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Abstract

A random walk along the edges of a polyhedron consists of starting at a partic-
ular vertex, choosing one of its adjacent neighbors at random, stepping to that
neighbor, and then repeating the process until a specified vertex is reached. The
average number of steps it takes to get from a given vertex to another is called
the hitting time. For polyhedra with some degree of symmetry, there are groups
of vertices that have the same hitting time from a given starting vertex. These
groups form symmetrically equivalent layers within the polyhedron. This thesis
explores a number of novel approaches to calculating these layers based on Eu-
clidean distance, minimum length paths, and the number of edges of each face
of the polyhedron. After the hitting times have been found, the equivalent resis-
tance between any two vertices of the network is easily calculated. The physical
relevance of this problem is discussed, a comparison with other approaches to
solving it will be made and some open questions are mentioned.
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1 Introduction

A polyhedron is a three-dimensional object with two-dimensional polygonal
faces, straight edges, and point vertices. A random walk along the edges of
a polyhedron is essentially a list of not necessarily unique vertices of the polyhe-
dron. A random walk is formed by starting at one vertex, recording it, and then
choosing one of its adjacent neighbors at random to step to. Once a neighbor
has been chosen, it is also recorded, and then one of its adjacent neighbors is
chosen at random to step to. This Markov chain continues until some stop-
ping criterion is met. In this thesis, we will number the vertices and arbitrarily
choose vertex 1 to be the ending vertex. That is, every random walk will end
once it reaches vertex 1. Since polyhedra form connected networks of vertices,
every random walk is guaranteed to have finite length [1]. We call the average
number of steps it takes to get from vertex a to the ending vertex b the hitting
time H(a, b) [2], also called the first-hitting [3] or stopping time [4]. This av-
erage can be found by summing the products of the lengths of every possible
random walk with the probabilities that that random walk actually happens.
The hitting time of a vertex to itself, H(b, b), is equal to zero, since no steps
are required. Random walks have been studied since 1905 [5], and in 1982 a
list of almost 300 references was compiled [6], with countless papers since then.
Random walks on polygons and polyhedra are a newer topic still, and dozens
of papers on the subject have been published in recent years [7][8][9][10].

For polyhedra with some degree of symmetry, such as the Platonic and
Archimedean solids, there will be groups of vertices with identical hitting times
[11][12]. We call these groups symmetrically equivalent layers, and our main
goal was to develop a strategy to quickly and accurately determine these layers.
Our secondary goal was to then calculate the hitting times for all vertices in
each of the five Platonic solids and thirteen Archimedean solids. This problem is
identical to the problem of finding two-point resistances between arbitrary pairs
of vertices of these polyhedra, given that the edges are identical 1Ω resistors.
Resistors networks, involving either a finite or infinite number of resistors, have
been studied for years for their various applications [13]. Polyhedra also provide
examples of such networks, when their edges are modeled by identical resistors.
This problem was solved a while back in the case of the Platonic solids [14], but
this thesis aims to find a new method and to use it to obtain similar results for
all the Archimedean solids.

The Platonic solids are made of congruent regular polygons meeting at iden-
tical vertices [15]. For example, the cube is made of six squares, with three
squares meeting at each of the eight vertices, and the icosahedron is made of
twenty equilateral triangles, with five triangles meeting at each of the twelve
vertices. There are five Platonic solids, the tetrahedron, cube, octahedron, do-
decahedron, and icosahedron, and all are highly symmetric, due to their vertex-,
edge-, and face-transitivity. Full results for the hitting times and two-point re-
sistances of the Platonic solids are given in Appendix A.
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The Archimedean solids are composed of regular polygons meeting at identi-
cal vertices. These are much more varied than the Platonic solids, and can have
as few as 12 vertices or as many as 120. For example, the cuboctahedron is made
from six squares and eight equilateral triangles, with two squares and two trian-
gles meeting at each of the 12 vertices. There are thirteen Archimedean solids,
the truncated tetrahedron, cuboctahedron, truncated cube, truncated octahe-
dron, rhombicuboctahedron, truncated cuboctahedron, snub cube, icosidodeca-
hedron, truncated dodecahedron, truncated icosahedron, rhombicosidodecahe-
dron, truncated icosidodecahedron, and snub dodecahedron. The Archimedean
solids are not edge- or face-transitive, but they are vertex-transitive. The vertex-
transitivity of the Platonic and Archimedean solids means that the numerical
results obtained will be the same regardless of the ending vertex chosen. Full
results for the Archimedean solids have been recently presented [16], but this
thesis obtains the results by a rather different method and summarizes them in
Appendix B.

The motivation behind this research is multifaceted. From a purely theo-
retical standpoint, finding the hitting times and two-point resistances between
every pair of vertices on a variety of polyhedra is a very interesting problem.
It also has direct relationships to other random walk problems [17], which have
applications from diffusion [18] to polymer and solid-state physics [19][20] to
electrical networks [21]. Possibly the newest and most exciting application of
random walks is their connection to network analysis [22], a subtopic of graph
theory that ties into geographic information systems (GIS) [23] and social net-
works [24], among other topics.

The polyhedra studied in this thesis are interesting in their own right. Since
they are some of the most symmetric three-dimensional objects possible, any re-
search contributing to the wealth of knowledge about these objects is potentially
useful. Many of the solids investigated show up in chemistry and geology, such as
buckminsterfullerene [25], which is a truncated icosahedron, and faujasite [26],
which is a truncated octahedron. Additionally, some of the many variations on
the Rubik’s cube take the forms of various Platonic and Archimedean solids,
including the tetrahedron, octahedron, icosahedron, dodecahedron, truncated
tetrahedron, and rhombicuboctahedron. Due to their face-transitivity, some
of the Platonic and Catalan solids also appear as both common and rare dice
shapes, such as the rhombic dodecahedron and rhombic triacontahedron used
as 12 and 30-sided dice, respectively.

The organization of this thesis is as follows. Chapter 2 discusses the rules
required to split the vertices of a polyhedron into symmetrically equivalent lay-
ers. Chapter 3 gives the equation for calculating hitting times and examines
two examples. Chapter 4 extends these methods to two of the Catalan solids,
the rhombic dodecahedron and rhombic triacontahedron. Chapter 5 discusses
possible avenues of future research. Finally, Chapter 6 provides an explanation
for the MATLAB code given in Appendix C.
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2 Symmetrically Equivalent Layers

The symmetrically equivalent layers of a polyhedron are formed by groups of
vertices that have identical hitting times relative the same ending vertex b. We
denote these layers by a set {an} such that H(ai, b) is the same for all ai ∈ {an}.
Vertices in the same layer must obey two rules. These rules have been devel-
oped experimentally throughout the course of this thesis. They accurately split
the vertices of every Platonic and Archimedean solid into layers with identical
hitting times. After transforming hitting times into two-point equivalent re-
sistances, these results were corroborated with other sources [11][16]. Though
these rules have only been confirmed for the Platonic and Archimedean solids,
we conjecture that these rules would also accurately split the vertices of the
Catalan and Johnson solids into layers, as discussed in Chapter 5. As far as
we can tell, there are no other published results for the Catalan and John-
son solid to compare with, other than the rhombic dodecahedron and rhombic
triacontahedron discussed in Chapter 4.

2.1 Rule 1

The first rule is that vertices in the same layer must be the same Euclidean
distance from the ending vertex. The dot product between the coordinates of
each pair of vertices can be used as a substitute for the distance as long as the
vertices are all equidistant from the origin. In this case, the dot product will
be a stand-in for the cosine of the angle between the vectors going from the
origin to the two vertices in question. Since this angle must be between 0 and
π, the cosine will be a strictly decreasing function, going from 1 for the dot
product of a vertex with itself to −1 for the dot product of a vertex and its
antipode (if the antipode exists). In this way, all of the vertices of a polyhedron
may be arranged in order of distance from the ending vertex. This rule is not
strictly necessary, as Rule 2 would split all of the vertices accurately on its own,
but Euclidean distance provides a good initial splitting to get an idea of which
vertices are closer or farther away.

This rule is enough to fully determine the layers of all five Platonic solids.
If the coordinates of the cube are formed by the eight possible combinations of
1 and -1 for each of the three coordinates, then the dot products, hitting times,
and two-point resistances are shown in Table 1. It is clear that there are four
layers within the cube: the ending vertex, its neighbors, their neighbors, and the
antipode of the ending vertex. These results can be confirmed by a random walk
statistical model [27] or by a physical model with identical resistors [11][12]. For
example, the nonzero equivalent resistances of the cube are 7/12Ω, 3/4Ω, and
5/6Ω.
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Figure 1: Cube

Vertex Dot Product with Vertex 1 Hitting Time Resistance (Ω)
1 3 0 0
2 1 7 7/12
3 1 7 7/12
4 1 7 7/12
5 -1 9 3/4
6 -1 9 3/4
7 -1 9 3/4
8 -3 10 5/6

Table 1: Layers of Cube by Dot Product

Just using the dot product, however, is not always enough to uncover all
layers. For example, the truncated tetrahedron, shown in Figure 2, will not
provide accurate layers with just the use of the dot product. For any vertex, its
three neighbors are equal distances away, but are clearly not equivalent to each
other. In the figure, vertex 1 is adjacent to vertices 2, 3, and 10, but the hitting
time between either of vertices 2 and 3 and vertex 1 is 51/5 whereas the hitting
time between vertices 10 and 1 is 63/5.
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Figure 2: Truncated Tetrahedron

Using the dot product, the vertices would be sorted into the layers given in
Table 2, whereas the vertices sorted by hitting time are shown in Table 3. It
can clearly be seen that the dot product rule does not accurately split vertices
2, 3, and 10. Another rule must be added to avoid this undersplitting of layers.

Vertex Dot Product with Vertex 1 Hitting Time Resistance (Ω)
1 11 0 0
2 7 51/5 17/30
3 7 51/5 17/30
4 -9 99/5 11/10
5 -5 96/5 16/15
6 -1 87/5 29/30
7 -9 99/5 11/10
8 -1 87/5 29/30
9 -5 96/5 16/15
10 7 63/5 7/10
11 -1 87/5 29/30
12 -1 87/5 29/30

Table 2: Layers of Truncated Tetrahedron by Dot Product

Layer Number Vertices in Layer Hitting Time Resistance (Ω)
1 1 0 0
2 2, 3 51/5 17/30
3 10 63/5 7/10
4 6, 8, 11, 12 87/5 29/30
5 5, 9 96/5 16/15
6 4, 7 99/5 11/10

Table 3: Hitting Times and Resistances of Truncated Tetrahedron
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2.2 Rule 2

The second rule is that vertices in the same layer must have shortest paths of the
same length to the ending vertex, and that those shortest paths must comprise
the same types of edges. This might seem like two rules, but it is really the
second part that separates the vertices into layers. The shortest path length,
also known as geodesic distance, is the minimum number of steps it takes to get
from a vertex to the ending vertex. For example, looking back at the cube in
Figure 1, the shortest paths lengths are given in Table 4. As can be seen, this
rule confirms what we already knew about the layers of the cube.

Vertex Shortest Path Length Possible Path
1 0 N/A
2 1 2→1
3 1 3→1
4 1 4→1
5 2 5→3→1
6 2 6→4→1
7 2 7→4→1
8 3 8→6→2→1

Table 4: Layers of Cube by Shortest Path Length

Edge types are found by looking at the sizes of the two polygonal faces that
each edge separates. For the Platonic solids, edge types are not relevant because
all of the faces are identical, and therefore all of the edges are the same type.
For the Archimedean solids, however, the edge types do matter, since not all
of the faces are identical. The truncated tetrahedron, for example, has both
triangular and hexagonal faces, so we need to create a categorization of all 18
edges, as shown in Table 5. The edges are listed by lower vertex index and then
higher vertex index, and the faces are listed by smaller face and then larger face.
Of the 18 edges, 12 are between a triangle and a hexagon, and six are between
two hexagons.
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First Vertex Second Vertex First Face Second Face
1 2 Triangle Hexagon
1 3 Triangle Hexagon
1 10 Hexagon Hexagon
2 3 Triangle Hexagon
2 8 Hexagon Hexagon
3 6 Hexagon Hexagon
4 5 Triangle Hexagon
4 6 Triangle Hexagon
4 7 Hexagon Hexagon
5 6 Triangle Hexagon
5 11 Hexagon Hexagon
7 8 Triangle Hexagon
7 9 Triangle Hexagon
8 9 Triangle Hexagon
9 12 Hexagon Hexagon
10 11 Triangle Hexagon
10 12 Triangle Hexagon
11 12 Triangle Hexagon

Table 5: Edge Types of Truncated Tetrahedron

We then need to consider all shortest paths from each vertex to the ending
vertex, and look at the edge types that are used in each of those paths. This full
accounting is shown in Table 6, and shows how vertices 2 and 3 are in a different
layer than vertex 10. Each layer can be identified by matching up vertices with
identical edge type paths. This task is trivial for most layers, but for Layer 5,
which includes vertices 5 and 9, we must remember to account for both of the
shortest paths from each vertex to the ending vertex. They both have a path
that includes two (3,6) edges and one (6,6) edge and a path that includes one
(3,6) edge and two (6,6) edges. Since the number and types of the edges are
identical, we know that vertices 5 and 9 are in the same layer. The order that
the edge types appear in has no effect on the layer splitting, which we can tell
by looking at vertices 6, 8, 11, and 12. The paths from vertices 6 and 8 to vertex
1 take a (6,6) edge and then a (3,6) edge, but the paths from vertices 11 and 12
to vertex 1 take a (3,6) edge and then a (6,6) edge. Despite the edges appearing
in a different order, all four vertices have the same hitting time and are in the
same layer. This result is also not proven in general, but holds for all Platonic
and Archimedean solids, and we conjecture that it also holds for the Catalan
and Johnson solids.
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Vertex Layer Path Length Paths Edge Types
1 1 0 N/A N/A
2 2 1 2→1 (3,6)
3 2 1 3→1 (3,6)
4 6 3 4→6→3→1 (3,6)→(6,6)→(3,6)
5 5 3 5→6→3→1 (3,6)→(6,6)→(3,6)

5→11→10→1 (6,6)→(3,6)→(6,6)
6 4 2 6→3→1 (6,6)→(3,6)
7 6 3 7→8→2→1 (3,6)→(6,6)→(3,6)
8 4 2 8→2→1 (6,6)→(3,6)
9 5 3 9→8→2→1 (3,6)→(6,6)→(3,6)

9→12→10→1 (6,6)→(3,6)→(6,6)
10 3 1 10→1 (6,6)
11 4 2 11→10→1 (3,6)→(6,6)
12 4 2 12→10→1 (3,6)→(6,6)

Table 6: Shortest Paths of Truncated Tetrahedron

2.3 Bordering Faces

The two rules described above are enough to properly split the vertices of every
Platonic solid and 11 of the 13 Archimedean solids. However, to split the vertices
of the snub cube and snub dodecahedron, there is one more wrinkle that must
be considered. The snub cube, shown in Figure 3, has 32 triangular faces and
six square faces. Eight of the triangles are like the face formed by vertices 1, 5,
and 9, and are bordered by three other triangles, and 24 of the triangles are like
the face formed by vertices 1, 9, and 15, and are bordered by two triangles and a
square. This distinction between identically-sized faces with different bordering
faces must be taken into account.

Figure 3: Snub Cube
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Instead of just calling faces by the polygon that they are, we denote them
by a decimal, where the whole number portion is the number of sides of the
face, and each digit after the decimal point is the size of a bordering face. For
example, there are three types of faces on the snub cube: eight triangles denoted
by 3.333, 24 triangles denoted by 3.334, and six squares denoted by 4.3333. The
face sizes after the decimal are arranged in increasing order for consistency. The
five edges coming out of vertex 1 are then shown in Table 7. With just Rule 1,
all five of the neighbors of vertex 1 would be in the same layer. After including
Rule 2 but disregarding bordering faces, vertices 5, 9, and 18 would be in a
layer (separated from vertex 1 by a triangle-triangle edge), and vertices 14 and
15 would be in a different layer (separated from vertex 1 by a triangle-square
edge). Accounting for bordering faces, we can see that vertices 5 and 9 are
in a different layer than vertex 18. Before accounting for bordering faces, the
snub cube would appear to only have 15 layers, but this turns out to be an
undersplitting, as there are actually 17 unique hitting times, including the layer
with just vertex 1. Additionally, though the snub cube and snub dodecahedron
come in two chiral forms (the mirror images of these polyhedra look different
than their non-mirrored forms), the results are identical whether the “right-
handed” or “left-handed” version is used.

First Vertex Second Vertex First Face Second Face
1 5 3.333 3.334
1 9 3.333 3.334
1 14 3.334 4.3333
1 15 3.334 4.3333
1 18 3.334 3.334

Table 7: Selected Edge Types of Snub Cube

Once the vertices of a polyhedron have been split into the proper layers,
the hitting times and two-point resistances can then be calculated much more
efficiently, as shown in the next chapter.
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3 Calculating Hitting Times

The method that this thesis will use to turn layers into hitting times is based
on a generalization of a previously presented equation [2]. This equation makes
intuitive sense, as the hitting time from a vertex a to another vertex b is equal
to the average of the hitting times to b of the neighbors of a, plus the one step
it takes to get from a to any of those neighbors v.

H(a, b) = 1 +
1

deg(a)

∑
v∈N(a)

H(v, b) (1)

This equation is very useful, and on its own would allow us to calculate
the hitting times for every vertex in a polyhedron. To do so, simply find the
adjacency matrix of the vertices and then solve the resulting system of equations,
taking into account that H(b, b) = 0. However, if we want to take advantage
of the layer splitting of the vertices, then we must generalize this equation.
Equation 2, derived during the course of this thesis, has the same structure as
Equation 1, but accounts for every vertex in a given layer. The hitting time
from any one of the vertices ai in the layer {an} to a vertex b is equal to the
average of the hitting times from all of the neighbors vi of all of the vertices
ai in the set {an} to b, plus the one step it takes to get from ai to vi. Since
Equation 1 is valid for all connected graphs [2], we conjecture that Equation 2
is also valid for all connected graphs where a layer structure exists. It certainly
is valid for all Platonic and Archimedean solids, and we conjecture that it is
also valid for the Catalan and Johnson solids.

H({an}, b) = 1 +
1∑

ai∈{an} deg(ai)

∑
ai∈{an}

∑
vi∈N(ai)

H(vi, b) (2)

3.1 Example: Cube

Using Equation 1, the cube would have the following matrix equation for the
hitting times of every vertex except for vertex 1 (which by definition has a
hitting time of zero):



1 0 0 −1/3 −1/3 0 0
0 1 0 −1/3 0 −1/3 0
0 0 1 0 −1/3 −1/3 0

−1/3 −1/3 0 1 0 0 −1/3
−1/3 0 −1/3 0 1 0 −1/3
0 −1/3 −1/3 0 0 1 −1/3
0 0 0 −1/3 −1/3 −1/3 1





H(2, 1)
H(3, 1)
H(4, 1)
H(5, 1)
H(6, 1)
H(7, 1)
H(8, 1)


=



1
1
1
1
1
1
1


Taking advantage of the layer structure seen in Tables 1 and 4, and Equation

2, we can simplify the calculation from a 7x7 system down to a 3x3 system, which
is much faster to solve:
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 1 −2/3 0
−2/3 1 −1/3
0 −1 1

H({2, 3, 4}, 1)
H({5, 6, 7}, 1)

H(8, 1)

 =

11
1


Both systems yield the same result, shown in Table 8 below. If we desired

to find the equivalent resistance between any two vertices, modeling the edges
as identical 1Ω resistors, we would divide the hitting times by the total number
of edges. This is an experimental result that we discovered by comparing the
calculated hitting times to published equivalent resistances. This equation holds
for all Platonic and Archimedean solids, but must be modified for polyhedra
with vertices of different degrees, as discussed in Chapter 4. We then find that
the equivalent resistance on a cube between adjacent vertices is 7/12Ω, between
vertices a face diagonal apart is 3/4Ω, and between antipodal vertices is 5/6Ω.

Layer Vertices Hitting Time Resistance (Ω)
1 1 0 0
2 2,3,4 7 7/12
3 5,6,7 9 3/4
4 8 10 5/6

Table 8: Hitting Times and Resistances of Cube

There is another way to derive this matrix equation, stemming from Markov
transition matrices. Specifically, the random walks that we are performing form
absorbing Markov chains, where once a certain state is reached (the ending
vertex), it is impossible to leave that state. The entries of the transition matrix,
Pij , give the probability of stepping from state i to state j. These probabilities
are easy to find in our case, and the matrix is closely related to the layer matrix
discussed in earlier research [7][11][12]. The entries in the layer matrix, Lij , are
the average number of vertices in layer j connected to each vertex in layer i.
Due to how the layers are divided, this might not be a whole number. To find
the transition matrix, each row of the layer matrix must be normalized relative
to the 1-norm, and then the row and column containing the absorbing state
must be deleted [28]. For example, the layer and transition matrices for the
cube are shown below:

L =


0 3 0 0
1 0 2 0
0 2 0 1
0 0 3 0

 P =

 0 2/3 0
2/3 0 1/3
0 1 0


To find the actual hitting times, we must then solve the matrix equation

(I −P )H = 1, where I is the identity matrix, H is the column vector of hitting
times, and 1 is the column vectors of ones [28]. The matrix equation for the
cube is the same one that Equation 2 provides.
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3.2 Example: Truncated Tetrahedron

We see a similar level of system simplification for the truncated tetrahedron.
Using Equation 1, the matrix equation is:



1 − 1
3 0 0 0 0 − 1

3 0 0 0 0
− 1

3 1 0 0 − 1
3 0 0 0 0 0 0

0 0 1 − 1
3 − 1

3 − 1
3 0 0 0 0 0

0 0 − 1
3 1 − 1

3 0 0 0 0 − 1
3 0

0 − 1
3 − 1

3 − 1
3 1 0 0 0 0 0 0

0 0 − 1
3 0 0 1 − 1

3 − 1
3 0 0 0

− 1
3 0 0 0 0 − 1

3 1 − 1
3 0 0 0

0 0 0 0 0 − 1
3 − 1

3 1 0 0 − 1
3

0 0 0 0 0 0 0 0 1 − 1
3 − 1

3
0 0 0 − 1

3 0 0 0 0 − 1
3 1 − 1

3
0 0 0 0 0 0 0 − 1

3 − 1
3 − 1

3 1





H(2, 1)
H(3, 1)
H(4, 1)
H(5, 1)
H(6, 1)
H(7, 1)
H(8, 1)
H(9, 1)
H(10, 1)
H(11, 1)
H(12, 1)


=



1
1
1
1
1
1
1
1
1
1
1


However, taking advantage of the layer structure in Table 6, we can simplify

from a 11x11 system to a 6x6 system:


2/3 0 −1/3 0 0
0 1 −2/3 0 0

−1/6 −1/6 5/6 −1/3 −1/6
0 0 −2/3 1 −1/3
0 0 −1/3 −1/3 2/3




H({2, 3}, 1)
H(10, 1)

H({6, 8, 11, 12}, 1)
H({5, 9}, 1)
H({4, 7}, 1)

 =


1
1
1
1
1


We now see our first instance of diagonal entries not all being equal to one.

This occurs when vertices in a layer are adjacent, which did not happen with
the cube. The cube is actually the exception here, as it is one of only four
Platonic and Archimedean solids where no vertices in a layer are ever adjacent.
The other three are the truncated octahedron, the truncated cuboctahedron,
and the truncated icosidodecahedron, all of which are Archimedean solids.
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Regardless of which matrix equation we solve, we will obtain the same solu-
tion, which is shown in Table 9 below.

Layer Number Vertices in Layer Hitting Time Resistance (Ω)
1 1 0 0
2 2, 3 51/5 17/30
3 10 63/5 7/10
4 6, 8, 11, 12 87/5 29/30
5 5, 9 96/5 16/15
6 4, 7 99/5 11/10

Table 9: Hitting Times and Resistances of Truncated Tetrahedron

For completeness, the layer and transition matrices for the truncated tetra-
hedron are shown below. The non-integer values of the layer matrix indicate
that only some of the vertices in layer 4 are adjacent to the vertices in layers 2,
3, 4, and 6.

L =


0 2 1 0 0 0
1 1 0 1 0 0
1 0 0 2 0 0
0 1/2 1/2 1/2 1 1/2
0 0 0 2 0 1
0 0 0 1 1 1

 P =


1/3 0 1/3 0 0
0 0 2/3 0 0

1/6 1/6 1/6 1/3 1/6
0 0 2/3 0 1/3
0 0 1/3 1/3 1/3


Using the layer structure to reduce the size of the system works wonders

for all of the Platonic and Archimedean solids. It reduces the number of equa-
tions by at least half for every studied polyhedron except for five: the truncated
octahedron, truncated cuboctahedron, truncated icosidododecahedron, and the
snub cube and snub dodecahedron. Even for those five solids, the layer method
still helps tremendously. The number of vertices and layers for each of the Pla-
tonic and Archimedean solids, as well as the percent reduction in the number
of rows of the matrix equation, are given in Table 10. The percent reduction is
calculated by (number of rows in original matrix - number of rows in reduced
matrix) / (number of rows in original matrix). The truncated icosidodecahe-
dron is by far the most complicated Archimedean solid. It has 120 vertices,
double the number of any other Archimedean solid. Solving for the hitting
times directly using Equation 1 would result in having to solve a 119x119 ma-
trix equation, made even more difficult if exact arithmetic is used. Once the 76
layers have been found, however, Equation 2 can be used to set up the 75x75
matrix equation, a reduction in size of almost 37%. This reduction is even more
impressive when considering that the best algorithms for matrix inversion have
complexity O(n2.376) [29], so even a modest reduction in size allows us to reap
large computational benefits.
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Solid Name # Vertices # Layers Percent Reduction
Tetrahedron 4 2 67%
Cube 8 4 57%
Octahedron 6 3 60%
Dodecahedron 20 6 74%
Icosahedron 12 4 73%
Truncated Tetrahedron 12 6 55%
Cuboctahedron 12 5 64%
Truncated Cube 24 12 52%
Truncated Octahedron 24 13 48%
Rhombicuboctahedron 24 12 52%
Truncated Cuboctahedron 48 34 30%
Snub Cube 24 17 30%
Icosidodecahedron 30 9 72%
Truncated Dodecahedron 60 24 61%
Truncated Icosahedron 60 24 61%
Rhombicosidodecahedron 60 24 61%
Truncated Icosidodecahedron 120 76 37%
Snub Dodecahedron 60 38 37%

Table 10: Reduction in Size of Matrix Equations
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4 Further Results

In addition to the Platonic and Archimedean solids, we can also apply the layer
method to other partially symmetric polyhedra. The Catalan solids are the
dual polyhedra of the Archimedean solids. Eleven of the 13 Catalan solids have
edges that are not all the same length, but two of them are easy to treat. The
rhombic dodecahedron and rhombic triacontahedron, the duals of the cuboc-
tahedron and icosidodecahedron, are edge-transitive, so we can use the layer
method on them. Though the edges do not present any problems, the vertices
do. Since the cuboctahedron and icosidodecahedron have faces of various sizes,
the vertices of their duals have vertices of different degrees. This means that we
need to find two tables for each solid, one for each degree of vertex.

The Catalan solids also display a key feature of hitting times, which is that
they are not always symmetric. In other words, H(a, b) is not always equal to
H(b, a). This can be seen in Figure 4, where it takes 15 steps on average to
get from a vertex of degree 4 to any of its degree 3 neighbors, and in Figure
5, where it takes 11 steps on average to get from a vertex of degree 3 to any
of its degree 4 neighbors. The diagrams also show that it takes 21 steps to get
from a degree 4 vertex to a degree 3 vertex that is three steps away, but that it
takes 17 steps to accomplish the opposite feat. Because of this asymmetry, the
hitting times between vertices of different degrees must be averaged to find the
two-point resistances [11]. In equation form, this looks like

R(a, b) = R(b, a) =
H(a, b) +H(b, a)

2E
(3)

In words, this means that the equivalent resistance between two vertices is
equal to the average of the hitting times between the vertices divided by the
total number of edges. This equation holds for every polyhedron studied in this
thesis, and we conjecture that it continues to hold for the rest of the Catalan
and Johnson solids. It is usually the case that H(a, b) = H(b, a), causing the
equivalent resistance between two vertices to be directly scaled from the hitting
time.

Layer # Vertices Hitting Time Resistance (Ω)
2 3 15 13/24
3 3 18 3/4
4 3 20 5/6
5 3 21 19/24
6 1 22 11/12

Table 11: Rhombic Dodecahedron, Degree 3
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Figure 4: Rhombic Dodecahedron Layers, Degree 3

Layer # Vertices Hitting Time Resistance (Ω)
2 4 11 13/24
3 4 15 5/8
4 4 17 19/24
5 1 18 3/4

Table 12: Rhombic Dodecahedron, Degree 4

Figure 5: Rhombic Dodecahedron Layers, Degree 4
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The hitting times and two-point resistances for the rhombic triacontahedron
can be seen in Table 13 and Figure 6 for ending vertices of degree 3 and in
Table 14 and Figure 7 for ending vertices of degree 5. Similar to the rhombic
dodecahedron, the diagrams show that it takes 39 steps on average to get from a
degree 5 vertex to a degree 3 vertex if they are neighboring, either 53 or 56 steps
if they have a geodesic of 3, and 60 steps if they have a geodesic distance of 5.
The reverse paths take 23, 37, 40, and 44 steps on average, respectively. There
are two hitting times for vertices that are three steps apart because there are
two different symmetries, as can be seen on a physical rhombic triacontahedron.

Layer # Vertices Hitting Time Resistance (Ω)
2 3 39 31/60
3 3 134/3 67/90
4 6 151/3 151/180
5 3 53 3/4
6 3 56 4/5
7 6 172/3 43/45
8 3 179/3 179/180
9 3 60 13/15
10 1 61 61/60

Table 13: Rhombic Triacontahedron, Degree 3

Figure 6: Rhombic Triacontahedron Layers, Degree 3
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Layer # Vertices Hitting Time Resistance (Ω)
2 5 23 31/60
3 5 33 11/20
4 5 37 3/4
5 5 40 4/5
6 5 42 7/10
7 5 44 13/15
8 1 45 3/4

Table 14: Rhombic Triacontahedron, Degree 5

Figure 7: Rhombic Triacontahedron Layers, Degree 5
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5 Conclusion and Open Questions

The problem of finding the hitting times and two-point resistances between ver-
tices of the Platonic and Archimedean solids has been fully solved. In addition
to the methods presented in this thesis, there are at least two other methods to
calculate the same results for these solids, and there may be more [7][11][12][16].
It is also possible that a better method for finding layers might exist.

A more fruitful area of future research might also be to extend the currently
existing methods to the Johnson solids. The Johnson solids are a set of 92 con-
vex polyhedra with regular polygons for faces. An added difficulty compared to
the Platonic and Archimedean solids is that the vertices of the Johnson solids
do not all have the same degree. This means that an arbitrary vertex cannot
be chosen to be the universal ending vertex for every random walk, but that a
representative vertex of each degree must be considered.

It would also be interesting, though much harder, to extend these methods
to the rest of the Catalan solids. The hitting times between pairs of their ver-
tices will be more difficult to calculate for two main reasons. The first reason
is the same vertex degree issue as the Johnson solids. The second reason is
that, for all of the Catalan solids other than the rhombic dodecahedron and
rhombic triacontahedron, not all of the edges of each polyhedron are the same
length. The way that the adjacency matrices of the polyhedra are calculated
would have to be rewritten, as right now the code in Appendix C.1 relies on
adjacent vertices being equidistant. Additionally, future researchers would have
to consider whether to adjust the chances of a random walk stepping to any of
the neighbors of the current vertex. For the equivalent resistance problem, this
would correspond to scaling the 1Ω resistors according to the length of the edge.
The easiest solution would be to keep all probabilities equal (and all resistors
equal to 1Ω), but this is a choice that would have to be made. On the bright
side, all the faces of each Catalan solid are congruent, so each edge (of the same
length) will be the same type, since they all separate the same size faces.

In terms of direct improvements to the work in this thesis, there are sev-
eral possibilities. First, as discussed in Chapter 6, the facefinder.m MATLAB
function relies on having the coordinates of the vertices to find faces and cycles.
Additionally, the current implementation of Rule 1 also uses coordinates to find
dot products. It would be useful to rewrite these functions to not require the
use of coordinates. If this improvement is made, then the adjacency matrix of a
graph is all that would be needed to find the hitting times and equivalent resis-
tances. This would allow the methods developed in this thesis to be generalized
beyond polyhedra with published coordinates. Additionally, several of the re-
sults presented in this thesis are purely experimental, such as the layer-based
hitting time equation and the equation to convert hitting times to equivalent
resistances (Equations 2 and 3, respectively). A future researcher might find it
useful to prove these results directly.
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6 Code Explanation

This section will provide an explanation of the MATLAB code contained within
Appendix C. After generalizing the hitting time equation, writing this code was
the most significant portion of this project, and it was the main tool used in
obtaining the results. In addition to the raw code, there are descriptive com-
ments on almost every line of the functions.

The first function, adjacency.m, is shown in Appendix C.1. The purpose of
this function is to take a set of coordinates of a polyhedron and construct the
adjacency matrix of the graph. It relies on the edges of the polyhedron being of
equal length, with two vertices being adjacent if they are the smallest distance
between any pair of vertices apart. The dot product for pairs of vertices is
used as a more efficient substitute for calculating the Euclidean distance. This
method relies on the vertices being equidistantly placed about the origin. In
that case, the dot product between a vertex and itself will always be the great-
est possible value, and the dot product between a vertex and one of its closest
neighbors will be the second greatest possible value. A tolerance of 10−10 is
used to account for input and rounding error. MATLAB keeps precision up
to about 10−16, so a tolerance of 10−10 is plenty to account for error without
introducing extraneous adjacencies.

The next function, facefinder.m, is shown in Appendix C.2. The purpose of
this function is to identify the faces of the given polyhedron by returning the
indices of the vertices in each face. One of the inputs is nodedepth, a vector that
is calculated in the findlayers.m function, where this function is called. Another
optional input is Fs, a vector of the face sizes of the polyhedron. This input is
only necessary for polyhedra with multiple face sizes, which is every polyhedron
except the Platonic solids. Facefinder works by looping through the vertices
until it finds a vertex that is at least as deep as two of its neighbors, where
depth is defined by geodesic distance to the ending vertex, usually vertex 1. At
that point, all other vertices are tested to see if they are in the same plane as
those three vertices. If the number of vertices found in the plane is a face size
of the polyhedron, then the vertices are put into cyclic order and added to the
cycles output. The vertices are also sorted into ascending order and added to
the faces output. This function uses the padarray function, which comes from
the Image Processing Toolbox that MATLAB offers. The padarray function is
not strictly necessary, and could be rewritten, but this was the most concise
way to accomplish the task of padding arrays with zeros.
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As an example of how facefinder.m works, we observe the octahedron, shown
in Figure 8. The function starts by looking at vertex 1, but finds that it cannot
be the deepest in a cycle since there are not at least two adjacent vertices that
are not any deeper than vertex 1. Shifting focus to vertex 2 as the deepest, the
function finds the faces containing vertices 1, 2, and 3 and vertices 1, 2, and
4. It then attempts to find a face using vertices 2, 3, and 4. Since the only
possible face size for the octahedron is a triangle, the function tries to find the
cycle containing those three vertices. Since they don’t form a cycle (vertices 3
and 4 are not adjacent), the function discards this possible face. Vertex 6 is
dismissed as a neighbor of vertex 2 since it is deeper, and would cause vertex 2
to no longer be the deepest vertex in a cycle. Moving to vertex 3, the function
finds the face formed by vertices 1, 2, and 3 again, but does not add it because
it has already been found. It does add the face containing vertices 1, 3, and 5.
Using vertex 4 as the deepest vertex, the face formed by vertices 1, 4, and 5 is
found and added. No new faces use vertex 5 as the deepest vertex, but vertex
6 is the deepest node of the remaining four faces.

Figure 8: Octahedron

The next function, vertpathfinder.m, is shown in Appendix C.3. The pur-
pose of this function is to find the vertices along every minimum length path
from a given “out” vertex to the “in” or ending vertex. It utilizes previously
generated paths, which are stored in the Map object vpdict (vertpathdict in
the main findlayers.m function), and just adds a single step to the front of each
path, from the “out” vertex to any of its less deep neighbors. Due to how
nodedepth is calculated within findlayers.m, any neighbors of the “out” vertex
will have have a depth either one less than, equal to, or one more than the
depth of the “out” vertex. Thus, mandating that the first step away from the
“out” vertex must be to a neighbor with a smaller depth is the same as man-
dating that the depth must decrease by exactly one on every step. Despite that
knowledge, it is easier to directly compare the nodedepth of the “out” vertex to
the nodedepth of its neighbors than it is to check if their difference is equal to
one, and in the correct order, so the first comparison is the one used in the code.
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The next function, findlayers.m, is shown in Appendix C.4. The purpose of
this function is to put the previous three together and split the vertices of a
polyhedron into layers. The function starts by finding the depth of every vertex
using a breadth-first search first coded by Moody in Java [11]. These depths are
then used to identify the faces of the polyhedron (using facefinder.m). Next, the
edges of the whole polyhedron and of each face are found. These edges are then
used to find the sizes of all of the faces bordering each face, which is necessary
to accurately split the snub cube and snub dodecahedron. A Map (a dictionary-
like structure in MATLAB) is then created to classify the edges according to
their bordering faces. A preliminary layer splitting is formed based on Euclidean
distance from the ending vertex, and then the shortest paths from each vertex
to the ending vertex are found. These shortest paths are then translated from
vertices to edge types, and finally the edge types of the shortest paths are used
to create the final, accurate, layer splitting of the polyhedron. Further explana-
tion about each part of this function are given in the code in the appendix. The
Image Processing Toolbox is also required for this function, as in facefinder.m.

The final function, findhits.m, is shown in Appendix C.5. The purpose of
this function is to create and solve the matrix equation defined by the layer-
based hitting time equation. Each entry Aij of the coefficient matrix is equal
to the negative of the number of (possibly repeated) vertices in layer j + 1 ad-
jacent to the vertices in layer i + 1 divided by the sum of the degrees of the
vertices in layer i + 1. A one gets added to every diagonal entry because it is
the hitting time of each layer that we are trying to calculate. The reason for
the offset of one in the layers is due to the fact that H(b, b) = 0, so the row and
column corresponding to the first layer (the one with the ending vertex in it)
are deleted from the matrix. The right hand side of the matrix equation is a
column vector of ones, to account for the one step it takes to get from a vertex
to any of its neighbors. After the matrix equation has been solved, the hitting
times are sorted into ascending order, and the layers are reordered to match the
new order. The functions splitting the vertices into layers do not have a way
to know which layers will end up having a higher or lower hitting time, so the
layers sometimes get generated out of order. After reordering the layers, the
function displays the vertices in each ascending layer, and returns the fractional
hitting times for each layer. To find the equivalent resistances, each hitting time
must be divided by the total number of edges in the polyhedron. This function
requires the use of the Symbolic Math Toolbox to return the exact fractional
values of the hitting times rather than decimal approximations.
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Appendices

A Results of the Platonic Solids

This appendix includes the hitting times and equivalent resistances for the ver-
tices of each of the five Platonic solids. Each table in this appendix, as well
as in Appendix B, should include a row with the entries 1, 1, 0, 0, referring to
the ending vertex, which is on a layer by itself with a hitting time and equiva-
lent resistance of zero. This row has been omitted to save space. Additionally,
diagrams for the cube and dodecahedron have been added to show how the
tables can be applied to the polyhedra themselves. Diagrams for the other Pla-
tonic solids are omitted for space, and diagrams for the Archimedean solids are
omitted due to the complexity of the graphs.

Layer # Vertices Hitting Time Resistance (Ω)
2 3 3 1/2

Table 15: Tetrahedron

Layer # Vertices Hitting Time Resistance (Ω)
2 3 7 7/12
3 3 9 3/4
4 1 10 5/6

Table 16: Cube

Figure 9: Cube Layers
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Layer # Vertices Hitting Time Resistance (Ω)
2 4 5 5/12
3 1 6 1/2

Table 17: Octahedron

Layer # Vertices Hitting Time Resistance (Ω)
2 3 19 19/30
3 6 27 9/10
4 6 32 16/15
5 3 34 17/15
6 1 35 7/6

Table 18: Dodecahedron

Figure 10: Dodecahedron Layers

Layer # Vertices Hitting Time Resistance (Ω)
2 5 11 11/30
3 5 14 7/15
4 1 15 1/2

Table 19: Icosahedron
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B Results of the Archimedean Solids

Layer # Vertices Hitting Time Resistance (Ω)
2 2 51/5 17/30
3 1 63/5 7/10
4 4 87/5 29/30
5 2 96/5 16/15
6 2 99/5 11/10

Table 20: Truncated Tetrahedron

Layer # Vertices Hitting Time Resistance (Ω)
2 4 11 11/24
3 2 14 7/12
4 4 15 5/8
5 1 16 2/3

Table 21: Cuboctahedron

Layer # Vertices Hitting Time Resistance (Ω)
2 2 21 7/12
3 1 27 3/4
4 4 39 13/12
5 2 231/5 77/60
6 2 234/5 13/10
7 2 48 4/3
8 2 249/5 83/60
9 4 261/5 29/20
10 1 273/5 91/60
11 2 279/5 31/20
12 1 282/5 47/30

Table 22: Truncated Cube
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Layer # Vertices Hitting Time Resistance (Ω)
2 2 625/28 625/1008
3 1 341/14 341/504
4 1 405/14 45/56
5 4 981/28 109/112
6 2 1081/28 1081/1008
7 2 274/7 137/126
8 2 1153/27 1153/1008
9 4 171/4 19/16
10 1 621/14 69/56
11 1 629/14 629/504
12 2 1273/28 1273/1008
13 1 324/7 9/7

Table 23: Truncated Octahedron

Layer # Vertices Hitting Time Resistance (Ω)
2 2 767/35 767/1680
3 2 843/35 281/560
4 2 1028/35 257/420
5 1 153/5 51/80
6 4 1133/35 1133/1680
7 4 1229/35 1229/1680
8 1 1263/35 421/560
9 2 1292/35 323/420
10 2 189/5 63/80
11 2 1343/35 1343/1680
12 1 1368/35 57/70

Table 24: Rhombicuboctahedron
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Layer # Vertices Hitting Time Resistance (Ω)
2 1 63859/1430 63859/102960
3 1 5059/110 5059/7920
4 1 36002/715 18001/25740
5 1 42144/715 1756/2145
6 2 7923/110 2641/2640
7 2 108723/1430 36241/34320
8 1 22751/286 22751/20592
9 2 59474/715 29737/25740
10 2 127093/1430 127093/102960
11 1 11729/130 11729/9360
12 1 130927/1430 130927/102960
13 2 11907/130 1323/1040
14 1 27351/286 3039/2288
15 2 137289/1430 45763/34320
16 1 70416/715 978/715
17 1 14260/143 3565/2574
18 2 11001/110 3667/2640
19 2 11233/110 11233/7920
20 2 147793/1430 147793/102960
21 2 30293/286 30293/20592
22 1 151627/1430 151627/102960
23 1 30699/286 3411/2288
24 2 154029/1430 51343/34320
25 1 154083/1430 51361/34320
26 2 77622/715 12937/8580
27 2 158539/1430 158539/102960
28 1 158787/1430 17643/11440
29 2 1121/10 1121/720
30 1 7372/65 1843/1170
31 1 81294/715 13549/8580
32 1 2511/22 279/176
33 1 163803/1430 54601/34320
34 1 6332/55 1583/990

Table 25: Truncated Cuboctahedron
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Layer # Vertices Hitting Time Resistance (Ω)
2 2 70685/3168 14137/38016
3 1 5965/264 1193/3168
4 2 75685/3168 15137/38016
5 2 94975/3168 18995/38016
6 1 8665/288 1733/3456
7 1 2005/66 401/792
8 2 100345/3168 20069/38016
9 2 100715/3168 20143/38016
10 2 108305/3168 21661/38016
11 1 109015/3168 21803/38016
12 2 3065/88 613/1056
13 1 10045/288 2009/3456
14 1 113455/3168 22691/38016
15 1 10465/288 2093/3456
16 1 115855/3168 23171/38016
17 1 9685/264 1937/3168

Table 26: Snub Cube

Layer # Vertices Hitting Time Resistance (Ω)
2 4 29 29/60
3 4 122/3 61/90
4 4 127/3 127/180
5 4 140/3 7/9
6 4 49 49/60
7 4 152/3 38/45
8 4 157/3 157/180
9 1 160/3 8/9

Table 27: Icosidodecahedron
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Layer # Vertices Hitting Time Resistance (Ω)
2 2 267/5 89/150
3 1 351/5 39/50
4 4 519/5 173/150
5 2 127 127/90
6 2 128 64/45
7 2 672/5 112/75
8 4 731/5 731/450
9 4 751/5 751/450
10 2 151 151/90
11 4 788/5 394/225
12 2 162 9/5
13 2 167 167/90
14 4 863/5 863/450
15 4 876/5 146/75
16 2 178 89/45
17 4 896/5 448/225
18 2 907/5 907/450
19 2 183 61/30
20 2 184 92/45
21 4 934/5 467/225
22 1 946/5 473/225
23 2 952/5 476/225
24 1 191 191/90

Table 28: Truncated Dodecahedron
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Layer # Vertices Hitting Time Resistance (Ω)
2 2 48819/836 16273/25080
3 1 25167/418 8389/12540
4 2 34851/418 11617/12540
5 4 74247/836 24749/25080
6 2 40911/418 13637/12540
7 4 8007/76 2669/2280
8 2 22398/209 3733/3135
9 4 23616/209 1312/1045
10 4 97557/836 32519/25080
11 2 99399/836 33133/25080
12 2 101505/836 6767/5016
13 2 103215/836 6881/5016
14 2 104529/836 34843/25080
15 4 106107/836 35369/25080
16 4 27036/209 1502/1045
17 2 27528/209 4588/3135
18 4 110307/836 36769/25080
19 2 56301/418 18767/12540
20 4 113577/836 37859/25080
21 2 57081/418 19027/12540
22 1 57657/418 19219/12540
23 2 115509/836 38503/25080
24 1 1530/11 17/11

Table 29: Truncated Icosahedron
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Layer # Vertices Hitting Time Resistance (Ω)
2 2 52543/957 52543/114840
3 2 60383/957 60383/114840
4 2 72548/957 18137/28710
5 4 81253/957 81253/114840
6 2 83903/957 83903/114840
7 1 3175/33 635/792
8 4 92185/957 18437/22968
9 4 31771/319 31771/38280
10 2 96068/957 24017/28710
11 4 33661/319 33661/38280
12 2 103003/957 103003/114840
13 2 104443/957 104443/114840
14 4 35341/319 35341/38280
15 2 108848/957 13606/14355
16 4 36571/319 36571/38280
17 1 110795/957 22159/22968
18 4 110905/957 22181/22968
19 2 113423/957 113423/114840
20 4 113653/957 113653/114840
21 2 115208/957 14401/14355
22 2 115823/957 115823/114840
23 2 116623/957 116623/114840
24 1 39060/319 651/638

Table 30: Rhombicosidodecahedron
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Layer # Vertices Hitting Time Resistance (Ω)
2 1 166172084/1486191 41543021/66878595
3 1 173751140/1486191 8687557/13375719
4 1 190646963/1486191 190646963/267514380
5 1 73895035/495397 14779007/17834292
6 2 90790858/495397 45395429/44585730
7 2 98369914/495397 49184957/44585730
8 1 17725804/87423 4431451/3934035
9 2 320673518/1486191 160336759/133757190
10 2 345148397/1486191 345148397/267514380
11 2 734601/3077 244867/184620
12 1 361971116/1486191 90492779/66878595
13 1 369550172/1486191 92387543/66878595
14 2 18145933/70771 18145933/12738780
15 1 130026555/495397 2889479/1981588
16 1 394156361/1486191 394156361/267514380
17 2 134600587/495397 134600587/89171460
18 2 135093480/495397 2251558/1486191
19 2 59070173/212313 59070173/38216340
20 1 417927248/1486191 104481812/66878595
21 2 423905327/1486191 423905327/267514380
22 1 430313930/1486191 43031393/26751438
23 2 431484383/1486191 431484383/267514380
24 2 431615693/1486191 431615693/267514380
25 1 8534332/29141 2133583/1311345
26 2 146254097/495397 146254097/89171460
27 2 147377878/495397 73688939/44585730
28 2 148650615/495397 3303347/1981588
29 2 149143508/495397 37285877/22292865
30 1 456438590/1486191 45643859/26751438
31 2 457489082/1486191 228744541/133757190
32 2 21817867/70771 21817867/12738780
33 2 462416669/1486191 462416669/267514380
34 1 154457356/495397 38614339/22292865
35 2 470296886/1486191 235148443/133757190
36 2 476034686/1486191 238017343/133757190
37 1 20731975/64617 4146395/2326212
38 1 9381265/29141 1876253/1049076
39 2 22793542/70771 11396771/6369390
40 2 69106436/212313 17276609/9554085
41 2 161951312/495397 40487828/22292865
42 2 162268632/495397 4507462/2476985
43 1 493083218/1486191 246541609/133757190
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44 2 165702724/495397 41425681/22292865
45 2 165850193/495397 165850193/89171460
46 2 71294471/212313 71294471/38216340
47 1 167582480/495397 8379124/4458573
48 2 503089004/1486191 125772251/66878595
49 2 505386815/1486191 101077363/53502876
50 2 506941514/1486191 253470757/133757190
51 2 169773601/495397 169773601/89171460
52 1 511182242/1486191 255591121/133757190
53 2 513097181/1486191 513097181/267514380
54 1 171645620/495397 8582281/4458573
55 2 171858391/495397 171858391/89171460
56 2 172170119/495397 172170119/89171460
57 2 24621101/70771 24621101/12738780
58 1 173631457/495397 173631457/89171460
59 1 1333385/3801 266677/136836
60 1 173902406/495397 86951203/44585730
61 2 522228251/1486191 522228251/267514380
62 2 523782950/1486191 52378295/26751438
63 2 75004829/212313 75004829/38216340
64 1 176224234/495397 88112117/44585730
65 1 176535962/495397 88267981/44585730
66 2 75728819/212313 75728819/38216340
67 2 177238049/495397 177238049/89171460
68 2 177746036/495397 44436509/22292865
69 2 535548332/1486191 133887083/66878595
70 1 179029786/495397 89514893/44585730
71 2 538353884/1486191 134588471/66878595
72 1 540120215/1486191 108024043/53502876
73 1 180091871/495397 180091871/89171460
74 1 180288130/495397 18028813/8917146
75 1 180599858/495397 90299929/44585730
76 1 428150/1173 42815/21114

Table 31: Truncated Icosidodecahedron
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Layer # Vertices Hitting Time Resistance (Ω)
2 2 26954193/478108 8984731/23905400
3 1 6871376/119527 3435688/8964525
4 2 29823985/478108 5964797/14343240
5 2 37376431/478108 37376431/71716200
6 1 9556454/119527 4778227/8964525
7 2 40564297/478108 40564297/71716200
8 2 40882371/478108 13627457/23905400
9 2 2410887/28124 803629/1406200
10 1 44358325/478108 1774333/2868648
11 2 45182813/478108 45182813/71716200
12 2 11354346/119527 1892391/2988175
13 2 45660607/478108 45660607/71716200
14 2 45978681/478108 15326227/23905400
15 2 46559183/478108 46559183/71716200
16 1 48175213/478108 48175213/71716200
17 2 48958491/478108 16319497/23905400
18 2 49240567/478108 49240567/71716200
19 2 49914079/478108 49914079/71716200
20 1 12491079/119527 4163693/5976350
21 2 50687019/478108 16895673/23905400
22 1 50856597/478108 16952199/23905400
23 2 51341449/478108 51341449/71716200
24 2 52281493/478108 52281493/71716200
25 2 52553379/478108 17517793/23905400
26 1 52608385/478108 10521677/14343240
27 2 52759287/478108 17586429/23905400
28 1 776040/7031 25868/35155
29 2 53258901/478108 17752967/23905400
30 1 53486365/478108 10697273/14343240
31 1 54026481/478108 18008827/23905400
32 2 3190471/28124 3190471/4218600
33 1 54360689/478108 54360689/71716200
34 2 13634545/119527 2726909/3585810
35 1 55029105/478108 3668607/4781080
36 1 55182621/478108 18394207/23905400
37 1 55349725/478108 2213989/2868648
38 1 13842543/119527 4614181/5976350

Table 32: Snub Dodecahedron
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C MATLAB Code

C.1 Adjacency

function adj = adjacency(coords)

% adjacency.m

% adj = adjacency(coords)

% Author: Kevin Stern

%

% Function to find adjacency matrix for given polyhedron.

%

% Inputs: coords = n-by-3 matrix, rows give coordinates of vertices

%

% Output: adj = n-by-n matrix, adj(i,j) = 0 if i and j are not

% adjacent and 1 if they are

%% Initialization

n = size(coords,1); % Number of vertices

%% Find dot products

dots = zeros(n,1); % Initialize

for j = 1:n % Loop through vertices

dots(j) = dot(coords(1,:), coords(j,:));

% Find dot product of vertex

% and node 1

end

dots = unique(dots); % Find unique dot products

dots = sort(dots,’descend’); % Sort dot products in

% descending order

%% Create adjacency matrix

adj = zeros(n); % Initialize

for i = 1:n % Loop through vertices

for j = 1:n % Loop through vertices

if abs(dot(coords(i,:), coords(j,:)) - dots(2)) < 10^-10

% If the dot product between

% two vertices is the

% second-largest product...

adj(i,j) = 1; % then the two vertices

end % are adjacent

end

end

end

38



C.2 Facefinder

function [faces, cycles] = facefinder(coords, nodedepth, Fs)

% facefinder.m

% [faces, cycles] = facefinder(coords, nodedepth, Fs)

% Author: Kevin Stern

%

% Function to find the faces of a polyhedron. Only works for a three-

% dimensional object.

%

% Inputs: coords = n-by-3 matrix, rows give coordinates of vertices

% nodedepth = 1-by-n vector, each entry is the minimum number

% of steps it takes to get from each vertex to

% the in vertex

% Fs = 1-by-x vector, face size(s) (optional)

%

% Outputs: faces = f-by-max(Fs) matrix, rows give each face of

% polyhedron

% cycles = f-by-max(Fs) matrix, rows give vertices of each

% face in connected cycle

%% Initialization

adj = adjacency(coords);

n = size(adj,1); % Number of vertices

%% Find E, F, and Fs

E = sum(sum(adj))/2; % Number of edges

F = E-n+2; % Number of faces

if nargin == 2

Fs = 2*E/F; % Average face size

end

%% Find faces

numface = 0; % Initialize count of found faces

faces = zeros(F, max(Fs)); % Initialize

cycles = zeros(F, max(Fs)); % Initialize

for j = 1:n

depth = nodedepth(j); % Depth of node j

neighbors = find(adj(j,:)); % Find neighbors of node j

neighbors(nodedepth(neighbors) > depth) = [];

% Remove deeper neighbors

if length(neighbors) < 2; continue; end

% If node j has fewer than two neighbors on

% same or lower nodedepth, it can’t be the

% deepest in a cycle
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for k = 1:length(neighbors) % Loop through neighbors

knode = neighbors(k); % Identify neighbor

for m = k+1:length(neighbors) % Loop through later neighbors

mnode = neighbors(m); % Identify second neighbor

% Once we have three vertices (j, knode, and mnode), there is

% at most one face that contains those three vertices

if adj(knode,mnode) == 1 && any(Fs == 3)

% If j, knode, and mnode all

% touch, then we have a

% triangle face as long as

% that is a possible face

% size

row = sort([j knode mnode]);

% Create row of j, knode, mnode

row = padarray(row, [0 max(Fs)-3], Inf, ’post’);

% Pad row to length of largest

% face size

if ismember(row, faces, ’rows’)

% If the row is already in

% the faces...

continue % skip it

end % Otherwise...

numface = numface + 1; % Increment the count of faces

cycles(numface,:) = row; % Add the row to cycles

faces(numface,:) = row; % Add the row to faces

continue % We have found the face using

% j, knode, and mnode, so

% move to next mnode

end

v1 = coords(j,:) - coords(knode,:);

% Find vector from knode to j

v2 = coords(j,:) - coords(mnode,:);

% Find vector from mnode to j

n = cross(v1, v2); % Find cross product

vertices = Inf*ones(1, max(Fs));

% Initialize array of vertices

vertices(1:3) = [j knode mnode];

% Input first three vertices

ind = 3; % Set index of vertices

for node = 1:size(coords,1) % Loop through nodes

if ind == max(Fs); break; end

% If vertices is full, break

plane = dot(coords(node,:)-coords(j,:),n);

% Test if node is in plane

% defined by j, knode,

% mnode
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if abs(plane) <= 1e-10 && ~ismember(node, vertices)

% If node is in plane and

% hasn’t been added to

% vertices...

ind = ind + 1; % Increment index

vertices(ind) = node; % Add node to vertices

if ind == max(Fs); break; end

% If vertices is full, break

end

end

if ~any(sum(isfinite(vertices)) == Fs); continue; end

% If the number of vertices is

% not a possible face size,

% then we have not found a

% face. j, knode, and mnode

% are just coplanar

cycle = Inf*ones(size(vertices));

% Initialize cycle

cycle(1:2) = [j knode]; % Input first two vertices

for ind = 3:sum(isfinite(vertices))

% Loop to fill out cycle

for vertex = vertices % Loop through vertices

if isinf(vertex); break; end

% If vertex is infinite, then

% we have not found a face

if adj(vertex, cycle(ind-1)) && ~ismember(vertex, cycle)

% If vertex is adjacent to

% previous vertex in cycle,

cycle(ind) = vertex; % add it to the cycle

break

end

end

if isinf(cycle(ind)); break; end

% If we looped through all

% vertices without adding

% one, then we have not

% found a face

end

if sum(isfinite(vertices)) ~= sum(isfinite(cycle))

% If number of vertices in

% cycle is different then

% number of vertices in

% plane, then we have not

% found a face

continue

end
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vertices = sort(vertices); % Sort vertices

if ismember(vertices, faces, ’rows’); continue; end

% If vertices is already in

% faces, then we have found

% a repeat face

numface = numface + 1; % Increment count of faces

faces(numface,:) = vertices; % Add vertices to faces

cycles(numface,:) = cycle; % Add cycle to cycles

continue % We have found the face using

% j, knode, and mnode, so

% move to next mnode

end

end

end

if numface == size(faces,1) % If we have all the faces...

if any(faces == 0) % If there are zeros in faces

error(’zeros in faces’) % raise an error

end

[faces, I] = sortrows(faces); % Sort the faces

cycles = cycles(I,:); % Sort the cycles

% The code below before the return statement isn’t

% necessary, but it can be used to check the number

% of each face size

facecounter = zeros(size(Fs));

% Initialize count of number

% of each face size

for i = 1:size(faces,1) % Loop through faces

fs = sum(isfinite(faces(i,:))); % Find size of face

facecounter(Fs == fs) = facecounter(Fs == fs) + 1;

% Increment count of number

% of each face size

end

return

end

error(’end of loops’) % If we didn’t find enough

% faces to return earlier,

% then raise an error

end
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C.3 Vertpathfinder

function vertpath = vertpathfinder(adj, nodedepth, vpdict, in, out)

% vertpathfinder.m

% vertpath = vertpathfinder(adj, nodedepth, vpdict, in, out)

% Author: Kevin Stern

%

% Function to find all possible minimum-length paths from the out vertex to

% the in vertex. In general, in = 1.

%

% Inputs: adj = n-by-n adjacency matrix

% nodedepth = 1-by-n vector, each entry is the minimum number

% of steps it takes to get from each vertex to

% the in vertex

% vpdict = Map object that stores previously generated

% vertpaths for vertices closer to in

% in = vertex that we are finding the path to

% out = vertex that we are finding the path from

%

% Output: vertpath = x-by-v vector, each row gives a sequence of

% vertices to take to get from the out vertex to

% the in vertex

%% Initialization

if in == out; vertpath = in; return; end

vertpath = []; % Initialize

%% Find vertpath

possiblesteps = find(adj(out,:)); % Find all neighboring vertices

for step = possiblesteps % Loop through neighbors

if nodedepth(step) >= nodedepth(out) % If neighbor is at least as

% deep as the out vertex...

continue % skip it

end

numpaths = size(vpdict(step),1); % Find number of paths to in

tempstep = [out*ones(numpaths,1) vpdict(step)];

% Find full paths using

% current neighbor

vertpath = [vertpath;tempstep]; %#ok<AGROW>

% Add full paths to vertpath

end

end
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C.4 Findlayers

function vertlayers = findlayers(coords, in)

% findlayers.m

% vertlayers = findlayers(coords, in)

% Author: Kevin Stern

%

% Function to find the layer of each node for a given polyhedron. Vertices

% on the same layer should 1) be the same distance from the in node, 2a) be

% the same number of steps from the in node. When each edge is categorized

% based on the size of the faces that it separates, vertices on the same

% layer should also have the quality that 2b) all possible shortest paths

% from one vertex to the in node should pass through the same kinds of

% edges as all possible shortest paths from another vertex to the in node.

%

% Inputs: coords = n-by-3 matrix, rows give coordinates of vertices

% in = ending node (optional)

%

% Output: layers = 1-by-n matrix, entries give layers of vertices

%% Initialization

if nargin == 1; in = 1; end

n = size(coords, 1); % Number of vertices

adj = adjacency(coords); % Adjacency matrix

%% Create nodedepth

% nodedepth gives the minimum number of steps from each vertex to in node.

nodedepth = -1 * ones(1,n); % Initialize

nodedepth(in) = 0; % The depth of in node is 0

q = in; % Start search for all vertices

while ~isempty(q) % While not all vertices have

% been found

currentnode = q(1); % Take the first vertex in list

q(1) = []; % Remove it from list

for i = 1:n % Loop through all vertices

if adj(i,currentnode) && nodedepth(i) == -1

% If vertex is adjacent to

% first vertex in list

% and vertex hasn’t been

% found yet...

nodedepth(i) = nodedepth(currentnode) + 1;

% record its depth

q = [q i]; %#ok<*AGROW> % Add vertex to end of list

end

end

end
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%% Find E, F, Fs, and faces

E = sum(sum(adj))/2; % Number of edges

F = E-n+2; % Number of faces

if (2*E/F) ~= round(2*E/F) % The average face size is NOT an integer

Fs = input(’Type face sizes as a row vector, ex: [3 4]\n’);

else

Fs = 2*E/F;

end

[faces, cycles] = facefinder(coords, nodedepth, Fs);

%% Create catalog of edges by face sizes

% Each row has the format [minvertex maxvertex minfacesize maxfacesize].

% The vertices are the endpoints of the edge.

% The face sizes are of the faces that the edge separates.

% Only the first two columns are populated right now.

edges = zeros(E, 4); % Initialize

ind = 0;

for i = 1:n % Loop through combinations

for j = i+1:n % of non-repeating vertices

if adj(i,j) % If vertices are neighbors,

ind = ind + 1; % add the edge to catalog

edges(ind, 1) = i;

edges(ind, 2) = j;

end

end

end

if any(edges(:,1:2) == 0) % Not all the edges were found

error(’Not all edges found’)

end

if ind ~= E % Too many edges were found

error(’Too many edges’)

end

%% Create face2edges

% Each row gives the indices of the edges that make up each face’s sides.

% The number of finite entries in each row equals the size of the face.

face2edges = Inf*ones(size(faces)); % Initialize

for i = 1:F % Loop through faces

ind = 0;

for j = 1:sum(isfinite(faces(i,:)))-1 % Loop through edges in face

edge = sort(cycles(i,j:j+1));

for k = 1:size(edges,1) % Find edge index in catalog

if edges(k,1:2) == edge

ind = ind + 1;

face2edges(i,ind) = k; % Add edge index to face2edges
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end

end

end

edge = sort([cycles(i,1) cycles(i,j+1)]);

% Add final edge in face

for k = 1:size(edges,1)

if edges(k,1:2) == edge

ind = ind + 1;

face2edges(i,ind) = k;

end

end

face2edges(i,:) = sort(face2edges(i,:));

% Sort edges by index

end

%% Create face2faces

% Each row gives the indices of the faces that border each face.

% The number of finite entries in each row equals the size of the face.

face2faces = Inf*ones(size(faces)); % Ininialize

for i = 1:F % Loop through faces

for j = 1:sum(isfinite(faces(i,:))) % Loop through edges in face

edgeind = face2edges(i,j); % Find edge index

[faceinds, ~] = find(face2edges == edgeind, 2);

% Find both face indices that

% contain edge

face2faces(i,j) = faceinds(faceinds ~= i);

% Record other face index

end

end

%% Create facetypes

% Each entry takes the form "a.bcd...", where a is the number of sides of

% the given face, and bcd... give the number of sides of each bordering

% face in ascending order of size.

facetypes = strings(F, 1); % Initialize

for i = 1:F % Loop through faces

facesize = sum(isfinite(face2faces(i,:)));

% Find size of face

adjfaces = zeros(1, facesize); % Initialize array of

% bordering face sizes

for j = 1:facesize % Loop through bordering faces

adjfaces(j) = sum(isfinite(face2faces(face2faces(i,j),:)));

% Find size of bordering face

% and record it

end

adjfaces = sort(adjfaces); % Sort sizes in ascending order
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facetypes(i) = string(facesize)+"."+strjoin(string(adjfaces),’’);

% Record entry

end

%% Complete catalog of edges by face sizes

% Each row has the format [minvertex maxvertex minfacesize maxfacesize].

% The vertices are the endpoints of the edge.

% The face sizes are of the faces that the edge separates.

% The final two columns are populated right now.

for ind = 1:E % Loop through edges

for k = 1:size(faces,1) % Loop through faces

if ismember(edges(ind,1), faces(k,:)) && ...

ismember(edges(ind,2), faces(k,:))

% If the edge is in the face...

if ~edges(ind,3) % and it’s the first found,

edges(ind,3) = double(facetypes(k));

% add it to catalog

else % and it’s second found,

edges(ind,4) = double(facetypes(k));

% add it to catalog

break

end

end

end

edges(ind,3:4) = sort(edges(ind,3:4));

end

if any(edges == 0) % Some edge wasn’t added

error(’Catalog of edges is incomplete’)

end

%% Create edge dictionary

% Each key has the form num2str([minvertex maxvertex])

% which looks like ’minvertex maxvertex’ (two spaces).

% Each value has the form [minfacesize maxfacesize].

% Essentially, convert catalog of edges into a dictionary

edgedict = containers.Map(’keyType’,’char’,’ValueType’,’any’);

% Initialize

for i = 1:E % Loop through edges

edgedict(num2str(edges(i,1:2))) = edges(i,3:4);

% Add edge to edgedict

end

%% Create list of dists between vertices

% The dot products between the in node and all other vertices are

% calculated, and then sorted in descending order.

% The dot product is a stand-in for distance, since the vertices are
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% equispaced about the origin.

dists = []; % Initialize

for j = 1:n % Loop through vertices

SUM = dot(coords(in,:), coords(j,:)); % Compute dot product

if not(ismembertol(SUM, dists, 10^-10)) % Add dist to array

dists = [dists SUM];

end

end

dists = sort(dists,’descend’); % Sort distances

%% Create preliminary layers, based on distance

% The first go at layers is just based on the distance of each vertex from

% the in node.

distlayers = zeros(1,n); % Initialize

for i = 1:length(dists) % Loop through dists

for j = 1:n % Loop through vertices

if abs(dot(coords(in,:), coords(j,:)) - dists(i)) < 10^-10

% If dist between vertex and

% in node matches dist...

distlayers(j) = i; % add to distlayers

end

end

end

%% Create vertpath dictionary

% Each vertex index is a key

% Each value is an a-by-b matrix, where a is the number of unique (in

% vertices) shortest-length paths from the vertex to the in node, and b is

% (nodedepth+1). Each row gives a shortest-length path from the vertex to

% the in node, including both ends.

vertpathdict = containers.Map(’keyType’,’double’,’ValueType’,’any’);

% Initialize

for depth = 0:max(nodedepth) % Loop through depths

verts = find(nodedepth == depth); % Find vertices with same depth

for vert = verts % Loop through vertices

vertpath = vertpathfinder(adj, nodedepth, vertpathdict, in, vert);

% Find all shortest-length

% paths from vertex to

% in node

vertpathdict(vert) = vertpath; % Record in dictionary

end

end

%% Createedgepath dictionary

% Each vertex index is a key

% Each value is a 1-by-2*c*e matrix, where c is the number of unique (in
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% edge types) shortest-length paths from the vertex to the in node, and e

% is the number of edges in each shortest-length path (= nodedepth).

% Each row contains the edge types of all shortest-length paths to in node,

% one after the other in a single row. Duplicate paths using the same

% number of the same edge type are removed. The number of each edge type

% within a path does not affect the final result, but all edges are

% included to make the matrix sizes match.

% For example: if the edge types of the four shortest-length paths are as

% follows:

% {3,4},{5,6},{5,6}

% {3,4},{4,5},{4,5}

% {3,4},{4,5},{4,5}

% {3,4},{3,4},{5,6}

% The a-by-2*e matrix will then be

% [3 5 5 4 6 6

% 3 4 4 4 5 5

% 3 4 4 4 5 5

% 3 3 5 4 4 6]

% After eliminating the extraneous third row and reshaping to 1-by-2*c*e

% matrix, the matrix that is saved into edgepathdict would be

% [(3 5 5 4 6 6) (3 4 4 4 5 5) (3 3 5 4 4 6)]

% where the parentheses indicate the three unique paths.

edgepathdict = containers.Map(’keyType’,’double’,’ValueType’,’any’);

% Initialize

for vert = 1:n % Loop through vertices

matrix = zeros(size(vertpathdict(vert)));

% Initialize matrix

matrix(:,1) = []; % Trim matrix to correct size,

% a-by-e, where a is the

% number of unique (in

% vertices) shortest-length

% paths.

vpd = vertpathdict(vert); % Copy vertpathdict for vertex

for i = 1:size(matrix,1) % Loop through rows

for e = 1:size(matrix,2) % Loop through edges

edge = sort(vpd(i,e:e+1)); % Identify vertices of edge

matrix(i,e,1:2) = edgedict(num2str(edge));

% Find edge type and record

% into matrix, which is now

% an a-by-e-by-2 array

end

end

if vert == in % If already at in node...

edgepathdict(vert) = matrix; % record in dictionary

continue

else % Otherwise, clean matrix
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for i = 1:size(matrix, 1) % Loop through rows

temp = reshape(matrix(i,:,:), size(matrix, 2), 2);

% Reshape 1-by-e-by-2 array

% into e-by-2 matrix

temp = sortrows(temp); % Sort edges in row by smaller

% face then by larger face

temp = reshape(temp, 1, size(matrix, 2), 2);

% Reshape e-by-2 matrix back

% into 1-by-e-by-2 array

matrix(i,:,:) = temp; % Record sorted row into matrix

end

matrix = [matrix(:,:,1) matrix(:,:,2)];

% Reshape a-by-e-by-2 array

% into a-by-2*e matrix.

% Each row represents an

% edge path to the in node

matrix = unique(matrix, ’rows’); % Eliminate repeated edge paths

matrix = reshape(matrix’, 1, numel(matrix));

% Reshape into 1-by-2*c*e

edgepathdict(vert) = matrix; % Record matrix into dictionary

end

end

%% Create vertlayers

% Vertlayers is described in the help for this function.

vertlayers = zeros(1,n); % Initialize

vertlayers(in) = 1; % in node is always layer 1

offset = 0; % Offset is used for splitting

% layers

for i = 2:max(distlayers) % Loop through distlayers

verts = find(distlayers == i); % Find vertices with same dist

% from in node

epdmaxlen = 0; % Initialize longest shortest-

% length path for vertices

for j = 1:length(verts) % Loop through vertices

% to find longest shortest-

% length path

if length(edgepathdict(verts(j))) > epdmaxlen

% If length is longer than

% current max...

epdmaxlen = length(edgepathdict(verts(j)));

% replace max with length

end

end

epds = zeros(length(verts), epdmaxlen); % Initialize matrix of edge

% path rows
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for j = 1:length(verts) % Loop through vertices

if length(edgepathdict(verts(j))) < epdmaxlen

% If length is less than

% max length...

edgepathdict(verts(j)) = padarray(edgepathdict(verts(j)), ...

[0 epdmaxlen-length(edgepathdict(verts(j)))], 0, ’post’);

% pad row with zeros at end

end

epds(j,:) = edgepathdict(verts(j)); % Record row into matrix

end

epds = unique(epds, ’rows’, ’stable’); % Find unique rows

for vert = verts % Loop through vertices

[~, epdrow] = ismember(edgepathdict(vert), epds, ’rows’);

% Find vertex’s row in matrix

vertlayers(vert) = i + offset + epdrow - 1;

% Record layer of vertex

end

offset = offset + size(epds, 1) - 1; % Adjust offset, which is a

% measure of how much layer

% splitting is occurring

end

end
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C.5 Findhits

function [symlayerhits] = findhits(coords, in)

% findhits.m

% [symlayerhits] = findhits(coords, in)

% Author: Kevin Stern

%

% Takes a n-by-m coordinate matrix, where n is the number of vertices

% and m is the dimension of the space in which the coordinates live,

% and computes the equivalent resistances from the given node to all

% other nodes. If no node is given, the first node is taken.

% Lovasz’s hanging method is used in this function, simplifying by layers.

% The hitting time H(a,b) is the average number of random walk steps it

% takes to walk from node a to node b. Lovasz gives the formula

% H(a,b) = 1 + (1/deg(a))*sum_(v in N(a))H(v,b),

% where deg(a) is the number of neighbors of node a, and N(a) denotes the

% neighbors of node a.

% After collecting the nodes into symmetric layers, we can rewrite as

% H({a_n},b) = 1 + (1/sum_(a_i in a_n)deg(a_i))*

% (sum_(a_i in a_n)sum_(v_i in N(a_i))H(v_i,b)),

% where {a_n} denotes the list of all nodes in a layer, and

% H({a_n},b) denotes the (identical) hitting time of each node in a layer.

% The hitting time can be converted to resistance by dividing by the total

% number of edges in the network.

%

% Inputs: coords = n-by-3 matrix, rows give coordinates of vertices

% in = ending node (optional)

%

% Output: symlayerhits = 1-by-l matrix, entries give hitting times of

% layers in exact fractional form

%% Initialization

if nargin == 1; in = 1; end

adj = adjacency(coords); % Adjacency matrix

layers = findlayers(coords, in); % Find layers

A = eye(max(layers)-1); % Decimal coefficient matrix

symA = sym(’A’,size(A)); % Symbolic coefficient matrix

b = ones(max(layers)-1,1); % Decimal RHS vector

symb = sym(b); % Symbolic RHS vector

%% Construct matrix equation

for inlayer = 2:max(layers) % Loop through layers

inverts = find(layers==inlayer); % Find vertices in layer

denom = 0; % Initialize denominator

for invert = inverts % Loop through vertices

denom = denom + sum(adj(invert,:)); % Denominator is equal to sum
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% of degrees of vertices

% in layer

end

for outlayer = 2:max(layers) % Loop through layers

numer = 0; % Initialize numerator

outverts = find(layers==outlayer); % Find vertices in layer

for invert = inverts % Loop through vertices in

% first loop layer

for outvert = outverts % Loop through vertices in

% second loop layer

if adj(invert,outvert) % If vertices are adjacent...

numer = numer - 1; % decrement numerator

end

end

end

if inlayer == outlayer % If layers are the same...

symA(inlayer-1,outlayer-1) = 1 + sym(numer)/sym(denom);

% find fraction, add one,

% and record in matrix

else % If layers are not the same...

symA(inlayer-1,outlayer-1) = sym(numer)/sym(denom);

% find fraction and record

% in matrix

end

end

end

%% Solve matrix and compute/display results

symlayerhits = [0;symA\symb]; % Find symbolic inverse

[symlayerhits,I] = sort(symlayerhits); % Sort hitting times

newlayers = zeros(size(layers)); % Initialize reordered layers

for layer = 1:max(layers) % Loop through layers

newlayers(layers==I(layer)) = layer; % Record reordered layer

end

disp(’newlayers’) % Display reordered layers

for layer = 1:max(newlayers) % Loop through reordered layers

disp([layer find(newlayers==layer)]) % Display layer number and

% vertices in layer

end

end
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