
Localization for FRC

A Major Qualifying Project Report

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degrees of Bachelor of Science in

Robotics Engineering and Computer Science

by

Jinan (Dorothy) Hu, Peter Mitrano, Kacper Puczydlowski, Nicolette Vere

April 24, 2018

1

Abstract

We present research, design, analysis, and implementation of a low-cost localization system
for high speed, cluttered, multi-robot environments. In these environments, no individual
sensor is sufficient for accurate localization, and there is currently no established low-cost
localization solution available. The FIRST Robotics Competition (FRC) is both our motiv-
ing example and an interesting environment in which to study localization. FRC is a high
school robotics competition where robots compete in a sport-like game on a large playing
field. In this report, we define criteria for successful localization, then describe experimental
results to characterize and benchmark individual sensors and algorithms. Furthermore, we
describe the datasets we have collected and released, and finally, we provide a description
of how we combined a subset of the proposed techniques in a complete localization system.

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Problem Statement . 4
1.3 FIRST Robotics Competition . 4
1.4 Key Contributions . 5

2 Survey of Localization Techniques 7
2.1 LIDAR Mapping . 7
2.2 Ultrasonic Mapping . 8
2.3 IMUs and Encoders . 8
2.4 Beacon systems and Wireless Networks . 9
2.5 Cameras with Visual Tags . 10

2.5.1 ArUco and MarkerMapper . 10
2.6 Optical Flow . 12
2.7 Filtering and Calibration . 13

3 Trade-Off Analysis Of Different Techniques 14
3.1 Proposed Localization Techniques . 17

4 Defining Successful Localization in FRC 18

5 Experimental Results 20
5.1 Double Integration of Accelerometer is Inaccurate 20
5.2 IMU Calibration . 20
5.3 Accuracy of Gyro Integration versus On-Chip Yaw Calculation 23
5.4 Characterising Drift and Bias in the Accelerometer 25

5.4.1 Measuring the drift and bias in the accelerometer 25
5.4.2 Zero Velocity Updates . 28
5.4.3 Drift Compensation . 29

5.5 Comparing Our IMU Localization to the NavX API 31
5.6 Measuring Beacon Delays . 32
5.7 Measuring Frequency Response . 34
5.8 A Theoretical Procedure for Building a Map of Beacons 35

2

5.9 OpenCV Optical Flow Sample Code . 37
5.10 Benchmarking OpenCV Processing Times . 37
5.11 Collecting Ground-Truth with VICON Motion Capture 38
5.12 Detecting Simulated Chirps in MATLAB . 39

5.12.1 The Doppler Effect on Ultrasonic . 40
5.12.2 Effect of Chirp Bandwidth . 42

5.13 Ultrasonic Beam Spread . 42
5.14 Characteristics of Piezo Transducers . 42
5.15 Co-Processors for Image Processing . 43
5.16 Evaluting The Placement of ArUco Tags . 43
5.17 Statistics of CSCore Image Timestamps . 45
5.18 Effect of Frame Rate and Resolution on ArUco Tag Detection 46
5.19 Rate of position estimates from ArUco Tags 47
5.20 Benchmarking MarkerMapper with VICON Motion Capture 48
5.21 Benchmarking ArUco with VICON Motion Capture 50
5.22 Our Experiences with Building MarkerMaps 51
5.23 Erroneous detections with ArUco . 52
5.24 Latency over the Robot Network . 53

6 A Dataset for Robot Localization 55
6.1 Provided Tools . 56

7 Sample Implementation 57
7.1 Sensing Techniques Used . 57
7.2 Robot Hardware . 57
7.3 Kalman Filtering . 58

7.3.1 Encoder Pre-Processing . 60
7.3.2 Accelerometer Pre-Processing . 60
7.3.3 Camera Pre-Processing . 60

7.4 Software Design . 60

8 Conclusion 62

9 Future Work 63

10 Acknowledgements 64

11 Appendices 68
11.1 Ultrasonic Radio Beacons Bill of Materials . 68
11.2 Survey Responses . 68
11.3 Radio Time of Flight . 69
11.4 ArUco Detection Times . 69
11.5 Code & Dataset . 70

3

1 Introduction

1.1 Motivation

Imagine someone arrives for the first time to spectate an FIRST Robotics Competition
(FRC) event. The robots are placed carefully around the field, the announcer counts down
to the beginning of the autonomous portion of the match, and they wait in anticipation for
these great machines to come to life. The buzzer blares, and nothing moves, just 30 seconds
of robots waiting awkwardly for their human drivers to take control. Unfortunately, this is a
common occurrence, and even more commonly the robots will simply drive haphazardly for-
ward for a few seconds before stopping and waiting for the teleoperated portion of the match
to begin. In many cases, interesting autonomous behavior requires knowing the position of
the robot. For example, in order to pick up game pieces or interact with elements of the field
it is incredibly useful to know the position and orientation of the robots. In this MQP, we
take the first steps towards a principled and robust solution to this problem. FRC is just one
example of a high-speed, cluttered, multi-robot environment. While there are solutions to
many instances of the general localization problem, these FRC like environments currently
lack an accurate and inexpensive solution. FRC is a challenging environment because, under
the control of human drivers, the robots make rapid and aggressive maneuvers for part of
the time, and at other times the robots are under complete autonomy. Another challenge
is that FRC fields are cluttered with other robots and game pieces that change from year
to year such as soccer balls, pool noddles, or inflatable shapes. A successful localization
system for FRC must support up to six robots, and must be robust to occlusion from the
playing field elements, unpredictable lighting, and frequent collisions. Our research suggests
that there are at least five appropriate methods for localization: cameras and tags, radio
and ultrasonic beacons, optical flow, dead reckoning with encoders, and dead reckoning
with an inertial measurement unit (IMU). All of these methods have seen success in robot
localization, but we claim that none of them are sufficient on their own.

1.2 Problem Statement

We desire a system for determining the pose consisting of x and y position and orientation
θ of the robot. At the highest level, the goal is to allow robots to query their absolute pose
on the field at any time. This information is a prerequisite for interesting behaviors such
as path following, picking up game pieces, and navigating to feeder stations. An important
criteria for our system is that it work well not only on the FRC field, but in teams’ practice
spaces. This means we cannot rely on an a priori map of the geometry of the environment,
or any other knowledge of the lighting, sound, and surface conditions.

1.3 FIRST Robotics Competition

The FIRST Robotics Competition is an international high school aged robotics competition:

“Under strict rules, limited resources, and an intense six-week time limit,
teams of students are challenged to raise funds, design a team brand, hone
teamwork skills, and build and program industrial-size robots to play a difficult
field game against like-minded competitors.” [20].

Each year, a new game is designed for the teams to tackle. However, the field remains
a constant size of 54’3” long by 26’3” wide. This field can contain walls, ramps, towers, or

4

any other number of obstacles from year to year. A rendering of the 2018 field is shown in
Figure 1. Furthermore, the field usually contains small balls or other game pieces that the
robots must manipulate. In preparation for these competitions, teams will often build mock
field elements or game pieces to practice with in their shops. These practice spaces vary
tremendously in size and in terms of how the team can operate in the space (see sections
11.2, 4). The robots for these competitions are typically several feet in every direction, with
differential or Mecanum drive, and can usually drive up to 4 m s−1. Each match begins with
a brief 15 second autonomous period, and continues with roughly 2 minutes of teleoperated
control. During the autonomous phase, teams use a v

Figure 1: the FIRST Robotics 2018 Competition Field [12]

While many robots contain sensors which are useful for localization, very few teams
are able to extract a reliable position estimate from these sensors. The sensors useful for
localization include encoders on the drive wheels, an IMU, and a camera. Presently, teams
often use a provided software library to compute the current robot angle from the IMU, and
may use encoders to measure the forward distance traveled. Teams may also use the camera
to detect large retro-reflective pieces of tape using simple blob detection with OpenCV in
order to align their robots with certain field elements. While some teams use the camera
or other sensors to go well above and beyond this, most teams do not have the resources or
talent to do so [2]. In essence, FRC is a challenging engironment for localization, and while
many teams currently have sensors useful for localization, very few teams actually use them
for this purpose.

1.4 Key Contributions

The key contributions of this MQP are:

• Survey of localization techniques applicable to FRC-like environments

• Set of metrics which define a successful localization system for FRC

• Suite of 20+ experiments (see Experimental Results) spanning many different sensing
methods

5

• Dataset of robot sensory readings and associated ground-truth position

• And a sample implementation of a full localization system based on all this knowledge

6

2 Survey of Localization Techniques

In this section we provide an overview of the most common and applicable localization
techniques. Overall, the problem of localizing a mobile robot can be viewed as accurately
measuring the absolute distance to known landmarks, or by measuring the changes in po-
sition over time. All localization methods lie somewhere on a spectrum between these two
approaches, and we will henceforth refer to these two ideas as global and local pose esti-
mation. Some of the high level techniques for robot localization are: measuring range at
various points around the robot and matching these readings to a map, measuring time
of flight or difference of arrival time to calculate distances to known locations, recognizing
landmarks and computing pose relative to those landmarks, and measuring changes in pose
and accumulating these changes over time. There are different sensors that can be used for
each of these techniques, such as laser range finders, cameras, inertial measurement units
(IMU), encoders, radio, infrared light, visible light, ultrasonic and audible sound. Although
there are a tremendous number of possible methods for indoor mobile robot localization,
there are a few which have received the most attention and shown the most success. These
include, but are not limited to:

• LIDAR mapping

• Ultrasonic mapping

• IMU and Encoders fusion

• Infrared or Radio and Ultrasonic beacons

• Wireless network methods based on signal strength

• Cameras with visually identifiable tags

• Optical flow mice and cameras

In our research, we learned how these techniques work and found descriptions and imple-
mentations to figure out whether they are appropriate for high-speed, cluttered, multi-robot
environments like FRC. These descriptions and implementations are presented in this section
with the purpose of demonstrating a thorough literature review and of providing background
information to the reader.

2.1 LIDAR Mapping

LIDAR is a sensor that works by measuring the amount of time it takes a laser to return
to the LIDAR after hitting a desired object [21]. Since light moves at a constant speed, the
LIDAR can calculate the distance between itself and the object that light was hitting. The
formula to compute distance is d∗c

2 , where d is the distance to the object, c is the speed of
light and the division by two accounts for traveling to the object and back. By repeating
this process at different angles the LIDAR can produce a map of its surroundings by finding
the distance between it and surrounding objects within its detecting range.

There are three types of information LIDAR can collect depending on the type of LIDAR.
The first is the range to the target which is found using a topographical LIDAR. A differential
Absorption LIDAR can find the chemical properties of the targets it is measuring. A Doppler
LIDAR can measure the velocity of a target. For our scenario, we concern ourselves only
with topographical LIDAR methods.

7

Most LIDAR have two main pulse systems for measuring distance. The first system
uses a micropulse have lower powered lasers that are usually considered safer [21]. The
wavelength for these is typically 1.0-1.5 m [47]. The second system uses high energy lasers
and is typically only used for atmospheric measurements [21]. The wavelength of these is
typically 0.5-0.55 m [47]. LIDAR localization works by matching landmarks to some known
map. Since the distance between it and those landmarks are known, the LIDAR system
can be used to determine its own position [40]. Another approach is to match point clouds
found on the most recent map produced by the LIDAR to point clouds on the prior map.
This has advantages because it does not rely on there being distinguishing features in the
environment. But it also takes more time to compute the map since it has to compare more
points than a feature to feature map [26].

2.2 Ultrasonic Mapping

Ultrasonic mapping (often referred to as sonar) was one of the first techniques used for
indoor robot localization, and has been explored deeply since the 1980’s. The most common
approach is to use multiple emitter-receiver transducers placed around the perimeter of
the robot, measure the range at each of those points, then localized to a given map of
the environment [10]. Alternately, some systems use one sensor and rotate it to achieve
the same effect [25, 10]. The algorithms for interpreting the measured distances work by
first extracting lines, then matching these lines to an existing map using algorithms such
as RANSAC. Reported accuracies of the system in [10] was 1 ft for position, and 10◦

for angle. In [10] and [25], the reported rate of position updates is 1 Hz. Additionally,
some methods will explicitly model the uncertainty of the position estimate, or explicitly
model the behavior of ultrasonic sensors to ignore unreliable data. A more recent and
sophisticated approach to localizing with sonar can be found in [43], in which 24 sonar
sensors in conjunction with encoders were used to perform simultaneous localization and
mapping. Their experimental results report drifts of 3.9 m and 21◦ over the course of 35 m
of travel.

2.3 IMUs and Encoders

An inertial measurement unit (IMU) is a sensor reporting the forces acting upon an object,
the angular rates of change, and surrounding magnetic field. The device typically comprises
an accelerometer, gyroscope, and magnetometer which sense the above data respectively.
These devices function by detecting Coriolis forces, which are inertial forces acting in the di-
rection of motion relative to a rotating reference frame. These forces are proportional to the
magnitude of the acceleration. These forces may be detected by a simple strain gauge mech-
anism or object vibrating at a known frequency (the rate of change of vibration frequency
is detected) [3]. The premise behind position sensing using this device involves integrating
the data with respect to time to calculate position and orientation. This approach was first
used in aeronautics to estimate projectile attitude, orientation, and position [33]. High cost
IMUs have been used historically for defense and transportation systems; the quality of the
sensor is high and the data is reliable in these applications. An inertial navigation system
(INS) often comprises multiple accelerometers, gyroscopes, and magnetometers to estimate
orientation and position. Their performance is increased by referencing, or filtering, one
sensor to estimate the error from another. Simple double integration of a filtered system
using expensive sensors is often sufficient for position tracking applications like ballistics or

8

missile tracking [3].
In cost-sensitive systems, these simple methods are much less accurate because the low-

cost electronics have more drift and noise. Because of integration of accelerometer data, the
velocity error term grows linearly and position error grows quadratically. This introduces
a need for more sophisticated filtering, sensor fusion, and optimization based approaches.
Bayesian filters (Kalman Filter, Particle Filter, . . .) are one family of filtering algorithms
commonly used with IMUs.

If the rate at which the position must be updated is lower than the update rate of
the data, many values can be processed and used to calculate an approximation within
a given time window. This technique is known as preintegration. Instead of filtering the
data, preintegration combines many data points into a single trajectory estimate. Then, it
transforms the data into the navigation frame, allowing for a smoother approximation of
system position. This was beneficial in cases where global position data was unavailable for
extended periods of time, and it also decreases computational load of the localization thread
[29]. The authors of [29] describe an overall CPU time of about 10ms for data processing
and real-time execution, although the system update frequency is unknown.

Another method for computing position from IMU data is presented in [48]. The state
estimate and sensors measurements, which include imagery in addition to IMU data, are
represented as a factor graph, and an novel algorithm is presented to update these estimates
to approximately-optimally estimate the true state. The main benefit of this approach is im-
proved computational complexity over methods like Bundle Adjustment, without requiring
linear or approximately-linear sensor models like with Kalman or extended Kalman filters.

Due to the widespread availability and well understood algorithms for using IMUs to de-
rive position, there exist libraries for IMU based localization already available to FRC team.
Frameworks such as Sensor Fusion 2 (SF2) provide students with algorithms that include
double integration, latency correction between IMU and camera data, fusion of encoder and
IMU data, and keyframe-based state estimation [16]. These algorithms use known system
parameters, such as update frequencies of sensors, frame transformations between sensors,
and data from landmarks for filtering and position estimation. Additionally, the data is
accurately timestamped and easily accessible to the vision processing thread. This way, the
user receives an updated pose estimate without lag and has a history of the orientation.
However, we suggest that these libraries are not quite robust enough for FRC teams to rely
on them for accurate position (see Defining Successful Localization in FRC)

2.4 Beacon systems and Wireless Networks

Beacon systems generally use ultrasound and or radio as a medium and either signal
strength, phase shift, or time to measure distance to the beacons. Among radio systems, the
system in [1] identified the location of people moving around buildings using signal strength
in the 2.4gHz band received at three or more beacons, and they report accuracy of a few
meters with an update rate of at most four times per second. The systems described in [9]
uses passive RFID tags on the ceiling and an RFID transmitter on the robot, and report
an accuracy of 4cm within a 5m2. Another RFID system [38] also uses signal strength to
RFID, and reports accuracies for various configurations ranging from 1cm to 3m. These
RFID systems use readers that cost over $500.

There are also countless localization systems that use standard wireless networks. A
comprehensive survey of these systems can be found in [28]. Systems that use signal strength
in standard wireless LAN networks have achieved up to 10cm accuracy and hundreds of

9

updates per second. Another radio beacon solution is to substitute single-frequency radio
with Ultra-wideband radio. These systems can achieve centimeter level accuracy, but they
use obscure or custom made transmitters and receivers that cost in the hundreds of dollars
[54] [36].

Among ultrasonic beacon systems, [23] uses the raw arrival times of ultrasonic pulses
over time plus odometry together in a Kalman filter. Many beacon systems use the speed
difference between sound and electromagnetic waves to measure system. Systems like [41],
[50], and [22] send radio pulses followed by ultrasonic pulses. This is known as the “Cricket”
style of beacons. Nodes in the network use the difference in arrival time of these two signals
to measure distance. Alternately, some systems use infrared pulses in place of radio [14]
[53]. These systems are inexpensive, and report accuracy of between 2 cm and 14 cm.

In the remainder of this paper, we will always be referring to the “Cricket” beacon
localization method. This method has been shown to be accurate and affordable, and as we
will discuss in the Trade-Off Analysis Of Different Techniques section, it nicely compliments
our other proposed methods of localization.

2.5 Cameras with Visual Tags

Most methods for indoor localization assume either natural landmarks or artificial landmarks
in the environments as references to absolute positions. In either case, the general approach
is to calculate the pose of the robot with respect to one or more landmarks, then use
the known position of the landmarks to calculate the pose of the robot in a global frame.
Another similar approach is using 3D models and 2D to 3D matching techniques. The
system described in [39] had accurately localized the camera’s position using this 2D to 3D
mapping technique.

The most common method for localization is artificial landmarks. Common artificial
landmarks include 1D binary barcode, 2D binary barcode and 2D colored barcode. The
system in [27] used cameras and ID tags on the ceiling, which were 2 m away from the floor.
A web camera facing the ceiling was mounted on a moving robot with a speed of 20 cm s−1.
The result of the experiment in [27] showed that this method was accurate even though
there was an unevenness between the ceiling and the floor. Another system [15] also used
camera and tags. However, instead of sticking ID tags on the ceiling, it put invisible tags
on the floor by every 3.75 cm. The camera it used was surrounded by a UV light, which
allowed the camera to capture those invisible tags. This system performed really well in
homelike environments, and the authors report only a few centimeters of error. Another
barcode based localization system for robots with very limited memory and computational
resources (8 KB memory, 16 MIPs) [8] used 1d barcodes as references. Using a camera with
80 vertical pixels and 640 horizontal pixels, the system achieved localization within 7.8 cm of
error on average. Ultimately, cameras with artificial visual markers have been shown to be
accurate enough for our application (see section 4) but are highly dependant on the various
assumptions about tag placement, camera quality, processor capabilities, and the required
frequency of position estimates.

2.5.1 ArUco and MarkerMapper

ArUco is one implementation of artificial landmark based localization that has been used ex-
tensively in robotics research. The ArUco library (https://sourceforge.net/projects/
aruco/) provides a function for estimating the pose of an object by minimizing the squared

10

https://sourceforge.net/projects/aruco/
https://sourceforge.net/projects/aruco/

(a) raw data (b) annotated frame

Figure 3: Visualization of pose estimate

sums of the distances between the projected points and the measured points (reprojection
error). The side length of each tag is known and input into the program. The measured
points (two corners, minimally) are used to obtain a point estimate in 3D space. Multiple
point estimates from each corner are used to calculate the pose of the ArUco tag’s centroid.
The projected points are parameterized by the camera matrix, which uses the pinhole cam-
era model. The reprojection error corrects the pose estimate based on the calibrated values.
An example of a correctly detected ArUco tag can be seen in Figure 3.

Figure 2: Calculating reprojection error [37].

MarkerMapper (https://sourceforge.net/projects/markermapper/) builds on top
of the detection of individual markers. Markers are first scattered around the environment,
then MarkerMapper can be used to build a map of their poses in space. The ID of the origin
is input into the program. By estimating the pose of each tag in a camera frame, a map of
transforms between tags was developed. Then, the position of the robot’s camera, and by
extension the robot itself, can be found with respect to detected markers. When the map is
complete, the user is able to query the pose from the origin using data from any tag in the
workspace. This approach has the advantage of not requiring tags to be placed carefully at
known locations, which is a difficult problem in cluttered environments.

11

https://sourceforge.net/projects/markermapper/

2.6 Optical Flow

Optical flow is the ability to track changes between cameras frames and measure the dif-
ferences between them to track position. In other words, optical flow is a collection of
techniques for finding the movement of objects between images or video frames. More
precisely, optical flow looks at the movement of pixels among images. There are many as-
sumptions about the image that has to be made in order to apply optical flow. The first is
that the lighting in the image stays consistent throughout the sequence of images. Images
with inconsistent lighting or transparent objects would violate this assumption. Limiting
the amount of inconsistencies in each sequence of images leads to more accurate optical flow.

There are many methods of calculating optical flow that deal with different constraints.
This first is the Horn and Schunk method which calculates optical flow looking at all pixels
in an image. Methods which consider all the pixels are called global methods. Along with
the lighting constraint it also adds that the image should be as smooth as possible and have
few variations in its coloration. The closer the amount of variations is to zero the more
accurate the optical calculation will be[34].

The optical flow vector for each pixel is calculated using the equation below. Ix and
Iy are the spatial gradient of the current pixel. Spatial gradient refers to the path the
pixel is moving along. It is the temporal gradient of the current pixel. Temporal gradient
is how similar the motion of the pixel is to its neighbors [42]. α is a weighting term. ū
and v̄ are the components of the average optical flow vector of neighboring pixels. The
equation is shown below 1 [34]. n represents which iteration the optical flow calculation is
on. Each current pixels’ optical flow is calculated based on the optical flow of the pixels at
the previous iteration. Optical flow calculation will iterate from pixel to pixel until it has
calculated optical flow for each pixel.

un+1 = ūn − Ix[Ixū
n + Iy v̄

n + It]

α2 + I2
x + I2

y

vn+1 = v̄n − Ix[Iyū
n + Iy v̄

n + It]

α2 + I2
x + I2

y

(1)

Optical flow can also be done locally using the Lucas Kanade method [42]. This method is
based on the assumption that the optical flow vector of pixels are similar to their surrounding
pixels. This method finds optical flow vectors that are consistent with its neighboring pixels’
temporal gradients and spatial gradients. Each neighbor is then given a weight based off of
how close it is to the pixel. The farther away a pixel is, the lower a weight it is assigned.
This is because spatial and temporal gradients are based on how far away a pixel is so the
error will be larger. Having a lower weight will reduce the error. The formula for the optical
flow vector is a least squares equation shown below in equation 2 [34].

Ev =
∑
p∈Ω

W 2(p)[∇I(p) · v + It(p)] (2)

∇I(p) and It(p) are the spatial gradient and the temporal gradient for each of the
neighboring pixels p. v is the optical flow vector for pixel located at (x, y) on the image.
W (p) is the weight assigned for each pixel. Local methods tend to work better since they
do not allow information about vectors to spread to unrelated regions of the image. This

12

issue of information spreading to unrelated areas of the image is especially problematic in
global methods when the assumptions about consistent smoothness and illumination are not
fully met. There are a variety of other optical flow methods that focus on different ways of
comparing pixels within images but local and global are the most popular methods [34].

Optical flow has been used for multi-sensor localization in indoor, feature-rich environ-
ments [13]. This method is also sometimes called visual odometry. In this work, the authors
use a PX4FLOW optical flow sensor to capture 64x64 pixel images at 100 FPS, and an ul-
trasonic range sensor to measure distance from the ground. The data from the camera was
used to obtain a velocity information using optical flow and a position estimate using land-
mark detection on the images. These were fused with attitude data from an onboard IMU.
In this research, miniature quad-copters flying over a textured carpet are used to evaluate
the localization algorithm. The patterns on the 20x20m carpet, comprising dots of random
size and a 1 square grid, are used as features for the optical flow and camera-based position
estimates. The authors report average error of 0.025 m in a test of stationary hovering.

2.7 Filtering and Calibration

Given the number of sources of position information, it is natural that there will also be a
number of ways to take advantage of using multiple techniques together. Different sensors
can have better or worse performance in different scenarios, and a choice of fusion algorithm
will yield more accurate position information by leveraging this. Calibration can also be used
to compensate for errors between sensors. For instance, if your have encoders to determine
that you are not moving, you can take your current IMU readings as a bias and using them
to reduce the error build up during integration.

The most popular class of filtering algorithms used for localization is called Bayesian
filters. These filters describe the world and sensors with probability models, and they
estimate both the state of the robot and the confidence (covariance) of that state estimate.
Bayesian filtering algorithms include Kalman filters, information filters, and particle filters.
Kalman filters and information filters have the advantage in computational efficiency, where
as particle filters can more be more accurate if the true belief distribution is non-gaussian
or if the true dynamics are nonlinear [46]. In our work, it is natural to consider the state
as the position, velocity, and acceleration of the robot. It is common to assume that this
state representation satisfies the Markov condition needed by Bayesian filters. Intuitively,
the Markov condition says that knowing our current state and control input is sufficient to
make a prediction of the next state, and we do not need the full history of states and control
inputs. To implement these filters, we required a model for how our state changes given our
current state and motor inputs. For each measurement source, we define how the sensor
values are derived from the state. It is easy to come up with very rough approximations for
these equations, but difficult to construct accurate ones. On the other hand, these filters
have very strong gaurantees and their efficacy has been demonstrated in numerous systems
[6][9][31][33][38][45][30].

Many of the localization techniques discussed involve some form of calibration. Primarily,
the IMU requires calibration for misaligned axis, scaling factors, and biases. There are many
procedures for calcuating these calibration parameters by taking advantage of static intervals
and assumptions about the force of gravity [29][24][44]. Visual tag detection algorithms, such
as ArUco, also include a camera calibration process to account for the focal length, field of
view, and distortion characteristics of the camera [17]. Knowing these parameters allows
one to undo distortion to the image, which is essential for detection of most AR tags.

13

3 Trade-Off Analysis Of Different Techniques

Each of the techniques presented thus far have strengths and weaknesses. In cases where
those strengths and weaknesses are orthogonal, combining multiple techniques can improve
the overall performance. This is the fundamental principle behind sensor fusion. For exam-
ple, in [22] the authors use a compass to make up for the inability of beacons to measure
orientation of the robot. In order to tackle all of the diverse challenges of localization in the
FRC environment, we believe it is necessary to combine techniques. In this section we will
explain which techniques we are promising and which we have ruled out. We will justify
why none of the techniques discussed are sufficient on their own, and explain which the
techniques we have chosen work well together.

As stated in section 2, techniques for localization include LIDAR mapping, ultrasonic
mapping, IMU and encoders, infrared or radio and ultrasonic beacons, wireless network
methods, cameras with tags, and optical flow. Each of these techniques has been used
successfully in their respective applications, but not all of them are appropriate for this
project.

LIDAR has been shown to be one of the highest performing localization methods in
terms of accuracy, precision and update rate. The two reasons why we are not pursuing
it further are because it is too expensive and because it requires a map. LIDARs capable
of ranging across an entire FRC field are over $400, which is the cost limit for any single
part on an FRC robot. Additionally, LIDAR techniques also require either mapping on the
fly, or an existing map. Mapping on the fly presents its own challenges, and usually suffers
from very bad localization for some initial period of time while the map is built. Therefore,
a map would have to be provided for the environment. Existing maps would work very
well on the competition FRC fields, but would not apply in the practice spaces teams use
because their practice spaces change frequently, and building and maintaining useful maps
in those spaces would be a burden.

Ultrasonic mapping has this same issue. Both LIDAR and ultrasonic mapping would
work best if teams to place walls up to create a “pen” for the robot of known geometry
to use as a map, and for this reason we believe LIDAR and ultrasonic mapping are unfit.
Another major issue with ultrasonic mapping is the interference between robots. If multiple
robots range ultrasonic near one another, there could be cross talk and interference between
the signals. This is reason enough to rule out any use of reflecting ultrasonic. Note however
that ultrasonic beacons do not have this weakness, since the pulses being emitted are being
timed based on line-of-sight travel with so any reflections can and should be ignored.

IMUs within the budget of FRC teams suffer from accumulated drift, and as such they
cannot be used in isolation (see 5.1). On the other hand, many FRC students have experience
with them, so it would be wise to support basic features such as heading detection and
filtering using IMUs. IMUs also compliment other localization techniques very well. For
example, cameras suffer from the jitter of the robot moving, and encoders fail when the
wheels slip. IMUs on the other hand are excellent at detecting jitter and slippage. In this
way, an IMU is a good complement to cameras and encoders.

Radio and ultrasonic beacons are very attractive because of their low-cost and ability to
automatically locate each other. The cost of each beacon are projected to cost about $30 (see
13). Furthermore, beacons have more flexibility in their placement than tags because they
are much smaller and do not need to be on flat surfaces, or in specific orientations. Finally,
because each beacon can operate as a transmitter or a receiver, beacons can automatically
locate each other, which means students will not have to measure their positions or worry

14

about them being accidentally bumped. A procedure for building a map of beacons is
described in section 5.8. Beacons also make up for some flaws in the other techniques.
Beacons provide absolute global position but updates slowly, which nicely complements IMU
and encoder methods which are fast but only measure changes in position. Additionally,
beacons are more resistant to jitter than cameras. Finally, by placing the beacons and
cameras in different locations we can minimize the effect of occlusion.

Wireless network systems are among the most popular for indoor localization. However,
they also require knowledge and control over the 2.5 GHz spectrum in the area where they
are used. At FRC events, there can be dozens of wireless networks running, as well as the
wireless networks used on the field for communication between robots. For this reason, we
feel that techniques using wireless frequency have too many unknown variables. It’s possible
that there are methods other than signal-strength 2.5 GHz based systems which could work
well for FRC, but those advanced techniques are neither well established nor within our
ability to implement.

Among the vision based localization systems discussed in section 2, there are systems that
use natural landmarks (object detection) and those that use artificial landmarks (tags). Tag
based systems are preferred because they are inexpensive and easy to implement. Natural
landmark detection would likely not perform well in cluttered high-speed environments like
FRC because of moving robots and game pieces. Furthermore, implementing real time
object recognition is computationally intensive. Among systems using artificial landmarks,
not a lot of robot localization systems use 1D barcodes as references. A 1D barcode can only
contains up to 25 characters, which limits the length of information. Among 2D barcodes,
fiducial tags and QR tags are two of most popular choices in mobile robot localization. The
advantages and disadvantages of different types (QR, Data matrix, PDF417, fiducial tag)
of 2D barcodes are discussed here. QR codes are designed to be viewed straight on with
the camera. Data Matrix codes are very similar to QR codes, and they have high fault
tolerance and fast readability. Data Matrix can be recognized with up to 60% of the code
unrecognizable. PDF417 is famous for the huge amount of data it can store. Complex
information such as photographs, signatures can be inserted into PDF417 easily. Fiducial
tags contain less information than QR codes. However, many of them can easily be detected
in one shot and the process speed for fiducial tags is faster than of QR codes, and so they
have seen widespread adoption in robotics.

The system in [49] measured the distance between AprilTags and the camera. A sheet of
16.7 cm AprilTags were tested from 0.5 m to 7 m away. The calculated distance was within
0.1 m of the real distance from 0.5 m to 6.5 m. However, orientation errors were pretty high
(1.5◦ off) when the off-axis angle was small, but were within 1 degree from 20◦ to 75◦ of
off-axis angle. The detected rates for tags were 100% from 0 to 17 m away. This system
showed that the combination of camera and fiducial tags can potentially localize robots
accurately and precisely. In [5], the authors developed an algorithm to enhance the quality
of QR codes captured in order to improve the recognition rate. Its algorithm successfully
recognized 96% of QR codes under a variety of qualities captured by a mobile phone camera.
The average time for decoding a QR code is 593 ms. Another deblurring method in [51] can
be applied to enhance the quality of motion-blurred ArUco code.

Another benefit of cameras with tags is that they provide global position information
without much setup or infrastructure. However, camera based systems suffer from occlusion
and jitter. These disadvantages can be mitigated with our other localization techniques.
In summary, tag based camera systems have been shown to be accurate enough for use in
FRC, and it complements other localization methods well.

15

Marker Mapper is localization technique for indoor robots published by the developers
of the ArUco tag detection and pose estimation algorithm. Motion capture data suggests
that it is comparable to sophisticated localization algorithms such as ORB-SLAM and LSD-
SLAM[32].

Figure 4: Marker Mapper absolute trajectory error (meters)

The algorithm must first construct a map using off-line data. Once the transforms be-
tween tags are known, the map is used to report position from a known tag. The transforms
between tags are corrected using redundant information in frames. The error along each
basis cycle is computed, then an optimization algorithm is used to compute the corrected
pose estimation. The mapping phase is an order of magnitude faster than Structure from
Motion (SFM) and Multiple View Geometry (MVG) localization techniques. Although the
paper mentions no on-line tests, is it reasonable to believe that pose estimation can be
accomplished at minimally a 1Hz rate.

Optical flow offers accurate angle measurements and fast updates that are relative to
our current position. Like all camera based solutions, the vibration of the robot will likely
makes this technique difficult. However, cameras are the most widely used sensor according
to our survey of FRC students and alumni, which is another benefit of optical flow and tag
based solutions. Optical flow can be applied either to cameras facing the environment or
pointed down at the floor.

The latter is the method used by computer mice, which have optical flow chips designed
for high speed motion. Optical flow chips are made for optical flow detection with a specific
lenses and microprocessor to get position [11]. These types of chips are built into computer
mice with lenses that work only when the mouse is against a flat surface at a specific height
from the table. This would be a problem in FRC since the field is not perfectly flat and there
are sometimes obstacles that the robots need to drive over. There are also different drive
trains which can shift center of balance between sets of wheels which would also cause the
mouse to be off the ground. One of the benefits of using a mouse would the fast update rate.
Optical flow mice update at 2,000 to 6,469 frames per second according to the ADNS-3080
optical flow sensors specifications [42]. They process frames quickly and most teams have
mice of some sort they could use. However, a drawback of optical flow mice is their inability
to detect rotation. Any rotational component in the optical flow is explicitly removed since
computer users want only the translation of the mouse in order to navigate a computer
screen. Lighting is also important to for the camera to be able to clearly pick up images so
having a source of light illuminating around the optical flow mouse would also be necessary
for teams in order to get the best results [11].

The other option for optical flow is to use a camera which faces the environment. This
method is also sometimes called visual odometry. OpenCV provides libraries and sample
programs for running dense optical flow and sparse optical flow in these configurations.
Dense optical flow takes longer since it is using all of the points on a frame but can be
more accurate [18]. In general, optical flow is not sufficient for localization on its own
because it does not provide position in any global frame. However, environment-facing
optical flow nicely complements our other systems because it uses a sensor we already plan

16

to use (a simple webcam), and provides a source of local position updates not based on any
assumptions about wheels or robot dynamics.

3.1 Proposed Localization Techniques

Ultimately, we have identified IMUs, encoders, cameras with tags, beacons, and optical
flow as promising techniques for localization in FRC. These techniques together provide
redundant sources of both local and global pose estimates, and account for many of the
challenges associated with localization for FRC. We believe that implementing each of these
techniques and combining their results will produce a more robust localization than exploring
any one of them in depth.

17

4 Defining Successful Localization in FRC

Here we present the criteria a system must meet in order to be successful. Broadly, we
consider the following factors to be those which are important, since they immediately
effect the ability of an FRC team to use localization for interesting tasks.

1. Accuracy
How close our position estimates are to ground truth.

2. Precision
How close repeated position estimates are to each other given the same ground truth.

3. Update Rate
How quickly does our system provide position estimates.

4. Accessibility
How affordable is our system, how difficult is it to make, and how easy is it for teams
to use.

A successful localization system for FRC should meet the following criteria:

1. Accuracy of ±10 cm and ±5◦

2. Precision of ±5 cm and ±2◦

3. Update Rate at 20 ms/50FPS, with global updates at 100 ms/10FPS

4. Accessibility with cost under $200 for teams.

To come up with hard numbers for these criteria, we first performed a few simple cal-
culations based on our knowledge of FRC and a survey we conducted. First, we consider
what teams would want to use position information for, and decided that the applications
requiring the most accuracy are shooting and autonomous pick of game pieces at known
locations. Both of these require the position estimates to be close to the true position of
the robot. From there, we estimate that most FRC shooting and pickup mechanisms will
work within ±10 cm. Next, we decided the application requiring the most precision would
be path following. If position estimates are imprecise and jump around rapidly, smooth
path following will be difficult. From our experience with path following, we estimated that
±5 cm and ±2◦ would be sufficient. For update rate, we considered what the maximum
distance a robot could move within a period and used that to decide what our update rate
should be. The very fastest FRC robots move 6 m s−1, which at an update rate of every
20 ms is a distance of 0.02 ∗ 6 = 0.12 m. The rate of 20 ms is a realistic cycle time in FRC,
and we feel 12 cm is sufficient given the speed. For accessibility, we acknowledged that teams
cannot spend more than $400 on any part, and that they usually source parts from websites
AndyMark, Cross-the-road Electronics, and National Instruments among other suppliers.
We are also conscious that many FRC teams have limited or cluttered spaces for testing
their robots, and may be working in a shared space that must be clean and usable after
their work sessions.

Using all of these informal estimates as a starting point, we conducted a survey of FRC
students, alumni, and mentors. We received 65 responses in total, and used the results of
this survey to solidify these design criteria. The full response of this survey are presented

18

in Survey Responses. In summary, the median for accuracy was 4 inches in x,y and 5◦ in
yaw. Our survey did not include questions about precision and update rate, because they
depend on what position is used for. Instead, we asked if students would try path planning if
they had a localization system, which would back up our estimate of precision. Our survey
indicated that 90% of students would try to make the robot autonomously follow paths.
Therefore, our precision estimated based on path planning as an application is supported
by our survey. Update rate was not addressed in the survey because we didn’t think FRC
students would have informed opinions on this metric.

Finally, we asked several questions about the accessibility requirements. A cost of under
$200 was deemed acceptable by 84.6% of responses, and so we have made $200 the goal
for cost. Furthermore, we learned that the amount of space in teams shops varies from a
5 by 5 foot space up to several thousand square feet, but the median shop size is 775 ft2,
which one can imagine as a 25 by 30 ft space. In terms of access, about 76.5% of teams
could leave up tags or beacons, with the others stating that they must clean up everything
because they work in a shared space such as a classroom. Lastly, we asked students what
sensors they were familiar with. The most familiar sensors were cameras (90%), followed
by encoders (84.6%), then IMUs (60%). Therefore, it would be beneficial to incorporate
cameras, encoders, and IMUs because teams are already familiar with them. However, in
order to not place extra constraints on sourcing parts, we choose to ignore the constraint
that the parts we test with meet the FRC-Legal or Off-The-Shelf requirements of FRC.

Ultimately, we formulated design criteria based on our own experience with FRC and
with localization, as well as by conducting a survey of the needs, experience, and opinions
of FRC participants. These design criteria will help us pick which localization techniques
to pursue as well as define a successful localization system for FRC.

19

5 Experimental Results

One of the key contributions of this MQP is an extensive set of empirical and theoretical
results spanning the 5 different sensing technologies we outlined as promising (section 3.1).
This section describes each of these experiments and explains how each test impacts the
practical implementation of a complete localization system. Future projects working to
implement an actual localization system for FRC can use these results to jump-start their
development and inform design decisions.

5.1 Double Integration of Accelerometer is Inaccurate

We first demonstrate that double integration of raw accelerometer data is inaccurate. This
is unsurprising, but for completeness we demonstrate specifically that double integration is
inaccurate for the NavX IMU under FRC-like driving conditions. This inaccuracy comes
from manufacturing errors, and electrical noise and imperfections in the IMU circuitry.
Noise is also introduced from the vibrations of the robot chassis as it drives. Figure 5 shows
a typical example of naive trapezoidal rule to numerically double integrate the raw X and
Y, with the rotation component coming from the yaw of the NavX which is very accurate
(see 5.3).

Figure 5: The plot shows position by double integrating raw accerelometer readings. Time
proceeds from purple to red. The truth path was a set of 7 mostly concentric 4m diameter
circles. After the first 1 seconds the data is inaccurate.

5.2 IMU Calibration

From an early experiment collecting data on a Turtlebot (section 5.1), we saw that double
integrating the accelerometer readings was not accurate enough. This was expected, because

20

it is well known that double integration will amplify any bias. Therefore, we replicated the
IMU calibration procedure described in [44], which accounts for many sources of error with-
out requiring expensive external equipment. This calibration method was straightforward
to perform, and could be replicated by FRC students. This calibration method corrects
the misalignment, scaling, and biases in both accelerometer and gyroscope. This is done
by optimizing for accelerometer calibration values that make the magnitude of acceleration
during static intervals closest to 1, and then by optimizing for gyroscope calibration values
that make the integral of gyroscope measurements between static intervals match the change
in orientation between static positions.

First, the IMU needed to be placed statically for a period of Tinit ≈ 50 seconds. Next,
by calculating the variance of the accelerometer data collected during that initialization
period, a threshold for a static interval detector could be determined by applying a constant
multiplier. After the initial waiting period, the IMU needs to be rotated an arbitrary
amount and left in that orientation for 1 to 4 seconds. Each IMU position during the “flip
and wait” period should be distinct for calibration to be accurate. The entire “flip and wait”
process has to be repeated 36 to 50 times. After all data was collected, an optimization
procedure was ran first on the accelerometer data to solve for the calibration parameters for
misalignment, scaling, and bias that make the norm of the acceleration closest to 1. Then,
a similar method was used for gyroscope calibration based on the success of accelerometer
calibration. The quality of calibration of gyroscope was entirely based on the quality of the
accelerometer calibration.

In our experiments, we used Tinit = 50, as was reported by the authors for a different
IMU. The authors arrived at this number from a plot of Allen Variance–we did not reproduce
this plot with our IMU. We waited 4 s during our static intervals, but found that using
Twait = 3 was better in practice for detecting wide, clean, static intervals. This is possibly
because a sometimes the IMU was not truly at rest for a full four seconds. In our early
experiments, we found that failing to record enough distinct static intervals would cause the
optimization procedure to fail to converge. So, in order to get as many distinct positions
as possible, a Helping-Hands was used to hold the IMU. We rotated the IMU 36 times in
total, which was the minimum suggested number of static intervals in the original paper.
The accelerometer data and gyroscope data in x, y, and z axis were recording for the entire
period. Using the threshold from initialization data and the full accelerometer data, the
static detector successfully distinguished between static intervals and dynamic intervals. A
demonstration of our static detector is shown in Figure 6.

21

Figure 6: The black line is 1 during intervals classified as static

Using the identified static intervals, we optimize using the Levenburg-Marquedt proce-
dure in python’s NumPy package to solve for the accelerometer calibration values. The
equation we are minimizing is shown below (Equation 3). These values can be found in
Table 1, and descriptions of each variable can be found in [44].

‖g‖2−‖T aKa(as + ba)‖2 (3)

αyz αzy αzx sax sax saz bax bay baz
-0.002710 0.004559 -0.000738 0.997279 0.996661 0.989960 -0.006376 -0.008999 -0.019918

Table 1: IMU Calibration Values

Note the values shown above are close to the values that represent no transformation,
[0, 0, 0, 1, 1, 1, 0, 0, 0]. This indicates that our accelerometer is already quite well calibrated
but not quite perfect, which is expected.

The next step is to calibrate the gyroscope. We integrate the angular rates measured
by the gyro between every sequential pair of static intervals and compare this to the angle
between the two static intervals. We have a good estimate of the true orientation of each
static interval from the previous accelerometer calibration step, and so the goal is to solve
for gyroscope calibration parameters that make the integral of the transformed gyroscope
data over the dynamic interval match the next orientation of the static interval as measured
from the calibrated accelerometer readings. This is expressed in the error function we are
minimizing, shown in Equation 4.

∥∥∥∥ua,k − (∫ k

k−1

Ω(ωS
i)di+ ua,k−1

)∥∥∥∥
Ω(ωS

i) = T gKg(ωS
i + bg)

(4)

The function Ω(ωS
i) takes the raw angular velocity readings wS

i , transforms them with
the calibration constants, and produces a rotation matrix. This rotation matrix is the euler

22

rotation matrix (Roll-Pitch-Yaw ordering) which can then be multiplied by ua. Towards
this process, we investigated numerical methods for computing the above integral. This
integral cannot be computed analytically because we only have samples of the integrad,
rather than a analytic closed-form. Therefore, numerical integration methods like Euler’s
Forwardmethod or Runga-Kutta methods can be used. While [44] uses Runga-Kutta 4th
Order (RK4), we used the 1-step Euler’s Forward method. Over the whole integral, this
rotates the average acceleration values from the k−1th static interval, ua,k−1, to the average
acceleration values from the kth static interval. One could compute the same thing in a
different order, by integrating the angular velocity values to get angles, constructing one
rotation matrix, then rotating the acceleration values. However, because of gimble lock
and dependence on ordering of the axis of rotation, this is much less accurate in practice.
By rotating within the ingrand, we are only rotating by very small angles at a time, which
mitagates the issues of using euler-angle rotation matrices. This theoretical result was tested
experimentally, and the results are shown in Figure 7. Note that the bars representing the
incremental rotation are more accurate than the one-shot rotation, where more-accurate is
defined as closer to the true average acceleration readings at the next frame.

Figure 7: Integration of the gyroscope readings in the Y Axis. Method 1 is one-shot rotation,
Method 2 is incremental rotation. Incremental rotation is clearly more accurate.

5.3 Accuracy of Gyro Integration versus On-Chip Yaw Calculation

We asked the question of whether the provided on-chip GetYaw() method is more or less
accurate than what can be computed from the raw gyroscope readings. To answer this ques-
tion, we first used implemented a simple procedure for computing yaw from the gyroscope
readings. First, we apply the calibration parameters (see section 5.2), then a base-frame
rotation. This base frame rotation accounts for the angle of mounting of the NavX on our
robot, which may not be perfectly flat. To do this, we let the robot sit still for a second or
two and compute the rotation matrix that rotates the accelerometers readings to be [0, 0, 1],
which is the value you’d expect if the NavX were flat. Having calibrated and rotated the

23

raw gyroscope readings in all axis, we can consider only the yaw, or z axis, of the rotated
data. We use a 1-step forward Euler’s method to integrate these readings, which are in
degrees/second. This gives us our yaw angle over time.

To compare this procedure with ground truth, we log the raw gyro values values while
driving in the motion capture studio, then perform the calculations described above to get
yaw. Figure 8 shows our computed yaw, compared with the on-chip GetYaw() and the
yaw reported by motion capture. Due to the wrap-around behavior, the mocap yaw has a
small blip in value that can be ignored. Overall, both our yaw value and GetYaw() match
the ground truth very closely. The maximum error of 2.497◦ in the first 1000 samples (20
seconds).

Figure 8: Comparison of yaw values between our algorithm and motion capture. The
GetYaw() and Motion Capture lines are nearly indistinguishable.

24

Trial Data Source Average Error (deg) 90th Percentile Error (deg)
1 Navx GetYaw() 1.275 4.606
2 Navx GetYaw() 1.027 2.298
3 Navx GetYaw() 1.402 3.591
4 Navx GetYaw() 1.458 4.032
1 Integrated 3.619 7.710
2 Integrated 2.670 5.589
3 ntegrated 6.315 13.659
4 Integrated 3.182 8.206

Table 2: Table of errors during 4 trials of the NavX on a Turtlebot under motion cap-
ture. The NavX is more accurate than integration and meets our criteria of accurate angle
measurement (see section 4).

5.4 Characterising Drift and Bias in the Accelerometer

After confirming experimentally that integrating accelerometer readings would be innacu-
rate, we explore the well known techniques of drift compensation and zero velocity updates.
Before testing these directly, we first categorize just how much bias there is in our accelerom-
eter, and how that bias changes over time.

5.4.1 Measuring the drift and bias in the accelerometer

Compensating for the accelerometer drift is important in IMU localization since double
integration of accelerometer data amplifies any inaccuracies. We first performed an exper-
iment to study the drift of accelerometer when it is stationary. We put the accelerometer
on a flat surface for 6 minutes and collected the data at 100 Hz (see Figure 9). Then, we
calculated the average accelerometer value of the first 500 samples and the last 500 samples
in the x and y axes. The difference of mean values of first 500 samples and last 500 sample
in x, y, z axes are -0.000475g, 0.000158g, 0.000323g respectively. For reference, we note
that the maximum drift of -0.00475g, or −0.004 65 m s−2 would cause a position error of
0.5 ∗ −0.00465 ∗ 32 =−0.020 948 m over a 3 second period. In other words, if the NavX is
stationary, even if the initial bias of the accelerometer is zero, the position could drift up to
2 cm over 3 seconds.

25

Figure 9: The raw measured X acceleration (Gs) and its mean over first and last 500 sample
periods while stationary.

We then wondered that whether the duration of motion influences the amount of drift,
so we performed another experiment. We drove the robot in a circle, stopped for 9 seconds,
drove the robot in 2 circles, stopped for 9 second, so on until the robot drove for 5 circles in
a row. We will refer to this test as the “Nypro Circles” test. This allows us to see whether
moving for longer periods of times will cause more drift. We collected the accelerometer data,
fused yaw measurement, and temperature. Using this data, we plot the mean accelerometer
value in each of the static intervals to see if there is a clear trend (see Figure 10). Based on
these means, we can say that the NavX accelerometer drifted a lot between static intervals.
However, there is no simple linear trend between the duration of motion.

Figure 10: The means of the accelerometer data in world-frame X and Y in each static
interval.

Having measured the accelerometer bias and studied its drift, we then integrated the
accelerometer data with yaw angles of the “Nypro Circles” test to see how these effect the

26

position. To get the best results possible, we also apply our calibration parameters (see 5.2).
When integrating to get position, we rotate the robot into the world frame using the yaw
angles come from the GetYaw() function of the NavX API, which is very accurate (see 5.3.
Figure 11 and 12 show that bias and drift make velocity and displacement inaccurate after
only a short period of motion.

Figure 11: Velocity as derived by integrating the calibrated accelerometer measurements.

Figure 12: Displacement as derived by twice-integrating the calibrated accelerometer mea-
surements.

Since temperature could also be a factor that affects accelerometer values, we compared

27

the temperature with accelerometer values in static intervals over time. Shown in Figure
13, the temperature increased when the robot was static and decreased when the robot
was in motion. However, temperature does not have a straightforward relationship with
accelerometer bias or drift in bias.

Figure 13: A Plot of temperature recorded by the NavX over the duration of our test.

Overall, our experiments showed that the accelerometer is subject to bias, and that these
biases drift over periods of motion. Because of these errors, the double integration becomes
inaccurate after a very short duration of motion. Furthermore, we show that the magnitude
and direction of this drift has no straightforward relationship with the duration of motion
or temperature. We now present several approaches for handling these sources of error and
describe our results applying them to this data.

5.4.2 Zero Velocity Updates

Looking at the calibrated velocity plots (Figure 11), clearly there is still bias in the ac-
celerometer readings which are causing the velocity to drift up and down during intervals of
motion. We now apply zero velocity updates to the data to mitigate this. The first step is to
apply the static detector. We borrow the static detector used in our IMU calibration section
which thresholds the variance based on a sample of known static data. We then apply this
threshold to variance of a window of 20 samples. After applying the static detector to each
window, we get a series of static intervals. Then we compute the bias in that interval, which
is simply the mean for x, y, and z. This vector of means is now our best guess of the bias,
and we subtract it from all samples in the static interval and in all future samples until
the next static interval. Additionally, we hard force the current acceleration and velocity
estimates to be zero.

28

Figure 14: Velocity after bias during static intervals is removed.

Figure 15: Velocity after both applying bias and zeroing velocity estimates.

5.4.3 Drift Compensation

Having compensated for the biases found during static intervals, we now wonder whether
we can account for the drift between these static interval biases. As was shown in Section
5.4.1, there is no clear trend in how the motions change between or within static intervals.
This means we cannot hope to find any one drift rate and apply it to the entire stream of
accelerometer data. However, there are two other possible ways to account for drift looking
only at a single static interval or a single pair of static intervals. The first method is to
calculate the drift rates between two sequential static intervals, and apply drift compensation
starting from the static interval and up until the next static interval. This method is an
offline method since it requires knowing the future accelerometer data to account for the
drift in the current data. Because this method requires future data, it is not possible to
implement in our system in real time. The second method is to calculate the drift rate

29

within a static interval and project this drifting behavior on both the static interval and
the following dynamic interval. This method is online because it only requires current and
past accelerometer readings. Both of these methods offer no significant improvement, but
we report them for completeness. These two methods are plotted below, with the original
data (only calibration applied, no drift compensation) shown for comparison (Figures 16,
17, 18).

Figure 16: Velocity as derived by integrating the calibrated accelerometer measurements.

Figure 17: Velocity where drift is calculated between static intervals

30

Figure 18: Velocity where drift is calculated within static intervals

5.5 Comparing Our IMU Localization to the NavX API

We compare our method for localization with only the IMU against the GetWorldX() and
GetWorldY() functions provided by the NavX. These functions differ from our methods
because they do not include zero velocity updates or drift compensation. We also apply our
own calibration parameters to our data, which differs from the internal calibration done by
the NavX. As is shown in the Figure 19, both methods drift significantly over the course
of our experiment (“Nypro Circles”, described in Section 5.4.1). For reference, in this test
our robot was driven in circles with a constant left-right wheel speed difference. However,
when we zoom in to the first thirty seconds of the data, we see our method better preserves
the sinusoidal nature of the motion, whereas the NavX position constructs lots of straight
edges. Furthermore, zooming in to the first three seconds highlights that our method is
significantly more accurate.

Figure 19: Comparison between NavX (left) and our method (right) over the entire experi-
ment.

31

Figure 20: Comparison between NavX (left) and our method (right) over the first 30 seconds
of the experiment.

Figure 21: Comparison between NavX (left) and our method (right) over the first 3 seconds
of the experiment.

5.6 Measuring Beacon Delays

The beacon system relies on measuring the time it takes for a sound signal to travel from
the beacons to the robot. To do this accurately, one must account for transmit and receive
delays in addition to the actual time of flight. Figure 22 illustrates the various delays we
need to account for. We conducted experiments to estimate these delays.

32

ULTRASONIC
TX Delay Time of flight RX Delay

RADIO
TX Delay

Time of flight

RX Delay

Figure 22: Timing of radio and ultrasonic signals. Experiments indicate 46.175 µs total RF
delay and 1 ms total ultrasonic delay.

First, to get an estimate of the radio transmit and receive delay, a transmitter and
receiver were set up on two microcontrollers. The transmitter sent 5 ms pulses at 433 MHz
(no encoded data) every 55 ms, and oscilloscope probes were attached to the input pin
on the transmitter and the output pin on the receiver. By comparing the time difference
between the input and output signals on the oscilloscope, we can determine the total time.
Furthermore, we can measure the distance between the transmitter and receiver and subtract
the theoretical time of flight from the total time. The full data for these measurements are
available in Radio Time of Flight, and an example measurement is shown in Figure 23.
The time of flight of radio over distances of a new centimeters or meters is on the order of
nanoseconds. We measured an average delay of 45.175 µs, which we attribute to the internal
circuitry of the transmitter and receiver. The variance of this delay was 16 µs. However,
we also measured delays as low as 32 µs and as high as 79 µs. Since the theoretical time of
flight over the distances used in this experiment were at most 1 ns, we can conclude that
there is both delay and significant variance in the delay of the transmitters and receivers.
This is an important delay to consider when implementing the timing measurement of the
beacon signals.

Figure 23: Example measurement total trip time for radio signal. The blue line is the input
to the transmitter, and the yellow are the output of the receiver

Next we performed a similar experiment with the ultrasonic transducers. For this exper-
iment, we used two NTX-1004PZ piezo speakers placed 25 cm apart. The NTX-1004PZ is
meant to be a high-frequency speaker for DJ equipment, and is designed to operate between
4 kHz and 20 kHz. However, because they are incredibly cheap we decided to evaluate them
as ultrasonic speakers running just above that range. One was connected to a PSoC 5LP for
transmitting, and the other was connected only to the oscilloscope. The other oscilloscope
probe was connected to the transmitting piezo. The time difference between the transmit-
ting signal and the receiving signal was measured. The signal applied to the transmitter
was short bursts of a 24Hz square wave. Again, the distance was measured between the
transmitted and received waveform, and the theoretical time of flight was subtracted. The
full data for this experiment is shown in table 3.

33

Distance (m) Expected Delay (us) Measured Delay (us) Error (Measured - Expected)
0.10 294 390 96
0.15 441 556 115
0.20 588 698 110
0.25 735 872 137
0.30 882 1001 119

Table 3: Measured Delays in 2kHz Sine Wave Signal

This data suggests that there is a constant delay of ≈115 s, which could be attributed to
the internal amplification circuitry and the time for the receiving piezo to begin to resonate.
An example of the oscilloscope readings is shown in Figure 24, which illustrates the time
period where the receiving piezo response is building up before becoming detectable.

Figure 24: Capture of the measurement of ultrasonic delay on the oscilloscope

5.7 Measuring Frequency Response

After testing for delays, we also measured the frequency response of the NTX-1004PZ piezo
speaker. We placed two speakers 17 feet apart, and using a function generator we transmit-
ted a square wave at 8vPP and swept from 20 kHz to 30 kHz and back down over the course
of 20 seconds. We attached an oscilloscope to the receiving speaker and captured the power
at each frequency using the FFT mode, persisting the display over the course of the sweep
to see how the frequency response changes across our frequency range. Figure 25 shows
the results of this experiment. From this experiment, we learned that the best frequency
response is achieved at 22 kHz, and the after 27 kHz the signal is indistinguishable from the
noise.

34

Figure 25: Frequency response of the NTX-1004PZ, centered at 25 kHz with 2.5 kHz per
division. The best response is achieved at 23 kHz, and the highest detectable frequency is
27.5 kHz.

This experiment shows that any ultrasonic signals emitted by the beacons must be
within the 20-27kHz range. For fixed frequency signals, 22 kHz should be used. Lower
frequencies will be detectable and painful or annoying to humans, and higher frequencies
will be undetectable.

5.8 A Theoretical Procedure for Building a Map of Beacons

In order to use beacons to localize, the absolute positions of the beacons must be known.
Naively, one could simply place the beacons in fixed locations and measure the position with
respect to the field or practice space. However, this is an unsatisfactory solution for our
use case in high-speed multi-robot gameplay. It is inevitable that collisions with robots or
people working in the space will bump the beacons and change their position. Furthermore,
we found in our survey that some FRC teams use a classroom as their practice space, and
therefore are unable to leave beacons out in the same position for extended periods of time.
Therefore, we describes a procedure by which the beacons, upon initial setup, can discover
their own relative positions.

Consider a “Cricket” style beacon using radio and ultrasonic communication like those
described in section 2.4. Because each beacon is equipped with radio transmitter receiver
pair and a piezo transducer, any beacon can send and receive radio signals or ultrasonic
chirps to or from any other beacon. This is the principle we will use to construct a map of
beacons. The mapping procedure occurs upon startup of the system, or possibly periodically
whenever the user believes a new map should be build. We also designate a “Master” beacon,
which is simply the first beacon that is turned on. The list below outlines the steps required:

1. Identification

35

(a) Turn first beacon on, which becomes the master

(b) The master will begin to broadcast itself with a radio message

(c) Turn each other beacon on. Each beacon will hear the master’s broadcast message
and broadcast a request a Id assignment

(d) The master will hand out sequential Ids to each beacon

(e) After all the beacons have been assign, the identification stage is complete

2. Range Data Collection

(a) The leader starts emitting orders to beacons to send ultrasonic (US) signals to
locate the other beacons

(b) When beacon hears its signal, it will chirp US

(c) Everyone else will listen for that US and compute their distance to beacon 1

(d) Then beacon two will hear its signal, and will chirp US

(e) Everyone else will listen and compute distance to beacon 2

(f) Repeat for all the identified beacons

3. Map Construction

(a) At this point, all of the beacons have computed all of the ranges to all other
beacons

(b) The master will then one-by-one request each beacon to emit this information

(c) Once the master has collected all range estimates, it uses a least-squares solver
to find the distances that minimize the error from all the range estimates

The final step in this procedure is a simple optimization step. The problem can be stated
formally as such. Let there be N beacons, let dij be the true distance from beacon i to j,

and let d̂kij by the distance from i to j as measured by beacon k. The optimization problem
is as follows:

arg min
dij

N∑
k=0

‖dij − d̂kij‖
2

(5)

Because we formulate the optimization problem as a sum of square error, there are many
potential optimization methods that could be used, such as Levenburg-Marquedt. The end
result will be a set of distances from each beacon to each other beacon. From this point, one
can either assume that a given beacon (sensibly beacon 0) is the origin, or one can provide
the position of the origin beacon with respect to some other origin on the field of practice
space. Either way, this setup procedure and optimization problem result in a map which
can be used to find the position of the robot give any collection of measured ranges to three
or more beacons.

36

5.9 OpenCV Optical Flow Sample Code

Preliminary testing with optical flow was done using a Microsoft USB camera using the
sample code provided in OpenCV. In the screenshot below the window labeled flow that
there are a variety of green dots on the screen. These are the points that dense optical flow
has identified. There is also a green line which is the motion vector of which way the frames
are moving. The middle window labeled HSV flow is adding color to the different points
that are currently the best for tracking on the frame. The bottom window labeled glitch is
the current frame and previous ones overlaid showing all of the motion that has happened.

Figure 26: Screenshot of the opencv sample program lk track.py on video collected on a
practice FRC field. Aruco tags provide excellent targets for Lucas-Kanade tracking.

5.10 Benchmarking OpenCV Processing Times

This test compares computation time for optical flow with OpenCV. Tests were done using
lkdemo.cpp which was we modified from a sample file provided by OpenCV. We compare
this program on a laptop verse the RoboRIO and compare the time they took to run the
code. The laptop used has a 2.8 GHz Intel 4 Core i7 processor. A chart below was made of
the time that each program took to run 100 frames in seconds.

Laptop (sec) RoboRIO (sec)
3.638 8.429
4.184 8.429
3.638 8.429
3.639 8.429
4.184 8.429

Average (sec) 3.8566 8.429
Average (FPS) 26 12

Table 4: Time for 100 frames to run using OpenCV on laptop verse RoboRIO

We performed these measurements 5 times to ensure repeatability. From these numbers,
we conclude the laptop was just over twice as fast that of the RoboRIO. Based on our results
from section 5.18, we conclude that 12 FPS is not fast enough for our project requirements
and so a co-processor is needed.

37

5.11 Collecting Ground-Truth with VICON Motion Capture

To evaluate the accurate of our system and to help with tuning various constants in the
system we need a source of ground-truth state information. The ground truth data for
measuring accuracy and precision is obtained using a VICON brand Motion Capture system.
This comprises a VICON Lock+ data processor and 8 Vero infrared cameras. Our system
can collect 2.2 megapixels of data and is designed for capturing human motion in small
spaces. The VICON system is accurate to approximately 1 mm. In our experiments, the
space used for experimentation was 19x14 feet. The pose of the robot is tracked using three
retro-reflective markers. These are positioned at known distances such that the transform
between the centroid of the markers and the centroid of the robot is easily obtained. A
scalene triangle laser cut from acrylic was used as a guide.

(a) guide for placement (b) reflective markers

Figure 27: VICON tracker set up

In our experiments, the camera system captures data at 100Hz. To synchronize data
collection, the RoboRIO sends a 5V signal to the Lock+ processor, and a UDP packet is
transmitted to the Co-Processor running the camera. This data is synchronous to within
≈500 µs. Using the same markers, the pose of the ArUco tags is also measured.

38

(a) robot in VICON field (b) VICON (blue to red over time) position
and orientation data

Figure 28: Collecting and Plotting Position data

5.12 Detecting Simulated Chirps in MATLAB

In order to examine the theoretical limits of our ultrasonic chirp detection, we created
synthetic chirps and examine how pattern matching filters would work to detect them. For
our beacons to work we must be able to very precisely find the start of a chirp given a buffer
of ADC readings, and we simulate this in MATLAB. In these experiments, we construct
our chirps using matlab’s chirp function, and we sweep from 20-27kHz (see section 5.7 for
justification). This signal is shown in figure 29. The zoomed in version highlights that given
a reasonable ADC speed of 108ksps, we will only see a very rough sine wave.

39

Figure 29: Unshifted, No-Noise, Chirp, 20-27kHz

Given this original signal, we then pad the signal and add noise. The result of this is
shown in figure 30. Finally, use our original clear signal as a pattern, and convolve it with
our signal. The result of this is shown in figure 31.

5.12.1 The Doppler Effect on Ultrasonic

Using these simulated chirps, we ask the question of whether the Doppler effect of a moving
FRC robot will make the signal undetectable with simple pattern matching. Without the
Doppler effect, the error of our simulated detection is just 3.57 mm, which comes from
simulated the noise and finite ADC frequency. The plots above show what happens if a
Doppler shift of a robot moving 3 m s−1 is introduced. This speed causes a Doppler shift
of 174.8 Hz, and after applying the same pattern matching as was used with the unshifted

40

Figure 30: Both the Doppler shifted and unshifted full noisy signals.

Figure 31: The peaks in the center indicate the pattern matching the noisy signals closely.

41

signal we see that the chirp is detected 135µs early. This timing error corresponds to 4.65 cm
of error, which is within our requirements (see section 4).

Unsurprisingly, when we introduce more noise the effect becomes dramatically worse.
In our other experiments with the beacons, we found that the signal generally was not
detectable above the noise floor by amplitude along. To simulate this, we apply random
noise with amplitude 5 times greater than our true signal. For reference, the noise in Figure
30 is only 4 times the true signal, and the true signal can be easily seen as the bump in the
center. Under this slightly more noise, and we claim more realistic, condition, the simple
pattern matching filter is unable to detect the correct peak in the convolved signal and the
error is egregious (¿10 m). Given the right noise condition, we found that the unshifted error
can be small, a few centimeters, while the Doppler shifted signal error is large

5.12.2 Effect of Chirp Bandwidth

One of the main limiting factors of using cheap piezo speakers is the limited range of fre-
quencies that induce a measurable response (see 5.7. Using our simulated chirps, we exper-
imented with changing the frequency range over which the chirps sweep. When we use the
full range of 20-27kHz, the amplitude of the match filter is higher and the error is lower.
However, when a smaller range such as 23-24kHz is used, the amplitude of the match filter
is lower, and more difficult to distinguish with a simple threshold. For the implementation
of a beacon system, this means that the chirps should span as wide a frequency range as
possible.

5.13 Ultrasonic Beam Spread

If we model our piezo speakers as flat piston transducers, then we can derive the beam
divergence angle as follows [4]. V is the speed of sound, D is the diameter of the transducer,
and F is the frequency.

sin(θ) = 1.2
V

DF

θ = sin−1

(
1.2

343

0.0381 ∗ 25000

)
θ = 0.44684 = 25.6◦

(6)

Therefore, the total beam angle of these speakers is theoretically 51.2◦. Verifying this
experimentally is left for future work, however this theoretical number can be used to esti-
mate the number of beacons needed to give full coverage of the practice space in which the
robot is operating.

5.14 Characteristics of Piezo Transducers

Throughout this project we also discovered several interesting characteristics of our piezo
speakers. First, we note that emitting square versus sine waves does not seem to effect the
received signal, given the same amplitude and frequency. We tested this by connecting on
piezo to a function generator and another to an oscilloscope. We generated a high frequency
wave, toggling between either square or sine wave, and compared the received waveform on
the oscilloscope. By simply looking at the waveform, we were unable to determine whether

42

the function generator was in square or sine wave mode. This means that even if the
transmitting speaker is being moved like a square wave, the receiving transducer will simply
resonate at the same frequency and the received signal will be a sinusoidal wave. This
impacts implementation because square waves can be produced with high-precision digital
components rather than analog components like DACs, so one may choose to use a square
wave instead of a sine wave.

5.15 Co-Processors for Image Processing

Since our system requires processing of images from a video stream, we evaluated the Rasp-
berry Pi 3 and the NVidia TK1 as potential co-processors. We ruled out the RoboRIO
for image processing because many teams in FRC have found the RoboRIO insufficient for
vision processing, and because we did not intend for computational efficiency to be a key
criteria of this project. Further still, using a coprocessor allows us to write and run whatever
our system requires, irrespective of how any teams actual robot code is operating.

5.16 Evaluting The Placement of ArUco Tags

When doing localization with ArUco markers, generally the more markers that can be
detected the better your pose estimates and maps will be. However, this is also a trade off
with the amount of modification required in the environment. We would like to have as few
tags as possible in our environment to minimize the amount of work required to localize in
that environment. To begin to answer this question, we consider how the spacing between
tags on a mock FRC field effects the detection rate of tags.

Figure 32: Tags placed on the Nypro practice field

We placed 0.152 m tags every 1.5ft on a mock FRC field at Nypro (see Figure 32). We
recorded video driving realistically around the field and counted how frequently we detected

43

ArUco tags. We then filtered out tags by their ID numbers to simulate spacings of 3ft, 4.5ft,
and 6ft. We report detection statistics for each of these spacings based on two different runs
through the field in Table 5. We also plot all the times between detections over the course
of one of our runs in Figure 33. Our results show that, assuming reasonable camera settings
of 480p30 (640x480, 30fps), the frequency of tag detection is essentially unchanged between
1.5ft and 6ft spacings. The only notable difference is the mean time between detections
slowly rises as tags become further apart. Intuitively, this means that even 6ft between tags
is close enough to expect to detect tags 10 times a second. More specifically, we can say
that 95% of the time we will detect a tag every 0.1 s. We do note that during our first trial,
where our camera was accidentally only recording frames at 480p8, the tag detection rate
suffers more significantly as tag detection increases.

spacing (ft) worst case (s) 95th percentile (s) mean (s) median (s)
trial 1 trial 2 trial 1 trial 2 trial 1 trial 2 trial 1 trial 2

1.5 5.100 3.700 0.762 0.068 0.235 0.053 0.132 0.032
3.0 5.231 3.700 0.932 0.100 0.269 0.061 0.132 0.032
4.5 5.900 3.700 1.145 0.100 0.284 0.064 0.132 0.032
6.0 7.832 3.700 1.343 0.100 0.335 0.070 0.132 0.032

Table 5: Tag detection metrics compared across tag spacings. The larger spacings have
slightly worse performance, but still usually provide updates at least 10 timers per second.
Trial 1 only recorded at 8fps, but is included for completeness. Trial 2 was 30fps.

Figure 33: Times between detected tags as a function of tag spacing. Spacings between
1.5ft and 6ft perform very similarly.

It is important to note several other factors that are not explored here, including how
spacing and positioning effects the accuracy of detections. Furthermore, one should ask
whether the specific locations of tags, not just the spacing between them, also effects detec-

44

tion accuracy and frequency. Intuitively, we claim that tags should be placed in locations
where the robots camera is likely to be facing, such as feeding stations and goals. However,
we do not empirically evaluate this claim.

5.17 Statistics of CSCore Image Timestamps

We use the built-in API of CSCore (https://github.com/wpilibsuite/cscore) to get the
time stamps (in microseconds) for each image captured. During many of our tests, we logged
these times to files for offline processing. We now ask how much these time stamps vary
from the requested FPS. This is important information to know, because it effects whether
or not one can assume a truly constant FPS. We find that there is significant variation
between any individual frames. Table 6 shows key statistics about FPS over a multitude of
recordings from our test robot. These recordings are taken from our tests at Nypro, with
various requested frame rates and at various resolutions.

Requested FPS Resolution Mean FPS Median FPS Min FPS Max FPS
30 1920x1080 14.90 14.71 9.61 22.75
30 1920x1080 15.11 14.71 10.00 27.83
30 1280x720 8.17 7.59 2.29 14.78
30 1280x720 8.35 7.60 2.00 14.75
30 800x448 29.34 31.08 4.31 31.78
60 640x480 59.43 60.02 3.53 62.48
60 640x480 59.71 60.02 3.33 89.32
30 640x480 30.00 30.01 3.76 30.13
30 320x240 30.04 31.21 2.72 31.71
30 320x240 30.03 31.22 3.33 32.30
30 320x240 30.08 31.21 14.76 32.69

Table 6: Table of statics from a multitude of CSCore streams. We find that FPS can vary
throughout normal operation.

We observe that startup-lag is the true cause of low minimum FPS, and therefore does
not cause significant issues unless pose estimates from the first two frames are critical.
However, there are in fact cases where the camera exceeds the desired FPS but as much as
48% in the case of 60fps. There are also several cases where the processing collecting and
stamping these images was not powerful enough to acheive the requested FPS. For example,
we requested 720p30 on a Raspberry Pi, but were only able to capture at ≈15fps. This is
real constraint that must be handled in a camera based localization system, and so we report
those results for completeness. However, our results show that, assuming the computer is
powerful enough to acheive the requested FPS on average, there are only small variations
on FPS over time. We provide two full plots of FPS over time in two of the more curious
entries in table 6 to be more illistrative of how time between frames can vary (figures 35
and 34).

45

https://github.com/wpilibsuite/cscore

Figure 34: FPS over time for one instance of 240p30

Figure 35: FPS over time for one instance of 480p60

5.18 Effect of Frame Rate and Resolution on ArUco Tag Detection

We explore the effect of frame rate and resolution on the frequency with which tags are
detected. This frequency of detected tags is an important metric because it sets the stan-
dard for how long our dead-reckoning methods must run without receiving an update to
compensate for drift. Furthermore, since the FPS and resolution of a camera correlates with
cost, we want to know whether a cheap camera is sufficient for tag detection.

To answer this question, we used three cameras simultaneously recording footage from
the robot as we drove around a mock FRC Field. It is important that these cameras are
recording simultaneously and are mounted right next to each other, because it means the
camera streams will see essentially the same view of the world, with the only variable being
the resolution and FPS. The tags were placed roughly every 6 feet (according to results of
section 5.16) and the robot was driven through a simulated FRC game for 60 s. We then
compare how frequently tags were detected by looking at gaps between detections. Table

46

7 shows a comparison of various key metrics between the different resolution/FPS pairings.
The full plots showing all gaps in the run is shown in appendix 11.4

Condition Worst-Case (s) 95th percentile (s) Mean (s) Median (s) Mode (s)
PS3 Eye 480p30 4.565 0.100 0.062 0.033 0.033
PS3 Eye 480p60 3.049 0.033 0.032 0.017 0.017
C920 1080p15 3.196 0.767 0.162 0.068 0.068

Table 7: 480p30 means 640x480 at 30fps, 480p60 means 640x480 at 60fps, 1080p15 means
1920x1080 at 15fps. The best settings by all measures was the PS3Eye camera at 60fps.

Arguably the most important metric here is the 9th percentile metric, which says that
95% of of the time gaps between detected tags are less than that number. Generally, that
number is quite close to the mean frame rate which means that usually you get one tag
detected in every frame, but this is of course not always true. It’s important to note that
just because a there was a tag detected in the frame doesn’t mean we get a reliable position
estimate from that tag. So these numbers are not the same as the how frequently an actual
position is received, which is what we truly care about.

In conclusion, the 480p60 setting performs the best by all metrics, and therefore we
recommend using those settings.

5.19 Rate of position estimates from ArUco Tags

Although the detection of tags, is important, what is really important is the estimates of
their pose. We now consider only valid position estimates, and not just any detected tag,
and measure the frequency of pose estimates from our camera. We use the same recordings
at the Nypro test field as we have used throughout this report, and similar to section 5.16
we compare the time between valid pose estimates. For completeness, we also compare this
across the three resolution/fps settings which were recorded. One notable oddity in the data
is the extremely high variance in the worst-case time between pose detections across trials
and tag spacings. We simulated tag-spacings by filtering out tags based on their IDs, which
is accurate because tags were placed in order. However, it means that it’s possible for a tag
that is present in more sparsely spaced group (ex: 6ft) to be missing from densely spaced
group (4.5ft). We can explain this high variance by saying that there was a tag included
in the 6ft spacing test that was not present in the 4.5ft spacing test, and without that tag
there is a longer period in which no tags are seen. Secondly, we can also say that the high
variance between the two trials is explained by the different paths the robot took in each
trial. This is a very important result, because it means that depending on how a robot
moves through the field, the frequency of valid pose estimates will change.

47

spacing (ft) worst case (s) 95th percentile (s) mean (s) median (s)
trial 1 trial 2 trial 1 trial 2 trial 1 trial 2 trial 1 trial 2

1.5ft 2.7960 3.1961 0.2420 0.7736 0.1135 0.1623 0.0680 0.0680
3ft 3.5960 4.0040 0.9228 0.9680 0.1804 0.1958 0.0680 0.0680

4.5ft 6.5961 6.4640 1.0160 1.2224 0.2316 0.2556 0.0680 0.0680
6ft 10.7960 4.7259 0.8038 1.1300 0.2703 0.2625 0.0680 0.0680

Table 8: Statistics of Pose Estimates from two trials of 1080p15 footage, across various tag
spacings. Note the high variance in worst-case across.

spacing (ft) worst case (s) 95th percentile (s) mean (s) median (s)
trial 1 trial 2 trial 1 trial 2 trial 1 trial 2 trial 1 trial 2

1.5ft 1.5161 3.0489 0.0334 0.0334 0.0295 0.0324 0.0167 0.0167
3ft 1.5161 5.8312 0.0500 0.0334 0.0437 0.0448 0.0167 0.0167

4.5ft 2.9823 7.2807 0.0333 0.0333 0.0479 0.0553 0.0167 0.0167
6ft 2.2492 6.9642 0.0334 0.0334 0.0445 0.0533 0.0167 0.0167

Table 9: Statistics of Pose Estimates from two trials of 480p60 footage, across various tag
spacings.

spacing (ft) worst case (s) 95th percentile (s) mean (s) median (s)
trial 1 trial 2 trial 1 trial 2 trial 1 trial 2 trial 1 trial 2

1.5ft 3.6987 4.5651 0.0666 0.1000 0.0517 0.0621 0.0333 0.0333
3ft 4.8316 5.8313 0.0667 0.1999 0.0711 0.0899 0.0333 0.0333

4.5ft 8.1971 7.1642 0.0766 0.1500 0.1206 0.1104 0.0333 0.0333
6ft 10.4296 6.8976 0.1483 0.1517 0.1164 0.0959 0.0333 0.0333

Table 10: Statistics of Pose Estimates from two trials of 480p30 footage, across various tag
spacings.

If we consider the 59th percentile metric as our most important metric, we should ask
what spacing and resolution/fps settings give acceptably fast update rates. If we desire
updates at least every 0.1 s (see section 4 for justification), then we say that 480p60 will
be sufficient at any of the tested tag spacings. On the other hand, 1080p15 gives update
too infrequently no matter how close tags are spaced. This makes sense, because at 15fps,
a tag would need a valid pose estimate in essentially every frame to acheive 0.1 s update
rate. Lastly, we can say that 480p30 probably would work with 1.5ft and 3ft spacings, and
it becomes slightly too slow at 4.5ft and 6ft spacings. Ultimately, we recommend using
480p60, and suggest a 6ft spacing so as to minimize the modification of the environment.

5.20 Benchmarking MarkerMapper with VICON Motion Capture

In this experiment, we determine how close the poses of markers in MarkerMapper map are
to their true poses. We built three markermaps, then compare to the positions of markers
according to VICON Motion Capture data. As described in section 5.11, the VICON is very
accurate, and so it can serve as a reliable ground truth. We placed dots one the tags where

48

we wanted to track them, and recorded the poses and orientations of each tag. Note that
there are many more tags in the markermaps (48) than are tagged with motion capture
(12). This is because it is difficult to track many shapes in motion capture with similar
geometry, such as the triangle pattern of dots we used on our tags. When too many similar
geometries are tracked, they can swap with each other and produced uninterpretable data.
Therefore, we track one tag on each “board”, which each board containing 8 tags. For each
of the three maps we made, we then systematically compare the tag positions to the motion
capture positions in three ways. A visual comparison can be found in Figure 36.

Figure 36: Two representitive examples of markermaps overlayed on the ground truth from
Motion Capture

First, we look at the translation error between corresponding tags. There are multiple
ways to do this, however, because one must choose some common reference point in the
motion capture and MarkerMapper frames. Therefore, we first consider the error if we
align the MarkerMapper and motion capture estimates of tag 0’s pose. With tag 0 aligned,
we can compare the translation and rotation error between each of the other tags capture
in MarkerMapper and motion capture. Then, we align tag 1, and repeat the same error
calculation but now for all the tags except tag 1. Finally, we take the average of this
procedure over all the alignments. These average rotational and translational errors are the
final error we report for each map. Rotational error is given as the angle between the Z axes
and Y axes of the marker. We also provide an additional metric, shown in the first column of
Table 11. This is the error from each tag to tag 0. To compute this, we go through each tag
and compute the distance to tag 0 according to motion capture and according to our map,
and compare those values to get an error. The average of these errors over each tag is the
“Error To Tag 0” metric. This simply provides another perspective on translational errors.
Because these errors are consistently lower than the other translational error metric, we can
say that MarkerMapper is more accurate at estimating the relative distances between tags
than it is at estimating the absolute positions of tags in space. This is unsurprising, since
the actual measurements MarkerMapper gets is from transforms between projections of tags

49

in camera frames.

Error To Tag 0 (m) Translational (m) X Rotation (deg) Z Rotation (deg)
0.120 0.318 10.739 8.517
0.093 0.165 10.991 4.560
0.091 0.114 1.4660 3.803

Table 11: The Accuracy of the three maps we built compared with ground truth from
motion capture. This illustrates the hit-or-miss nature of map building.

Summarizing the data shown in Table 11, we first conclude that MarkerMaps can be
accurate. In the case of the C920 webcam, the map was accurate to 10 cm, with angular
errors of less than 4◦. However, they can also be incredibly inaccurate. We discuss this
variation in more detail in section 5.22.

5.21 Benchmarking ArUco with VICON Motion Capture

The experimental setup described above (Section 5.20) was used to determine the transla-
tional error of ArUco camera pose estimation. The accuracy of the pose estimate from the
robot to the tag was calculated for two of nine trials. We do this by comparing the output
of ArUco’s EstimatePose() method to the ground truth positions of the robot and the tags
from motion capture. The magnitude of the translational error (distance error) between the
motion capture pose estimate and the ArUco pose estimate is used to determine accuracy.

Figure 37: One trial comparing motion capture to the output of ArUco estimte pose.

The table below summarizes the statistics for several trials using the motion capture
studio and a Kobuki Turtlebot2 mobile platform.

50

Trial Number Mean Error (m) stdev (m) 95th Percentile (m) 5th Percentile (m)
1 0.111 0.144 0.523 0.007
2 0.112 0.128 0.376 0.008

Table 12: Comparing pose estimates from two circular trajectories under motion capture.

Anaysis of trials conducted under the motion capture studio revealed that ArUco pose
estimates can be a reliable source of global position updates to within 12 cm error on average.
One to two outlier tags are present in each trial; it is recommended to use multiple tags
when relying on ArUco for an absolute pose estimate. Although outliers can result in larger
errors, on average, ArUco pose estimates are approximately within the 10 cm error range
determined suitable for localization (see 4).

5.22 Our Experiences with Building MarkerMaps

A protocol for generating Marker Maps with low transformation errors is necessary to suc-
cessfully obtain pose estimates. To demonstrate that this process is nontrivial, two marker
maps are show. The left map was generated using a video collected from a robot a testing in-
volving teleoperation. The marker map on the right was generated using the experimentally
derived protocol. Poses of tags are shown in blue; camera poses are shown in green. The
origin is marked red. For both trials, the same camera parameters, tag sizes, and dictionary
files were used.

Figure 38: Comparison of two Marker Maps generated by a robot teleop trajectory and a
human walking.

To generate marker maps that are accurate to within 11 cm, tags must be placed max-
imally 4 feet apart, camera frames be collected containing many instances of transforms
between tags, and frames must be stable. High tag density is important to ensure that
frames contain many tags (transform data is collected) and to improve local optimiza-
tion techniques that rely on detections with low reprojection errors (more tags results in

51

more chances of detections with low reprojection errors, necessary for generating good pose
quivers)[32]. In our experiments, a sufficient density comprised 3 to 4 feet of spacing between
tags. To further improve the optimization process, collecting redundant camera frames is
useful. Scanning small portions of the map at a time ensures that one continuous pose graph
is built. Multiple discontinuous graphs cause the optimization process to fail and prevent
generation of the map. ArUco tag detection and pose estimation fail to process blurred
frames. Camera stability is crutial to collecting a set of frames result in low reprojection
error on detection of tag corners. A clear, stable image results in lower reprojection errors
when the pose of the tag is calculated. In practice, the angle of the plane corresponding
to the camera’s Z axis (pointing out from the camera) is ambiguous; therefore, the Planar
Pose Estimation algorimth in ArUco outputs two solutions with corresponding reprojec-
tion errors. The solution with the lower error is likely the correct one, and solutions with
reprojections errors that are too similar are discarded before the optimization process[32].
Therefore, it is necessary to collect sharp frames. In experimentation, cameras with a high
framerate outperformed lower framerate cameras.

5.23 Erroneous detections with ArUco

Marker Maps must comprise fiducial markers from known “dictionaries” or binary encod-
ings. Examples of a several dictionaries are shown below. Dictionary selection is important
because it allows users to optimize their Marker Maps. Users can choose dictionaries with
different numbers of tags, marker (square) sizes, and inter-marker distances. Inter-marker
distances are determined by the number of tags in the dictionary (high distances correspond
to low numbers of tags). High inter-marker distances make detection more robust. Tags
are defined by a list of bytes which determine the color of squares. Dictionaries can be
further optimized by setting the “maxCorrectionBits” parameter experimentally to reduce
false positives[35].

Throughout our experiments with ArUco tags, we accumulated several examples of de-
tections that were erroneous in some form or another. First, we present examples of tags
whose ID is misdetected (Figure 39). In all these cases the incorrectly detected ID was 2,
but there is no evidence that this is an issue just with tag 2 specifically.

52

Figure 39: Tags that were detected, but with the wrong IDs

We also report how a poor camera calibration file and cause inaccuracies in the estimated
poses of tags. In Figure 40, the tag’s ID is identified correctly, but it’s orientation is incorrect.

Figure 40: Example of poor camera calibration file causing skewed pose estimate.

5.24 Latency over the Robot Network

It is important that all of our sensor data be time stamped so we can account for latency in
our state estimation. The data collected on the NavX is time stamped on the NavX, and the

53

encoder data is stamped when it is read on the RoboRIO. This time stamped data is sent
to the TK1 over UDP. UDP was chosen because it was the easiest method with satisfactory
speed. To test this, we wrote a simple program that sends 96 bytes, an upper bound on
the size of all our stamped sensor data, of UDP data between the RoboRIO and the TK1.
We recorded the round trip time of these packets, which can be seen in Figure 41. The
round-trip latency was 0.5 ms on average, which is much faster than any of our sensors, and
therefore is fast enough for us to transmit and process the data before new data arrives.

Figure 41: RTT of UDP packets between the RoboRIO and the TK1 over the robot’s wired
network.

Another important problem is time synchronization. The time stamps on all the data
must be in reference to some common time source. To achieve this effect, we use Christian’s
Algorithm [7]. Specifically, we send a packet stamped with the current time on the RoboRIO
to the TK1, the TK1 adds its own time stamp and responses, the and RoboRIO then add
half the round trip time to the time sent by the TK1. This allows the sensor data sent from
the RoboRIO to be synchronized with the clock on the TK1.

54

6 A Dataset for Robot Localization

We have collected a corpus of sensor data and ground-truth position labels from many of
the tests performed for this MQP. In this section, we document the different collections of
data and indicate how it could be used in the development of localization systems. Note
that any details not listed here, such as exact column headings or detailed descriptions of
how the data was collected, are contained in the README.md files of each respective dataset.

dataset name brief description
turtlebot complete full sensor data with maps in ground truth
field data 1 realistic driving data and multiple video stream
field data 2 realistic driving data and multiple video stream
field data 3 realistic driving data and multiple video stream
imu calibration Raw accelerometer and gyroscope readings
markermaps Marker maps build in motion capture and on an FRC field

The dataset turtlebot complete consists of 9 trials of a Turtlebot 2 driving under
teleoperated control with tags placed in a perimeter around the motion capture area. For
each trial, we have recordings of camera frames at two different settings (480p 60fps and
1080p 30fps), encoder ticks from the kobuki base, and accelerometer, gyroscope, fused yaw,
and temperature data from the RoboRIO. We have corresponding ground-truth labels for
both the position of the robot, and the tags placed around the environment. We also provide
three different maps built with the tags. One map was built with a C920, and the other
two were built with a PS3Eye camera. The maps are quite different, despite being built
back-to-back with the same general procedure. This demonstrates that the quality of the
map produced is highly dependant on the which tags were seem with which other tags. In
our experience, building markermaps is a highly unreliable process (see 5.22), so we include
multiple maps to demonstrate this.

The field data 2 and field data 3 datasets were collected Team 126’s practice FRC
field (Sponsored by Nypro Inc.). In each of those two datasets, we ran one trial called auto

where the robot drive in a series of concentric circles with static intervals in between, as
well as a series called drive of realistic FRC driving patterns for about one minute. To
simulate FRC driving patterns, we drove the robot to and from mock “Switch”, “Scale”,
and “Feeder Station” field elements (from the 2018 FRC game). The driver during these
tests participated in FRC for two years, and so we claim from experience that these driving
patterns are realistic. During both the auto and drive trials, we recorded time stamped
image frames from three camera as different resolutions and frame rates. Additionally, we
recorded acceleration, rotational velocity, yaw angle, and motor set values from the NavX
IMU plus encoder data from the drive wheels.

In the imu calibration dataset, we include 6 logs of raw accelerometer and gyroscope
readings taking according to our calibration procedure (see 5.2, also [44]). Generally, each of
these logs contains a series of sample taken at a fixed rate consisting of a number of static in-
tervals with dynamic motion between them. In fact, you can reproduce the exact calibration
values we use in our sample implementation using the imu calibration data 1 28 final.csv

file as input to the python/recorded data processing/imu calibration.py script. In ad-
dition, we also include 5 logs of pure stationary IMU data. This can be useful for measuring
bias and testing basic data processing.

We also release a set of example markermaps we have built in the markermaps dataset.

55

Unfortunately, we do not have the accompanying video used the build that map. Nonethe-
less, we hope that these maps can be used by others to see how the map files are structured
and to test the API the uses them. This dataset consists of 11 marker maps. 10 of these
were built in our the motion capture arena, of which three have ground-truth tag pose in-
formation from the motion capture. Our last markermap was built at the Nypro test FRC
field (used by FRC Team 261).

6.1 Provided Tools

In order to conduct analysis on all the above mentioned datasets, we wrote several command
line python scripts to load, process, and visualize our data. As mentioned in Appendix 11.5,
all our code is available on Github, but we briefly mention the different functions which our
tools provide.

First, we point out that MarkerMapper and ArUco contain a collection of incredibly use-
ful command line programs for creating calibration files, generating marker maps, stepping
through videos and viewing detections, and even localizing to makermaps. In addition, we
provide a tool that will detect markers in a video recorded on the robot and match those
detections with the time stamps which were collected in unison with the video frames. This
allows one to know not just the location of the detected tag, but the time stamp at which the
detection occurred. We also provide a program for generating custom ArUco dictionaries.
In our experiments with MarkerMapper, we found it necessary to use custom dictionaries to
restrict the tags which could be detected. This helped mitigate false tag detections, and so
we provide this tool for others to use. Further, we include a script that computes statistics
about the frames per second given as input a file containing timestamps of frames.

We include python code which can process with CSV files exported motion capture into
useful NumPy data structures [19].

Perhaps most importantly, we also provide the python script we used for IMU calibration.
This serves as a reference implementation of the procedure described in [44], and can be
used for any project requiring IMU calibration.

56

7 Sample Implementation

In order to evaluate the theory and research presented above, we built a complete localization
system using a RoboRIO (courtsey of our sponsor National Instruments), an FRC Chassis
(courtesy of AndyMark), and NavX-MXP IMU (courtesy of Kauai Labs), encoders, and a
PS3Eye webcam. In this section, we describe the details of this system and explain the
lessons learned from implementing and testing the platform.

7.1 Sensing Techniques Used

Our simple implementation includes three of the five proposed localization techniques (see
Section 3.1). We limited ourselves to only three methods because of time constraints. We
used an IMU, Drive wheel encoders, and a Camera for ArUco tags. We chose this subset
because they were easy to implement, because they are the most accessible to an FRC team,
and because they included both local and global position estimates. We have found examples
in the literature of each of these techniques being used successfully, and in some cases our
experiments we have verified that they satisfy our criteria for accuracy, precision, update
rate, and accessibility criteria. Therefore, chooses these three techniques was justified.

7.2 Robot Hardware

A picture of the robot we built can be seen in Figure 42. This robot consists of an AndyMark
chassis (am-2240) with Toughbox gearboxes (similar to am-0977), and two sets of 6in wheels.
The back wheels have more traction than the front, which means the robot will slip. This
provides interesting and challenging dynamics–a simple Dubin’s car or differential drive
model is inaccurate. From our experience in FRC, we know off-center turning is a common
feature of FRC robots. We use two Greyhill 63R256 encoders with 256 pulses per revolution.
Because the gear ratio of our gearboxes is unknown, it was simpler to directly measure
distance per pulse, which we found to be 0.000 375 m per pulse.

57

https://www.digikey.com/product-detail/en/grayhill-inc/63R256/GH3070-ND/304479

Figure 42: An FRC-style robot we used in many of our tests

In addition to the RoboRIO, we use a Raspberry Pi 3 a our co-processor. We use the
Raspberry Pi for image processing (see 5.10), and connect a PS3Eye camera capable of
460x480 video at 60fps. The main program which accumulates sensor data and computes
position also runs on the Raspberry Pi.

7.3 Kalman Filtering

In order to fuse measurements from our three sensors, we used an extended Kalman filter.
Based on our literature review, we found a common EKF formulation for robot localization
was to use the measured wheel speeds as the control input u, and other sensors as measure-
ments z [46]. We chose an extended Kalman filter because it has been shown many times
to be effective at fusing encoder and IMU data [30][45][46]. In our sample implementation,
we have three measurement sources: Acceleration from the NavX, yaw from the NavX,
and position from the camera. We also considered an alternate formulations, where the
accelerometer was treated as the control input, and where the voltages or current to the
motors were the control inputs. We ultimately settled on using encoders because we found
it was more common. Additionally, if current were used we would have needed to purchase
additional FRC control system components. Exploring the trade-offs between different EKF
formulations, or even different sensor fusion approaches, would be a worthy goal for future
MQPs. We show the full form of the prediction step of our EKF in Equation 7. We denote
the value of a state variable at time t with an underscore. The hat symbol (x̂) indicates that
it is an intermediate predicted state variable. Note we also assume a constant time interval,
∆t. The linear velocity of the wheels, vl and vr are our control input. Note we do not need
to model rotational acceleration, because we can directly measure the yaw angle (θ) and we
can predict the rotational velocity directly from our wheel speeds. The α parameter is a
slip coefficient that must be greater than 1 [52]. We use W to represent that track width of
the robot.

58

v =
vl + vr

2

x̂t+1 = xt + ẋt∆t+ 1
2 ẍt∆t

2

ŷt+1 = yt + ẏt∆t+ 1
2 ÿt∆t

2

θ̂t+1 = θt + θ̇t∆t

ˆ̇xt+1 = v cos(θt)

ˆ̇yt+1 = v sin(θt)

ˆ̇
θt+1 =

vr − vl
αW

ˆ̈xt+1 = ẍt

ˆ̈yt+1 = ÿt

ˆ̈
θt+1 = 0

(7)

Because the EKF requires a linearized version of the above state-space equations, we
must provide a Jacobian matrix. This matrix contains the partial derivatives of each state
variable update equation with respect to each state variable. The shape is therefore a
square matrix the same size as the state space, which in our formulation means 9x9. The
full analytic Jacobian is shown in Equation 8.

1 0 0 ∆t 0 0 0.5∆t2 0 0
0 1 0 0 ∆t 0 0 0.5∆t2 0
0 0 1 0 0 ∆t 0 0 0
0 0 −v sin(θt) 0 0 0 0 0 0
0 0 v cos(θt) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

(8)

The next step is to describe the measurement updates. The requirement here is to define
a function that takes in the current state prediction and outputs a predicted measurement
vector. Conveniently, although importantly not required by the EKF, all of our measurement
updates are simple linear functions, and therefore we write them as matrix multiplications
between the state column vectors x̂ and some matrix H. Note in this context x̂ is the entire
9x1 state vector, not just the x component of the state. In our sample implementation, we
have three H matrices: Hacc, Hyaw, Hcamera. They are shown below in Equations 9, 10, and
12. These matrices simply contain 1’s because the measurements are exactly the same as
the state variables, due to the pre-processing of the measurements. We will now describe
these required pre-processing steps.

Hacc =

[
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

]
(9)

Hyaw =
[
0 0 1 0 0 0 0 0 0

]
(10)

59

Hcamera =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 (11)

P0 = 10−3 I9
Q = 10−3 I9
Racc = 1−3 I2
Ryaw = 1−4 I1

Rcamera = 1−4 I3

(12)

7.3.1 Encoder Pre-Processing

Because the encoders technically only measure pulses, we most convert this into linear speed.
The step of converting ticks to a linear elocity of radians per second is performed on the
RoboRIO in WPILib. We provide in our code the conversion from ticks to meters, and the
WPILib Encoder class provides the GetRate() method, which returns the linear velocity of
the wheels.

7.3.2 Accelerometer Pre-Processing

Like with the encoders, the accelerometer does not directly measure what we need for our
Kalman filter. We apply calibration, base frame rotation, and zero velocity updates to this
data before passing it to the EKF. These methods were explored in detail in sections 5.2
and 5.4.1. We apply the static detector described in these sections to a window of the
last 80 samples, in contrast to when we do IMU processing offline where the windows are
centered at the current time step. When the variance window of the window is less than
the threshold (based on a known static interval) we say the robot is stationary and save the
mean of that sample as the current estimate of bias. We then subtract off this bias from all
future samples until another static window is found.

7.3.3 Camera Pre-Processing

First, we only consider frames where valid pose estimates are return from MarkerMapper. In
those frames where a pose estimate is made, we may choose to transform that pose estimate
into a frame other than the MarkerMapper frame. In the MarkerMapper frame, everything
is relative to the origin tag, which is usually tag 0. Unless that origin tag is placed on the
floor facing up where the desired origin is, you may want to rotate the pose measurements
from MarkerMapper before feeding them into the EKF. We omit this in our implementation
for simplicity, and instead assume that tag 0 is placed on the floor at the desired origin.

7.4 Software Design

There are two software components of our sample implementation. First, there is a C++
library that is cross-compiled for the RoboRIO that FRC teams will use in their robot
projects. We use the standard Eclipse-based C++ development environment and write our
robot projects the same way an FRC team would. Teams are expected to call two or three

60

simple functions in their robot program, which gives us everything we need to log sensor
data and send it to the co-processor. Because of this minimal API, we require very few
changes to robot programs in order to get localization. This would make it approachable
for teams and encourage them to try localization. This library is called phil rio and is
built and installed to the ~/wpilib directory.

The second software component is a C++ program running on the co-processor. This
program reads the camera data from a CSCore camera stream, serves an annotated version
of the camera stream, receives the IMU and encoder data from the RoboRIO, computes the
position of the robot, and reports this position over network tables. See 43 for a diagram
of this system.

Figure 43: A diagram of our software

61

8 Conclusion

This MQP conducted a thorough survey of localization techniques and identified five tech-
niques which are most promising for localization in high-speed, cluttered, multi-robot envi-
ronments, such as FRC. We conducted a series of experiments to characterize our sensors
and determine the accuracy of each method. We conclude that naive double integration of
accelerometer data is inaccurate, but that applying calibration and zero velocity updates
improves the accuracy. We found that a 480p60 camera is sufficient for detecting tags on
average every 33 ms even with a 6ft spacing between tags. However, our experiments show
that a 6ft spacing is too sparse to build accurate MarkerMaps, and that building Mark-
erMaps in general can be unreliable. We offer suggestions on how to improve the likelihood
of building an accurate map, and provide accuracy measurements on maps built in a motion
capture studio. Furthermore, we offer a sample implementation using an IMU, encoders,
and a camera. This sample implementation provides a detailed example of how to filter all
of these sensors together in a principled way, and allows us to explore some of the challenges
of implementing a real localization system on a real robot. Due to time constraints, we were
unable to benchmark the accuracy of our system, but we were able to demonstrate all of the
sensor systems being collected, transported, and processed by the extended Kalman filter.

62

9 Future Work

The goals of our MQP were to develop a solid understanding of a breadth of localization
techniques, and to rigorously study their characteristics and performance. Therefore, there
remains a lot of work to be done on turning this into a packaged system usable by someone
other than its authors. We see a great opportunity for a future MQP to use our experiments,
datasets, and sample code to build a real localization system for FRC that meets all the
criteria outlined in Section 4. The first steps for such a project would be to finish the accu-
racy benchmarking of our sample implementation and then iterate on the implementation
details until the system meets our design criteria.

Alternatively, there is much more research to be done on beacons and optical flow. From
the few experiments we did with these techniques and from all our background research,
we believe these techniques are capable of contributing to the accuracy of a complete lo-
calization system. One could explore replacing ArUco and MarkerMapper with Beacons,
or augmenting forward kinematics form encoders with optical flow. Beacons in particular
are a very promising technique, although as we discovered in our early experiments, making
beacons successful requires a lot of analog or digital signals processing knowledge. A good
first step for these additional techniques could be to develop an algorithm for accurately
detecting the arrival time of an ultrasonic chirp in the presence of Doppler shift. One could
also start by exploring algorithms to turn optical flow vector fields into an estimate of the
motion of the camera.

63

10 Acknowledgements

We thank our advisors, Bradley Miller and William Michalson for their guidance. We also
thank our sponsors, National Instruments, AndyMark, and Kauai Labs for their generous
donation of hardware. We’d like to thank Scott Libert and Eric Peters for their advice.
Finally, we thank FRC Team 261 Gael Force for letting us use their practice FRC field.

References

[1] P. Bahl and V. N. Padmanabhan. RADAR: an in-building RF-based user location
and tracking system. In Proceedings IEEE INFOCOM 2000. Conference on Com-
puter Communications. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies (Cat. No.00CH37064), volume 2, pages 775–784 vol.2,
2000.

[2] Adithya Balaji and Alon Greyber. Zebravision 5.0: ROS for FRC, September 2017.

[3] Billur Barshan and H. F. Durrant-Whyte. Inertial Navigation Systems for Mobile
Robots. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 11(3):329–
350, September 2017.

[4] Leonard Bond. Beam Spread Calculation, 2001.

[5] Changsheng Chen, Alex C. Kot, and Huijuan Yang. A two-stage quality measure
for mobile phone captured 2d barcode images. Pattern Recognition, 46(9):2588–2598,
September 2013.

[6] C. K. Chui and G. Chen. Kalman filtering: with real-time applications. Number 17
in Springer series in information sciences. Springer-Verlag, Berlin ; New York, 2nd ed
edition, 1991.

[7] Flaviu Cristian. Probabilistic clock synchronization. Distributed Computing, 3(3):146–
158, September 1989.

[8] Duarte Dias and Rodrigo Ventura. Barcode-based Localization of Low Capability Mo-
bile Robots in Structured Environments. 2012 International Conference on Intelligent
Robots and Systems, 2012.

[9] E. DiGiampaolo and F. Martinelli. Mobile Robot Localization Using the Phase of
Passive UHF RFID Signals. IEEE Transactions on Industrial Electronics, 61(1):365–
376, January 2014.

[10] M. Drumheller. Mobile Robot Localization Using Sonar. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-9(2):325–332, March 1987.

64

[11] Davinia Font, Marcel Tresanchez, Tomàs Pallejà, Mercè Teixidó, and Jordi Palaćın.
Characterization of a Low-Cost Optical Flow Sensor When Using an External Laser
as a Direct Illumination Source. Sensors (Basel, Switzerland), 11(12):11856–11870,
December 2011.

[12] frc5725. Game And Season: First Power Up, 2018.

[13] Gao, Qingji, Wang, Yao, and Hu, Dandan. Onboard optical flow and vision based lo-
calization for a quadrotor in unstructured indoor environments. IEEE Xplore, January
2015.

[14] S. S. Ghidary, T. Tani, T. Takamori, and M. Hattori. A new home robot positioning
system (HRPS) using IR switched multi ultrasonic sensors. In 1999 IEEE International
Conference on Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Pro-
ceedings, volume 4, pages 737–741 vol.4, 1999.

[15] Jinwook Huh, Woong Sik Chung, Sang Yep Nam, and Wan Kyun Chung. Mobile
Robot Exploration in Indoor Environment Using Topological Structure with Invisible
Barcodes. ETRI Journal, 29(2):189–200, April 2007.

[16] Kauai Labs Inc. Video Processing Latency Correction Algorithm, 2017.

[17] Itseez. Calibration with ArUco and ChArUco, August 2017.

[18] Itseez. OpenCV, Optical Flow, 2017.

[19] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy.org — SciPy.org, 2001.

[20] Dean Kamen. FIRST Robotics Competition, May 2015.

[21] Marcoe Keith. LIDAR an Introduction and Overview, 2007.

[22] Hong-Shik Kim and Jong-Suk Choi. Advanced indoor localization using ultrasonic
sensor and digital compass. In 2008 International Conference on Control, Automation
and Systems, pages 223–226, October 2008.

[23] L. Kleeman. Optimal estimation of position and heading for mobile robots using ultra-
sonic beacons and dead-reckoning. In Proceedings 1992 IEEE International Conference
on Robotics and Automation, pages 2582–2587 vol.3, May 1992.

[24] Dongkyu Lee, Sangchul Lee, Sanghyuk Park, and Sangho Ko. Test and error parameter
estimation for MEMS — based low cost IMU calibration. International Journal of
Precision Engineering and Manufacturing, 12(4):597–603, August 2011.

[25] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geometric
beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382, June 1991.

[26] Yangming Li and Edwin B. Olson. Extracting general-purpose features from LIDAR
data. In Robotics and Automation (ICRA), 2010 IEEE International Conference on,
pages 1388–1393. IEEE, 2010.

[27] Weiguo Lin, Songmin Jia, T. Abe, and K. Takase. Localization of mobile robot based
on ID tag and WEB camera. In IEEE Conference on Robotics, Automation and Mecha-
tronics, 2004., volume 2, pages 851–856 vol.2, December 2004.

65

[28] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of Wireless Indoor Positioning
Techniques and Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 37(6):1067–1080, November 2007.

[29] Todd Lupton and Salah Sukkarieh. Visual-Inertial-Aided Navigation for High-Dynamic
Motion in Built Environments Without Initial Conditions. IEEE Press, 28:61–76,
February 2012.

[30] Leonardo Maŕın, Marina Vallés, Ángel Soriano, Ángel Valera, and Pedro Albertos.
Multi Sensor Fusion Framework for Indoor-Outdoor Localization of Limited Resource
Mobile Robots. Sensors (Basel, Switzerland), 13(10):14133–14160, October 2013.

[31] F. M. Mirzaei and S. I. Roumeliotis. A Kalman Filter-Based Algorithm for IMU-Camera
Calibration: Observability Analysis and Performance Evaluation. IEEE Transactions
on Robotics, 24(5):1143–1156, October 2008.

[32] Muñoz-Salinas, Rafael, Maŕın-Jiménez, Manuel, Yeguas-Bolivar, Enrique, and Medina-
Carnicer, Rafael. Mapping and Localization from Planar Markers. Pattern Recognition,
2016.

[33] NASA. Kalman Filter Integration of Modern Guidance and Navigation T1c Systems,
1999.

[34] Peter O’Donovan. Optical Flow: Techniques and Application, April 2005.

[35] Open Source Computer Vision. Detection of ArUco Markers, December 2015.

[36] Pozyx. Pozyx - centimeter positioning for Arduino, 2017.

[37] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision,
2003. p312.

[38] S. S. Saab and Z. S. Nakad. A Standalone RFID Indoor Positioning System Using
Passive Tags. IEEE Transactions on Industrial Electronics, 58(5):1961–1970, May 2011.

[39] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using direct 2d-to-
3d matching. In 2011 International Conference on Computer Vision, pages 667–674,
November 2011.

[40] A. Schlichting and C. Brenner. VEHICLE LOCALIZATION BY LIDAR POINT
CORRELATION IMPROVED BY CHANGE DETECTION. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLI-B1:703–710, June 2016.

[41] Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka Priyantha. Tracking
Moving Devices with the Cricket Location System. In Proceedings of the 2Nd Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys ’04, pages
190–202, New York, NY, USA, 2004. ACM.

[42] Min Sun. Optical Flow, 2008.

[43] Juan Tardos, José Neira, Paul M. Newman, and John J. Leonard. Robust Mapping
and Localization in Indoor Environments Using Sonar Data. The International Journal
of Robotics Research, 21, April 2002.

66

[44] D. Tedaldi, A. Pretto, and E. Menegatti. A robust and easy to implement method for
IMU calibration without external equipments. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 3042–3049, May 2014.

[45] Luka Teslic, Igor Skrjanc, and Gregor Klancar. EKF-Based Localization of a Wheeled
Mobile Robot in Structured Environments. Journal of Intelligent and Robotic Systems,
May 2011.

[46] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[47] Lidar UK. How does LiDAR Work?, 2017.

[48] Vadim Indelman, Stephen Williams, Michael Kaess, and Frank Dellaert. Information
Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing. Robotics
and Autonomous Systems, 61(8):721 – 738, 2013.

[49] John Wang and Edwin Olson. AprilTag 2: Efficient and robust fiducial detection. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on,
pages 4193–4198. IEEE, 2016.

[50] A. Ward, A. Jones, and A. Hopper. A new location technique for the active office.
IEEE Personal Communications, 4(5):42–47, October 1997.

[51] W. Xu and S. McCloskey. 2d Barcode localization and motion deblurring using a
flutter shutter camera. In 2011 IEEE Workshop on Applications of Computer Vision
(WACV), pages 159–165, January 2011.

[52] Wei Yu, Emmanuel Collins, and Oscar Chuy. Dynamic modeling and power modeling of
robotic skid-steered wheeled vehicles. In Mobile Robots-Current Trends. InTech, 2011.

[53] H. Yucel, R. Edizkan, T. Ozkir, and A. Yazici. Development of indoor positioning
system with ultrasonic and infrared signals. In 2012 International Symposium on In-
novations in Intelligent Systems and Applications, pages 1–4, July 2012.

[54] Zebra. Dart Ultra Wideband UWB Technology | Zebra, 2017.

67

11 Appendices

11.1 Ultrasonic Radio Beacons Bill of Materials

Item Quantity Cost Extended Cost
PSoc 5LP 8 $10.00 $80.00

RF Tx/Rx Pair 8 $1.68 $13.44
piezo speaker 8 $1.65 $13.20

9v battery 8 $1.19 $9.49
battery connector 8 $0.54 $4.31

power switch 8 $2.11 $16.88
LCD backpack 8 $9.95 $79.60
LCD display 8 $3.90 $31.20

passive components 8 $5.00 $40.00
prototyping board 8 $5.00 $40.00

TOTAL $328.12
COST PER BEACON $41.02

Table 13: Estimated Bill of Materials assuming 8 beacons.

11.2 Survey Responses

68

11.3 Radio Time of Flight

Measured Distance (m) Measured Total Time (µs) Average Delay
0.0630 45.44 42.80 34.48 40.90646
0.1425 52.72 50.48 52.09 51.76286
0.1505 64.16 63.36 60.24 62.58616
0.2210 40.33 36.79 36.40 37.83926
0.2415 49.52 45.76 43.92 46.39919
0.2460 47.47 53.84 44.71 48.67251
0.2965 34.36 34.00 43.76 37.37234
0.3085 79.36 62.16 59.52 67.01230
0.3390 39.92 57.27 38.96 45.38220
0.3770 41.75 40.75 45.53 42.67541
0.3600 38.40 38.40 37.68 38.15880
0.0070 35.60 36.08 34.32 35.33331

Average Delay (µs) 46.175

Table 14: The time of flight of radio over tens of centimeters is insignificant compared to
the delay within the transmitter and receiver.

11.4 ArUco Detection Times

69

11.5 Code & Dataset

All of the code used in the above experiments, including the sample implementation and
some of the raw sensory data (minus large video files) are available in our GitHub repository:
https://github.com/PHIL-MQP/phil. Links and more information about the datasets can
also be found in the README on the phil repository on GitHub.

70

https://github.com/PHIL-MQP/phil

	Introduction
	Motivation
	Problem Statement
	FIRST Robotics Competition
	Key Contributions

	Survey of Localization Techniques
	LIDAR Mapping
	Ultrasonic Mapping
	IMUs and Encoders
	Beacon systems and Wireless Networks
	Cameras with Visual Tags
	ArUco and MarkerMapper

	Optical Flow
	Filtering and Calibration

	Trade-Off Analysis Of Different Techniques
	Proposed Localization Techniques

	Defining Successful Localization in FRC
	Experimental Results
	Double Integration of Accelerometer is Inaccurate
	IMU Calibration
	Accuracy of Gyro Integration versus On-Chip Yaw Calculation
	Characterising Drift and Bias in the Accelerometer
	Measuring the drift and bias in the accelerometer
	Zero Velocity Updates
	Drift Compensation

	Comparing Our IMU Localization to the NavX API
	Measuring Beacon Delays
	Measuring Frequency Response
	A Theoretical Procedure for Building a Map of Beacons
	OpenCV Optical Flow Sample Code
	Benchmarking OpenCV Processing Times
	Collecting Ground-Truth with VICON Motion Capture
	Detecting Simulated Chirps in MATLAB
	The Doppler Effect on Ultrasonic
	Effect of Chirp Bandwidth

	Ultrasonic Beam Spread
	Characteristics of Piezo Transducers
	Co-Processors for Image Processing
	Evaluting The Placement of ArUco Tags
	Statistics of CSCore Image Timestamps
	Effect of Frame Rate and Resolution on ArUco Tag Detection
	Rate of position estimates from ArUco Tags
	Benchmarking MarkerMapper with VICON Motion Capture
	Benchmarking ArUco with VICON Motion Capture
	Our Experiences with Building MarkerMaps
	Erroneous detections with ArUco
	Latency over the Robot Network

	A Dataset for Robot Localization
	Provided Tools

	Sample Implementation
	Sensing Techniques Used
	Robot Hardware
	Kalman Filtering
	Encoder Pre-Processing
	Accelerometer Pre-Processing
	Camera Pre-Processing

	Software Design

	Conclusion
	Future Work
	Acknowledgements
	Appendices
	Ultrasonic Radio Beacons Bill of Materials
	Survey Responses
	Radio Time of Flight
	ArUco Detection Times
	Code & Dataset

