
Prediction and Observation Timing in Time Series
Classification

by

Thomas Hartvigsen

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Data Science

December 2021

APPROVED:

Professor Elke A. Rundensteiner
Worcester Polytechnic Institute
Advisor

Professor Randy Paffenroth
Worcester Polytechnic Institute
Committee Member

Professor Elke A. Rundensteiner
Worcester Polytechnic Institute
Head of Data Science Program

Professor Xiangnan Kong
Worcester Polytechnic Institute
Co-Advisor

Professor Jenna Wiens
University of Michigan
External Committee Member

Copyright @ 2021 by Thomas Hartvigsen. This document and its content is protected by
copyright. To make digital or hard copies of all or part of this work, to use in research,
educational or commercial programs, to post on servers or to redistribute to lists, requires
prior specific permission from the author.

Abstract

Time series data mining is crucial to a wide variety of domains such as healthcare,
weather prediction, seismology, and astronomy. Classifying time series is a challenging
and important problem with applications from clinical diagnosis, natural disaster effect
estimation, to stellar object detection. With a huge amount of time series data collected ev-
ery day, solving rapidly-evolving, complex time series classification problems is essential.
In this work, we introduce and study two notions of timing in time series classification:
(1) The timing of predictions, or how early in time a classification is made without seeing the
complete time series, is often a key factor in the usefulness of a time series classifier, and (2)
The timing of observations, or timestamped values produced by various data sources, is
often irregular across different data dimensions, thus introducing technical challenges to
the classifier model.

In the first part of this dissertation, we study prediction timing. How quickly a classi-
fier comes to a decision can strongly effect its usefulness when integrated into a decision
support system. This intuition underlies early classification of time series, where we find
a timestep in an ongoing time series at which a classifier stops and makes its prediction
early without having seen the complete time series, typically with a preference for con-
suming only a few early timesteps and accurate predictions. These two goals of earliness
and high accuracy contradict one another. We investigate two directions for tackling pre-
diction timing:

Tunable Early Classification of Time Series. A tunable early classifier lets a user choose
how much importance to put on each of the contradictory goals of earliness and accuracy.
Since no prior works have tackled this challenge, in this work we characterize propose
the tunable early classification problem. We then develop a solution strategy based on a
recurrent neural network time series model mixed with a reinforcement learning-based
halting policy that chooses, at each timestep, whether or not to stop and classify.

Early Multi-label Classification of Time Series. Many time series classification problems
are naturally modeled as the more general case of multi-label classification, where each
instance is associated with a subset of all possible labels. Classifying such series early is an
open problem, which we refer to as Early Multi-label Classification. In this dissertation,
we develop its first solution: An integration of recent classifier chain approaches with
multi-label classification models as well as with adaptive-halting policy networks.

In the second part of this dissertation, we study observation timing. Time series are of-
ten collected with irregular spacing between different observations (data values). Classi-

fying such irregular time series has many important applications from clinical diagnosis
to seismology. However, modeling these data is tremendously challenging because sam-
pling rates can differ between variables, values may be missing, variables evolve over
time without being observed, and data generation functions may or may not be corre-
lated. In this dissertation, we develop classifiers that learn directly from irregular time
series, studying two challenges related to directions for observation timing. The first
studies the classification of long and irregular time series, while the second addresses
data irregularity in the context of achieving early classification.

Continuous-Time Attention for Irregular Time Series Classification. Classifying time series
often depends on finding discriminative subsequences in time series data. A model that
explicitly finds these moments-of-interest in continuous time will be more robust to noise
by disregarding irrelevant portions the timeline. In this work, we leverage the power of
attention to find relevant moments-of-interest.

Classifying Irregular Time Series Early. Once we can find moments-of-interest, a natural
follow-on question arises, namely, Can we find them early to support time-sensitive applica-
tions? We investigate this question, developing a model that classifies irregular time series
as early as possible without first observing all timesteps. This is the first work to combine
observation timing with prediction timing.

For all tasks, we compare our proposed models against state-of-the-art alternatives
from the literature and verify that our proposed methods outperform them consistently
and significantly. In these studies, we measure performance using established metrics on
a wide variety of publicly-available datasets.

Acknowledgments

I am deeply grateful to my advisors Professor Elke Rundensteiner and Professor Xiang-
nan Kong for their support. I will forever strive to pay forward their investments in time,
thoughtful criticism, and drive to future generations of researchers. Their patience and
trust have helped me to grow as both researcher and person. Also special thank you to
Professor Randy Paffenroth and Professor Jenna Wiens for serving on my dissertation
committee.

I also thank my fellow students who have helped me along the way: Cansu Sen, Wal-
ter Gerych, Jidapa Thadajarassiri, Thanh Tran, Xiao Qin, John Boaz Lee, and all other
members of the DAISY group at WPI. Through many discussions, they have helped me
to understand problems more deeply and their hard work inspires me to keep pushing
forward. Especially thank you to Cansu for listening to my research ravings and for
dodging my flailing arms as I failed to contain my enthusiasm for our fabulous research.

I am especially grateful to my wife, Missy, who has demonstrated extreme patience
through periods of high stress and has led the charge in celebrating any and all successes.
Finally, thank you to my parents, Gregg and Meredith, and my sister, Phoebe, for their
support and for inspiring me to stay curious and motivated.

Publications

PUBLICATIONS FEATURED IN THIS DISSERTATION

This dissertation describes work done in the four following papers. Together, they
build solutions for timing and observation prediction problems in time series classifica-
tion.

21. Thomas Hartvigsen, Walter Gerych, Xiangnan Kong, Elke Rundensteiner. Early
Classification of Irregular Time Series. Forthcoming.

20. Thomas Hartvigsen, Xiangnan Kong, Elke Rundensteiner. Continuous-Time Atten-
tion Network for Irregularly-Sampled Time Series. Forthcoming.

19. Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke Rundensteiner. Recurrent
Halting Chain for Early Multi-label Classification. ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD), 2020.

18. Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke Rundensteiner. Adaptive-
Halting Policy Network for Early Classification. ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD), 2019.

OTHER PUBLICATIONS

The following papers have also been accepted for publication when this dissertation
was submitted. Nine additional papers are currently under review.

17. Walter Gerych, Thomas Hartvigsen, Luke Buquicchio, Emmanuel Agu, Elke Run-
densteiner. Recovering the Propensity Score from Biased Positive Unlabeled Data. AAAI
Conference on Artificial Intelligence (AAAI), 2022.

16. Walter Gerych, Thomas Hartvigsen, Luke Buquicchio, Emmanuel Agu, Elke Run-
densteiner. Recurrent Bayesian Classifier Chains for Exact Multi-label Classification. Ad-
vances in Neural Information Processing Systems (NeurIPS), 2021.

15. Hang Yin, John Boaz Lee, Xiangnan Kong, Thomas Hartvigsen, Sihong Xie. Energy-
Efficient Models for High-Dimensional Spike Train Classification using Sparse Spiking
Neural Networks. ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2021.

14. Jidapa Thadajarassiri, Thomas Hartvigsen, Xiangnan Kong, Elke Rundensteiner.
Semi-Supervised Knowledge Amalgamation for Sequence Classification. AAAI Confer-
ence on Artificial Intelligence (AAAI), 2021.

13. Luke Buquicchio, Walter Gerych, Kavin Chandrasekaran, Abdulaziz Alajaji, Hamid
Mansoor, Thomas Hartvigsen, Emmanuel Agu, and Elke Rundensteiner. Variational
Open-Set Recognition. IEEE International Conference on Big Data (IEEE BigData),
2021.

12. Dongyu Zhang, Cansu Sen, Jidapa Thadajarassiri Thomas Hartvigsen, Xiangnan
Kong, Elke Rundensteiner. Explainable Document Classification with Human-guided
Attention. IEEE International Conference on Big Data (IEEE BigData), 2021.

11. Prathyush Parvatharaju, Ramesh Doddiah, Thomas Hartvigsen, Elke Rundensteiner.
Learning Saliency Maps for Deep Time Series Classifiers. ACM International Conference
on Information and Knowledge Management (CIKM), 2021.

10. Cansu Sen, Thomas Hartvigsen, Biao Yin, Xiangnan Kong, Elke Rundensteiner. Hu-
man Attention Maps for Text Classification: Do Humans and Neural Networks Focus on
the Same Words? Annual Meeting of the Association for Computational Linguistics
(ACL), 2020.

9. Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke Rundensteiner. Learning to
Selectively Update State Neurons in Recurrent Networks. ACM International Confer-
ence on Information and Knowledge Management (CIKM), 2020.

8. Jidapa Thadajarassiri, Cansu Sen, Thomas Hartvigsen, Xiangnan Kong, Elke Run-
densteiner. Learning Similarity-Preserving Word Meta-Embedding. IEEE International
Conference on Big Data (IEEE BigData), 2020.

7. Erin Teeple, Thomas Hartvigsen, Cansu Sen, Kajal Claypool, Elke Rundensteiner.
Clinical Performance Evaluation of a Machine Learning System for Predicting Hospital-
Acquired Clostridium Difficile Infection. International Conference on Health Informat-
ics (HEALTHINF), 2020.

6. Cansu Sen, Thomas Hartvigsen, Xiangnan Kong, Elke Rundensteiner. Patient-Level
Classification of Clinical Note Sequences Guided by Attributed Hierarchical Attention. IEEE
International Conference on Big Data (IEEE BigData), 2019.

5. Cansu Sen, Thomas Hartvigsen, Xiangnan Kong, Elke Rundensteiner. Learning Tem-
poral Relevance in Longitudinal Medical Notes. IEEE International Conference on Big
Data (IEEE BigData), 2019.

4. Jidapa Thadajarassiri, Cansu Sen, Thomas Hartvigsen, Xiangnan Kong, Elke Run-
densteiner. Comparing General and Locally-Learned Word Embeddings for Clinical Text
Mining. IEEE International Conference on Biomedical and Health Informatics (BHI),
2019.

3. Thomas Hartvigsen, Cansu Sen, Elke Rundensteiner. Detecting MRSA Infections by
Fusing Structured and Unstructured Electronic Health Record Data. Journal of Commu-
nications in Computer and Information Science (CCIS) 1024, 2018.

2. Thomas Hartvigsen, Cansu Sen, Sarah Brownell, Erin Teeple, Xiangnan Kong, Elke
Rundensteiner. Early Prediction of MRSA Infections using Electronic Health Records.
International Conference on Health Informatics (HEALTHINF), 2018.

1. Cansu Sen, Thomas Hartvigsen, Kajal Claypool, Elke Rundensteiner. CREST - Risk
Prediction for Clostridium Difficile Infection Using Multimodal Data Mining. European
Conference on Machine Learning and Principles and Practice of Knowledge Discov-
ery in Databases (ECML), 2017.

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Prediction Timing: Early Classification of Time Series 16

1.2.1 State-of-the-Art Early Classification of Time Series 16
1.2.2 Challenges of Early Classification of Time Series 17

1.3 Observation Timing: Irregular Time Series . 18
1.3.1 State-of-the-art Irregular Time Series Classification 19
1.3.2 Challenges of Irregular Time Series Classification 20

1.4 Overview of tasks of this dissertation . 21
1.5 General Approaches . 23
1.6 Contributions . 23
1.7 Organization . 24

2 Tunable Early Classification of Time Series 25
2.1 Introduction . 25

2.1.1 Background . 25
2.1.2 Motivating Example . 25
2.1.3 Problem Definition . 27
2.1.4 Challenges . 27
2.1.5 Proposed Method: EARLIEST . 28
2.1.6 Contributions . 28

2.2 Related Work . 29
2.3 Methods . 30

2.3.1 Problem Definition . 30
2.3.2 RNN & LSTM Background . 31
2.3.3 Proposed Method . 32

2.4 Experiments . 39
2.4.1 Datasets . 39
2.4.2 Compared Methods . 42
2.4.3 Implementation Details . 42

2.4.4 Experimental Results . 43
2.5 Conclusions . 48

3 Tunable Early Multi-label Classification of Time Series 49
3.1 Introduction . 49

3.1.1 Background . 49
3.1.2 State-of-the-Art . 50
3.1.3 Problem Definition . 51
3.1.4 Challenges . 52
3.1.5 Proposed Method: Recurrent Halting Chain 53
3.1.6 Contributions . 54

3.2 Related Work . 54
3.3 Methods . 57

3.3.1 Problem Definition . 57
3.3.2 Proposed Method . 59

3.4 Experiments . 66
3.4.1 Datasets . 66
3.4.2 Compared Methods . 69
3.4.3 Implementation Details . 70
3.4.4 Experimental Results . 72

3.5 Conclusions . 74

4 Attention-based Irregular Time Series Classification 75
4.1 Introduction . 75

4.1.1 Background . 75
4.1.2 Motivating Example . 76
4.1.3 State-of-the-art . 76
4.1.4 Problem Definition . 77
4.1.5 Challenges . 77
4.1.6 Proposed Method: CAT . 78
4.1.7 Contributions . 79

4.2 Related Work . 79
4.3 Methods . 82

4.3.1 Problem Definition . 82

4.3.2 Proposed Method . 82
4.4 Experiments . 88

4.4.1 Datasets . 88
4.4.2 Compared Methods . 90
4.4.3 Implementation Details . 91
4.4.4 Experimental Results . 92
4.4.5 Hyperparameter Study . 95
4.4.6 Timing Experiments . 96

4.5 Conclusions . 97

5 Early Classification of Irregular Time Series 99
5.1 Introduction . 99

5.1.1 Background . 99
5.1.2 State-of-the-art . 99
5.1.3 Problem Definition . 100
5.1.4 Challenges . 101
5.1.5 Proposed Method: STOP&HOP . 101
5.1.6 Contributions. 102

5.2 Related Work . 102
5.3 Methods . 104

5.3.1 Problem Definition . 104
5.3.2 Proposed Method . 104
5.3.3 Prefix Embeddings for Irregular Time Series 106
5.3.4 Classifying Prefixes . 108
5.3.5 Halting Policy Network . 108
5.3.6 Training . 111

5.4 Experiments . 112
5.4.1 Datasets . 112
5.4.2 Implementation Details . 114
5.4.3 Synthetic Experiments. 115
5.4.4 Real-world Dataset Experiments. 117
5.4.5 Discrete Hop Size Experiments . 118

5.5 Conclusions . 119

6 Conclusion 120

7 Future Work 122
7.1 Adaptive Intervention Lengths for Early Classification 122
7.2 Explaining Deep Early Classifiers . 123
7.3 Multivariate Convolutional Embeddings. 123
7.4 Early Multi-modal Classification. 124

1 | Introduction

1.1 Motivation

Time series data are found in a wide variety of domains including Electronic Health

Records [98], Human Activity Recognition [93, 120], Cyber-security [112], Weather pre-

diction [97], Remote Sensing [80], Astronomy [29], Seismology [33], Finance [65], Crimi-

nal Investigation [99], and Neuroscience [12]. For example, as a patient stays in a hospital,

her physiological data are collected over time, forming complex high-dimensional time

series data which are useful to many medical applications [39].

Due to the prevalence of time series data, the broad field of Time Series Data Min-

ing [30] studies methods for extracting insights from time series. Time series data col-

lection has skyrocketed over the last decade [79] from a wide variety of new domains.

Data from new domains often come with their own unique properties and challenges

and have spurred the study of new problems. These problems broadly include, but are

not limited to, Time Series Classification [5], Forecasting [1], Change-Point Detection [2],

Indexing/Segmentation [106], Anomaly Detection [16], and Clustering [71].

Time series classification (TSC) in particular is one of the most challenging time se-

ries mining tasks [28, 132]. In TSC, we seek to predict the class labels of previously-

unseen time series instances. Applications of TSC include in-hospital acquired infection

prediction [123], seizure prediction from EEG data [3], and human activity recognition [118],

among many. The task of time series classification is to train a model that can accurately

assign previously-unseen time series to a set of known classes. In the standard setting,

values of each time series are assumed to be collected at fixed intervals, where there are

even gaps between observations. For example, autonomous vehicles are equipped with a

PhD Dissertation: Thomas Hartvigsen 14

variety of sensors, each of which records data at a fixed schedule (e.g., 10 measurements

per second). Naturally, a time series is represented by a sequence of timestamp, value

pairs (t, v), though when the gaps between observations are regular, the timestamps are

often ignored. On the contrary, observations are often irregular: timestamps may not

increase with equal steps and can no longer be ignored. This more-general case is ex-

tremely common and we refer to this property as Observation Timing. For example, in a

hospital a clinician requests different measurements at different times while they work

to understand a patient’s health. This results in highly irregular time series that are also

multivariate. There may be different numbers of observations made between two differ-

ent time series or variables. Together, these features present a major challenge to modern

machine learning methods, which expect fixed-length input features.

Further, most of the time, all time series in a given dataset are assumed to be fully-

observed: each full time series is assigned one label and is classified based on the entire

series. For example, when classifying which patients in a hospital acquired COVID dur-

ing their stay last year, there is no notion of when in a patient’s time series to generate a

prediction.

However, in online time-sensitive settings, we require models that can model time

series while they are being collected. For example, when classifying a patient’s risk of

acquiring COVID while they are in the hospital, classifications must be made based on

only some of their ongoing data, with a preference for earlier predictions. We refer to this

property of a model as its Prediction Timing.

As illustrated in Figure 1.1, many challenges of real-world time series classification

stem from two types of timing, which we identify and study in this dissertation:

1. Prediction Timing. How quickly a classifier comes to a decision directly impacts

how useful it is in time-sensitive domains. For instance, a classification that is made

too late does not allow a user enough time to react. However, determining when

PhD Dissertation: Thomas Hartvigsen 15

prediction time prediction time

IrregularRegular

Late

Early

Observation Timing

P
re

d
ic

ti
o
n

 T
im

in
g

Chapter 4

Chapters 2 and 3 Chapter 5

Figure 1.1: Directions of study in this dissertation. Vertical red dashed lines indicate
when the classification is made and + indicates prediction of the positive class. Each
rectangle contains a time series, in which time progresses from left to right Most prior
time series classification (TSC) is made only after observing all timesteps and assumes
regularly-spaced observations. Chapter 5 tackles the ultimate integrated goal, but solving
it requires solutions to problems in Chapters 2, 3, and 4.

a classifier should return its prediction is largely unstudied. In fact, it is currently

left to practitioners to protect users from such problems on a case-by-case basis.

As more machine learning solutions are sought in time-sensitive domains, a more

attractive solution is adaptive classification where the classifier can learn the impor-

tance (urgency) of the early timing of a prediction, here called prediction timing.

2. Observation Timing. Time series observations are frequently recorded at irregular

intervals. Modeling the relationship between the data-collection process and the

final classification task is a challenging task. An ideal TSC method can not only

effectively classify time series with irregular observations but leverage patterns in

the observation timing.

PhD Dissertation: Thomas Hartvigsen 16

1.2 Prediction Timing: Early Classification of Time Series

The usefulness of a time series classifier is often driven by the time at which a prediction is

generated. This insight is made exceedingly clear by the vast array of work on Early Clas-

sification of Time Series (ECTS) [126, 128, 127, 72, 50, 35, 88, 87, 46, 47, 82, 105, 26, 130].

ECTS is the problem of finding early timesteps at which a classifier can stop process-

ing and return its prediction, ignoring all future observations. This is essential in time-

sensitive domains, where actionable classifications are those that are made early enough to

allow a user to react to the prediction. For example, in clinical diagnosis if a model’s pre-

diction of an infection is made only after a patient’s symptoms are exceedingly obvious,

the model is not adding value to the clinical decision making process. In this example

it does not matter how accurate the predictions are because they are not useful with re-

spect to prediction timing. All solutions to this problem involve deciding at each timestep

whether or not to stop and generate a classification. To-date, they all assume timesteps to

be evenly-spaced. This ignores the relationship between the size of gaps between obser-

vations and the cost of waiting for more data. Intuitively, if a model decides to wait for

the next observation, but the observation arrives far into the future, this can violate the

goal of making predictions as early as possible.

1.2.1 State-of-the-Art Early Classification of Time Series

The importance of ECTS has driven the development of research in early classifiers. The

main directions of study are Shapelets [128, 127, 72, 50, 35, 130], Classifier Ensembles [88, 87],

and Deep Reinforcement Learning [46, 47, 82].

Early work on ECTS began through shapelet discovery, where discriminative subse-

quence exemplars are found within a time series dataset. Finding these shapelets typi-

PhD Dissertation: Thomas Hartvigsen 17

cally involves exhaustive search through all possible subsequences. This does not scale

to large numbers of time series, long time series, or high dimensional time series. For

example, [128] first extracts all possible subsequences from the given time series dataset,

then uses distance-based classification to find out which subsequences are most discrim-

inative. At test time, if a subsequence within a new time series instance matches a pre-

defined shapelet well-enough (according to a hand-picked distance metric), the time se-

ries is associated with the respective class and the classification is returned early. Such an

approach is neither scalable nor tunable as there is no clear way to balance between the

goals of earliness and accuracy. Instead, they simply preserve accuracy.

The most recent work has focused instead on prefix-based ECTS [88, 87, 82, 95, 25, 78],

seeking discriminative time series prefixes. This scales to multiple variables more readily.

Some works use Classifier Ensembles combined with pre-defined Stopping Rules such

prediction confidence [88, 87, 25]. The most recent approaches train Deep Learning mod-

els that solve multi-objective optimization problems during training [46, 47, 82, 95]. These

prefix-based approaches are scalable to multivariate time series and allow, for the first

time, tunability between the contradictory goals of earliness and accuracy.

1.2.2 Challenges of Early Classification of Time Series

Early classification of time series is a challenging problem for many reasons. First, to

be useful in practice, a solution to this problem must be tunable between the respective

emphasis on earliness versus on the accuracy of the predictions. These objectives typically

contradict one another and a balance between them must be struck. The challenges of this

problem underlie the deeply-studied field of multi-objective optimization [81, 24, 64]. This

trade-off exists in every application of an ECTS algorithm, and therefore tuning the goals

of an early classification of time series method should be made sufficiently intuitive for

PhD Dissertation: Thomas Hartvigsen 18

the users of such a system that may have domain insights about these requirements.

Second, the relationship between prediction time and usefulness is often not explicitly

known. Instead, the only feedback available for training an early classification of time

series method is whether or not the classification task was solved correctly. Since learning

when to make a prediction is not directly supervised, a solution to early classification of

time series must learn to integrate goals of accuracy and earliness together.

Third, discriminative information may be distributed both over time and over multi-

ple variables in the multi-variate case. A good solution must thus be able to combined in-

formation from possibly vastly-different times across variables to recognize multi-variate

signals.

1.3 Observation Timing: Irregular Time Series

Most time series classifiers assume that observations are made at regular intervals [30].

However, this assumption of regular observation timing is unrealistic in many domains.

A clear example of this is in monitoring physiological streams of patients in a hospital

where observations may be both irregular in when they are recorded and in which variables

are recorded at a given time [10, 77]. By learning from these data directly, we can avoid trans-

forming the irregular time series to regularly-sampled time series (often through binning),

thus reducing estimation error in regions without observations and summarization error

in regions with many observations [69]. As such, classifying such irregular time series

has also recently gained attention by the machine learning and data mining communities

[10, 6, 32, 38, 107].

The standard approach to classifying irregular time series is to forcibly transform the

observations into regularly-sampled time series prior to applying methods that assume

regularly-sampled inputs, such as in [74]. This transformation is often achieved through

PhD Dissertation: Thomas Hartvigsen 19

binning: A set of fixed-sized and evenly-spaced bins are hand picked, then bins with mul-

tiple observations are summarized into one value and empty bins have values imputed

[15, 138]. This throws away much of the valuable information in irregular time series

and injects bias directly into the classification process by mandating hand-picked sam-

pling rates. For instance, high sampling rates incur high estimation error because most

bins have no observations. Low sampling rates result in heavily-summarized time series,

deleting fine-grained signals. Finding this balance is more art than science and perfor-

mance decays on both ends of the spectrum.

1.3.1 State-of-the-art Irregular Time Series Classification

Due to the rising prevalence of irregular time series data, there have been many recent

works studying irregular time series classification [32, 38, 107, 69, 10]. The vast major-

ity of irregular time series classifiers rely on extensive preprocessing where the obser-

vation timings are first forced to be made regular before the modeling can be applied.

This is typically achieved by hand picking a preferred “reference” time steps (which to-

date are all regularly-spaced), then estimating values at each reference timestep. This

estimation has been done using Gaussian Process models [32, 38, 107, 69], linear interpo-

lation, continuous-time RNNs [10, 15], and neural ordinary differential equations [101].

Some recent works have also avoided picking reference steps manually by only consid-

ering timesteps where at least one variable is observed and estimating all other variables

[116, 6]. This approach incurs high estimation error as many values need to be predicted.

Additionally, some works have begun investigating the use of Differentiable Set Learning

[135] to classify Irregular Time Series [54], although to-date they only serve to accelerate

training time while unfortunately decaying classification performance.

However, in order to classify irregular time series, each of these methods still relies

PhD Dissertation: Thomas Hartvigsen 20

on hand picking a set of reference timesteps at which to estimate new values. To-date

reference timesteps are always chosen to be evenly-spaced over time so that the final clas-

sifier can assume fixed-length inputs. By definition, if few reference timesteps are chosen,

global trends may be captured (such as slope), while local trends (such as short-term

signals) may be ignored. On the contrary, if many reference timesteps are chosen, local

trends are captured, but the new time series representations are at risk of high estimation

bias in the presence of noise. On both sides of this spectrum exist time series represen-

tations that are detrimental to the classification task. It is currently left up to the user to

avoid the pitfalls associated with both ends of the spectrum and there is no widely ac-

cepted and principled approach to picking a sampling rate beyond trial and error using

validation data.

1.3.2 Challenges of Irregular Time Series Classification

Much of time series classification assumes regularly-sampled time series due to the chal-

lenges associated with the irregular time series setting: (1) Irregular time series are by

nature challenging to represent using fixed-length vectors, even though many powerful

techniques rely on such representations. (2) Time series can be noisy and task-relevant re-

gions are often confined to small regions. This challenge is compounded by the fact that

how noisy the time series are also depends on how the data are represented (fine-grained

sampling techniques can make the task-relevant regions harder to find in the presence of

noise). (3) ITS are not naturally represented as fixed-length feature vectors, as are required

as input data format by most time series classifiers. There are no clear rules in implement-

ing efficient batch-processing methods for such data. (4) Modeling when events occur is a

challenging continuous-time prediction problem, as observed by the vast amount of work

on temporal point processes [22]. Additionally, in time series classification, modeling when

PhD Dissertation: Thomas Hartvigsen 21

events occur can often be useful information itself [75, 15]. However, there is no general

consensus on precisely how to incorporate this information into the classifier in the irreg-

ular time series case. Some recent methods have incorporated intensity functions [107],

though they do not include ablation studies on the effects of their modeling choices.

1.4 Overview of tasks of this dissertation

This document has two parts: The first half studies Early Classification of Time Series for

regular time series. The second half focuses on classifying irregular time series.

Chapter 2: Tunable Early Classification of Time Series. We seek a method for tun-

able multi-class ECTS, allowing a user to choose how much to emphasize between earli-

ness and accuracy. Following previous approaches, we also tackle the multi-class ECTS

problem, which is to find one timestep per time series at which a classification is made.

This assumes there is only one label associated with each time series. We also assume

regularly-spaced observations, as is done in all previous ECTS work [126]. This tunable

setting is a key advance beyond most state-of-the-art ECTS algorithms since the best bal-

ance between these contradictory goals must be task-specific. In this chapter, we develop

the first tunable approach to ECTS [46].

Chapter 3: Tunable Early Multi-Label Classification of Time Series. Many real-world

classification problems can be best described in terms of multi-label predictions, as op-

posed to the multi-class case. In the multi-label setting, we assign a set of labels to a

given time series instance. As in ECTS, to make these predictions actionable they should

be made as early as possible. We once again assume regularly-spaced inputs. The key

challenge and opportunity of this problem is in leveraging the correlations between the

labels themselves to make earlier and more accurate label-set predictions. For this prob-

PhD Dissertation: Thomas Hartvigsen 22

lem, we first define the open problem of Early Multi-label Classification and then develop

its first solution: a model that predicts label sets while using as few timesteps per class as

possible [47].

Chapter 4: Continuous-Time Attention for Irregular Time Series Classification. Many

time series are naturally recorded at irregular intervals. This is especially true in clinical

applications involving physiological streams where clinicians monitor patient health [107,

70]. In this context, I propose the study of continuous-time attention, where a model should

explicitly learn moments of interest that are most relevant to classification. Such a model

should be robust to noisy inputs and less sensitive to estimation error associated with

classic binning approaches to irregular time series analysis. While targeted at applications

with small discriminative regions, a good solution should still be able to handle long-

term discriminative trends, such as slopes by observing enough information along the

entire timeline. In this dissertation, we propose the first method for classifying long and

irregular time series via an attention mechanism [49].

Chapter 5: Early Classification of Irregular Time Series. Once we can find relevant

signals for different classes in continuous time we can train a model to classify ongo-

ing irregular time series early. Despite this natural line of questioning, this new setting

adds many new challenges of its own, particularly because previous we combine early

classification of time series methods require regularly-spaced inputs—including our own

methods introduced in Chapters 2 and 3. In this problem, “take one step forward in

time” has an entirely new meaning because there may be a large gap in time before the

next timestep.

An effective solution to this problem therefore requires us to model ongoing time series

with irregular gaps between observations, a state-of-the-art and notoriously-challenging

PhD Dissertation: Thomas Hartvigsen 23

problem for existing machine learning methods. In this chapter, we combine early classi-

fication of time series with learning from irregular time series to define a new family of

problems [44].

1.5 General Approaches

In general, we develop deep reinforcement learning methods for time series classifica-

tion problems of both prediction and observation timing. For prediction timing, we train

reinforcement learning agents that decide whether or not to stop and classify ongoing

time series as data are collected sequentially. We use recurrent neural networks to pro-

duce vector representations of ongoing time series. For observation timing, we develop

continuous-time recurrent networks that can create vector representations of ongoing se-

ries, even in gaps between observations. Further, we introduce reinforcement learning

agents that search for small and relevant portions of irregular time series, even when

they are small.

1.6 Contributions

This dissertation makes several contributions to machine learning and data mining re-

search. 1) We are the first to formalize the complementary notions of observation and

prediction timing, which together cover substantial group in time series classification re-

search, opening doors to extensions of current methods into new directions. 2) We kick

off the study of reinforcement learning for problems of prediction timing, an approach

that has gained traction with the community and is now the state-of-the-art approach

to making early and accurate classifications for time series data. 3) We generalize early

classification to the multi-label setting, introducing new notions of prediction timing and

PhD Dissertation: Thomas Hartvigsen 24

opening doors to develop models that are more practical. 4) We intersect prediction and

observation timing to introduce a new family of time series classification models that is

much closer to the real needs of time-sensitive decision makers.

1.7 Organization

PART 1: PREDICTION TIMING

• Chapter 2. We develop the first tunable approach to early classification of time series,

which was also the first of many deep learning methods for early classification of

time series [46].

• Chapter 3. We define the open problem of early multi-label classification and propose

its first solution [47].

PART 2: PREDICTION TIMING

• Chapter 4. We propose the first method for classifying irregular time series where

only a small portion of the timeline is relevant to the classification task [49].

• Chapter 5. We combine early classification of time series with learning from irregular

time series to define a new family of problems: early classification of irregular time

series [44].

CONCLUSIONS AND FUTURE WORK

• Chapter 6. We draw conclusions across the work presented in this dissertation, sum-

marizing the contributions of our work.

• Chapter 7. We introduce promising directions that will follow the research discussed

in this document.

2 | Tunable Early Classification of Time Series

2.1 Introduction

2.1.1 Background

As introduced in Chapter 1, traditional time series classification assumes that a time se-

ries as a whole has been received before predicting its class label [30]. In time-sensitive

applications, however, it is essential that predictions are generated well before the entire

series has been observed. In these settings, decision-makers must determine how much

accuracy to sacrifice in favor of earliness, with the optimal trade-off depending on both

the task and the domain.

2.1.2 Motivating Example

Figure 2.1 depicts an example of the Early Classification of Time Series (ECTS) problem

where each time series contains unique signals indicating their respective class labels.

Approach 1 illustrates the traditional classification scheme, predicting labels only after

the entire time series has been observed. This results in a highly accurate classifier, as it

has the opportunity to capture all signals at the cost of providing predictions at the very

end (indicated by the dashed halting-line). Approach 2 refers to the strict early classifica-

tion method, choosing a fixed early timestep at which to always stop and predict. In this

approach, for some time series signals have not arrived yet, while for others decisions are

postponed unnecessarily. Approach 3 shows the benefit of adaptive early classification,

selecting halting-points on a case-by-case basis (vertical line) thus allowing for early, yet

accurate, predictions.

PhD Dissertation: Thomas Hartvigsen 26

Figure 2.1: Example of three approaches to early classification of two time series. + and –
denote class labels; vertical dashed lines indicate halting-points. Timesteps after halting-
points in gray are not used for classification.

We note that an effective model for time series classification in time-sensitive do-

mains should not only model discriminating signals, but also identify timesteps at which

enough information has been observed to reliably (to the requested degree) predict a la-

bel. It must also be tunable based on the desired domain-specific emphasis on accuracy

versus earliness.

PhD Dissertation: Thomas Hartvigsen 27

2.1.3 Problem Definition

As introduced in Chapter 1, Section 2.1, the ECTS problem is to select a timestep in a

time series at which enough information has been observed to predict a class label. It is

challenging to balance the number of observed timesteps with the expected accuracy. This

is because such multi-objective optimization problems involve task-dependent trade-offs.

A good solution for one time series may be bad for another, requiring solutions to be

highly adaptive and data-driven.

2.1.4 Challenges

Despite the importance of ECTS, several open challenges remain. We expand on the major

challenges introduced in Chapter 1 as follows:

• Multiple conflicting objectives: Earliness and accuracy tend to contradict one-another.

A maximally-early classifier may not have enough information to make accurate

predictions, while a late classification may cause unnecessary delay and miss pre-

cious opportunity to react. The balance is task-specific and an optimal trade-off

depends on the particular task and domain. So far, no method allows for direct

tuning between these two goals.

• Lack of supervision: There are no labels indicating where signals occur within a time

series; instead the complete time series is typically labeled by its class. Thus quanti-

fying whether or not a prediction should be made at a particular timestep is difficult.

In short, ECTS contains an inherently unsupervised sub-task within an otherwise

supervised learning problem.

• Multivariate signal evolution: In multivariate time series, signals indicative of a par-

ticular class label may develop at vastly different times across variables, making the

PhD Dissertation: Thomas Hartvigsen 28

identification of one halting point per time series (composed of all variables) harder.

There has been little work [35, 50, 72] in the multivariate setting of ECTS, each with

limited scalability.

2.1.5 Proposed Method: EARLIEST

In this work, we propose a solution to the aforementioned open challenges called Early

and Adaptive Recurrent Label ESTimator, or short, EARLIEST. EARLIEST is a novel deep

network composed of a recurrent neural network (RNN)-based Discriminator with a re-

inforcement learning-based stochastic Controller network. During classification, the re-

current model generates representations of time series one timestep at a time, capturing

complex temporal dependencies. The controller interprets these in sequence, learning to

parameterize a distribution from which decisions are sampled at each timestep, choosing

whether to stop and predict a label or wait and request more data. Once the controller decides

to halt, the discriminator interprets the sequential representation to classify the time se-

ries. By rewarding the controller based on the success of the discriminator and tuning

the penalization of the controller for late predictions, the controller learns a halting policy

which controls online halting-point selection. This results in a learned balance between

earliness and accuracy depending on how much the controller is penalized. The size of the

penalty is a parameter chosen by a decision-maker according to requirements of the task.

2.1.6 Contributions

In contrast to traditional sequence-matching ECTS methods, our model-based approach

supports flexible earliness-accuracy trade-offs per task using one integrated parameter,

being optimized for earliness and accuracy together in one end-to-end model. The resul-

tant solution corresponds to a general deep network model applicable to a rich variety

PhD Dissertation: Thomas Hartvigsen 29

of time-sensitive classification tasks, including video [78, 122] and text [56]. Empirical

studies on real-world tasks demonstrate that our approach outperforms baseline meth-

ods while providing effective balancing between opposing goals.

2.2 Related Work

As introduced in Chapter 1, this Chapter proposes the first work supporting task-dependent

tunability in early classification of time series through joint-optimization, supporting both

univariate and multivariate data. This work relates to early classification of time series

methods—see Chapter 1—and conditional computation in neural networks.

Conditional Computing. Conditional computation in neural networks deals with

learning when to activate different subsets of neural networks, depending on input data

[103]. This can reduce the extensive computation required to train a neural network since

fewer computations need to be made per example [11]. Additionally, the depth of a neural

network has a major impact on performance [20], but selecting the proper network com-

plexity remains empirical and is often more art than science. Our model leverages the

idea of selectively activating parts of a neural network and can be viewed as longitudinal

conditional computation: learning when to activate sections in time. There is one other

halting RNN, built for text classification [56], which uses multiple loss functions with-

out the full reinforcement learning setting. [21] uses reinforcement learning for ECTS but

does not model temporal dynamics of the time series.

PhD Dissertation: Thomas Hartvigsen 30

Table 2.1: Basic Notation

Notation Description

N Number of time series in dataset.
M Variables per time series.
L Classes for prediction.
T Number of possible timesteps.
X

(i)
t Variables at timestep t for time series i.

y(i) True label for time series i.
a
(i)
t Action at timestep t for time series i.
p
(i)
t Prob. of halting at timestep t for time series i.
S
(i)
t Learned representation for X(i)

0,··· ,t.
πθ(·) Policy, maps states to actions: πθ(St) = at.
τ (i) Chosen halting-point for time series i.

where i = 1, · · · , N and t = 1, · · · , T .

2.3 Methods

2.3.1 Problem Definition

Given a set of labeled multivariate time series, D = {
(
X, y

)
} containing N time series

instances and labels, consider the ith instance

X(i) =


| | |

x
(i)
1 x

(i)
2 · · · x

(i)
T

| | |


where x(i)t ∈ RM contains the M variables recorded at time t. Henceforth, for ease-of-

reading, we describe our method for one time series and omit index i when it is not

ambiguous. The aim is to learn parameters θ of a function f(·), which maps a time series

X to a label ŷ (i.e. fθ(X)→ ŷ), ultimately generalizing to classify time series not observed

during training. During the training process, the goal is to match predicted labels ŷ to

PhD Dissertation: Thomas Hartvigsen 31

Figure 2.2: Overview of EARLIEST. Selected action a chooses whether or not to pass St
to the Discriminator or back to the Base RNN to process the next timestep. Dashed lines
indicate no gradient flow through these paths.

their corresponding true labels y where y ∈ Y denotes the label associated with X and

Y = {0, · · · , L}, the set of possible class labels. Each time series is associated with exactly

one label.

As an example, for in-hospital adverse-event detection, a multivariate time series X(i)

may contain a patient’s vital signs recorded longitudinally throughout her stay. This in-

stance is labeled positive, or y(i) = 1, if an adverse event occurs. Otherwise, X(i) belongs

to the control group and y(i) = 0.

In this work, we model fθ as a combination of neural networks. However, as opposed

to using all T timesteps to generate this prediction, for each time series we seek a timestep

τ ≤ T that is both small enough to satisfy a preset requirement for earliness and large

enough to satisfy a requirement for successful classification. We refer to the selected τ as

the halting-point.

2.3.2 RNN & LSTM Background

RNNs have emerged as the state-of-the-art for many time series analysis models [42, 84]

and other sequence modeling tasks such as sequence generation [129, 41]. Our proposed

model builds on RNNs, which construct vector representations for real-valued sequences.

PhD Dissertation: Thomas Hartvigsen 32

At each step of a sequence, a new representation is learned via a function of the previous

representation and new data observed at the current step. The final vector, computed at

the final step and modeling dynamics of the sequence, can then be used to classify the

sequence. Empirically, RNNs with Long Short-Term Memory (LSTM) cells [52] are more

effective than as they were originally proposed [27] as they preserve information over

longer sequences.

2.3.3 Proposed Method

The aims of our proposed adaptively-halting RNN, named EARLIEST, are twofold. First,

to model multivariate time series for classification, and second, to select a halting-point at

which enough timesteps have been observed to make a task-dependently adequate pre-

diction. EARLIEST is a deep neural network consisting of three sub-networks: (1) a Base

RNN which learns to model multivariate time series, generating low-dimensional vector

represenations, (2) a Discriminator Network, or Discriminator, which learns to predict class

labels based on the Base RNN’s model, and (3) a Controller Network, or Controller, which

decides at each step whether or not to halt the Base RNN and activate the Discriminator.

Once the Controller chooses to halt, the processing of the current time series is complete.

An overview of the EARLIEST architecture is shown in Figure 2.2, where we display a

rolled-up version of the RNN, showing the interaction between each network for each

timestep.

The Discriminator is trained with respect to the classification task while the Controller

is rewarded based on the success of the Discriminator and is punished based on how

many steps it takes before deciding to halt. Thus, the Controller and Discriminator learn

to cooperate to make correct predictions. To incorporate earliness, we add to the final

objective function a loss term that competes with the Controller’s natural tendency to wait,

PhD Dissertation: Thomas Hartvigsen 33

thus balancing the trade-off between accuracy and earliness according to the scale of this

loss term. The final output of EARLIEST is a label ŷ which is generated at some halting

point τ , where τ ≤ T . The tunability of the model dictates how much less τ is than T ,

which affects the accuracy of the model depending on where signals are located.

Base Recurrent Neural Network

An RNN augmented with LSTM cells [52] rests at the heart of EARLIEST, mapping vari-

ables observed at each timestep, Xt, to vector representations St ∈ Rk where k is the

number of hidden dimensions, a tunable hyperparameter. Standard to RNN literature,

we refer to the whole recurrent part of the network simply as an LSTM. One vector St is

created per timestep and is referred to as the hidden state. Each vector St summarizes the

time series dynamics present in X{0,··· ,t}. Since these vectors inform the other parts of the

network, we refer to this recurrent component as the Base RNN.

The LSTM is a function which learns to represent time series data as vectors. Hidden

state vector St is computed as a function of currently-observed data Xt and the previous

hidden state St−1, hence the recurrent nature of the model. In an LSTM, the computation

of St relies upon the computation of a cell memory state Ct, which is then used to com-

pute hidden state St. The LSTM’s success comes from learned gating mechanisms that

curate information contained in vector Ct. To compute Ct, first a forget gate controls what

information to remove from previous cell state Ct−1:

ft = σ(Wf · [St−1, Xt] + bf) (2.1)

An input gate controls new information added to Ct:

it = σ(Wi · [St−1, Xt] + bi) (2.2)

PhD Dissertation: Thomas Hartvigsen 34

The updated Ct is then computed as the gated combination of memory state Ct−1 and

current Xt using the forget and input gates:

Ct = ft � Ct−1 + it � η(Wc · [St−1, Xt] + bc) (2.3)

Finally, state representation St is computed through an output gate shown in Equation 2.4

operating on a non-linear Ct in Equation 2.5.

ot = σ(Wo · [St−1, Xt] + bo) (2.4)

St = ot � η(Ct) (2.5)

St is then used to inform decisions made by the Controller, generate classifications by

the Discriminator, and compute the next hidden states St+1 if the Controller so chooses.

In these equations, W ’s and b’s are learnable parameters, η(·) is the hyperbolic tangent

function, σ is the sigmoid function, · is the dot product, and � represents the hadamard

product. For conciseness, we group these parameters into one large matrix θb. We denote

this entire process as function LSTM(·) such that LSTMθb(Xt, St−1) = St. While we use

LSTM cells, it is also possible to use alternative gating-mechanisms such as the Gated

Recurrent Unit [19].

Controller Network

The Controller is a reinforcement learning agent that decides whether or not to halt the

Base RNN at each timestep, prompting the prediction of a label. To achieve this goal,

the Controller solves a Partially-Observable Markov Decision Process (POMDP) where

at each timestep observations arrive from a state, an action is sampled using a learned

policy, and a reward is observed according to the selected action’s quality. The objective

PhD Dissertation: Thomas Hartvigsen 35

is to optimize long-term rewards according to success of the Discriminator. The model is

trained by gradient-based policy search.

State: At each timestep t, the state is the set of currently observed time series variables

Xt, essentially a slice across all variables at timestep t. Taking advantage of the represen-

tational power of the Base RNN, the hidden state St is used as an observation from this

state space. St informs the selection of an action by the policy.

Policy: Next, an action is selected by a stochastic policy πθc(St) = at, which treats input

St as immutable data. In our experiments, we use a one-layer fully-connected neural

network to approximate this function. Typical to reinforcement learning, we sample the

action from a parameterized distribution. Thus, a learned function maps St to pt, where

pt is the probability of halting, computed as

pt = σ(WhaSt + bha)

=
eWhaSt+bha

eWhaSt+bha + 1

(2.6)

where Wha and bha are learnable parameters for mapping hidden outputs to actions and σ

is the sigmoid function, which ensures outputs between zero and one. pt then parameter-

izes a Bernoulli distribution from which action at is sampled according to P (at = 1) = pt.

In addition to hidden state St, we use current timestep t as additional context to the net-

work when computing pt.

Actions: Sampled action at dictates the proceedings of the Base RNN as follows: if

at = 0, the Controller has selected WAIT. This prompts the Base RNN to move forward one

timestep, the action-selection process beginning again with LSTM(Xt+1) = St+1. On the

other hand, if at = 1, the Controller has selected HALT, at which point the Discriminator

is activated to predict a label and processing of the current time series ends. Once the

controller selects HALT (or if t = T), t is considered to be the halting point τ . We use ε-

PhD Dissertation: Thomas Hartvigsen 36

greedy action selection to avoid abundant exploitation in the Controller: with probability

ε, action at is replaced with a random action and exponentially decrease ε from 1 to 0

during training, as shown in Equation 2.7. During training, ε exponentially decreases

from 1 to 0.

at =


at, with probability 1− ε

random action, with probability ε
(2.7)

Reward: To train the Controller, it must observe returns which qualify the parameters

of the current policy. To encourage cooperation between the Controller and Discriminator,

this return takes the form of a reward that quantifies the success of the Discriminator.

Thus, when the Discriminator is correct, we set reward rt = 1, and when it is incorrect, rt

= -1. The objective of the Controller is to maximize total reward R =
∑τ

t=0 rt.

Discriminator Network

The Discriminator generates a prediction ŷ by first projecting the hidden state St into L-

dimensional space using a fully-connected layer. Next, the resulting vector is normalized

to sum to one via the softmax function and can be treated as probabilities. This computa-

tion is shown in Equation 3.11 where Who and bho are parameters for mapping the hidden

state to the output space and are grouped into matrix θd.

P(Y = i | St,Who, bho) = softmax(WhoSt + bho)

=
eWhoSt+bho∑
j e

WhoSt+bho

(2.8)

Since the output vector sums to one after the softmax function, predicted label ŷ is

PhD Dissertation: Thomas Hartvigsen 37

simply the maximum probability:

ŷ = arg max
i

P(Y = i | St,Who, bho) (2.9)

Training

In the training phase, the goal is to iteratively update all learnable parameters of EARLI-

EST, minimizing errors made by the Discriminator and maximizing the rewards observed

by the Controller. For readability, we gather all learnable parameters of EARLIEST into

matrix θ. EARLIEST is optimized by minimizing one loss function J(θ), shown in Equa-

tion 2.15, using stochastic gradient descent (SGD). The Base RNN and Discriminator are

optimized together with respect to cross entropy loss shown in Equation 4.3 where θbd

indicates parameters of the Base RNN and Discriminator.

Jbd(θbd) = −(y log(ŷ) + (1− y) log(1− ŷ)) (2.10)

In contrast to the other networks, in training the Controller the goal is to find parame-

ters θc that attain the highest expected return:

θ∗c = arg max
θc

E[R] (2.11)

Since the Controller involves sampling actions, back-propagation does not directly ap-

ply, mandating transformation from this raw form to a surrogate loss function [114]. This

objective can thus be optimized using gradient descent by taking steps in the direction of

E[R∇ log π(S0,··· ,τ , a0,...,τ , r0,··· ,τ)] [104]. The gradient can then be approximated as shown

in Equation 4.4, which can then be minimized to update the parameters of the controller

PhD Dissertation: Thomas Hartvigsen 38

[124].

Jc(θc) = −E

[
R

τ∑
t=0

log π(at|St)

]
(2.12)

However, minimizing Jc(θc) directly leads to gradient estimates that change dramati-

cally across examples, resulting in high variance in policy updates since each example is

treated as if in isolation [114]. To handle this, we add a baseline to Jc(θc), similar to [85],

so that θc is updated based on how much better the observed reward is than average, resulting

in

Jc(θc) = −E

[
τ∑
t=0

log π(at|St)
[τ∑
t′=t

(
R− bt′)

)]]
(2.13)

where bt is predicted at each timestep. We learn this baseline by reducing the mean

squared error between bt and R, forcing bt to approximate the mean R. In our implemen-

tation, we use a one-layer baseline network with a ReLU nonlinearity (Equation 2.14) that

observes the same information as the controller (hidden state and timestep) and outputs

one real value bt at each timestep t.

bt = max(0,Wb[St, t] + bb) (2.14)

Balancing Earliness and Accuracy

Up to this point, the Controller’s only objective is to maximize the performance of the Dis-

criminator. To add earliness as a goal, we employ an additional loss term, shown as the last

term of our final loss function J(θ) in Equation 2.15. This loss term encourages halting,

depending on hyperparameter λ. When λ is large, to minimize the loss the probability of

PhD Dissertation: Thomas Hartvigsen 39

selecting HALT must be large, controlling earliness directly.

J(θ) = Jbd(θbd) + αJc(θc)− λ
τ∑
t=0

log π(at = 1 | St) (2.15)

Thus, since minimizing the log probability corresponds to increasing the probability, by

increasing λ, we effectively increase emphasis on HALT. On the other-hand, when λ is

small or 0, it leaves the Controller free to exclusively maximize the performance of the

Discriminator. We note that in some cases, this may not mean observing all timesteps. For

example, if a time series is too long, the LSTM may have trouble remembering relevant

information. Altogether, this loss term creates competition on the optimization of the

Controller’s parameters as they are tugged in opposite directions, the force of the tugging

being controlled by λ.

There are other ways we can trade off between earliness and accuracy. For example,

this balance could be embedded directly into the reward. We find that empirically our

solution is superior, though this direction deserves more study.

2.4 Experiments

2.4.1 Datasets

We evaluate our method on four variants of a synthetic dataset and three real-world time-

sensitive datasets from different domains.

SimpleSignal: The true locations of signals within time series are rarely known. To

better understand both how EARLIEST performs in classification and in halting when it

sees signals, we create a synthetic dataset. Here, we can record exactly where signals are

located. For, each time series is initialized with a zero at each of the T timesteps. Then,

for positive examples, we sample a location t ∈ {0, . . . , T} from a selected distribution

PhD Dissertation: Thomas Hartvigsen 40

and substitute a one at timestep t. Negative examples remain all zeros. The selection

of the signal distribution aids us in studying how each method captures the true signal

locations in a variety of settings. We use four signal distributions: uniform, normal, right-

skewed, and left-skewed. In this setting, a successful model should halt when a signal is

observed (a one) and generate the correct prediction. Given access to each full time series,

a classifier should achieve perfect accuracy.

Mortality: This use case concerns predicting in-hospital mortality and is based on a

real-world dataset composed of EHR records from over 58,000 intensive care unit stays

in the Beth Israel Deaconess Medical Center (publicly-available MIMIC-III database [59]).

These EHR records contain time series of vital signs and microbiology tests. For clini-

cal classification tasks (e.g., diagnosis), early predictions allow clinicians to take actions

that directly benefit patient well-being. The task here is to predict which patients will

perish during their stay given their multivariate time series of vital signs and lab tests.

We extract patients with positive Mortality Flags, indicating their deaths and randomly

draw an equal number of surviving patients from the rest of the database. This leads

to health records from 11,508 patients. We use the five most frequently recorded vital

signs as our variables. The fine-grained variables aren’t often recorded at the same time,

leading to sparse data. To handle this, we compute daily averages for each variable, fill

missing values with variable-wise means, and use the first ten days for each series. Each

stay consists of a multivariate time series where each variable is a vital sign, microbiol-

ogy test, laboratory result, etc. Considering all possible variables that may be observed

for a patient leads to an incredibly high-dimensional setting, motivating the need for fea-

ture selection. Therefore, we examine a set of commonly-recorded tests and vital signs

from tables MICROBIOLOGYEVENTS, CHARTEVENTS, and LABEVENTS, pick the five most fre-

quent variables in this cohort (which as expected end up all being from CHARTEVENTS),

listed in Table 2.2 along with the ITEMID’s, which identify measurements for their extrac-

PhD Dissertation: Thomas Hartvigsen 41

tion. Since the timestamps across variables are often misaligned, we take hourly averages,

impute missing values with variable-wise means, and center each variable around zero

before classifying the time series.

Variable ITEMID

Systolic Arterial Blood Pressure 51
Motor Response 454
Non-invasive Blood Pressure Mean 456
Temperature (F) 678
Non-invasive Blood Pressure Alarm [Low] 5817

Table 2.2: Variables from the CHARTEVENTS table in MIMIC-III

Seizures [3]: Seizure activity detection from EEG records, this EEG data set from 500

subjects, each of whom had their brain activities recorded via EEG, is used. There are

a total of 11,800 178-timestep time series, and the task is to detect which of these time

series contains evidence of epileptic seizure activity. Since there are only 2,300 cases of

such activity, we down-sample an equal number from the negative class, resulting in

a balanced dataset with 4,600 time series. Finally, we center the time series around zero

and compute the mean value of every 10-timestep chunk, summarizing each 178 timestep

series into 17 final timesteps.

TwitterBuzz [60]: To predict buzz events on Twitter, we work with this data set of 77-

dimensional labeled time series indicating whether or not a spike in tweets on a particular

topic is observed. Starting with over 140,000 timesteps, we compute the mean of every

five steps, center the time series around zero, and break the resulting 28,000 timesteps

into 2,800 length-ten sequences. We then extract the 1,271 time series containing any buzz

events and balance the dataset by randomly selecting an equal number of no-buzz time

series, resulting in a balanced dataset of 2,542 time series.

PhD Dissertation: Thomas Hartvigsen 42

2.4.2 Compared Methods

We compare EARLIEST’s performance to the following algorithms:

• LSTM-Fixed [123, 78]. Fixed halting-point selection is common in time-sensitive clas-

sification tasks. It requires that an analyst pre-selects a timestep at which all classi-

fications will be made. Since EARLIEST uses an LSTM, we use a fixed halting-point

version of LSTM, referred to as LSTM-Fixed.

• LSTM-s [78]. Designed for early classification of video, LSTM-s can be directly ap-

plied to time series. LSTM-s encourages early confidence in its predictions by pe-

nalizing the model when it becomes less confident similar to an LSTM version of

ECTS algorithm ECDIRE [88]. Similar to LSTM-Fixed, this method also uses a fixed

pre-selected halting-point.

• LSTM-Confidence. Classifiers based on a softmax output assign a probability to each

class [14]. For this baseline, we set a threshold α for the minimum confidence of a

probabilistic prediction. Once the network surpasses this confidence (i.e. max ŷ >

α), the model halts and predicts the most likely class. This model adaptively-halts

per time series, but since α is not included in the loss function, parameters are not

updated with respect to the goal of earliness.

Since other multivariate ECTS algorithms [35, 50] do not directly support multiple

trade-offs, our model is not directly comparable.

2.4.3 Implementation Details

For all datasets, we use an 80% training, 10% validation, and 10% testing split. We use

the training set to learn model parameters and the validation set to evaluate the perfor-

mance of a particular hyperparameter setting (e.g., nodes-per-layer or learning rate). The

PhD Dissertation: Thomas Hartvigsen 43

training and validation sets are used multiple times to tune hyperparameters, then the

testing set is used once to compute the final accuracy of each model. We use a two-

layer BaseRNN for these experiments, first learning 10-dimensional embeddings for time

series variables, and second learning sequences of 10-dimensional representations, one

per time step. We repeat this setup five times and compute averages over these five

settings to compute final results. The model is optimized using Adam [63] with a learn-

ing rate of 10−4. All models are implemented using PyTorch with the code available at

https://github.com/thartvigsen/EARLIEST.

2.4.4 Experimental Results

Experiments on Synthetic Data.

We first evaluate the performance of EARLIEST in a controllable setting where signal loca-

tions are known using the synthetic dataset SimpleSignal described in Section 4.4.1. We

evaluate EARLIEST in two ways: by determining how early and accurate EARLIEST is

compared to our baselines by controlling the earliness-accuracy trade-off hyperparameter

λ; and second, how effectively EARLIEST halts when it observes signals, thus matching

the true distribution of signal locations.

Accuracy and timing: EARLIEST should more accurately classify instances earlier than

the baseline methods due to adaptive-halting. In Figure 2.3, EARLIEST is run for λ ∈

[0.0, 0.15]. λ does not directly control accuracy or earliness, instead urging the optimiza-

tion in one direction or the other. Thus for each λ, EARLIEST stabilizes at some accuracy

and distribution of halting points. We extract the mean accuracies and halting-points

(computed as the average percent of timesteps used, or τ
T

) with baseline predictions made

at the same time. We see in Figure 2.3a that for nearly all halting-points, EARLIEST signif-

icantly outperforms the baselines, indicating higher accuracy using on average the same

PhD Dissertation: Thomas Hartvigsen 44

information. The only overlap is when all models have observed the entire time series,

leading to perfect classification accuracy. Additionally, we report the sensitivity of EARLI-

EST to parameter λ in Figure 2.3b. This shows the average accuracy and percent timesteps

used for each λ. The smooth down-ward trends indicate that as λ is increased, there is a

smooth coverage of all possible halting-points in these time series.

(a) Accuracy and timing (b) λ coverage in EARLIEST

Figure 2.3: Accuracy and prediction times on synthetic data. (a) EARLIEST makes pre-
dictions more accurately and earlier than baselines. (b) λ-tuning leads to smooth halting
at each timestep.

Signal-capturing: Next, EARLIEST should halt when it sees a signal, and wait other-

wise. To understand if this is the case, we compute the root mean squared error (RMSE)

between EARLIEST’s selected halting points and the true distribution of signals, thus

quantifying how well EARLIEST halts when it sees a signal.

We use four distributions of positive labels to generate four versions of the SimpleSignal

data set. We expect that EARLIEST should halt when it observes a positive signal and oth-

erwise wait until the end of the time series to classify negative instances. We deem the

final timestep to be the true signal location for negative examples so we compare posi-

tive predicted locations to their known signal locations, measuring true-positive signal-

capture.

We show EARLIEST’s signal-capturing on SimpleSignal with uniform, normal, left-

skewed, and right-skewed signal distributions in Figure 2.4, where λ is fixed to be 0.014, the

PhD Dissertation: Thomas Hartvigsen 45

(a) Uniform (b) Normal (c) Left-skewed (d) Right-skewed

Figure 2.4: True Signals indicates where signals actually appear in the time series, Predicted
Locations shows the true-positive halting-points selected by EARLIEST.

(a) Baseline comparison. (b) EARLIEST signal-capture sensitivity to λ.

Figure 2.5: Signal-capturing capabilities on synthetic data. RMSE compares the predicted
locations of positive examples with the true signal locations. (a) Minimum RMSE between
predicted and actual locations for each model. (b) Parameter analysis for EARLIEST.

best performing λ on the uniform signal distribution. Additionally, this setting empirically

tended to result in a wide variance in predicted locations. We show the true-positive

predictions for each distribution, and the halting-points are averages over all experiment

repetitions. In the Uniform setting, signals are equally likely to appear at any timestep.

In Figure 2.4a we see that the bars match, indicating that EARLIEST does capture signal

locations despite having no access to this information. We see a similar trend for the

Normal signal distribution (µ = 6.0, σ = 2.0) in Figure 2.4b, though the signal capture

is not as exact. The left-skewed distribution tests whether or not EARLIEST halts when

observing consistently-early signals. In Figure 2.4c we see this is the tendency of the

model, though EARLIEST waits until the end to make one prediction once, missing the

signal location. Using the right-skewed distribution we test whether or not EARLIEST can

wait for long periods of time if it does not observe any signals. In Figure 2.4d we show

PhD Dissertation: Thomas Hartvigsen 46

(a) TwitterBuzz (b) Mortality

(c) Seizures

Figure 2.6: EARLIEST’s performance on real-world data. EARLIEST consistently has
equal or better accuracy than the compared methods given on average the same infor-
mation. Error bars are standard deviation over five repetitions.

this is in fact the case, and the distributions match quite well. These results demonstrate

that EARLIEST is capable of flexibly capturing signal locations, halting when signals are

observed.

We next compare EARLIEST’s signal capture to that of the baselines using the uni-

form distribution of signal locations. For a fair comparison, we compare the best average

performance of each method. In Figure 2.5a we show that EARLIEST with λ = 0.014 dra-

matically outperforms LSTM-FH and LSTM-s and is slightly superior to LSTM-Confidence,

demonstrating that EARLIEST is better at halting when it observes signals. We show the

effect of parameter λ on RMSE in Figure 2.5b. As expected, RMSE is poor with both low λ

(emphasizing waiting) and high λ (emphasizing halting), and better in between. This in-

dicates that beyond controlling accuracy, λ also controls how effectively EARLIEST halts

and captures signals.

PhD Dissertation: Thomas Hartvigsen 47

Experiments on Real-world Data.

We next present results using real-world datasets Morality, Seizures, and TwitterBuzz.

We compare accuracies and average locations in Figure 2.6. Each point for EARLIEST

represents averaged results from λ settings that lead to average halting at each timestep.

Overall, we see that EARLIEST consistently performs equal to or better than the com-

pared algorithms at all possible halting points. Optimal halting-points are unknown for

these datasets, so we compare accuracy and earliness.

For TwitterBuzz, we observe in Figure 2.6a that EARLIEST outperforms the baselines

at nearly all timesteps. In the 20− 60% range, LSTM-s performs equally well. EARLIEST

shows an average increase of 2.81% accuracy over the best among the baselines at each

timestep with a maximum of up to 12.88%. This indicates that some timesteps signifi-

cantly benefit from adaptive-halting.

For Mortality, we see in Figure 2.6b that EARLIEST consistently has a higher accuracy

than the compared methods. This results in a more modest average increase of .96% over

the best baselines with a maximum improvement of 1.91%. Interestingly, despite fine-

grained search, no λ led to EARLIEST halting in the 70 − 80% range, possibly due to

underlying time series dynamics.

Finally, for Seizures, in Figure 2.6c we again see a similar trend, the largest difference

being that the most improvement over the compared methods occurs early in the time

series. This may indicate that signals in this dataset appear early, and after a certain point

each model has observed nearly all useful information. In these experiments, EARLIEST

shows a mean of 2.61% improvement over the best baselines with a max of 9.77%.

From our experiments on real-world datasets, we conclude that for many parame-

ter settings EARLIEST has higher accuracy than the baselines while using on average

fewer timesteps. For all settings, EARLIEST performs equally or better than the baselines.

PhD Dissertation: Thomas Hartvigsen 48

LSTM-s is competitive in many settings, though this method suffers from its requirement

for a preset fixed halting-point. For LSTM-Confidence, the resulting halting-points are

erratic since the confidence-threshold is set externally to the model. We conclude that

benefits of adaptive-halting are also strongly-dependent on the timing of signals. We

suspect that the most benefit may be seen with uniformly-distributed and pronounced

signals.

2.5 Conclusions

In this work, we have developed EARLIEST, an adaptive model for the early classifica-

tion of time series. Our neural network-based approach tackles the unsupervised nature

of early classification through reinforcement learning. EARLIEST directly models the

multiple objectives of early classification, accuracy and earliness, allowing for their joint

optimization despite conflicting tendencies. During classification, our model learns rep-

resentations of multivariate time series that are then used to both inform early-halting

decisions and to predict labels. Our experimental results for both synthetic and real-

world datasets demonstrate that EARLIEST effectively learns to halt when it observes

a signal and wait otherwise, leading to fine-tuned reactive case-by-case signal-capture.

EARLIEST effectively balances earliness and accuracy via one hyperparameter, allowing

for analyst-controlled task-dependent solutions.

3 | Tunable Early Multi-label Classification of

Time Series

3.1 Introduction

3.1.1 Background

Early Classification is the crucial task of predicting class labels of time series as early as

possible for time-sensitive applications such as healthcare [45] and transportation [43].

In many cases, predictions made late are simply useless, regardless of their accuracy.

Meanwhile, many time-sensitive tasks can be best modeled as multi-label classification,

given that multiple classes (e.g., diseases) may be assigned to one instance (e.g., patient).

However, standard multi-label classification methods rely on observing an entire time

series prior to its classification [121]. We refer to the intersection of time-sensitive and

multi-label learning as the Early Multi-label Classification problem, where a successful

model must accurately predict the correct set of labels for a time series while observing

as few of its values over time as possible.

An important example of Early Multi-label Classification is diagnosing a patient’s in-

fections since the very sick often acquire multiple infections concurrently. Evidence of

said infections may appear at different times throughout a patient’s stay in an intensive

care unit, and the likelihood of developing one infection often depends on which infec-

tions a patient has already acquired. A successful diagnosis model should thus capture

the dependencies between observed infections while predicting each infection as soon as

enough evidence has been observed. The earlier a correct diagnosis is predicted, the more

PhD Dissertation: Thomas Hartvigsen 50

Diabetes () Heart Disease ()

time

EarlyLate Predicted
Label Set:

Prediction
Time:

Observed timesteps: Unobserved timesteps:

{

{

Correct

{

{

Partially-Correct

{

{

Incorrect

Instance:

Actual
Labels:

Figure 3.1: Early Multi-label Classification Problem. Multiple labels can be assigned to
each instance of time series data. The correct labels must be predicted as early as possible.
In this example, the bottom right box is ideal: The correct label set is predicted after
observing very few timesteps.
time clinicians have to react and intervene, thus improving patient outcomes. A concrete

example of this setting is depicted in Figure 3.1 where the optimal outcome is achieved

through the early and accurate prediction of both Diabetes and Heart Disease.

3.1.2 State-of-the-Art

Recently, major progress has been made in tackling the early and multi-label problems

independently.

Early Classification.. As introduced in Chapter 1, Early Classification has gained sig-

nificant attention, particularly for applications using time series data [46, 128, 127, 72,

50, 35, 87], though initial work has also been done on text [56] and video [78]. Most

recently, tunable Early Classification [87, 82, 46] has garnered much interest since the bal-

ance between earliness and accuracy tends to be task-dependent. However, these proposed

methods have only studied multi-class classification (one label per instance), ignoring the

crucial relationships between the labels that are inherent to such multi-label classification

PhD Dissertation: Thomas Hartvigsen 51

settings.

Multi-label Classification. Multi-label Classification has also recently seen a surge of

interest, in particular the study of Classifier Chains [17, 121, 133, 117, 91, 131, 90]. This ap-

proach aims to directly model the conditional probability between predicted labels, often

using Recurrent Neural Networks (RNN). A key limitation of these works is that they pre-

dict label sets only after observing the entire instance, directly contradicting the require-

ments of Early Classification. Another restriction of popular approaches [121, 91, 131] is

that they require that a pre-defined label order be provided a-priori to enable optimiza-

tion [90, 117, 17]. While this simplifies the problem, it unfortunately limits application

to domains with easily-defined label orderings, such as speaker diarization [31]. In the

context of most time series datasets, it is rarely known precisely at which timestep the

evidence of a label arises. Finally, the integration of earliness into the complex multi-label

context remains unexplored.

3.1.3 Problem Definition

In this work, we are the first to address the open problem of Early Multi-label Classifica-

tion, which is to predict the correct label set of a time series instance while observing as

few timesteps per class as possible. This results in one early timestep per class, at which

point its prediction is made. While the evidence for a time series’ class labels may ap-

pear at any time step, the ‘true’ timestep of each class label is entirely unsupervised – the

only supervision comes from one label set for the entire time series. The halting timesteps

should be dynamic, varying depending on the time series. The crux of the problem is that

making predictions early is essential for each class, but there may not be enough early

evidence to warrant a high-confidence prediction, thus defining a multi-objective opti-

mization problem. An effective solution must leverage relationships between labels to

PhD Dissertation: Thomas Hartvigsen 52

predict accurate label sets, even in the absence of clear class signals.

3.1.4 Challenges

Despite the importance and potential impact of Early Multi-label Classificaiton, open

challenges remain:

• Unknown label timing: For multi-label classification, a label set is available for each

time series indicating its associated classes (e.g., recording which infections a pa-

tient acquired). However, rarely are the steps at which class labels appear recorded in

conjunction with a time series. Thus, we may have no a-priori knowledge of when

a class should be detected. Learning when to predict each class is an unsupervised

sub-problem within an otherwise-supervised learning task.

• Conflicting objectives: Early classifications are typically made at the expense of pre-

diction accuracy. Maximally-early classifications are often based on partial informa-

tion, which may not be sufficient for accurate prediction. A late classification will

be better-informed and thus more accurate. However, late predictions cause critical

delays and thus miss precious opportunities to react rapidly. The optimal trade-off

in this multi-objective problem is domain and task-driven driven.

• Multi-label learning: Learning the relationships between labels themselves is a chal-

lenging problem. Multi-label learning on time series while they are observed re-

mains largely unexplored, particularly in the context of early classification where

accurate label set assignment is not the only objective.

PhD Dissertation: Thomas Hartvigsen 53

(a) Binary Decomposition [13] + Single-label Early Classification [46]

{

{

(b) Full Sequence + Multi-label Time-Series Classification [136]

{

{

(c) Early Multi-label Classification (this work)

Figure 3.2: Comparing the different solutions to the early multi-label classification prob-
lem.

3.1.5 Proposed Method: Recurrent Halting Chain

We propose a solution to the new Early Multi-label Classification problem, which we re-

fer to as the Recurrent Halting Chain, or RHC. RHC is the composition of three novel

neural networks, each solving one piece of the Early Multi-label Classification problem.

First, a recurrent neural network (RNN)-based Transition Model learns to jointly represent

multivariate time series data and the conditional dependencies between the labels. This

encodes multi-label learning into the classification task, acting as a classifier chain. Sec-

ond, a Disciminator network uses the hidden state of the Transition Model to predict soft

class probabilities at every timestep. Third and finally, a Halting Policy Network uses the

soft class probabilities and the hidden state of the Transition Model to predict at each step

which, if any, classes to add to the predicted label set. Once the Halting Policy Network

has decided to halt all classes, no further timesteps are observed. Importantly, as soon as

PhD Dissertation: Thomas Hartvigsen 54

a prediction is made in the time series, it is returned as an early prediction.

Since the true label locations are unknown, reinforcement learning allows for dynamic

label predictions, strictly conditioned on the input data. RHC is optimized for both con-

flicting objectives concurrently; along the way we introduce one simple hyperparameter

that trades off the emphasis in each goal. Figure 3.2 illustrates the key difference between

our proposed solution and the state-of-the-art approaches to both Early and Multi-label

Classification in isolation.

3.1.6 Contributions

Our main contributions are summarized below:

• We define the new open problem of Early Multi-label Classification with its roots in

both Early Classification and Multi-label Classification.

• We design the first solution to Early Multi-label Classification, which advances be-

yond both recent deep reinforcement learning approaches to early classification and

classifier chains for multi-label learning, resulting in a unified approach to this com-

plex problem.

• Our model is evaluated on real-world time-sensitive multi-label classification tasks

using several publicly-available datasets. Results show that RHC consistently beats

alternate solutions in both accuracy and earliness of label prediction on a variety of

settings and metrics.

3.2 Related Work

As best we can tell, ours is the first work to study the problem of Early Multi-label Classifi-

cation. This direction is related to both Early Classification and Multi-label Classification.

PhD Dissertation: Thomas Hartvigsen 55

Early Classification. The goal of Early Classification is to correctly predict the la-

bel of a time series before it is fully observed, selecting one timestep per time series

at which the whole series is classified. This task is often targeted at time series data

[50, 128, 127, 126, 35, 37, 36, 87], however the most recent approaches [46, 82, 25] pro-

pose a general formulation of this problem through the use of neural networks. By us-

ing neural networks, these approaches naturally model multivariate inputs [46, 82] in

contrast to previous works which solely study univariate inputs [88, 127, 126, 128, 35].

The univariate approaches typically involve exhaustive search for discriminative subse-

quences, which scales poorly into the multivariate setting [50]. Additionally, many recent

works also take a prefix-based approach to early classification[46, 87, 88], learning at which

timestep enough information has been observed to warrant classification. This is in con-

trast to shapelets [126], which typically require exhaustive search. The prefix-based solu-

tion of “picking a halting point” can naturally be framed as a Markov Decision Process:

at each timestep, decide whether or not to stop and predict the label of a time series. This

observation has allowed for intuitive balancing between earliness and accuracy through

reinforcement learning [46, 82]. [46] uses an RNN to model the transition dynamics of

time series in conjunction with a policy network that decides at each timestep whether or

not to halt the RNN and generate a prediction. [82] proposes a Deep Q Network [86] that,

given a time series prefix, samples which class to predict or to simply wait for more ob-

servations. This integrates the halting and classification but does not scale as the number

of classes increases since large action spaces often require too vast a number of samples

[110].

A major limitation of all current Early Classification methods is that they are restricted

to the multi-class setting – predicting exactly one label per time series. As shown by the

wealth of multi-label learning literature, dependencies between labels in multi-label tasks

can provide crucial information for solving many problems.

PhD Dissertation: Thomas Hartvigsen 56

Multi-label Classification. Multi-label classification methods predict the labels of

time series where multiple labels are possible per series. Typically, the key challenge and

opportunity is in relating the labels to each other in the feature space of a learned model,

a feature missed by standard multi-class algorithms. One basic approach to achieving

multi-label learning is through decomposition of the multi-label problem into a set of bi-

nary classification tasks, referred to as Binary Decomposition [13]. This outputs label sets

but ignores the correlation between labels and the likelihoods of different label combina-

tions. In contrast, Classifier Chains have recently become a popular and intuitive approach

to multi-label learning since they naturally model conditional dependency between class

predictions [17, 121, 133, 117, 91, 131, 90]. This is typically achieved using an RNN that

outputs labels one step at a time with its own already-predicted labels being fed back into

the model at each step. A key challenge of RNN-based classifier chains is the natural re-

quirement of a label-order with which to train the model [117, 17]. Meanwhile, the chosen

label order dramatically impacts the performance of the classifier chain [119, 91]. Recent

works have just begun to remove this assumption, proposing classifier chains based on

confidence-ranked labeling [17] and multi-task learning [117].

The key drawback of these algorithms in time-sensitive applications is that all classes

are predicted only after an entire sequence is observed. To achieve actionable decision

making in time sensitive domains, predictions must instead be made at early timesteps,

as observed by the Early Classification problem.

PhD Dissertation: Thomas Hartvigsen 57

{ {

��

��

�

��+1

�

{ {

�

�̂
�

Transition
Model

��

�̂
�

�()�ℎ�

Sample
Actions

��

Halt	Probabilities

��

Halting	Policy	Network �

Wait

Wait

Halt

��

�()��

�̂
�

Soft	Class	Probabilities

Discriminator	Network�
��+1

�

�̂
�+1

��+2

Predicted	Label	Set:

� �

Transition
Model

Figure 3.3: Overview of RHC. At each timestep t, the Transition Model R computes
Ht = R(Ht−1, xt, ȳt−1), the new hidden state for timestep t. Using Ht, the Discrimina-
tor D computes soft class probabilities for every class: ŷt = D(Ht). Then, the Halting
Policy Network P selects whether or not to “lock in” the predictions of each class in ŷt
independently in the form of one sampled action vector: at = P(Ht, ŷt). Once a class has
been halted, its prediction is returned as an early classification.

3.3 Methods

3.3.1 Problem Definition

Given a set of labeled time series containing N time series, consider the instance X =

[x1, x2, . . . , xT] where xt ∈ RM is theM variables recorded at step t. Let Y = [y1, y2, . . . , yL]

denote the label set such that Y ∈ {0, 1}L is the set of L possible labels where yl = 1

indicates assignment to class l. For ease-of-reading, we describe our method in terms of

one time series. The learning objective is a function fθ(·) whose parameters θ accurately

map fθ(X)→ Y for series not observed during training.

As an example of this setup, consider a patient’s health records collected through-

out her stay at a hospital (e.g., heart rate, blood pressure). While in the hospital, she is

diagnosed with diabetes and heart disease but not runner’s knee. This label set would be

PhD Dissertation: Thomas Hartvigsen 58

Table 3.1: Basic Notation

Notation Description

N Number of time series in dataset.
M Variables per time series.
L Number of possible classes.
T Number of steps per time series.
xt Values recorded at step t.
Y True label set for one time series (e.g., {1, 1, 0}).
ȳt Indicator of which classes have been predicted prior to

step t.
ŷt Soft confidence predictions at step t.
plt Halting probability at step t for class l.
alt Halting action vector at step t for class l.
Ht Vector representation for X(i)

0,··· ,t from the RNN.
π(·) Policy that maps hidden states to actions.
τ l Predicted halting-step for class l.

where i = [1, . . . , N], t = [1, . . . , T], and l = [1, . . . , L].

represented as, y = [1, 1, 0], respectively, indicating the first two possible diagnoses were

observed while the third was not. The key multi-label component is in the relationship

between the labels: diabetes and heart disease often occur concurrently while runner’s knee

is independent of the other two.

The final component is in contrast to the standard multi-label classification problem:

for each time series we seek one halting step τ ≤ T per class L at which each class’s

prediction should be made. τ l, the halting step for class l, must be small enough to achieve

early prediction yet large enough to assign the correct label set to the time series. This

requirement defines our multi-objective optimization problem since earlier predictions

(τ � T) often come at the expense of predicting correct label sets.

PhD Dissertation: Thomas Hartvigsen 59

3.3.2 Proposed Method

We propose a Recurrent Neural Network (RNN)-based Early Multi-label Classification

model. Our method, the Recurrent Halting Chain (RHC), has two concurrent goals: First,

to model complex time series data for multi-label classification, thereby modeling con-

ditional dependence between labels. Second, to select one halting timestep τ per class at

which point the model predicts the label of that class. RHC is a neural network com-

prised of several core components: (1) a Transition Model that learns to jointly represent

the map of X → Y and the conditional relationship between labels while the labels are

being predicted in time, acting as a classifier chain, (2) a Discriminator that predict soft con-

fidence values ŷ at each timestep t, and (3) a Halting Policy Network that decides at each

step whether or not to halt each class using a joint-learned representation to model which

classes can be predicted concurrently. Once the Halting Policy Network decides to halt a

class, the Discriminator’s prediction of that class is returned from the model and subse-

quently remains fixed for all time steps up until the Halting Policy Network has halted

all classes.

The Transition Model and Discriminator are trained together as an order-free Classi-

fier Chain [117, 17] since there are no labels indicating at which timesteps a class label

should be predicted. The Halting Policy Network makes discrete decisions at each timestep

(whether or not to halt and predict a class), which is non-differentiable and is trained us-

ing Reinforcement Learning, being rewarded based on how accurately the Discriminator

predicts each class and punished according to how many steps it takes to make accurate

predictions.

PhD Dissertation: Thomas Hartvigsen 60

Transition Model

The core of RHC is a Transition Model R(·), which learns joint vector representations for

the time series dynamics and the conditional dependence between labels. We follow the

state-of-the-art in a wide variety of sequence modeling problems and implement this

component as Recurrent Neural Network (RNN) R(·), processing input sequences one

step at a time. To avoid the vanishing gradient problem pervasive in RNNs, we use Long

Short-Term Memory (LSTM) [52] cells as our transition function, mapping inputs xt to a

representation Ht as follows:

ft = σ(Wf · [Ht−1, xt] + bf) (3.1)

it = σ(Wi · [Ht−1, xt] + bi) (3.2)

Ct = ft � Ct−1 + it � φ(Wc · [Ht−1, xt] + bc) (3.3)

ot = σ(Wo · [Ht−1, xt] + bo) (3.4)

Ht = ot � φ(Ct) (3.5)

where [] indicates concatenation, σ indicates the sigmoid function, · is matrix multipli-

cation, and φ indicates the hyperbolic tangent function. Wf , Wi, Wc, and Wo represent

the matrices of trainable weights for the forget, input, memory cell, and output gates, re-

spectively. Due to the concatenation of Ht−1 and Xt, each of these weight matrices is of

shape v × (v + M) where v is the dimension of the hidden state of the RNN. Each gate is

simply an affine transformation of the combination of newly-observed information Xt and

previous state Ht−1 followed by a non-linearity and so the transition function is a learned

dynamical system modeling the transition of hidden state vector H .

In order to encode multi-label learning into this transition function, we use an auxil-

iary indicator vector ȳt ∈ {0, 1}L which records at timestep t which classes have already been

PhD Dissertation: Thomas Hartvigsen 61

predicted, similar to [17]. Thus, ȳlt = 1 indicates that class l has already been predicted and

ȳ0 is initialized as 0s prior to observing any timesteps, indicating no classes have been

predicted. The transition model is thus an augmentation of the standard LSTM update

equations as follows, conditioning the hidden states on ȳt:

ft = σ(Wf · [Ht−1, xt, ȳt−1] + bf) (3.6)

it = σ(Wi · [Ht−1, xt, ȳt−1] + bi) (3.7)

Ct = ft � Ct−1 + it � φ(Wc · [Ht−1, xt, ȳt−1] + bc) (3.8)

ot = σ(Wo · [Ht−1, xt, ȳt−1] + bo) (3.9)

Ht = ot � φ(Ct) (3.10)

This increases the size of the weight matricesW according to the number of classes. Thus,

the Transition Model effectively captures the dynamics of the time series while it is ob-

served while modeling the conditional dependence between labels with respect to each

other, as is the core idea of classifier chains. Our approach thus improves upon other clas-

sifier chains in this setting by merging the time series dynamics with label correlations in

the latent space of the Transition Model, effectively conditioning the model’s representa-

tion on both input time series and the history of predicted labels.

Discriminator Network

The computed hidden representation Ht is subsequently projected into a probabilistic

classification space through a Discriminator neural network Dθ(·), as shown in Equation

3.11 where Who ∈ RL×V , predicting one probability for each of the possible L classes

using the sigmoid function. Thus P(Y |Ht) ∈ [0, 1]L. Importantly, Ht has been computed

PhD Dissertation: Thomas Hartvigsen 62

with respect to ȳt−1, capturing label dependence during classification.

ŷt = P(Y | Ht) = Dθ(Ht)

=
1

1 + eWhoHt+bho

(3.11)

In principle, the DiscriminatorDθ(·) can be as simple or as complicated as desired accord-

ing to the complexity of the task.

Subsequently, the soft class probabilities ŷt and Ht itself are sent to the Halting Policy

Network, which predicts which of the predicted class probabilities should be halted at

timestep t.

Halting Policy Network

At each step, the Halting Policy NetworkP(·) interprets the hidden stateHt = R(Xt, Ht−1, ȳt−1)

and discretely selects which classes should be predicted at timestep t. Because there are

no ground-truth halting locations, we frame this task as a partially-observable Markov

Decision Process (POMDP), similar to [46, 82], which is typically solved using Reinforce-

ment Learning. In this setup, at each step t the state consists of the Hidden State from

the Transition Model (which represents our data and labels predicted up until step t), the

possible actions are Wait or Halt with one action per class, and we define the rewards to

be the success of classification for each class.

The first step of the Halting Policy Network at step t is to project the hidden represen-

tation Ht into a probabilistic space through a neural network, as shown in Equation 3.12

where σ() is the sigmoid function and Whp is of shape L× (v+M), mapping the (v+M)-

dimensional concatenation of the hidden state and the predicted class confidences to one

PhD Dissertation: Thomas Hartvigsen 63

halting-probability pt per class label.

pt = σ(Whp[Ht, ŷt] + bhp) (3.12)

Importantly, this network models the joint probability of halting the prediction for each

class, allowing for specific combinations of classes to be halted together, thus modeling

multi-label learning in the halting component of RHC.

The predicted vector pt ∈ [0, 1]L parameterizes L bernoulli distributions, one per class,

from which halting decisions at are sampled. Finally, at ∈ 0, 1L where at = 1 indicates

Halt and at = 0 indicates Wait, determines which classes to halt at step t. Importantly, at

does not indicate whether or not to predict a class positively. Instead, ŷt determines the

class prediction at timestep t, which may be positive or negative. For example, if alt = 1,

indicating halt Class l at timestep t, the resulting prediction for the class l for time series X

is ŷlt, regardless of future outputs ŷlt′ where t < t′ ≤ T .

Once at has been computed, ȳt, the vector indicating which classes have been pre-

dicted, can be updated:

ȳt = ȳt−1 + at � (1− ȳt−1) (3.13)

where � indicates the hadamard product, adding to the set of already-predicted classes

maintained by vector ȳ. Thus once all classes are halted, we are left with one vector ŷ

containing the soft probabilities collected at each halting point τ l.

The final component of the POMDP is the reward, which is used during training and

must be designed to encourage the learned policy to achieve the desired goal. In our

case, we seek a policy that leads to both accurate and early label assignments. Thus, we

define the reward function as follows: for each class l, when the classification is correct,

PhD Dissertation: Thomas Hartvigsen 64

we set reward rlt = 1, and when it is incorrect, rlt = −1. As described in Section 3.3.2,

this encourages the Halting Policy Network to halt when the predictions will be correct and

discourages halting otherwise.

A key ingredient in Reinforcement Learning is a careful balance between exploration

and exploitation. To avoid policies which simply exploit actions that lead to positive re-

wards early on in training, we use an ε-greedy approach to choose between the predicted

halting decision and a randomly-selected action, as shown in Equation 3.14 where ε is 1 at

the beginning of training and decreases to 0 exponentially throughout training. Thus, at

the beginning of training, actions are mostly random and as training proceeds, the reins

are progressively handed off to the learned policy.

at =


at, with probability 1− ε

random action, with probability ε
(3.14)

Optimizing the Recurrent Halting Chain

Our combination of supervised learning for multi-label classification with reinforcement

learning for early halting requires a multi-component loss function.

The Transition Model R(·) and the Discriminator D(·) are jointly optimized to output

class predictions ŷ as close to y as possible by minimizing cross entropy (Equation 3.15),

using standard back-propagation since all operations are differentiable, similar to [17]. To

achieve this, ŷl is simply the Discriminator’s prediction of class l from the timestep at which

it was predicted.

Lsl(θ) =
L∑
l=1

−(yl log(ŷl) + (1− yl) log(1− ŷl)) (3.15)

This way, correct label-sets are preferred to incorrect as ŷ is modeled as the conditional

PhD Dissertation: Thomas Hartvigsen 65

probability between predicted labels.

Optimizing the Halting Policy Network is more intensive due to sampling during action-

selection, though we follow the standard optimization setup for reinforcement learning

agents using policy gradients. The sampling of actions in the POMDP solved by the

Halting Policy Network is inherently non-differentiable, and so we use the standard REIN-

FORCE algorithm [124] as a gradient estimator to train the network. The learning objec-

tive of the halting policy network is the maximization of the expected return R =
∑τ

t=0 rt:

θ∗hp = arg max
θhp

E[R] (3.16)

where θ∗hp is the optimal parameters for the Halting Policy Network.

The Halting Policy Network samples its actions so errors cannot be propagated directly.

Instead, most recent policy gradient methods transform from this raw form to a surro-

gate loss function [114]. The new objective can be optimized using gradient descent by

taking steps in the direction of E[∇ log π(H0,··· ,τ , a0,...,τ , r0,··· ,τ)R] [104]. The gradient can

then be approximated for the halting decisions for each class as shown in Equation 4.4.

This allows for training via back-propagation but can also induce variance in the policy

updates since this is not the true gradient of the desired objective function. To reduce

said variation, we employ the standard practice of adding a baseline that approximates

the expected reward to adjust the raw reward values. This way, the weights are updated

with respect to how much better than average the outcomes are for each episode.

Llrl(θ) = −E

[
τ l∑
t=0

log π(alt|Ht)

[τ l∑
t′=t

(
Rl − blt′)

)]]
(3.17)

where blt is predicted at each timestep as the output of a lightweight neural network and

is forced to approximate the mean Rl via the reduction of their mean squared error.

PhD Dissertation: Thomas Hartvigsen 66

Finally, we average the loss function in Equation 4.4 across all l classes, resulting in

one final differentiable function summarizing the success of the halting policy network:

Lrl(θ) =
1

L

L∑
l=0

Llrl(θ) (3.18)

Encouraging early predictions

Finally, we enforce early predictions by minimizing the log halting probabilities according

to one hyperparameter, λ, resulting in our final objective function, shown in Equation

3.19, which can be optimized using stochastic gradient descent. This extra loss term,

weighted by λ, directly maximizes of the probability of halting and so as λ increases, the

likelihood of halting early increases, making predictions earlier. In practice, λ = 0 is a

feasible option, implying halt only when it helps prediction, tending towards later halting

points.

L(θ) = Lsl + Lrl + λ
L∑
l=0

τ l∑
i=0

log π(alt = 1|Ht) (3.19)

3.4 Experiments

3.4.1 Datasets

We evaluate our method on the following time-sensitive datasets.

HAR [4]: Human Activity Recognition (HAR) from smart phone data. These data con-

sist of readings from a variety of sensors in a smartphone while 30 participants perform

a set of six activities such as walking and standing. Our task is to predict which of the

activities were performed within a time window of sensor data. Clearly, there may be multiple

activities performed within one window. These data are naturally recorded with one la-

PhD Dissertation: Thomas Hartvigsen 67

Time-Steps Evaluation Methods

Observed Metrics LSTM-BD E-LSTM LSTM-CC EARLIEST RHC [ours]

20%

Instance-AUC↑ 0.88 (0.00) 0.85 (0.00) 0.90 (0.02) 0.92 (0.00) 0.92 (0.01)
Micro-AUC↑ 0.86 (0.00) 0.85 (0.00) 0.88 (0.01) 0.91 (0.00) 0.91 (0.00)
Macro-AUC↑ 0.86 (0.00) 0.84 (0.00) 0.88 (0.02) 0.91 (0.00) 0.91 (0.00)

Hamming Loss↓ 0.18 (0.00) 0.21 (0.00) 0.17 (0.01) 0.13 (0.00) 0.13 (0.01)
Micro-F1↑ 0.62 (0.00) 0.57 (0.00) 0.66 (0.03) 0.74 (0.00) 0.72 (0.02)
Macro-F1↑ 0.62 (0.00) 0.57 (0.00) 0.65 (0.03) 0.74 (0.00) 0.71 (0.02)

40%

Instance-AUC↑ 0.91 (0.00) 0.89 (0.00) 0.92 (0.02) 0.94 (0.00) 0.94 (0.00)
Micro-AUC↑ 0.90 (0.00) 0.90 (0.00) 0.92 (0.02) 0.92 (0.00) 0.93 (0.00)
Macro-AUC↑ 0.91 (0.00) 0.89 (0.00) 0.92 (0.02) 0.93 (0.00) 0.94 (0.00)

Hamming Loss↓ 0.17 (0.00) 0.17 (0.01) 0.15 (0.01) 0.10 (0.00) 0.10 (0.00)
Micro-F1↑ 0.65 (0.00) 0.67 (0.02) 0.72 (0.02) 0.79 (0.00) 0.81 (0.00)
Macro-F1↑ 0.63 (0.00) 0.68 (0.02) 0.72 (0.02) 0.79 (0.00) 0.81 (0.00)

60%

Instance-AUC↑ 0.92 (0.00) 0.93 (0.01) 0.93 (0.01) 0.94 (0.00) 0.95 (0.00)
Micro-AUC↑ 0.92 (0.00) 0.94 (0.01) 0.93 (0.01) 0.93 (0.00) 0.95 (0.00)
Macro-AUC↑ 0.90 (0.00) 0.94 (0.01) 0.93 (0.01) 0.94 (0.00) 0.95 (0.00)

Hamming Loss↓ 0.13 (0.00) 0.13 (0.02) 0.13 (0.01) 0.10 (0.00) 0.08 (0.00)
Micro-F1↑ 0.74 (0.00) 0.77 (0.03) 0.75 (0.02) 0.80 (0.01) 0.83 (0.00)
Macro-F1↑ 0.74 (0.00) 0.78 (0.03) 0.74 (0.02) 0.80 (0.01) 0.83 (0.01)

Table 3.2: Performance (mean (std)) of early multi-label classification on the Human Ac-
tivity Recognition (HAR) dataset. “↓” indicates “the smaller the better” and “↑” indicates
“the larger the better”.

bel per timestep, so we split the data into 15-step time series instances and record which

activities were performed within those steps. These associated activities are the instance’s

label set. On average each instance ends up with 25% of the possible labels. We use the

Triaxial Acceleration and Triaxial Velocity from the Gyroscope in the smart phone, result-

ing in 490 15-step time series with 77 variables each along with 490 up-to-size-6 label sets

(N = 490, T = 15, M = 77, L = 6). We set T = 15 to balance the number of labels per

time series while maintaining a large-enough N . This does not change the distribution

of labels or the locations of the signals. The distributions of class labels (Shown in Figure

3.4) are nearly balanced across all classes since this is a scripted dataset: during collection,

each participant performed each action in sequence.

PhD Dissertation: Thomas Hartvigsen 68

Walking Walking
Up

 Stairs

Walking
 Down
 Stairs

Sitting Standing Laying

Class

0
20
40
60
80

100
120
140

Fr
eq

ue
nc

y

Figure 3.4: Class label balance in HAR.

ExtraSensory [118]: Similar to HAR, these data consist of smartphone sensor data

recorded while 60 participants performed a variety of activities. However, since these

data were collected unscripted, the label set size is much larger. Post-hoc, the labels were

reduced to 52 options and each participant may have engaged in any number of these ac-

tivities while carrying their smartphone. To convert these data to a multi-label time series

classification task, we summarize the fine-grained sensor data by averaging the readings

every ten steps and maintaining which labels occurred within those steps. This is because

activities do not change much timestep-to-timestep. Then, similar to HAR, we chunk these

data into ten-step sequences and record activities performed within that window using

the 40 Acceleration variables. Due to label sparsity, we down-sample the 11 labels that

appear in at least 1000 time series and randomly select a final set of 1000 40-dimensional

time series, averaging 36% of the 11 labels per instance (N = 1000, T = 10, M = 40,

L = 11). Again, T = 10 ensures a large enough dataset size.

Since some classes are extremely rare (for example “At the bar”), we down-sample the

classes that appear in at least 1000 time series, resulting in 11 final classes: Lying Down,

Sitting, Walking, Running, Bicycling, Sleeping, Lab Work, In Class, In a Meeting, At Main

Workplace, Indoors. The frequency of these classes is shown in Figure 3.5. These frequen-

cies are recorded from our final sample of 1000 time series. Importantly, these labels can

overlap one another in interesting ways. For example, a participant could have been Sit-

PhD Dissertation: Thomas Hartvigsen 69

ting while they are In Class, but cannot be Lying Down while Bicycling. However, since

we chunk the time series into windows, it is possible that one time series is associated

with both Bicycling and Lab Work if the participant rode her bike to the lab. This creates

an ideal testbed for Early Multi-label Classification since some activities may be linked

through concurrence (e.g., Sitting and In Class) while others may be linked causally (e.g.,

Lying Down before Sleeping). In the future, the use of all 52 original activities may be

used to study different but related problem settings, particularly in the case of rare and

highly-correlated classes.

Ly
ing

 D
ow

n

Sitt
ing

Walk
ing

Run
nin

g

Bicy
cli

ng

Slee
pin

g

La
b W

or
k

In
 C

las
s

In
 a

mee
tin

g

Main
 W

or
kp

lac
e

In
do

or
s

Class

0
100
200
300
400
500
600
700

Fr
eq

ue
nc

y

Figure 3.5: Class label balance in ExtraSensory.

3.4.2 Compared Methods

We compare RHC to the following algorithms, two of which are early classifiers adapted

for multi-label learning, and two of which are multi-label learners adapted to early clas-

sification:

• LSTM-BD [52]. This method breaks the multi-label task into L binary classifica-

tion tasks via Binary Decomposition [13] and achieves early classification via fixed

halting-point selection [78]. Thus, LSTM-BD neither models label relationships nor

achieves adaptive early classification.

PhD Dissertation: Thomas Hartvigsen 70

• E-LSTM [25]. We augment this Early Classification method to solve the Early Multi-

label Classification problem via binary decomposition. First, a threshold α ∈ [0, 1]

is hand-picked prior to learning. Then, an LSTM generates a class probability ŷ at

each timestep. Once ŷ > α, the classifier halts and its prediction is returned. This

captures data-driven early classification (the time at which ŷ > α can vary) but this

approach does not model relationships between labels.

• EARLIEST [46]. Our final binary decomposition baseline, EARLIEST uses reinforce-

ment learning to predict a halting point at which a label prediction is made. How-

ever, this applies directly to only the multi-class setting. Through binary decomposi-

tion, this method outputs early label predictions but does not encode relationships

between labels. Their optimization also does not capture multiple sources of re-

ward.

• LSTM-CC [121]. Order-Free Classifier Chains are a recent and powerful approach to

multi-label learning when true label orders are unknown (such as the Early Multi-

label Classification problem). We adapt the core idea of this approach, originally de-

signed for images, to time series. This methods first embeds a time series using an

LSTM encoder. Then, an LSTM decoder predicts the labels one at a time in sequence.

This method is trained to be order-free as in [17]. This approach captures the rela-

tionships between labels but requires all timesteps. To make classifications early, we

use fixed halting points [78], forcing the model’s predictions at preset timesteps.

3.4.3 Implementation Details

For all datasets, we use an 80% training, 10% validation, and 10% testing split. We use the

training set to learn model parameters and the validation set to evaluate the performance

of a particular hyperparameter setting (e.g., nodes-per-layer or learning rate). The testing set

PhD Dissertation: Thomas Hartvigsen 71

Time-Steps Evaluation Methods

Observed Metrics LSTM-BD E-LSTM LSTM-CC EARLIEST RHC [ours]

20%

Instance-AUC↑ 0.71 (0.00) 0.71 (0.00) 0.74 (0.02) 0.71 (0.00) 0.78 (0.00)
Micro-AUC↑ 0.70 (0.00) 0.69 (0.00) 0.72 (0.02) 0.71 (0.00) 0.68 (0.00)
Macro-AUC↑ 0.60 (0.00) 0.62 (0.00) 0.63 (0.01) 0.63 (0.01) 0.68 (0.00)

Hamming Loss↓ 0.31 (0.00) 0.32 (0.00) 0.31 (0.01) 0.31 (0.00) 0.27 (0.00)
Micro-F1↑ 0.58 (0.00) 0.55 (0.00) 0.58 (0.02) 0.58 (0.00) 0.61 (0.00)
Macro-F1↑ 0.48 (0.00) 0.47 (0.00) 0.46 (0.01) 0.47 (0.01) 0.46 (0.00)

40%

Instance-AUC↑ 0.74 (0.00) 0.73 (0.00) 0.77 (0.01) 0.74 (0.00) 0.79 (0.00)
Micro-AUC↑ 0.73 (0.00) 0.71 (0.00) 0.75 (0.01) 0.74 (0.00) 0.78 (0.00)
Macro-AUC↑ 0.66 (0.00) 0.64 (0.00) 0.68 (0.01) 0.67 (0.00) 0.70 (0.00)

Hamming Loss↓ 0.32 (0.00) 0.32 (0.00) 0.29 (0.01) 0.27 (0.00) 0.26 (0.00)
Micro-F1↑ 0.56 (0.00) 0.59 (0.00) 0.60 (0.00) 0.60 (0.00) 0.62 (0.00)
Macro-F1↑ 0.47 (0.00) 0.52 (0.00) 0.48 (0.02) 0.53 (0.01) 0.48 (0.00)

60%

Instance-AUC↑ 0.76 (0.00) 0.75 (0.01) 0.78 (0.01) 0.77 (0.01) 0.79 (0.00)
Micro-AUC↑ 0.76 (0.00) 0.73 (0.01) 0.77 (0.01) 0.76 (0.01) 0.78 (0.00)
Macro-AUC↑ 0.71 (0.00) 0.67 (0.01) 0.70 (0.01) 0.69 (0.01) 0.70 (0.00)

Hamming Loss↓ 0.28 (0.00) 0.32 (0.01) 0.28 (0.01) 0.28 (0.00) 0.26 (0.00)
Micro-F1↑ 0.61 (0.00) 0.63 (0.01) 0.62 (0.01) 0.62 (0.01) 0.62 (0.00)
Macro-F1↑ 0.53 (0.00) 0.56 (0.01) 0.53 (0.01) 0.55 (0.00) 0.47 (0.00)

Table 3.3: Performance (mean (std)) of early multi-label classification on the ExtraSensory
dataset. “↓” indicates “the smaller the better” and “↑” indicates “the larger the better”.

is used once to report the final evaluation metrics for each model. For all methods, we use

an RNN with the LSTM transition function, learning a 20-dimensional vector representa-

tion for each time step of each multivariate time series instance. We repeat this setup five

times and compute averages over these five settings to compute final results. The model

is optimized using Adam [63] with a learning rate of 1e−2 and all methods are run until

their loss converges, taking 200 epochs. All models are implemented using PyTorch with

the code available at https://github.com/thartvigsen/RecurrentHaltingChain.

PhD Dissertation: Thomas Hartvigsen 72

0.0
1e

-06
2e

-06
1e

-05
2e

-05

0.0
00

1

0.0
00

2
0.0

01
0.0

02 0.0
1

0.0
2 0.1 0.2

0.6

0.7

0.8

M
ic

ro
 F

1

(a) Micro-F1 on HAR

0.0
1e

-06
2e

-06
1e

-05
2e

-05

0.0
00

1

0.0
00

2
0.0

01
0.0

020.0
1

0.0
2 0.1 0.2

0.875

0.900

0.925

0.950

In
st

an
ce

 A
U

C

(b) Instance-AUC on HAR

0.0
1e

-06
2e

-06
1e

-05
2e

-05

0.0
00

1

0.0
00

2
0.0

01
0.0

02 0.0
1

0.0
2 0.1 0.2

0.56

0.58

0.60

0.62

0.64

M
ic

ro
 F

1

(c) Micro-F1 on ExtraSensory

0.0
1e

-06
2e

-06
1e

-05
2e

-05

0.0
00

1

0.0
00

2
0.0

01
0.0

02 0.0
1

0.0
2 0.1 0.2

0.76

0.78

0.80

In
st

an
ce

 A
U

C

(d) Instance-AUC on ExtraSensory
Figure 3.6: Observing the effect of λ on Micro-F1 and Instance-AUC.

3.4.4 Experimental Results

We evaluate RHC using the HAR and ExtraSensory datasets described in Section 4.4.1. We

use two groups of metrics: Instance-AUC, Micro-AUC, and Macro-AUC to assess the rank-

ing performance of the soft probabilistic predictions; Hamming Loss, Micro-F1, and Macro-

F1 to evaluate the hard predictions after standard rounding. Across all of these metrics,

we show that RHC consistently achieves far stronger performance using fewer timesteps

than the state-of-the-art alternatives described in Section 3.4.2. For both datasets, we in-

vestigate the predictions made by each method on three distinct early proportions of the

time series corresponding to 20%, 40%, and 60% of the steps. In three experiments, we

tune RHC and all baseline methods such that their average halting timesteps correspond

to 20%, 40%, and 60% of possible timesteps.

For the HAR dataset, as shown in Table 3.2, RHC consistently achieves the same or bet-

ter performance on all metrics at each of the three halting points. Most notably, when ob-

PhD Dissertation: Thomas Hartvigsen 73

serving more steps (40% and 60%) RHC clearly outperforms all other approaches. This in-

dicates that our approach effectively models the relationships between labels themselves

(RHC > {EARLIEST, E-LSTM, RNN-BD}) while achieving high performance with few ob-

served timesteps (RHC> LSTM-CC). In these settings, RHC achieves an average of 7.77%

and 4.80% improvement, respectively, over the compared methods across all metrics. In

the 20% setting, the other adaptive early halting method, EARLIEST, is quite competi-

tive, as some metrics overlap between RHC and EARLIEST. This may suggest that at this

level of partial-observability of the time series, there may not be enough evidence to relate

labels to one another on these data. However, the strong Hamming Loss performance con-

firms that RHC remains superior, even when treating each task separately. Additionally,

RHC’s strong performance on the ranking tasks compared to the other methods indicates

RHC’s effectiveness in leveraging the multi-label relationships present in this dataset. Fi-

nally, we also note that LSTM-CC consistently outperforms LSTM-BD across all settings

and metrics. This indicates the value of multi-label learning, even in the context of pre-

selected halting timesteps.

We observe similar trends on the ExtraSensory dataset, as shown in Table 3.3. Once

again, across all three early proportions of the time series, RHC consistently outperforms

all other methods. In the 20% setting, RHC achieves on average 3.89% improvement

over the other methods (3.32% over EARLIEST), while for 40% the improvement is 4.04%.

This superiority implies that the relationships between classes themselves can be useful

in achieving early classifications, shedding light on the effective pairing of the early clas-

sification and multi-label classification objectives. In the 60% setting, EARLIEST is once

again competitive, resulting in a 1.1% advantage, though RHC is the best method in 4 of

the 6 metrics. As demonstrated by the performance on the AUC-based ranking metrics,

RHC consistently captures the multi-label relationships, appropriately ranking positive

classes higher than negative classes.

PhD Dissertation: Thomas Hartvigsen 74

Parameter Study

RHC has one hyperparameter λ that controls its emphasis on how early predictions should

be made. We investigate its effect in Figure 3.6, demonstrating that, as expected, as λ in-

creases, predictions are made earlier and thus the Micro-F1 and Instance-AUC decrease.

Importantly, λ has roughly the same effect on Micro-F1 and Instance-AUC. This can been

seen in Figures 3.6a and 3.6b where the trends for the HAR task are fairly similar to one

another. The trends in Figures 3.6c and 3.6d also match each other to a significant de-

gree. Overall, however, λ affects datasets differently, demonstrating the need for such

hyperparameters.

3.5 Conclusions

In this work, we identify the new Early Multi-label Classification problem. We then de-

sign the Recurrent Halting Chain (RHC) as a solution to this problem. RHC learns to

predict the label set of multivariate time series while making early classifications for each

class, driven by reinforcement learning. RHC directly models the objectives of early and

accurate label assignment jointly, achieving one integrated solution that effectively trades-

off between these goals. At each timestep, RHC uses a Transition Model to represent both

complex temporal dynamics in the input time series and conditional dependencies be-

tween labels as they are progressively predicted. The Halting Policy Network reads the

hidden state at each timestep and decides whether or not each class prediction should be

returned as a final classification. Across our experiments recording six metrics for three

settings on two real datasets, RHC consistently outputs early and accurate multi-label

classifications.

4 | Attention-based Irregular Time Series Clas-

sification

4.1 Introduction

4.1.1 Background

As introduced in Chapter 1, Section 3, irregular time series (ITS) have uneven spaces

between their observations and are common in impactful domains such as healthcare [73],

climate science [7], and astronomy [100]. These uneven gaps arise from many sources.

Fall

TimeS
m

a
rt

p
h

o
n

e
 S

e
n

so
r

Long
gap

Short
gap

Attention-based Classification

Walk Sit

Fall Detection from Irregular Time Series

small relevant regions

Stumble

step 1 step 2

Detect
Fall

Figure 4.1: Attention-Based ITS
classification.

For example, in physiological streams, clinicians

drive the collection of medical record data by re-

questing different lab tests and measurements in

real time as they investigate the root causes of their

patient’s conditions [73]. Which measurements are

taken when differs between patients. When clas-

sifying such time series, there are often relation-

ships between when observations are made and the

class label for the resulting time series. For instance,

sicker patients may have more measurements.

ITS can also contain many measurements, while

the regions most-relevant to the classification may

take up only a small portion of the timeline, creating

a small signal-to-noise ratio in the proportion of relevant observations.

PhD Dissertation: Thomas Hartvigsen 76

A successful classifier must find the best moments in the continuous timeline at which

to capture signals in both the values themselves and the patterns in when observations

were made, or informative irregularity, while ignoring irrelevant regions.

4.1.2 Motivating Example

Consider detecting if a person Fell using their smartphone’s sensors, as illustrated in Fig-

ure 4.1. To extend battery life, a listening probe is used to only collect data when certain

conditions are met, for example when the accelerometer changes rapidly.

Since the phone is not always moving, the stored time series are naturally irregular.

To detect a fall, some regions of the accelerometer’s records are far more relevant than

others. Leading up to a fall, for instance, a person may have stumbled earlier in the day.

However, there can also be many false positives where the phone moves quickly even

though the person is not falling (setting the phone down, for instance). Additionally, when

observations are made can also be useful: if the phone moves after a long gap, the person

may be getting out of bed. Since only some regions are relevant, all a classifier needs

are the few most relevant moments in the timeline. Finding these moments is especially

important for the long series that naturally exist in many domains.

4.1.3 State-of-the-art

There have been many recent advances in classifying ITS data, though most focus on

sparse series with few observations. Many works treat ITS classification as a missing value

imputation problem [15, 73, 138], converting ITS to regular series then performing stan-

dard classification. However, when the signal-to-noise ratio is small, many values need

to be imputed to avoid aggregating intricate signals. Plus, this increases the length of the

series and imputes values in irrelevant regions of the timeline. Imputing too few values

PhD Dissertation: Thomas Hartvigsen 77

easily bypasses short signals. Some works capture informative irregularity by computing

statistical features such as missingness indicators [73] or the time since last observations

[15] as additional input variables, inflating the feature space.

Recent works have also begun learning models directly from raw ITS observations

[107, 69, 70, 101, 23, 94]. However, they still rely on hand-picking a set of new reference

timesteps at which to estimate values, falling prey to the same challenges of imputation.

To-date, these methods do not adapt their reference timesteps to the input instances.

4.1.4 Problem Definition

In this work, we are the first to address the problem of Attention-based ITS Classification

(ABC), which is to classify long ITS by finding small discriminative signals in the contin-

uous timeline, as illustrated in Figure 3.1. Given a set of labeled ITS, where each series

consists of one sequence of (timestep, value) pairs per variable, our aim is to produce a

classifier that can correctly assign class labels y to previously-unseen instances. For any

time series, the signal-to-noise ratio, or the proportion of the timeline relevant to the clas-

sification, may be very small. This is particularly true when a time series contains a large

number of measurements, many of which may be made off the relevant window. A suc-

cessful model should explicitly find the discriminative moments with which it can make an

accurate classification.

4.1.5 Challenges

Solving the important and open ABC problem is challenging for the three following rea-

sons:

• Small Signal-to-Noise Ratio. Some regions in the timeline of long ITS are often far

more relevant than others. For long series, the signal-to-noise ratio between the rel-

PhD Dissertation: Thomas Hartvigsen 78

evant and irrelevant, or noisy, regions is often small. This makes finding signals

challenging.

• Unknown Signal Locations. Relevant signals may occur anywhere in the continuous

timeline. However, rarely are the true signal locations labeled, and so we assume

no prior knowledge of which moments should be used for classification. Still, a

good model must successfully find these discriminative moments, even without

supervision.

• Informative Irregularity. Discriminative information often arises in the patterns of

when observations are made. Capturing such timing is naturally different than mod-

eling the dynamics of the values themselves and so a successful solution must con-

sider both simultaneously.

4.1.6 Proposed Method: CAT

To address these challenges, we propose the Continuous-time Attention policy network

(CAT), which solves the open Attention-based ITS Classification problem. CAT searches

for relevant regions of input series via a reinforcement learning-based Moment Network,

that learns to find moments of interest in the continuous timeline sequentially. At each

predicted moment, our novel Receptor Network reads and represents the local temporal

dynamics in the measurements along with any patterns that exist in the timing of obser-

vations through a continuous-time density function. Along the way, a recurrent Transition

Model constructs a discriminative representation of the transitions between moments of in-

terest, which is ultimately used to classify the series. CAT thus presents a novel paradigm

for classifying ITS where intricate signals in long series are explicitly found and captured.

Additionally, CAT generalizes recent ITS classifiers due to the flexibility of the Recep-

tor Network, which can easily be augmented to leverage components of other recent ITS

PhD Dissertation: Thomas Hartvigsen 79

models.

4.1.7 Contributions

Our contributions are as follows:

• We define the open problem of Attention-Based Classification (ABC) for irregular

time series, which is common when learning from long and irregular inputs.

• Our solution, CAT, presents a novel framework that is the first to classify ITS by

finding relevant moments in the continuous timeline, generalizing recent ITS classi-

fiers.

• We identify and explore the weakness of state-of-the-art ITS classifiers when the

signal-to-noise ratio is small.

• Experimentally, our approach successfully discovers signals in ITS and outperforms

state-of-the-art classifiers on one synthetic and five real-world datasets.

4.2 Related Work

While our work is the first to consider the ABC problem for ITS, it is related to ITS Classi-

fication and Input Attention.

ITS Classification. Classifying irregular time series has recently become a popular

and impactful problem as it generalizes many prior classification settings. To-date, most

approaches [73, 138, 15] treat ITS classification as a missing value imputation problem: Cre-

ate a set of evenly-spaced bins, then aggregate multiple values within each bin and es-

timate one value per empty bin. This estimation is a well-studied problem with a long

history [102]. After imputation, regular time series classification may be performed. Some

PhD Dissertation: Thomas Hartvigsen 80

recent ITS classifiers extend beyond simple imputation options (e.g., mean) approaches by

either including auxiliary information such as a missingness-indicator [73] or time-since-last-

observation [15] as extra features to preserve properties found in the irregularity. Others

build more complex value estimators by either learning generative models [70], using

differentiable gaussian kernel adapters [107], or including decay mechanisms in Recur-

rent Neural Networks (RNN) to encode information-loss when variables go unobserved

over long periods of time [89, 15]. Many works have also begun parameterizing ordinary

differential equations to serve as time series models [61, 66, 101, 58]

Some recent models have begun to integrate attention mechanisms into ITS classifica-

tion [108, 18, 115]. However, they still hand-pick reference timesteps for each input time

series. Given long ITS with small signal-to-noise ratios, this decision is hugely impactful,

as we show in our experiments. Moreover, by relying on RNNs for classification, these

recent methods easily fail to capture signals when the number of estimated values gets

too large. This requires the RNN to filter out many irrelevant timesteps in a long series,

which is notoriously challenging due to both their slow inference and the vanishing gra-

dient problem [51].

Input Attention. The goal of Input Attention is to discover relevant regions in the

input space of a given instance and it has recently broken major ground in classifying

images [85], graphs [67], text [111], and regularly-spaced time series [57, 96]. We refer to

this as input attention, as such methods search for relevant regions in the input space of

each instance. This approach is particularly impactful when inputs are high-dimensional

as it explicitly disregards irrelevant regions of the input space.These methods also aid

interpretability by clearly displaying which regions of an input were used to make a clas-

sification [9]. Input attention has yet to be considered for ITS despite strong implications

of successful models.

This notion of attention differs from attention mechanisms for recurrent neural networks

PhD Dissertation: Thomas Hartvigsen 81

Transition
Model

Discriminator
Network

Input Instance

Time

Values Observation
density

Receptor Network

Moment Network

sample

Figure 4.2: Overview of CAT. The Receptor Network models input values and irregularity
around a moment mi in the continuous timeline: x̂i = R(X,m). The Transition Model then
updates its hidden state hi = T (x̂i), modeling the transitions between moments. Then,
the Moment Network parameterizes a Normal distribution from which it samples the next
moment mi+1 = M(hi). After iterating k times, the Discriminator Network predicts the
final class: y = D(hk), classifying the entire series.

[8], which learn attention distributions over the timesteps in the latent space of an RNN.

Local Discriminative Signals. Classifying time series by discovering locally discrim-

inative subsequences, or shapelets [134], has been tremendously successful for particu-

larly univariate and regularly-spaced time series [40]. While some works have extended

shapelets into the multivariate setting [35, 68], to-date only preliminary work has been

done for ITS [62]. Computing shapelets is notoriously slow, challenging to scale to multi-

variate signals, and has no clear and direct extension into the irregular setting.

PhD Dissertation: Thomas Hartvigsen 82

4.3 Methods

4.3.1 Problem Definition

Given a set of N labeled irregular time series D = {(Xi, yi)}Ni=0, consider the D vari-

ables of instance Xi = [X1
i , . . . , X

D
i]. To aid readability, all descriptions are provided in

terms of one instance and one variable wherever possible. For each variable d, Xd =

[(td1, v
d
1), . . . , (td

T d , v
d
T d)], where tdi is the i-th timestamp of the d-th variable and vdi is its cor-

responding value. Timestamps t may differ between variables and the number of obser-

vations T d may be unique to variable d. Additionally, we assume that the inputs X have

low signal-to-noise ratios: The majority of the relevant information comes from a small

proportion of the total timeline. There may still be multiple relevant regions, however.

The goal is to learn a function f : X → Y that accurately maps input X to its accurate

class y for previously-unseen time series. X is the input space of ITS and Y = {0, . . . , C}

is the set of C classes.

4.3.2 Proposed Method

An intuitive approach to solving the ABC problem is to first gather discriminative infor-

mation from a region surrounding one randomly-initialized moment in the timeline of an

ITS X . Then, use what is observed to choose a new moment from which to collect more

knowledge. After k repetitions, the series can be classified based on all that was found.

We propose a novel architecture, the Continuous-time Attention Policy Network (CAT),

that encodes this key idea into four interdependent sub-networks that work in concert to

classify long ITS: (1) A Receptor Network learns to model ITS observations (both the raw

values and informative irregularity) local to a given moment of interest. (2) A Transition

Model uses an RNN to represent the Receptor Network’s findings with respect to the clas-

PhD Dissertation: Thomas Hartvigsen 83

sification task. (3) A Moment Network learns to predict the next moment of interest given

the Transition Model. A moment of interest is one point in the continuous timeline around

which relevant information exists. After k repetitions, a (4) Discriminator Network classifies

X based on the Transition Model’s final representation. The Receptor Network, Transition

Model, and Discriminator Network are trained together using standard supervised learning.

Moments-of-interest are continuous so are sampled from a parameterized distribution in

the Moment Network which is trained using reinforcement learning by rewarding accurate

classifications. The architecture of CAT is illustrated in Figure 4.2.

Definition 4.3.1 (Smallest Greater and Largest Lesser). Let t′ be a real value and τ be a set

of real-valued timestamps. A value a ∈ τ is the Smallest Greater (SG) if and only if there

exists no other value b ∈ τ such that b > t′ and b ≤ a. A value a ∈ τ is said to be the Largest

Lesser (LL) if and only if there exists no other value b ∈ τ such that b ≤ t′ and a > b. We

refer to functions that return these values as SG(t′, τ) and LL(t′, τ), respectively.

Receptor Network

Given a moment of interest m ∈ [0,maxT], our Receptor Network Rθ predicts a vector

representation the local values and informative irregularity within a width-δ window of X

centered on moment m. maxT is the largest timestamp in X . ThusRθ can be placed any-

where in the continuous timeline where it models local signals. To achieve this, we com-

pute two w-dimensional vectors per variable: p represents X’s values and q represents

informative irregularity. For readability, we describe this process for just one variable and

omit superscripts d since all variables are processed the same way and in parallel. First, all

timestamps and values within this window are extracted into two vectors: τ contains the

sequence of timestamps in the window [mi− δ
2
,mi+

δ
2
], and ν contains their corresponding

values.

PhD Dissertation: Thomas Hartvigsen 84

To compute p, we linearly interpolate ν to estimate w values at a set of new times-

tamps within the window; The j-th element of vector p can be computed with respect a

to timestamp t′ = mi − δ
2

+ jδ
w

for j = [1, . . . , w] as

pj =
(SG(t′, τ)− t′) νLL(t′,τ) + (t′ − LL(t′, τ)) νSG(t′,τ)

SG(t′, τ)− LL(t′, τ)
,

where LL(t′, τ) is the largest timestamp less than t′ and νLL(t′,τ) is its corresponding value.

Similarly, SG(t′, τ) is the smallest timestamp greater than t′ and νSG(t′,τ) is its correspond-

ing value. For the edge cases where a timestamp t′ > maxT or t′ < minT , the nearest

value within the window is returned, flattening the edges of the interpolated window. If

no observations occur in the entire window, an all-zero length-w vector is returned for the

variable.

To compute q, which represents informative irregularity within the window, we learn

a function to represent the timing of observations, quantifying irregularity through the

squared exponential function, inspired by [69]. Thus the j-th element of vector q as com-

puted with respect to each t′ = mi − δ
2

+ jδ
w

for j = [1, . . . , w]:

qj =

|τ |∑
k=1

e−α(t
′−τk), (4.1)

where τk is the k-th element of sequence τ . Thus the timing of the observations is con-

verted to a sequence of densities, which can often change between classes [73]. α controls

the sensitivity of the kernel to the difference between t′ and τk and can be hand-picked or

learned during training [107].

Since the output of the Receptor Network will eventually inform the Moment Net-

work in its prediction of the next moment mi+1, we compute the representations for each

variable at two granularities: One for capturing fine-grained local information, one for

PhD Dissertation: Thomas Hartvigsen 85

capturing a coarse-grained representation of the entire series that is useful for both cap-

turing long-term trends and for finding the next moments of interest, inspired by [85].

Once computed, we use a neural network to learn a L-dimensional representation x̂i for

both p and q, creating a vector representation of the width-δ window surrounding mo-

ment mi:

x̂i = ψ(W[F({pd}Dd=1),F({qd}Dd=1)] + b), (4.2)

where F(·) and [·] denote flattening and concatenation, respectively. W and b are a matrix

and vector of learnable parameters of shape L× 4w and 4w, respectively. ψ is the rectified

linear unit; L controls the representational capacity of the Receptor Network. To also

incorporate where the collected data come from in the timeline, we concatenate mi with x̂i

before passing it to the Transition Model.

Transition Model

Next, a Transition Model Tθ learns to represent the transitions between information gath-

ered at each moment of interest. We follow the state-of-the-art for a vast array of sequen-

tial learning tasks [83] and implement this component as an RNN, creating one vector

representation hi per moment-of-interest. To avoid the vanishing gradient problem [51]

pervasive to classic RNNs, we use a Gated Recurrent Unit (GRU) [19].

This recurrent component takes only k steps and k is typically kept very low (k = 3 in

our experiments). In contrast, most recent models instead step through a large number

of imputed timestamps T (typically T � k) creating slow models that are challenging to

optimize.

PhD Dissertation: Thomas Hartvigsen 86

Moment Network

The Moment Network Mθ interprets the hidden state hi of the Transition Model and pre-

dicts the next moment-of-interest mi+1. There are no ground truth moments so we frame

this component as a Partially-Observable Markov Decision Process (POMDP), similar to

[85]. We follow the standard approach and solve this POMDP using on-policy reinforce-

ment learning. In this way, the hidden state hi from the Transition Model serves as an

observation from the environment (representing the data collected at all prior moments

of interest). The possible actions include all real-valued timestamps between 0 and maxT ,

and we define the reward to be the final classification success. The goal is to learn a policy

π(hi) that predicts the next moment mi+1.

Since there are infinitely-many moments in the continuous timeline, we parameterize

the mean µi of a Normal distribution with fixed variance from which we sample mi+1. To

achieve this, hi is first projected into a one-dimensional probabilistic space by a neural

network: µi = σ (Whi + b). The predicted µi is then scaled into the timeline via multipli-

cation with maxT and is used as the mean of a normal distribution from which we sample

moment mi+1. If mi+1 > maxT , we re-assign mi+1 := maxT , and similarly if mi+1 < 0,

mi+1 := 0. This does not inhibit learning due to the REINFORCE algorithm discussed

below. To train the Moment Network, we set reward ri = 1 if the final classification is ac-

curate and set ri = −1 otherwise. The Moment Network thus seeks discriminative regions

in the timeline which lead to the highest rewards.

CAT predicts k moments of interest, iteratively cycling between the Receptor Net-

work, Moment Network, and Transition Model k times. After k steps, the final hidden

state hk represents all knowledge extracted from series X .

PhD Dissertation: Thomas Hartvigsen 87

Discriminator Network

The final component of CAT is a Discriminator Network Dθ, which learns to project the

Transition Model’s final hidden state hk into aC-dimensional probabilistic space in which

it predicts its class probability ŷ. This final classification is made via a single linear layer:

ŷ = softmax(Whk + b). This component is easily expandable according to the required

complexity of a task.

Training the Continuous-Time Attention Policy Network

The Receptor Network, Transition Model, and Discriminator Network are optimized to-

gether to predict the class probability ŷ as close to the true label y as possible. Since these

networks are differentiable, we minimize the cross entropy:

Ls(θs) = −(y log(ŷ) + (1− y) log(1− ŷ)). (4.3)

For readability, θs denotes all parameters of these networks that are optimized using stan-

dard supervised learning.

Predicted moments m are continuous so a key element of the Moment Network is

sampling future moments. Instead, the learning objective of the Moment Network is the

maximization of the expected reward: R =
∑k

i=0 ri, so θ∗rl = arg maxθrl
E[R], where θ∗rl is

the optimal parameters for the Moment Network. This is not differentiable and cannot be

optimized directly using back-propagation.

To make this optimization differentiable, we follow the standard protocol for on-

policy reinforcement learning and optimize the Moment Network’s policy using the RE-

INFORCE algorithm [124]. Thus, we use a well-justified surrogate loss function that is

PhD Dissertation: Thomas Hartvigsen 88

differentiable, allowing for optimization by taking steps in the direction of

E[∇ log π(h0:k, µ0:k, r0:k)R].

Thus the gradient can then be approximated for the predicted moments. This allows

for learning but may also induce variance in the policy updates since this is not the true

gradient for maximizing E[R]. To reduce variance, we use a baseline b to approximate the

expected reward, with which we may adjust the raw reward values, as shown in Equation

4.4. Here, bj is a baseline predicted by a lightweight neural network and is encouraged to

approximate the mean R via the reduction of their mean squared error. The weights θrl

are thus updated with respect to how much better than average are the outcomes.

Lrl(θrl) = −E

[
k∑
i=0

log π(mi|hi)
[k∑
j=i

(
R− bj)

)]]
(4.4)

Finally, the entire network can be optimized jointly and simultaneously via gradient

descent of the loss function

L(θ) = Ls(θs) + λLrl(θrl), (4.5)

where λ is used a hyperparameter that balances the scale of the loss terms and θ denotes

all trainable parameters of CAT.

4.4 Experiments

4.4.1 Datasets

We evaluate the performance of CAT using one synthetic dataset and five real-world

publicly-available datasets.

PhD Dissertation: Thomas Hartvigsen 89

MΠ: We develop a synthetic binary classification dataset to demonstrate that CAT in-

deed finds intricate signals in long ITS data. To add signals for different classes, we center

a width-∆ discriminative region around a random moment in the timeline for each time

series. The values for the timestamps within the width-∆ window take one of two forms,

depending on the class. One class is characterized by the values {1, 1, 1} (“Π”-shaped),

and the other by the values {1, 0, 1} (“M”-shaped). The timestamps corresponding to

these values are evenly-spaced in the width-∆ window. All timestamps not in the dis-

criminative region are sampled uniformly across the timeline and values are sampled

from a Normal distributionN (0, 1). In selecting ∆, we determine the signal-to-noise ratio

of the data: A small ∆ means that the “Π” or “M” signals happen in a short period of

time, so overlooking the signal is punished more. We generate 5000 time series instances,

each with 500 timestamps, and have an equal number of instances for each class.

UWAVE [76]: The popular UWAVE dataset contains 4478 length-945 gesture pattern

time series collected from a handheld device. Each series is a member of one of eight

classes. We follow the preprocessing procedure outlined by [69], randomly downsam-

pling to 10% of the original values to create irregularity.

EXTRASENSORY [118]: We contribute a new approach to augmenting existing human

activity recognition data by simulating listening probes, the full generation process for

which is included in our publicly-available code. Listening probes monitor the activ-

ity of devices, collecting data only when certain conditions are met. While they save

energy on edge devices, listening probes produce irregular time series. For example, con-

sider detecting hand tremors from smartphones for digital health [34]. A listening probe

on the accelerometer will collect data only when the phone moves rapidly, capturing

hand tremors while the phone is carried. However, whenever the phone is set down or

dropped, data are also collected, resulting in many irrelevant regions. Here, we consider

a listening probe on a smartphone’s accelerometer and detect common human activities.

PhD Dissertation: Thomas Hartvigsen 90

Using the challenging EXTRASENSORY human activity recognition database, we ex-

tract four datasets collected via a listening probe on the 3-dimensional (x, y, and z axes)

accelerometer records. When the norm of the difference between consecutive records sur-

passes a threshold γ = 0.001, the corresponding accelerometer data are collected. This

differs from the random downsampling that prior works do as now irregularity can be

informative. In our code, we provide further listening probes for the community.

We create four distinct datasets for detecting categories of human activity: WALK-

ING (2636 time series), RUNNING (1066 time series), LYINGDOWN (7426 time series), and

SLEEPING (9276 time series). For each class, we extract the smartphone data for the one

person who performed the activity the most since activity patterns are often incomparable

between people. We break each series into windows of 200 timestamps prior to applying

the listening probe to ensure large-enough datasets and so the task is to detect whether

or not the person performed the selected activity within this window. We finally balance

each dataset to have an equal number of positive and negative series.

4.4.2 Compared Methods

We compare CAT to eight state-of-the-art ITS classifiers and one baseline version of CAT.

The first four methods are simple imputation and feature expansion methods: linear inter-

polation: (RNN-interp), mean imputation (RNN-mean), mean imputation with the time-

since-last-observation as an extra set of features (RNN-∆t), and mean imputation with a

missingness indicator (RNN-S) [73]. The second group of four classifiers are state-of-the-

art ITS classifiers: GRU-Decay [89], GRU-D [15], IPN [107], and mTAN [108]. We also

compare against CAT-random, a random version of CAT. This ablates CAT by replacing

the Moment Network with randomly-selected moments of interest.

PhD Dissertation: Thomas Hartvigsen 91

R
N

N
-in

te
rp

R
N

N
-m

ea
n

R
N

N
-

t

R
N

N
-S

R
N

N
-D

ec
ay

G
R

U
-D

IP
N

C
AT

-r
an

do
m

C
AT

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 4.3: UWAVE classification with long series.

Datasets
Methods

RNN-interp RNN-mean RNN-∆t [73] RNN-S [75] RNN-Decay [89] GRU-D [15] IPN [107] mTAN [108] CAT-random CAT (ours)

WALKING 0.65 (0.02) 0.64 (0.02) 0.64 (0.01) 0.64 (0.01) 0.64 (0.02) 0.65 (0.01) 0.65 (0.01) 0.68 (0.02) 0.60 (0.02) 0.74 (0.03)
RUNNING 0.52 (0.04) 0.52 (0.09) 0.52 (0.07) 0.46 (0.03) 0.44 (0.03) 0.43 (0.01) 0.46 (0.03) 0.56 (0.01) 0.47 (0.01) 0.54 (0.01)
LYINGDOWN 0.83 (0.05) 0.78 (0.04) 0.83 (0.04) 0.82 (0.08) 0.77 (0.04) 0.78 (0.03) 0.85 (0.04) 0.73 (0.00) 0.76 (0.01) 0.87 (0.04)
SLEEPING 0.76 (0.05) 0.79 (0.01) 0.79 (0.03) 0.76 (0.03) 0.78 (0.03) 0.76 (0.03) 0.77 (0.03) 0.76 (0.02) 0.73 (0.01) 0.91 (0.02)

Table 4.1: Testing accuracy of all methods with infrequently-imputed values for of the
Human Activity Recognition Datasets. Parentheses denote standard deviations over five
random train/test splits.

4.4.3 Implementation Details

For the UWAVE dataset, we use a standard 80% training, 10% validation, and 10% testing

split. The EXTRASENSORY datasets contain instances taken from different windows along

a single timeline. To avoid cross-contamination between training and testing data, we

split instances in time, aiming for 80% training and 20% testing splits. The training/testing

process is repeated five times and we report the average and standard deviation for all

experiments. All methods use 64-dimensional hidden states for their respective RNNs.

For CAT, we set the number of steps k = 3, use a 50-dimensional representation for the

Receptor Network, and set α = 100 in Equation 4.1 as determined using the validation

data. All RNNs use GRU [19] recurrence equations.

PhD Dissertation: Thomas Hartvigsen 92

Datasets
Methods

RNN-interp RNN-mean RNN-∆t [73] RNN-S [75] RNN-Decay [89] GRU-D [15] IPN [107] mTAN [108] CAT-random CAT (ours)

WALKING 0.62 (0.04) 0.59 (0.02) 0.56 (0.02) 0.61 (0.04) 0.59 (0.02) 0.63 (0.02) 0.62 (0.01) 0.64 (0.01) 0.61 (0.01) 0.77 (0.03)
RUNNING 0.52 (0.05) 0.51 (0.09) 0.48 (0.02) 0.51 (0.07) 0.51 (0.05) 0.45 (0.01) 0.46 (0.01) 0.55 (0.01) 0.47 (0.00) 0.54 (0.01)
LYINGDOWN 0.78 (0.07) 0.8 (0.04) 0.83 (0.04) 0.89 (0.02) 0.88 (0.05) 0.82 (0.03) 0.85 (0.05) 0.74 (0.02) 0.77 (0.00) 0.89 (0.03)
SLEEPING 0.76 (0.05) 0.79 (0.02) 0.80 (0.03) 0.80 (0.02) 0.77 (0.02) 0.73 (0.01) 0.78 (0.04) 0.76 (0.02) 0.74 (0.01) 0.90 (0.01)

Table 4.2: Testing accuracy of all methods with frequently-imputed values for of the Hu-
man Activity Recognition Datasets. Parentheses denote standard deviations over five
random train/test splits.

4.4.4 Experimental Results

Experiments on Real-World Data.

First, we demonstrate that CAT indeed handles long series better than the state-of-the-art

methods. To achieve this, we impute the UWAVE data with 200 timestamps, which is

much higher than prior experiments [107]. For ease of comparison, we also have CAT

observe the data at the same “resolution” by setting w = δ ∗ 200 where δ is the receptor-

width hyperparameter. This resolution can be tuned within CAT. Our results are reported

in Figure 4.3. As expected, CAT achieves state-of-the-art accuracy on these data while

the compared methods underperform their accuracy with roughly 100 imputed values.

This indicates that CAT is far more robust to longer series than the state-of-the-art ITS

classifiers.

Second, we show that CAT successfully captures informative irregularity in long se-

ries, as indicated by our results on the human activity recognition datasets (WALKING,

RUNNING, LYINGDOWN, and SLEEPING). We compare all models using two settings:

infrequent imputation (200 values) and frequent imputation (500 values). Intuitively, fre-

quent imputation leads to clearer signals, as there are more values imputed on the signal,

while infrequent imputation leads to unclear signals. To successfully classify these data,

given infrequent imputation, finding the relevant regions of the data is more important.

On the other hand, frequent imputations provide clear signals but come with the added

PhD Dissertation: Thomas Hartvigsen 93

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9 0.1

Signal-to-Noise Ratio

0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(a) Effect of signal width ∆.

0.0
2

0.0
8

0.1
4 0.2 0.2

6
0.3

2
0.3

8
0.4

4 0.5
0.6

0.62
0.65
0.68

0.7
0.72
0.75
0.78

Ac
cu

ra
cy

(b) Effect of δ with ∆ = 0.04.

Figure 4.4: CAT’s performance on Synthetic MΠ dataset.

risk of noise, requiring more explicit discovery of the relevant regions. Again to remain

comparable to other methods, we set w = δ ∗ 200 and w = δ ∗ 500 for each respective

frequency.

Our results for this experiment, shown in Tables 4.1 and 4.2, show that, as expected,

CAT outperforms all compared methods in both the infrequent and the frequent settings

for all datasets by an average of over 8%. The baselines also mainly perform their best

with infrequent imputation, while CAT performs its best at frequent imputation as it adapts

to different resolutions. Also as expected, the recent GRU-D, IPN, and mTAN models

are generally CAT’s strongest competitors. As expected, methods that model irregular-

ity (GRU-D, IPN, RNN-S, and CAT) largely beat the methods that disregard irregularity.

RNN-interp’s poor performance indicates that the benefits of CAT do not come from the

linear interpolation used by the Receptor Network.

For all datasets, CAT outperforms CAT-random, the policy-free version of CAT that

places the Receptor Network at random moments in the timeline. In fact, CAT-random is

overall the worst-performing method, indicating that CAT’s strong performance comes

from a successfully-trained Moment Network. This demonstrates that CAT indeed suc-

ceeds to learn the discriminative regions of the given time series.

PhD Dissertation: Thomas Hartvigsen 94

Experiments on Long Synthetic Data.

We finally evaluate the performance of CAT in a controlled setting using the MΠ dataset.

With MΠ, we evaluate the robustness of our Moment Network and Receptor Network to

changing the signal-to-noise ratio in the data and to changing how well the receptor width

matches said signal-to-noise ratio. Each time series in MΠ is also quite long, having 500

timestamps, so for very small signal-to-noise ratios there is a massive proportion of noise

with a very small relevant region. The results of these experiments are shown in Figure

4.4.

First, as shown in Figure 4.4a, we vary the signal-to-noise ratio in MΠ. Intuitively, as

this ratio increases, the signal becomes easier for CAT to identify. By updating the receptor

width δ to match the signal-to-noise ratio as it is increases, we find that the Moment Network

indeed succeeds in finding the discriminative moments in the timeline, achieving nearly-

perfect accuracy even with a signal-to-noise ratio as low as 0.06. Once the signal takes up

10% of the timeline, CAT consistently achieves 100% testing accuracy. We also find that

the compared methods fail when the signal-to-noise ratio is lower than 0.1, achieving

roughly 50% testing accuracy. This is not unexpected as RNNs are classically hard to

train on such long series, especially with such noisy inputs.

Second, as shown in Figure 4.4b, we vary the receptor width parameter δ for a signal-

to-noise ratio ∆ of 0.04 to understand CAT’s sensitivity to the proper selection of δ. We

investigate the signal-to-noise ratio of 0.04 where CAT achieves only 75% accuracy, indi-

cating potential sensitivity to hyperparameters (see Figure 4.4a). As expected, accuracy

suffers both when δ is either too small (0.02) or too large (0.5). The optimal δ lies some-

where between 0.2 and 0.32 for this experiment. Quite interestingly, this is much larger

than the data’s signal-to-noise (0.04). While a larger receptor width δ should capture sig-

nals more easily, this suggests that the receptor still filters out the noisy regions when they

PhD Dissertation: Thomas Hartvigsen 95

Dataset δ Irregularity

UWAVE 0.05 Off
Infrequent WALKING 0.2 Off
Infrequent RUNNING 0.05 On
Infrequent LYINGDOWN 0.05 Off
Infrequent SLEEPING 0.05 On
Frequent WALKING 0.2 Off
Frequent RUNNING 0.2 On
Frequent LYINGDOWN 0.2 On
Frequent SLEEPING 0.1 Off

Table 4.3: Best hyperparameter settings for CAT.

overlap with the receptor’s window. These results also indicate that CAT can be robust to

overestimating δ.

4.4.5 Hyperparameter Study

We experiment with three key hyperparameters of CAT for each dataset: The receptor-

width δ, the hidden dimension of the Receptor NetworkR, and whether or not to use the

informative irregularity feature of CAT in the Receptor Network. Interestingly, we found

that forR, a hidden dimension of 50 seemed to consistently produce the best results. This

hidden dimension largely controls the number of parameters in CAT and influences the

timing experiments for which we also use a 50-dimensional representation. Our selec-

tions for δ values for different datasets are shown in Table ??.

We tune δ between three values: 0.05, 0.1, and 0.2. For UWAVE, δ = 0.05 was best.

δ = 0.05 was also best for all infrequent EXTRASENSORY datasets except for WALKING,

which used 0.2. δ = 0.2 was chosen for all frequent EXTRASENSORY datasets except for

SLEEPING, for which δ = 0.1.

For δ, we observe that for the infrequent experiments, a smaller receptor width is

largely the best option while a larger width is beneficial for the frequent experiments. This

PhD Dissertation: Thomas Hartvigsen 96

may be due to the fact that with the infrequent representation of the input series, closer

focus on the comparatively-fuzzier signals is required. We also found that setting the

number of steps k = 3 consistently outperformed larger and smaller values. While large

values of k conceptually should still learn to classify effectively, in practice the more steps

taken by a reinforcement learning agent per episode can make it more challenging to op-

timize effectively due to the credit assignment problem [113]. This fact may contribute to

our finding k = 3 to be best.

We also find that there are cases where it is not essential to use both channels—Values

and Irregularity—in the receptor network. While using the irregularity channel (com-

puted via the squared exponential kernel in the main paper) always leads to state-of-the-

art performance by CAT, its omission can sometimes improve CAT’s performance slightly.

When irregularity is an essential feature, however, this information cannot be removed.

We show for which datasets this is true in Table ??. This may be a feature of (1) how the

irregularity is represented—there are other approaches—and (2) how essential it is to the

task. We recommend always using the irregularity channel as the potential downside of

ignoring irregularity outweighs the minor benefits of its omission in some cases.

4.4.6 Timing Experiments

Furthermore, CAT’s Transition Model uses an RNN to model the transitions between mo-

ments, as opposed to the timestamps themselves. This hints that CAT should naturally

be much faster than the compared methods. We confirm this by timing the training of

all methods on the WALKING dataset with frequent imputation—see Figure 4.5. As ex-

pected, CAT runs over seven times faster than the next slowest method while achieving

much higher testing accuracy. This is particularly meaningful for long series in time-

sensitive domains such as healthcare where a model’s inference time is hugely important

PhD Dissertation: Thomas Hartvigsen 97

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Training Time (minutes/epoch)

55

60

65

70

75

80

Te
st

in
g

Ac
cu

ra
cy

RNN-interp

RNN-mean
RNN-S

RNN- t
RNN-Decay

IPN

CAT

Figure 4.5: Timing performance for the high-resolution WALKING dataset. GRU-D takes
over 3x longer than the next-slowest RNN-S and so is omitted from this figure.

[53]. Our reported timing comparisons between compared methods is also largely con-

sistent with prior works’ timing experiments [107]. Also as expected, the GRU-D [15] and

mTAN [108] run significantly slower than the other compared methods and so omit their

results from this figure. Their accuracies are much lower than CAT’s—see Table 2 in the

main paper. All models were trained and evaluated on Intel Xeon Gold 6148 CPUs.

4.5 Conclusions

In this work, we identify the open Attention-Based Classification problem for long and

irregular time series, which is a challenging and impactful setting common to many im-

portant domains. The problem is to train a model to classify long irregular time series

based on small discriminative signals in the continuous timeline while learning to ig-

nore irrelevant regions. We then propose the Continuous-time Attention Policy Network

(CAT) as its first solution. CAT learns to classify irregular time series by searching for

often-small signals in a series’ timeline. Our method includes a reinforcement learning-

PhD Dissertation: Thomas Hartvigsen 98

based Moment Network that seeks discriminative moments in the timeline, positioning

a novel Receptor Network that represents signals from both the values themselves and

the patterns existing in the timing of the observations. Using a core Transition Model

that learns to model the transition between moments, a Discriminator Network finally

classifies the entire series. Across our experiments on one synthetic and five real-world

datasets, CAT consistently outperforms eight state-of-the-art baselines by finding short

discriminative signals.

5 | Early Classification of Irregular Time Series

5.1 Introduction

5.1.1 Background

Early Classification is the task of predicting the class label of an ongoing time series before

it is entirely observed [126]. As discussed in Chapter 1, Early Classification of Time Series

is a core problem in time-sensitive domains where the earlier the prediction, the more

time a user has to react.

However, in many time-sensitive domains, time series observations arrive sporadically,

only recording partial information about an ongoing system. Such Irregular Time Series

(ITS) thus have uneven gaps between their observations and are common to many im-

pactful domains such as healthcare [73], climate science [7], and astronomy [100]. In a

hospital, for instance, knowledge of a patient’s health largely comes from doctors mea-

suring a set of variables (e.g., test results and vital sign recordings) over time. Within each

variable, there are often irregular gaps between observations. Plus, multiple variables are

rarely recorded at the exact same time, creating irregularity between variables. Learning

to classify ITS early is an impactful and unexplored problem that can improve outcomes

in time-sensitive domains.

5.1.2 State-of-the-art

There has recently been a surge of attention in both early classification of time series (ECTS)

and classifying irregular time series (ITS), though to-date these fields have been developed

separately.

PhD Dissertation: Thomas Hartvigsen 100

To overcome the poor scalability and misclassification inherent to classic ECTS meth-

ods [125], recent works turn to reinforcement learning agents that predict whether to Stop

or Wait at every step of an ongoing series [82, 46, 48]. This approach does not apply when

time series are irregular because they disregard the amount of time that passes between

observations. This manufactures late predictions as waiting until the next step will have

a different cost depending on how long it is before the next observation. Existing mul-

tivariate methods also assume all variables are measured at every timestamp, which is

rarely true for ITS. To-date, no method considers the irregularity of observations when

deciding when to classify a series, a feature of the series that is crucial to capture [73].

Learning directly from ITS data is also an active research area. Most works use con-

tinuous time Recurrent Neural Networks (RNN) to represent observed values and/or

irregularity of an ongoing series in their hidden states [15, 107, 73, 32]. Some works have

recently extended to Neural Ordinary Differential Equation (ODE) models [101, 23, 55,

66, 61]. However, while these methods account for irregular sampling of a series’ obser-

vations, they disregard the earliness of their predictions. They have yet to look beyond

measuring only accuracy to consider more measures of practical usefulness.

5.1.3 Problem Definition

Our work is the first to consider Early Classification of Irregular Time Series (ECITS),

which is an open, impactful, and challenging real-world problem. For a previously-

unseen ITS X , we seek one small (early) real-valued time τ at which the entire series

X may be classified accurately without using any observations later than τ . The goals

of earliness and accuracy naturally conflict because early predictions are usually made

at the expense of accuracy (fewer observations have been collected). This is naturally a

multi-objective optimization problem.

PhD Dissertation: Thomas Hartvigsen 101

5.1.4 Challenges

ECITS is challenging for three main reasons. First, earliness and accuracy conflict so a

balance must be struck according to both the task at hand and each input instance. Sec-

ond, the optimal halting time τ is unobserved and therefore unavailable for supervision

or evaluation. Third, ITS are often sparse and multivariate. This is well-known to be

challenging for machine learning where most successful models require fixed-length and

regularly-spaced inputs.

5.1.5 Proposed Method: STOP&HOP

We overcome these challenges, proposing the first solution to the open ECITS problem

which we refer to as STOP&HOP in reference to our key idea. STOP&HOP instantiates

a general and modular solution to ECITS, integrating three essential components. First,

an RNN-based Prefix Encoder embeds ITS data up to a candidate halting time, expanding

on the recent success in representation learning for ITS. Then, a reinforcement learning-

based Halting Policy Network decides whether or not to Stop and predict or Wait for more

data. If it chooses to Wait, it also selects for how long, effectively Hopping some real-valued

distance forward in time at which to reactivate the Halting Policy Network. Thus we for-

mulate the early classification problem as a Partially-Observable Markov Decision Pro-

cess with actions that operate on varying time scales. Thus the policy adapts to variations

the irregularity of each individual input, using the timing of measurements to inform the

earliness of predictions. Lastly, once the Halting Policy Network stops, a Prefix Classifier

Network predicts the overall class label for the series. All components are trained jointly

so that earliness and accuracy can be balanced easily.

PhD Dissertation: Thomas Hartvigsen 102

5.1.6 Contributions.

This work’s contributions are as follows:

1. We define the open problem of Early Classification of Irregular Time Series (ECITS),

which bridges a major gap between modern early classification methods and real

time-sensitive decision making problems.

2. Our proposed method, STOP&HOP, is the first solution to the ECITS problem, uni-

fying the state-of-the-art for ITS and ECTS into one model.

3. We demonstrate that STOP&HOP learns to stop exactly when signals arrive using

four synthetic datasets, leading to the earliest possible classifications. We also show

that STOP&HOP succeeds to learn when to stop on three real-world time-sensitive

tasks.

5.2 Related Work

Early Classification of Time Series. Early Classification of Time Series (ECTS) is the task

of correctly predicting the label of a time series before it is fully observed. One early

timestep is chosen per time series at which the whole instance is classified. While clas-

sifying sequences early is classically targeted only at time series [50, 128, 127, 37, 36, 87],

some works have also extended to text [56] and video [78]. Most recent approaches

[48, 46, 82, 25] have turned to deep learning, extending beyond traditional methods for

univariate time series [88, 127, 126, 128], which scale poorly by exhaustively searching

for discriminative subsequences [50]. The current state-of-the-art solution is to frame this

problem as a Markov Decision Process (MDP), where at each regularly-spaced timestep

a policy decides whether or not to stop and predict the label. Some use RNNs that halt

PhD Dissertation: Thomas Hartvigsen 103

early [46] while others use Deep Q-Networks [82].

A major limitation of existing ECTS methods is their reliance on inputs being regularly-

spaced as they decide whether or not to halt at each possible timestep. This does not

account for missing values or gaps between observations, features essential to classify-

ing ITS [15]. In ITS, the gaps between consecutive observations may even be large and

unpredictable, so waiting until the next value arrives can have huge consequences.In the

multivariate setting, multiple measurements are rarely taken concurrently, compounding

this issue with existing works. Further, the times at which observations arrive can itself pro-

vide valuable knowledge for both earliness and accuracy [73]. A successful solution to

our problem should take advantage of this extra source of information.

Learning from Irregular Time Series. Standard machine learning techniques often

fail for ITS as they assume fixed-length and regularly-spaced inputs. To bridge this gap,

there has been a lot of recent work to learn from ITS directly, developing models that take

irregular series as inputs. Some approaches augment RNNs by either including auxil-

iary information such as a missingness-indicator [73] or time-since-last-observation [15] as

extra features to preserve properties found in the irregularity. Others build more com-

plex value estimators by either learning generative models [70], using gaussian kernel

adapters [107, 69], set functions [54], or including decay mechanisms in Recurrent Neural

Networks (RNN) to encode information-loss when variables go unobserved over long pe-

riods of time [89, 15]. Some recent works have begun parameterizing ordinary differential

equations to serve as time series models [61, 66, 101, 58], Some very recent models have

also begun to integrate attention mechanisms into this estimation process [108, 18, 116].

None of these existing ITS models consider when in the continuous timeline of an

ongoing series they should return a prediction to the end user. A key constraint of the

ECITS problem is that when classifying a series at a particular point in its timeline, we

cannot use any future values. This hinders the direct use of any methods that interpolate

PhD Dissertation: Thomas Hartvigsen 104

based on all observations, such at the Interpolation-Prediction Network [107] or ODE

models that encode sequences backwards [101].

5.3 Methods

5.3.1 Problem Definition

Assume we are given a set of N labeled irregular time series D = {(X i, yi)}Ni=1. Each se-

ries X is a collection of one sequence of T d (timestep, value) pairs per variable d: X =

{{(tdj , vdj)}T
d

j=1}Dd=1 where each sequence of timesteps is strictly increasing (td1 < td2 < . . . td
T d)

and vdj is the corresponding value for each timestep. T d denotes the number of observa-

tions for variable d. X is irregular in that typically tji 6= tki and tji+1 − t
j
i 6= tji+2 − t

j
i+1 for all

i, j, and k. Each label y indicates to which of C classes X belongs. Our goal of Early Clas-

sification of Irregular Time Series is to learn a function f that maps previously-unseen

input time series to their accurate class labels y based only on values observed prior to

some early time τ .The smaller τ is, the better. However, fully achieving both goals at

the same time in practice is usually impossible since early predictions are often made at

the expense of accuracy as less of the series has been observed. Thus we seek a tunable

solution that balances earliness and accuracy according to the task at hand.

5.3.2 Proposed Method

We propose an intuitive first solution to the open Early Classification of Irregular Time

Series (ECITS) problem, which we refer to as STOP&HOP and illustrate in Figure 5.1. The

ultimate goal of our proposed method is to predict the best halting time τ for a given series

so as to balance the cost of delaying a prediction with that of misclassification. Thus, one

halting timestep τ is predicted for each series X along with a prediction ŷ that is made

PhD Dissertation: Thomas Hartvigsen 105
H

e
a
rt

 R
a
te

O
2

 L
e
ve

l

predict
and repeatTime

E
st

im
a
te

 v
a
lu

e
s

Prefix Encoder

Next

unobserved values

previous

Prefix Classifier

Stop predict
at time

Halting Policy Network

Hop

or

Halting candidate

Legend

Real value

Estimated value

Figure 5.1: STOP&HOP Architecture. Given a timestamp t′, an embedding is computed
for all values and irregularity prior to t′. Then, a classifier attempts to classify the series.
The halting policy network then uses this classification and the embedding to decide
whether or not to stop or, if not, how long to wait before repeating this process.

using only observations made before time τ .

Since no solution to the ECITS problem exists, we begin by describing a general solu-

tion, which we then encode into a proposed architecture. A general solution to ECITS is

the iteration of a three-step procedure: 1) Predict a candidate halting time t′. 2) Construct

a vector representation h′t of the ongoing series X that captures patterns in both values

and irregularity up to time t′. 3) Predict whether or not to halt and classify X at time t′.

If so, use ht′ to classify X . If not, predict the next candidate halting time t′. Thus, a so-

lution will march through the continuous timeline with stepsize dependent on the input

data and at each step, will decide whether or not to Stop and return a classification. Each

step of this general solution solves one problem of the ECITS problem. First, learning

when to try to stop is essential in the irregular setting. This is in contrast to the standard

ECTS setting where, with knowledge that observations arrive on a fixed schedule, meth-

ods simply decide whether or not to stop every time a new measurement arrives. Second,

standard supervised learning methods struggle to model ITS data as they are not fixed-

length. Learning dense representations of these data instead provides feature vectors that

are easy to learn from. Step three can then leverage the vast success of deep learning to

PhD Dissertation: Thomas Hartvigsen 106

classify ongoing ITS.

This modular approach solves the ECITS problem and so we instantiate this idea with

solutions to each of the three open sub-problems. First, a continuous-time recurrent net-

workR(·) constructs a representation ht′ = R(X≤t′) whereX≤t′ represents all observations

made prior to a timestep t′. Next, a Halting Policy Network decides either to Stop and pre-

dict, or Hop forward in time to a new timestep t′ := t′ + ∆t where ∆t is a real-valued

Hop Size computed as a function of representation ht′ . There is no analog in the ECTS

literature which only choose between Stop and Wait for each observation. Since incom-

ing observations are irregular, our adaptive approach instead allows the network to learn

when to try and stop according to when observations arrive adding flexibility. During

training, the halting policy network is encouraged to prefer both smaller (earlier) values

τ̂ and accurate predictions. Once the Halting Policy Network chooses to stop or there are

no more observations, a classifier network predicts the class label of X .

5.3.3 Prefix Embeddings for Irregular Time Series

STOP&HOP learns to produce embeddings of ongoing irregular time series via continuous-

time representation learning, computing vector representations of a seriesX at real-valued

timesteps. We refer to this as a Prefix Encoder, as it encodes the prefixes of ongoing time

series. There has been a recent surge in approaches developed for representing ongo-

ing ITS [15, 101] and most use a recurrent component to encode the series at real-valued

timesteps in the continuous timeline: h′t = R(X, t′), where R(·) is a continuous-time re-

current neural network and t′ is a real-valued time. h′t is thus a vector representing all

dynamics of observations in series X prior to time t′. The only constraint on architecture

design for R(·) in the Early Classification setting is that h′t must only be computed with

respect to values observed earlier than t′. This discourages the use of methods that com-

PhD Dissertation: Thomas Hartvigsen 107

pute bi-directional hidden states or use future values for imputation [107]. Further, we

seek to model the irregularity itself, which can inform both the classification accuracy and

the earliness. Thus we compute ht′ using the GRU-D [15], denoted to take variable step

sizes between embeddings. The hidden state and input values are decayed based on the

time since the previously-observed timestep for each variable as follows:

x̂dt′ = md
tx

d
t � (1−md

t′)(γ
d
xt′
xdprev + (1− γdxt′ x̃

d
t′)) (5.1)

ĥt′ = γht � ht′ (5.2)

rt′ = σ(Wrx̂t′ + Urĥt′ + br) (5.3)

zt′ = σ(Wzx̂t′ + Uzĥt′ + bz) (5.4)

h̃t′ = φ(Wx̂t′ + U(rt′ � ĥt′) + V mt′ + b) (5.5)

ht′ := (1− zt′)� ht′ + zt � h̃t′ , (5.6)

where x̃dt′ is the mean of all values of for the given instance’s variable d before time t′, md
t′

is a binary value indicating whether or not any new observations have been made since

t′, and xdprev is the value of the most recent observation of the d-th variable prior to time

t′. � is the hadamard product and γdxt′ is a decay factor for variable d at time t′ computed

by a neural network: γdxt′ = exp(−max(0,Wγs
d
t′ + bγ) where sdt′ is the difference between t′

and the time of the last observation of variable d.

An encoding ht′ thus represents knowledge contained in the transitions between the

values over time and the density of observations as measured by the indicator variable

m used as input to the RNN. Measuring this density is important to both the classifica-

tion and the earliness goals: Discriminative signals can appear in both the values them-

selves and their timing [73]. The density of measurements can thus indicate the likeli-

hood of observing more relevant information in the near future [107]. In practice, these

PhD Dissertation: Thomas Hartvigsen 108

update equations can be run multiple times between candidate halting times t′ to ensure a

granular-enough representation of a time series.

5.3.4 Classifying Prefixes

Given a prefix embedding ht′ , we use a Prefix Classifier Cθ to predict the class label of the

entire series X based only on values observed up to time t′. We use a standard fully con-

nected network that projects ht′ into a C-dimensional probabilistic space via the softmax

function, generating the one probability for each of the C classes. In our experiments, we

use only one hidden layer, but this component can be scaled up depending on the task at

hand. Once the Halting Policy Network chooses to stop, the final prediction ŷ for series

X is also generated by the Prefix Classifier.

5.3.5 Halting Policy Network

STOP&HOP achieves early halting through a Halting Policy NetworkHθ that chooses whether

to Stop or Wait at a given time t′ based on the history of an ongoing time series X . Since

there are rarely ground truth labels for when STOP&HOP should stop, we follow the state-

of-the-art [46, 48, 82] and formulate this task as a Partially-Observable Markov Decision

Process (POMDP): Given a state ht′ , select an action at′ from the set {Stop, Wait}. If

at′ = {Stop}, then the class label for the entire series is returned at time t′. Since X is

irregular and observations may arrive sporadically, when the Halting Policy Network

chooses to Wait it must also predict for how long before trying to stop again, thereby com-

puting the next time t′ at which the next prefix embedding can be computed. We refer

to this as picking a Hop Option. Overall, the earlier and more accurate the predictions

are for a series X , the higher the reward. If STOP&HOP stops too early, it may not have

observed enough data and will be less likely to be accurate. Therefore, a good solution

PhD Dissertation: Thomas Hartvigsen 109

must carefully balance between stopping and predicting the next halting time.

States. The Halting Policy Network’s job is to compute a probability of halting pt′

given the environment’s state at time t′ which can then be used to take an action: Stop

now, or Wait for more data to be collected. While prior methods use only the prefix em-

bedding ht′ to represent the ongoing system’s current state [46], we propose also predict-

ing an intermediate classification yt′ via the Prefix Classifier for each hidden state to gauge

the model’s current opinion of the classes. By feeding this information to the Halting

Policy Network, it can learn the relationship between the Prefix Classifier’s confidence

and the likely accuracy, which often depends on the task. Additionally, we input t′ as

additional knowledge of a prediction’s earliness.

Actions. The Halting Policy Network contains two prediction problems in sequence.

First, it decides whether to Stop and classify, or to Hop forward in time and wait to classify.

For the Stop decision, the model selects actions from the setAstop = {Stop,Hop}. We thus

parameterize a binomial distribution over the action set Astop:

pt′ = softmax(Whht′ + Uhŷt′ + Vht
′ + bh), (5.7)

where W , U , and V are learned weight matrices and b is a learned bias vector. Finally,

we use the probabilities pt′ to sample an action from a multinomial distribution. If at′ =

{Stop}, then the corresponding class prediction ŷt′ is returned at time t′ and we set τ is

set to t′.

If the model chooses to Hop, we run a hopping policy πhop, another small neural net-

work, that predicts a positive real-valued hop-size, which determines the next candidate

halting time t′. Since we are working with the continuous timeline, this hop-time is natu-

rally modeled using continuous values, which we sampled from a parameterized normal

distribution. First, we parameterize the mean of this normal distribution using a neural

PhD Dissertation: Thomas Hartvigsen 110

network:

µt′ = σ(Wht′ + Uŷt′ + V t′ + b), (5.8)

then sample a hop-size ∆t from the normal distribution with mean µ. We leave the stan-

dard deviation of this distribution as a hyperparameter, though in principle it can also

be learned by the model. To ensure ∆t ≥ 0, we take the absolute value of ∆t. In our

experiments, we set the standard deviation to 0.1, indicating 10% of the timeline. Then,

to compute the new candidate halting time, we add the hop-size to the current candidate

halting time: t′ += ∆t.

In practice, early in training the Halting Policy Network may tend to exploit some ac-

tions by predicting unnecessarily high probability relative to those of an optimal policy.

To encourage exploration early on in training, we employ a simple ε-greedy approach to

action selection and exponentially decay the values ε from 1 to 0 throughout training:

at′ =


at′ , with probability 1− ε

random action, with probability ε

This way, early on in training the model tries out different sequences of actions to cover

the space of possible episodes more effectively. Furthermore, by increasing the proba-

bility that the Halting Policy Network does not stop early before the model has been

thoroughly trained, the prefix encoder and discriminator also get to observe more of the

sequences and increase their performance. Otherwise, a model that learns to stop early

very quickly will never have seen the later portions of the training sequences. For all of

our experiments, we compute ε as e−t while consecutively reassigning t = t+ i∗7
E

for all E

training epochs where t is initialized to 0. During testing, we set ε = 0 so that there is no

PhD Dissertation: Thomas Hartvigsen 111

random exploration for testing series.

Rewards. The final component of the POMDP is the reward for reaching different

states. We encourage the halting policy network to cooperate with the prefix encoder

and classifier by setting the reward rt′ = 1 when the ŷ is accurate and setting rt′ = −1

otherwise.

5.3.6 Training

The Prefix Encoder and Classifier can be trained jointly using standard backpropagation,

encouraging them to predict ŷ as close to y as possible by minimizing their cross entropy:

Lsl =
C∑
c=1

−(yc log(ŷc) + (1− yc) log(1− ŷc) (5.9)

The Halting Policy Network, on the other hand, samples its actions and so its training is

more intensive, though we follow the standard policy gradient method and use the RE-

INFORCE algorithm [124] to estimate the gradient with which we update the network’s

parameters. To balance between earliness and accuracy, the parameters of the Halting

Policy Network are updated with respect to two goals: Make τ small, and make ŷ ac-

curate. Following the state-of-the-art [46], we achieve smooth optimization by rewarding

accurate predictions and penalizing the cumulative probability of Waiting over each episode.

Thus the loss function for optimizing the halting policy network is computed as:

Lhpn =− E

[∑
t′

log πstop(at′|ht′)

[∑
j=t′

(rt′ − bt′)

]]

− E

[∑
t′

log πhop(at′ |ht′)

[∑
j=t′

(rt′ − bt′)

]]

− λ
∑
t′

log π(at′ = Stop|ht′),

PhD Dissertation: Thomas Hartvigsen 112

where the scale of λ determines the emphasis on earliness. If λ is large, the halting policy

network will learn to maximize the probability of stopping always whereas if λ is small

or zero, the model will solely maximize accuracy. Interestingly, the most-accurate classi-

fication may not always be achieved by observing the entire series. For example, early

signals followed by irrelevant values make classification challenging for memory-based

models. Our approach deals with this case very naturally by learning not to make late

predictions when they are less accurate, regardless of any cost of delaying predictions.

The final loss is thus computed as L = Lsl + αLhpn and is minimized via gradient descent

where α scales the loss components.

5.4 Experiments

5.4.1 Datasets

We evaluate STOP&HOP on four synthetic and three real-world datasets, which are de-

scribed as follows:

Synthetic datasets: Since the true halting times are not available for real data, we de-

velop four synthetic datasets with known halting times. Intuitively, a good early classifier

will stop as soon as a signal is observed. To generate these data, we first uniformly sample

T−1 timesteps from the range [0, 1] for each ofN time series. We set T = 10 andN = 5000.

Then, from a chosen distribution of signal times, we sample one more timestep per series

at which the class signal occurs and add it to a series’ timesteps.

We experiment with four distributions of true signal times, each creating a unique

dataset: UNIFORM U(0, 1), EARLY N (µ = 0.25, σ = 0.1), LATE N (µ = 0.75, σ = 0.1), and

BIMODAL where half the signals are from EARLY and the other half are from LATE. For

each time series, one value is sampled from one of the distributions—each distribution

PhD Dissertation: Thomas Hartvigsen 113

creates one dataset—which serves as the time at which a signal arrives in the timeline. In

all cases, we clamp this value to be within range [0, 1]. We generate two classes by giving

2500 time series a 1 at their signal occurrence time, and −1 to the remaining 2500 series

in the dataset. This way, we know precisely when the signals arrive for each instance.

Values corresponding to off-signal timesteps are set to 0 and are uniformly sampled from

the timeline.

EXTRASENSORY: We use the publicly-available ExtraSensory [118] human activity

recognition dataset, which contains smartphone sensor data collected across one week

while participants labeled which actions they performed and when. Using these data,

we simulate a listening probe on a smartphone’s accelerometer data, which consist of

three variables corresponding to the X, Y, and Z coordinates. A listening probe saves a

phone’s battery by collecting data only when certain measurements are taken, naturally

creating irregular time series. For this dataset, we measure the norm of the 3-dimensional

accelerometer data, only taking measurements associated with changes in the norm over

0.001. Here we consider the popular tasks of detecting WALKING and RUNNING, classify-

ing whether or not a person performs an activity within a window. Since activity records

are often incomparable between people, we use the records from the person who walked

or ran the most breaking their series into 100-minute long windows. This creates two

independent datasets, one per user. We balance each dataset, resulting in 2636 ITS with

an average of 99 observation per series for WALKING and 3000 ITS with on average 100

observations for RUNNING.

PHYSIONET: The PHYSIONET dataset [109] contains medical records collecting from

the first 48 hours after 4000 patients were admitted to an intensive care unit and is publicly-

available. There are 37 variables recorded at irregular times for each patient along with

one label indicating if they perished. We thus train our classifiers to perform mortality

prediction for previously-unseen patients. In these data, 13.8% of patients have positive

PhD Dissertation: Thomas Hartvigsen 114

labels.

5.4.2 Implementation Details

For our synthetic datasets and PHYSIONET, we use a standard 80% training, 10% valida-

tion, and 10% testing split. The training set is used to learn model parameters and the

validation set to evaluate the performance different hyperparameter settings. The testing

set is used once to report the final evaluation metrics for each model. The EXTRASENSORY

datasets contain instances taken from different windows along a single timeline and so we

select a timestep for each before which is the training/validation data and after which is

the testing. The training/testing process is repeated five times and we report the average

and standard deviation for all experiments. For the SIMPLESIGNAL datasets, we use 10-

dimensional hidden representations for the RNNs and the prefix encoder’s hidden state

is updated at intervals of 0.1. For EXTRASENSORY, a 20-dimensional prefix encoder’s hid-

den state is updated every 10 minutes and for PHYSIONET it is updated every 4.8 hours.

All models are optimized using Adam [63] with learning rates and weight decays chosen

using the validation data.

All models are implemented in Pytorch. Each model has a one-layer GRU-based

continuous-time Recurrent Neural Network (RNN) that has 10 dimensions for the syn-

thetic datasets and 20 dimensions for the real-world datasets. A one-layer neural network

maps from the hidden states to the final classification.

For each method, we use a batch size of 32 and grid search for a learning rate (options:

{10−2, 10−3, 10−4}) and weight decay for L2 regularization (options: {10−3, 10−4, 10−5})

using our validation data. The validation data is a random 10% of the training dataset

and we repeat this random splitting five times.

PhD Dissertation: Thomas Hartvigsen 115

10 20 30 40 50 60 70 80 90 100
Percent Timeline Used

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Stop&Hop
Preset Halting

(a) UNIFORM

10 20 30 40 50 60 70 80 90 100
Percent Timeline Used

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Stop&Hop
Preset Halting

(b) EARLY

10 20 30 40 50 60 70 80 90 100
Percent Timeline Used

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Stop&Hop
Preset Halting

(c) LATE

Figure 5.2: Earliness vs. Accuracy on three synthetic datasets—UNIFORM, EARLY, and
LATE. The X axis denotes the average percent of the timeline used as STOP&HOP predicts
one halting point per time series.

10 20 30 40 50 60 70 80 90 100
Percent Timeline Used

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Stop&Hop
Preset Halting

(a) Earliness vs. Accuracy
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of Timeline Observed

0.0

0.25

0.5

0.75

1.0

Pr
op

or
tio

n
of

 In
st

an
ce

s
H

al
te

d

Preset Halting
True Early
Predicted Early
True Late
Predicted Late

(b) Cumulative halting distribution

Figure 5.3: Results for synthetic BIMODAL dataset.

5.4.3 Synthetic Experiments.

We first verify that STOP&HOP indeed finds the true halting times by using use our four

synthetic datasets where we know the halting times. Our results are shown in Figures

5.2 and 5.3, where we compare STOP&HOP to a Preset Halting baseline with the same

Prefix Encoder as STOP&HOP in order to study the effects of learning when to stop. The

preset halting method stops at a set of predetermined halting times. For example, a preset

halting method that uses 50% of the timeline stops all instances at the same time.

To train STOP&HOP, we tune λ, the wait penalty, so that STOP&HOP halts on average

at 10 to 100% of the timeline used and report the corresponding accuracy. We stop Preset

Halting at the same points for comparison. To demonstrate that the halting policy network

PhD Dissertation: Thomas Hartvigsen 116

10 20 30 40 50 60 70 80 90 100
Minutes

0.8

0.82

0.85

0.88

0.9

0.92

0.95

0.98

1.0

AU
C

Preset
Threshold
Stop&Hop

(a) EXTRASENSORY WALKING

10 20 30 40 50 60 70 80 90 100
Minutes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

AU
C

Preset
Threshold
Stop&Hop

(b) EXTRASENSORY RUNNING

4 9 14 19 24 28 33 38 43 48
Hours

0.45

0.5

0.55

0.6

0.65

0.7

0.75

AU
C

Preset
Threshold
Stop&Hop

(c) PHYSIONET

Figure 5.4: Results on three real-world time-sensitive datasets.

learns an effective halting policy, we let it choose between stopping and hopping forwards

with δ = 0.1. One τ is predicted per series.

We find that STOP&HOP clearly achieves higher accuracy while using less of the time-

line, as expected. This is only possible if STOP&HOP appropriately halts when it sees a

signal and waits otherwise. As the four synthetic datasets have different halting distribu-

tions, we see that STOP&HOP succeeds to wait longer when signals are all later (Figure

5.2c) and stop earlier when signals are all earlier (Figure 5.2b).

For the BIMODAL dataset—see Figure 5.3—we first observe that STOP&HOP again

makes early and accurate predictions, even when signals are distributed unevenly across

the timeline. Further, we also show a snapshot of the halting distribution from the BI-

MODAL dataset from STOP&HOP trained with λ = 3×10−6 in Figure 5.3b. Each instance’s

predicted halting time is plotted against the proportion of the dataset with halting times

earlier than a set of possible halting times, showing the cumulative halting distribution.

We color-code the early and late signals and find that STOP&HOP matches the cumulative

frequencies of the halting timings almost perfectly. As our method captures all positives

exactly on time, matching the true cumulative functions without supervision, we postu-

late that STOP&HOP can also learn other complex functions. In contrast, the preset halting

comparison’s halting distribution is a step function: All instances halt at the same time.

This is not flexible enough to match the halting distributions of real datasets.

PhD Dissertation: Thomas Hartvigsen 117

5.4.4 Real-world Dataset Experiments.

We further validate that STOP&HOP succeeds to find the appropriate halting times for

ongoing ITS using three real-world datasets, our findings for which are shown in Figure

5.4. For these experiments, we add another compared method, a Threshold Halting ap-

proach that makes a prediction once its maximum predicted class probability surpasses

a threshold. We range this threshold from 0.5 to 1.0 (wait until the end) and report the

corresponding earliness and accuracy values. The same as Preset Halting and STOP&HOP,

this method also uses a GRU-D to classify the series.

Optimal halting times are unknown for these datasets and so we plot the earliness

and the accuracy of each method. In all cases, we find that STOP&HOP again clearly

succeeds to make early and accurate predictions, even for real-world data. This is shown

by STOP&HOP producing a curve that is higher and to the left of the other compared

methods. As expected, signals may arrive at different times for different datasets. For

EXTRASENSORY WALKING, STOP&HOP and Threshold are able to achieve perfect AUC

using half the timeline. Again, as shown in Figure 5.3b, this happens when a method

predicts good halting points. Our proposed method is consistently the best across the

board.

The best results for STOP&HOP are obtained when the hop options are δ1 = 5, δ2 = 10,

and δ3 = 20 minutes for the EXTRASENSORY datasets. For PHYSIONET, the best results are

when δ1 = 4.8, δ2 = 9.6, and δ3 = 14.4 compared to each δ alone and to smaller or larger

values. These specific δ values are chosen to break the full timeline—48 hours—into ten

even steps.

We also conduct a hyperparameter study for λ, shown in Figure 5.5. Our results in-

dicate that λ has strong control over the earliness–accuracy trade-off: As λ increases, the

Halting Time and Accuracy steadily decrease. Standard deviations are computed across

PhD Dissertation: Thomas Hartvigsen 118

0.5 0.4 0.3 0.2 0.1 0.0
3

0.0
2

0.0
1
0.0

03
0.0

02

0.0
00

2

0.0
00

3
1e

-05
2e

-05
3e

-05
0.0

01

0.0
00

10.0
0.65
0.72
0.79
0.86
0.93

1.0

AU
C

(a) Effect of λ on AUC

0.5 0.4 0.3 0.2 0.1 0.0
3

0.0
2

0.0
1
0.0

03
0.0

02

0.0
00

2

0.0
00

3
1e

-05
2e

-05
3e

-05
0.0

01

0.0
00

10.0
0.1

0.4

0.7

1.0

H
al

tin
g

Ti
m

e

(b) Effect of λ on Earliness

Figure 5.5: Hyperparameter tuning for λ, the emphasis on earliness, on the EXTRASEN-
SORY RUNNING dataset.

five replications of the same experiment with different seeds. Small values indicate that

STOP&HOP consistently learns a successful policy for these data.

5.4.5 Discrete Hop Size Experiments

We also consider selecting hop-sizes sample from a categorical distribution of hop options

[10, 20, 30] on the EXTRASENSORY RUNNING dataset. We train new STOP&HOP models

with each possible combination of options, the results of which are shown in Figure 5.6.

Here, we find that STOP&HOP is generally robust to the choice of hop options: Each set of

options results in very similar curves. As shown in this experiment, however, this choice

is the most conservative for STOP&HOP’s performance—other option sets are even better

in some cases. All hop options lead to performance that surpasses the compared methods.

10 20 30 40 50 60 70 80 90 100
Minutes

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1.0

AU
C

: 10
: 20
: 30
: {10, 20}
: {20, 30}
: {10, 30}
: {10, 20, 30}

Figure 5.6: Comparing Hop Options on the EXTRASENSORY RUNNING dataset.

PhD Dissertation: Thomas Hartvigsen 119

5.5 Conclusions

In this work we define the open Early Classification of Irregular Time Series problem and

propose its first solution, STOP&HOP. This new problem is much more realistic than ex-

isting early classification settings. Our approach is a novel reinforcement learning-based

continuous-time recurrent network that instantiates a modular and general framework

to solve the ECITS problem. Our model learns to use patterns in both the values and

irregularity of ongoing ITS to predict when enough data has been collected to warrant

classification with respect to the task at hand. This is achieved without direct supervision on

the halting times and our solution is naturally tunable between goals of accuracy and ear-

liness. Using four synthetic datasets, we demonstrate that STOP&HOP halts at the earliest

possible times. We then validate STOP&HOP on three real-world public datasets, demon-

strating that our method outperforms existing methods in all settings, making early and

accurate predictions.

Our work is also a step forward in ensuring the practicality of machine predictions.

Accuracy (or a similar measure) is often used alone to evaluate a model. However, in

time-sensitive domains, a classifier that learns to make earlier predictions and trade off

some accuracy is preferred. There has been a large amount of recent work in many im-

portant directions—such as fairness and explainability—and we hope our work will also

encourage the community to pursue measures of success beyond pure accuracy. In par-

ticular, the timing of a machine learning model’s predictions can heavily impact their

usefulness.

6 | Conclusion

This dissertation studies and develops methods for learning the best time to classify data

that are collected sequentially. Making such timely classifications is essential in a wide-

variety of time-sensitive domains. We develop timely classifiers for both multi-class

(Chapter 2) and multi-label (Chapter 3) classification of regularly-sampled time series.

Then, we develop a method for learning from irregularly-sampled time series (Chapter

4) and finish with an early classifier for irregularly-spaced time series (Chapter 5), gener-

alizing prior work in this space.

In the first part of this dissertation, we study the early classification of regularly-sampled

time series. Chapter 2 introduces a deep reinforcement learning approach to solving

this problem, pairing Recurrent Neural Networks with Policy Gradient methods to train

adaptive models that predict when to classify ongoing time series. This approach is

broadly applicable, as demonstrated in Chapter 4, and comprises a substantial impact to

the field of early classification; this is now the state-of-the-art approach to this problem.

Chapter 3 extends early classification into the multi-label setting, where a given time

series may be a member of multiple classes concurrently. This new problem setting intro-

duces previously-unexplored challenges and opportunities: Evidence for different classes

may (1) appear at different times in ongoing series, and (2) when class evidence appears

sequentially, previously-observed classes can inform both future predicted classes and

help predict them earlier. Our method leverages these insights, building on recent ad-

vances in classifier chains to train a successful early multi-label classifier. This approach

generalizes prior work on early classification of time series, introducing a new notion of

prediction timing.

In the second part of this dissertation, we relax the assumption that ongoing time se-

PhD Dissertation: Thomas Hartvigsen 121

ries need to be regularly-sampled, instead allowing them to be sampled irregularly, where

there are variable gaps between observations. Chapter 4 describes a novel method for ex-

plicitly finding discriminative regions in irregularly-sampled time series and using them

to classify a series. These regions can be tiny relative to the entire timeline, and are chal-

lenging to detect using imputation methods. This approach is a novel paradigm for learn-

ing from irregularly-sampled time series, which generalizes prior methods and extends

beyond the current literature. Further, this work introduces new notions of ordered decom-

position of time series data into a sequence of subsequences: it can be easier to classify a

time series by breaking it into windows in the correct order.

Chapter 5 ties early classification into the problem of learning from irregularly-sampled

time series, generalizing both problems into one novel setting. Here, we present a new ap-

proach to learning from irregularly-sampled time series by learning when in the timeline to

query a classifier, thereby allowing for early classifications. Additionally, previous early

classifiers do not handle irregularly-sampled time series, and our approach paves the way

for advancements in a more-general setting. This work is the first to combine prediction

and observation timing into one, unified architecture, paving the way for mroe actionable

and realistic early classification systems.

Altogether, the work presented in this dissertation expands the ways in which ma-

chine learning can support time-sensitive decision making problems. Our approaches

move beyond measuring solely accuracy and consider the impacts of when a machine

makes its predictions on desirable outcomes of a system. The next section discusses in-

teresting directions for further advancements in this area.

7 | Future Work

The work described in this dissertation is just the beginning of a plethora of fruitful re-

search. There is a wide array of extensions of the work described in this document. This

section describes three important areas of research that can follow the work presented in

this dissertation.

7.1 Adaptive Intervention Lengths for Early Classification

In some time-sensitive problems, an expert may know how far in advance they would

need to be warned of an impending event to take a rectifying action. For instance, it can

take days to treat a dangerous case of sepsis; predictions made only a few hours before

sepsis onset are less valuable than those made days in advance. This feature could be pro-

vided by our system. Early classification has not yet been studied in this “intervention-

aware" context. To capture this, one might assume there exists some time-window δ that

indicates how far in advance of the event a prediction must be made. This then imposes the

constraint τ ≤ T − δ, which is not easily satisfied because T is unknown at test time. The

halting policy must then be developed to provide this functionality. While there are sev-

eral avenues we will study to tackle this problem, the first attractive direction is to predict

the horizon. Using the knowledge represented by the RNN one might predict P (T |X), the

time remaining before an event occurs. Then, the halting policy may be informed of the

time-to-event (or even constrained), ensuring early-enough classifications given accurate

horizon predictions.

PhD Dissertation: Thomas Hartvigsen 123

7.2 Explaining Deep Early Classifiers

Using deep learning for early classification sacrifices the interpretability of classical ap-

proaches [125]. However, the burgeoning field of explainability is a promising direction for

regaining this lost feature. Furthermore, complex models in time-sensitive decision mak-

ing environments are often only be adopted if users can gain some intuitive understand-

ing of a model’s rationale to trust its predictions, regardless of their accuracy. For this, one

might develop time-aware explanations of an early classifier’s predictions, including the

timing trade-offs, indicating the importance of timing versus feature content, and high-

lighting relationships between complex temporal features. Explainability for time series

classification is itself a uniquely challenging setting as time series can be challenging to

interpret visually. Therefore, the quality of explanation will likely depend on the given

domain. For instance, the underlying shape of a time series may be shown to a practi-

tioner, but other features such as trend or seasonality may be equally relevant in some

settings. A successful explainable model will consider all possibly-relevant information,

but intelligently procure only the most useful information.

7.3 Multivariate Convolutional Embeddings.

Some classification tasks can be solved by capturing stand-alone shapes, or shapelets [134],

in ongoing time series values. While our general Recurrent Halting Policy approach can

also capture shapes, in some cases we want this to be more explicit due to assumptions

of a domain task or to enhance interpretability by matching to known domain-known

shapelets. This can be achieved through the use of convolutional kernels, which have re-

cently been shown to match well with shape-based time series classification [137, 139]. In-

tegrating this powerful approach into the halting architecture remains entirely unstudied

PhD Dissertation: Thomas Hartvigsen 124

in our challenging context. There is a broad avenue of possible formulations of Recurrent

Convolutional Halting Policies, which can lead to a novel family of early classifiers. How-

ever, there remains a vast array of modern convolutional operators such as multi-channel

approaches [137] or attention mechanisms [92], each of which will capture different as-

sumptions. Such a convolutional approach may be developed to achieve intuitive and

scalable multivariate early classification methods.

7.4 Early Multi-modal Classification.

Real time-sensitive domains often feature a plethora of data modalities, all recorded over

time. For example, a hospital patient’s vital signs are collected frequently with medical

sensors while clinicians sporadically take notes on their observations. Some tests may

require collecting various types of imaging and audio is beginning to be integrated into

healthcare. Depending on the patient, there may also be medical imaging data collected

over time. All data sources can contain important information, but they must be modeled

quite differently. A clinical note, for instance, is unstructured, variable length, complex,

and often extremely rich with expert insights. They may even contain rationales behind

different treatment decisions. On the other hand, a sequence of test results are triggered

by the healthcare worker’s decision-making process. The resultant values are them the

answers to an expert’s queries.

Bibliography

[1] R. Adhikari and R. K. Agrawal. An introductory study on time series modeling and
forecasting. arXiv preprint arXiv:1302.6613, 2013.

[2] S. Aminikhanghahi and D. J. Cook. A survey of methods for time series change
point detection. Knowledge and information systems, 51(2):339–367, 2017.

[3] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger. Indi-
cations of nonlinear deterministic and finite-dimensional structures in time series of
brain electrical activity: Dependence on recording region and brain state. Physical
Review E, 64(6):061907, 2001.

[4] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. A public domain
dataset for human activity recognition using smartphones. In ESANN, 2013.

[5] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series clas-
sification bake off: a review and experimental evaluation of recent algorithmic ad-
vances. Data Mining and Knowledge Discovery, 31(3):606–660, 2017.

[6] M. T. Bahadori and Z. C. Lipton. Temporal-clustering invariance in irregular health-
care time series. arXiv preprint arXiv:1904.12206, 2019.

[7] M. T. Bahadori and Y. Liu. Granger causality analysis in irregular time series. In
SIAM International Conference on Data Mining, pages 660–671. SIAM, 2012.

[8] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[9] Y. Bao, S. Chang, M. Yu, and R. Barzilay. Deriving machine attention from human
rationales. In Conference on Empirical Methods in Natural Language Processing, pages
1903–1913, 2018.

[10] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou. Patient subtyping
via time-aware lstm networks. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 65–74, 2017.

[11] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation, arXiv, 2013.

[12] B. B. Biswal, M. Mennes, X.-N. Zuo, S. Gohel, C. Kelly, S. M. Smith, C. F. Beckmann,
J. S. Adelstein, R. L. Buckner, S. Colcombe, et al. Toward discovery science of human
brain function. Proceedings of the National Academy of Sciences, 107(10):4734–4739,
2010.

PhD Dissertation: Thomas Hartvigsen 126

[13] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classifi-
cation. Pattern Recognition, 37(9):1757 – 1771, 2004.

[14] J. S. Bridle. Training stochastic model recognition algorithms as networks can lead
to maximum mutual information estimation of parameters. In NeurIPS, 1990.

[15] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. Recurrent neural networks
for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

[16] J. R. Chen. Making subsequence time series clustering meaningful. In Fifth IEEE
International Conference on Data Mining (ICDM’05), pages 8–pp. IEEE, 2005.

[17] S.-F. Chen, Y.-C. Chen, C.-K. Yeh, and Y.-C. Wang. Order-free rnn with visual at-
tention for multi-label classification. In AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[18] Y. Chen and J. Chien. Continuous-time attention for sequential learning. In AAAI
Conference on Artificial Intelligence, 2021.

[19] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder–decoder for sta-
tistical machine translation. In Conference on Empirical Methods in Natural Language
Processing, pages 1724–1734, 2014.

[20] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for
image classification, arXiv, 2012.

[21] M. Coralie, G. Perrin, E. Ramasso, and R. Michèlle. A deep reinforcement learning
approach for early classification of time series. In EUSIPCO, 2018.

[22] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes: volume
II: general theory and structure. Springer Science & Business Media, 2007.

[23] E. De Brouwer, J. Simm, A. Arany, and Y. Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In Advances in Neural Information
Processing Systems, pages 7379–7390, 2019.

[24] K. Deb. Multi-objective optimization using evolutionary algorithms, volume 16. John
Wiley & Sons, 2001.

[25] D. Dennis, C. Pabbaraju, H. V. Simhadri, and P. Jain. Multiple instance learning for
efficient sequential data classification on resource-constrained devices. In NeurIPS,
pages 10953–10964, 2018.

[26] A. F. Ebihara, T. Miyagawa, K. Sakurai, and H. Imaoka. Deep neural networks
for the sequential probability ratio test on non-iid data series. arXiv preprint
arXiv:2006.05587, 2020.

PhD Dissertation: Thomas Hartvigsen 127

[27] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[28] P. Esling and C. Agon. Time-series data mining. ACM Computing Surveys (CSUR),
45(1):1–34, 2012.

[29] E. D. Feigelson, G. J. Babu, and G. A. Caceres. Autoregressive times series methods
for time domain astronomy. Frontiers in Physics, 6:80, 2018.

[30] T.-c. Fu. A review on time series data mining. Engineering Applications of Artificial
Intelligence, 24(1):164–181, 2011.

[31] Y. Fujita, N. Kanda, S. Horiguchi, K. Nagamatsu, and S. Watanabe. End-to-end
neural speaker diarization with permutation-free objectives. In Interspeech, 2019.

[32] J. Futoma, S. Hariharan, and K. Heller. Learning to detect sepsis with a multitask
gaussian process rnn classifier. In International Conference on Machine Learning, pages
1174–1182. JMLR. org, 2017.

[33] S. Gabarda and G. Cristóbal. Detection of events in seismic time series by time–
frequency methods. IET Signal Processing, 4(4):413–420, 2010.

[34] I. García-Magariño, C. Medrano, I. Plaza, and B. Oliván. A smartphone-based sys-
tem for detecting hand tremors in unconstrained environments. Personal and Ubiq-
uitous Computing, 20(6):959–971, 2016.

[35] M. F. Ghalwash and Z. Obradovic. Early classification of multivariate temporal
observations by extraction of interpretable shapelets. BMC bioinformatics, 13(1):1–
12, 2012.

[36] M. F. Ghalwash, V. Radosavljevic, and Z. Obradovic. Extraction of interpretable
multivariate patterns for early diagnostics. In ICDM, pages 201–210, 2013.

[37] M. F. Ghalwash, V. Radosavljevic, and Z. Obradovic. Utilizing temporal patterns for
estimating uncertainty in interpretable early decision making. In SIGKDD, pages
402–411, 2014.

[38] M. Ghassemi, M. A. Pimentel, T. Naumann, T. Brennan, D. A. Clifton, P. Szolovits,
and M. Feng. A multivariate timeseries modeling approach to severity of illness as-
sessment and forecasting in icu with sparse, heterogeneous clinical data. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

[39] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark,
J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. Physiobank, physiotoolkit,
and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215–e220, 2000.

PhD Dissertation: Thomas Hartvigsen 128

[40] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Learning time-series
shapelets. In Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 392–401, 2014.

[41] A. Graves. Generating sequences with recurrent neural networks, arXiv, 2013.

[42] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In IEEE ICASSP, pages 6645–6649, 2013.

[43] A. Gupta, H. P. Gupta, B. Biswas, and T. Dutta. An early classification approach for
multivariate time series of on-vehicle sensors in transportation. IEEE Transactions
on Intelligent Transportation Systems, 2020.

[44] T. Hartvigsen, W. Gerych, J. Thadajarassiri, X. Kong, and E. Rundensteiner. Learn-
ing to stop and classify ongoing irregular time series early. In forthcoming, 2022.

[45] T. Hartvigsen, C. Sen, S. Brownell, E. Teeple, X. Kong, and E. A. Rundensteiner.
Early prediction of mrsa infections using electronic health records. In HEALTHINF,
pages 156–167, 2018.

[46] T. Hartvigsen, C. Sen, X. Kong, and E. Rundensteiner. Adaptive-halting policy
network for early classification. In SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 101–110. ACM, 2019.

[47] T. Hartvigsen, C. Sen, X. Kong, and E. Rundensteiner. Learning to selectively up-
date state neurons in recurrent networks. In CIKM, 2020.

[48] T. Hartvigsen, C. Sen, X. Kong, and E. Rundensteiner. Recurrent halting chain for
early multi-label classification. In SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2020.

[49] T. Hartvigsen, J. Thadajarassiri, X. Kong, and E. Rundensteiner. Continuous-time
attention policy network for irregularly-sampled time series classification. In forth-
coming, 2022.

[50] G. He, Y. Duan, R. Peng, X. Jing, T. Qian, and L. Wang. Early classification on
multivariate time series. Neurocomputing, 149:777–787, 2015.

[51] S. Hochreiter. The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107–116, 1998.

[52] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

PhD Dissertation: Thomas Hartvigsen 129

[53] S. Hong, Y. Xu, A. Khare, S. Priambada, K. Maher, A. Aljiffry, J. Sun, and A. Tu-
manov. Holmes: Health online model ensemble serving for deep learning models
in intensive care units. In SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1614–1624. ACM, 2020.

[54] M. Horn, M. Moor, C. Bock, B. Rieck, and K. Borgwardt. Set functions for time
series. In International Conference on Machine Learning, pages 4353–4363. PMLR, 2020.

[55] Z. Huang, Y. Sun, and W. Wang. Learning continuous system dynamics from
irregularly-sampled partial observations. In Advances in Neural Information Process-
ing Systems, 2020.

[56] Z. Huang, Z. Ye, S. Li, and R. Pan. Length adaptive recurrent model for text classi-
fication. In CIKM, pages 1019–1027, 2017.

[57] A. A. Ismail, M. Gunady, L. Pessoa, H. C. Bravo, and S. Feizi. Input-cell attention
reduces vanishing saliency of recurrent neural networks. In Advances in Neural In-
formation Processing Systems, pages 10814–10824, 2019.

[58] J. Jia and A. R. Benson. Neural jump stochastic differential equations. In Advances
in Neural Information Processing Systems, 2019.

[59] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi,
B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark. Mimic-iii, a freely accessible
critical care database. Scientific Data, 3, 2016.

[60] F. Kawala, A. Douzal-Chouakria, E. Gaussier, and E. Dimert. Prédictions d’activité
dans les réseaux sociaux en ligne. In 4ième conférence sur les modèles et l’analyse des
réseaux: Approches mathématiques et informatiques, page 16, 2013.

[61] P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations
for irregular time series. In Advances in Neural Information Processing Systems, 2020.

[62] P. Kidger, J. Morrill, and T. Lyons. Generalised interpretable shapelets for irregular
time series. arXiv preprint arXiv:2005.13948, 2020.

[63] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations. 2014.

[64] A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007, 2006.

[65] R. K. Lai, C.-Y. Fan, W.-H. Huang, and P.-C. Chang. Evolving and clustering fuzzy
decision tree for financial time series data forecasting. Expert Systems with Applica-
tions, 36(2):3761–3773, 2009.

PhD Dissertation: Thomas Hartvigsen 130

[66] M. Lechner and R. Hasani. Learning long-term dependencies inirregularly-
sampled time series. In Advances in Neural Information Processing Systems, 2020.

[67] J. B. Lee, R. A. Rossi, S. Kim, N. K. Ahmed, and E. Koh. Attention models in graphs:
A survey. Transactions on Knowledge Discovery from Data, 13(6):1–25, 2019.

[68] G. Li, B. Choi, J. Xu, S. S. Bhowmick, K.-P. Chun, and G. L. Wong. Shapenet: A
shapelet-neural network approach for multivariate time series classification. In
AAAI Conference on Artificial Intelligence, 2021.

[69] S. C.-X. Li and B. M. Marlin. A scalable end-to-end gaussian process adapter for
irregularly sampled time series classification. In Advances in Neural Information Pro-
cessing Systems, pages 1804–1812, 2016.

[70] S. C.-X. Li and B. M. Marlin. Learning from irregularly-sampled time series: a
missing data perspective. In International Conference on Machine Learning, 2020.

[71] T. W. Liao. Clustering of time series data—a survey. Pattern recognition, 38(11):1857–
1874, 2005.

[72] Y.-F. Lin, H.-H. Chen, V. S. Tseng, and J. Pei. Reliable early classification on mul-
tivariate time series with numerical and categorical attributes. In PAKDD, pages
199–211, 2015.

[73] Z. C. Lipton, D. Kale, and R. Wetzel. Directly modeling missing data in sequences
with rnns: Improved classification of clinical time series. In Machine Learning for
Healthcare, pages 253–270, 2016.

[74] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel. Learning to diagnose with lstm
recurrent neural networks. arXiv preprint arXiv:1511.03677, 2015.

[75] Z. C. Lipton, D. C. Kale, and R. Wetzel. Modeling missing data in clinical time series
with rnns. In Machine Learning for Healthcare, 2016.

[76] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uwave: Accelerometer-
based personalized gesture recognition and its applications. Pervasive and Mobile
Computing, 5(6):657–675, 2009.

[77] Z. Liu, L. Wu, and M. Hauskrecht. Modeling clinical time series using gaussian
process sequences. In Proceedings of the 2013 SIAM International Conference on Data
Mining, pages 623–631. SIAM, 2013.

[78] S. Ma, L. Sigal, and S. Sclaroff. Learning activity progression in lstms for activity
detection and early detection. In CVPR, pages 1942–1950, 2016.

PhD Dissertation: Thomas Hartvigsen 131

[79] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P.
Sheth. Machine learning for internet of things data analysis: A survey. Digital
Communications and Networks, 4(3):161–175, 2018.

[80] M. Marghany and M. Hashim. Retrieving seasonal sea surface salinity from modis
satellite data using a box-jenkins algorithm. In 2011 IEEE International Geoscience
and Remote Sensing Symposium, pages 2017–2020. IEEE, 2011.

[81] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.

[82] C. Martinez, E. Ramasso, G. Perrin, and M. Rombaut. Adaptive early classification
of temporal sequences using deep reinforcement learning. Knowledge-Based Systems,
2019.

[83] G. Melis, T. Kočiskỳ, and P. Blunsom. Mogrifier lstm. In International Conference on
Learning Representations, 2020.

[84] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent neural
network based language model. In ISCA, 2010.

[85] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In Ad-
vances in neural information processing systems, pages 2204–2212, 2014.

[86] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[87] U. Mori, A. Mendiburu, S. Dasgupta, and J. A. Lozano. Early classification of time
series by simultaneously optimizing the accuracy and earliness. IEEE transactions
on neural networks and learning systems, 29(10):4569 – 4578, 2018.

[88] U. Mori, A. Mendiburu, E. Keogh, and J. A. Lozano. Reliable early classification of
time series based on discriminating the classes over time. Data Mining and Knowl-
edge Discovery, 31(1):233–263, 2017.

[89] M. C. Mozer, D. Kazakov, and R. V. Lindsey. Discrete event, continuous time rnns.
arXiv preprint arXiv:1710.04110, 2017.

[90] J. Nam, Y.-B. Kim, E. L. Mencia, S. Park, R. Sarikaya, and J. Fürnkranz. Learning
context-dependent label permutations for multi-label classification. In ICML, pages
4733–4742, 2019.

[91] J. Nam, E. L. Mencía, H. J. Kim, and J. Fürnkranz. Maximizing subset accuracy with
recurrent neural networks in multi-label classification. In NeurIPS, pages 5413–
5423, 2017.

PhD Dissertation: Thomas Hartvigsen 132

[92] M. Nauta, D. Bucur, and C. Seifert. Causal discovery with attention-based convo-
lutional neural networks. Machine Learning and Knowledge Extraction, 1(1):312–340,
2019.

[93] H. F. Nweke, Y. W. Teh, M. A. Al-Garadi, and U. R. Alo. Deep learning algorithms
for human activity recognition using mobile and wearable sensor networks: State
of the art and research challenges. Expert Systems with Applications, 105:233–261,
2018.

[94] J. Oh, J. Wang, and J. Wiens. Learning to exploit invariances in clinical time-series
data using sequence transformer networks. In Machine Learning for Healthcare Con-
ference, pages 332–347, 2018.

[95] Y.-S. Peng, K.-F. Tang, H.-T. Lin, and E. Chang. Refuel: Exploring sparse features
in deep reinforcement learning for fast disease diagnosis. In Neural information pro-
cessing systems, pages 7322–7331, 2018.

[96] Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and G. W. Cottrell. A dual-stage
attention-based recurrent neural network for time series prediction. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence, pages 2627–2633, 2017.

[97] N. F. M. Radzuan, Z. Othman, and A. A. Bakar. Uncertain time series in weather
prediction. Procedia Technol, 11:557–64, 2013.

[98] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. Liu, X. Liu,
J. Marcus, M. Sun, et al. Scalable and accurate deep learning with electronic health
records. NPJ Digital Medicine, 1(1):18, 2018.

[99] H. Reuse, M. J. Joshi, R. Rascal, et al. Importance of data mining time series tech-
nique in crime and criminal investigation: A case study of pune rural police sta-
tions. International Journal of Computer Applications, 30(9), 2011.

[100] J. W. Richards, D. L. Starr, N. R. Butler, J. S. Bloom, J. M. Brewer, A. Crellin-Quick,
J. Higgins, R. Kennedy, and M. Rischard. On machine-learned classification of vari-
able stars with sparse and noisy time-series data. The Astrophysical Journal, 733(1):10,
2011.

[101] Y. Rubanova, T. Q. Chen, and D. K. Duvenaud. Latent ordinary differential equa-
tions for irregularly-sampled time series. In Advances in Neural Information Process-
ing Systems, pages 5321–5331, 2019.

[102] D. B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

[103] J. Schmidhuber. Self-delimiting neural networks, arXiv, 2012.

[104] J. Schulman, N. Heess, T. Weber, and P. Abbeel. Gradient estimation using stochas-
tic computation graphs. In Advances in Neural Information Processing Systems, 2015.

PhD Dissertation: Thomas Hartvigsen 133

[105] A. Sharma and S. K. Singh. Early classification of multivariate data by learning
optimal decision rules. Multimedia Tools and Applications, pages 1–24, 2020.

[106] J. Shieh and E. Keogh. i sax: indexing and mining terabyte sized time series. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 623–631, 2008.

[107] S. N. Shukla and B. Marlin. Interpolation-prediction networks for irregularly sam-
pled time series. In International Conference on Learning Representations, 2019.

[108] S. N. Shukla and B. M. Marlin. Multi-time attention networks for irregularly sam-
pled time series. In International Conference on Learning Representations, 2021.

[109] I. Silva, G. Moody, D. J. Scott, L. A. Celi, and R. G. Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012.
In 2012 Computing in Cardiology, pages 245–248. IEEE, 2012.

[110] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484,
2016.

[111] E. Sood, S. Tannert, P. Müller, and A. Bulling. Improving natural language process-
ing tasks with human gaze-guided neural attention. In Advances in Neural Informa-
tion Processing Systems, 2020.

[112] G. A. Susto, A. Cenedese, and M. Terzi. Time-series classification methods: Review
and applications to power systems data. In Big data application in power systems,
pages 179–220. Elsevier, 2018.

[113] R. S. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, Univer-
sity of Massachusetts Amherst, 1984.

[114] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In NeurIPS, pages 1057–
1063. 2000.

[115] Q. Tan, M. Ye, G. L.-H. Wong, and P. Yuen. Cooperative joint attentive network
for patient outcome prediction on irregular multi-rate multivariate health data. In
International Joint Conference on Artificial Intelligence, 2021.

[116] Q. Tan, M. Ye, B. Yang, S.-Q. Liu, and A. Ma. Data-gru: Dual-attention time-aware
gated recurrent unit for irregular multivariate time series. In AAAI Conference on
Artificial Intelligence, 2020.

[117] C.-P. Tsai and H.-Y. Lee. Order-free learning alleviating exposure bias in multi-label
classification. In AAAI, 2020.

PhD Dissertation: Thomas Hartvigsen 134

[118] Y. Vaizman, K. Ellis, and G. Lanckriet. Recognizing detailed human context in the
wild from smartphones and smartwatches. IEEE Pervasive Computing, 16(4):62–74,
2017.

[119] O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to sequence for sets.
In ICLR, 2017.

[120] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu. Deep learning for sensor-based
activity recognition: A survey. Pattern Recognition Letters, 119:3–11, 2019.

[121] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. Cnn-rnn: A unified
framework for multi-label image classification. In CVPR, pages 2285–2294, 2016.

[122] M. Weber, M. Liwicki, D. Stricker, C. Scholzel, and S. Uchida. Lstm-based early
recognition of motion patterns. In ICPR, pages 3552–3557. IEEE, 2014.

[123] J. Wiens, E. Horvitz, and J. V. Guttag. Patient risk stratification for hospital-
associated c. diff as a time-series classification task. In Advances in Neural Information
Processing Systems, pages 467–475, 2012.

[124] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[125] R. Wu, A. Der, and E. J. Keogh. When is early classification of time series meaning-
ful? arXiv preprint arXiv:2102.11487, 2021.

[126] Z. Xing, J. Pei, and P. Yu. Early prediction on time series: A nearest neighbor ap-
proach. In IJCAI, pages 1297–1302, 2009.

[127] Z. Xing, J. Pei, and P. S. Yu. Early classification on time series. Knowledge and Infor-
mation Systems, 31(1):105–127, 2012.

[128] Z. Xing, J. Pei, P. S. Yu, and K. Wang. Extracting interpretable features for early
classification on time series. In SDM, pages 247–258, 2011.

[129] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Ben-
gio. Show, attend and tell: Neural image caption generation with visual attention.
In ICML, pages 2048–2057, 2015.

[130] W. Yan, G. Li, Z. Wu, S. Wang, and P. S. Yu. Extracting diverse-shapelets for early
classification on time series. World Wide Web, 2020.

[131] P. Yang, X. Sun, W. Li, S. Ma, W. Wu, and H. Wang. Sgm: Sequence generation
model for multi-label classification. In COLING, pages 3915–3926, 2018.

[132] Q. Yang and X. Wu. 10 challenging problems in data mining research. International
Journal of Information Technology & Decision Making, 5(04):597–604, 2006.

PhD Dissertation: Thomas Hartvigsen 135

[133] L. Yao, E. Poblenz, D. Dagunts, B. Covington, D. Bernard, and K. Lyman. Learning
to diagnose from scratch by exploiting dependencies among labels. arXiv preprint
arXiv:1710.10501, 2017.

[134] L. Ye and E. Keogh. Time series shapelets: a new primitive for data mining. In
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 947–
956. ACM, 2009.

[135] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J.
Smola. Deep sets. In neural information processing systems, pages 3391–3401, 2017.

[136] W. Zhang, D. K. Jha, E. Laftchiev, and D. Nikovski. Multi-label prediction in time
series data using deep neural networks. arXiv preprint, abs/2001.10098, 2020.

[137] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu. Convolutional neural networks for time
series classification. Journal of Systems Engineering and Electronics, 28(1):162–169,
2017.

[138] K. Zheng, J. Gao, K. Y. Ngiam, B. C. Ooi, and W. L. J. Yip. Resolving the bias in elec-
tronic medical records. In SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 2171–2180. ACM, 2017.

[139] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao. Time series classification using
multi-channels deep convolutional neural networks. In International Conference on
Web-Age Information Management, pages 298–310. Springer, 2014.

