions and orientations of target
items so that an attempt can be made to grasp them. When the system is attempting to find an item with the
perception software, processing the point cloud data is the first step. The points that represent the shelf are
filtered out, which is possible because our system has a Computer-Aided Design (CAD) model of the shelf and
knows where the shelf and the camera both are in relation to the robot. The remaining unfiltered points

represent the items in the bin. These remaining points are then segmented into separate objects. If the items

13
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are on the tray, the process is the same, except that the points representing the tray are filtered out instead of
the shelf. Again, this is possible because the system has a model of the tray and knows its location.

“OpenCV is an open source computer vision and machine learning software library” [17]. It is used mainly
for real-time applications, like facial recognition and movement tracking [16]. Our perception software then
utilizes OpenCV to perform object recognition. The library has algorithms available for feature-matching and
color-matching, which the Team’s system uses to compare the camera images against the stored images of the
challenge items. For instance, the box of crayons is a great candidate for feature-matching. All of the faces of
the box are colorful and distinct, making the crayons relatively easy to identify. OpenCV also has algorithms
for reading text and barcodes which the team may end up utilizing for certain items.

“OpenRAVE provides an environment for testing, developing, and deploying motion planning algorithms
in real-world robotics applications. The main focus is on simulation and analysis of kinematic and geometric
information related to motion planning” [24]. By giving OpenRAVE the model of the Robotiq gripper and the
models of all the items that were generated by Berkeley’s BigBIRD scanner [20], potential grasps for any item
in the challenge can be pre-computed. The software is mainly used to precompute various grasp positions for
each of the items. Whenever an object is successfully located and recognized, our system checks through the

precomputed grasps for that item to see if any are possible in the current situation.

STATE MACHINE

We are using a SMACH state machine in our system. “SMACH is a task-level architecture for rapidly
creating complex robot behavior” [25] The SMACH library allows users to develop hierarchical state machines.
Our state machine is the top level of control in our software architecture. Instead of creating a complex series
of service calls and listeners spread throughout the different nodes, the state machine was programmed
relatively quickly by explicitly declaring all possible system states and the corresponding outcomes and
transitions. For instance, the perception software may fail when attempting to locate a target item, and the
state machine knows to pick up the tray as the failure condition, so it then calls the script to pick up the tray.
Or, if the target item is located successfully, the state machine knows to call the grasp planner as the success
condition, and the system attempts to find a valid grasp for the item. The state machine can also be easily

updated at any time to alter system behavior.
Camera Mounts

For the cameras to provide useful data, they must be securely attached to the robot arms in known
locations. This way the referenced coordinate frame for each camera always has a known relation to the robot

base frame. To attach the cameras, we designed and created 2 identical 3D-printed mounts, shown below.

14
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Figure 12 - Computer model of camera mount

Figure 13 - Mounted camera

Grasping ltems

Our system has two different methods of manipulating items. The primary method is to use the pair of
Robotiq grippers which can grasp items in various ways. If possible, our system attempts to use one of the
Robotiq grippers to retrieve a target item. However, this relies on both the perception software and grasp
planning software to be successful. The perception software must segment the items in the point cloud of a
bin, identify the target item, and return its position and orientation accurately. That information is then passed
to the grasp planning software. We have precomputed a number of possible grasp positions for each item using
the OpenRAVE software. The grasp planner first loads these grasps and their corresponding approach vectors.
It then checks the approach vectors in the virtual model and filters out those that collide with the shelf. The
software then determines if any of the remaining vectors are possible for the robot to perform with at least
one of its hands.

If the OpenRAVE library returns no valid solution, an online grasp planner is called. The online planner
takes the segmented point cloud data for the target item and projects the points horizontally onto various
planes that are perpendicular to the ground. The plane with the narrowest spread of points is selected, and the
approach vector returned is perpendicular to this plane. With this method, the gripper is oriented in the best
way to grasp the item, but it is slower than retrieving a precomputed grasp from our library. Like with the

offline method, the best potential approach vector is tested to see if the robot can perform the motion and if it
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can do it without colliding with the shelf. If that vector fails, the next best potential vector is tested; this is
repeated until a vector is returned successfully or every potential vector has failed.

When an approach vector and grasp are successfully returned, the action is performed. Once the item is
securely grasped by the gripper, the robot plans and executes a path to get the gripper back to its default pose
outside of the bin without colliding with the walls of the bin on the way. From this pose, the robot follows a

pre-computed trajectory to the order box and opens the gripper to drop the item into the box.

Tray

Our alternative method of manipulation is the use of a specially constructed tray (pictured below) that is

made specifically to be grasped by the Robotiq grippers and is used to move the items.
7y

R &

Figure 14 - Tray holding items

There are scenarios in which our system can’t grasp items with the grippers. Sometimes the perception
software does not successfully recognize the item, or it recognizes the item but does not return an accurate
bounding box of the item. The point cloud from the camera is very noisy, especially if it is looking almost
directly along a planar surface like the side of the Cheez-It box or the cover of a book. Viewing bins from
multiple angles helps mitigate this issue, but objects that are very close to walls cannot necessarily be viewed
from enough angles to be modeled accurately. Often, the target items are simply in positions in which they
cannot be grasped by the grippers at all. For instance, either of the books could be lying flat on the floor of the

bin cannot be grasped, and the Oreos basically can’t be grasped at all, no matter what orientation they are in.
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Figure 15 - One of the items in a non-graspable placement

For any such scenario, our system can resort to using our tray to manipulate the items. The tray has two
basic uses: it can be slid under items to pick them up, and it can be put into a bin sideways to move the items

to one side of the bin when necessary. The tray can also dump items directly into the order box, but we

obviously only want to do this for target items.
| | | = ‘ d gy § Y L

Figure 16 - Horizontal use of the tray
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Figure 17 - Vertical use of the tray

3.8.1 TRAY DESIGN

The current version of the tray is constructed mostly from wood. It consists of two rigid wooden parts -

which we refer to as the “platform” and the “handle” - connected by a spring-loaded hinge.

Figure 18 - Tray apparatus
The platform is the part that slides under the items, and a Robotiq gripper grasps the handle to use the

tray. Because neither arm can reach all of the bins with the tray, the handle is symmetrical so that either

gripper can grasp it.
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Figure 19 - Gripper grasping the tray

The tray will rest on a special holder in the workspace when not in use, and it can be reached by both
arms to allow for easy transfer of the tray from one gripper to the other. At the front edge of the platform is a
line of razor blades that forms a very thin edge about 18 cm wide. The front edge of the wood is also tapered
at a very shallow angle so that it can slide under items without lifting the razor edge up off the bottom of the

bin.
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Figure 20 - Front edge of tray

The short walls toward the back of the platform prevent items from falling off the tray as they slide toward
the handle. When scooping items, the items tend to be pushed backward by the edge of the tray until they
come into contact with the rear wall of the bin, at which point the tray can continue forward to slide all the
way under each item to pick them up.

The Motoman robot is extremely precise, but our knowledge of the position of the shelf is not precise
enough to guide a rigid body along its surface with the robot. Instead, the spring-loaded hinge is used to
maintain contact between the razor blades and the shelf surface. When there is no force exerted on the
platform, the hinge rests at 90°, with the spring holding the platform up against the handle. When scooping
items with the tray, the robot tilts the tray forward and places the edge of the platform inside a bin against the
bottom surface of the bin. It then lowers the handle, and the hinge exerts downward force on the platform,
pressing the razor blades tightly against the bottom of the bin; this allows the tray to easily slide under any

item.
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Figure 21 — Spring-hinge

3.8.2 TRAY IMPLEMENTATION

The tray can be used in several ways. It is constructed so that it is narrow enough to fit into the bins
vertically. This makes the platform about 7 cm narrower than the narrow bins and about 11 cm narrower than
the wide bins. This means if we blindly scoop out a section of the bin, we may get all the items in the bin, or
we may get only some or none of the items. This leaves us with options depending on what the state machine
wants to do.

If the perception software was successful in returning the position and orientation of a target item, then
it means we are using the tray because we cannot grasp the item with the grippers. If the target item is
something that can normally be grasped from inside the bins and it is simply too close to one of the walls, the
system moves the tray into the bin with the platform part in a vertical position and uses the tray to push the
target item away from the wall. The system then rescans the bin and reattempts to find a valid grasp for the
item. Sometimes this will still fail, or the target item is something that cannot be easily grasped when inside
the bin. In this case, we can position the tray to pick up the target item and also attempt to avoid any other
items in the bin as much as possible. Once the tray performs a scooping action, it is positioned in front of the

robot so that the camera on the other arm can view any items on the tray from various angles.
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Figure 22 - Perception of items on tray platform

If the perception software determines there is something on the tray and it was scooped from a single-
item bin, then it is obviously the target item. In this case, the robot can either use the tray to dump the item
into the order box, or, if it is an item that is likely to fall off the tray during movement, the robot can attempt
to grab the item off the tray with the gripper and use the gripper to put it in the order box.

If the robot scoops from a double-item or multi-item bin, the system must perform object recognition on
all the items on the tray. If there is only one item on the tray and it is the target item, the system follows the
same procedure as above. If there are multiple items on the tray, the system attempts to identify which item is
the target item. If it can identify and locate the item, the system attempts to find a valid grasp for the item. If
there is no valid grasp for the target item (i.e. if it is a book that is lying flat on the tray), the system attempts
to find valid grasps for the non-target items so that it may remove them from the tray and place them back
into the bin and then dump the target item into the order box with the tray. Alternatively, if there is no valid
grasp for the target item and no valid grasp for at least one non-target item, the system can attempt to hold
the target item in place with the gripper while dumping the rest of the items back into the bin. If that fails, or
if the motion would be impossible to execute, the robot dumps the items back into the bin and either retries
that bin or moves onto a different bin after calling the scheduler to determine the next action.

The system can sometimes encounter the case of the tray only scooping items from a bin that are not the
target item. The rules state that any item not in the work order must be replaced into the bin they came from
or we will be penalized. This leaves the system with three options, which it chooses from depending on the
state of the shelf and the items involved: 1) While the robot is holding onto the non-target item(s) with the
tray, the system can rescan the bin and attempt to grasp the target item with the gripper; this is likely not
possible, since the system would have probably tried to use the gripper (and not the tray) in the first place. 2)
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It can dump the item(s) back into the bin and try again to scoop the target item out; this is the preferred
solution if the target item is something that can be easily recognized and easily grasped while it is lying on
the tray. 3) If there is already an empty bin in the shelf, the system can dump the non-target item(s) into the
empty bin and proceed to try again to scoop the target item. However, with this solution, the robot must
replace the non-target item(s) back into their original bin or we will be penalized 12 points for each item not

replaced.
Calibration

Because we are not allowed to move the shelf, we must calibrate its position with respect to the robot
during the setup period at the competition. Alternatively, we could attempt to precisely position the Motoman
robot, but the robot is approximately 220 kg and nearly impossible to position with the precision we require
for the challenge. This means calibration of the shelf position is necessary.

There are two potential methods of calibration we are testing, and our team is still in the process of
determining which method is more accurate and reliable. The first method is to manually jog each robot arm
until a specific chosen point on the gripper comes into contact with a specific chosen point near the corner of
the shelf. Once each arm is jogged into place, we run a script that reads the current position of each arm and
updates the position parameters in the calibration file. This method works well, but has the downside of
requiring teleoperation, which is not required for any other portion of the workflow. The other method is to
place optical markers on specific chosen locations on the shelf and run a script that uses the cameras to locate
the markers and then updates the calibration parameters. This method has the benefit of being autonomous,
but it requires placing markers on the shelf by hand and also depends on the accuracy of the calibrated position
of the camera with respect to the robot. We will likely use the first method (manually jogging arms into place)

for the competition, as there are fewer variables affecting the reliability of the method.

Figure 23 - RVIZ view of shelf calibration

This calibration does not change affect our pre-computed trajectories, as those are intentionally created

so that the arms do not move too close to the shelf, allowing for some tolerance in shelf placement. The
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calibration does update the model of the shelf in our virtual environment. The motion planning software uses
the shelf model to perform collision checking when reaching into the bins with the hands to grasp items. The
perception software uses the shelf model to filter the shelf out of the point clouds when searching for items.
The calibration also updates the reference frame for planning cartesian paths with the tray. Scooping items
(and moving items with the tray sideways) consists of following a simple cartesian path that can be planned
very quickly through linear interpolation, with its starting point relative to the current bin. The path must
travel along the axes of the shelf coordinate frame (instead of the robot coordinate frame) in order to avoid
hitting the walls of the bins.

Task Workflow

Our ultimate goal is to be able to earn the maximum points possible on every run. The maximum points
available will vary depending on how many double-item and multi-item bins there are and what items are in
the work order, but it will always be between 150 and 210 points (plus bonus points). To retrieve all the items
successfully, every component of our system will need to function properly, and we will need robust error
handling implemented into the state machine.

Our system begins a run by scanning each of the bins once, and it attempts to detect and recognize the
target item (the item listed in the work order) for each bin. The position and orientation of each target item is
stored for the state machine. Multiple camera angles are used for each bin to increase the rate of success and
the accuracy of each object’s position and orientation. Once all the bins have been scanned, the information
is passed to the scheduler. The scheduler determines the best order to retrieve the target items in depending
on how much time is left, the probability of success for retrieving each of the target items, and the number of
points each target item is worth. It is re-run after each attempt of retrieving a target item. It should be noted
that the order in which the items are retrieved does not affect our score.

For each bin, the system default behavior is to attempt to pick up the target item using one of the grippers
and drop it into the order box. If the perception software returns failure for a double-item or multi-item bin,
or if grasping the item itself fails, the system may rescan the bin and reattempt the grasp before resorting to
the tray, depending on the target item involved. When the tray must be used, the system follows the logic
described in 3.8.2 — Tray Implementation. Regardless of the manipulation method used, once all twelve items
listed in the work order are retrieved and placed in the order box, the run is over, and the system stops. If the
system fails to retrieve any items, it will re-attempt each target item until the 20 minute time limit has expired

and the run is declared over.
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3.11 Results

The system is still being developed by the team to get it ready for the competition. The different software
components have all been integrated into the state machine except for the scheduler, which is being saved for
last, once all other components are more thoroughly tested. Other than system integration, our main priority
as an MQP team was developing the tray and the associated software to the point where the system could rely
on the tray to get any item out of the shelf when the perception software or grasping fails.

Most importantly, the current version of the tray is able to pick up any item, including the in the worst
case scenario, which is when one of the books is lying down flat and the spine is facing away from the robot.
The first two versions of the tray could not pick up the books in that orientation without damaging them. The
first version did not have a razor edge and could not easily get under the cover of the book. The second version
had a similar razor edge, but the blades were attached to the underside of the tray, meaning that objects also
had to then pass over a wooden lip in addition to the razor edge. That tray could slide its razor blades under
the book, but not the rest of the tray.

It takes approximately 10 seconds for the robot to pick up or put down the tray with either arm. It takes
approximately 18 seconds for the robot to slide under an item and get it out of the shelf. Similarly, it takes
about 22 seconds for the robot to go into a shelf vertically and push the contents to one side. The worst-case
challenge scenario would involve the need to use the tray both vertically and horizontally, with opposite
hands, for each bin, as well as switching hands between each bin. This would mean, over the course of the
task, the robot would pick up the tray (and set it down) 24 times, and perform at least 12 horizontal actions
and 12 vertical actions with the tray (of course, in a real worst-case scenario, the robot could try and fail
forever to scoop just the target item out of a bin). These physical actions add up to approximately 960 seconds,
which would take up 80% of the 20 minute time limit.

In the worst-case scenario, the system would likely not complete the task for all twelve target items, but
it still might get most of the points available. The worst-case scenario is also extremely unlikely. More
reasonably, we expect to use the tray less than half that often in any given run. By our best approximation,
the physical tray actions will end up taking around 20-30% of the time available. This leaves plenty of time to
perform object recognition and grasp the objects with the Robotiq grippers when possible. It also leaves ample
time for the system to handle errors and retry actions. Overall, the current tray is both practical and effective,

and the different software components of the system are communicating successfully.
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4.1

TECHNICAL DOCUMENTATION

Yaskawa Motoman SDA10F

TABLE 2 - BASIC SPECIFICATIONS

Item Model

MOTOMAN-SDA10F

Configuration

Articulated

Degree of Freedom

7 axes for the left arm (R1);

7 axes for the right arm (R2);

1 rotation-axis

Payload 10 kg/arm

Repetitive Positioning Accuracy £0.1 mm

Range of Motion SDA10F: B1 (B2)-axis
(rotation) -170° - +170°
S-axis (lifting) -180° - +180°
L-axis (lower arm) -110° - +110°
E-axis (I'ower arm twist) -170° - +170°
U-axis (upper arm) -135° - +135°
R-axis (upper arm twist) -180° - +180°
B-axis (wrist pitch/yaw) -110° - +110°
T-axis (wrist twist) -180° - +180°

Maximum Speed SDA10F: B1 (B2)-axis 2.27 rad/s (130°/s)
S-axis 2.97 rad/s (170°/s)
L-axis 2.97 rad/s (170°/s)
E-axis 2.97 rad/s (170°/s)
U-axis 2.97 rad/s (170°/s)
R-axis 3.49 rad/s (200°/s)
B-axis 3.49 rad/s (200°/s)
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T-axis 6.98 rad/s (400°/s)
Allowable Moment R-axis 31.4 N'm (3.2 kgf'm)
B-axis 31.4 N'm (3.2 kgf'm)
T-axis 19.6 N'm (2.0 kgf-m)
Allowable Inertia R-axis 1.0 kg-m?
(GDY4y B-axis 1.0 kg'm®
T-axis 0.4 kg-m?
Mass 220 kg
Ambient Conditions Temperature 0 to 40° C
Humidity 20 to 80% RH at constant temperature
Vibration acceleration 4.9 m/s* (0.5G) or less
Others Free from corrosive gas or liquid, or explosive
gas or liquid
Free from water, oil, or dust
Free from excessive electrical noise (plasma)
Power Capacity SDA10F:1.5 kVA
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Figure 24 - Part names and working axes
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Figure 25 - Manipulator base dimensions
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4.2 Robotiq 3-Finger Adaptive Grippers
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Figure 27 - Technical dimensions
TABLE 3 - MECHANICAL SPECIFICATIONS
Specification Value
Gripper Opening 0-155 mm
Gripper Approximate Weight 23 kg
Recommended Payload (Encompassing Grip) 10 kg
Recommended Payload (Fingertip Grip) 2.5kg
Maximum Grip Force (Fingertip Grip) 60 N
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Maximum Break Away Force

100 N

Maximum Closing Speed (Fingertip Grip)

110mm/sec

L[ |

Actuation
Force

O mm 25mm 50 mm 75 mm

Holding N
Force

100 mm

125 mm

O mm 25mm 50 mim 75 mm 100 mm 125 mm
Distance from the finger
proximal axis to @ single
force (F}
Figure 28 - Finger force graph
TABLE 4 - ELECTRICAL RATINGS
Specification Value
Operating Supply Voltage 24V
Absolute Maximum Supply Voltage 28V
Quiescent Power (minimum power consumption) 41W
Peak Power (at maximum gripping force) 36 W
Maximum RMS Supply Current (supply voltage at 24V) 1.5A
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4.3 Robotiq Force-Torque Sensors
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Figure 29 - Technical Dimensions

TABLE 5 - MECHANICAL DIMENSIONS
Specification Value
Approximate Weight 0.65 kg
Maximum load (all axes) 750 N
Outside diameter 120 mm
Through-hole diameter 45 mm
Thickness 37.5 mm
IP rating 54




Stiffness Fx, Fy 3.2 X 10° N/m
F, 3.9 X 10° N/m
Mx, My 4700 Nm/rad
M, 4600 Nm/rad
TABLE 6 - ELECTRICAL SPECIFICATIONS
Specification Value
Measuring range Force +150 N
Torque +15 Nm
Effective resolution Force 02N
Torque 0.02 Nm
Signal noise Combined force 05N
Combined torque 0.03 Nm
External noise sensitivity Immune
Cross-Talking None
Accuracy F. 1%
All other TBD
Drift Force +3N over 24h
Torque non-significant’

Data output rate

100 Hz

Temperature compensation

15to35°C
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TABLE 7 - ELECTRICAL RATINGS

Specification Value
Input Voltage 6-28 VDC
Max power consumption 2w
Communication electrical interface RS-485

Recommended fuse

Phoenix #0916604 (UT6-TMC M 1A)

Recommended power supply

TDK-Lambda DPP Series, 15W Single Output DIN Rail Mount

Power Supply, DPP15-24
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CONCLUSION

At time of publishing, Team WPI is still hard at work improving the robotic system for the Amazon Picking
Challenge. Software development will continue until a scheduled code-freeze on May 9th. Afterwards, the
Motoman robot will be shipped to Seattle, WA from WPI on May 14th. If there are no complications with
shipping, Team WPI will prepare and then compete in the competition from May 26 to May 28. Further work
on the robotic system will focus on increasing robustness of all aspects of the system. The Team expects to
increase the system’s object recognition rate, increase the total number of grasping strategies, and minimize
duty time between movements and states.

We expect the team will perform moderately well in the competition. A majority of teams are keeping
their work and designs private, as is Team WPI, and therefore it is hard to compare systems. Our system may
not be able to consistently obtain the maximum points in every run by the competition, but it should be able
to score at least a decent number of points every run. Depending on how well prepared the other teams are,
this may be enough to win. Regardless, Team WPI is excited to compete in the Amazon Picking Challenge

with its robotic system featuring the Motoman robot as our hardware platform.
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