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Abstract

Sparsity is one of the concepts that can improve effectiveness of ma-

chine learning methods. A sparse machine learning model is one in

which only a relatively small number of parameters or predictors play

an important role. The main benefits of sparsity in machine learning

include: simplifying the model for improving interpretability; reduc-

ing runtime and generalization error. Our works in this dissertation

attempt to study methods that exploit sparsity to help recover the un-

derlying information in many real-world applications. In particular,

our works involve two different domains: sparse graph discovery of

brain network, and spike trains classification on resource-constrained

devices.

1. Brain Network Discovery. The network discovery of brain is use-

ful in many ways such as aiding brain disease diagnosis and under-

standing cognitive behaviors. The goal of brain network discovery is to

discover both brain regions (nodes) and functional connections (edges)

between these regions from fMRI scan of human brain. In this research,

we focus on extending current sparse Gaussian graphical models by

discovering the nodes and edges simultaneously through the model



with mathematical consistency. Because sparse graphic models can

simplify the network representation by only discovering meaningful

edges of brain network. Moreover, the node discovery and edge detec-

tion facilitate each other in a synergistic fashion, which improves the

discovered network. Besides, we further reform the problem of multi-

state brain network and propose two approaches to solve this problem.

2. Spike Train Classification. Spike train classification is an impor-

tant problem in many areas such as healthcare and mobile sensing,

where each spike train is a high-dimensional time series of binary val-

ues. Conventional research on spike train classification mainly focus on

developing Spiking Neural Networks (SNNs) under resource-sufficient

settings (e.g., on GPU servers). However, in many real-world applica-

tions, we often need to deploy the SNN models on resource-constrained

platforms (e.g., mobile devices) to analyze high-dimensional spike train

data. We propose two extensions of SNN to improve the performance

of accuracy and computational cost on spike trains related tasks. One

of them is based on the re-parameterization of parameters in an SNN

and the application of sparsity regularization during optimization. The

other one is proposed to quickly find sparse and useful signals from

long and noisy spike trains.
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1

Introduction

1.1 Motivation

Nowadays, large quantities of data are collected and mined in nearly every area

of science, entertainment, business, and industry. There is a crucial need to sort

through this mass of information, and pare it down to its bare essentials. To this

end, we hope that the world is not as complex as it might be. For example, not

all of the genes in the human body are directly involved in the process that leads

to the development of cancer. Or that seeing a part of the picture maybe enough

for us to recognize the objects in it. This points to an underlying assumption of

simplicity. One form of simplicity in machine learning area is called sparsity. A

sparse machine learning model is one in which only a relatively small number of

parameters or predictors play an important role. The main benefits of sparsity can

be summarized into three aspects: first, simplify complex model for improving in-

terpretability; second, reduce the mounds of matrix multiplication, shortening the
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time for inference; third, reduce generalization error leading into more powerful

model. Our works in this dissertation attempt to develop methods that exploit

sparsity to help recover the underlying information in many real-world applica-

tions. In particular, our works involve two different domain: sparse graph dis-

covery of brain network, and spike trains classification on resource-constrained

devices.

1.2 Brain network inference

Network discovery has become an important and active research topic in the last

decade, where the goal is to discover both nodes and edges from the spatio-temporal

signals generated by a networked system. For example, in brain network discov-

ery, researchers are interested in discovering brain regions (nodes) and functional

connections (edges) between these regions from fMRI scan of human brain. Sparse

gaussian graphic models are a very useful for discovering a meaningful connectiv-

ity of brain network based on large-scale dataset by using sparse inverse covari-

ance estimation. In this research, we focus on extending current sparse graphical

models by discovering the nodes and edges simultaneously through the model

with mathematical consistency. Because sparse modeling for brain network can

improve the interpretability of the model, meanwhile, the node discovery and

edge detection facilitate each other in a synergistic fashion, which improves the

discovered network. Besides, we further reform the problem of multi-state brain

network and propose two approaches to solve this problem. We present our ef-

forts on this subject in Chapter 2, all materials in this chapter are from our papers
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"Coherent Graphical Lassofor Brain Network Discovery" [1](in Proceedings of the

2018 IEEE International Conference on Data Mining, 2018, IEEE), "Gaussian Mix-

ture Graphical Lasso with Application to Edge Detection in Brain Networks" [2](in

Proceedings of the 2020 IEEE International Conference on Big Data, 2020, IEEE),

"Multi-State Brain Network Discovery".

1.3 Spike trains inference

Spike trains are sequences of binary events where the spiked time steps can be

encoded as 1’s, and the remaining time steps can be encoded as 0’s. Such data

are common to a variety of domains and are classically analogous to electrochem-

ical signals in the human brain. Therefore, spike train classification is an impor-

tant problem in many areas such as healthcare and mobile sensing. Conventional

research on spike train classification mainly focus on developing Spiking Neural

Networks (SNNs) under resource-sufficient settings (e.g., on GPU servers). How-

ever, in many real-world applications, we often need to deploy the SNN models on

resource-constrained platforms (e.g., mobile devices) to analyze high-dimensional

spike train data. We propose two extensions of SNN to improve the performance of

accuracy and computational cost on spike trains related tasks: (1) The first task is to

study the problem of energy-efficient SNNs with sparsely-connected neurons. We

propose an SNN model with sparse spatio-temporal coding. Our solution is based

on the re-parameterization of weights in an SNN and the application of sparsity

regularization during optimization. Chapter 3 presents this model that improves

the state-of-art performance on related problem, and all materials in this chapter
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are from our previous paper “Energy-Efficient Models for High-Dimensional Spike

Train Classification using Sparse Spiking Neural Networks” [3](in Proceedings of

the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD), 2021). (2) The second task is proposed to quickly find sparse and useful

signals from long and noisy spike trains. The proposed framework consider to ex-

tend existing SNN models by learning to mask out noise by skipping membrane

potential updates and shortening the effective size of the computational graph.

Chapter 4 summarize this model and experimental results on related problem, all

materials in this chapter are from our paper “SkipSNN: Efficient Classification of

Sparse and Noisy Spike Trains”.



2

Brain Network Discovery

2.1 Task 1: Coherent Modeling in Brain Network Dis-

covery

2.1.1 Motivation

Network discovery [4, 5] is to discover both the nodes and edges from a spatio-

temporal signals produced by a networked system. It is involved in many areas,

especially the study of human brain, which is one of the most sophisticated sys-

tems that have attracted a large number of researchers. In a brain network, a node

refers to a collection of brain tissues which are coherent in function. An edge be-

tween two nodes measures the functional connectivity between pairs of nodes.

Constructing a brain network usually consists of two sub-task: one is grouping a

set of pixels in a such a way that pixels in the same node are similar to each other

in function, which is called nodes discovery; The other is finding the correlations
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Figure 2.1: The problem of brain network discovery.

(edges) between each node, which is called edge detection. In this task, we consider

to discover the brain network from a collection of fMRI scans, where each scan cor-

responds to a 4D brain image (a sequence of 3D images) of a subject. These scans

are usually transferred into time series of voxels in the 3D images space, and the

goal is to discover nodes and edge of the brain network from the time series in an

unsupervised fashion. We illustrate this problem in Figure 2.1.

Most of previous studies consider two sub-task of brain network discovery sep-
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arately. Some works focus on the task of edge detection only, where one assumes

that the nodes of the network are given, either by the anatomical atlas from neu-

roscience studies or by applying other node discovery methods (such as k-means

clustering or spectral clustering). Sparse gaussian graphic models [6, 7, 8, 9, 10] are

a great candidate for edge detection of brain network based on large-scale dataset

by using sparse inverse covariance estimation. The main ideas of these methods

are that they can distinguish direct edges from indirect edges due to their solid

probabilistic foundation. Therefore, the results derived from such models have

better interpretability performance based on the sparse structure of meaningful

edges. However, the brain network derived based upon these assumptions are not

optimal and may exhibit inconsistencies due to following reasons. First, the atlas

provided by neuroscientist is mainly derived from anatomical studies, and some

groups (nodes) in the atlas may contain sub-regions of brain that are characterized

by different brain functions. Second, applying separate node discovery method to

obtain the clustering (nodes) of brain may preclude one further refines the cluster-

ing based upon the discovered connectivity patterns. Therefore, although nodes

discovery and edge detection are two different tasks for brain network discovery,

the derivations of them are highly affected by each other during the process. Ac-

cordingly, a cohesive method for collectively discover nodes and edges of a brain

network is more desired than independent discovery methods or pipeline discov-

ery methods.

Toward this end, some coherent methods for brain network discovery that can

handle both of the two aspects of the problem have been proposed recently [5, 11]

. However, they all have their own limitations. Although the method proposed in
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[11] considers the brain network discover problem as a coherent one, they apply

two separate objective functions for two sub-task respectively, and update each

other alternatively in the same framework. Besides, they employ spectral cluster-

ing for the nodes discovery task, which loses interpretation in the terms of nature

properties of brain parcellation. The method proposed in [5] aims at discovering

nodes with spatial continuity constraint for the sake of interpretability, but it fails

to distinguish the direct connections and indirect connections among nodes in the

network.

To address above issues of the existing methods, we propose a novel model

that could perform node discovery and edge detection at the same time without

any prior knowledge of the brain. Our main challenges are as follows:

• Edge detection without given nodes: The first challenge we faced is how to

find connectivity between different nodes without background knowledge of

these nodes. Most of previous methods dealing with inter-node edge detec-

tion, require given nodes as input, which is contradictory with real cases. In

reality, the given nodes maybe inferred anatomically and contain sub-regions

that are each characterized by different functional connectivity patterns. It

may limit the quality and utility of the inferred network. In addition, we

hope to distinguish partial interactions among all edges, which is more in-

structive in further study of the inferred brain network. So when we are de-

signing a coherent discovery model for brain network, how to infer a sparse

connectivity network without the requirement of using given nodes as input

is the first challenge we need to conquer.

• Nodes discovery without given edges: In the consideration of nodes discov-
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ery, we have some principles to follow: First, the discovered nodes should be

non-overlapped regions of pixels, so we need to make sure the interpretation

of the inferred networks; Second, these sub-regions should be parcellated by

same functional connectivity patterns. In real cases, the nodes of the brain

we have obtained by anatomical atlases are likely to be based on different

functional and structural patterns. So the accuracy of edge detection is also

important for the results of nodes discovery. However, it is difficult for us

to deal with it without given edges as input. Consequently, it is the second

challenge for us to solve nodes discovery via a coherent model, due to input

of only raw time series transferred from brain scan image instead of any prior

information of the connectivity of brain network.

• Designing a coherent objective function instead of combining two inde-

pendent functions in a framework: In the consideration of this coherent

model itself, we need to design a model different from the existing model

in [11]. If following the idea introduced in [11], we can just find two mod-

els for nodes discovery and edge detection, respectively, and then combining

the two objective functions of them in one framework, updating each other

alternatively. However, it is still an independent method in fact. Due to the

independence of optimization functions for nodes discovery and edge de-

tection, this method has the risk of estimation inconsistency. The third chal-

lenge we faced is how to finding a unified optimization function to express

the problem of collective cognitive brain network discovery.

To tackle above challenges, we propose a new model, namely CGLasso, to dis-

covery nodes and edges of a brain network coherently. In Figure 2.2, we compare
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Figure 2.2: Comparison of different brain network inference methods. (a) inference with
known groups; (b) the proposed collective discovery of brain network. Here H is a p × k
indicator matrix for nodes discovery, where p is the number of pixels from the brain image, k is
the number of inferred nodes. W is the inter-node covariance matrix.

the differences among the previous models and our proposed model. Our model

is based on Glasso (graphical lasso) and ONMtF (orthogonal non-negative matrix

tri-factorization) and combine the ideas of them in a new mathematical model,

meanwhile, using an alternative update rule to optimize each other. Our model

only needs original brain data (time series of all pixels from brain scan images) as

input without any prior knowledge related to nodes or connectivity between them,

and then output nodes and edges at the same time. In addition, due to the matrix

factorization for nodes discovery and sparse inverse covariance for edge detection,

we follow the properties of Glasso and ONMtF in a single model.

2.1.2 Related Works

In this chapter, we discuss some existing methods used in network discovery, espe-

cially in brain network analysis. Due to the fact that currently there is no coherent
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method that can solve nodes discovery and edge detection in a single model, we

will discuss the two sub-problems separately.

In the consideration of edge detection, this issue has two major branches: effec-

tive connectivity estimation and functional connectivity estimation. For the first

branch, scholars pay more attention on obtaining a directed network from fMRI

data through structure learning method for Bayesian networks [12]. In contrast,

the second branch focuses on some approaches such as hierarchical clustering,

pairwise correlations and independent component analysis, which can be found

in [13] for more details. In this chapter of the thesis, we focus on sparse gaussian

graphic models [6, 7, 8, 9, 10], which are a very useful for discovering connectiv-

ity of brain network based on large-scale dataset by using sparse inverse covari-

ance estimation. The main ideas of these methods are that they can distinguish

direct links from indirect connections due to their solid probabilistic foundation.

However, in the task of edge detection, these methods assume the nodes of brain

network are given, which is opposed to the fact. In the [11], Liu proposes a new

method by combining Glasso and spectral clustering under a single framework.

This method, to some extent, achieves the idea of completing nodes discovery and

edge detection at the same time. The problem is, in this framework, because each

task corresponds to a different objective function, the two tasks are still worked

separately in fact.

In the task of inferring the nodes of brain network, early works focus on anatom-

ical atlases. However, there is no unified functional or structural connectivity that

can be used to construct and explain them, the nodes of the brain we have ob-

tained by anatomical atlases are likely to be based on different functional and
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structural patterns. From the perspective of computer science, more and more

studies have begun to focus on data-driven methods. [14] has addressed the is-

sue of distinguishing brain nodes that are highly related to Alzheimer’s disease

from neuroimaging data. Researchers have also begun to parcellated the brain

by regarding it as a combination of several functionally homogeneous nodes. For

example, [15] used projection methods such as principal component analysis to

discover the nodes of brain network that are co-active. However, it can only pro-

vide a coarse output of the brain network, due to the parcellation of “in network”

and “out of network”. [4] handled network discovery via constrained tensor anal-

ysis method, but this method is a supervised method, which is less feasible in real

cases. [5] proposed to apply matrix tri-factorization with nonnegative and orthog-

onal constraints (ONMtF) to fMRI data. ONMtF is an extended model of NMF.

Here Non-negative constraints lead to a parts-based representation because they

allow only additive, not subtractive and combination, meanwhile, orthogonality

makes sure the interpretability of the results. [16, 17, 18, 19, 20, 21] have shown it

to be useful for pattern recognition and later studies have continued to show that

most applications make use of the clustering aspect of NMF. Then [22, 23] show the

equivalence between NMF and K-means. [24] extend NMF algorithm by adding

a spatial continuity penalty, which can make sure the interpretability of the par-

cellated regions. This method can also output the result of nodes discovery and

edge detection at the same time, however, it has discovered the edges based on the

correlation matrix instead of inferring direct links as Glasso does.

Based on the above discussion, we believe that we still have much space for

progressing on the network discovery. In Chapter 2.1.4, we propose a new method,
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which blends the ideas of Glasso and NMF. In order to introduce the proposed

method more smoothly, we will provide more details about two baseline methods

at first.

2.1.3 Problem Definition

Now we discuss our proposed model at the functional level and provide more

details. First, we introduce two basic methods to deal with network discovery, and

then discuss our proposed model which combines the ideas of them. Here we still

analyze the network discovery from two perspectives: nodes discovery and edge

detection.

Problem1 : Nodes Discovery

Let X = (x1, ...,xn) ∈ Rp×n be the observations of p-variate Gaussian distribution,

where p denotes the number of variables and n denotes the number of observa-

tions. Then we set Σ as the covariance matrix of n samples. The NMF factorizes Σ

into two non-negative matrices:

Σ ≈ FGT (2.1)

where F = (f1, ..., fk) ∈ Rp×k and G = (g1, ...,gk) ∈ Rp×k, k is a pre-specified pa-

rameter. In the case of the network discovery, our target is an absolute covariance

matrix Σ. So Σ us a systematic analysis matrix and F is equal to G, which we

denote them as matrix H in the rest, meanwhile, k can be treated as the number

of nodes to discover. According to [24], we can extend NMF model to weighted
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orthogonal non-negative factorization, which is called ONMtF, then the objective

function is:

min
H⩾0,HHT=I

||Σ−HSHT ||2 (2.2)

The [23] shows that, by adding non-negativity and orthogonality constraints, the

model is equivalent to k-means clustering and the Laplacian-based spectral clus-

tering. Furthermore, the k× k matrix S has a special meaning. In the next part, we

will introduce how we use this idea in our proposed model to implement collective

discovery of network.

Problem2: Edge Detection

In the problem1, we define the systematic covariance matrix Σ. In graphic lasso,

we assume the precision matrix Θ = Σ−1. Then according to the [25], the problem

of estimate Θ can be cast as follows:

min
Θ≻0
− log detΘ+ tr(SΘ) + λ||Θ||1 (2.3)

where S = 1
n
XXT is the empirical covariance matrix, ℓ1 regularization is used to

force sparsity, and ˘ is the parameter to control the sparseness of Θ. The edge eij

between xi and xj exist if and only if θij ̸= 0, where θij is the (i, j)-element of Θ.
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2.1.4 Coherent Graphical Lasso

Problem Formulation: CGLasso

Now we will formulate the network discovery as a graphic lasso with orthogonal

non-negative matrix factorization as shown in Equation (2.4):

min
H,Θ⋆
− log detΘ⋆ + tr(HTSHΘ⋆) + λ||Θ⋆||1

s.t. Θ⋆ ≻ 0,H ⩾ 0,HHT = I

(2.4)

where Θ⋆ is the inverse of the k × k absolute inter-node covariance matrix, and H

is a p × k cluster indicator matrix. . We call this model CGLasso. The equation

can output the results of nodes discovery and edge detection at the same time.

Specifically, because H is a cluster indicator matrix, the original variable space X

can be mapped to a new feature space similarly on the covariance matrix Σ:

X← Y = HTX

Σ←W = HTΣH

(2.5)

where Y denotes the new k dimensional feature space where each feature repre-

sents node, and W represents the inter-node covariance matrix. According to the

weighted NMF model, W has a special meaning here. When mapping matrix Σ

by following Equation (2.27), we can obtain:

Wlk = hT
l Σhk =

∑
i∈Cl

∑
j∈Ck

Σij
√
nlnk

(2.6)

where

hk = (0, ..., 0,

nk︷ ︸︸ ︷
1, ..., 1, 0, ..., 0)T/n

1/2
k

(2.7)
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In the Equation (2.6), Cl and Ck denote the node l and the node k, respectively,

meanwhile, nl and nk denote the number of variables in these nodes. So we can

consider W as a measure of association between the nodes. Then we rewrite the

log-likelihood function of graphic lasso as:

logL = ln

[
1

(2π)
kn
2 |W| 12

exp{−1

2
tr(XTHW−1HTX)}

]

= −kn

2
ln(2π) +

1

2
ln|W−1| − 1

2
tr(XTHW−1HTX)

= −kn

2
ln(2π) +

1

2
ln|W−1| − 1

2
tr(HW−1HTS)

(2.8)

In this way, the original output of Glasso (we denotes as Θ̂) can be transfer into a

new result (Θ̂⋆). We think it makes sense for the reason that, in some real cases, we

are more interested in the connectivity among inter-nodes. Meanwhile, it can also

provide the estimator of matrix H, thus finishing the nodes discovery and edge

detection simultaneously.

Algorithm For Solving CGLasso

We consider the algorithm for our proposed model in this chapter. The specific

steps are presented in Algorithm 1. In this solver, as the objective function is non-

convex caused by the coupling between Θ⋆ and H, we choose to alternatively up-

date them in each iteration. Specifically, in each iteration, we hold one parameter

and then update the other one. Since these two parameters are involved in the

same objective function, each updated Θ̂⋆ is reflected in the update function of Ĥ.

The same is true on the update of Θ̂⋆.

Group Inference: To solve the group discovery, we use a multiplicative update
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Algorithm 1 Algorithm for CGLasso

Require: i: S: the p× p empirical covariance matrix
ii: k: the number of groups discovered
iii: λ: the parameter to control the sparseness of Θ⋆

iv: itermax: the maximum number of iteration
Output: Ĥ, Θ̂⋆

1: Initialization: Randomly initialize Ĥ(0)

2: Solve Glasso and get initial estimation Θ̂⋆(0)

3: repeat
4: Update Ĥ(t) with Equation*
5: Update Θ̂⋆(t) with the algorithm of Glasso
6: until iter = itermax or convergence
7: Set Ĥ for group discovery
8: Rescale Θ̂⋆ and set it for edge detection

Return: Θ̂⋆, Ĥ

rule, which is the same as NMF. The basic idea is using KKT complementary slack-

ness conditions to enforce the non-negativity and orthogonality constraints. Base

on this, we can directly obtain the Lagrangian function of Equation (2.4):

L(H,Θ⋆, λ1, λ2) = − log detΘ⋆ + tr(HTSHΘ⋆)

+ λ||Θ⋆||1 + tr(λ1(H
TH− I))− tr(λ2H

T )

(2.9)

Here λ1, λ2 are k × k and k × p matrices following KKT conditions:

λ2 ⩾ 0

λ2 ◦H = 0

(2.10)

where ◦ denotes the Hadamard product.Then we can get the deviation of matrix

H:
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∂L

∂Hij

= (2SHΘ⋆ + 2Hλ1)ij − (λ2)ij (2.11)

Combining the above equation with KKT conditions, we have:

(SĤΘ̂⋆ + Ĥλ1)ijĤij = 0 (2.12)

According to the multiplicative update rule, the successive update of

Ĥt+1
ij ← Ĥt

ij(
SĤtΘ̂⋆− + Ĥtλ−

1

SĤtΘ̂⋆+ + Ĥtλ+
1

)
ij

(2.13)

will converge to a local minima of the objective problem. Compared to additive up-

date rule, [26] prove that this multiplicative update rule is a good compromise be-

tween speed and ease of implementation for solving our objective problem. Here

in order to make sure the sign of numerator and denominator are all positive, we

divide the λ1 and Θ̂⋆ into two parts, respectively, to make sure each part is non-

negative:

λ1 = λ+
1 − λ−

1

λ+
1 =

(|λ1|+ λ1)

2

λ−
1 =

(|λ1| − λ1)

2

(2.14)

The same is true on the Θ̂⋆.

Now we need to determine the Lagrangian multiplier λ1 to make sure the signs

of numerate and denominator of Equation (2.39) are positive. First, it is obvious

that summing over index i, we have (SĤΘ̂⋆ + Ĥλ1)ii = 0. Thus we obtain the



Ph.D. Dissertation – Hang Yin 19

diagonal elements of the Lagrangian multipliers:

(λ1)ii = −(Ĥ
TSĤΘ̂⋆)ii (2.15)

Then for the off-diagonal elements of the Lagrangian multipliers, we ignore the

non-negativity constraint on H. By setting ∂L
∂Hij

= 0, we obtain:

(λ1)ij = −(Ĥ
TSĤΘ̂⋆)ij (2.16)

So we have a compact solution for the Lagrangian multipliers

λ1 = −ĤTSĤΘ̂⋆ (2.17)

According to the expression of update function, we can notice that if Ĥ(t)
ij in one

iteration, it will never jump out from this local sholution. In the process of experi-

ment, we initialize Ĥ(0) by k-means clustering, then setting Ĥ(0) ← Ĥ(0) + 0.2.

Edge Detection: For collaborative filtering, we can update Ĥ and Θ̂⋆ alterna-

tively. When we update Ĥ(t) by the above algorithm, the update of Θ̂⋆(t) will com-

bine it in the objective problem. So the solve of Θ̂⋆(t) follows the Equation (2.18):

Θ̂⋆(t) = argmin− log detΘ⋆

+ tr(Ĥ(t)Θ⋆Ĥ(t)TS) + λ||Θ⋆||1
(2.18)

Here the lasso penalty proposed by Tibshirani [27] aims at achieving sparsity

in the regression setting. This ℓ1 penalty function was applied in Glasso by Fried-

man et al. [25]. He proposed a coordinate descent procedure for solving Equation

(2.18), which is remarkaably fast. We will follow this algorithm for updating Θ̂⋆.
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Furthermore, it allows a "warm" start, which allows us to use the estimate for one

value of the tuning parameter as the start point for the next value. We can also

use the SCAD penalty and the adaptive penalty proposing by Fan [28] and Zou

[29], respectively. These penalties can achieve three desirable properties (Fan and

Li [30]): producing sparse solutions, to ensure consistency of model selection, and

to result in unbiased estimates for large coefficients.

In addition, in the consideration of the connectivity among all variables, we can

transfer Θ̂⋆ into Θ̂ by the following function:

Θ̂ = ĤΘ̂⋆ĤT (2.19)

In the aspect of scaling matrix, we set a threshold on the entries of Θ̂⋆ as:

Eij =


1, if |(Θ̂⋆)ij| > δ.

0, otherwise
(2.20)

to obtain the graph edge among all variables. Here δ is a very small amount, which

is pre-specific parameter. We also use the same scheme on Θ̂ to obtain the graph

edge among each group, which is more intuitive for analyzing the network study

in real case.
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Figure 2.3: Comparison of CGLasso, CGLasso-1 and GLasso on edge detection. In the figure, n
denotes sample size, beta denotes density of inter-connection among different groups, p denotes
the number of variables. The first row shows the results of accuracy, and the second shows the
results of F1-score. The blue line indicates the metric resulting from GLasso. The orange trace
indicates the metric resulting from CGLasso. The green trace indicates the metric resulting
from CGLasso-1. The subfigures (a) and (d) consider different sample size n from 200 to 1600,
meanwhile fix the others, including β = 0.3 and p = 110; The subfigures (b) and (e) consider
different density of inter-connection beta from 0.1 to 0.7, meanwhile hold on n = 1000 and
p = 110; The subfigures (c) and (f) consider different variables number p from 50 to 500 and
hold on n = 1000 and β = 0.3;

2.1.5 Experimental Evaluations

Synthetic Data with Ground-Truth

We evaluate the performance of our model on synthetic data, where ground-truth

is given. Firstly, we generate a block-diagonal matrix Θ, which has p features and

L diagonal blocks (groups on the real-case). Meanwhile we give random sparity

structures for each block ΘGi,Gi
. The size of these blocks is p/L×p/L. So each block

has the same scale. Secondly, to generate the inter-connectivity between each di-

agobal block, we add off-diagonal blocks to Θ. Generally, we select βL(L− 1)/2
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pairs of groups randomly, where β means the density of inter-connectivity between

off-diagonal blocks. In order to simulate the connectivity of variables among di-

agonal and off-diagonal blocks, we control the connectivity of each variables on

diagonal block with a high density, which denotes as αinner, then giving a density

αinter with a low value to each off-diagonal block. Following the above steps, we

can obtain the precision matrix Θ. Then we select n samples randomly from the

Gaussian distribution to obtain the empirical covariance matrix. In the process,

when we generate the co-variance matrix of all variables, we sample 10 times for

all experiments. So all the results shown as follow are the average of each experi-

ment. It allows us to evaluate the precision and stability of our model.

We simulate three scenarios by controlling one parameter and holding on the

others:

• Scenario 1: We fix β = 0.3 (the density of inter-connection among off-diagonal

blocks) and variables number p = 110, and then control sample size n from

200 to 1600.

• Scenorio 2: We hold on n = 1000 and p = 110, and then control β from 0.1 to

0.7.

• Scenorio 3: We hold on n = 1000 and β = 0.3, and then p from 50 to 500.

Here we only focus on these three primary parameters and fix all other pa-

rameters in all scenarios, including L = 10 (groups), αinner = 0.9 (density of the

connectivity in each variables on diagonal block) and αinter = 0.3 (density of the

connectivity in each variables on off-diagonal block).
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Because the nature of collective discovery in our model, we look at cluster-

ing and edge detection separately. On clustering, we compare CGLaso with three

methods: k-means, ONMtF and CGLasso-1. Among these three models, k-means

and ONMtF are widely used baselines in the literature [31]. 1 Specifically, we only

compare ONMtF here, not ONMtF-SCR of [5], for the reason that: our experiment

is a common network without the constraint of spatial continuity and we pay more

attention on the terms of accurateness and robustness of models, so we don’t need

to consider the spatial continuity regularization in ONMtF. However, in the real

word ADHD-200 data, we apply ONMtF-SCR in the comparison for supplement,

because a nicely interpretation is more important in this case.

On edge detection, we compare our model with GLasso and CGLasso-1. It

makes sense to involve CGLasso-1 in the comparison, for the reason that CGLasso-

1 can be treated as a pipeline method. It is necessary for us to check if iteration

alternates between Θ̂⋆ and Ĥ is helpful for the performance of our model. To

evaluate the quality of edge detection. We follow [32] to define the accuracy and

F1-score of edge detection as

Accuracy =
nd

ng

, (2.21)

F1 =
2n2

d

nand + ngnd

(2.22)

where nd is the number of true edges detected by the algorithm, ng is the number

true edges and na is the total number of edges detected. Higher accuracy score or

higher F1 score indicates better quality of edge detection.

Figure 2.3 shows the comparison between CGLasso, GLasso and CGLasso-1
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in terms of edge detection. The first row shows the result of accuracy score, and

the second line shows F1-score. We denote all the methods with different marks

and colors, orange triangle for CGLasso, dark blue square for CGLasso-1, light

blue circle for GLasso, respectively. Meanwhile, each column denotes different sce-

nario. According to the results of first column, we can observe that as sample size

rises, all the models can be improved on different levels (CGLassp > CGLasso-1

> GLasso). In the second column, as the density of inter-connectivity among off-

diagonal blocks rises, the performance of all methods become worse on different

levels. It makes sense, for the reason that the network with a high β is more com-

plex than that with a low β. Meanwhile, in this case, our proposed model still

performs better than the others. In the third column, we can note that as the num-

ber of variables rises, which is common in the real data, the performance will fall

down and fluctuate on different levels. Among these three method, the decline

and fluctuation of GLasso is most obvious, and our proposed model performs

stable relatively. Consequently, compared to the GLasso, the CGLasso-1 model

already generates a more accurate results on synthetic data, meanwhile, our pro-

posed model CGLasso can continue to improve the performance of CGLasso-1.

In short, CGLasso outperforms the others in terms of detecting true edges in the

global precision matrix.

Figure 2.4 shows the comparison of CGLasso, CGLassp-1,k-means and ONMtF

in terms of purity and NMI-score, in the consideration of group clustering. Similar

to the comparison of edge detection, we denote orange triangle for CGLasso, dark

blue square for CGLasso-1, light blue inverted triangle for K-Means and green

circle for ONMtF, respectively. According to the first and second columns, we
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Table 2.1: Variance of edge detection in each scenario

Accuracy ×102 F1-score ×102

Scenario Dataset GLasso CGLasso CGLasso-1 GLasso CGLasso CGLasso-1

n

200 0.05 0.25 0.20 0.88 2.46 2.39
600 0.20 0.74 1.12 1.03 2.45 3.01
1000 0.14 0.70 0.76 0.57 1.48 1.91
1400 0.18 0.67 0.92 0.94 1.32 2.37

β
0.1 0.17 0.44 0.36 0.87 1.37 1.18
0.3 0.14 0.70 0.76 0.57 1.48 1.91
0.6 0.19 0.61 0.80 0.68 1.16 1.19

p

50 0.36 0.70 0.71 2.40 2.90 0.30
150 0.14 0.50 1.30 0.67 0.87 0.21
300 0.07 0.41 0.55 0.37 1.36 0.24
500 0.03 0.48 0.00 0.14 1.67 0.00

note that CGLasso, CGLasso-1 and ONMtF can provide a significant better per-

formance than k-means, no matter in the consideration of purity or NMI-score,

and CGLasso is slightly better than CGLasso-1 and ONMtF. This advantage is ex-

tremely extended in scenario 3, which controls the number of variables and fixes

sample size and the density of inter-connection among off-diagonal blocks. We

can observe from the third column that as p rises, all models drop rapidly, except

CGLasso. So when a network is very simple with a low beta and a small size of

variable space, all the methods can work as long as we have enough dataset. How-

ever, when the variable space becomes large and the beta increases, CGLasso can

show its advantages compared to k-means and ONMtF. In fact, a complex network

with a large variable space is relatively common in real-world dataset such as brain

networks, especially when we transfer an image to several pixel points.

Combining the above two comparison, we can conclude that, in synthetic data

with ground-truth, our proposed model CGLasso can improve the performance of
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Figure 2.4: Comparison of CGLasso, CGLasso-1, k-means and ONMtF on clustering. n
denotes sample size, beta denotes density of inter-connection among different groups, p denotes
the number of variables. The first row shows the purity of each model in three scenarios, the
second row shows the NMI score of each model in three scenarios. In each subfigure, the
blue line indicates the metric resulting from k-means, the orange line indicates the metric
resulting from CGLasso, the green line indicates the metric resulting from CGLasso-1 and
the red one indicates the metric resulting from ONMtF. The subfigures (a) and (d) consider
different sample size n from 200 to 1600 and hold on β = 0.3 and p = 110; The subfigures (b)
and (e) consider different density of inter-connection beta from 0.1 to 0.7 and hold on n = 1000
and p = 110; The subfigures (c) and (f) consider different variables number p from 50 to 500
and hold on n = 1000 and β = 0.3;

edge detection and clustering at the same time. Specifically, our proposed model

improve the power of Glasso on the edge detection, meanwhile, having more ro-

bustness results of nodes discovery than that of ONMtF. At addition, to showing

the stability of our methods, we enclose two tables of variance among each model.

In the next part of this chapter, we demonstrate the interpretation of cognitive net-

work inferred by our model by using ADHD-200 dataset.
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Table 2.2: Variance of group clustering in each scenario

Purity ×102 NMI-Score ×102

Scenario Dataset KMeans CGLasso CGLasso-1 ONMtF KMeans CGLasso CGLasso-1 ONMtF

n

200 2.23 4.34 2.83 2.68 2.67 3.72 2.18 3.49
600 5.05 7.21 5.86 7.01 3.70 6.93 4.48 6.75
1000 3.30 6.26 5.39 8.05 3.58 4.09 5.39 6.09
1400 4.19 5.17 6.57 5.46 3.94 3.23 5.15 4.42

β
0.1 2.58 5.56 3.24 0.00 1.76 3.78 2.78 1.93
0.3 2.57 4.22 5.55 12.00 2.08 3.04 5.77 7.27
0.6 1.99 5.20 5.23 6.13 2.04 4.66 5.82 4.56

p

50 4.24 3.52 4.65 4.01 3.27 3.00 3.59 3.17
150 2.54 3.45 5.63 3.20 2.92 3.48 6.07 6.71
300 1.40 5.56 4.09 2.37 0.97 3.77 3.54 2.01
500 1.08 8.53 1.07 1.32 0.86 7.34 0.86 0.88

ADHD-200 Dataset

In this section, we evaluate our proposed method by using fMRI dataset from

ADHD-200 project1. ADHD (Attention Deficit Hyperactivity Disorder) is a chronic

condition, and has been happened on 5% - 10% of school-age children. Up to now,

the annal costs on ADHD have exceeded 36 billion in the United States. Our real

world dataset is distributed by nilearn2. Specifically, there are 40 subjects in total.

Among them, 20 of which are labeled as ADHD, and the others are labeled as TDC.

The rsfMRI scan of each subject in the dataset is a series of snapshots of 3D brain

images of size 61× 76× 61 over ∼176 time steps.

By using this real world datasets, our experiments aims at discovering the cog-

nitive networks of human brain of ADHD and TDC groups, which can provide

some guidelines in terms of identification and diagnosis from a view of computer

science. In the consideration of extracting the voxels that can be considered as parts

of the brain, we use the AAL brain-shaped mask which is provided by neurology

1http://fcon_1000.projects.nitrc.org/indi/adhd200
2http://nilearn.github.io/
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(a) CGLasso (b) ONMtF with continuity (c) ONMtF

(d) CGLasso (e) ONMtF with continuity (f) ONMtF

Figure 2.5: Comparison among CGLasso, ONMtF and ONMtF with spatial continuity on
ADHD-200 Brain Dataset. Among them, (a), (b) and (c) are worked on ADHD subjects; (d),
(e) and (f) are worked on TDC subjects. All the models set the number of groups to 20.

professionals. We follow [33], using a middle slice of these scan for the ease of pre-

sentation, consequently, each of the brain scans can be represented by about 3281

voxels. In this real case, in the consideration of nicely interpretation of the result,

we compare our proposed model to ONMtF with spatial continuity penalty espe-

cially, which we denote as ONMtF-SCR. In Figure 2.5, we present the comparison

of clustering results between CGLasso, ONMtF and ONMtF-SCR. Here we assume

the number of groups k = 20. We can notice that in the case of TDC subjects, the

groups inferred by ONMtF is very scattered, which means a bad interpretation of

the result. However, when we adjust ONMtF by the method ONMtF-SCR, the re-

sult provides a better spatial continuity than original method. According to the

first colume of Figure 2.5, our proposed model CGLasso can also provide a result

with a good spatial continuity. Meanwhile, the groups inferred by CGLasso shows

a better nature of symmetry than ONMtF and ONMtF-SCR, which makes sense for
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Figure 2.6: Discovered network of TDC subjects (k = 10). (a) is based on the precision
matrix of each group. The degrees of color in off-diagonal blocks indicates edges or connectivity
between each group, where dark green means connection and light green means independence.
(b) shows the inferred groups by CGLasso, which are shown below individually.

the symmetrical structure of the right and left brain. Consequently, the proposed

CGLasso presents a much interpretable results compared to the ones of ONMtF

and ONMtF-SCR. So here we demonstrate that our proposed method can produce

the same good result as the method in [5], which aims at spatial continuity in the

brain network. Combining the results of synthetic experiments without spatial

continuity constraint, we believe that our proposed model can provide more ef-

fectiveness and robustness results than ONMtF-SCR in brain network discovery.
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Figure 2.17 shows the result from CGLasso (k = 10) on real TDC subjects, which

can demonstrate the capability of our method both on the terms of edge detection

and clustering. In the first row of it, the left one shows the estimate precision ma-

trix of Θ⋆, which indicates the result of edge detection, and the right one shows

the result of group clustering. In the terms of precision matrix, the degree of color

in the off-diagonal elements indicates whether there is an edge between the corre-

sponding groups. In the second row, the nature of spatial continuity and structure

symmetry is shown in a more intuitive way.

In summary, based on the comparative results of synthetic and real-world cases,

the results show that the proposed method performs better than the compared

baselines in terms of four quantitative metrics. Meanwhile, our method produces

more meaningful networks comparing with other baseline methods.

2.2 Task 2: Mixture Model in Brain Edge Detection

2.2.1 Motivation

In this work, we explore a noval setting on edge detection problem of brain net-

work. We already introduced the problem setting of edge detection in the last task.

Since a well-constructed connectivity network servers as the prerequisite for many

graph mining algorithms on brain disorder diagnosis and brain functionality anal-

ysis [34], it is significant to design a more effective and accurate edge detection

method. Existing edge detection methods usually rely on the assumption that all

nodes’ activities obey an unified multivariate Gaussian distribution, and GLasso

imposes sparseness on the estimation of inverse covariance matrix (a.k.a. precision
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Figure 2.7: The problem of Gaussian mixture sparse inverse covariance estimation. The brain
activities over time may originate from the mixture of multiple latent cognitive brain modes
(i.e. different connectivity structures among nodes). Without knowing the mode proportions
and assignments in the observed brain images, our goal is to discover these underlying sub-
networks for different modes.

matrix) to predict connectivity structure. However, in many neurology studies

such as [35], human brains usually exhibit dramatically different activity modes

when they perform different tasks. Based on these studies, we believe that the

cognitive structure of the human mind can be paralleled into several sub-graphs

based on different activity modes.

Applying GLasso without considering different latent cognitive modes is equiv-

alent to deriving an “average” network representation. Since the behavior of dif-

ferent brain modes varies significantly, the derived “average” network may lose

crucial information. Under such context, as illustrated in Figure 2.7, it is natu-

ral to investigate whether and how one could extend the edge detection methods
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applied in brain network to capture the connectivity structures of multiple under-

lying cognitive brain modes.

To incorporate the concept of multiple connectivity structure into edge detec-

tion, we follow the idea of Probabilistic Latent Semantic Analysis (PLSA) [36] to

adopt Gaussian mixture model on this problem. PLSA views a document as a

mixture of various topics, and it assumes that the generation of a document fol-

lows some topic-word distributions which can be found by sampling. Similarly,

we could view brain scans as mixtures of latent modes, where each mode is char-

acterized by a Gaussian distribution with different covariance.

In this work, our goal is to reveal these structure of underlying sub-network

from the observed activities simultaneously. To tackle this problem, we propose a

new model, namely MGL, to discover such mixture connectivity structures of the

brain network. Similar to GMM, MGL learns the proportions and assignments of

each latent cognitive mode iteratively via an EM framework, with the emphases

on inferring the inverse covariance matrix of each latent distribution. A novel

regularization approach called Mutual Exclusivity Regularization (MER) is also

proposed to differ each inverse covariance matrix, implying that sub-network of

different brain regions are activated under different cognitive modes.

2.2.2 Related Works

In the edge detection of brain network, it has two major branches: effective connec-

tivity estimation and functional connectivity estimation. For the first branch, schol-

ars pay more attention on obtaining a directed network from fMRI data through

structure learning method for Bayesian networks [12]. In contrast, the second
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branch focuses on some approaches such as hierarchical clustering, pairwise corre-

lations and independent component analysis, which can be found in [13] for more

details. [6] proposed sparse gaussian graphic models , which are a very useful for

discovering directed links of brain network based on large-scale dataset by using

sparse inverse covariance estimation. However, in the task of edge detection, these

methods focus on unimodal distributions, where it is usually assumed that the ob-

served samples are drawn from a single Gaussian distribution, which is opposed

to some recent studies [37]. The Joint Graphical Model with fused lasso, which is

proposed in [38], is in the framework of multivariate Gaussian mixture modeling.

However, this method has shown to be sensitive to the noise and small size of the

data sample.

2.2.3 Mixture Graphical Lasso

Gaussian Mixture Graphical Lasso

Given the number of base distributions K and the number of node N , we assume

the observed sample of each node is a mixture of the K distributions. Thus, the

joint probability of all observations X = (x⊤
1 , · · · ,x⊤

N) ∈ RN×D is given by

p(X|Θk,µk, ϕk) =
N∏
i=1

K∑
k=1

ϕkN(xi|µk,Σk)
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We could assume µk = 0 without losing generality, so the negative log likelihood

(NLL) in terms of {Θk} is given by,

NLL(θ) = −
N∑
i=1

log
( K∑

k=1

ϕkN(xi|0,Θ−1
k )
)

(2.23)

where θ = {ϕ1, · · · , ϕk,Θ1, · · ·Θk} is the model parameters.

The Mutual Exclusivity Regularization

Similar to the Adaptive Lasso in [29], we also need to impose regularization on

our mixture model to obtain interpretable results, which means non overlapping

edges exist among all estimators of precision matrices. However, be different with

adaptive lasso or fused lasso, the intuitions are two folds: (1) we want each Θk to

be sparse; (2) we want each Θk to be fairly different from other Θk′ . Towards this

end, we propose to the mutual exclusivity regularization as follows,

ℓλ1,λ2({Θk}) = λ1

K∑
k=1

∥Θk∥1 + λ2

∑
i ̸=j

tr(Θ̄iΘ̄j) (2.24)

where Θ̄ is the non-negative copy of Θ removed all diagonal elements. The first

term is identical to graphical lasso, which imposes sparsity controlled by λ1 > 0

on each Θk. The second term is the summation of the approximate divergence

measure between each pair (Θi,Θj). It is easy to see when there is no overlapping

non-zero entities between each Θk, this term reaches its minimal value 0. λ2 > 0

is employed to tune the strength of the second regularization. So it makes sense

that we can use this term to force each estimation of Θk in the result to have as few
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over-lapping elements as possible.

Hence, we formally present the objective of our MGL as follows,

min
{Θk≻0}

NLL({Θk}) + ℓλ1,λ2({Θk}) (2.25)

The Latent States

Since there are K separate latent distributions, so each data sample xi could come

from one of the K distributions, we denote the corresponding state as zi ∈ {1, · · · , K}.

Thus, the NLL function could be rewritten as follows,

NLL(θ) = −
N∑
i=1

log
K∑
k=1

(Q(zik)p
(
xi|Θk ϕk

)
Q(zik)

)
= −

N∑
i=1

log
K∑
k=1

(p(xi, zik|Θk ϕk

)
Q(zik)

) (2.26)

Here Q(zik) is the latent variable and
∑K

k=1Q(zik) = 1.

According to the expression in the Equation (2.29), it can not be directly com-

puted because the expression in log is a sum term. So we can use the Expectation

Maximization (EM) algorithm to optimize the above NLL w.r.t. {Θk}. We summa-

rized the MGL algorithm in Algorithm (3).

Initialization

As we know from the Algorithm (3), we need to give starting values of each esti-

mators. In the process of comparative experiments, we found that the initialization

of the parameters will largely affects the performance of our model. The following

scheme we found empirically works well in our experiments. For each observation
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Algorithm 2 Algorithm for MGL

Require: i: X: The observations of D-variate Gaussian distribution
ii: k: the number of Gaussian distributions
iii: λ1: the Lagrangian multiplier of sparsity constraint
iv: λ2: The Lagrangian multiplier of mutual exclusivity constraint
v: itermax: the maximum number of iteration
Output: Θ̂k, Œ̂k

1: Initialization: initialize Œ
(0)
k , Θ(0)

k and r
(0)
ik

2: repeat
3: E step: Update the latent variable r

(t)
ik with given Œ

(t−1)
k and Θ

(t−1)
k

4: M step: Update Œ
(t)
k , Θ(t)

k with r
(t−1)
ik

5: until iter = itermax or convergence

i = 1, . . . , N , we distribute it randomly a class k ∈ {1, . . . , K}. Then we assign a

weight r̂ik = 0.9 for this observation i and distribution k and r̂ij =
0.1
K−1

for all other

distributions. In the M-step, we update Θk from the initial values Θ̂
(0)
k computed

by GLasso based on the whole samples. and ϕk from the initial values ϕ̂k =
1
K

.

2.2.4 Experimental Evaluations

In this part, we demonstrate the performance of MGL through extensive compar-

ative experiments. We evaluate MGL in synthetic datasets at first. To comprehen-

sively evaluate proposed model, we conduct experiment to answer the following

research questions:

• RQ 1: How does MGL perform compared with state-of-the-art models in the

consideration of the effect of sample size?

• RQ 2: Does our model still show robustness under noise? If the MER regu-

larization term has positive influence on the performance under noise?
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• RQ 3: How do hyper-parameters in comparative experiments impact each

model performance?

• RQ 4: Is there a problem with mixture brain network structure in real ADHD-

200 datasets?

Compared Baselines

To demonstrate the effectiveness of our proposed method, we test against several

variations of the state-of-art method Graphical Lasso:

• GLasso + Spectral Clustering: GLasso algorithm that assumes all data sam-

ples are drawn from the same Gaussian distribution, then using Spectral

Clustering divide the whole network into several sub-graph.

• k-means + GLasso: This is a pipeline method that first employs k-means to

assign each xi to different groups, then using GLasso for each group to obtain

the final Θk.

• JGL [38]: This is the Joint Graphical Model with fused lasso, which is pro-

posed in [38]. It is equivalent to our proposed model without MER term.

So it can work as the comparative method for assessing the performance of

MER.

Data Set

Due to the lack of ground truth in many real-world data, we first compare our pro-

posed method against other competitors on several carefully designed synthetic

data sets.
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At first, we design some synthetic data sets purposefully. Firstly, we generate

k diagonal matrices (k is the number of distribution, which is given in advance),

then divide it into several equal-scale blocks. It makes sense for two reasons: we

need to control each sub-graphs Θk with non-overlapping edges on off-diagonal

areas; by making edges of each sub-graph more concentrated, it is helpful for mak-

ing results conductive to visualization. Secondly, we choose different off-diagonal

blocks on each Θk, giving connectivities for these chosen blocks with a high den-

sity. Following the above steps, we generate each Θk without overlapping edges

on off-diagonal areas. Based on Θk, we compute each Σk, then select Nk samples

(
∑K

k=1Nk = N ) randomly from each Gaussian distribution. In the next section, in

order to evaluate the stability of our model, we also add noise into the samples. To

exclusive the system randomness, we sample 10 times for all experiments, calcu-

late the average of each experiments. So we can evaluate the precision and stability

of our model at the same time.

Experimental Settings

We simulate four scenarios by controlling one parameter and holding on the oth-

ers. In these situations, we select sample size N and the standard error of noise œ

as the controlled parameters.

• Scenario 1: We fix p = 8 (the number of variables), k = 2 (the number of

Gaussian distributions), and œ = 0 (the standard error of noise), and then

control sample size N from 100 to 520.

• Scenario 2: We fix p = 8, k = 2, and N = 500, and then control noise œ from

0.1 to 0.8.
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(a) Low Dimension - Sample Size (Scenario
1) (b) Low Dimension - Noise (Scenario 2)

(c) High Dimension - Sample Size (Scenario
3) (d) High Dimension - Noise (Scenario 4)

Figure 2.8: Comparison of each model on edge detection. Each figure shows the results of
F1-score. The dark blue line indicates GLasso + Spectral; the light blue indicates k-means +
GLasso; the orange one shows the result of MGL without Mutual Exclusivity Regularization
and the green one shows the result of MGL.

• Scenario 3: We fix p = 20, k = 2, and œ = 0, and then control sample size N

from 200 to 1000.

• Scenario 3: We fix p = 20, k = 2, and N = 1000, and then control noise œ

from 0.1 to 0.8.
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Evaluation

Figure 2.8 shows the comparison between MGL and other baseline models. The

results in the figure answer the first three RQ mentioned before. The first column

shows the results when we control sample size N and hold on the others, which

corresponds to RQ1. It is obvious that k-means and Spectral models are useless

when the ground truth data sets are drawn from mixture Gaussian distribution.

Meanwhile, when the sample size is not large enough, the precision of JGL is lower

than that with MGL. The second column shows the results when we control noise,

which corresponds to RQ2. We fix the sample size N on 500, so when œ = 0, JGL

is as good as MGL. According to the results, The louder the noise, the worse JGL

performs, which means sensitive to the noise.So the result demonstrates that MER

regularization can improve the performance of our proposed model. Compared to

the others, MGL shows robustness in this scenario. To answer RQ3, we can figure

out the answer from both column in this figure. Since our experiments are set-

ting in low-dimensional and high-dimensional space separately, we can see from

all comparison results that the issue of hyper-parameters does not affect the per-

formance of MGL. In contrast, the performance of JGL in high-dimensional space

isn’t as well as that in the low-dimensional space, no matter in the scenario of sam-

ple size or noise. In summary, in the comparative experiment of synthetic datasets

with ground-truth, our proposed method MGL shows better accuracy and robust-

ness than that of other comparison methods.
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Real fMRI Data

We also evaluate our proposed method on fMRI dataset from ADHD-200 project.

In our experiment, we only choose the subjects which are labeled as ADHD. We

focus on the multiple connectivity structures among the same subjects, in order to

provide evidence on feature selection between different subjects in further study.

Rather than discover the brain network on the level of voxels, we extracts the sig-

nal on regions defined via a probabilistic atlas, to construct the data sets. So it

is more conventional for visualization of the results. The data sets is a 1899 × 39

data sets and we consider that they are drawn from a mixture Gaussian distribu-

tion. However, the number k of it is unknown, which need to be given in advance.

Through repeated experimental observations, we found that k = 4 can provide the

most reasonable results on the data sets.

Because real fMRI data lacks ground-truth as a reference to measure the accu-

racy and robustness of the model. We are more concerned with the interpretability

and rationality of the results. Specific to our proposed model, we are more con-

cerned about whether our model can mine different connectivity structures among

nodes from the fMRI datasets.

According to the Figure 2.9, we can find that there are almost no differences

among four sub-graphs discovered by k-means plus GLasso. It indicates that this

method is useless for mining sub-graphs in ADHD data sets. JGL shows four dif-

ferent sub-graphs, however, so many overlapped areas among them. These results

seem not to be sparse matrices, which indicates that the corresponding connectiv-

ity structure is not very clear through this method. Compared to it, sub-graphs

discovered by MGL is clearer and the number of overlapped areas is less. There-
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(a) Sub-graphs discovered by k-means

(b) Sub-graphs discovered by JGL

(c) Sub-graphs discovered by MGL

Figure 2.9: Comparison of k-means + GLasso, JGL and MGL on ADHD dataset. The results
show how to estimate a mixture connectivity structure on a group of subjects using different
group sparse inverse covariance estimation models from real fMRI data set. The closer the
color of elements in off-diagonal is to blue, the bigger probability the directed edges between
corresponding nodes.

fore, although lacking the ground truth in ADHD data, we can still believe that the

inferred results of MGL is consistent with the defined problem in this chapter, espe-

cially in the consideration of mixture Gaussian distribution with non-overlapping

areas among their precision matrices. The Figure 2.10 shows the corresponding

connectivity structure of the results discovered by MGL. Here we only choose the

axial direction of the cuts to show. The closer the color is to red, the stronger the
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Figure 2.10: We turn the results of Fig. 2.9 into connectome for visualization. Each precision
matrix is displayed on glass brain on extracted coordinates. These graphs of precision matrices
discovered by MGL in ADHD dataset. The closer the color of edge is to red, the stronger the
directed relationship between corresponding nodes.

directed relationship between the corresponding nodes. We highlight the stronger

edges by adjusting the threshold of colorbar. According to the visualization of re-

sults, we can see that different sub-graphs highlight different relationships among

all nodes. Different sub-graphs emphasize the relationships of different nodes,

which means that subjects present different network structures on the time-line.

This phenomenon is more obvious between the nodes related to DMN (default

mode network), which includes the Parietal, Occipital Lobes, the Cingulum Region

Posterior and the Frontal Cortex. Although the hypothesis about non-overlapped
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areas among each connectivity structure may not exist in real ADHD subjects, we

believe that MGL with MER regularization can more prominently show the differ-

ence between each connectivity structures discovered, so that we can have a better

understanding of the association between cognitive network and human activities.

According to the analysis above, despite the lack of ground-truth, we believe

that the existing results are still consistent with the problem defined in this chapter.

So the result shows that there is a mixture connectivity structure among nodes in

the fMRI datasets, and our proposed model MGL can effectively mine this mixture

connectivity structure.

2.3 Task 3: Multi-State Brain Network Discovery

2.3.1 Motivation

. In this work, we explore task2 further by studying brain network at the pixel

level of fMRI brain images. In particular, based on the recent studies [35, 37, 39],

different activity states of the brain can not only have different connectivity struc-

ture, but also different brain parcellations. A successful brain network discov-

ery method must therefore be adaptive to the dynamic changes of brain parcella-

tions and connectivity structure. Such state-based adjustment of brain parcellation

and connectivity over time is crucial for learning human brain networks. Ulti-

mately, characterizing this mixture functional structure of brain parcellation and

functional connectivity, as shown in Figure 2.11, leads to a better understanding of

brain function and human behavior.

Formally, the brain network discovery problem, as shown in Figure 2.11, corre-
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Figure 2.11: Multi-State Brain Network Discovery.

sponds to inferring a set of functionally homogeneous brain regions as the network

nodes along with the connectivity between these nodes as the network edges from

a series of brain scans over time. While there are some recent solutions [1, 5, 11],

they often ignore the flexibility of functional network configurations when they

are being learned. Instead, they assume instead that the brain is always in a single

activity state, implying that signals extracted from different regions of the brain at

different times are members of the same network, even though this is now known

to be false [39]. As illustrated in Figure 2.11, it is natural to investigate whether and

how one could extend the traditional methods applied in brain network discovery

to capture multiple underlying brain network states, allowing for differing brain

parcellation and connectivity. However, the ground truth brain activity states are

rarely known.

In this work, We still refer the idea of Probabilistic Latent Semantic Analysis

(PLSA) [36], which is originally proposed to adopt a mixture model for natural
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(a) Naive Bayes [40] and Brain Network
Discovery Model [5, 11]

(b) PLSA[36] and Multi-State Brain Net-
work Discovery Model

Figure 2.12: Two pairs of comparison: (a) naive bayes model and traditional brain network
discovery model, (b) PLSA and our model in this chapter. In each generative process, the
boxes are "plates" representing replicates. The outer plate represents document in naive bayes
and PLSA, or observation subject in brain network study, while the inner plate represents the
generative process of word (W) in a given document or brain scan (B) in a given subject, each
of which word or brain scan is associated with a choice of topic (T) or state (S). π is the topic
or state distribution. N denotes the number of words or scans.

language. Specifically, PLSA assumes a given document is a mixture of topics, and

that the document was generated according to a probabilistic model with latent

topics. Get to the problem setting of multi-state brain network, it makes sense

to follow the idea of PLSA and Gaussian Mixture Model to build a probabilistic

model for representing the presence of sub-networks without requiring that an

observed dataset should identify the sub-network to which an individual scan be-

longs.

In this work, we propose a variation of CGL, named MNGL , for multi-state

brain network discovery, which jointly achieves brain parcellation and edge detec-

tion. First, we view brain scans as mixtures of latent states, where each state S is
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characterized by a Gaussian distribution with its own covariance matrix ΣS. Each

ΣS corresponds to a specific brain parcellation and connectivity between nodes.

Therefore, in the generation of each brain scan, our model chooses a state S based

on the mode distribution π (similar to how PLSA chooses a topic), and then gen-

erates a brain scan Bi ∼ Multinomial(0, ΣS) (as PLSA generates a word based on

the topic chosen). MNGL follows the basic idea of PLSA. By contrast, traditional

brain network discovery models [1, 5] are analogous to naive bayes model[40].

Figure 2.12 illustrates these two pairs of comparison. To model this multi-state

network, we combine CGL with GMM in a unified objective function to deal with

multi-state networks.

2.3.2 Related Works

Existing works can be divided into two categories. Firstly, for coherent brain

network discovery, ONMtF [16] is a useful pattern recognition method. [5] ex-

tend ONMtF by adding a spatial continuity penalty, which can increase the inter-

pretability of the parcellated regions. This method is a coherent model which can

output the result of nodes discovery and edge detection simultaneously. However,

it has discovered the edges based on the correlation matrix instead of inferring di-

rect links between each node. Instead of using a correlation matrix, [6, 7] focus on

sparse inverse covariance estimation for discovering connectivity of brain network

based on large-scale datasets. These kinds of methods can distinguish direct links

from indirect connections due to their solid probabilistic foundation. [1] propose

a model called CGL to achieve the coherent brain network discovery, including

edge detection and node discovery. However, this method ignores the problem of
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multi-state problem we mentioned in this study.

For the multi-state problem, we consider the Gaussian Mixture Model (GMM)

[41]. GMMs model the distribution of data observations as a weighted sum of pa-

rameterized Gaussian distributions. However, a prominent issue related to GMM

is estimating the parameters given observations [42]. Through many extensions,

the EM algorithm has proven to be a powerful algorithm for the maximum-likelihood

estimation of GMMs [43]. Additionally, [44, 45] consider the issue of the number

of mixture components in the model, which can lead to over-fitting in practice.

GMMs have been widely used in many areas, especially for network discovery

[46, 47, 48]. Most existing studies for mixture modeling focus on regularizing only

the mean parameters with diagonal covariance matrices [49, 50], though some

works [51, 52, 53] have started considering regularization of the covariance pa-

rameters. However, these works do not touch on the key issue of identifying the

varying sparse structures of the precision matrices across the components of a mix-

ture model in brain network discovery. [38] proposes a joint graphical model (JGL)

to deal with cluster-specific networks. [54] aims to edge detection task by comb-

ing graphical lasso with GMM. However, these models need brain parcellation to

be given first. Thus, existing models related to GMM are thus not suitable for the

special problem defined in this study.

2.3.3 Mixture Coherent Graphical Lasso

Multi-State Network Graphical Lasso. We propose the first method for Multi-

State Brain Network Discovery, which we refer to as the Multi-State Network

Graphical Lasso, or MNGL. Firstly, following the idea of task 1, we map the origi-
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nal variable space X into a new feature space Y similarly on the covariance matrix

Σ:
X← Y = H⊤X,

Σ← Σ⋆ = H⊤ΣH,

(2.27)

where Y denotes the new k-dimensional feature space where each feature repre-

sents node, Σ⋆ represents the inter-node covariance matrix, and H represents a

cluster indicator matrix. Σ⋆ thus measures the association between each node yi

[1].

For the rest of this chapter, we describe our proposed model in terms of yi

instead of xi. k is the index of nodes, j is the index of distributions, i is the index

of samples. µ⋆
j and Σ⋆

j represent the parameters of mean vector and covariance

matrix corresponding to the j-th mixture gaussian distribution of Y, respectively.

Then, Θ⋆
j represents the inverse matrix of covariance matrix Σ⋆

j .

According to the notation above, given the number of base distributions m and

the number of node k, we assume the observed sample of target feature space can

be mapped into a new feature space (nodes), which also follows a mixture of the k

gaussian distributions. The sample size is given as n. Thus, the joint probability of

these nodes Y = (y⊤
1 , · · · ,y⊤

n ) ∈ Rn×k is given by

p(Y|{Θ⋆
j}, {µ⋆

j}, {ϕj}) =
n∏

i=1

m∑
j=1

ϕjN(yi|µ⋆
j ,Σ

⋆
j).

By assuming µ⋆
j = 0 without losing generality, the negative log likelihood (NLL)
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in terms of {Θ⋆
k} is given by,

NLL(θ) = −
n∑

i=1

log
( m∑

j=1

ϕjN(yi|0,Θ⋆−1
j )
)
, (2.28)

where θ = {ϕ1, · · · , ϕm,Θ
⋆
1, · · · ,Θ⋆

m} is the model parameters.

Latent States. In order to solve the Equation 2.28, we follow the idea of Jan-

son inequality and build a latent variable in the sum term of each expression in

log. Since there are m separate latent distributions, each data sample of the cor-

responding node yi could come from one of the K distributions. We therefore

construct a latent variable Q(zij) which we constrain such that
∑m

j=1Q(zij) = 1.

Then, the NLL function can be rewritten as follows:

NLL(θ) = −
n∑

i=1

log
m∑
j=1

(Q(zij)p
(
yi|Θ⋆

j , ϕj

)
Q(zij)

)
(2.29)

= −
n∑

i=1

log
m∑
j=1

(p(yi, zij|Θ⋆
k, ϕj

)
Q(zij)

)
. (2.30)

We next prove that this can be treated as the posterior probability of the i-th obser-

vation generated by the j-th distribution.

According to the Janson inequality, the expression in the Equation 2.29 can be

rewritten for the EM algorithm to optimize the function, which can be split into

expectation and maximization steps, respectively.

Expectation. First, according to the Jensen inequality, we know that when the

optimal function is convex,

f(E(x)) ⩽ E(f(x)). (2.31)
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Because NLL is convex, and
∑m

j=1

(
p
(
yi,zij |Θ⋆

j ,ϕj

)
Q(zij)

)
can be treated as the expectation

of p
(
yi, zij|Θ⋆

j , ϕj

)
. So we apply Jensen inequality here to find a lower bound:

NLL(θ) ⩽ −
n∑

i=1

m∑
j=1

Q(zij) log(p
(
yi, zij|Θ⋆

j , ϕj

)
). (2.32)

These terms are only equal when

p(yi, zij)

Q(zij)
= C, (2.33)

where C is a constant. So, we simply have:

m∑
j=1

p(yi, zij) = C
m∑
j=1

Q(zij) = C, (2.34)

Q(zij) =
p(yi, zij)∑m
j=1 p(yi, zij)

= rij. (2.35)

The equation of NLL(θ) is correct only when the constraint of Q(zij) is true. Thus

we can conclude that the latent variable is the posterior probability of the i-th ob-

servation generated by the j-th distribution. Therefore, we can compute each rij

based on the initialization or update results of Θ⋆
j and Œj .

Maximization. Given the r
(t)
ij from the Expectation step, we update ϕ̂j , Ĥj and

Θ̂⋆
j , respectively. First, we update ϕ̂j based as follows:

ϕ̂
(t)
j =

1

n

n∑
i=1

r
(t)
ij . (2.36)

The remaining problem is to find the optimal estimations of Hj and Θ⋆
j that maxi-
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mizes the expectation we obtain in the E step. Through a simple proof, it is equiv-

alent to minimize the following function:

min
n∑

i=1

m∑
j=1

−r(t)ij

(
log|Θ⋆

j | − x⊤
i HjΘ

⋆
jH

⊤
j xi

)
,

s.t. Θ⋆ ≻ 0,H ⩾ 0,HH⊤ = I.

(2.37)

Intuitively, the problem above is equivalent to m separate conventional graphical

lasso sub-problems weighted by r
(t)
ij where each sub-problem has the form of

min− log |Θ⋆
j |+ tr(X̃⊤

j HjΘ
⋆
jH

⊤
j X̃j),

s.t. Θ⋆
j ≻ 0,Hj ⩾ 0,HjH

⊤
j = I,

(2.38)

where X̃j = (
√

r1j/sjx
⊤
1 , · · · ,

√
rnj/sjx

⊤
n ), rij = (r1j, · · · , rnj)⊤ and sj =

∑n
i=1 rij .

Then we bring in the ℓ1 regularization λ||Θ⋆
j ||1 to obtain the final objective function

for the Maximization step.

This problem is not convex w.r.t. {Θ⋆
j}, but we could solve it alternatively for

each Θ⋆
j by regarding other Θ⋆

j′ ̸=j fixed. Each sub-problem of Θ⋆
j is exactly in the

form of Equation 2.38 plus the ℓ1 regularization terms. Thus the estimation of

Θ⋆
j could be solved by any existing method for solving Graphical Lasso without

significant modifications. To estimate Hj we follow the algorithm similar to NMF,

using Karush–Kuhn–Tucker (KKT) complementary slackness conditions to enforce

the non-negativity and orthogonality constraints, then solving the estimation of Hj

by the multiplicative update rule. Thus, we have:

(Ĥ
(t+1)
j )ls =

(
Ĥ

(t)
j

)
ls

(
X̃jX̃

⊤
j Ĥ

(t)
j Θ̂⋆−

j + Ĥ
(t)
j λ−

1

X̃jX̃⊤
j Ĥ

(t)
j Θ̂⋆+

j + Ĥ
(t)
j λ+

1

)
ls

. (2.39)
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Here λ1 is k×k Lagrangian multip matrices following the non-negativity constraint

and its compact expression follows as below:

λ1 = −Ĥ⊤
j X̃jX̃

⊤
j ĤjΘ̂

⋆
j . (2.40)

To make sure each part is non-negative, We divide the λ1 and Θ̂⋆ into two parts,

respectively:

λ1 = λ+
1 − λ−

1 ,

λ+
1 =

(|λ1|+ λ1)

2
,

λ−
1 =

(|λ1| − λ1)

2
.

(2.41)

The same is true on the Θ̂⋆
j . Thus we can make sure the sign of numerator and

denominator are all positive, abiding by the non-negative constraint of Hj .

In each iteration of the Maximization step, the alternating optimization repeats

until all estimated Θ̂⋆
j , Ĥj and Œ̂j become stable or reaches the maximal number

of iterations. The final solutions to Equation 2.38 and the updated {Œ̂j} are ob-

tained using Equation 2.36 are used in the upcoming iteration of Expectation step

to update the responsibility weights {rij}. This looping of Expecation and Maxi-

mization repeats until the loss function converges. The MNGL algorithm is also

summarized in Algorithm 3.

Initialization. As shown in Algorithm 3, we need to provide starting values

for each estimator. The following scheme we found empirically works well in our

experiments. For each observation i = 1, . . . , n, we distribute the observation ran-

domly a class j ∈ {1, . . . ,m}. Then we assign a weight r̂ij = 0.9 for this observation

i and distribution k and r̂ij =
0.1
m−1

for all other distributions. In the Maximization
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Algorithm 3 Algorithm for MNGL

Require: i: X: The observations of D-variate Gaussian distribution
ii: m: the number of Gaussian distributions
iii: k: the number of nodes (groups)
iv: λ1: the Lagrangian multiplier of the ℓ1 regularization in graphical lasso
v: itermax: the maximum number of iteration
Output: Θ̂⋆

j , Ĥj and Œ̂j

1: Initialization: initialize Œ̂
(0)
j , Θ̂⋆

j

(0)
,Ĥ(0)

j and r
(0)
ij

2: repeat
3: E step: Update the latent variable r

(t)
ij with given Œ̂

(t−1)
j , Θ̂⋆

j

(t−1)
and Ĥ

(t−1)
j

4: M step: Update Œ̂
(t)
j , Θ̂⋆

j

(t)
and Ĥ

(t)
j with r

(t)
ij

5: until iter = itermax or convergence

step, we update Θ̂⋆
j from the initial values Θ̂⋆

j

(0)
computed by CGL based on the

whole samples and ϕ̂j from the initial values ϕ̂k =
1
m

. Then for Ĥj , according to the

Equation 2.39, we note that if (Ĥ(t+1)
j )ls = 0 in one iteration, it will never jump out

from this local solution. Thus, our experiments we initialize Ĥ
(0)
j by performing

k-means clustering then setting Ĥ
(0)
j ← Ĥ

(0)
j + 0.2.

2.3.4 Experimental Evaluations

To comprehensively evaluate the proposed model, we conduct experiments to an-

swer the following research questions:

• RQ 1: How does sample size affect MNGL’s performance relative to state-of-

the-art alternatives?

• RQ 2: How robust is MNGL to the presence of noise compared to other recent

models?
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• RQ 3: How do hyper-parameters in comparative experiments impact each

model’s performance?

• RQ 4: How does the number of nodes affect each compared model?

Experiment Setup

Synthetic Data with Ground-Truth: We evaluate the performance of our model on

synthetic data, where the ground-truth is known. The first step of generating these

synthetic data is to build a mixture Gaussian distribution of network structure. By

following the approach of task 2 in generating a single network, we generate m

different block-diagonal matrix Θj and Hj firstly. We refer to each diagonal block

as the node in real-case. For each Θj , we give random sparity structures for each

block ΘGi,Gj
. In this chapter, we design each diagonal block ΘGi,Gi

in one Θj with

different scale. Thus by adjusting scale of diagonal blocks in different matrix Θj ,

we can make different network have different node parcelation. To simulate the

connectivity of variables among diagonal and off-diagonal blocks, we control the

connectivity of each variables on diagonal block with a high density, then giving

a low density to each off-diagonal block. Following the above steps, we generate

several different Θj and Hj . Then each Θ⋆
j can be derived from H⊤

j ΘjHj .

Given Θj , we can thus obtain Σj , which is the inverse of Θj . Due to the assump-

tion of the independence of each Gaussian distribution, we obtain the covariance

matrix Σ of the mixture Gaussian distribution. Then we generate n samples ran-

domly from the mixture Gaussian distribution.

Compared methods: To demonstrate the effectiveness of our proposed method,

we test against several state-of-art methods coherent brain network discovery meth-
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ods:

• CGL [1]: CGL aims to achieve node discovery and directed edge detection

at the same time. Meanwhile, it can distinguish direct links from indirect

connections due to its solid probabilistic formulation.

• ONMtF [5]: ONMtF also aims to complete node discovery and edge detection

at the same time. However, it focuses on explaining the spatial continuity of

results. We only apply it on the task of nodes discovery, due to its inability of

directed edge discovery.

• k-means + CGL: This pipeline method is more appropriate than CGL for the

problem defined. We first employ k-means to assign each xi to different

nodes, then using CGLasso for each group to obtain the final Θ̂⋆
j and Ĥj .

• k-means + OMNtF: This is also a pipeline method that first splits the whole

sample of xi into different nodes by using k-means, then using ONMtF on

each node to obtain each Θ̂⋆
j and Ĥj .

• k-means + JGL [38]: A Joint Graphical Model is proposed in [38], which aims

to discover a mixture Gaussian distribution. However, it applies to the level

of nodes. We therefore employ k-means to map xi into the node space of yi

first.

Experiment Setting: We simulate four scenarios by changing one parameter and

keeping the others fixed. Each scenario aims to study one of aforementioned re-

search questions (RQ). In these situations, we select sample size n, the standard
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error of noise œ, the variables number p of xi, and the group number k as the

controlled parameters.

• Scenario 1: We fix p = 70 (the number of variables), œ = 0 (the standard error

of noise), k = 5 (the number of nodes) and then control sample size n from

200 to 2000.

• Scenario 2: We fix n = 2000, p = 70 and k = 5, meanwhile control œ from 2 to

5.

• Scenario 3: We fix n = 2000, œ = 0 and k = 5, and then control p from 70 to

350.

• Scenario 4: We fix n = 2000, œ = 0, and then control k from 3 to 11.

To generalize the results of comparative experiments, we sample 10 times for all

experiments and average their results to evaluate the precision and stability of our

model.

Comparative Results

To study the effect of sample size on the performance of MNGL, we design com-

parative experiments based on Scenario 1. Figure 2.13 shows the comparative re-

sults. We compare our proposed model with five baseline methods. The first row

shows the results of the comparison on edge detection; the second row shows the

results for node discovery. In the results of all scenarios, we use the same symbol,

which is illustrated in the caption below Figure 2.13. From the results in the first

row of Figure 2.13, we observe that the sample size n indeed affects some methods,
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Figure 2.13: Comparison of each method on edge detection and node discovery. The first row
shows the results of edge detection, and the second shows the results of node discovery. The
four sub-figures above consider different sample size n from 200 to 2000. The other parameters
are left fixed.

especially ONMtF and its derivations. As the sample size increases, the accuracy

of these two methods become much higher. Encouragingly, this factor has no sig-

nificant effect on our model. Overall, we can clearly see that our method MNGL is

more accurate and robust than other methods as the sample size n changes. Mean-

while, n does not have a significant impact on the performance of MNGL, which

means that our model performs well even with a small training set.

To study the effect of noise on the performance of MNGL, we use the experi-

mental setup Scenario 2. Our results are shown in Figure 2.14 where the horizontal
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Figure 2.14: The four sub-figures above consider different œ (the standard error of noise) from
2 to 5, meanwhile fix the other parameters, which correspond to scenario2;

axis in the figure represents the standard error of noise œ. The larger the œ, the

stronger the noise. It leads to smaller signal-to-noise ratio, which means it is more

difficult to mine the network structure from the available samples. As seen in the

four sub-graphs, we find that noise affects all compared methods. In particular,

while JGL suffers the most influence, ONMtF and derivatives of it are more robust

than CGL and its derivatives in this scenario. Meanwhile, our method, MNGL, is

better than all other comparison methods in this experiment for both edge detec-

tion and node discovery. Furthermore, œ does not significantly decay the perfor-

mance of MNGL.
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Figure 2.15: The four sub-figures above consider different p (the number of variables xi) from
70 to 350, meanwhile fix the other parameters, which correspond to scenario3;

To study the effect of the number of variables on the performance of MNGL,

we next use Scenario 3, the results for which are shown in Figure 2.15. For the node

discovery task, we see that the dimension of feature space has no impact on the

performance of any methods. However, for edge detection, when the dimension

is low, the performance of CGL and its derivatives outperforms the other baseline

methods. In particular, as the dimension increases, the accuracy of CGL and its

derivatives shows a significant downward trend compared to the others. Again,

as expected, in this scenario the performance of MNGL is more accurate and robust

than the baseline methods.
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(a) Accuracy of Scenario 4
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Figure 2.16: The four sub-figures above consider different k (the number of nodes yi) from 3
to 11, meanwhile fix the other parameters, which correspond to scenario4;

To study the effect of the number of states on the performance of MNGL, we

turn to Scenario 4 and report our findings in Figure 2.16. Across all sub-figures, as

the number of nodes increases, the robustness of all compared methods shows a

downward trend. Specifically, for the edge detection task, the accuracy of CGL and

its derivatives perform slightly better than ONMtF and its derivatives. However,

when considering the F1-Score, ONMtF outperforms the CGL methods. For node

discovery, ONMtF and its derivatives show more robustness than other baseline

methods. Overall, MNGL still significantly outperforms the compared methods in

these settings, though there is a small degree of fluctuation.
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Combining the four RQs raised above and the results of all these comparative

experiments, we can draw the following four conclusions: First, ONMtF and its

derivatives are not as good as other methods in the case of insufficient samples.

Second, CGL and its derivatives are more restrictive in high-dimensional space.

Third, Both the accuracy and robustness of all comparative methods will decrease

under the impact of noise and the number of nodes. Fourth, compared to the

alternative methods, our proposed method MNGL exhibits greater accuracy and

robustness in each scenario, indicating that neither sample size n, the dimension

of feature space p, noise œ nor the number of nodes k significantly degrades the

performance of our method.

Real-World Datasets

We also evaluate our proposed method on the fMRI dataset from the ADHD-200

project . Again, this part of the experiment lacks ground-truth as a reference to

measure the accuracy and robustness of the model. Therefore we must consider

the interpretability and rationality of the results. Specific to our proposed model,

we are primarily concerned with whether or not our model can mine different cog-

nitive networks from the fMRI datasets (various node assignments and functional

connectivity). Therefore for this section, we focus solely on applying our proposed

method, MNGL, to this challenging task.

In our experimental setting, we focus on the multi-state brain network discov-

ery among the same subjects, and report the results of both nodes discovery and

edge detection. To assign the voxels that can be considered as parts of the brain, we

use anatomical automatic labeling (AAL) brain-shaped mask, which is provided
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by neurology professionals. We follow [33] and use a middle slice of these scan for

the ease of presentation. Consequently, each of the brain scans can be represented

by about 3281 voxels. So it is more conventional for the visualization of the results.

The datasets is a 3281 (variables) × 2992 (time steps) datasets and reasonably as-

sume that they are drawn from a mixture Gaussian distribution. However, the

number of Gaussian distributions m and the number of nodes k are both unknown

and need to be selected in advance. Through repeated experimental observations,

we find that m = 2 and k = 6 can provide the most reasonable results on the data

sets.

Figure 2.17 shows the multi-state network discovered by MNGL on the fMRI

datasets. The results of edge detection and node discovery are shown on the first

and second line, which corresponds to the functional network of state S1 and S2

respectively. Meanwhile, each inferred node is displayed on the third and fourth

line individually. First, we can see the difference between the two networks from

the discovered edges and nodes. We deliberately mark the differences between the

nodes of two networks with red circles. More specifically, in the first line of Fig-

ure 2.17, we find a strong and complete default mode network (DMN) for ADHD

subjects, corresponding to group 3 and 5 in the third line. A DMN is a network of

interacting brain regions known to have activity highly correlated with each other

while being distinct from other networks in the brain, including the Parietal and

Occipital Lobes, the Cingulum Region Posterior, and the Frontal Cortex. However,

in the second line of Figure 2.17, this mode is not intact. In particular, the Frontal

Cortex is missing in the network, while the rest of the connections are different

from the functional network in the first line. The specific relationship between
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(a) Edges of S1 (b) Nodes of S1

(c) Edges of S2 (d) Nodes of S2

(e) Nodes (1-6) of S1

(f) Nodes (1-6) of S2

Figure 2.17: Discovered results of multi-state brain network in ADHD subjects (k = 6).
each node can be found in the sub-figures of discovered edges.

For comparison, we apply MNGL again on the subjects of TDC, which repre-

sent the group of typically-developing children. We can observe from Figure 2.18

that, although there are differences in the node assignments and the connectivity

structure among each node, there is no deletion of DMN in each network. At the

same time, the network of state S1 from TDC and that from ADHD have a certain

degree of similarity from the nodes result to the connectivity structure, which al-

lows us to have more reference when analyzing the differences and connections be-
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Figure 2.18: Discovered results of multi-state brain network in TDC subjects (k = 6).
tween the two subjects. These results give us reason to believe that the brain scans

of these subjects have some similar functional structure correspondences similar

to on-task and off-task states.

Despite the lack of ground-truth, we believe that the current results are still

consistent with the problem defined in this chapter: We find strong evidence that

there is a multi-state brain cognitive network in the fMRI datasets, and our pro-

posed model MNGL can effectively mine this mixture network structure.



3

Spike Trains Inference

3.1 Task 4: High Dimension Spike Trains Classifica-

tion

3.1.1 Motivation

Our brains have about a hundred billion neurons that fire signals to communicate

with each other all the time. Each signal is electrochemical in nature and is referred

to as a spike, or an action potential. The most popular way to think of spike trains

is as a digital sequence of events: 1 for a spike, and 0 for no spike. Such spike

trains arise during physical sensory stimuli such as vision and motion, or abstract

stimuli such as memory. Recently, spike train classification has attracted much at-

tention in the field of data mining [55, 56, 57, 58]. Unlike tradition classification,

classifying spike trains is a task with sequences of spikes as both inputs and out-

puts. By assuming that all spikes are discrete characteristic events, the processing
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Figure 3.1: An example of energy-efficient spike train classification problem.

of information is reduced to the timing and counting of said spikes. Designing ma-

chine learning algorithms for spike train classification is very important in many

high-impact fields such as sensor systems for disease diagnosis and human activity

monitoring.

Spiking Neural Network (SNN) show great potential for dealing with spike

train classification [57, 58, 59, 60, 61]. Originally proposed to imitate biological in-

formation processing [62], the neurons transfer information between one another

via spike trains. Unlike Recurrent Neural Networks (RNN), which use continuous

value as inputs and outputs, SNNs take sparse spike trains as inputs and outputs,
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building large-scale neural networks with far less energy and memory on neuro-

morphic hardware systems, which operate on principles that are fundamentally

different from standard digital computers. Thus, SNNs are clear candidates for

spike train classification.

However, opportunities are always accompanied by challenges. Due to signifi-

cant advances in miniaturization of sensor systems, more and more smart devices

such as wearable sensors and smart phones for elderly care and aerial robots ap-

pear around us, which can produce high-dimensional data in the form of spike

trains. These devices require high quality pattern recognition to meet their design

requirements. At the same time, they are often limited by available energy and

thus low computational cost is required during inference. As illustrated in Figure

3.1, wearable devices incorporated with varieties of motion sensors are used to

monitor different physical conditions of seniors for identifying their body condi-

tions. They generate data that cover massive measurements, including heart rate

(HR), blood pressure (BP), and oxygen saturation (SpO2), among others, and are

expected to be collected by smart devices subject to limited power.To run SNNs ef-

ficiently on such high-dimensional data, we need to ensure both high classification

accuracy and low computational cost during inference.

Regarding computational cost, however, modern SNNs [57, 58] perform many

unnecessary computations due to their dense network architectures. These un-

necessary computations are caused by weak connections between neurons. Weak

connections play a limited role in model performance during inference, as shown

in the example in Figure 3.1. On one hand, inferring Falling needs activity-related

signals given by a person’s intertial measurement units (IMU), HR, and BP. On the
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other hand, inferring Heart Disease doesn’t consider signals from IMUs, but needs

BP, SpO2 and could use more measurements from their photoplethysmograms. As

a result, current SNNs are still not suitable for spike train classification, especially

when the data is high dimensional and comes from devices with limited power.

In this work, we propose an energy-efficient method for high-dimensional spike

train classification. To solve this problem, there are two main challenges:

• Sparse SNN vs Sparse RNN: Sparsification techniques have been employed in

RNNs [63] to reduce computational costs. However, RNNs model sequences

via continuous values, and are outmatched by SNNs for spike train classifica-

tion. By sparsifying SNNs, we can avoid unnecessary computations caused

by weak connections between neurons. A sparsified model has far fewer

non-zero parameters and so performs fewer computations during inference,

making it more power efficient. Thus, instead of using sparse RNNs, we

must find a way to sparsify the network structure of SNNs.

• Sparsifying Inputs vs Networks: SNNs have been accelerated by either sparsi-

fying the inputs [64] or using stochastic computing [65]. However, by only

focusing on spike rate, as opposed to spike timing, they disregard a major

component of the problem. A successful method must consider both rate and

timing together to successfully perform high-dimensional spike train classi-

fication.

Inspired by the success of Artificial Neural Networks (ANN) with a sparse

structure [66, 67], we propose an SNN model with sparse spatio-temporal coding.

We reparameterize the connection between each neuron in an SNN by multiplying
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Figure 3.2: Comparison of the key differences between SNNs [57, 60], M-SNNs [64], and
proposed sparse SNN.

each original weight by a binary "gate". Each gate is considered to be a Bernoulli

random variable. As a result, our proposed approach allows each neuron in the

SNN to consider the necessity of coming into contact with each neuron in the next

layer. Therefore, it allows us to penalize the possibility of each gate for being

different nonzero with no further restrictions, thereby pruning weak links. This

reduces the overall computational cost and adds the benefit of regularization, re-

ducing overfitting. We show through empirical evaluation on multiple real-world

datasets that, compared to baselines, the sparse SNN we propose greatly speeds

up computation while incurring only a negligible deterioration in classification

performance. Meanwhile, we also show improved generalizability by varying the

size of the training set.

3.1.2 Related Works

In spike train classification, “indirect" learning methods, such as ANN-to-SNN

conversion [68, 69, 70, 71], have been proposed to high dimensional inputs. These



Ph.D. Dissertation – Hang Yin 71

are indirect learning methods because a regular non-spiking ANN (e.g., a multi-

layer perceptron) is initially used during the training phase. At inference-time, the

trained model is then converted to an SNN. However, there are several disadvan-

tages associated with such indirect training. First, it doesn’t align well with how

an SNN operates. In ANNs, it does not matter if activations are negative, but firing

rates in SNNs are always positive. Furthermore, many limiting constraints are typ-

ically added while training the ANN models. These include not using bias terms,

only supporting average pooling, and only using ReLU activation functions.

In response, methods for directly training an SNN have recently been pro-

posed [58, 60, 72]. These approaches are mainly based on conventional gradient

descent. Most notably, different from previous techniques based only on spatial

back-propagation [72, 73], SNNs trained directly using back-propagation in both

the spatial as well as the temporal domains [58, 60] have achieved state-of-the-art

accuracy on the MNIST and N-MNIST datasets. However, although these methods

perform better than the others described above on many real-world datasets, from

the perspective of computational efficiency, they are still far from power-efficient

in solving high-dimensional spike trains classification. Therefore there have been

some recently-proposed power-efficient SNNs [64, 65]. [64] aims to enforce more

neurons silence by making input spikes of each neuron sparser. [65] introduces a

stochastic SNN by exploiting the benefits of stochastic computing to generate in-

put spike trains and reduce the connection complexity. However, both of them are

only applicable to standard datasets, but not to neuromorphic datasets.
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3.1.3 Preliminary: Spiking Neural Network

Typically, we use SNN for spike train classification problem. To describe the SNN

models with a sparse structure, we first introduce the baseline framework for

SNNs, as proposed by [58]. We begin by describing the simplest possible SNN, one

which comprises a single neuron with one input entry. This neuron is a recurrent

unit that is affected by the current input, and the previous input and output. For

each timestep t, it combines the current input with the previous input and output

to compute a new value. This value can be referred to as the membrane potential in

biological neural network. If the membrane is greater than a threshold, the neuron

fires and outputs 1 to indicate a spike, otherwise, it outputs 0 to indicate silence.

Therefore, for each timestep t, the membrane and output are expressed as follows:

ut = τut−1(1− zt−1) + wxt + b, (3.1)

zt = Θ(ut − ϑ), (3.2)

where we write ut, xt, and zt to denote the membrane potential, input, and output

of the neuron on timestep t, respectively. τ ∈ [0, 1] is the time decay constant

hyperparameter, and w and b are the connection and bias between input and this

neuron, respectively. Θ(·) is the step function, which satisfies Θ(x) = 0 when x < 0,

otherwise Θ(x) = 1.

The SNN expressed in Equations 3.1-3.2 mimics natural neural networks more

closely than a traditional ANN. In this way, we represent a neuron as the parallel

combination of a "leaky" resistor and a capacitor. The second term of the r.h.s. of

Equation 3.1 is used as external current input to charge up the capacitor to update
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the potential ut. If the neuron emits a spike zt = 1 at timestep t, the capacitor

discharges to a resting potential (which we fix at zero throughout this chapter) by

using the first term in Equation 3.1.

An SNN is built by hooking together many of these simple “neurons”, so that

the output of a neuron can be the input of another. We let ut,n
i and zt,ni denote

the membrane and output of neuron i in layer n at timestep t. The network has

parameters W = {W1, . . . ,WN−1}, where Wn
ij denote the parameter associated

with the connection between neuron j in layer n, and neuron i in layer n + 1. We

also let l(n) denote the number of neurons in layer n and let N be the number

of layers in our network. Therefore, for layer n ∈ {2, . . . , N}, we write ut,n =

(ut,n
1 , . . . , ut,n

l(n))
⊤ and zt,n = (zt,n1 , . . . , zt,nl(n))

⊤ to denote the membrane and output

vector of neurons in layer n at timestep t. For n = 1, we will use zt,1 = xt to denote

the input vector. Thus, the expression of an SNN is given by:

ut,n = τut−1,n ⊙ (1− zt−1,n) +Wn−1zt,n−1, (3.3)

zt,n = Θ(ut,n − Vth). (3.4)

From Equations 3.3-3.4, the spike signals not only propagate through the layer-

by-layer spatial domain, but also affect the neuronal states through the temporal

domain. Therefore, it considers both the spatial and temporal directions during

the error backpropagation, i.e., spatio-temporal backpropagation (STBP) [57, 58],

which significantly improves the network accuracy. During backpropagation, be-

cause the activity function Θ(·) is non-differentiable, it is common to use the rect-

angular function to approximate the corresponding derivative.
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Given the expressions above, we can easily solve a standard SNN classifica-

tion problem by training a classifier f : RP×T 7→ {1, . . . , N} on a given dataset

{(x(1), y(1)), . . . , (x(K), y(K))} that contains K training samples, of which each in-

stance x(i) ∈ RP×T has an observed label y(i) ∈ {1, . . . , l(N)}. P is the number of

input entries and T denotes the length of spike train. To train the SNN, we define

the following loss function L for a single training example (x, y):

L =

(
y − 1

T

T∑
t

Mzt,N

)2

(3.5)

where zt,N denotes the voting vector of the last layer N at time step t, M denotes

a constant voting vector connecting neurons in the output layer to a specific class.

Thus, we can use STBP to propagate the gradients ∂L

∂ot,n+1
i

from the (n + 1)-th layer

and ∂L

∂ot+1,n
i

from time step t+ 1 as follows:

∂L

∂ot,ni
=

l(n+1)∑
j=1

∂L

∂ot,n+1
j

∂ot,n+1
j

∂ot,ni
+

∂L

∂ot+1,n
i

∂ot+1,n
i

∂ot,ni
(3.6)

∂L

∂ut,n
i

=
∂L

∂ot,ni

∂ot,ni
∂ut,n

i

+
∂L

∂ot+1,n
i

∂ot+1,n
i

∂ut,n
i

(3.7)

Sparsity regularization and optimization

In this work, we propose a sparsification procedure for deep SNNs that accel-

erates both training and inference while improving the their generalization ca-

pabilities through regularization. To build a sparse structure, we consider a re-
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Figure 3.3: Difference between traditional and sparse SNNs.

parametrization of Wn
ij , inspired by [67]:

Wn = W̃n ⊙ bn, bn
ij ∈ {0, 1}, W̃n

ij ̸= 0 (3.8)

where the bn
ij correspond to binary “gates” that denote whether the corresponding

parameter W̃n
ij is utilized or not utilized. W̃n and bn is also independent of time t.

To simplify the later derivations, we reformulate the minimization of Equation 3.5

as L = f(y,x;W̃,b).

By letting p(bn
ij|Πn

ij) = Bern(Πn
ij) be a Bernoulli distribution over each gate bn

ij ,

we reconsider a sparse network structure as a regularized minimization procedure

with a regularization on the number of parameters being used, on average, as fol-
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lows:

L = LE + LC , (3.9)

LE = Ep(b|Π)

[
f(y,x;W̃,b)

]
, (3.10)

LC = λ

N∑
n=1

∥Πn∥1 (3.11)

where LE denotes the expectation of loss with respect to the Bernoulli distribution

of b. Meanwhile, LC corresponds to the complexity loss that measures the sparsity

of the model. Due to the positive nature of each Πn
ij , this term also corresponds

to the expectation of the amount of gates being “on.” Based on [74], the objective

described in Equation 3.9 is a close surrogate to a variational bound involving a

spike and slab distribution over the parameters and a fixed coding cost for the

parameters when the gates are active. However, the first term in Equation 3.9 is

problematic for Π due to the discrete nature of b, which does not allow for efficient

gradient-based optimization. The unbiased gradient estimator in [75] could be em-

ployed, however, it suffers from high variance. The straight-through estimator in

[76] can also be used in this problem, but it provides biased gradients as it ignores

the Heaviside function during gradient evaluation.

In this chapter, inspired by [67], we find a simple alternative way to smooth

the objective function such that we allow for efficient gradient-based optimization

of Equation 3.9. Let snij be a continuous random variable with a distribution q(snij)

that has parameters Φn
ij . We can now let each gate be given by a hard-sigmoid
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rectifiation of snij as follows:

snij ∼ q
(
snij|Φn

ij

)
, bn

ij = min
(
1,max(0, snij)

)
(3.12)

This allows bn
ij to be exactly zero. Due to the i.i.d assumption of each snij , we can

thus smooth the binary Bernoulli gates by replacing each bn
ij appearing in the first

term of Equation 3.9 with snij and the second term with the probability of the vari-

able snij being positive:

LE = Eq(s|Φ)

[
f(y,x;W̃, s)

]
, (3.13)

LC = λ
∑
ijn

P (snij > 0|Φn
ij) (3.14)

Here we similarly have a cost that explicitly penalizes the probability of a gate

being different from zero, thus Equations 3.13-3.14 act as a close surrogate to the

original loss function in Equation 3.10-3.11. By following the reparameterization

trick [77], we can describe the expression in Equation 3.13 as an expectation over a

parameter-free noise distribution p(ϵ) and a deterministic and differentiable trans-

formation g(·) of the parameter Φ and ϵ. This allows us to make the following

Monte Carlo approximation to the intractable expectation over the noise distribu-

tion:

LE =
1

M

M∑
m=1

[
f(y,x;W̃, s(m))

]
, (3.15)

s(m) = min
(
1,max(0, g(Φ, ϵ(m)))

)
, ϵ(m) ∼ p(ϵ) (3.16)
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Next we provide more details about g(·) in Equations 3.16.

The hard concrete distribution

The framework above enables us to employ efficient stochastic gradient-based op-

timization, while still allowing for exact zeros of the parameters. For the differen-

tiable transformation g(·), we follow [78]: assume that we have a binary concrete

random variable s distributed in the interval (0, 1). The parameters of this distri-

bution include logα and β, where logα denotes the location and β is referred to as

the temperature.

Temperature β controls the degree of approximation. With β = 0, we recover

the original Bernoulli distribution, whereas with 0 < β < 1 we obtain a proba-

bility density that concentrates its mass near 0 and 1. Therefore the hard concrete

distribution can inherit statistical properties very similar to that of the Bernoulli

distribution. We then stretch s to the interval (γ, ς), with γ < 0 and ς > 1. Follow-

ing [78], we fix γ = −0.1, ς = 1.1, and all β = 2
3

throughout this chapter. Then we

sample b based on the expressions as follows:

s = σ ((log u− log(1− u) + logα) /β) , (3.17)

s̄ = s(ς − γ) + γ, u ∼ U(0, 1), (3.18)

b = min(1,max(0, s̄)). (3.19)

Thus, the complexity loss LC of the objective function in Equation 3.14 under
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the hard concrete distribution can be calculated as:

LC =
∑
ijn

σ

(
logαn

ij − β log
−γ
ς

)
. (3.20)

Given these derivations, we can easily obtain the corresponding iterative state

update equations and gradients for sparse deep SNNs.

ut+1,n+1
i = kτu

t,n+1
i

(
1− ot,n+1

i

)
+

l(n)∑
j

W̃n
ijb

n
ijo

t+1,n
j (3.21)

ot+1,n+1
i = Θ

(
ut+1,n+1
i − Vth

)
(3.22)

bn
ij = min

(
1,max(0, s̄nij)

)
, (3.23)

s̄nij = snij(ς − γ) + γ, (3.24)

snij = σ
((

logu− log(1− u) + logαn
ij

)
/β
)

(3.25)

We also summarize the overall training process of our proposed sparse SNNs as

pseudo-code in Algorithm 4.

3.1.4 Experimental Evaluations

To comprehensively validate the effectiveness of our proposed method, we con-

duct experiments to answer two questions: First, we are interested in computa-

tional improvement with very negligible degradation in accuracy. Our work in this

chapter thus aims to improve the state-of-the-art SNN in this regard. We choose

the Spiking CNN (SCNN) [58] as the basic model to which we apply our proposed

sparsification procedure on this model and name it sparse SCNN. We then com-
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Algorithm 4 Training code for sparse SNN

Require: : i: Network inputs {X t}Tt ; ii: class label Y ; iii: parameters and
states of convolutional layers ({Wn,bl,u0,n,o0,n}N1−1

n=1 ); iv: full-connected lay-
ers ({Wn,bn,u0,n,o0,n}N2−1

n=1 ); v: simulation window T; vi: the parameters of
the hard-concrete distribution (logαn, β, γ, ς); vii: the parameters of iterative LIF
(T, kτ , δ, Vth)

Ensure: : Update network parameters
Forward (inference):

1: for all t = 1 to T do
2: bn ← Generate(logαn, β, γ, ς) //Eq. (3.17)
3: ot,1 ← EncodingLayer(X t)
4: for all l = 2 to N1 − 1 do
5: (ut,n,ot,n) ← StateUpdate(Wn−1,bb−1,ut−1,n,ot−1,n,

ot,n−1,xt,n−1)//Eq. (3.21,3.22)
6: end for
7: end for

Loss:
L← ComputeLoss(Y,ot,N2 , logα)//Eq. (3.9)

Backward:
1: Gradient Initialization: ∂L

∂ot+1,∗ = 0
2: for all t = T to 1 do
3: ∂L

∂ot,N2
← LossGradient(L, ∂L

∂ot+1,N2
)//Eq. (3.6,3.7,3.9)

4: for all l = N2 − 1 to 1 do
5: ( ∂L

∂ot,n ,
∂L

∂ut,n ,
∂L

∂Wn ,
∂L
∂αn ) ← BackwardGradient

( ∂L
∂ot,n+1 ,

∂L
∂ot+1,n ,W

n, logαn)//Eq. (3.6,3.7,3.9)
6: end for
7: for all l = N1 to 2 do
8: ( ∂L

∂ot,n ,
∂L

∂ut,n ,
∂L

∂Wn−1 ,
∂L

∂αn−1 ) ← BackwardGradient
( ∂L
∂ot,n+1 ,

∂L
∂ot+1,n ,W

n−1, logαn−1)//Eq. (3.6,3.7,3.9)
9: end for

10: end for

pare the efficiency and accuracy of our Sparse SCNN with SCNN, M-SNN [64],

and stochastic SNN [65] on various classification tasks. To better compare our

work with them, we follow the same experimental setting as in [58], including the

same experimental datasets and the same network structure. Second, we want
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Table 3.1: Fixed parameter values for the various experiments.

Parameter Description Chosen Value
(MNIST/CIFAR10/N-
MNIST/DVS-
Gesture)

T Time window 30ms,12ms,300ms,1450ms
kτ Decay factor 0.1ms,0.3ms,0.2ms,0.2ms
δ Derivative approximation parameter 1.0,0.5,0.5,0.5
Vth Threshold 0.5

β Temperature of hard-concrete distribution 2/3
γ, ς Other parameters of hard-concrete distri-

bution
-0.1, 1.1

λ The weight factor of sparse regularization 0.001

to explore the generalizability of our proposed model, especially for high dimen-

sional data with very few training samples. We thus test on small training subsets

of MNIST and N-MNIST. We validate our sparse deep SNN framework by using

the state-of-the-art fully connected and convolutional architectures for deep SNNs

[58] on these datasets. To combat randomness in the experiment system, we run

all experiments 10 times and report the average results, except when otherwise

stated.

Datasets

We evaluate our sparse SNN models and baselines on various datasets. Using the

same datasets as in [58], we test on both static (non-spiking) as well as dynamic

(neuromorphic) data.

Static Datasets: MNIST is a popular dataset comprised of a training set with

60, 000 samples and a testing set with 10, 000 samples of hand-written digits 0− 9.
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Figure 3.4: Comparison with SCNN[57], M-SNN[64] and stochastic SNN[65] on MNIST.

CIFAR-10 is an established computer-vision dataset used for object recognition. It

consists of 60, 000 32 × 32 color images containing one of 10 object classes, with

6, 000 images per class. Since our method and baselines are spike based learning

algorithm, the static images should be converted to spike trains. To this end, we

use the Bernoulli sampling conversion from original pixel intensity to the spike

trains in this chapter. Each normalized pixel is converted to a spike event “1”)

or no spike event “0”) at each time step by using an independent and identically

distributed Bernoulli sampling. The probability of generating a spike event is pro-

portional to the normalized value of the entry. Thus, given a certain time window

T , the spike events form a spike train. During training, we set T to 12 and 30ms in

MNIST and CIFAR-10, respectively.

Dynamic Datasets: Compared to the static datasets, dynamic datasets contain

richer temporal features and are therefore more suitable for evaluating SNNs since

SNNs can take advantage of the added information. We use the N-MNIST1 and

1https://www.garrickorchard.com/datasets/n-mnist
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DVS-Gesture1 datasets to evaluate the capability of our method on dynamic datasets.

The N-MNIST dataset [79] consists of MNIST images converted into a spiking

dataset using a Dynamic Vision Sensor (DVS) moving on a pan-tilt unit. Each

dataset sample is 300ms long, with a shape of 34× 34 pixels, containing both “on”

and “off” spikes. The dataset is split into training and test sets following the origi-

nal split in MNIST of 60, 000 training samples and 10, 000 testing samples.

The DVS-Gesture dataset [80] contains 1, 342 instances of a set of 11 hand and

arm gestures, grouped into 122 trials and collected from 29 subjects under 3 dif-

ferent lighting conditions. During each trial, one subject stood against a stationary

background and performed all 11 gestures sequentially under the same lighting

conditions. These gestures are recorded using a DVS128 camera, which is a 28×28-

pixel Dynamic Vision Sensor. The problem is to identify the correct action label

associated with each action sequence video.

Network structure

Throughout this chapter, we use the following notations to describe the deep SNN

architecture. Layers are separated by “−” and spatial dimensions are separated by

“×”. A convolution layer is represented by “C” and a pooling layer is represented

by “P”. For example, “28×28−15C5−P2−10” represents a 4-layer spiking CNN

with 28 × 28 input, followed by 15 convolution filters that are (5 × 5), followed

by 2 × 2 pooling layer and finally a dense layer connected to 10 output neurons.

Table 3.2 provides the network structures for experiments. We use the exact same

network architecture for our model and baselines for a fair comparison.

1https://ibm.ent.box.com/s/3hiq58ww1pbbjrinh367ykfdf60xsfm8
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Table 3.2: Network structures used for experiments.

Static Dataset

MNIST 28×28-15C5-P2-40C5-P2-300-10
CIFAR10 34×34×2-32C3-P2-64C3-P2-256-10

Dynamic Dataset

N-MNIST 34×34×2-16C5-P2-32C3-P2-64C3-10
DVS-
Gesture

128×128×2-P4-16C5-P2-32C3-P2-
512-11

Initialization

In our proposed model, some parameters, such as the model weights and the lo-

cations of the hard-concrete distribution, need to be learned while others need to

be fixed throughout the optimization. We now discuss our choice for initializing

these parameters, which includes the weights, the thresholds and the decay factor

for each neuron, the weighting factor for the sparse regularization, and the param-

eters of the hard-concrete distribution. We divide these parameters into two sets

to consider.

First, to better mimic the neural dynamics, we need to control the relative mag-

nitude between the weights and thresholds to avoid too much spiking, which re-

duces neuronal selectivity. In practice, and as a simplification, we fix the threshold

value as a constant for each neuron and only adjust the weights that is responsi-

ble for controlling/balancing activity. We initialize all the weight parameters by

sampling from the standard uniform distribution followed by normalization.

Second, while sparsifying the network, we follow [78] and set γ = −0.1, ς =

1.1, β = 2
3

for the concrete distributions. Meanwhile, we initialize the locations

logα by sampling from a normal distribution with a standard deviation of 0.01 and
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MFLOPs

Accuracy

Model SCNN Sparse SCNN (Ours) 

89.83% 89.65%

CIFAR-10

1.95
1.03

M-SNN

87.92%

Stochastic SNN

1.181.32

80.46%

Figure 3.5: Comparison with SCNN[57], M-SNN[64] and stochastic SNN[65] on CIFAR-10.

a mean of 1. In practice, we use a single sample of the gate z for each mini-batch

of the dataset during the training, even though this can lead to larger variance in

the gradients. This way, we show that we can obtain the speedups in optimization

with a practical implementation without incurring a significant loss in classifica-

tion accuracy. A summary of the values of the fixed parameters used is shown in

Table 3.1.

Evaluation metrics

To evaluate classification performance, we use the standard Accuracy metric. To

evaluate the computational efficiency, we count the floating point operations (FLOPs)

to measure the potential speedup. FLOPs are computed by assuming one flop for

multiplication and one flop for addition.
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MFLOPs

Accuracy

Model SCNN Sparse SCNN (Ours) 

99.44% 99.38%

N-MNIST

9.47

2.78

M-SNN

97.87%

Stochastic SNN

3.135.02

98.27%

Figure 3.6: Comparison with SCNN[57], M-SNN[64] and stochastic SNN[65] on N-MNIST.

Experiment results

In this chapter, we discuss the experimental results pertaining to each of the two

previously-raised research questions separately.

Potential speedup: The tables shown in Figures 3.6 and 3.5 compare our pro-

posed sparse deep SNNs with a traditional SNN, M-SNN, and stochastic SNN on

the static MNIST and CIFAR-10 datasets, respectively. Even without a complex

architecture, the proposed deep SNNs and their competitors still perform well on

these datasets. We find that there is only a slight difference in accuracy between

our sparse deep SNNs and their competitors (i.e., only between 0.05% and 0.1%).

This is a negligible difference. However, as we can observe, there is a significant

improvement in the FLOP count between our sparse deep SNNs and the competi-

tors. On CIFAR-10, our sparse network and M-SNN incurs only half the computa-

tional cost compared to traditional SNN. On MNIST, this ratio is further reduced

to less than 25%, which allows for a potentially significant speedup in inference
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MFLOPs

Accuracy

Model SCNN Sparse SCNN (Ours) 

90.53% 90.15%

DVS-Gesture

5.18

1.28

(128x128x2-P4-16C5-P2-32C3-P2-512-11)

M-SNN

60.18%

Stochastic SNN

1.32
2.61

77.82%

Figure 3.7: Comparison with SCNN[57], M-SNN[64] and stochastic SNN[65] on DVS-
Gesture.

Table 3.3: Comparison on small datasets. Best accuracy highlighted.

Dataset Method Accuracy

MNIST SCNN 69%
Sparse SCNN (Ours) 92%

N-MNIST SCNN 95%
Sparse SCNN (Ours) 97%

phase.

The results for the neuromorphic datasets are shown in Figures 3.4 and 3.7. We

find that both M-SNN and stochastic SNN, which perform well on static datasets,

have a significant degradation in accuracy. This demonstrates that the works pro-

posed in [64, 65] are not as suitable for neuromorphic datasets. Meanwhile, by

using a sparse network structure, our proposed model incur a slight degradation

in accuracy (i.e., decrease between 0.05% and 0.4%) but sparsity can provide a sig-

nificant speedup – nearly 5x times. Our experimental results show that sparsifying

deep SNNs using our proposed framework can greatly speed up training and in-
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ference while only incurring a minimal and negligible loss in classification perfor-

mance. In summary, our proposed model achieves better computational efficiency

than previous works when tested on both neuromorphic as well as static datasets

and achieves very negligible degradation in accuracy.

Better generalization: To evaluate the ability of the model to generalize, we first

compare the performance of our proposed method to SCNN on MNIST as the size

of the training set is varied We continuously reduce the training set of MNIST and

test on a test set of the same size.

As shown in Figure 3.8, although both methods achieve very competitive accu-

racy when the whole training set is used, our sparse deep SNN demonstrates much

higher robustness when training set size is decreased. In particular, we observe

that the performance of the non-sparse model drops sharply when the training set

size is reduced to below 3, 000 while the sparse deep SNN’s performance remains

fairly steady. We conclude that when there are not enough training samples, deep

SNNs will easily overfit and even memorize random patterns in the training set.

This overfitting can lead to poor generalization. In contrast, by using sparse archi-

tecture in deep SNNs, the model shows better generalization even when training

samples are limited.

We summarize the results of these experiments, run on MNIST and N-MNIST,

in Table 3.3. During training, we limit the percentage of available training samples

to only 1.67% (i.e., only 1, 000 samples). As can be observed from the results, all

the sparse deep SNNs demonstrate higher accuracy than that of their competitors.

This demonstrates that by inducing model sparsity in the architecture, deep SNNs

can achieve better generalization in practice.
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60000

SCNN
Sparse SCNN (Ours)

Figure 3.8: Generalization test on MNIST dataset. The Y-axis denotes the accuracy of each
model on the test set (10, 000 samples). The X-axis denotes the size of the training set.

Impact of the weight factor of sparse regularization

In this thesis, we achieve sparsity in the network structure of deep SNNs via

sparsity regularization, which balances the accuracy with the percent of non-zero

weights. Now we quantitatively analyze the impact of this sparsity regularization.

We implement a sparse spiking CNN on MNIST, keeping the model configurations

the same as our previous experiment on MNIST (28×28-15C5-P2-40C5-P2-300-10).

In Figure 3.9, the left side shows the level of sparsity at each layer when λ =

0.001. We use subgraphs of different widths to correspond to the number of weights

of each layer in the network, while using the height of blue shaded area to cor-

respond to the sparsity of each layer. The right side shows the overall level of

sparsity under different values of λ. The X-axis denotes the value of the sparsity

regularization term while the Y-axis denotes the percent of non-zero weights.

The results in Figure 3.9 show that sparse regularization has a different influ-
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Figure 3.9: (Left) Level of sparsity with fixed λ=0.001; (Right) Overall sparsity when λ is
varied.

ence on convolutional layers and fully connected layers. One reason why the the

fully connected layers are sparser than the convolutional layers may be due to the

difference in nature of the two types of layers. Convolutional layers apply the

same set of weights repeatedly at different positions of the input. On the other

hand, each weight in a fully connected layer will only be used once. The param-

eters in convolutional layers therefore learn general features at possibly multiple

locations while each parameter in fully connected layers computes a single feature.

As a result, the effect of sparse regularization is more significant in fully connected

layers than in convolutional layers.
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Figure 3.10: The problem definition of efficient classification of spike trains. The spike trains
are generated by an event camera, which is an imaging sensor that responds to local changes
in brightness. Each pixel inside an event camera operates independently and asynchronously,
reporting changes in brightness as they occur, and staying silent otherwise. Therefore, each
image can be considered as binary event image.

3.2 Task 5: Sparse Spike Trains Classification with Noise

3.2.1 Motivation.

Spike trains are sequences of binary signals where 1s are spikes and 0s are not

spikes. Such data are common to a variety of domains and are classically analo-

gous to electrochemical signals in the human brain. Spike train datasets are gen-
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erated from event cameras, which resemble the human eye. Event cameras, also

called neuromorphic cameras, require little energy and are designed to capture

objects at high speed. Thus, spike train datasets naturally arise during the devel-

opment of dynamic vision devices [55, 56, 81, 82, 83].

Recently, spike train classification has attracted much attention in the machine

learning community [3, 57, 58, 60, 84, 85, 86]. Compared with the traditional se-

quence classification tasks, spike train classification is unique in the following two

aspects [87, 88, 89, 90]: 1) Temporal-sparsity of signals of interest. The label of a

spike train is only related with certain objects that may only appear in a very small

portion of the whole time window. 2) Temporal-noise problem. The signals at the

majority of time steps are generated from background activities that are not related

to objects of interest. These two properties of spike train classification impede the

application of the widely used deep learning models, e.g. recurrent neural net-

works (RNNs), because of their high computational costs, unnecessarily spent on

the whole time window. Tasks on spike train data are instead usually processed

on energy-sensitive platforms such as wireless monitors and drones, so more com-

putationally efficient models are required. To this end, we propose a new design

principle to guide developement of machine learning models for spike train classi-

fication: perform intensive computation only when signals of interest appear.

Spiking Neural Networks (SNNs) are potential candidates for spike train clas-

sification [57, 58, 60], since they are attempt to meet the aforementioned design

principle by considering the temporal-sparsity of spike trains. They take spike trains

as inputs and outputs, using biologically inspired, event-driven computation and

communication in their design. An SNN neuron’s core function is to react only
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Figure 3.11: Differences among Recurrent Neural Network (RNN) , SkipRNN [91], Spiking
Neural Network (SNN) [57, 60], SkipRNN and SkipSNN (our model). Compared with other
models, our model can achieve better computational efficiency and higher classification accu-
racy based on an event-attention mechanism of filtering noise.

when its cummulative membrane potential exceeds a fixed value. As a result, the

neuron has a chance to be activated only when it currently has an event signal,

which is passed in as a binary spike. Thus, compared to traditional deep learn-

ing models, SNNs can build large-scale neural networks with far less energy and

memory for spike train classification.

However, SNNs only consider the temporal-sparsity of spike trains, not the temporal-

noise issue. As illustrated in Figure 3.10, suppose a drone uses an event camera to

detect obstacles and then a model decides if the drone needs to change route. For
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the most of the timeline, the camera collects signals that are irrelevant to the task.

But SNNs will react to any signals, even if they are only noise. As a result, SNNs

often can’t meet the principle that the model should only work when the signals

of interest appears, and we argue that is a primary reason which may lead to the

poor generalization ability and lower the energy efficiency of SNNs in the real

world applications.

To achieve high classification accuracy with low computational cost for real-

world spike trains, we need to follow the aforementioned design principle by con-

sidering both temporal-sparsity of useful signals and temporal-noise issue. An

intuitive approach, which we pioneer in this study, is for the model to stop pro-

cessing data when the relevant object is out of its field of view. This behavior is

analogous to how we open and close our eyes to filter out the information we see.

We propose a novel method for allowing SNNs to efficiently classify spike

trains. Solving this problem is challenging for two main reasons:

• Neuron Consistency: The promise of SNNs comes from their likeness to real

neural circuits in the human brain. Maintaining this similarity is essential

to successful SNNs. However, in the standard SNN when a neuron enters a

hibernation state, it is hard to wake it up again if there is no new signal input

to the network. This means that if the model ignores the input at a timestep,

the neurons in the network will lack new input signals. This keeps the neu-

rons silent, making the model likely to ignore potentially useful signals in the

future. Thus, when extending SNNs to our problem setting, it is challenging

to train successful spiking neurons to skip updates.

• Non-differentiability: SNNs are notoriously difficult to train due to non-differentiable
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nature of spike activity. Most related works use the rectangular function or

sigmoid to approximate the corresponding derivative. However, in practice

we find that when our optimization objective considers both accuracy and

efficiency, this approximation leads to decayed performance. Additionally,

optimization largely depends on the initial values of the parameters of the

model. Even though some parameter initialization methods such as Glorot

[92] work for traditional artificial neural networks, they lack theoretical basis

in SNNs. Designing an efficient optimization algorithm is the second chal-

lenge we face.

To solve our problem, we introduce an event attention mechanism that enables

SNNs to dynamically highlight useful signals in the input spike train. We extend

existing SNNs to have two different states: awake and hibernating, inspired by how

people’s eyes open and close, turning on and off data intake. If our SNN enters

its awake state at time step t, it will consider the input at t. Otherwise, if it hiber-

nates at time step t, it will ignore the input at t. To this end, we design a controller

that switches the model between these two states. Since this is not differentiable,

we also introduce a new loss function with a penalty that trades off accuracy and

computational cost. In this way, our extended SNN learns to mask out noise by

skipping updates and shorten the effective size of the computational graph with-

out requiring any additional supervision signal. We refer to our model as SkipSNN

and illustrate the difference between it and traditional SNN in Figure 3.11.

Our contributions are summarized as follows:

• We define the problem and modeling principle of general spike train classi-

fication, which is important for smart dynamic sensor systems with limited
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energy.

• We propose SkipSNN, which solves this problem and can be used on energy-

limited dynamic sensor devices.

• We develop an efficient optimization technique to train our SkipSNN model.

• We demonstrate that our model outperforms recent state-of-the-art alterna-

tives by achieving higher accuracy and lower computational cost when tested

on both the neuromorphic MNIST and DVS-Gesture datasets.

The rest of this chapter is organized as follows. First, we review related work,

then introduce details of the background methods. Next, in Chapter 3.2.2, we

present our proposed method. We then describe our experimental setup and dis-

cuss our results in Chapter 3.2.3. Finally, we conclude the chapter of the thesis with

key take-aways and give some directions for future work.

3.2.2 Related Works

In spike train classification, methods for training SNNs can be divided into two

categories: “Indirect" learning and “Direct" learning. Indirect learning mainly fo-

cuses on ANN-to-SNN conversion [68, 69, 70, 71]. These methods are indirect

in that a regular non-spiking Artificial Neural Network (ANN), such as a multi-

layer perceptron, is initially used during the training phase. At inference-time,

the trained model is then converted to an SNN. However, such indirect training

doesn’t align well with how an SNN operates. For example, in ANNs, it does

not matter if activations are negative, while firing rates in SNNs are always posi-

tive. As for Direct learning, many methods have recently been proposed [3, 58, 60].
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These approaches train SNNs directly using back-propagation in both the spatial

and temporal domains. [58, 60] have achieved state-of-the-art accuracy on the

MNIST and N-MNIST datasets. [3] is trains SNNs with a spatial sparsification

technique that allows SNNs to perform inference with lower computational cost.

While these methods perform better than the indirect methods on many neuro-

morphic datasets, they are still not suitable for efficient classification of real-world

spike trains, especially in terms of temporal-noise problem.

Although there is no model for dealing with our defined problem for SNNs,

some methods have been proposed for dealing with similar problems for RNNs

[91, 93, 94, 95, 96, 97, 98, 99]. For example, SkipRNN [91] extends classic RNN mod-

els by learning an additional controller network that learns to skip state updates.

The input of this neuron is the state value of other neurons. So it can generate a

binary value based on the sigmoid function value of its state. This model can sig-

nificantly reduce the computational cost. However, while both RNNs and SNNs

are used to deal with sequence analysis, they remain completely different. The

main difference is that neurons in RNNs are mostly non-linear, continuous func-

tion approximators that operate on a common clock cycle, whereas the neurons in

SNNs use asynchronous spikes that signal the occurrence of some characteristic

event and temporally precise membrane potentials. When dealing with spiking

training tasks, many neurons of an SNN may stay silent based on its mechanism,

whereas all neurons of an RNN will be activated. Consequently, in terms of infer-

ence efficiency, RNNs are outmatched by SNNs for spike train classification. We

illustrate this key difference in Figure 3.11.
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3.2.3 Skip Spiking Neural Network

Model Definition

We propose a novel modification for existing SNN architectures that allow them

to mask noise and skip membrane potential updates without requiring any addi-

tional supervision signal. To build a new architecture, which we call SkipSNN, we

view SNN neurons as having two different states: awake and hibernating. Then,

we design a new neuron to control the model to switch freely between these two

states.

Inspired by [91], we augment the network with a binary gate, but use a novel

neuron to control it. This neuron doesn’t have any special settings, but follows the

basic mechanism of SNNs, exactly like other neurons in the network. In the rest of

this study, in order to distinguish it from other SNN neurons, we call this neuron

the controller.

Let vt denote the membrane potential of the controller at time step t. This con-

troller is connected with all the neurons in the first layer. It is therefore affected

by the outputs of the first layer and will generate a binary output at according to

the SNN mechanism described in Equations 3.1 and 3.2. Then, this value decides

whether to consider the input of the next time step by treating at as a multiplier of

the next time step. If it emits a spike, this means that the network enters the awake

state at next time step. Otherwise, the network hibernates at next time step. Based

on the SNN mechanism, the controller will reset its membrane potential to zero

after emit a spike. Therefore, when it decides to enter the awake state at the next

time step, it is hard for the controller to spike again due to the lack of new spike
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inputs from the first layer.

In order not to miss the potential useful signals in the future, a temporal form

of bias is needed to adjust the membrane potential of the controller. In this chapter,

we introduce synchronisation pulses that act as additional inputs to the controller,

in order to provide the information of time. These can be thought of as similar to

internally-generated rhythmic activity in biological networks, such as alpha waves

in the visual cortex [100] or theta and gamma waves in the hippocampus [101].

In our proposed SkipSNN, a set of pulses are fully connected to the controller

in the network. Each pulse spikes at a different frequency. For example, some

spike once every time step, some spike once every 10 time steps, and some spike

once every 100 time steps. Subsequently, these pulses can modify the membrane

potential of the controller when it stays hibernating state, thereby being activated

again. At every time step t, affected by the output from the neurons in the first

hidden layer and pulses, the controller emits a binary signal, which is multiplied

by the model input at t + 1. The resulting architecture—depicted in Figure 3.12—

can thus be described as follows:

u
(2)
t = τu

(2)
t−1 ⊙ (1− z

(2)
t−1) + at−1W

(1)xt, (3.26)

vt = τvt−1(1− at−1) +Wzz
(2)
t +Woot, (3.27)

at = Θ(vt − Vth), (3.28)

where Wz and Wo are the weights vectors between the controller and neurons in

the first hidden layer, and the controller and pulses, respectively. ot = (o1,t, ..., op,t)

is the pulse vector that contains the signals from p different pulses at t. vt and at
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Figure 3.12: Model architecture of the proposed SkipSNN.

are the membrane potential and the output of the controller at t, respectively.

According to the model formulation from Equations 3.26-3.28, SkipSNN can

switch between awake and hibernating state based on the value of at. If at = 1,

SkipSNN will be updated based on the input xt+1 at t+1, otherwise, the proposed

model will skip xt+1 due to atxt+1 = 0.

In particular, the controller can be connected to any layer of SNN. Meanwhile,

the controller itself can also be a multilayer SNN. However, in practice, we found

that the controller works better when connected to the first hidden layer. In addi-

tion, using a multi-layer network structure as the controller does not improve the

performance but will increase the computational cost. Thereby, we keep using the

network structure depicted in Figure 3.12.

Limiting Computation

The proposed SkipSNN is able to learn when to enter awake or hibernating state

without requiring any additional supervision signal. The longer the model stays
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hibernating state, the lower computational cost required during inference phase.

However, there is a trade-off between classification accuracy and computational

power. If the model sacrifices some important time steps that contain useful infor-

mation, it can reduce the computational cost, but it will also sacrifice the accuracy

of the model. To balance between accuracy and efficiency, we add an additional

penalty term

Lpenalty = λ

∑T
t=1 at
T

, (3.29)

where Lpenalty is the cost associated to one single sample, λ is the cost per sample,

and T is the spike train length.

Optimizing SkipSNN

SNN is hard to optimize because the derivative of its activation function is a δ

function, whose value is zero everywhere except at threshold. As is done in prior

works [57, 58], we could use the rectangular function to approximate the corre-

sponding derivative. However, the switch between awake and hibernating state is

directly determined by the output of the controller. When the corresponding gra-

dient of its membrane potential is zero, we will not be able to continue to optimize

the relevant parameters of the controller through gradient descent. Therefore, we

propose simulated annealing for SkipSNN; the training process for SkipSNN is

divided into two stages.

In the first stage, we set λ = 0, which will cause the model to stay in the awake

state at all times. This means that the controller will always emit at = 1 during
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Algorithm 5 Algorithm for SkipSNN

Require: i: Network inputs {X t}Tt ;
ii: class label Y ;
iii: parameters and states of main network ({W(ℓ),u

(ℓ)
0 , z

(ℓ)
0 }N1−1

ℓ=1 );
iv: parameters and states of controller (Wz,Wo,vt, a0);
v: the parameters of iterative LIF and penalty (T, ϵ,∆, Vth, λ);
iv: itermax: the maximum number of iteration

Ensure: : Update network parameters
1: Stage 1:

1: Set the approximation of activation with Eq.3.30
2: Set λ = 0
3: repeat
4: Update the parameters of main network ({W(ℓ)}N1−1

ℓ=1 )
5: until iter = itermax or convergence

6: Stage 2:
1: freeze ({W(ℓ)}N1−1

ℓ=1 )
2: Set the approximation of activation with Eq.3.31
3: Set λ > 0
4: repeat
5: Update the parameters of controller (Wz,Wo)
6: until iter = itermax or convergence

this stag, because its membrane potential vt is always larger than the its threshold

V]th. Therefore, our goal at this stage is to make SkipSNN solve the classification

task as accurately as possible. In this stage, the derivative of each activation is

approximated by the rectangular function denoted by h(u):

h(u) =
1

a
sign(|u− Vth| <

a

2
), (3.30)

where a determines the peak width.

In the second stage, we freeze parameters that are not related to the controller,

and start optimizing the controller by elevating the multiplier λ of the penalty loss.
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Because vt at that point is always larger than Vth, we deploy a sigmoid function

instead of rectangular function to approximate its derivative:

h(u) =
1

1 + e
1
T
(u−Vth)

. (3.31)

The parameter T in Equation 3.31 controls the steepness of the sigmoid function,

which is considered to be the reciprocal pseudo-temperature. As T → 0, the sig-

moid becomes a step function and the stochastic unit becomes deterministic. As

T increases, this sharp threshold is “softened”, thus making the range of the sig-

moid wider. Therefore in this stage we initialize T with a high value to make sure

the controller has a gradient when the membrane potential is high. Then, we de-

crease T periodically during the optimization process of the parameters related to

the controller.

3.2.4 Experimental Results

To comprehensively validate the effectiveness of our proposed method, we con-

duct experiments to answer two research questions: First, we are interested in ac-

curacy improvement on classification problem of spike trains; Second, we want to

demonstrate that our model can significantly reduce computational cost with very

negligible degradation in accuracy. As ours is the first SNN proposed to deal with

our defined problem, we compare our model with Fixed-skip SNN and Random-

skip SNN. We also use a modified SNN converted from SkipRNN [91] as a base-

line, because SkipRNN is a cutting-edge model for skipping frames on time series,

which is similar to our defined problem. To better compare our work with them,
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we test on various neuromorphic datasets, including N-MNIST and DVS-Gesture.

Both are widely used to evaluate SNN models in related work. To combat ran-

domness in the experiment system, we run all experiments 10 times and report the

average results, except when otherwise stated.

Datasets

We evaluate our proposed model and baselines on various datasets. To simulate

the properties of general spike trains in the real world, we modified these neu-

romorphic datasets (N-MNIST1 and DVS-Gesture2) by making signals of interest

temporal-sparse and adding noise into them.

N-MNIST The N-MNIST dataset [79] consists of MNIST images converted into

a spiking dataset using a Dynamic Vision Sensor (DVS) moving on a pan-tilt unit.

In our experiments, each dataset sample is 50 ms long, with a shape of 34× 34 pix-

els, containing two channels to preserve “on” and “off” spikes, respectively. This

dataset is harder than MNIST because one has to deal with saccadic motion. For

SkipSNN experiments, we generate a 300 ms blank time sequence firstly, mean-

while increasing the noise by adding one signal to a random pixel of the image

in each millisecond (one time step). Then we put each N-MNIST sample into a

random period of each time sequence. So in each final sequence, only 16.7% of the

time steps have useful signals related to original N-MNIST dataset. The dataset is

split into 60, 000 training samples and 10, 000 testing samples.

DVS-Gesture The DVS-Gesture dataset [80] contains 1, 342 instances of a set of

11 hand and arm gestures, grouped into 122 trials and collected from 29 subjects

1https://www.garrickorchard.com/datasets/n-mnist
2https://ibm.ent.box.com/s/3hiq58ww1pbbjrinh367ykfdf60xsfm8
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(b) Accuracy on DVS-Gesture

Figure 3.13: Observing the performance of different models with different percentage of up-
dated time-steps.

Table 3.4: Comparative results on N-MNIST dataset.

Model Percentage of awake state Accuracy Inference MFLOPs
SNN 100% ± 0.0% 88.92% ± 0.76% 1.15

Fixed-skip SNN 13.33% ± 0.0% 38.43% ± 4.13% 0.51
Random-skip SNN 10.00% ± 0.0% 37.16% ± 3.41% 0.47

SkipRNN+SNN, λ = 10−3 91.72% ± 0.37% 89.86% ± 0.16% 0.71
SkipRNN+SNN, λ = 10−1 11.13% ± 1.24% 81.24% ± 1.02% 0.52

SkipSNN, λ = 10−3 92.15% ± 0.08% 94.47% ± 0.12% 0.75
SkipSNN, λ = 10−1 11.03% ± 0.58% 86.65% ± 0.27% 0.46

under 3 different lighting conditions. During each trial, one subject stood against a

stationary background and performed all 11 gestures sequentially under the same

lighting conditions. The problem is to identify the correct action label associated

with each action sequence video. In our experiments, each DVS-Gesture sample is

400 ms long, and 32× 32 pixels big, containing two channels to preserve “on” and

“off” spikes. To allow us to test SkipSNN on spike trains, we modify DVS-Gesture

dataset by using the method applied to modify N-MNIST. So each spike train in

the final dataset has 1000 time steps (ms), and only 400 consecutive time steps in

each spike train have useful signals related to original DVS-Gesture dataset.
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Table 3.5: Comparative results on DVS-Gesture dataset.

Model Percentage of awake state Accuracy Inference MFLOPs
SNN 100% ± 0.0% 86.12% ± 0.25% 1232.5

Fixed-skip SNN 13.33% ± 0.0% 64.13% ± 2.05% 147.4
Random-skip SNN 10.00% ± 0.0% 63.41% ± 2.37% 112.5

SkipRNN+SNN, λ = 10−5 92.41% ± 0.42% 85.32% ± 0.43% 1013.1
SkipRNN+SNN, λ = 10−4 10.02% ± 3.35% 78.50% ± 0.43% 117.3

SkipSNN, λ = 10−6 89.63% ± 0.23% 86.82% ± 0.13% 973.7
SkipSNN, λ = 10−4 9.04% ± 1.44% 80.24% ± 0.18% 72.6

Compared Methods

To demonstrate the effectiveness of SkipSNN, we test against several baselines:

• Fixed-skip SNN:Control the percentage of awake state according to the fixed

time-step size. For example, 90% means skip 1 time step after every 9 time

step updates; 50% means skip one time step after every one time step.

• Random-skip SNN:Determine awake and hibernating state through Bernoulli

sampling. We control the percentage of awake states by changing the param-

eter of Bernoulli distribution.

• SkipRNN + SNN: SkipRNN [91] is proposed to extend existing RNN models

by learning to skip state updates and reduce the computational cost. The in-

put and output of SkipRNN are not spike trains. But due to the similarity of

the defined problem, we convert SkipRNN to an SNN version as a competi-

tor.

To better compare our work with them, we use the same network structure and

optimization algorithm on each model.
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Evaluation metrics

To evaluate classification performance, we use the standard Accuracy metric. To

evaluate the computational efficiency, we use the million floating point operations

(MFLOPs) to measure the potential speedup. MFLOPs are computed by assuming

one flop for multiplication and one flop for addition. In our experiments, we use

MFLOPs of each model for one same sample in the inference phase as the evalua-

tion metric.

Experiment results

In this chapter, we discuss the experimental results pertaining to each of the two

previously-raised research questions separately.

Better accuracy The results shown in Figure 3.13 compare the performance of

each model with different percentage of updated time-steps on two different datasets.

We control the percentage of awake state of SkipRNN+SNN and SkipSNN by

changing the multiplier λ of the time-budget penalty. For random-skip SNN, we

control it through the parameter of Bernoulli distribution. For fixed-skip SNN, we

control it according to different time-step sizes. According to the results, we can

observe that as the percentage of awake state decreases, fixed-skip and random-

skip SNN drop rapidly. By contrast, SkipRNN+SNN and SkipSNN show their

advantages in this scenario. Especially, when each model only considers less than

20% of awake state, SkipRNN+SNN and SkipSNN still maintain an accuracy of

more than 80%. In contrast, the other two models are no longer valid. Accord-

ing to the comparison of SkipSNN+SNN and SkipRNN, our proposed model has

a better performance of classification than the other one on the testing set of both
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(a) Examples of N-MNIST

(b) Examples of DVS-Gesture

Figure 3.14: Temporal raster plot of spikes in the controller neuron during the inference of the
examples in N-MNIST and DVS-Gesture by SkipSNN. The spikes shown are generated from
the controller, and used to control when to enter awake state. The blue box represents the period
of useful signals. The dash red line represents the location of awake state.

two datasets. This robustness in performance directly leads to a significant drop

of the computational cost during inference phase. Moreover, the accuracy of Skip-

SNN with the percentage between 90% and 70% is even higher than that without

skipping time steps. It means that compared with traditional SNNs, our proposed

model is more accurate in dealing with the classification of spike trains.

Examples like those shown in Figure 3.14 show how SkipSNN learns to skip

time steps that are mainly noise or not helpful for classification problem. Based on
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(a) Original and reconstructed input of N-MNIST

Testing example of Sparse DVS-Gesture

Time (ms)0 ms 1000 ms

(b) Original and reconstructed input of DVS-Gesture

Figure 3.15: Visualization of original and reconstructed input of N-MNIST and DVS-
Gesture. The inputs are, in row order, original and reconstructed. Reconstructed input means
that we mask the signal in original input according to the time step locations that the model
decides to skip.

the dominance of the controller in SkipSNN over time-step skipping, we display

the decision of SkipSNN on each time step by using a temporal raster plot of spikes

in the controller during the inference of the examples in two datasets. The blue area

in each plot indicates the period of useful signals. Meanwhile, the remaining white

areas are mainly noise. According to Figure 3.14, we can observe that the spikes are

mainly concentrated in the blue areas and sparse in the white areas. Therefore, it

demonstrates that SkipSNN knows how to distinguish between signals of interest

and noise and when to switch between awake and hibernating state.
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Finally, the reason for the success of our proposed model is that SkipSNN filters

out noise with the presence of controller architecture, reconstructing input that is

much purer than the original input. We demonstrate it in Figure 3.15. We show the

gif picture of original data and that of reconstructed data, which mask out most of

the noise through SkipSNN.

Potential speedup: The tables shown in Table 3.4 and 3.5 compare SkipSNN with

a traditional SNN, fixed-skip SNN, random-skip SNN, and SkipRNN+SNN on

two neuromorphic datasets. For N-MNIST dataset, even without a complex ar-

chitecture, the proposed SkipSNN and their competitors still perform well. We

find that there is only a slight difference in accuracy between SkipSNN and SNN

(i.e., only about 2%). This is a negligible difference. However, as we can observe,

there is a significant improvement in the MFLOP count between SkipSNN and

SNN. Compared to SNN, SkipSNN can provide only half the computational cost

of SNN. Meanwhile, when the computational cost of all models is similar, Skip-

SNN achieves the higher accuracy than fixed-skip SNN, random-skip SNN and

SkipRNN+SNN.

On DVS-Gesture, our proposed model SkipSNN incurs a slight degradation

in accuracy (i.e., decrease about 6%), but provides a significant speedup – more

than 10x times. The accuracy of SkipSNN at this level of MFLOP is still higher

than other competitors. Our experimental results show that SkipSNN using our

proposed network structure can greatly speed up inference while only incurring

a minimal and negligible loss in classification performance. In summary, our pro-

posed model achieves better computational efficiency than previous works when

tested on neuromorphic datasets and achieves very negligible degradation in ac-
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curacy. Moreover, according to Table 3.4 and 3.5, our model can also improve the

accuracy performance when we consider the trade-off between accuracy and com-

putational cost. When SkipSNN considers about 90% of updated time-step, it can

slightly increase accuracy (i.e., increase about 6% on N-MNIST and 0.7% on DVS-

Gesture). This observation is consistent with the conclusion of the first research

question.



4

Conclusion and Future Works

Sparse learning is a very active field of research which tackles a multitude of prob-

lems, from a variety of domains, including general supervised learning, object

recognition, image processing, and graph building for large scale semi-supervised

learning. Due to the advantages of sparse machine learning models, we have wit-

nessed the meteoric rise in popularity of sparse learning in recent years. The goal

of this dissertation is to develop methods that exploit sparsity to help recover the

underlying information in many real-world applications. In particular, our works

involve two different domain: sparse graph discovery of brain network, and spike

trains classification on resource-constrained devices.
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4.1 Conclusion

4.1.1 Brain Network Discovery

We first explored sparse graph representation techniques and proposed new mod-

els for different network discovery problems.

In Task 1, we posed the issue of brain network discovery involving the group

clustering with cohesive activities and the edge detection between those groups.

We discussed a series of methods that can be applied into the problem of brain net-

work discovery, however, to our knowledge no method can solve group clustering

and edge detection simultaneously as we expect. We compared two mainstream

models, including graphic lasso and non-negative matrix factorization, and then

proposed a new method which is a combination model them. We developed multi-

plicative update rules on our proposed model. Then through extensive controlled

experiments, we demonstrated that our proposed model shows more effectiveness

and robustness than comparison methods, even surpassing the model of pervious

work in the synthetic cases without the requirement of spatial continuity. In the

real fMRI brain scanning datasets from AHDH subjects, our proposed model also

shows a good interpretation of results due to the structural symmetry and spatial

continuity. These results are consistent with known earlier work which focuses

on these requirements. Therefore, we believe that our method can also be applied

in other domains when network structure is very complex, group discovery and

connectivity analysis are both needed for researchers to solve.

In Task 2, we defined the problem of mixture connectivity substructures be-

tween nodes in brain network discovery. To address this problem, we proposed
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embedding one of the current methods of estimating multiple Gaussian graphi-

cal models in the framework of Gaussian mixture modeling, then designed a new

regularization term, called mutual exclusivity regularization, to make sub-graphs

un-overlapped with each other. Through extensive controlled experiments, we

demonstrated that our proposed model MGL shows more effectiveness than other

baseline models, meanwhile, MGL shows more robustness than JGL, especially in

the consideration of small samples or noisy data sets. In addition, this conclusion

is also demonstrated in the experiment of real fMRI brain scanning datasets from

ADHD subjects. So we have reason to believe that, our method can also be applied

in other domains when network connectivity structure is very complex.

In Task 3, we defined the open problem of multi-state brain network discov-

ery, which is to infer various brain parcellations and connectivities across differ-

ent brain states. Previous works on brain network discovery derive an average

brain network based on the assumption that only one single activity state of the

brain generates the signals. However, according to recent studies in the area of

brain network, assuming single-state networks ignores a crucial of cognitive brain

networks. To better understand the temporally-changing functional network of

the brain, we proposed a novel model called MNGL, which can discover multi-

ple brain networks, including nodes and their connectivity based on on only unla-

beled fMRI scans. Through controlled experiments, we demonstrated that our pro-

posed model shows more effectiveness and robustness than other baseline models.

MNGL also shows expected and meaningful results on the real ADHD-200 fMRI

dataset. We thus have reason to believe that our method can be applied in multi-

state brain network for a better understanding of brain function and behavioral
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performance.

4.1.2 Spike Trains Classification

Next, we studied machine learning solutions for spike trains classification prob-

lem. In Task 4, we tried to design a novel algorithm for high-dimensional spike

train classification to be performed on energy-limited smart devices. To this end,

we proposed a novel sparse architecture for deep SNNs. Our sparsification is

achieved by reparametrizing original weights among neurons in the network and

then employing a sparsity regularization during optimization. In addition, we

also proposed an algorithm that can directly train sparse deep SNNs via back-

propagation. In empirical study, we choosed SCNN as the basic model and apply

our proposed sparsification procedure on it. To validate the effectiveness of our

proposed method, we compared our model with SCNN, M-SNN and stochastic

SNN. Our experimental results on both non-spiking (MNIST and CIFAR-10) and

neuromorphic datasets (N-MNIST and DVS-Gesture) show that we can achieve

significant speedup with little or no loss in classification accuracy. Furthermore,

compared with densely-connected SNNs, we also show through extensive exper-

iments that sparsification can result in better generalizability of the trained model

on small-size datasets.

To better deal with spike train classification, we need a model that follows the

design principle of performing intensive computation only when signals of inter-

est appear. However, current SNNs ignore the temporal-noise issue of spike trains,

which makes them computationally expensive and thus high power consumption

for spike trains classification. So in the last task, to overcome the limitation of tra-
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ditional SNNs on spike train tasks, we introduced an event attention mechanism

that enables SNNs to dynamically highlight useful signals of the original spike

trains. To this end, we proposed a novel model called SkipSNN. SkipSNN can

learn to mask out noise by skipping membrane potential updates, thereby decreas-

ing computational cost. In our empirical study, we compared SkipSNN against

fixed-skip SNNs and random-skip SNNs and an SNN version of SkipRNN. Us-

ing two key neuromorphic datasets, N-MNIST and DVS-Gesture, we found that

SkipSNN achieves significantly better computational efficiency and classification

accuracy.

4.2 Future Works

4.2.1 Brain Network Discovery

A common problem of the first three tasks is how to simplify the data to discover a

single or mixture underlying network that consists of brain nodes and connectivity

structure between those nodes. This network discovery problem naturally exists

in multiple domains including climate data, astronomical data and the focus of our

tasks, fMRI scans of human subjects.

We proposed CGLasso and its extension MNGL to deal with different complex

brain network problems in our works. Though CGLasso proposed in this disser-

tation can be applied in brain network discovery, it is not directly applicable to

spatiotemporal problems. There are both advantages and disadvantages to this

model. On the bright side, CGLasso presents much interpretable results by split-

ting some symmetric but discontinuous regions into a node. It makes sense for
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the symmetrical structure of the right and left brain. On the other side, however,

based on the objective function of this model, it can’t make sure to find out spa-

tially continuous nodes. To be interpreted as a cognitive brain network, the spatial

regions should be continuous as these allow explanations in terms of the anatom-

ical atlas. Although our experimental results on ADHD datasets show good spa-

tial continuity of brain nodes, our method cannot ensure that this continuity is an

inevitable consequence of the model itself. Therefore, we believe that s for our

proposed models such as CGLasso and NMGL which can yield many important

breakthroughs.

4.2.2 Spike Train Classification

Spike train classification has recently become an important topic in the machine

learning community, where each spike train is a binary event sequence with temporal-

sparsity of signals of interest. In our last two tasks, we focus on designing deep learn-

ing model with low power consumption for analyzing spike trains on resource-

constrained platforms.

In our tasks, we considered the spike trains that are converted from static/dynamic

image datasets in our experiments. However, the proposed model should general-

ize well to different original data types including but not limited to image or video

sequences. Therefore, before the spike train can be used in energy efficient models,

it typically undergoes a series of pre-processing steps for signal conversion.

In the last work, we focused on simulating turning on or off behaviors of the

network for efficient object detection. Our proposed model uses synchronisation

pulses that act as additional inputs to the controller, in order to provide the infor-



Ph.D. Dissertation – Hang Yin 118

mation of time. The final performance of our model is sensitive to the frequencies

of pulses. Thus, it may happen to miss some important timesteps, consequently,

resulting in an energy-efficient model with some loss of accuracy. There are two

potential ways to improve our model: First, our current method can only quickly

find signals of interest by skipping forthcoming timesteps and shortening the ef-

fective size of the computational graph. So a potential way to further improve

the accuracy is to enable the model to recall previous timesteps while skipping

forthcoming timesteps; Second, we can also consider training a separate but much

simpler network to learn whether to skip forthcoming timesteps.
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