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Abstract

Assessment in the context of foreign language learning can be difficult and time-

consuming for instructors. Distinctive from other domains, language learning often

requires teachers to assess each student’s ability to speak the language, making this

process even more time-consuming in large classrooms which are particularly com-

mon in post-secondary settings;considering that language instructors often assess

students through assignments requiring recorded audio, a lack of tools to support

such teachers makes providing individual feedback even more challenging. In this

work, we seek to explore the development of tools to automatically assess audio

responses within a college-level Chinese language-learning course. We build models

designed to grade student audio assignments with the purpose of incorporating such

models into tools focused on helping both teachers and students in real classrooms.

This work also includes exploring various features - audio, tonal and text to help

assess students on two outcomes commonly observed in language learning classes:

fluency and accuracy of speech. We find that models utilizing tonal features exhibit

higher predictive performance of student fluency while text-based features derived

from speech recognition models exhibit higher predictive performance of student

accuracy of speech.
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Chapter 1

Introduction

When learning a new language, it is important to be able to assess proficiency

in skills pertaining to both reading and speaking; this is true for instructors but

also for students to understand where improvement is needed. The ability to read

requires an ability to identify the characters and words correctly, while successful

speech requires correct pronunciation and, in many languages, correctness of tone.

For these reasons, reading tasks are considered an integral part of any Standardized

language testing system for the syntactic, semantic, and phonological understanding

that is required to perform the task well [32, 35, 1].

Learning and improving upon proper pronunciation is an essential aspect of

learning to speak a new language. Almost all standardized language tests involve a

section where the person being evaluated is expected to speak a few sentences about

a given topic or answer a question; this is used to assess student skill and knowledge

of pronunciation, fluency, and the correct usage of vocabulary. In the previous

years, computer-assisted pronunciation teaching (CAPT) has gained attention and

has been commercialized such as Pearson, SRI, and ETS [38].

While a notable amount of research has been conducted in the area of automating
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grading of reading tasks by a number of organizations (cf. the Educational Testing

Service’s (ETS) and Test of English as a Foreign Language (TOEFL)), the majority

of assessment of student reading and speech is not taking place in standardized

testing centers, but rather in classrooms. It is here that better tools are most

needed to support both teachers and students in these assessment tasks. In the

current classroom paradigm, it is not unreasonable to estimate that the teacher

takes hours to listen to the recorded audios and grade them; a class of 20 students

providing audio recordings of just 3 minutes each, for example, requires an hour

for the teacher to listen, and this does not include the necessary time to provide

feedback to students. If given the right set of tools, this time could instead be used

to provide directed attention to students in need. The grading systems which have

been researched are usually for more closed-form responses, such as multiple-choices

or fill in the blank responses in which there is a single or small number of known

correct answers. Open ended responses, such as essays or explanatory, answers are a

more challenging task to automatically grade, but there has been growing research

on developing automated assessment tools for such tasks[37] [33].

By automating the process of grading students on their pronunciation in language

learning assignments, we can both help learners self-evaluate their progress and

provide tools to teachers who traditionally grade students by listening to audio

files (a task that can be very time consuming considering the number of potential

students a teacher may have in a single class). In the past few years, automatic

grading has become a tool in many learning systems. By giving one of the most time

consuming task of the teacher to automatic computations, we allow teachers to direct

their time to one-to-one discussion with students and give them feedback based on

their performances and mistakes. Thus, automatic grading has an enormous impact

and has gained attention over the last 30 years [10].
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1.1 Challenges

However, collecting this data has many challenges since not all the data is being

stored in one place uniformly like these platforms. Since oral tests happen in class,

recording and storing this data adds an overhead to the teacher’s responsibilities.

Therefore, collecting such data is a hard task in itself.

During these oral exams, the students are evaluated for similar measures like

the standardized exams such as pronunciation and fluency. This aspect of learning

a second language is particularly important in the context of learning Mandarin

Chinese. Given that Chinese (Mandarin Chinese) is a tonal language, the way the

words are pronounced could change the entire meaning of the sentence, highlighting

the importance of assessing student speech (through recordings or otherwise) an

important aspect of understanding a student’s proficiency in the language. Small

variations in tone or misunderstandings of characters could result in unintended

meaning. For example, the ‘a’ in ‘yan’ is pronounced as ’yen’, like the currency in

Japan. While the ‘a’ in ’Yang’ does not have that ‘e’ sound [14]. An instructor would

want to attend to these subtle differences to ensure that students fully comprehend

these important aspects of the language.

Review and feedback is an important part of second language learning. Many

online applications are available as sources to practice reading (texts) and writing.

However, there is no tool suitable for classroom set-up especially having the review

and feedback feature; this being crucial for classroom setups.
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1.2 Outline

This work consists of two parts. In the first part: Chapter 2, we seek to explore the

development of automated assessment tools for audio responses within a college-

level Chinese language-learning course. We focus on exploring several challenges

faced while working with data of this type as well as the generation and extraction

of audio features for the purpose of building machine learning models to aid in the

assessment of student language learning. In this part we present an exploratory

analysis representing an initial step toward the goal of developing automated as-

sessment tools for language learning audio responses. Toward this goal, we seek to

address the following research questions:

1. By employing models of varying complexity, are we able to automatically grade

student audio responses better than a simple majority class baseline model?

2. Does a recurrent deep learning model outperform a static decision tree model

in regard in predicting student grades?

3. Which features extracted from student audio responses provide the greatest

impact on model performance in predicting student grades?

In the second part: Chapter 4, we focus on more intuitive features and different

model architectures. We use the additional new data collected in form of recorded

student audio from reading assignments with the goal of developing models to better

support teachers and students in assessing proficiency in both fluency, a measure

of the coherence of speech, and accuracy, a measure of lexical correctness. We

present a set of analyses to compare models built with audio, textual, and tonal

features derived from openly available speech-to-text tools to predict both fluency

and accuracy grades provided by a Chinese language instructor.

4



1. How can we utilize the text prompt information which is already known?

2. How can we obtain and use tone related features?

3. Can we use other model architectures suitable for our task?

5



Chapter 2

Background and Related Work

Automatic speech recognition systems have been the focus of several works over the

past three decades. Some of this notable research has been conducted on the use of

Automatic Speech Recognizer (ASR) technology for automatic speech scoring and

the evaluation pronunciation quality [11] [4] [3] [39], as well as detecting mispronun-

ciation [36]. To our knowledge, the majority, if not all, of this previous research has

observed records collected through standardized language tests, leaving little work

having been done to grade audio responses from students submitted as a part of a

course or a class in schools or colleges as is observed in this current work.

As described, we are certainly not the first to explore aspects of audio data.

Multiple approaches have been used by researchers in various domains to assess and

understand speech. Bernstein, for example, developed a system which processes the

scripted recordings of a speaker to evaluate language proficiency [4]. Their automatic

grading system evaluated the pronunciation of student using Hidden Markov Models

trained on pronunciations of native speakers’ data.

Speech recognition is a great tool to help language learning and grading audio.

As a part of their Voice Interactive Language Training System (VILTS) project, SRI
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attempted to improve upon automated audio evaluation methods by developing a

system that did not rely on a scripted response [26]. That work utilized the “Deci-

pher” continuous speech recognition system which generates phonetic segmentation

to produce estimates of evaluative scores.

Other previous works to evaluate pronunciation have used ASR models com-

bined with confidence metrics such as the Goodness of Pronunciation (GOP) [25]

[23] [27]. There have been a number of prior works that have focused on the grading

of read-aloud and writing tasks using Automatic Speech Recognition using inter-

active Spoken Dialogue Systems (SDS) [20], phonetic segmentation [5][11], as well

as classification [36] and regression tree (CART) based methodologies[4][39]. Some

speech recognition systems have used language-specific attributes, such as tonal

features, to improve their model performances [31] [9].

With Deep Learning improving the performance of many tasks, it has been widely

used in the Automatic Speech Recognition and Scoring tasks. In [19], an alternative

to model-based phone distances in the form of a tunable Siamese network feature

extractor was used to extract distance metrics directly from the audio frame sequence

to predict score.

Many states have begun to use computer-based English Learning Proficiency

(ELP) assessments, which has led to a growing interest in automated scoring of

spoken responses to increase the efficiency of scoring. However, there is a dearth of

systems which grades foreign language learners. In this paper we plan to focus on

Chinese learning Undergraduate students.
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Chapter 3

Part 1 : Exploratory Analysis

This chapter, like we mentioned previously is about an exploratory analysis repre-

senting an initial step toward the goal of developing automated assessment tools for

language learning audio responses. In particular we look at low-level audio features

and the strength of each of these features using an Ablation study.

3.1 Dataset and Rubrics

The data set is collected from a Chinese language class for undergraduate students

in a university located in the North-East region of the United States. The data

collected consists of 63 distinct students from 3 classes run between 2017 and 2019.

All of these classes were taught by the same instructor. The data is comprised of

60 audio recordings which includes audio responses from 3 different prompts. The

average length of the audio is approximately 2.5 minutes.

As part of the class, students were regularly given assignments containing prompts

which required students to respond by recording themselves speaking and upload-

ing their recordings alongside additional written responses to additional problems;

this work focuses solely on the audio recordings submitted by students. All work
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Grading Components Percentage
Rich Content 40%
Grammar and word usage 20%
Accuracy of tones and pronunciation 20%
Fluency 20%

Table 3.1: The grading rubric used to assess student audio responses.

is submitted through an institute-hosted learning management system from which

the teacher then downloads all the files in order to listen and grade each student’s

work. In our dataset, the teacher followed a rubric when assessing each student

that is reported in Table 3.1. From this rubric, we can say that the content of each

responses represents 40% percent of the grade while grammar, pronunciation, and

fluency each represent 20% each.

3.2 Building model to predict grades

3.2.1 Pre-processing

A series of pre-processing steps were applied to the raw audio responses for use in

this work. The data processing and cleaning steps is important here as often the

case in any data mining or machine learning task; we describe these steps in detail

here to improve the replicability of our work in the future.

Among the 60 distinct responses contained within our dataset, 29 responses are

in the form of a video while the remaining 31 responses are purely audio across

the 3 prompts. As students were not assessed based on any visual aspects of their

responses and the goal of this work is to develop assessment tools of student audio,

we first extracted the audio track from each video and standardized all files to use

the same audio file format (.wav).

In 12 cases, student responses included multiple students speaking; it is likely
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Feature ID Feature Name Description

1 Zero Crossing Rate The rate of sign-changes of the signal during the duration of a particular frame.

2 Energy The sum of squares of the signal values, normalized by the respective frame length.

3 Entropy of Energy
The entropy of sub-frames’ normalized energies.
It can be interpreted as a measure of abrupt changes.

4 Spectral Centroid The center of gravity of the spectrum.

5 Spectral Spread The second central moment of the spectrum.

6 Spectral Entropy Entropy of the normalized spectral energies for a set of sub-frames.

7 Spectral Flux
The squared difference between the normalized magnitudes
of the spectra of the two successive frames.

8 Spectral Rolloff
The frequency below which 90% of the magnitude distribution
of the spectrum is concentrated.

9-21 MFCCs
Mel Frequency Cepstral Coefficients form a cepstral representation where the
frequency bands are not linear but distributed according to the mel-scale.

22-33 Chroma Vector
A 12-element representation of the spectral energy where the bins represent the 12
equal-tempered pitch classes of western-type music (semitone spacing).

34 Chroma Deviation The standard deviation of the 12 chroma coefficients.

Table 3.2: The 34 Features extracted from the audio along with its description.

that permission were given to these students to work collaboratively on the assign-

ment. In 2 of these cases, a separate grade was given to each student present in the

recording while in the remaining 9 cases, the students involved were given the same

score. We observed that the grades in these 2 cases where the score differed did

not vary more than 1 point (on a scale of 11, from 0-10 inclusively), and therefore

we aggregated each of the responses and grades into a single instance by simply

averaging the two scores. In this way, we represented these 2 cases with a single

averaged score. The other 9 cases were then left as individual samples , leaving us

with the aforementioned 60 distinct responses for use in our models.

For the feature extraction step (described in the next section), we further need

to convert our audio data in a mono-channel format. The data we collected contains

stereo data (i.e. it contains a separated right and a left channel). To convert each

response to a mono signal, we simply take the average of the two channels of the

stereo data.
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3.3 Methodology

In this section we describe our methodology of extracting features and building

models for the purpose of predicting teacher-provided grades for student audio re-

sponses. We compare two non-linear models to a simple baseline. While the grade

labels are provided on an 11-point scale (0-10), this scaling is non-linear in nature

due to non-uniformity across the grades (the average grade was 7.41). Since few

of the assignments were graded on different scales, a min-max scaling was used to

transform all the scores into a scale of 0-10.

3.3.1 Feature Extraction

The first step of our methodology is to extract features that we believe will best

measure aspects of the audio signal that will be useful in identifying the linguistic

information for assessment. Audio feature extraction is performed to transform the

audio signals recorded in the wav files into a representation which can be used for

machine learning. We try to characterize the signal with values capturing commonly-

measured properties describing the sound. The features we use in the analysis are

extracted using the PyAudioAnalysis library; this is a python-based library which

is exclusively used for audio data feature extraction.

We use the default parameters of 50 milliseconds and 25 milliseconds for the

window size and step amount respectively. With these parameters the feature ex-

traction function splits the input signal into short windows (frames), leading to a

sequence of short-term feature vectors at regular intervals within the signal. The

number of windows varies for each of the signals based on the length of the audio

file. The features extracted for use in this work are briefly described in Table 3.2.

For each time window, we extracted the 34 features, where several of the features
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described in Table 3.2 are described using a multi-valued numeric vector indicated

through the Feature ID column.

3.3.2 Deep Learning Model

The sequential and temporal aspects of audio data makes the application of a recur-

rent deep learning model an appropriate choice for developing automated assessment

tools. Specifically, we utilize a Long Short Term Memory (LSTM) [15] network, as

it is designed to model complex temporal relationships within sequential data. The

deep learning model observes a sequence of time steps (e.g. frames of audio as de-

scribed in the Feature Extraction Section) and is trained to produce a single value

corresponding to the estimated grade for the student response.

Due to the number of features and length of each student response, we opted

to utilize a network structure with 3 hidden layers. The input to the model is

represented as a sequence of 34-valued vectors corresponding with the extracted

features, which is then passed to a LSTM hidden layer of 50 nodes, before being

passed through 2 additional fully connected non-recurrent layers of 100 units each.

An output layer of a single node is used corresponding with the grade of the student,

treated as a regression as opposed to a classification task. We chose this particular

structure to help prevent the network from overfitting due to the long sequences (i.e.

by using a smaller LSTM layer), but providing enough depth in the model to learn

feature representations from each sequence; we explore additional model structures

in the next section.

The LSTM looks at each frame and provides an estimated grade for it, but

is only updated and evaluated on the final frame of the sequence. We applied a

5-fold cross validation on the dataset and measure performance using RMSE and

Spearman correlation.
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3.3.3 Decision Tree Model

To contrast the deep learning network, we also compare a simple decision tree model.

Such a model still has the capacity to learn non-linear relationships between the

features and teacher-provided grades, but does so in a non-sequential manner. As

such, we needed to aggregate the audio features into a single vector that describes the

response as a whole as input to the model. We simply take the average across each

of the 34 features across each response and use this to predict the teacher-provided

grade.

We apply a decision tree regressor using the CART algorithm [7]. Similar to

the deep learning model, we evaluate the model using a 5-fold cross validation us-

ing measures of RMSE and Spearman correlation. Within each training fold we

optimized it for it’s depth within each of the 5 folds using the training data.

3.3.4 Baseline Method

We compare the LSTM model and decision tree model to a simple baseline using a

majority class model. For this method, we simply take the average grade provided

by the teacher and use this as a prediction for every sample. As this is a simple

baseline, it can be used to evaluate how well our LSTM and decision tree models

perform in comparison to a model that incorporates no audio information. Failure to

outperform this baseline would indicate that such a model was unable to effectively

learn from the data.

3.4 Results

We report model performance using measures of RMSE, a measure of prediction

error, and Spearman correlation (Rho); lower values of RMSE below the baseline

13



model are indicative of high model performance, while higher values of Rho (above

zero) are indicative of high model performance.

The performance of each of our models in predicting the grade of student audio

responses is reported in Table 3.3. From this, it can be seen that both models out-

perform the baseline model in regard to RMSE, but only the LSTM model exhibited

positive correlation. For this reason, it is apparent that the LSTM model is the su-

perior model, although the values suggest that there is still room for improvement.

As the grade labels followed a 10 point scale, the best RMSE of 2.728 exhibited by

the LSTM suggests that it is, on average, over- or under-predicting the true grade

of the student by just under 3 grade points.

Despite this room for improvement, the results do suggest that both the LSTM

and decision tree models are learning from the data in potentially different ways.

For this reason, we further explore each of these models through an ablation study.

3.5 Ablation Study

In this experiment we perform an ablation study where we run a model with all

the features and iteratively remove each to observe impacts to model performance.

Changes in model performance as a result of removing a feature can be used then

as a measure of feature importance in determining the grade of the student. In this

way we try to identify and rank the importance of each feature in evaluating student

audio responses for each the LSTM and decision tree models.

Table 3.4 reports the results of this study across both the LSTM and Decision

Tree models. The rows are sorted to reflect the features of highest impact found in

regard to changes in RMSE for the LSTM model as this was the highest performing

model across both metrics.
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Model RMSE Rho
Majority Class 3.323 -
Decision Tree 2.807 -0.076

LSTM 2.728 0.163

Table 3.3: Audio Grade prediction: average 5-fold RMSE and R2 score for the
models

LSTM Decision Tree
Feature Removed Delta RMSE Rho Delta RMSE Rho

Chroma 0.118 0.172 0.217 0.162
Entropy of Energy 0.076 0.18 0.143 0.074

Zero Crossing Rate 0.042 0.149 0.132 0.121
Spectral Centroid 0.042 0.148 0.226 0.072

Spectral Spread 0.04 0.189 0.205 0.085
Spectral Rolloff 0.028 0.206 0.136 0.107

Spectral Entropy 0.025 0.217 0.132 0.121
Chroma Deviation 0.018 0.208 0.059 0.076

Energy -0.011 0.19 0.361 -0.025
Spectral Flux -0.016 0.242 0.151 0.11

MFCC -0.18 0.161 0.314 0.132

Table 3.4: Ablation Study results from the LSTM and Decision Tree model
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In regard to the decision tree model, the 3 features which cause the largest drop

in RMSE are Energy of the wave, MFCC features, and Spectral Centroid. The

RMSE for Energy increases from 2.807 to 3.168 giving an increase of 0.361 which

is high compared to the rest of the features. This is followed by the removal of the

12 MFCC features which cause an increase from 2.807 to 3.121 which is a 0.314

increase. The spectral centroid is the third feature whose RMSE increases to 3.012

from the original model giving an increase of 0.226. With respect to the Spearman

corelation metric, the top three correlated features are the Chroma features followed

by the Zero Crossing Rate and MFCC features.

In regard to the LSTM model, The 3 features which cause the largest decrease

in the RMSE are the twelve Chroma features, the Energy Entropy, and the Zero

Crossing Rate feature. The removal of the Chroma feature shows the maximum

increase in the RMSE of value 0.118. It is then followed by the Energy Entropy

feature which increases the RMSE by 0.076. The zero crossing rate is the third

highest feature which causes an increase of 0.042 in the RMSE value. On the

other hand removal of MFCC features causes a decrease in the RMSE by 0.180

which reduces the RMSE of the model to 2.548. Similarly, the removal of Spectral

Flux and Energy feature also causes a decrease in the RMSE by 0.016 and 0.011

respectively. However comparing the Spearman’s correlation measure (rho) does

not follow the same trend as the RMSE. Considering the LSTM model,the model

with all features has a correlation of 0.163 with the true label given by the teacher.

While removing certain features shows a higher correlation value. For example, the

removal of Spectral Flux value produces a model which has the highest correlation

value of 0.242. This is followed by the Spectral Entropy and Spectral Rolloff features

which give a correlation value of 0.217 and 0.206 respectively. In the case of LSTM

most of the models have a rho value more than the model with all the features. This
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may be suggestive of either overfitting occuring within the model, particularly as

some of the features similarly lead to improvements in RMSE when removed.

3.6 Discussion

As we saw from the decision tree model as well as the LSTM model, the energy

related features( Entropy of Energy and Energy) seems to be having a significant

impact on the evaluation of the pronunciation. In [12] the idea of ‘formants’ are

discussed, which are bands of acoustic energy around a particular frequency which

characterizes different resonances of the vocal tract. It is mentioned in the same

study that by measuring these differences in the mouth/tongue by instrumentally

finding how the formant structure may help understand pronunciation across differ-

ent vowels. The second feature which seemed to have an impact in the decision tree

is the MFCC feature. The important task of understanding speech and pronuncia-

tion is that the sounds produced by humans are filtered by the shape of the vocal

tract which determines what sound is emitted. By accurately defining the shape,

we could get representation of the phoneme being produced. The MFCC feature ac-

curately characterizes the envelope of the short time power spectrum which in turn

manifests the shape of the vocal tract. Hence it makes sense that it influences the

pronunciation score. However, the LSTM model seems to understand MFCCs differ-

ently and hence, the removal of these MFCC features seem to having a improvement

in the model. Further analysis on the MFCC features can help us understand why

this is the case. The Chroma feature is usually used for music data. It provides

information related to the twelve different pitches which are used to analyze musical

data. However we chose to explore how the pitches in human voice can be analysed

using these features. These Chroma features seem to influence the LSTM model
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Figure 3.1: The Waveform from an audio of a student answer along with the pre-
dictions by the LSTM model at each window.

with their removal producing a high increase in the RMSE. Even the decision tree

model seems to show an increase in the RMSE by 0.217 when these features are

removed.

As mentioned earlier, one of the goals of this paper was to understand if we

can provide valuable feedback to the students based on their audio submission. A

benefit of the sequential structure of the LSTM model is its ability to illustrate the

development of its grading estimates over the audio response. From moment-to-

moment, a grade estimate can help to indicate sections of the audio response that

are suggestive of a high grade (e.g. well-pronounced words) and sections suggestive

of a low grade (e.g. poor pronunciation or areas of silence); an example of this is

illustrated in Figure 3.1. In that figure, the bottom image depicts the wave form

of a student audio response while the top figure illustrates the LSTM estimate over

the length of the response. Such a report could help teachers to identify sections of

audio where the student may be in need of additional aid by observing where the

model predicts a low score.
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3.7 Conclusion

This work represents an initial step toward the development of automated assess-

ment tools designed to aid language learning students and teachers. Toward this,

we have compared the decision tree and a LSTM model to predict the scores of the

audio. With the ablation study on these two models, we see that certain features did

correlate to the scores given by the teacher. However with different features found

to be important across both models and across metrics, further in-depth analyses

of different combinations of the features could help to better understand these re-

lationships. This led us to our next part of exploring additional features. In part-2

we look at reading tasks in specific where students read-out aloud the given prompt.

We dive into looking at features related to text and tones extracted and understand

how they affect these grading models.
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Chapter 4

Part 2 : Exploring Tonal and

Textual Features

4.1 Introduction

This work is the continuation of part 1. Part 1 provided insight whether a model

could learn to grade the audio assignments based on the low-level features. However,

the study does not take the text spoken as input. In this current study, we look

into ’reading task’ assignment which provides us the advantage of having the text

read out by the students. This work observes student data collected from a college-

level Chinese language learning course. We use data collected in form of recorded

student audio from reading assignments with the goal of developing models to better

support teachers and students in assessing proficiency in both fluency, a measure

of the coherence of speech, and accuracy, a measure of lexical correctness. We

present a set of analyses to compare models built with audio, textual, and tonal

features derived from openly available speech-to-text tools to predict both fluency

and accuracy grades provided by a Chinese language instructor.
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4.2 Related Work

There has been little work done on developing tools to support the automatic as-

sessment of speaking skills in a classroom setting, particularly in foreign language

courses. However, a number of approaches have been applied in studying audio as-

sessment in non-classroom contexts. Pronunciation instruction through computer-

assistance tools has received attention by several of the standardized language test-

ing organizations including ETS, SRI, and Pearson [38] in the context of such stan-

dardized tests; much of this work is similarly focused on English as a second language

learners.

In developing models that are able to assess fluency and accuracy of speech from

audio, it is vital for such models to utilize the right set of representative features.

Previous work conducted in the area of Chinese language learning, of which this work

is building upon, explored a number of commonly-applied features of audio including

spectral features, audio frequency statistics, as well as others [34]. Other works have

previously explored the similarity and differences between aspects of speech. In [19],

phone distance has been used , which is defined relative to the other phones rather

than characterising each individual phone to analyse non-native English learners.

Work has also been done on analysing different phonetic distances used to analyse

[30] speech recognition of vocabulary and grammar optimization. Research has

shown that assignments that provide sound-based connections are more beneficial

to language learners and thus meaning-based connections should be provided as

secondary to these [22].

Many approaches having been explored in such works, starting from Hidden

Markov Models [4] to more recently applying deep learning methods [19] to predict

scores assessing speaking skills. Others have utilized speech recognition techniques
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for audio assessment. There have been a number of prior works that have focused

on the grading of reading and writing tasks using Automatic Speech Recognition

[20] [5][11] [4] [3] [39] [36]. As there has been seemingly more research conducted

in the area of natural language processing, such an approach as to convert the

spoken audio to text is plausibly useful in understanding the weak points of the

speaker. Recent works have combined automatic speech recognition with natural

language processing to build grading models for English Language [21]. In the last

few years, pre-trained vectors such as GLoVe[29] have gained importance in the

field of natural language processing. Having the text to be read out provides the

advantage of comparing the speaker’s audio converted to text to it with the help of

pre-trained vector representation of words to help predict the grades.

Speech recognition systems have used tonal features to improve their model

performances [31] [9]. Since tones are an important component of pronunciation in

Chinese language learning, we also consider the use of tonal features in this work

for the task of predicting teacher-provided scores.

4.3 Dataset

The data set used in this work was obtained from an undergraduate Chinese Lan-

guage class taught to non-native speakers. The data was collected from multiple

classes with the same instructor. The data is comprised of assignments requiring

students to submit an audio recording of them reading a predetermined prompt as

well as answering open-ended questions. For this work, we focus only on the read-

ing part of the assignment, observing the audio recordings in conjunction with the

provided text prompt of the assignment.

For the reading part of the assignment, students were presented with 4 reading
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tasks which were meant to be read out loud and recorded by the student and submit-

ted through the course’s learning management system. Each reading task consists

of one or two sentences about general topics. The instructor downloaded such audio

files, listened to each, and assessed students based on two separate grades pertaining

to fluency and accuracy of the spoken text. Each of these grades are represented

as a continuous-valued measure between 0-5; decimal values are allowed such that

a grade of 2.5 is the equivalent of a grade of 50% on a particular outcome measure.

This dataset contains 304 audio files from 128 distinct students over four distinct

sentence reading tasks. Each audio is taken as a separate data point, so each student

has one to four audio files. Each sample includes one of the reading tasks read by

the student along with the intended text of the reading prompt.

4.4 Feature Extraction

4.4.1 Pre-processing

Refer to Section 3.2.1 in Part 1.

4.4.2 Audio Features

Audio Features have already been explained in Part 1. See section Audio feature

extraction Section 3.3.1.

4.4.3 Text Features

From the audio data, we also generate a character-representation of the interpreted

audio file using openly-available speech recognition tools. The goal of this feature

extraction step is to use speech recognition to transcribe the words spoken by each
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student to text that can be compared to the corresponding reading prompt using

natural language processing techniques; the intuition here is that the closeness of

what the Google speech-to-text model is able to interpret to the actual prompt

should be an indication of how well the given text was spoken. Since building speech

recognition models is not the goal of this paper, we used an off-the-shelf module

for this task. Specifically, the SpeechRecognition library [40] in python provides a

coding interface to the Google Web Speech API and also supports several languages

including Mandarin Chinese. The API is built using deep-learning models and allows

text transcription in real-time, promoting its usage for deployment in classroom

settings. While, to the authors’ knowledge, there is no detailed documentation

describing the precise training procedure for Google’s speech recognition model, it

is presumably a deep learning model trained on a sizeable dataset; it is this later

aspect, the presumably large number of training samples, that we believe may prove

some benefit to our application. Given that we have a relatively small dataset, the

use of pre-trained models such as those supplied openly through Google, may be

able to provide additional predictive power to models utilizing such features.

With the Google-transcribed string, we segment the text into character-level

components and then convert them into numeric vector representations for use in the

models. In applications of natural language processing, the use of pre-trained word

embeddings has become more common due to the large corpuses of data on which

they were trained. Pre-trained models of word2vec[24] and Global Vectors for Word

Representation (GloVe)[29], for example, have been widely cited in applications of

natural language processing. By training on large datasets, these embeddings are

believed to capture meaningful syntactic and semantic relationships between words

through meaning. Similar to these methods, FastText[6] is a library created by

Facebook’s AI Research lab which provides pre-trained word embeddings for Chinese
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language. Each character or word is represented in the form of a 300 dimensional

numeric vector. Once the segmented characters are obtained, these embeddings are

used to convert each component to its vector space representation.

The embedding process results in a character level representation, but what is

needed is a representation of the entire sentence. As such, once the embeddings are

applied, all characters are concatenated together to form a large vector representing

the entire sentence. The pipeline for text feature extraction is shown in Figure 4.3.

The Google Speech to text API is reported to exhibit a mean Word Error Rate

(WER) of 9% [17]. To analyse the performance of Google’s Speech to Text API

on our dataset of student recordings, we randomly selected 15 student audio files

from our dataset across all the four reading tasks and then transcribed them using

the open tool. We then created a survey that was answered by the Teacher and

2 Teaching Assistants of the observed Chinese language class. The survey first

required the participants to listen to each audio and then asked each to rate the

accuracy of the corresponding transcribed text on a 10-point integer scale. The

Intraclass Correlation Coefficient (ICC) was used to measure the strength of inter-

rater agreement, finding a correlation of 0.8 (c.f. ICC(2,k) [18]). While this small

study illustrates that the Google API exhibits some degree of error, we argue that

it is reliable enough to be used for comparison in this work.

4.4.4 Tonal Features

Chinese is a tonal language. The same syllable can be pronounced with different

tones which, in turn, changes the meaning of the content. To aid in our goal of pre-

dicting the teacher-supplied scores of fluency and accuracy, we decided to explore the

observance of tonal features in our models. In the Mandarin Chinese language, there

are four main tones. These tones represent changes of inflection (i.e. rising, falling,
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Figure 4.1: The figure shows the 4 tones in mel-spectrograms

or leveling) when pronouncing each syllable of a word or phrase. When asking Chi-

nese Language teachers what are some of the features they look for while assessing

student speech, tonal accuracy was one of the important characteristics identified.

To extract the tones from the student’s audio, we use the ToneNet [13] model which

was trained on the Syllable Corpus of Standard Chinese Dataset (SCSC). The SCSC

dataset consists of 1,275 monosyllabic Chinese characters, which are composed of 15

pronunciations of young men, totaling 19,125 example pronunciations of about 0.5

to 1 second in duration. The model uses a mel spectrogram (image respresentation

of an audio in the mel-scale, see Figure 4.1) of each of these samples to train the

model.The model uses a convolutional neural network and multi-layer perceptron

(see Figure 4.2) to classify Chinese syllables in the form on images into one of the

four tones. This model is reported to have an accuracy of 99.16% and f1-score of

99.11% [13]. To use the ToneNet on our student audio data, we first break the

student audio into 1 second audio clips and convert them into spectrograms. We

then feed these generated spectrograms to the ToneNet model to predict the tone

present in each clip. The sequence of predicted tones is then used as features in our

fluency and accuracy prediction models.The pipeline for tonal feature extraction is

shown in Figure 4.4.
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Figure 4.2: ToneNet Architecture

4.4.5 True Audio : Google Text to Speech API

As a final source of features for comparison in this work, we believed it may be

useful to compare each student audio to that of an accepted “correct” pronunciation;

however, no such recordings were present in our data, nor are they common to have

in classroom settings for a given reading prompt. Given that we have audio data

from students, and the text of each corresponding reading prompt, we we wanted to

utilise Google’s text-to-speech API to produce a “true audio” - how Google would

read the given sentence. Though this API is not equivalent to a native Chinese-

speaking person, given that it is trained on large datasets, we believe it could help

our models learn certain characteristics that differentiate between different grades;
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Input 1 Input 2
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Given Text Prompt
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Embeddings for Chinese Language

[<300d><300d>.................m].

Figure 4.3: The figure shows the steps involved in transforming audio to text features
and feeding into the Siamese Network. Note: This is not a multitask model. Two
individual models are used to each metric.

the features extracted from the true audio is particularly useful in training Siamese

networks, as described in the next section, by providing a reasonable audio recording

with which to compare each student response.

4.5 Models

In developing models to assess students based on the measures of accuracy and

fluency, we compare three models of varying complexities and architectures (and

one baseline model) using different feature sets described in the previous sections.

Our baseline model consists of assigning the mean of the scores as the predicted

value. We use a 5-fold cross validation for all model training.
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Input 1 Input 2
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Neural Network
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Use ToneNet to classify spectrograms into tones.

Split into 1s sub audios
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….

Sequence of tones : [ 0 1 1 …. ]

Figure 4.4: The figure shows the steps involved in transforming audio to sequence of
tones and feeding into the Siamese Network. Note: This is not a multitask model.
Two individual models are used to each metric.

Aside from the baseline model, the first and second models explored in this work

are the same as applied in previous research in developing models for assessing stu-

dent accuracy and fluency in Chinese language learning [34]. These models consist

of a decision tree (Using the CART algorithm [7]) and a Long Short Term Memory

(LSTM) recurrent neural network. While previous work explored the use of audio

features, labeled in this work as “PyAudio” features after the library used to gen-

erate them, this work is able to compare these additional textual and tonal feature

sets. Similar to deep learning models, the decision tree model is able to learn non-

linear relationships in the data, but also can be restricted in its complexity to avoid

potential problems of overfitting. Conversely, the LSTM is able to learn temporal

relationships from time series data as in the audio recordings observed in this work.
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As in our prior research, a small amount of hyperparameter tuning was conducted

on a subset of the data.

In addition to the three sets of features described, a fourth feature set, a cosine

similarity measure, was explored in the decision tree model. This was calculated

by taking the cosine similarity between the embedded student responses and the

embedded reading prompts. This feature set was included as an alternative approach

to the features described in Section 4.4.5 for use in the Siamese network described

in the next section.

4.5.1 Siamese Network

The last type of model explored in this paper is a Siamese neural network. Siamese

networks are able to learn representations and relationships in data by comparing

similar examples. For instance, we have the audio of the student as well as the

Google API-generated “true audio” that can be compared to learn features that

may be useful in identifying how differences between these correlate with assigned

fluency and accuracy scores. In this regard, the generated audio does not need to

be correct to be useful in understanding how the different student audio recordings

differ from each other and how these differences relate to their scores.

The network is comprised of two identical sub networks that share the same

weights while working on two different inputs in tandem (e.g. the network observes

the student audio data at the same time that it observes the generated audio data).

The last layers of the two networks are fed into a contrastive loss function which

calculates the similarity between the two audio recordings to predict the grades.

We experimented with different base networks within the Siamese architecture

including a dense network, an LSTM, TCN(Temporal Convolution Network) and

1D Convolution Neural Network(CNN). However, the 1D CNN proved to be better
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Model Features Fluency Accuracy

Rho MSE Rho MSE

Siamese Network Text Features 0.073 0.665 0.317 0.833

Tonal Features 0.497 0.497 -0.006 0.957

LSTM PyAduio Features 0.072 1.139 -0.066 2.868

Tonal Features -0.096 0.648 0.042 0.929

Text Features -0.123 1.885 0.128 3.733

Decision Tree PyAudio Features -0.005 0.749 0.011 1.189

Tonal features 0.285 0.649 0.107 0.960

Text Features 0.090 0.794 0.261 0.998

Cosine Similarity 0.037 0.674 0.162 0.984

Baseline - 0.636 - 0.932

Table 4.1: Results for the different models.

amongst all of them. There has been prior research showing the benefits of using

CNNs on sequential data [2] [16]. We report the results for 1D CNN in this work.

4.5.2 Multi-Task Learning and Ensembling

Following the development of the decision tree, LSTM, and Siamese network models,

we selected the two highest performing models across fluency and accuracy and

ensembled their predictions using a simple regression model. As will be discussed in

the next section, two Siamese network models (one observing textual features and

the other the tonal feature set) exhibited the highest performance and were used in

this process.

Our final comparison explores the usage of multitask learning [8] for the Siamese

network. In this type of model, the weights of the network are optimized to predict

both fluency and accuracy of speech simultaneously within a single model. Such a

31



model may be able to take advantage of correlations between the labels to better

learn distinctions between the assessment scores.

4.6 Results

In comparing the model results we use two measures to evaluate each model’s abil-

ity to predict the Fluency and Accuracy grades: mean squared error (MSE) and

Spearman correlation (Rho). A lower MSE value is indicative of superior model per-

formance while higher Rho values are indicative of superior performance; this later

metric is used to compare monotonic, though potentially nonlinear relationships be-

tween the prediction and the labels (while continuous, the labels do not necessarily

follow a normal distribution as students were more likely to receive higher grades).

Table 4.1 illustrates the model performance when comparing models utilizing

each of the three described sets of features (See Section 4.4). From the table, it

can be seen that in terms of MSE and Rho, the Siamese network exhibits the best

performance across both metrics. It is particularly interesting to note that the tex-

tual features are better at predicting the accuracy score (MSE=0.833, Rho=0.317),

while the tonal features are better at predicting the fluency score (MSE=0.497,

Rho=0.497).

Model Fluency Accuracy

Rho MSE Rho MSE

Multitasking 0.129 0.603 0.313 0.915

Ensemble (Regression) 0.477 0.490 0.34 0.839

Table 4.2: Multitasking and Ensembled Siamese models

Table 4.2 shows the results for the multitasking and ensemble models. We see
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that the Siamese model with multitasking to predict both the fluency and accuracy

scores do not perform better than the individual models predicting each. This

suggests that the model is not able to learn as effectively when presented with both

labels in our current dataset; it is possible that such a model would either need more

data or a different architecture to improve. On the other hand, in a intutive sense the

reason could also be that these two metrics are orthogonal and hence the model is not

able to learn a generalized representation for both. The slight improvement in regard

to Fluency MSE and Accuracy Rho exhibited by the ensemble model suggests that

the learned features (i.e. the individual model predictions) are able to generalize

to predict the other measure. The increase in Rho for accuracy is particularly

interesting as the improvement suggests that the tonal features are similarly helpful

in predicting accuracy when combined with the textual-based model.

4.7 Overlap Analysis

Since we break the student audio into continuous one second sub audios, it is possible

that there may be loss of tonal information from one second to another. To improve

upon our current method of tonal features, we explored the method of extracting

features on overlapping windows. By overlap, we mean the next audio frame starts

from a point in the previous frame so as to not miss out any transitional information.

For example: For a 2 second audio, we break it into 2 consequent audios - each of

1s interval. When we do 50 percent overlap, the first audio is from 0 to 1s. The

second audio is from 0.5 seconds to 1.5 seconds. The third audio is from 1 to 2s.

Different percentages of overlap between two consecutive 1 second audio frames

were experimented with - 25%, 50%, 75% . Our analysis shows that there is no

improvement from the no overlap method (See Table 4.3).
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Fluency Accuracy

Method Rho MSE Rho MSE

No Overlap 0.497 0.497 -0.006 0.957

50% overlap 0.083 0.63 0.117 0.93

75% overlap 0.129 0.617 0.040 0.949

25% overlap 0.268 0.553 0.093 0.923

Table 4.3: Result of Tone Overlap Analysis

4.8 Data Augmentation

Recent advances in deep learning models have been largely attributed to the quantity

and diversity of data gathered in recent years. Data augmentation is a strategy

that enables practitioners to significantly increase the diversity of data available for

training models, without actually collecting new data. In this work we show two

types of augmentation methods to increase our data size (We tried other methods

but failed to obtain significant results with them). The first method shown in Figure

4.5 involves injecting small amount white noise into the audio data such that the

original content is still retained. The second augmentation method shown in Figure

4.6 involves shifting the pitch (but still retaining intelligibility). The results in table

4.4 show that augmentation, although provides us with more data, does not improve

the model performance.

4.9 Bias Analysis

The dataset used to train the ToneNet model is the Syllable Corpus of Standard Chi-

nese Dataset (SCSC). The creator is The Institute of Linguistics Chinese Academy
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Figure 4.5: Adding Noise

of Social Sciences. Mandarin mono-syllable corpus is comprised by mono-syllable

wave data, the list of mono-syllable and management software. The SCSC dataset

consists of 1,275 monosyllabic Chinese characters, which are composed of 15 pro-

nunciations of young men. Since the dataset consists of only audios trained on one

gender, there exists a possibility of bias in the predictions. For example - the pre-

dictions for male students could be better than the predictions for female students.

When building assessment tools, we do not want any biases existing in them. To

make sure the system is unbiased, a t-test was performed on the results of the model

based on gender.
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Figure 4.6: Pitch Shift

4.9.1 Gender Prediction

As a first step, the gender data of the students was required. Using the python

library ’gender-guesser’, the gender of the students based on their names was ob-

tained. There are three possible values obtained from this tool for each name - male,

female and unknown. Out of the 304 data points, we had gender value for 257 and

unknown for the remaining. The number of female data points were 121 and the

male were 136.
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Augmentation Type Fluency Accuracy

Rho MSE Rho MSE

Text Siamese Model None 0.073 0.665 0.317 0.833

Adding White Noise 0.194 0.736 0.210 0.837

Pitch Shift 0.270 0.701 0.217 0.877

Tone Siamese Model None 0497 0.497 -0.006 0.957

Adding White Noise 0.182 0.590 0.057 0.935

Pitch Shift 0.020 0.624 0.102 0.929

Table 4.4: Augmentation results

4.9.2 T-test

The square of the errors for all these datapoints were calculated and seperated

by gender. These were then used to calculate the t-test score. There was a not

a significant difference in the scores for male (M=0.538, SD=0.807) and female

(M=0.452, SD=0.8) gender. The results were not significant (p=0.396,statistic=-

0.851) for 95% confidence interval.

4.10 Discussion

In chapter one, we saw that the use of audio features helped predict fluency and

accuracy scores better than a simple baseline. In this study, the textual features and

tonal features explored provide even better predictive power. A potential limitation

of the current work is the scale of the data observed, and can be addressed by

future research. The use of the pre-trained models may have provided additional
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predictive power for the tonal and textual features, but there may be additional

ways to augment the audio-based features in a similar manner (i.e. either by using

pre-trained models or other audio data sources). Similarly, audio augmentation

methods may be utilized to help increase the size and diversity of dataset (e.g. even

by simply adding random noise to samples).

Another potential limitation of the current work is in regard to the set of pre-

trained speech recognition models provided through Google’s APIs, additional per-

formance biases may exist for speakers with different accents. Understanding the

potential linguistic differences between language learners would be important in pro-

viding a feedback tool that is beneficial to a wider range of individuals. A deeper

study into these properties of our assessment models would be needed before de-

ploying within a classroom.

As Mandarin Chinese is a tonal language, the seeming importance and benefit

of including tonal features makes intuitive sense. In both the tonal and textual fea-

ture sets, a pre-trained model was utilized which may also account for the increased

predictive power over the audio features alone. As all libraries and methods used

in this work are openly available, the methods and results described here present

opportunities to develop such techniques into assessment and feedback tools to ben-

efit teachers and students in real classrooms; in this regard, they also hold promise

in expanding to other languages or other audio-based assignments and is a planned

direction of future work.
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Chapter 5

Designing Tool

To incorporate the models to be used in a tool, a web application was built. As

a fist version, the tool aims to transcribe the spoken text and display it to let the

students know what they have spoken. It also aims to show the grades predicted by

the system using our models. The main components of the web application are as

follows.

5.1 Framework

The front end was developed with HTML and CSS. It mainly consists of the interface

where the student views the reading task question and records her answer by clicking

on record and stop buttons. Flask was used to connect the python elements to the

front-end. Flask is a micro web framework written in Python. It is classified as a

micro-framework because it does not require particular tools or libraries. Figure 5.2

shows the framework of the tool built. The transcribe button, when pressed calls

the python elements to perform the next steps.
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Figure 5.1: The Prototype of the grading tool

5.2 Handling Input

The audio recorded then is passed to the python component. Here, the feature pre-

processing occurs and the input is made ready for the pre-trained models to predict

on. Once the predictions are made, the transcribed text and the grades are sent

back to the front end to be displayed to the student.

5.3 Student Options

The student after viewing the scores has the option to try again or go to the next

question.
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Figure 5.2: Framework for the web tool
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Chapter 6

Conclusion and Future Work

To begin with, in chapter 3, we studied the different low-level audio features and

their importance by performing an ablation study. From the study, the MFCC,

Energy and the Chroma features stood out in terms of importance. We also build

decision tree and LSTM models using all the audio features and observe that we

are able to predict better than the baseline model. In chapter 4, we introduce

tonal and text features, and their feature extraction process. Multple models were

used on these features to predict for the scores. We see that the Siamese network

using the tonal and text features are better at predicting the fluency and accuracy

score respectively. Additional analyses including data augmentation, tone overlap

models, and bias analyses were performed to explore different impact of our models.

Though we see have the Siamese network performing with a rho of 0.497(fluency)

and 0.317(Accuracy), the question is if they are good enough to give it to students

and how the MSE error of the model affects the student scores. We acknowledge

that there are chances that the model provides a score higher or lower than the true

score. However, given that there is no such tool in the current setup, this stress-free

practice tool could help students get an idea of their performance. We argue that
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having some feedback is better than having no feedback. Tutors in higher education

are encouraged to ensure that feedback is provided to students on assessed work in a

way that promotes learning and facilitates improvement[28]. By providing feedback

with the transcribed text along with their scores, we give the students an idea of

their performance and furthermore the ability to practice using the tool to improve

their scores on the actual assignment.

Like mentioned before, there is a plethora of opportunity to work on such rich

audio data set and bridge the gap in language learning in classroom setups by build-

ing suitable tools. This is a first step in that direction. Further work would involve

conducting RCTs and the effect of such a tool in classrooms, and to study how stu-

dents respond to it. In the computational aspect of it, further model architectures

could be implemented to gain performance.
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