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Abstract

Deep learning approaches for semantic segmentation have achieved tremendous

success through their ability to model long-range scene context. However, by training

for per-pixel classification, these methods fail to address the issue of class imbalance

in segmentation datasets. Our work approaches segmentation from a contextual

modeling standpoint by introducing novel subtasks as a human-provided hint or

an auxiliary training signal. We first validate candidate subtasks through human-

in-the-loop techniques to correct mistakes in segmentation, improving the mIoU of

UPerNet-ResNet50 from 42.05 to 48.70 without any trained parameters. We then

demonstrate the potential for multi-task learning of these subtasks with segmentation

through a study of task gradients and end-to-end training.
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Chapter 1

Introduction

The last decade has overseen a renaissance for computer vision. Large labeled

datasets and increased computing power have allowed deep learning methods to

surpass traditional computer vision techniques for various tasks, such as image

classification, object detection, and semantic segmentation.

Semantic segmentation predicts a class label for each pixel in the input image. It

boasts a wide range of applications, including medical imaging, autonomous driving,

and scene parsing. Each target domain brings a unique set of challenges: medical

imaging demands high-resolution precision, autonomous driving requires real-time

inference, and scene parsing requires long-range contextual modeling across a large

vocabulary of object classes. The focus of our work is on the latter task of scene

parsing. Figure 1.1 shows an example input image and semantic segmentation label

on the ADE20k [26] dataset.

Most recent work in scene parsing has focused on modeling long-range context.

Following ParseNet [12], many approaches [2,11,20,25] implicitly improve scene

modeling by expanding the receptive field of the network. However, these methods

train using a per-pixel classification loss, which may lead to class imbalance for less
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(a) Scene Image (b) Segmentation Label

Figure 1.1: Image of an indoor scene from ADE20k.

frequent classes and those that consist of fewer pixels. Furthermore, traditional

methods for handling class imbalance, such as weighted losses [1], are proven

ineffective on scene parsing datasets [19].

We seek to solve the issue of class imbalance for scene parsing by incorporating a

novel set of contextual subtasks into the network. These contextual subtasks contain

high-level information robust to class pixel frequencies, such as the list of classes

present in the image. We then explore two methods for integrating this context

with existing networks: first, we pass it to the network as a hint, such as from a

human annotator, and evaluate its efficacy using human-in-the-loop techniques to

correct trained segmentation networks. Second, we propose these sources of context

as secondary training objectives, thereby promoting the extraction of scene context

without the biases of per-pixel classification. We validate our hypothesis by studying

the gradient similarity for each task before modifying existing approaches to train

jointly for these subtasks with segmentation. In contrast to other multi-task works
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[20, 22], our auxiliary subtasks do not require additional annotations beyond the

original segmentation label or contain extra parameters. Thus our work is compatible

with most segmentation architectures, offering a promising alternative to the standard

per-pixel classification objective.

1.1 Outline

The structure of our work is as follows: Section 2 introduces relevant background on

semantic segmentation, human-in-the-loop deep learning, and multi-task learning

methods. Section 3 outlines the foundations for our methods, with sections 3.1

and 3.2 covering aspects for human-corrected segmentation and multi-task learning,

respectively. We share our experimental results in section 4, and discuss their impact

in section 5.
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Chapter 2

Background

We identify four key areas in literature for semantic segmentation. First, we review

advancements in segmentation architectures, followed by previous works for handling

class imbalance. We then introduce seminal works for human-in-the-loop and multi-

task segmentation.

2.1 Segmentation Architectures

Most recent work in segmantic segmentation is based on the Fully Convolutional

Networks (FCN) [14] architecture. The baseline FCN adapts image classification

networks (e.g. CNNs such as ResNet [8]) for dense prediction through a two-stage

encoder-decoder framework. The encoder stage extracts a feature representation

from the image using the backbone CNN without the final fully-connected layers.

This backbone is often pretrained on large-scale classification datasets such as

ImageNet [5], leveraging benefits of transfer learning. The decoder stage transforms

the feature representation to the resolution of the input image (i.e. through bi-linear

interpolation) to produce per-pixel classifications.

In this approach, the image context is gradually obtained by stacking convolution,
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striding, and pooling layers that widen the backbone network’s receptive field.

However, as found by Liu et al. in ParseNet [12], the empirical receptive field of the

FCN encoder is not large enough to capture global image context. This motivated

subsequent works to approach semantic segmentation through the lens of improving

the empirical receptive field to promote the use of global image context.

At the encoder stage, there are two common approaches for improving receptive

field. First, convolutions in the backbone may be replaced by dilated convolution

[21]. This is often accompanied by the removal of downsampling steps, resulting

in a higher spatial resolution and a larger receptive field. More recently, vision

transformers [6, 13], which capture long-range relations from the first layer, have

successfully replaced CNN backbones.

At the decoder stage, the most common way to improve the receptive field is

by building image feature pyramids. Feature Pyramid Network (FPN) [11] creates

multi-scale representations through the lateral connections between each spatial scale

of the encoder backbone. Pyramid Scene Parsing Network (PSPNet) [25] builds a

feature pyramid by applying pooling kernels of various sizes to the backbone feature

map, and concatenating the resulting representations. Other approaches, such as

OCNet [23] and CCNet [10] utilize attention mechanisms to aggregate wide-range

object context. The most prevalent architecture in recent benchmarks is UPerNet

[20], which combines techniques of FPN and PSPNet to aggregate context. Contrary

to previous methods, UPerNet is not dependent on dilated encoder backbones, which

results in faster and more memory-efficient training.
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2.2 Handling Class Imbalance

While methods that address the receptive field of the network have achieved notable

success in end segmentation accuracy, few works have tackled the contextual modelling

of scenes with attention to class imbalance. EncNet [24] re-weighs the final feature

map of the encoder with a separate branch trained with an image-level classification

loss. This task predicts whether there is at least one pixel present in the image for

each class. In contrast to segmentation loss, this image-level classification task treats

small and large objects equally. We compare each loss function in Equation 2.1.

Note that in segmentation, y consists of a single class label for each pixel, while in

classification y consists of a single vector for the entire image, and multiple classes

may be present.

Lseg(y, ŷ) =
1

W ×H × C
−

W∑
i=0

H∑
j=0

C∑
k=0

yk(i,j)log(ŷ
k
(i,j)) (2.1a)

Lcls(y, ŷ) = −
C∑

k=0

yklog(ŷk) (2.1b)

In 2022, MaskFormer [3] avoids per-pixel classification loss altogether by re-

framing semantic segmentation as a mask prediction and classification problem. This

method yielded the largest performance increase relative to per-pixel classification

methods on datasets with a large number of classes.

Other approaches have tried to alleviate class imbalance by re-weighing per-pixel

cross-entropy losses. The most common approach is known as inverse frequency

weighing, which weighs the loss for each class inversely to its frequency relative to

other images across the training set. A pioneer work in segmentation, SegNet [1],
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proposed median frequency balancing, which weighs pixels relative to the median

class’ proportion of pixels present in images. However, while effective on datasets

with fewer classes (≤ 20), this method is not common practice on large vocabulary

scene parsing datasets as it often harms overall accuracy [19]. One explanation is

that the large quantity of infrequent object classes obtain too much weight and tend

to be over-segmented. An example of this effect is shown in Figure 2.1.

(a) Target segmentation label. (b) Prediction of model trained
with cross entropy loss
(under-segmented).

(c) Prediction of model trained
with weighted cross entropy loss

(over-segmented).

Figure 2.1: Segmentation errors for models trained with weighted and unweighted
per-pixel cross entropy. Figure taken from [19].

A more recent approach [19] instead weighs losses using an online hard-mining

regime that weighs classes based on their recall performance rather than their dataset

frequency. While this technique obtains more robust results than previous methods,

they found that large vocabulary datasets do not benefit from this method, due to

the presence of many classes with low recall.

2.3 Human-in-the-loop

As recent advancements in semantic segmentation networks are prone to making

mistakes, especially on smaller object classes, a field of research for human-guided

segmentation has emerged. One possible application of a collaborative human-
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machine segmentation model is in fast annotation of new segmentation datasets, in

which a pretrained model provides an initial estimate of the segmentation label, and

the human refines the prediction. This can greatly improve the speed of per-pixel

annotation.

One recent application in semantic segmentation is GuideMe [17], which uses

natural-language hints from a human in order to correct segmentation predictions.

This method uses a Recurrent Neural Network (RNN) to encode the hint, which

then modulates the intermediate feature maps of the segmentation network.

For feature modulation, GuideMe uses a modification of Feature-wise Linear

Modulation (FiLM). Rather than predicting a scaling and bias term for each spatial

location of the feature map, X, FiLM uses a single scaling and bias term (denoted

as γs and γb) for each channel of the feature map (see Equation 2.3.1: FiLM). This

prevents overfitting, as vision models have dense feature representations which would

require millions of parameters to modulate element-wise (e.g. a 128x128x2048 feature

map in UPerNet corresponds to 67M parameters for element-wise reweighing). As

natural language hints to GuideMe [17] may provide spatial information (e.g. there

is a cloud in the top of the image), they add additional terms α and β to FiLM

which apply different weights at each location in the feature map (Equation 2.3.2:

GuideMe). Additionally, they add a vector of ones to the scaling term, such that the

feature modulation results in the identity mapping with zero-initialized weights.

X ′
c = γs

cXc + γb
c (2.3.1: FiLM)

X ′
w,h,c = (1 + γs

c + αw + βh)Xw,h,c + γb
c (2.3.2: GuideMe)
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2.4 Multi-task Segmentation

Another active branch of research in semantic segmentation leverages multi-task

learning to promote data efficient training and to learn a more robust representation

shared across tasks. Tasks commonly grouped with semantic segmentation include

depth estimation [16], surface normal prediction [18], and object part segmenta-

tion [20]. However, training for these tasks requires additional data beyond the

segmentation label, which may not be readily available.

The most straightforward design for multi-task learning is to share the same

backbone encoder across tasks, with separate decoder heads for each task. Thus each

decoder head is guided solely by its task-specific loss, while the encoder is guided by

all of the task losses. Even this simple approach can lead to significant improvements

[20,22] for segmentation, indicating the benefits of robust multi-task representations.
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Chapter 3

Proposed Methods

In this chapter we first introduce potential contextual subtasks and their immediate

application for human-in-the-loop correction (section 3.1), and then we propose a

framework for training jointly for these tasks and segmentation (section 3.2).

3.1 Contextual Subtasks

3.1.1 Image-Level Classification

The most straightforward task is image-level classification, or predicting the list

of objects present at all in the segmentation label, as used in EncNet [24]. This

takes the form of a vector (0, 1)C containing independent binary labels for each class.

This context informs the network of which labels it should add or remove from the

prediction.

We note that this context can be used to modulate the outputs of the network at

any hidden layer up to the final prediction space. However, as image-level classification

hints contain high-level information, we propose that the feature modulation should

occur at the end of the segmentation network. This intuition is also supported by
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Figure 3.1: FiLM Modulation Pipeline

the experimental results of GuideMe [17]. For simplicity, we consider only the

penultimate feature map (i.e. immediately preceding the classification layer), as this

contains linearly separable information on each class and contains more information

than the predicted logits.

To use the image-level classification vector to modulate intermediate features, we

must first align the channel dimensions of our provided context and the target layer.

To do so, we apply a multi-layer perceptron (MLP) to project our class vector from

RC to R2D, where D is the number of feature channels. The first D components of

our projected embedding are used as the scaling term for FiLM, and the remaining

D as the bias term. This pipeline is illustrated in Figure 3.1.

3.1.2 Sub-Region Classification

As image-level classification does not contain localized information, we propose

sub-region classification, which predicts an independent list of object classes for each

region. If we partition our image into k regions, then extract class vectors in RC for

each region, note that the result is a Rk×k×C context label. We project each spatial

location independently (i.e. 1x1 through 1x1 convolution), and apply the resulting

FiLM terms to each corresponding region. We note that sub-region classification
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is equivalent to segmentation when the number of regions k is equal to the image

resolution.

3.1.3 Distribution Information

While previous hints address the concern of what classes are present and where, they

do not indicate how many pixels belong to each label. We propose pixel distribution

learning as an extension to the previous classification task. Rather than giving a

binary label of whether or not each class is present, we provide the proportion of pixels

assigned to each class within the region. As with classification hints, we may project

the corresponding context vectors and modulate our features with FiLM. However,

we note that distribution knowledge is enough to correct predictions without trained

parameters: given segmentation output ŷWxHxC containing our softmax predictions

for each pixel in the image, we can extract the predicted pixel distribution for a

region through average pooling. For example, at the image level, we extract the

predicted distribution vector d̂ ∈ RC . We then offset our softmax distribution to by

the difference in d and d̂: ŷcorrected = ŷ + (d− ŷ).

3.1.4 Top-K Hints

For the application of human-in-the-loop segmentation, each task should possess

two fundamental properties: first, they should be simple to implement with various

architectures, and second, they should require little work from the human annotator.

Our proposed subtasks offer a trade-off of these qualities, as classification is

straightforward for human annotators, even at the sub-region scale, but requires

trained FiLM parameters to correct existing networks. Distribution information

requires much more detailed labelling from humans but may be used to adjust the

output of any network without any trained parameters.
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We note that in the case of distribution hints especially, the amount of effort

required to capture the proportion of pixels for each class may be prohibitively

difficult for annotators. Therefore, we propose a simplified top-k hint, in which the

annotator provides only the classification or distribution information for the k most

prominent classes in the scene. With top-k hints, our FiLM correction method is

unchanged, but in our parameter-free distribution correction, we set the correction

term for classes outside the top-k to be 0.

3.2 Multi-Task Semantic Segmentation

We begin our discussion of multi-task learning with several key observations about

the previous contextual subtasks. First, recall that image-level classification avoids

class imbalance caused by pixel frequencies, as all classes with ≥ 1 pixel are labelled

as present. If we partition our image for sub-region classification, we sacrifice some

of this pixel frequency invariance in our loss, as larger objects may be present in

multiple sub-regions, however this task is more similar to segmentation.

Furthermore, the task of sub-region classification possesses the qualities of a

recall-based loss weighting method. As discussed in [19], it is important for loss

weighting regimes to weigh classes based on their difficulty to predict, rather than

their prevalence in the training set. Likewise, the magnitude of our sub-region

classification loss is proportional to the networks ability to detect whether a class

is present at all in the region, rather than being based on its ability to predict

individual pixels.

With these factors in mind, we propose a simple hypothesis:for a given seg-

mentation architecture and target dataset, there exists a combination of sub-region

classification loss scales which outperform a network trained with standalone per-pixel
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classification loss.

3.2.1 Multi-Task Architectures

We begin our study of multi-task architectures by reviewing the task of per-pixel

classification. The prediction head for most FCN-based approaches is as follows:

given a penultimate feature map X ∈ RW
s
×H

s
×D, per-pixel classifications are obtained

by 1x1 convolution followed by bi-linear interpolation and softmax activations

ŷ ∈ RW×H×C . Therefore, each spatial location in the feature map contains linearly

separable information for the classes of corresponding pixels.

With this in mind, it is reasonable to assume that the average feature over a region

of the image should contain enough information to perform sub-region classification.

Therefore, our multi-task architecture for classification consists of average pooling

of the penultimate feature map to the desired sub-region scale, followed by a 1x1

convolution layer with logistic sigmoid activations. In our work, we share the weights

for 1x1 convolution layers between our classification and segmentation tasks. We

train with binary cross-entropy loss applied independently to each channel and spatial

location in the output.

The prediction for the pixel distribution subtask may be obtained through average

pooling across per-pixel softmax outputs. However, this training objective does not

have any advantages with respect to class imbalance compared to segmentation, and

therefore we do not include it in our multi-task training experiments.

We scale how much segmentation and classification loss with a single parameter

α, shown in Equation 3.1.

Lmtl(Lseg, Lcl, α) = (1− α)× Lseg + α× Lcl (3.1)
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We illustrate the architectures for multi-task learning in Figure 3.2.

(a) Baseline (b) Multi-Task

Figure 3.2: Baseline and Multi-task Loss Architectures.

3.2.2 Handling Conflicting Tasks

When training multiple tasks simultaneously, it is possible for the gradients of each

task to point in different directions. This occurrence of conflicting gradients has been

well-reviewed in literature. One potential problem of conflicting gradients is that

their combined gradient magnitude may be much smaller to that of the respective

tasks, leading to slower model training.

Several methods have been proposed to handle conflicting gradients. Du et al. [7]

set the gradient of auxiliary tasks to zero if the cosine similarity with the primary task

is negative. PCGrad [22] avoids removing conflicting gradients entirely by instead

removing the projection of the conflicting gradients from each other, thus ensuring

a positive cosine similarity. However, conflicting gradients may not be inherently

15



harmful. In our application, this might indicate that the per-pixel classification loss

moves our weights to be biased towards prominent classes, while the image-level

classification loss goes against this bias. Therefore, we do not take any measures to

remove negate the direction of conflicting gradients.

Additionally, to more direct comparison with standalone per-pixel classification

loss, we scale our multi-task loss to have the matching gradient magnitude as

segmentation. This allows us to attribute any changes in model performance solely

to the shifted gradient direction achieved through introducing additional tasks.

16



Chapter 4

Experiments and Results

We present our results as follows: in section 4.1 we review implementation details

for our experiments, in section 4.2 we describe our results for human-in-the-loop

segmentation for each contextual subtask. In section 4.3.2 we describe our results

for mutli-task training experiments, and explore the underlying mechanism behind

our model.

4.1 Experimental Setup

4.1.1 Dataset

We use the challenging ADE20k [26] scene parsing dataset in our experiments.

ADE20k consists of 20k training samples and 2k validation samples containing 150

unique object classes. As is common in literature, we use the mean intersection over

union (mIoU) metric, which is computed as the average intersection over union for

each label class, ignoring pixels labeled as “background”.

All of our experiments utilize the UPerNet [20] decoder head, due to its prevalence

in literature and training efficiency. For backbones, we explore both CNN and

17



Transformer-based models. Following public benchmarks [4], we use a ResNet50

variant with the first 7x7 convolution kernel replaced by 3 3x3 convolutions. We

additionally use the Swin-Tiny [13] for a reference transformer backbone. Pretrained

models come from the mmsegmentation [4] public benchmark.

ResNet-based models are trained using SGD with an initial learning rate of 0.01,

and momentum of 0.9. Swin-based models are trained using AdamW [15] with an

initial learning rate of 0.0001. All models are trained with a weight decay of 5e-4.

For data augmentation, we perform the standard random scale in the range [0.5, 2],

random horizontal flips, color jittering, and random cropping. We train all models

using crop sizes of 512x512. All mini-batch sizes are set to 16.

For human-in-the-loop segmentation, we train for a 5K iterations with a constant

learning weight. For end-to-end multi-task training, we train for 160K iterations

using a polynomial learning rate scheduler: LR = (1 - ( iter
itermax

)0.9).

When reporting mIoU, we list single-scale results without any test-time augmen-

tation.

4.2 Human-in-the-loop Segmentation

4.2.1 Classification Hints

For classification hints, we evaluate the mIoU improvements for a trained segmenta-

tion model with varying projection heads and sub-region scales.

Ablation Study for Projector Head. We evaluate the accuracy improvement

of our model given ground-truth image-level (k = 1) classification labels, with varying

projector head complexity. As shown in Table 4.1, we find that there is no benefit to

a more complex projection head, and thus our future experiments default to a linear

projection from RC ⇒ RD.
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Table 4.1: Performance improvement using ground-truth classification labels for
FiLM modulation with varying projection heads.

Backbone mIoU (s.s.) Projection Layers

ResNet50 42.05 N/A (baseline)
50.18 (+8.13) 1
50.22 (+8.15) 2

Sub-Region Classification. We additionally evaluate FiLM + classification

labels for region scales k > 1. Clearly, as k increases, our accuracy will increase, but

as shown in Table 4.2 we find that even coarser scales are effective at improving

model mIoU. This indicates that the signal from image-level classification is relevant

for end segmentation.

Table 4.2: UPerNet performance given sub-region class labels with FiLM modulation.

Backbone mIoU Region Scale

ResNet50 42.05 N/A (baseline)
50.18 (+8.13) 1x1
55.55 (+13.50) 2x2
59.31 (+17.26) 3x3

4.2.2 Distribution Hints

For distribution hints, we focus on the parameter-free correction method, and evaluate

the efficacy of parameter-free correction with varying top− k labels and sub-region

scales.

Top-k Distribution Hints. We show our results using top-k distribution labels for

varying k in Table 4.3. We note that even values of k as small as 3 improves model

mIoU.

Sub-region Distribution Hints. We evaluate the benefit for including distribution

hints for varying scale sub-regions, using k = 150. As expected, Table 4.4 shows
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Table 4.3: UPerNet performance given distribution labels with parameter-free cor-
rection.

Backbone mIoU Distribution K

ResNet50 42.05 N/A (baseline)
48.70 150 (all classes)
44.16 5
42.98 3
41.93 2

substantial benefits for finer-resolution hints.

Table 4.4: UPerNet performance given distribution labels for multiple sub-region
scales.

Backbone mIoU Distribution Scale

ResNet50 42.05 N/A (baseline)
48.70 1x1
56.28 2x2
61.66 3x3
70.97 6x6

An example segmentation correction given an image-level distribution hint is

shown in Figure 4.1. Even without local context, our method successfully redistributes

misclassified pixels to the desired label.

(a) Input image (b) Segmentation Label (c) Predicted
segmentation

(d) Corrected
Segmentation

Figure 4.1: Sample corrected segmentation using distribution hints.
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4.2.3 Discussion

Our results show the promise of both classification and distribution subtasks for

human-in-the-loop segmentation. Our methods may be integrated into any off-the-

shelf segmentation network, requiring at most the training of a single linear layer to

correct predictions. Additionally, we offer a convenient trade-off between annotator

workload and improved accuracy with sub-region and top-k alternatives for each hint.

However, our experiments assume perfect annotator accuracy, and do not explore

the behavior of each method when given inaccurate hints.

4.3 Multi-Task Segmentation

4.3.1 Analysis of Task Gradients

We first validate our multi-task learning hypothesis by examining the cosine similarity

of segmentation and varying sub-region classification tasks. We use a pretrained

(for segmentation alone) UPerNet-Swin model and take the gradient of the final

convolution layer. Figure 4.2 shows the gradient similarity of each task aggregated

over the first 500 samples. As anticipated, the classification gradients become more

similar to segmentation as we increase the number of sub-regions. Our classification

tasks are also consistently more similar to segmentation than inverse-frequency

weighted segmentation. This indicates that our classification loss carries a different

type of training signal than simple loss weighting.

4.3.2 End-to-end Training

Ablation Study for Loss Weight. We train UPerNet models with ResNet50

backbones with varying classification loss proportions. Our results in Table 4.5
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Figure 4.2: Gradient Cosine Similarity for Segmentation and Classification Tasks.
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indicate that α = 0.25 is empirically the best trade-off between segmentation and

classification loss.

Table 4.5: Performance vs. Loss Weight using UPerNet with ResNet50 backbone.
All models use image-level classification losses.

Loss Weight α MIoU

Baseline (α = 0) 42.05
α = 0.125 43.88
α = 0.25 44.61
α = 0.5 43.27

Method efficacy. We explore the benefit of our multi-task loss on both ResNet-

50 and Swin-T and compare to existing benchmarks. Notably, we find that our

multi-task ResNet-50 model outperforms a segmentation-only model with a deeper

ResNet-101 backbone. However, on the more recent Swin-T backbone, we find our

additional loss term has a slight negative effect on overall accuracy.

Table 4.6: Multi-loss performance on multiple backbones. All our models use a
α = 0.25. Baselines for segmentation-only models from mmsegmentation [4].

Model Backbone Loss MIoU

UPerNet [20] ResNet50 SL 42.05
ResNet101 SL 43.82
ResNet50 SL + CL 44.61 (+2.56)
Swin-T [13] SL 44.41
Swin-T SL + CL 43.99 (-0.43)

We propose two possible explanations for the discrepancy between ResNet and

Swin performance with multi-task learning. The first is that the transformer archi-

tecture is inherently better at capturing smaller object classes than convolution, and

therefore there is not as much to gain. Another possibility is that our multi-task

loss functions primarily as a form of regularization. Additional regularization may

benefit ResNet50 more than Swin, as the latter already utilizes techniques such as

stochastic depth [9].
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4.3.3 Discussion

Our work with multi-task learning is most similar to EncNet [24], which uses image-

level classification as a supervisory signal. However, our work differs by focusing on

the effect of the multi-task loss itself rather than architectural changes. While our

multi-task objective did not always yield improved accuracy, our study of gradients

indicates that more fine-grained sub-region scales may be more compatible with the

goal task of segmentation, and these objectives still provide benefits over standalone

segmentation for handling class imbalance.

One caveat of our multi-task loss is in the number of hyperparameters, including

the loss weight, strategy for handling conflicting gradients, and sub-region scales for

classification. The optimal value for the latter is also likely to depend on the size

and difficulty of object classes, requiring individual tuning for each segmentation

dataset.
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Chapter 5

Conclusion

5.1 Overview

In this work, we addressed the issue of class imbalance in semantic segmentation

through the introduction of contextual subtasks. We first evaluated the efficacy of our

sub-region classification and distribution hints as provided in a human-in-the-loop

setting. These hints offer a simple trade-off between annotation detail and model

performance. In addition, they can be easily integrated into existing architectures as

they require at most one linear layer to train. Without any additional parameters,

our distribution correction method improves the existing UPerNet-ResNet50 model

from 42.05 to 48.70 mIoU. We also demonstrate the potential of our classification

subtasks as a multi-task training objective through a comparison of task gradients.

Our initial experiments on UPerNet-ResNet50 enhanced the mIoU from 42.05 to

44.61 through the addition of the image-level classification task. We believe that this

method may also have success on more modern architectures with further exploration

of classification scales for the auxiliary task.

Our proposed methods for human-in-the-loop and multi-task learning are model-
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agnostic and widely applicable. In particular, our multi-task loss is a promising

alternative for per-pixel classification loss. We hope that our experiments provide a

foundation for future work in these areas.

5.2 Future Work

One immediate next step for both human-in-the-loop and multi-task methods is to

evaluate their performance on other datasets. As pointed out by [19], the overall

difficulty of ADE20k is so much greater than the other datasets that it is hard to

attribute model performance to any specific factor, e.g. class frequency. Future

studies may be able to examine the relationship between sub-region scales and

performance improvements for each class.

5.2.1 Human-in-the-loop

For human-in-the-loop applications, the next step is to study human-computer

interaction for our proposed contextual hints, notably our distribution hints. It is

important to measure how accurate the estimate of the distribution needs to be

and what coarseness of guidance (top− k, sub-region scale) is effective in practice.

One potential experiment could measure the time saved in annotating new images

by either starting from scratch, an existing model prediction, or an existing model

corrected with our distribution hints.

5.2.2 Multi-Task Learning

In our experiments, we fixed the magnitude of the multi-task gradient to understand

the effect of the gradient direction. Each trial should be repeated without this cor-

rection, as this may have limited our model. In practice, the difference in magnitude
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between our multi-task and original gradient could function as an intelligent adaptive

learning rate.

Future work should also explore different scales of classification subtasks. Our

original hypothesis was that a beneficial class loss scale exists (between k = 1 and

the image resolution), but our experiments only examined image-level classification

due to time constraints.
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