
Multiscale Modeling of Amino Acids

A Major Qualifying Project
submitted by

Anders Hokinson
in May 2013

to the faculty of Worcester Polytechnic Institute, Worcester, MA,

in partial fulfillment of the requirements for the

degree of Bachelor of Science in the department of

Physics

and accepted on the recommendation of

Prof. Izabela Stroe, Ph.D.

Department of Physics

&

Kryngle Daly, Ph.D.

KBioSim

Protein misfolding results in a wide range of highly debilitating and increasingly

prevalent diseases. Despite success in atomic protein folding simulations, timescales

for results are long and hinder research into the stochastic folding process. Perform-

ing Langevin dynamics simulations with NAMD on amino acids shows that atoms

within the amide and carboxyl groups remain rigid enough to suggest motion of the

amino acid can be characterized by these two groups. Ramachandran plots verify

this when compared to those from experimental literature for glycine. Early results

suggest that it is possible to reduce the number of computational elements in pro-

tein folding simulation by rescaling the physical analysis to the atom groups.

Key Words: Protein Folding, Amino Acid, Model, Multiscale Physics, NAMD, Simulation, Ramachandran Plot, Glycine

This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of comple-

tion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more

information about the projects program at WPI, visit the WPI Project Page.

http://www.wpi.edu/Academics/Projects

In addition to my advisors, Professor Izabela Stroe and Kryngle Daly who have

shared with me the insight and ability to complete my work, I would also like to

thank the entire Physics Department at WPI, whether or not we have worked to-

gether directly.

I would specifically like to thank Professor Erkan Tüzel for introducing me to com-

putational physics early in my studies and providing me with the background to

undertake this project.

I would like to thank my parents who have helped me through everything, every

step of the way.

My friends, my true friends, thank you.

Arielle, you were my muse. You have been and always will be my best friend.

Contents

1 Introduction 1

2 Literature 3

2.1 Protein Folding . 3

2.2 Stereoscopic Experimentation . 4

2.3 Ramachadran Resolving . 5

2.4 Previous Simulation . 6

2.4.1 Folding@Home . 6

2.4.2 NAMD . 7

3 Methods 9

3.1 NAMD . 9

3.1.1 Mechanics . 9

3.1.2 Implementation . 11

3.2 Molecular Dynamics Analysis . 12

3.2.1 Amino Acid Backbone Stiffness Measurements 12

3.2.2 Planar Dihedrals for Ramachandran Plotting 13

4 Results 15

4.1 Angle Measurements . 15

iv

4.2 Ramachandran Reproduction . 16

5 Discussion 21

5.1 Proof of Concept . 21

5.2 Ramachandran Rout . 22

5.3 Future Work . 22

A Dependencies 24

A.1 NAMD . 24

A.2 VMD . 24

A.3 MDAnalysis . 25

A.4 gnuplot . 25

B Code 26

B.1 Simulation . 26

B.1.1 namd.sh . 26

B.2 Analysis . 28

B.2.1 analysis.sh . 28

B.2.2 data.py . 29

B.2.3 data.py . 31

B.3 Results . 33

B.3.1 histogram.sh . 33

B.3.2 psiVphi.sh . 34

B.4 Scripting . 35

B.4.1 load.sh . 35

B.4.2 kinn.sh . 35

List of Figures

3.1 Reduced Three Plane Model of Amino Acids 14

3.2 Ψ and Φ Dihedral Angles in Amino Acids 14

4.1 Chemical Representation of an Amino Acid 16

4.2 Histograms of Carboxyl Plane Angles 17

4.3 Histograms of Amide Plane Angles . 18

4.4 Histograms of Amino Acid Group Angles 19

4.5 Ramachandran Reproduction . 20

vi

List of Tables

3.1 NAMD Simulation Parameters . 12

vii

1

Chapter 1

Introduction

A biophysical approach to computational biology creates two important barriers

which must be overcome for progress of the physical understanding of biological

systems. The level of abstraction used in representing the molecule and the forces

describing interactions bring about limitations in the biological object that is being

represented. The other issue lies in the sampling, in that the length of a simulation

can be influenced by the different configurations of the biological object that can

be visited. This leads to questioning how much interaction between objects is truly

involved.

Limitations in sampling can be directly attributed to the limits of current com-

puters, which are typically 1,000 to 100,000 times too slow for the demands of mod-

ern computational biology[9]. Even using the best algorithms for specific compu-

tational biology experiments, the simulation may still be too long (on the order of

several months) and thus conclusively inefficient.

As Newton was describing the motions of the planets, an atomistic model was

neither necessary nor desired. For proteins, everything from lattice models, to off-

lattice simplified alpha-carbon models, to fully atomistic models have been em-

2

ployed. None so far have overcome the limitations of these barriers.

Attempts to quantify biology on a molecular level have been hindered by the

vast amount of computer power required to model the complexities of molecular

dynamics (MD). The wealth of knowledge regarding genomic and proteomic data

combined with advances in computational algorithms and ever growing computa-

tional power will open the door to biomedical advances which allows new predic-

tive techniques for combatting disease from protein misfolding[9].

Still, running fully detailed, fully atomistic MD simulations is clearly not a viable

computational approach to the study of protein folding. Even the fastest proteins

fold on the timescale of 10’s of microseconds[9]. Simulations using MD software are

typically limited to the nanosecond timescale, a considerable difference. Since the

nature of the protein folding problem will only be observed with longer atomic sim-

ulations, researchers must either wait for better computer architecture or develop a

new technique to observe and predict the nature of protein folding and misfolding.

Thus, simulating protein folding using full atomic interactions is computation-

ally extensive and a new approach is necessary to quickly and efficiently predict

and determine the conformation of proteins. This will allow researchers to better

understand the mechanisms for protein folding applications in the biomedical field.

This paper investigates the possibility of a new method for determining protein

folding by developing models at the scale of amino acid structures, rather than the

individual atomic interactions. The method aims to reduce the amount of objects in

the computation making protein folding simulation less computationally expensive,

thereby decreasing simulation time.

3

Chapter 2

Literature

2.1 Protein Folding

The folding of proteins into their compact three-dimensional structure is the

most fundamental and universal example of biological self-assembly. Understand-

ing this complex process will provide unique insight into the way in which a bi-

ological system develops its functionality[6]. The wide variety of highly specific

structures that result from protein folding determines diversity in the underlying

chemical processes they perfrom[6].

Only correctly folded proteins are able to interact as intended along their metabolic

pathways. Despite plenty of safe-guards, given the enormous complexity and the

stochastic nature of the folding process, it would be remarkable if misfolding never

occurred[6]. Aggregration of misfolded proteins that escape the cellular regula-

tory mechanisms is a common feature of a wide range of highly debilitating and

increasingly prevalent diseases such as Alzheimer’s disease, Parkinson’s disease,

and Type-II Diabetes[6].

Native states of proteins almost always correspond to the structures that are most

4

thermodynamically stable under cellular conditions. Despite this, the total number

of possible conformations of any protein is so large that a systematic search for a par-

ticular structure takes an incredible amount of time. Even worse, the folding process

involves a series of steps between specific partly-folded states, a search of the many

conformations accessible to a protein with amino acids continuously added to the

polypeptide, where as the protein is assembled, the local conformations are affected

by previous conformations[5].

The manner in which a newly synthesized chain of amino acids transforms it-

self into a folded protein depends both on the amino acid sequence and on multiple

contributing influences within the cellular environment (e.g. pH). The folding and

unfolding of proteins are crucial to regulating biological activity and targetting pro-

teins to different cellular locations[6].

To understand the folding process, it is key to understand how the correct fold

emerges from such fundamental steps. How is the conformational landscape unique

to a specific protein defined by its amino-acid sequence? The structural transitions

taking place during folding in vitro can be investigated in detail by a variety of

techniques, ranging from optical methods to NMR spectroscopy, some of which can

now even be used to follow the behaviour of single molecules including these amino

acids[14].

2.2 Stereoscopic Experimentation

Compared to traditional microscopy, the electron microscope has two advan-

tages for biological viewing. It has extremely high resolution and it has a great

depth of focus. Both of these advantages allow for observation of extremely small

biological objects.

5

Despite extremely laborious sample preparation, stereoscopic experimentation

using electron microscopy allows for the studies of cells and different cell bodies. In

particular, the use of these methods allows for better determination of cellular body

structures. There is potential for this microscopy to help resolve the conformation

of proteins.

The shapes of the proteins can be determined in detail. A picture of the spec-

imen is taken, the specimen is tilted through a definite angle, and another picture

is taken. The two pictures form a stereoscopic pair which, mounted side by side,

can be viewed and fused to give the impression of depth[1]. With this depth, a two-

dimensional representation may yield three-dimensional coordinate data which is

an important characterization in amino acid sequences.

2.3 Ramachadran Resolving

By use of stereoscopic experimentation in biology, scientists have been able to

resolve the three-dimensional structure of proteins and more importantly of indi-

vidual amino acids. Despite their intricate architecture, revealed in thousands of 3D

structures stored in the Protein Data Bank, protein structures rest on a surprisingly

small set of principles[2]. Perhaps most fundamental of all is the fact that the amide

bond is planar, so that only two dihedral angles, denoted by Φ and Ψ seen in Figure

3.2, define the conformation of the bond linking adjacent amino acids.

Following leads from their studies of the structure of collagen, the predominant

protein group in mammals, the crystallographer G. N. Ramachandran and his col-

leagues first used a 2D diagram to depict the geometry of a dipeptide (two amino

acids together) with the intervening bond[13]. Using the few peptide structures then

available, they could see that when the angles were plotted against one another as

6

in Figure 4.5 (a), they clustered in only a few sections of the map.

Model building led them to conclude that most values of the two angles were

inaccessible owing to collisions between atoms in the amino acid[15]. Thus, by ob-

serving these clusters on what is aptly named a Ramachandran Plot, specific amino

acids may be identified. Each amino acid has a distinct region characterization, or

a fingerprint, which is specific to the amino acid and crucial in its contribution to

protein conformation.

2.4 Previous Simulation

More details of how the protein mechanism is able to generate a unique fold have

emerged from a range of theoretical studies, particularly involving computer sim-

ulation techniques. Of particular significance are investigations that compare the

simulation results with experimental observations[6].

2.4.1 Folding@Home

A new computing paradigm exists thanks to a worldwide distributed comput-

ing environment, consisting of hundreds of thousands of heterogeneous processors,

volunteered by private citizens across the globe[9].

Folding@Home seeks to solve the protein folding problem through distributed

computing. While it does not attempt any novel algorithms, by harnessing the thou-

sands of computers throughout the world, computational barriers are lifted. Instead

of each computer simulating a single protein molecule, the folding of a number of

molecules occurs in many parallel simulations and the first simulation to cross the

free energy barrier is the desired conformation of the protein. Despite the challenges

7

of dividing the complex calculation over a network, Folding@Home has proven that

using distributed computing is a viable solution to the protein folding computa-

tional and physical problem[9].

In October 2000, the project was launched. Since that time, more than 40,000 par-

ticipants have actively contributed to the simulations, accumulating 10,000 CPU-

years in approximately 12 months[9]. While this solution to the protein folding

problem is helpful in reducing the time required for simulation, it remains compu-

tationally expensive and depends on computer architectures and networks.

It is clear that while progress has been made to reduce the time needed to simu-

late protein folding, the number of elements being computed is far to extensive and

further reduction in computation is needed.

2.4.2 NAMD

NAMD is well known for its performance on large parallel computers but the

program is actually used on many platforms, including laptops. This versatility is a

great benefit for initiating and testing modeling projects. NAMD permits a novice

to carry out standard simulations of most types readily, but NAMD also supports

more advanced uses.

The purpose of NAMD is to enable high-performance MD simulation of molecules

in realistic environments of 100,000 atoms or more. A decade ago in its first release,[10][11]

NAMD permitted simulation of a protein-DNA complex encompassing 36,000 atoms[8]

one of the largest simulations carried out at the time. The most recent release per-

mitted the simulation of a protein-DNA complex of 314,000 atoms[16]. To probe

the behavior of this 10-fold larger system, the simulated period actually increased

100-fold as well.

8

A common notation when discussing algorithm efficiency is by order. In this

case, the algorithm for simulation is O(n2) (order of n2), where n is the number of

elements involved in the simulation. While NAMD simulation is promising, it is

clear that the scaling of the algorithm is where the real problem lies. Meanwhile, the

only reasonable conclusion is to reduce the elements involved in the simulation.

Further, the limits of NAMD’s parallel scalability are mainly determined by these

elements, in this case the atom count, with one processor per 1000 atoms being a con-

servative estimate for good efficiency on recent platforms. Once again, the limitation

of a biological simulation relies upon the number of elements being processed.

9

Chapter 3

Methods

3.1 NAMD

3.1.1 Mechanics

NAMD performs atomic simulations where the atoms move according to the

Newtonian equations of motion

mα~̈rα = − δ

δ~rα
Utotal(~r1, ~r2, ..., ~rN), α = 1, 2, ..., N

where mα is the mass of the atom α, ~rα is its position, and Utotal is the total potential

energy that depends on all atomic positions and, thereby, couples the motion of the

atoms. The potential energy can be represented as the MD force field and is the

most crucial part of the simulation since it must represent the interaction between

atoms[12].

The computational techniques only provide the ability to approximate these so-

lutions. NAMD uses an all-atom MD simulation which assumes that every atom

experiences a model force field which accounts for the interaction between an indi-

10

vidual atom and all the other atoms in the simulations.

The force field or the potential must because expressed as a summations

Utotal = Ubond + Uangle + Udihedral + UvdW + UCoulomb

where the first three terms of the total potential can be represented as individual

summations

Ubond =
∑
bonds i

kbondi (ri − r0i)2

Uangle =
∑

angles i

kanglei (θi − θ0i)2

Udihedral =
∑

dihedral i


kdihei [1 + cos(niφi − γi)], if ni 6= 0

kdihei (0i − γi)2, if n = 0

and describe the stretching, bending, and torsional bonded interactions between

atoms.

While this establishes a computational process for atomic simulation, we must

address other factors that molecules experience in solution (i.e. temperature and

pressure and pH).

To account for these factors, the Newtonian equations of motion are modified so

that the computed short time step can still be interpretted correctly. For this, NAMD

uses a stochastic coupling approach to enhance the dynamic stability of the amino

acid[12].

The stochastic Langevin equation is used in NAMD to generate the Boltzmann

distribution, a probability measure for the distribution of the states of a system, for

canonical ensemble simulations. The generic Langevin equation is

11

Mv̇ = F (r)− γv +

√
2γkBT

M
R(t)

where M is the mass, v = ṙ is the velocity, F is the force, r is the position, γ is the

friction coefficient, kB is the Boltzmann constant, T is the temperature and R(t) is

a univariate Gaussian random process[12]. This equation ultimately governs the

simulation interaction between the atoms in the simulated molecule.

3.1.2 Implementation

For the purpose of simulating small atom counts, NAMD performs extremely

well and efficiently. What is apparent, though, is that larger molecules are difficult

to simulate. NAMD’s ease of use serves as the experimental mechanism for the data

generated in this report.

First, a protein structure file (.psf) is generated for the amino acid from the Pro-

tein Data Bank file (.pdb) using the psfgen package made available in VMD[7].

While structures in the Protein Data Bank file hold the static information of the

amino acid, the process of creating the structure file gives dynamic information

which will be used in the simulation performed by NAMD. With these two files

and using the simulation parameters shown in Table 3.1, simulations of a single

amino acid may be performed. Such simulations allow observance of the atomic

movement of the individual atoms in the amino acid through self-interactions.

With the execution of the simulation, the coordinate data is stored in binary tra-

jectory files (.dcd) to be read and manipulated in the analysis portion of the experi-

ment.

12

parameter value comments
structure ${prefix}.psf protein structure file for the amino acid

coordinates ${prefix}.pdb protein database file for the amino acid
parameters par_all27_prot_lipid.inp force-field parameters for proteins and amino acids
temperature 310 (K) human body temperature for the Langevin dynamics

timestep 2.0 (fs) time-step of simulation must be small
rigidBonds all needed for 2fs steps

langevin on do langevin dynamics
langevinDamping 1 (ps−1) damping coefficient

restartfreq 500 every 1ps
dcdfreq 500 data is captured every 1ps

Table 3.1: NAMD Simulation Parameters

3.2 Molecular Dynamics Analysis

3.2.1 Amino Acid Backbone Stiffness Measurements

The python package MDAnalysis is employed in order to analyze the binary

trajectory files created by NAMD. A coordinate representation of the molecule sim-

ulation data is then available in human-readable data form (.hrc). The MDAnalysis

package facilitates the analysis of the results from NAMD. By treating the system

as a single variable, all the information needed for molecular dynamics analysis is

available.

Using the coordinates of the atoms, a list of structural angles for the amino acid

is made. This list of the structural angles made by three atoms in the amino acid

structure is then recorded. The angle is calculated by creating two vectors from the

three atoms’ coordinates that form the angle. After normalizing the vectors, the dot

product between the two is taken and the arccosine yields the desired angles.

θ = acos(v1 · v2)

A histogram of these angles is created to observe the distribution of angles within

the amino acid structure.

13

By understanding the dynamics of the amino acid’s structural angles under self-

interaction and thermal agitation, their conformational dynamics can be under-

stood. If an angle remains fairly enclosed in a certain region of the histogram, then

it can be treated as a fixed angle reducing number of computational objects required

for the simulation.

3.2.2 Planar Dihedrals for Ramachandran Plotting

Each atom of the amino acid can be assigned to either the amide, carboxyl, or

residue groups and a plane is defined to be the coordinates of three atoms that exist

within their amino acid groups as shown in Figure 3.1.

To calculate the dihedral angle, two vectors made by the atoms which charac-

terize the plane are used to find the normal vector by calculating the cross product

between the two. This normal vector is unique to each plane. Now using the same

calculation as was done in Section 3.2.1, the dihedral angle is calculated.

As was discussed in Section 2.3, the Ramachandran plots for the individual

amino acids can be resolved from the simulation. For the dihedral angle, Ψ, the

carboxyl and residue planes are used. For the dihedral angle, Φ, the amino and

residue planes are used. In each case, the residue will be used as reference at each

time step to factor out the orientation of the amino acid as is taken into account in

stereoscopic experimentation described in Section 2.2.

These angles are then plotted against each other in a Ramachandran plot to val-

idate the simulation against in vitro data.

14

Figure 3.1: The carboxyl (yellow), amide (blue), and residue (green)
groups of atoms within the amino acids can reduce their atomic rep-
resentation to a planar one.

Figure 3.2: The Ψ and Φ dihedral angles in amino acids and the
planes used to determine them.

15

Chapter 4

Results

4.1 Angle Measurements

The dynamics of detailed atomic models of biomolecules are traditionally lim-

ited to the nanosecond timescale[9]. NAMD demonstrates that traditional parallel

molecular dynamics simulations using the numerical integration of Newton’s equa-

tions can break the microsecond barrier. For these experiments, the timescale chosen

is slightly short of the microsecond barrier to yield sufficient data for conclusions

while remaining computationally inexpensive for the simulation.

Using the methods detailed in Section 3.2.1, a series of histograms are generated

for the bond angles in the amino acid, glycine. Glycine (shown in Figure 4.1) is

chosen because it is the smallest and most basic of the amino acids due to the residue

only being a hydrogen atom. This choice allows for the most information to be

gathered from the least amount of simulation since glycine only has 10 atoms.

The histograms are formed by 8×105 data points collected over 4×108 time steps

during a simulation time of 8× 10−7s. By selecting the histograms of key groups, it

can be seen in Figures 4.2 and 4.3 that those bond angles that exist within the amino

16

Figure 4.1: The chemical representation of the simplest amino acid,
Glycine, is shown. The H3N

+ group is known as the Amide group
and the OOH group is known as the Carboxyl group. Here, the
Residue group is not represented since it is a hydrogen atom.

and caboxyl planes have a well-defined and consistent sharp peak. It is distinct and

while the bond can exist in other states, it is clear that more time is spent in a smaller

angle range.

Conversely, by observing the bond angles in the adjoining bonds for the groups

of the amino acid shown in Figure 4.4, no peak or preference of angle is observed.

Instead, a gaussian-like distribution of angles can be seen. This demonstrates that

there is less predictability to the position of the angles that connect the amino acid

groups. The underlying dynamics of the amino acids motion clearly take place in

the movement of these bond angles.

4.2 Ramachandran Reproduction

Histogram data for Ψ and Φ is used to generate a Ramachandran plot for the

glycine amino acid. Previous experimentation exists which demonstrates a well

known glycine mapping within these Ramachandran plots.

Figure 4.5 shows that despite the inability of the algorithm from Section 3.2.2 to

produce the proper reflection, the same region of the map is occupied in the simu-

lation results as was obtained in well-documented experimental results.

17

(a) (b)

(c) (d)

(e)
Figure 4.2: Histograms of Carboxyl Plane Angles:
(a) O-C-O (b) O-C-C (c) H-C-N (d) H-C-H (e) C-C-O

18

(a) (b)

(c) (d)

(e)
Figure 4.3: Histograms of Amide Plane Angles:
(a) H-N-H (b) H-N-H (c) C-C-N (d) C-C-H (e) C-C-H

19

(a) (b)

(c)
Figure 4.4: The bond angles that connect the (a) amide, (b) carboxyl,
and (c) residue groups.

20

(a) (b)
Figure 4.5: Ramachandran plots show dihedral angles Ψ vs. Φ for
glycine demonstrated in both (a) the literature and (b) simulation
results.

21

Chapter 5

Discussion

5.1 Proof of Concept

As demonstrated in Section 3.2.1, there exist peaks in the histograms for the

bonds which exist in the amide and carboxyl planes suggesting that there is a the

bond primarily exists at and around that particular angle. For this reason, the as-

sumption is made that the amide and carboxyl groups, as suggested in Section 3.2.2,

may be treated as planes that rotate as described in Section 2.3. This means that the

model for amino acid simulation may be constrained. Since the angles are con-

strained, we can treat the planes as objects instead of the atoms. This reduces the

necessary simulation to three planes which rotate based on the dynamics given in

the literature of the Ramachandran plots for singular amino acids. Using this fur-

ther constraint, the simulation time of amino acids can be reduced by at least a factor

of three (in the smallest amino acid, glycine) and at most by a factor of ten (in the

largest amino acid, tryptophan). Though the algorithms have not been improved,

the reduction in the amount of elements to be considered for computation has been

demonstrated and is shown to be a plausible method for simulation.

22

5.2 Ramachandran Rout

The Ramachandran Plots that were simulated using the planar three-vector method

described in Section 3.2.2 were partially recreated. What is readily apparent is that

there is an issue in properly reflecting the data across the axis. This could be in part

due to the geometrical calculations done or could be due to the orientation deter-

mining the angles. In either event, the algorithm is partially flawed and may be

observed in Appendix B for further review.

Despite this partial failure, it is important that these Ramachandran plots can

replicate the experimental results of biologists using Langevin dynamics on the re-

duced planar model of the amino acid.

5.3 Future Work

Most of the amyloid diseases are associated with old age, when there is likely

to be an increased tendency for proteins to become misfolded or damaged, cou-

pled with a decreased efficiency of the molecular chaperone and unfolded proteins

responses[3]. It is therefore essential that there be development in understanding

the misfolding and aggregation to find effective strategies for combating increas-

ingly common and highly debilitating diseases[4].

Future work is being done at KBioSim to develop a linking algorithm to join the

amino acids in their planar representation with a peptide bond formation. This will

allow for the construction of polypeptide chains which will show whether or not

the principle can apply to secondary and tertiary structures and result in a novel

approach to protein folding.

Once this is achieved, it should be possible to use a similar Langevin dynamics

23

physics engine with a proprietary algorithm to further reduce calculations involving

distance while folding.

24

Appendix A

Dependencies

A.1 NAMD

NAMD was developed by the Theoretical and Computational Biophysics Group in

the Beckman Institute for Advanced Science and Technology at the University of

Illinois at Urbana-Champaign. It is available for download at:

http://www.ks.uiuc.edu/Research/namd/

A.2 VMD

VMD was developed by Humphrey, W., Dalke, A. and Schulten, K. with funding

from the National Institute of Health. It is available for download at:

http://www.ks.uiuc.edu/Research/vmd/

http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/vmd/

25

A.3 MDAnalysis

MDAnalysis is an open source python library available under the GNU GPL v2 code

license. It is available for download at:

http://code.google.com/p/mdanalysis/

A.4 gnuplot

Gnuplot’s source code is copyrighted but freely distributed. It is available for down-

load at:

http://www.gnuplot.info/

http://code.google.com/p/mdanalysis/
http://www.gnuplot.info/

26

Appendix B

Code

The working version detailed below is available for download at:

http://users.wpi.edu/˜andershokinson/mqp.tar.gz

B.1 Simulation

B.1.1 namd.sh

f o r f i l e s in ∗ .pdb ; do

s teps =”1000000”;

p r e f i x =”${ f i l e s %.∗}”

echo ”package requi re psfgen

topology . . / namd/ t o p a l l 2 7 p r o t l i p i d . inp

pdbal ias res idue HIS HSE

pdbal ias atom ILE CD1 CD

segment U {pdb ${p r e f i x } .pdb}

coordpdb ${p r e f i x } .pdb U

guesscoord

writepdb ${p r e f i x } .pdb

wri teps f ${p r e f i x } . psf

qui t ” >> ${p r e f i x } .pgn

echo ” preparing ${p r e f i x } .pdb f o r s imulat ion ”

vmd −dispdev t e x t −e ${p r e f i x } .pgn >> ${p r e f i x } .vmd

http://users.wpi.edu/~andershokinson/mqp.tar.gz

27

echo ”###

JOB DESCRIPTION

###

Minimization and E q u i l i b r a t i o n of

${p r e f i x} in a Water Sphere

###

ADJUSTABLE PARAMETERS

###

s t r u c t u r e ${p r e f i x } . psf

coordinates ${p r e f i x } .pdb

f i r s t t i m e s t e p 0

###

SIMULATION PARAMETERS

###

Input

paraTypeCharmm on

parameters . . / namd/ p a r a l l 2 7 p r o t l i p i d . inp

temperature 310

Force−F i e l d Parameters

exclude scaled1−4

1−4s c a l i n g 1 . 0

c u t o f f 1 2 . 0

switching on

s w i t c h d i s t 1 0 . 0

p a i r l i s t d i s t 1 4 . 0

I n t e g r a t o r Parameters

t imestep 2 . 0 ; # 2 f s /step

rigidBonds a l l ; # needed f o r 2 f s s teps

nonbondedFreq 1

f u l l E l e c t F r e q u e n c y 2

s t e p s p e r c y c l e 10

Constant Temperature Control

langevin on ; # do langevin dynamics

langevinDamping 1 ; # damping c o e f f i c i e n t (gamma) of 1/ps

langevinTemp 310

langevinHydrogen o f f ; # don ’ t couple langevin bath to hydrogens

28

Output

outputName ${p r e f i x}

r e s t a r t f r e q 500 ; # 500 s teps = every 1ps

dcdfreq 500

outputEnergies 100

outputPressure 100

###

EXTRA PARAMETERS

###

###

EXECUTION SCRIPT

###

Minimization

minimize 100

r e i n i t v e l s 310

run ${s teps} ; # 5ps” >> ${p r e f i x } . conf

echo ” performing simulat ion using ${p r e f i x } . psf and namd”

namd2 + i d l e p o l l ${p r e f i x } . conf >> ${p r e f i x } .namd

rm ∗ . xsc ∗ . coor ∗ . conf ∗ .pgn ∗ . old ∗ . ve l ∗ .vmd ∗ .namd

done

B.2 Analysis

B.2.1 analysis.sh

cp a n a l y s i s /dihedral/data . py .

cp a n a l y s i s /angle/data . py

f o r f i l e s in ∗ . dcd ; do

p r e f i x =”${ f i l e s %.∗}”

python −c ” import data ; data . angles (’ ${p r e f i x } ’)”

python −c ” import data ; data . d ihedra l s (’ ${p r e f i x } ’)”

done

rm data∗

29

B.2.2 data.py

Anders Hokinson

2012

from MDAnalysis import ∗ # only allowed at module l e v e l

def g e t a n g l e (coordinate 1 , coordinate 2 , coord ina te 3) :

import math

v1 = [coord ina te 1 [0] − coord ina te 2 [0] , \

coord ina te 1 [1] − coord ina te 2 [1] , \

coord ina te 1 [2] − coord ina te 2 [2]]

v1mag = math . s q r t (v1 [0] ∗∗ 2 + \

v1 [1] ∗∗ 2 + \

v1 [2] ∗∗ 2)

v1n = [0 , 0 , 0]

f o r i in range (len (v1) − 1) :

v1n [i] = v1 [i] / v1mag

v2 = [coord ina te 3 [0] − coord ina te 2 [0] , \

coord ina te 3 [1] − coord ina te 2 [1] , \

coord ina te 3 [2] − coord ina te 2 [2]]

v2mag = math . s q r t (v2 [0] ∗∗ 2 + \

v2 [1] ∗∗ 2 + \

v2 [2] ∗∗ 2)

v2n = [0 , 0 , 0]

f o r i in range (len (v2) − 1) :

v2n [i] = v2 [i] / v2mag

dot = v1n [0] ∗ v2n [0] + \

v1n [1] ∗ v2n [1] + \

v1n [2] ∗ v2n [2]

angle = math . acos (dot) / (2∗math . pi) ∗ 360

return angle

def angles (p r e f i x) :

psf = s t r (p r e f i x)

psf = psf [: len (psf)−1] + ’ . psf ’

dcd = s t r (p r e f i x) + ’ . dcd ’

hrc = s t r (p r e f i x) + ’ . hrc ’

p r i n t ’ using f i l e s %s and %s to c r e a t e %s ’ % (psf , dcd , hrc)

universe = Universe (psf , dcd)

30

f = open (hrc , ’w’)

p r i n t ’ opening %s f o r writ ing ’ % (hrc)

bonds = []

coordinates = universe . atoms . coordinates ()

p r i n t ’ c a l c u l a t i n g number of angles in %s ’ % (psf)

f o r atom in universe . atoms . i n d i c e s () :

ver tex = coordinates [atom]

f o r bond in universe . bonds :

i f bond [0] == atom :

bonds += [bond [1]]

i f bond [1] == atom :

bonds += [bond [0]]

i f len (bonds) > 1 :

f o r i in bonds :

f o r j in bonds :

i f i != j :

anglename = s t r (i)+’− ’+ s t r (atom)+’− ’+ s t r (j)

f . wri te (anglename+’\ t ’)

bonds . pop (0)

bonds = []

f . wri te (’\n ’)

p r i n t ’ wri t ing angles to %s ’ % (hrc)

f o r t s in universe . t r a j e c t o r y :

coordinates = universe . atoms . coordinates ()

f o r atom in universe . atoms . i n d i c e s () :

ver tex = coordinates [atom]

f o r bond in universe . bonds :

i f bond [0] == atom :

bonds += [bond [1]]

i f bond [1] == atom :

bonds += [bond [0]]

i f len (bonds) > 1 :

f o r i in bonds :

f o r j in bonds :

i f i != j :

angle = g e t a n g l e (coordinates [i] , vertex , coordinates [j])

wri teangle = ’%.3 f ’ % (angle)

f . wri te (wri teangle +’\ t ’)

31

bonds . pop (0)

bonds = []

f . wri te (’\n ’)

f . c l o s e ()

p r i n t ’ completed s u c c e s s f u l l y , check %s f o r r e s u l t s ’ % (hrc)

B.2.3 data.py

Anders Hokinson

2012

from MDAnalysis import ∗ # only allowed at module l e v e l

def g e t d i h e d r a l (plane , res idue) :

import math

plane1=plane [0]

plane2=plane [1]

plane3=plane [2]

res idue1=res idue [0]

res idue2=res idue [1]

res idue3=res idue [2]

v1p = [plane1 [0]−plane2 [0] , \

plane1 [1]−plane2 [1] , \

plane1 [2]−plane2 [2]]

v2p = [plane3 [0]−plane2 [0] , \

plane3 [1]−plane2 [1] , \

plane3 [2]−plane2 [2]]

np = [v1p [1]∗v2p[2]−v1p [2]∗v2p [1] , \

v1p [2]∗v2p[0]−v1p [0]∗v2p [2] , \

v1p [0]∗v2p[1]−v1p [1]∗v2p [0]]

npmag = math . s q r t (np [0] ∗∗ 2 + \

np [1] ∗∗ 2 + \

np [2] ∗∗ 2)

nprho = npmag

npphi = math . atan2 (np [1]/ np [0])

nptheta = math . acos (np [2] / nprho)

npn = [0]∗3

f o r i in range (len (np) − 1) :

npn [i] = np [i] / npmag

r =[res idue1 [0]− res idue2 [0] , \

32

res idue1 [1]− res idue2 [1] , \

res idue1 [2]− res idue2 [2]]

rmag=math . s q r t (r [0] ∗∗ 2 + \

r [1] ∗∗ 2 + \

r [2] ∗∗ 2)

rrho = rmag

rphi = math . atan2 (r [1]/ r [0])

r t h e t a = math . acos (r [2] / rrho)

rn = [0]∗3

f o r i in range (len (r) − 1) :

rn [i] = r [i] / rmag

dot = npn [0] ∗ rn [0] + \

npn [1] ∗ rn [1] + \

npn [2] ∗ rn [2]

asinv = math . as in (dot) / (2∗math . pi) ∗ 360

acosv = math . acos (dot) / (2∗math . pi) ∗ 360

i f asinv > 0 :

i f acosv > 0 :

dihedral = 90 − acosv

e l s e :

d ihedral = 90 + acosv

e l s e :

i f acosv > 0 :

dihedral = 90 − acosv

e l s e :

d ihedral = −270 + acosv

return dihedral

def d ihedra ls (p r e f i x) :

psf = s t r (p r e f i x) + ’ . psf ’

dcd = s t r (p r e f i x) + ’ . dcd ’

kpp = s t r (p r e f i x) + ’ . kpp ’

p r i n t ’ using f i l e s %s and %s to c r e a t e %s ’ % (psf , dcd , kpp)

universe = Universe (psf , dcd)

f = open (kpp , ’w’)

coordinates = universe . atoms . coordinates ()

f o r t s in universe . t r a j e c t o r y :

coordinates = universe . atoms . coordinates ()

carboxyl = [coordinates [0] , coordinates [1] , coordinates [2]]

33

amino = [coordinates [3] , coordinates [4] , coordinates [5]]

res idue = [coordinates [7] , coordinates [8] , coordinates [9]]

ps i = g e t d i h e d r a l (carboxyl , res idue)

phi = g e t d i h e d r a l (amino , res idue)

wr i ted ihedra l = ’%.3 f ’ % (ps i)

f . wri te (wr i ted ihedra l +’\ t ’)

wr i ted ihedra l = ’%.3 f ’ % (phi)

f . wri te (wr i ted ihedra l +’\ t ’)

f . wri te (’\n ’)

f . c l o s e ()

B.3 Results

B.3.1 histogram.sh

f o r f i l e s in ∗ . psf ; do

p r e f i x =”${ f i l e s %.∗}”

mkdir ${p r e f i x}

bonds = ‘awk ’{ p r i n t NF} ’ ${p r e f i x }1. hrc | s o r t −nu | t a i l −n 1 ‘

f o r ((i =1 ; i<$bonds +1; i + +)) ; do

bond= ‘awk ’NR==1 {p r i n t $ ’ $i ’} ’ ${p r e f i x }1. hrc ‘

echo ” process ing angle $bond data ”

echo ” c r e a t i n g $bond . png”

echo ” c l e a r

r e s e t

numbins = 360

binwidth = 1

s e t key o f f

s e t auto

s e t xrange [0 : 3 6 0]

s e t x t i c s 30

s e t t i t l e ’ angle ${bond} ’

s e t y l a b e l ’ count ’

s e t term png s i z e 1280 , 1280

s e t output \”${p r e f i x}/${bond} .png\”

s e t s t y l e histogram c l u s t e r e d gap 1

s e t s t y l e f i l l s o l i d border −1

34

s e t boxwidth binwidth

bin (x , width) = width∗ f l o o r (x/width) + binwidth /2.0

p l o t ’ ${p r e f i x}${ j } . hrc ’ every : : 1 using (bin (\$${ i } , binwidth)) : (1) smooth f r e q with boxes ” >> angles . gp

done

echo ’ load ” angles . gp” ’ | gnuplot

echo ’ e x i t ’ | gnuplot

rm angles . gp

done

mv ${p r e f i x}∗ ${p r e f i x}/

done

B.3.2 psiVphi.sh

date =”$ (date +%m%d%H%M)”

mkdir r e s u l t s /${date}/

f o r f i l e s in ∗ . psf ; do

p r e f i x =”${ f i l e s %.∗}”

mkdir r e s u l t s /${date}/${p r e f i x}

echo ” c r e a t i n g ${p r e f i x } .png”

echo ” c l e a r

r e s e t

s e t key o f f

s e t yrange [−180:180]

s e t xrange [−180:180]

s e t t i t l e ’ Ps i v . Phi ’

s e t y l a b e l ’ Psi ’

s e t x l a b e l ’ Phi ’

s e t term png s i z e 1280 , 1280

s e t output \”${p r e f i x } .png\”

p l o t ’ ${p r e f i x } .kpp ’ ” >> angles . gp

echo ’ load ” angles . gp” ’ | gnuplot

echo ’ e x i t ’ | gnuplot

rm angles . gp

35

mv ${p r e f i x}∗ r e s u l t s /${date}/${p r e f i x}

done

B.4 Scripting

B.4.1 load.sh

#!/ bin/bash

load () {

f o r i in $@ ; do

cp . . / pdb/${ i}∗ ./ working

done

}

load ’ gly ’

B.4.2 kinn.sh

#!/ bin/bash

cp namd/namd . sh working

./ working/namd . sh

rm working/namd . sh

cp a n a l y s i s / a n a l y s i s . sh

./ working/ a n a l y s i s . sh

rm working/ a n a l y s i s . sh

cp p l o t/dihedral/psiVphi . sh working

cp p l o t/angle/histogram . sh working

./ working/psiVphi . sh

./ working/histogram . sh

rm working/psiVphi . sh

rm working/histogram . sh

36

Bibliography

[1] Thomas F. Anderson. Stereoscopic studies of cells and viruses in the electron

microscope, 1952.

[2] F. C. Bernstein. The protein data bank: A computer-based archival file for

macromolecular structures, 1977.

[3] P. Csermely. Chaperone overload is a possible contributor to civilization dis-

eases, 2001.

[4] C. M. Dobson. Protein folding and disease: a view from the first horizon sym-

posium, 2003.

[5] C. M. Dobson, A. Sali, and M. Karplus. Protein folding: a perspective from

theory and experiment, 1998.

[6] Christopher M. Dobson. Protein folding and misfolding, 2003.

[7] Tim Isgro, James Phillips, Marcos Sotomayor, Elizabeth Villa, Hang Yu, David

Tanner, and Yanxin Liu. Namd tutorial: Unix/macosx version, February 2012.

[8] D. Kosztin, T. C. Bishop, and K. Schulten, 1997.

[9] Stefan M. Larson, Christopher D. Snow, Michael Shirts, and Vijay S. Pande.

37

Folding@home and genome@home: Using distributed computing to tackle

previously intractable problems in computational biology.

[10] M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R. Skeel, and K. Schul-

ten, 1996.

[11] M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R. Skeel, K. Schulten,

and R. Kufrin, 1995.

[12] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhor-

shid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kal, and

Klaus Schulten. Scalable molecular dynamics with namd, 26 May 2005.

[13] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry

of polypeptide chain configurations, 1963.

[14] B. Schuler, E. A. Lipman, and W. A. Eaton. Probing the free-energy surface for

protein folding with single-molecule fluorescence spectroscopy, 2002.

[15] Zhengshuang Shi and Neville R. Kallenbach. Ramachadran redux. PNAS,

108(1), 2011.

[16] E. Villa, A. Balaeff, and K. Schulten, 2005.

