
Analysis of Mistake Messages
IQP Report

By Wesley Lo

Date
2 December 2021

This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes these reports on the web without editorial or peer

review.

Acknowledgements
I would like to express my gratitude to Professor Neil Heffernan for offering me the amazing

opportunity to work on ASSISTments over the past year. I really appreciate the time he has taken out of
his inhumanly busy schedule to get to know me and offer support both throughout the project and in
other areas. I am also super grateful to Professor Stacy Shaw for co-mentoring me on this project. She
has been an incredibly supportive and positive person to work with. I feel extremely blessed for the
opportunity to work with both of them and for generously them taking time each week to meet and
offer support. It’s been an amazing pleasure get to know them over the past year.

I would also like to thank Kennedy Damoah. He has offered great guidance throughout this
project, and I am super grateful for the meetings we’ve had together. It’s been a pleasure to get to know
him this year.

Abstract
ASSISTments is a math-based educational platform used by a few hundred researchers and

middle school teachers combined (Heffernan, 2014). The platform allows teachers to compose problem

sets relevant to class curriculum, while researchers can readily analyze data from students solving the

problems. One function of ASSISTments is to generate adaptive, error-dependent messages for students

called "mistake messages" or “feedback messages” that students receive directly after making a mistake.

In this paper, we describe our process in trying to analyze on a 50-question problem set of 2-step

algebraic multiplication and division problems built in ASSISTments, the goal to identify changes in

student performance and behavior depending on whether they've received a message for their mistake

or not.

Intro/Background
ASSISTments is a math-based educational platform used by a few hundred researchers and

middle school teachers combined (Heffernan, 2014). The platform allows teachers to compose problem
sets relevant to class curriculum, while researchers can readily analyze data from students solving the
problems. In this section, we will first give background on the problem set we worked on and what
mistake messages are.

For this IQP (Interactive Qualifying Project), we analyzed 2-step multiplication and division
problem set, built in ASSISTments by Dr. Douglas Selent, a former computer science PhD researcher at
WPI (Dr. Douglas Selent, n.d.) This problem set has the ID PSAHQV, and we will use this code to refer to
the problem set throughout the paper. 14265 students worked on this problem set, each randomly
assigned to either the treatment or message condition. Each condition has 50 multiplication and division
problems (25 each) of the form shown in Table 1, in which a, b, and c are randomly generated integers,
such that x is an integer and is to be solved for. Note the problems in the treatment and control groups
were generated once, and problems in the treatment group were different than those in the control
group. These problems were provided in a randomized order, and students needed to complete 3 of
them correctly in a row to complete the problem set.

Division Problem Multiplication Problem

Table 1

The ASSISTments platform allows teachers and researchers to construct feedback messages,
which get directly displayed to students after they input a certain answer. In Selent’s study, students in
the message condition received a feedback message if they input an expected common wrong answer
(ECWA), while students in the control condition received no feedback messages. Selent worked with
students on these problems and accordingly developed these ECWAs, based on his observations about
what kinds of mistakes students tended to make most commonly. Selent came up with a set of formulas
for both multiplication and division problems that corresponded to these ECWAs and wrote feedback
messages for students to provide guidance for them after a common wrong answer. To do this, note that
the equations written in Table 1 can each be reconfigured such that x is on one side of the equation and
a combination of a, b, and c can be written on the other (Table 2). The ECWAs are simply variations of
variable combinations, depending on where the mistake occurs in the 2-step process.

Division Problem Multiplication Problem

Table 2

PSAHQV was constructed using ASSISTments’ variabilized template feature. Variabilized
templating is a tool in ASSISTments, built using the programming language “Ruby on Rails,” that allows

researchers and teachers to generate randomized equations with a desired format (Variabilized
Templates, n.d.). In PSAHQV, two templates, one for division and one for multiplication, were used
generate the 50 questions. Figure 1 shows what the template equation is for a division problem, while
Figure 2 shows the segment of the problem editor that generates the numbers used in the equation.

Figure 1 – Problem editor displaying question

Figure 2 – Problem editor displaying variables

Finally, the feedback message templates, examples of which are provided in Figures 3a and 3b,
can display the desired text with customized formatting. As shown in Figure 3a, additional guidance such
as showing that a positive number multiplied by a negative number is negative, etc. can be provided in
feedback messages, and colors such as red, blue, and green, can be used to indicate correctness or more
descriptive feedback.

This problem set was constructed with seven templates for multiplication and eight for division.
Examples are provided in the following figures. Examples of all ECWA types are shown in Appendix H.

(a)

(b)

Figures 3a, b – Examples of mistake message templates

Questions in this problem set, and hence in the variabilized templates, also include hints.
Students can ask for a hint 3 times. The first hint shows how a similar problem can be solved. Note, red
and blue text are here used to help emphasize the steps. The second and third hints show the same
steps applied specifically to this problem. The hint template for division is shown below in Figure 4.

Figure 4 – Example of hint template

Finally, the problems used in this problem set were then generated using the Create instantiated
problems button shown in Figure 1, accordingly with randomized feedback messages, hints, and with a
solution. Each problem was generated with a problem ID that allowed us to identify them in the various
data sources that will be discussed later in this paper.

Figures 5a, b, and c show example screenshots of what a problem generated via the template
looks like in the editor menu.

(a)

(b)

(c)

Figures 5a, b, c – Example of editor of generated problem. (a): Question editor (b): Examples of mistake
messages (c): Example of hint

Overall, our goal with analyzing data on this problem set was to see what kinds of effects
feedback messages have on student behavior and how they perform. Do they help students to perform
better on subsequent problems? Do students tend to ask for less hints after receiving a mistake
message? Or do students not pay attention to mistake messages at all? Is there a way to measure the
effectiveness of these messages? These are all research questions we were hoping to think about
through our analysis.

Data scraping + Preprocessing
ALI-Doc Request: Getting + Formatting Student data

Our first step was to submit an ALI-Doc request to get data on the different actions students
made when working on the problem set. ALI, Assessment of Learning Infrastructure, is a tool for
researchers of the ASSISTments platform that provides data relevant to problems and students
completion of them, in the ASSISTments system. The ALI-Doc request provides data sheets in the form of
csv (comma separated values) files at the action level, problem level, and student level, as described
below in Figure 6. (ALI's Analytics, n.d.)

Figure 6 – Information on datasets in ALI-Doc request

Considering we were interested in data relevant to how students answered problems, we started
looked at the action level dataset. This level included information such as the problem ID of the problem
the student was working on, whether the student requested a hint or submitted an answer (action type),
correctness of their answer, what they input as an answer, and the timestamps of their responses. Each
row represents such an action a student made on a particular problem.

For our analysis, we settled on Python for its diverse set of prepackaged data analysis tools for
parsing, processing, and analyzing data, in addition to flexibility with file manipulation, statistical
libraries, and for writing our own functions. All the programming performed for this IQP was written
using python and its various libraries (Python, n.d.).

Processing Student Data
One of the first observations we made about the dataset is that there were a lot of concurrent

dimensions at play. We were interested in finding a way to format the data in a way convenient for our
analysis. Additionally, we wanted a way to synthesize information present at the student, problem, and
action levels. We settled on using Python’s class object data structure to store this information.

The idea would be that instead of having to sort through each data table each time, which could
potentially be quite slow, we would have info about each student stored in an object that contained

relevant information such as the problems they attempted, what actions they performed on what
problems, and when those actions occurred. Python objects also allow you to write functions for them,
simplifying the amount of data needed to be stored for each student. For instance, instead of storing
what their response time was, we could calculate it on an on-need basis.

Data for hints, timestamps, and action types used a dictionary datatype. This means this
information could be retrieved using the problem ID. For example, by inputting the problem ID, we
would be able to retrieve action timestamps, which could easily give us information about how long it
took the student to perform on a particular problem. We stored these dictionaries in a Python class
object.

However, this led to having nested data structures, which made it hard to store on the hard drive
(and save time instead of having to create these objects every time we wanted to run our analysis), a
process called serialization (we used the Python Library, Pickle, for data serialization).

Instead, we decided to convert each object into JSON (JavaScript Object Notation) object,
another data format, and then convert them back to python objects when we wanted to run our analysis
(JSON, n.d.). We decided to not just use JSON standalone to make the conversion process to a Python
object, which allowed for python-specific functions, much more convenient.

In summary, while the processing the data was somewhat time consuming and complicated, this
method allowed us to put our data in a more readily analyzable format. Our code for processing the
ALI-DOC is in Appendix B, and loading the serialized student data file is provided in Appendix C.

Web scraping: Getting problem values
We noticed that the ALI-Doc request did not include the numbers in each of our 2-step

equations, even in the problem level data. Unfortunately, too, the ASSISTments platform lacks an export
feature for the equations. Despite this, we wanted to find a way to extract these numbers and in an
automated fashion.

The ASSISTments website does provide an option to view all problems of a problem set on a
single webpage (See Figure 7). Hence our plan was to select this view option, then download the
webpage directly, with the plan to use Python to scrape the site for the equation numbers. Websites are
coded using HTML (HyperText Markup Language), so we planned to use the Python library,
BeautfulSoup, which is designed to extract data from HTML (HTML: HyperText Markup Language, n.d.)
(Beautiful Soup, n.d.).

We first used ASSISTments “view problems” option to print out the whole problem set. A portion
of the webpage is shown below in Figure 7.

Figure 7 – Examples of a few problems using “view problems” feature

We then downloaded the webpage directly using Chrome’s Ctrl-S command.

We then created a script using Beautiful Soup to analyze the HTML. We found that it extracts
information in a parent-child manner. To explain this, note that HTML code is generally constructed in a
tree-like format. Typically, each line of code has a “tag” that contains information such as text, while it
can have “children” that also contain information. Figure 8 depicts an example of an HTML tree. Here the
HTML tag contains a body tag, which has tags “h1,” “section,” and “footer,” etc. Here we say “HTML” is a
parent of “body” and “body” is a child of “HTML.”

Figure 8 – Example tree diagram of an HTML tree (Lesson 4: The Element Tree, n.d.)

Beautiful Soup can only find specific tags via traversing through the tree. Hence, the process of
finding the tags containing information about each problem such as problem title or the equation,
involved manually looking through the HTML to identify where these items were.

At first, we ran into a lot of errors because the raw HTML we downloaded from ASSISTments was
messy and unformatted. This made it difficult for Beautiful Soup to differentiate which elements were
children or parents of which. To combat this, we used html-cleaner which nicely formatted the HTML
(HTML Cleaner, n.d.). Seen in Figures 9a and b are the two versions of the same code, pre and post
formatting, respectively.

(a)

(b)

Figures 9a,b – HTML before (a) and after (b) formatting

With Beautiful Soup now able to analyze the html, we spent a long time and eventually found
the specific combination of tags that printed out the problem ID and equation. The process of identifying
multiplication versus division problems was the same but parsing the location of the specific numbers
was different.

In summary, using our newly created script, we could extract the names of the problem IDs in
both conditions and what the numbers were in each of the problems. We saved problems in 4-tuple
codes via the following construction: 0 if multiplication or 1 if division, followed by the 3 numbers in the
problem. This was saved in a dictionary, with the keys being the problem IDs and the values being these
problem 4-tuple “codes”.

Finally, we used Pickle to export our dictionary of problems, allowing us to only need to perform
this algorithm once. Our code is provided in Appendix A.

Filtering Out Students
With this student and problem data now in a more readily analyzable form, we next wanted to

filter out students that we determined to be invalid for our analysis. First, we kept only students who
made mistakes (and hence must have received a mistake message) and students who answered
questions after 2016, as the problem set hadn’t used the mistake messages from 2016 and earlier. To do

this, we simply iterated through the students, and checked their “answer timestamps” to see if they
occurred after 2016. We used Python’s “Datetime” library to do this (Datetime, n.d.).

We also chose to remove students who asked for a hint before making a mistake, as we didn’t
want the act of receiving a hint before a mistake message to similarly, have the possibility to skew our
results. However, this did not lead to any additional students being filtered out. Figure 10 shows the
results of this process.

Figure 10 – Number of students at different stages in filtering

Generating Expected Common Wrong Answers
With this filtered set of 2652 students, we next planned on seeing whether their responses were

classified as an ECWA, to make sure they received a mistake message in the first place. We also realized
that we would be performing a fairer analysis by only comparing students who made a mistake on their
first problem.

We chose to only look at first problem for a couple reasons. Firstly, as mentioned earlier,
students who get three problems in a row correctly, complete the problem set. So, a significant
proportion of our mistake data would come from students making a mistake on their first problem
anyways. Secondly, we didn’t want a student who had already made a lot of mistakes to be treated by
the analysis in the same way that a student who may have gotten a problem right before making a
mistake.

We first represented Selent’s ECWA formulas for both the multiplication and division problems
using python functions as shown in Figure 11.

Figure 11 – Python functions used to generate ECWAs

We then iterated through each of the questions represented by the 4-tuples, containing question
type and the equation values, and applied these python functions to derive the respective, expected
common wrong answers. We stored these in dictionaries. Our code is outlined in Figure 12. Note the full
code for this section is provided in Appendix D.

Figure 12 – Pseudo-code showing ECWA storing

With our ECWAs for each question extracted, we then wrote code to check whether students’
first mistakes were expected common wrong answers. To do this, we iterated through each student,
iterated through each problem they completed, checked if their first problem was incorrect, then
checked if their first mistake was an expected common wrong answer. Our code is outlined as follows in
Figure 13:

Figure 13 – Pseudo-code showing how we parsed ECWAs and identified their count

Some students’ answers had characters such as parentheses or asterisks. We tried using Python’s
library, Parser, to extract their answers. We had challenges getting Parser’s parsing function to work on
their answer inputs, so we wrote a custom function with the help of a Stack Overflow thread, which
eventually worked (Evaluating a Mathematical Expression In a String, n.d.).

Finally, we also wanted to determine how many students there were in each group, so we logged
how many students had made an expected common wrong answer.

Roadblock: Asymmetric Conditions
We found that while a similar number of students in both the treatment and condition groups (1316 and
1336 respectively) and a similar number who made a mistake on their first problem (710 and 724
respectively), there was a significant discrepancy in students who made an ECWA in our control versus
treatment group (see Figure 14).

Figure 14 – Number of students at different stages in filtering

Note for this to be a controlled experiment, these two conditions should have been very close in
proportion, as there were no intended differences between these two conditions upon the submission of
an ECWA. Here, however, 166 people in control condition made an ECWA, and 259 made an ECWA in the
message condition. The differences in proportion between the two groups suggested to us an error in
the randomization process.

We thoroughly investigated the code to ensure that there weren't any errors in our data
processing pipeline causing this discrepancy and found our code to be consistent in its results. We also
looked at the ECWAs a bit further. Note that the negative variants of ECWAs were not included in the
problem set. For example, if Problem #25 had “-5” as an ECWA, then “5” wouldn’t necessarily be an
ECWA, unless it was generated by a separate formula.

As such, we decided to also test the negative variants of ECWAS to see how different the two
groups differed (See “+/- CWA” in Figure 14). We found the two groups had much closer proportions of
ECWAs on the first problems. This suggested to us that there may have been certain problems that
happened to show up in the treatment problem set versus the condition problem set which happened to
have negative ECWAs be more common with their specific questions.

At this point, we were uncertain as to the validity of any planned statistical tests on the dataset,
given the nature of the differences between these groups.

Improving our Understanding of the Data
New Goals

Despite these challenges in the data, we decided to set new goals and expectations for the
project. Firstly, we were interested in making improvements to the design of the study that would be
more conducive for an analysis accurate to what we were hoping to measure. Secondly, we hoped to still
gain whatever insights we could from the results of the experiment to best proceed with said first goal.
Overall, we wanted to see what insights we could learn from our preliminary analysis, while opting to
construct an improved experiment.

Improving our Understanding of the Data
First, we wanted to figure out how accurate the mistake messages were, and generally, to extract

more problem specific data. We expanded the scope of our previous code (which we used to iterate
through the students and determine whether their first mistake was an ECWA) towards iteration towards
their other mistakes to find all mistakes each student made. We also made sure not to include multiple
copies of a given mistake from the same student if they happened to enter it in multiple times. This gave
us additional statistics on how difficult problems were and what the top empirical wrong answers,
contrasted with the frequency of students making an expected common wrong answer.

Shown below is an example of a figure generated via Python’s Matplotlib—a data plotting
library—that we configured to display information about problem properties and the frequency of
problem types. We generated one graphic for each problem in the dataset, containing information such
as problem ID, group (S1: control, S2: treatment), problem accuracy, and the ratio of ECWAs to all kinds
of mistakes. We also included what empirical mistakes (all kinds of mistakes) and ECWAs were most
frequent to the problem as two separate histograms. All figures are provided in Appendix G.

Figure 15 – An example of the problem figures, displaying problem-specific information.

We also generated a spreadsheet, allowing us to easily compare different statistics and
properties between different problems. Shown below in Figure 16 is an example of several rows in the
sheet. The full spreadsheet is provided in Appendix F.

Figure 16 – Example rows from our data spreadsheet

Using these two data presentation forms, we were able to deduce insights into the problems.
The code used to generate both can also be found in Appendix D.

Insights + Findings
To preface, many of these observations are more qualitative and general. Our intent was less to

derive specific results and more to inform the modifications to the problem set we were interested in
making as part hypothesis and part minimizing potential noise in new data.

What stood out to us first was the average accuracy on division problems were overall much
lower than for multiplication problems (59.75% accuracy vs 75.23% accuracy respectively), indicating a
significant difference in difficulty.

In reference to the asymmetry between both conditions, we noticed different values present in
equations from our control and message conditions. For example, there were several problems that had
-1 as the first value in the no message condition, but no coefficients had -1 in the message condition.
However, upon further investigation, we found the variabilized templates used for division and
multiplication in both the control and message conditions to be the same. We suspect there may have
been significant enough variability in how messages were generated in general, that resulted in
differences in which ECWAs were recognized.

We also noticed a few qualitative trends in problems of lower accuracy in the division and
multiplication categories. Problems in both division and multiplication with the c term smaller than the b
term tended to have a higher difficulty. Our guess for why this was a logical pattern was because the first
step being to subtract b from c in both steps, meant that if b > c, then (c-b) would be negative, which
may be easier to make a mistake with. Problems with their “a” term equaling 1 generally had a higher
accuracy, which we suspect was because this rendered them to really be 1-step addition/subtraction
problems. Problems with all numbers positive also tended to be easier, as well as problems that involved
division or multiplication by a factor of 5.

While a further, more rigorous/quantitative delve into problem difficulty remains to be a topic to
be explored in more depth in future analysis, these heuristics informed the construction of our new
problem set as to be later discussed.

Lastly, we were interested in figuring out how representative Selent’s messages were. Based on
the problem figures, we found that the ECWAs did a good job of generalizing the most common mistakes
students tended to make, despite there being many uncommon random unique mistakes that were
unaccounted for. We only found two main ways the ECWAs did not cover the most common types of
mistakes: Firstly, there were instances where the negative variants of the ECWAs were commonly made
by students. However, this tended to be on problems that had multiple of the same numbers. Second, in
division problems, students often divided both sides, and with the “a” term in the numerator.

Constructing a New Study
Note: For brevity, note that the original problem set will be referred to as 1.0, while the new

problem set will be referred to as 2.0.

Changes to the problems
We next began developing the new problem set. One limitation of the initial messages was a way to

figure out what components were useful for students. We were curious as to whether messages
containing sentiment, specifically positive and encouraging, would offer any measurable benefit towards
students using the platform. Thus, we first wanted to expand our analysis to more clearly delineate

between messages with positive sentiment versus neutral. Examples of statements we used in our new
messages with positive sentiment are provided below in Figure 17:

Figure 17 – Examples of statements we used in messages with sentiment

Thus, we redesigned the 2.0 problem set with three conditions: (1) No messages, (2) message, and
(3) message + positive sentiment. We wanted both conditions with messages to be as close to the same
as possible to prevent any subtle differences from skewing our results. Hence, we redesigned the
messages using a more neutral approach: We changed the red text to a neutral gray. Some of the
messages in 1.0 used capitalization in phrases such as something like “X is NOT Y” which we
uncapitalized. We simplified the explanations to just show the step they erred on.

We also added lines “It looks like this first step you probably did correctly” and “but we’re guessing
this last step you might have made an error” in blue, in between steps for two main reasons: to indicate
to students our messages were not necessarily 100% accurate and so both message conditions would
transition between steps more in a way a human verbally might.

As for how conditions (2) and (3) differed, we also included segments at the beginning of messages
for the sentiment condition, as shown in Figure 18. We used orange text for these messages with the
intent to have them be visually different from the rest of the message and being emotionally neutral.
Examples of all 2.0 ECWA types are shown in Appendix I.

Figure 18 – Structure of messages in each condition

Lastly, we included the new division mistake message described in Insights + Findings.

New Problem Set Structure
In 2.0, students first complete one of three unique problems of similar difficulty. Depending on

which of the three conditions they are in, they will or will not receive a message with or without
sentiment. Afterwards, all students complete the same immediate posttest problem, also of similar
difficulty (see Figure 19). Then they continue working on problems from the rest of the problem set, until
they get three correct (not including A/B/C or X) in a row.

Our new focus on analyzing only the first mistake students make, motivated this new
structure--the idea to get more data and less noise from selecting a narrower set of problems all
students first complete. We reused problems from the 1.0 problem set message condition, since they
already have the most data, and we’ve already measured student accuracy on them, and hence can
determine problems of similar difficulty. We wanted 3 problems of similar difficulty in case any one
problem would be an outlier. We chose the immediate posttest (problem X) to be similar to problems A,
B, and C, the idea to increase the chances the same mistake type occurring on the next problem, and
hence have more data to compare in occurrences of consecutive mistake types.

Figure 19 – Diagrams the structure of the new problem set

Choosing First Problems (A, B, C, X)
We used the spreadsheet to select these four problems, shown in Figure 20. In orange are the 3

possible problems students could receive, while in light blue is the next problem they complete. These
problems were also chosen from the initial message condition since we already have data for those
problems and ECWAs (and note they were not included in the remaining problems). Additionally, we
wrote a Python script to ensure the mistake messages did not overlap (code provided in Appendix E).
Using our hypothesized heuristics of problem similarity described in Insights + Findings, we also
considered the a, b, c relation described in the previous section to pick problems we hypothesized to
have similar ECWA distributions. Here, all problems share the following properties: they are division
problems, b > c, all numbers are positive, coefficients dividing x greater than 1.

Figure 20 – Subsection of spreadsheet with problems A, B, C, and X

While performance on the first two problems of the problem set is what we will primarily be
analyzing, including the remaining problems allows the problem set to function as normal for students,
and more data to be collected. We left their messages in 1.0 format.

We have recently launched the 2.0 version of this problem set. It is currently running in ASSISTments,
and we hope to collect data over the coming year.

Future Analysis + Ideas for Problem Set 3.0
After we get more data on 2.0, we hope to run statistical tests on how students perform on their

next action and posttest, in addition to how their behaviors change dependent on which condition they
were in. For instance, how average response time may differ, correctness, how many hints they request,
if they received a message with or without sentiment.

We are also interested in incorporating and expanding upon our insights from this analysis. This
might include measuring problem difficulty based on the a, b, c relations or analyzing the ECWA type
distributions of different problems to find similarities in problem difficulty and whether mistake
messages may be more useful for certain problems than others.

We would also like to develop a 3.0 version of the problem set. We’ve discussed different ways in
which problems can be similar or different from one another and generating completely new problems
according to different conditions may be interesting to test. This would allow us to further test how
effective mistake messages are based on difficulty.

We’ve also considered using information such as student performance on previous problem sets, as
provided in the ALI-Doc data tables, in a predictive model such as logistic regression or random forest to
see if types of students—based on trends in their action behavior and general statistics—tend to be
effect by mistake messages in a similar way.

Overall, there are many different directions we hope to take this project as we collect more data.

Conclusion
In this paper, we’ve described our process in analyzing a 50 question 2-step multiplication and

division problem set built in ASSISTments. We’ve built a pipeline that exports student and problem data
from the ALI-Doc request and ASSISTments problem builder into an analyzable format. When preparing
for our analysis, we suspected problems in the randomization of the initial study, and thus decided to
focus on making modifications to the problem set, while learning what we could from the existing data.
We made changes to the problem set structure and mistake messages. With these new changes fully
implemented, we’ve officially launched the 2.0 version of the problem set, which is live at the time of
this report being written (December 2021). We have described our ideas for future directions for this
project, which, as we continue collecting data for the new problem set, we hope to implement.

References
(n.d.). Retrieved from Python: https://www.python.org/

(n.d.). Retrieved from JSON: https://www.json.org/json-en.html

(n.d.). Retrieved from Beautiful Soup: https://beautiful-soup-4.readthedocs.io/en/latest/

(n.d.). Retrieved from HTML Cleaner: https://html-cleaner.com/

ALI's Analytics. (n.d.). Retrieved from ASSISTments Test Bed:
https://sites.google.com/site/assistmentstestbed/4-analyze-data/alis-analytics

Datetime. (n.d.). Retrieved from Python: https://docs.python.org/3/library/datetime.html

Dr. Douglas Selent. (n.d.). Retrieved from University of Wisconsin Platteville:
https://www.uwplatt.edu/profile/selentd

Evaluating a Mathematical Expression In a String. (n.d.). Retrieved from Stack Overflow:
https://stackoverflow.com/questions/2371436/evaluating-a-mathematical-expression-in-a-string

Heffernan, N. T. (2014). The ASSISTments Ecosystem: Building a Platform that Brings Scientists and
Teachers Together for. International Journal of Artificial Intelligence in Education., 1.

HTML: HyperText Markup Language. (n.d.). Retrieved from Mozilla:
https://developer.mozilla.org/en-US/docs/Web/HTML

Lesson 4: The Element Tree. (n.d.). Retrieved from Open Book Project:
http://www.openbookproject.net/tutorials/getdown/css/lesson4.html

Variabilized Templates. (n.d.). Retrieved from Assistments:
https://sites.google.com/site/assistmentsadvancedbuilder/variablized-templates

Appendix A: Web Scraping
from bs4 import BeautifulSoup
import pandas as pd
import pandas as pd
import dill as pk
import gzip
from sympy import sympify

FILEPATH_PROBLEM_LEVEL = '../data/PSAHQV-02-01-2021-13-26-42-ProblemLevel.csv'
FILEPATH_HTML = '../data/s2_questions.html'
FILEPATH_OUTPUT = '../export/'
F_NAME_QUESTIONS = 'questions_S2.p.gzip'

df_prob = pd.read_csv(FILEPATH_PROBLEM_LEVEL)
with open(FILEPATH_HTML) as f:
 soup = BeautifulSoup(f, "html.parser")

#extracts problem name from html line
def parse_problem_name(html_line):
 return html_line.text.split("#")[1].split(' ')[0]

#extracts text from html line
def parse_html_line(html_line):
 return html_line.text

def parse_question(question):
 q = question.find_all('td')[1].prettify(formatter=lambda s:
s.replace(u'\xa0', ' ')).split('\n')[4]
 if not 'table' in q:
 q = q.split(' ')
 k1 = int(q[1][:-1])
 k2 = int(q[3])
 k3 = int(q[5])
 return (0,k1,k2,k3)
 else:
 q = question.find_all('td')[1].prettify(formatter=lambda s:
s.replace(u'\xa0', ' ')).split('\n')
 k1 = int(q[10].replace(' ',''))
 k2 = int(q[13].replace(' ','').replace('+',''))
 k3 = int(q[19].replace(' ',''))
 return (1,k1,k2,k3)

def clean(s):
 remove_substrings = [u'\xa0', u'\xa0', u'\xa0',u'\n',u'/n']
 for sub in remove_substrings:

 s = s.replace(sub,'')
 return s

#gets mistakes and mistake messages from div chunk
def parse_mistake_messages(mistake_messages):

 #find where the mistakes headers are in the html file
 tr_tags = mistake_messages.find('tr').find_all('tr')
 tr_tags = [tr_tags[1]] + tr_tags[3:len(tr_tags):2]
 mistakes = [str(sympify(tr_tag.find_all('td')[1].text, evaluate=True))
 for i,tr_tag in enumerate(tr_tags)]

 #find where the mistake messages are for mistake
 mistake_messages = mistake_messages.find_all('li')
 mistake_message_dict = {}
 for i,mistake_message in enumerate(mistake_messages):
 steps = [list(map(lambda s: clean(s), [str(message)]))[0]
 for message in mistake_message.find_all('p')]
 #save list of mistake messages
 mistake_message_dict[mistakes[i]] = steps

 return mistake_message_dict

mistake_messages = {}
problems = soup.find_all('div',{'style':'border-bottom: solid; border-width:
1px;'})
question_dict = {}
for j,problem in enumerate(problems):
 problem_name = parse_problem_name(problem.find('font',{'class':'header'}))
 html_problem_sections = problem.find_all('div',{'nobreak':'true'})
 question = parse_question(html_problem_sections[0])
 question_dict[problem_name] = question
print(question_dict)

with gzip.open(FILEPATH_OUTPUT+F_NAME_QUESTIONS,'wb') as f:
 pk.dump(question_dict,f)

Appendix B: ALI-Doc Parsing
import tqdm
import pandas as pd
import tqdm
import pandas as pd
import dill as pk
import gzip
import datetime
from datetime import datetime
import json

FILEPATH_PROBLEM_LEVEL = '../data/PSAHQV-02-01-2021-13-26-42-ProblemLevel.csv'
FILEPATH_ACTION_LEVEL = '../data/PSAHQV-02-01-2021-13-26-42-ActionLevel.csv'
FILEPATH_STUDENT_LEVEL =
'../data/PSAHQV-02-01-2021-13-26-42-StudentLevelWithScaffolds.csv'
FILEPATH_HTML = '../data/PSAHQVA_formatted.html'
FILEPATH_OUTPUT = '../export/'
F_NAME_MISTAKE_MESSAGES = 'mistake_messages.p.gzip'
F_NAME_STUDENTS = 'students.json'

with gzip.open(FILEPATH_OUTPUT+F_NAME_MISTAKE_MESSAGES,'rb') as f:
 mistake_message_dict = pk.load(f)

df_prob = pd.read_csv(FILEPATH_PROBLEM_LEVEL,low_memory=False)
user_ids = sorted(list(set(df_prob['User ID'])))

df_action = pd.read_csv(FILEPATH_ACTION_LEVEL,low_memory=False)
problem_ids = pd.Series(list(map(lambda x: '"%s"'%(x),
list(mistake_message_dict.keys()))))

def rem_quotes(s):
 return s.replace('"','')

def parse_time(s):
 return datetime.strptime(s, '%m/%d/%Y %H:%M:%S.%f')

class Student:
 def __init__(self,user_id='',
 problem_ids=[],
 correct_answers={},
 mistakes={},
 n_mistakes={},
 messages={},
 n_messages={},
 starts={},
 ends={},
 total_times={},

 action_orders={},
 action_timestamps={},
 n_hints={},
 hint_timestamps={},
 answer_timestamps={}):

 self.user_id=user_id
 self.problem_ids=problem_ids
 self.correct_answers=correct_answers
 self.mistakes=mistakes
 self.n_mistakes=n_mistakes
 self.messages=messages
 self.n_messages = n_messages
 self.starts=starts
 self.ends=ends
 self.total_times=total_times
 self.action_orders=action_orders
 self.action_timestamps=action_timestamps
 self.n_hints=n_hints
 self.hint_timestamps=hint_timestamps
 self.answer_timestamps=answer_timestamps

def encode_student(s):
 return {'user_id':s.user_id,
 'problem_ids':s.problem_ids,
 'correct_answers':s.correct_answers,
 'mistakes':s.mistakes,
 'n_mistakes':s.n_mistakes,
 'messages':s.messages,
 'n_messages':s.n_messages,
 'starts':DictEncoder(s.starts,DatetimeEncoder),
 'ends':DictEncoder(s.ends,DatetimeEncoder),
 'total_times':s.total_times,
 'action_orders':s.action_orders,
 'action_timestamps':DictEncoder(s.action_timestamps,DatetimeEncoder),
 'n_hints':s.n_hints,
 'hint_timestamps':DictEncoder(s.hint_timestamps,DatetimeEncoder),
 'answer_timestamps':DictEncoder(s.answer_timestamps,DatetimeEncoder)}

def DictEncoder(d,encoder):
 new_d = {}
 for key in d:
 if type(d[key]) == list:
 tmp = []
 for item in d[key]:
 tmp.append(encoder(item))
 new_d[key] = tmp
 else:

 new_d[key] = encoder(d[key])
 return new_d

def DatetimeEncoder(d):
 return d.strftime('%m/%d/%Y %H:%M:%S.%f')

def unique_items(l):
 j = []
 for item in list(l):
 if item not in j:
 j.append(item)
 return j

def df_rows(df,col_name,name,neq=False,isin=False):
 if not isin:
 if neq == False:
 return df[df[col_name] == name]
 else:
 return df[df[col_name] != name]
 else:
 return df[df[col_name].isin(name)]

def df_sort(df,col_name,ascending=True,):
 return df.sort_values(col_name,ascending=ascending)

students = {}
event_ids = dict(zip(sorted(list(set(list(map(lambda x:
x.replace('"',''),list(df_action['Action Type']))) + ['next','work']))),

list('0123456789abcdefghijklmnop')[0:len(set(df_action['Action Type']))+2]))

s_n_problems = {}
s_n_actions = {}

#iterate through users
for i,s_id in tqdm.tqdm(enumerate(user_ids)): #iterate through students
 student_is_old = False

 #subset containing ONLY given user
 s_problem_level = df_rows(df_prob,'User ID', s_id)
 s_action_level = df_rows(df_action,'User ID', s_id)

 #count how many rows in each dataframe
 s_n_problems[s_id] = s_problem_level.shape[0]
 s_n_actions[s_id] = s_action_level.shape[0]

 #store data about student

 #assumption: student has completed this problem
 s_problem_ids = [] #list of problem ids
 s_correct_answers = {} #correct answer given the problem
 s_mistakes = {} #list of mistakes student made
 s_n_mistakes = {}
 s_messages = {} #dict of messages student received
 s_n_messages = {}
 s_starts = {} #when student started given problem
 s_ends = {} #when student ended given problem
 s_total_time = {} #end - start

 s_action_order = {} #sequence of hints and answers as s or h
 s_action_timestamps = {} #all response times for a given problem

 s_n_hints = {} #how many hints the student asked for on the given problem
 s_hint_timestamps = {} #how many hints the student asked for on the given
problem

 s_answer_timestamps = {}

 #get problem ids in order of time
 df_starts = df_rows(s_action_level,'Action Type','"start"')
 df_starts = df_sort(df_starts,'Timestamp')
 s_problem_ids = list(unique_items(df_starts['Problem ID']))
 rem_ids = []
 for j,p_id in enumerate(s_problem_ids):

 #create subset of df for problem
 df_problem = df_rows(s_action_level,'Problem ID',p_id)
 df_problem = df_sort(df_problem,'Timestamp')

 #student's answers
 df_answers = df_rows(df_problem,'Action Type','"answer"')
 p_answer_timestamps = list(map(lambda x: parse_time(rem_quotes(x)),
list(df_answers['Timestamp'])))

 #answers
 p_mistakes = list(df_rows(df_answers,'Correctness','false')['Answer
Text'])
 p_correct_answer = df_rows(df_answers,'Correctness','true')['Answer
Text']

 #skip problem if there is missing data
 conds = [
 df_rows(df_problem,'Action Type','"start"')['Timestamp'].shape[0] ==
0,
 df_rows(df_problem,'Action Type','"end"')['Timestamp'].shape[0] == 0,
 df_rows(df_problem,'Timestamp','""').shape[0] != 0,

 df_problem.shape[0] == 0,
 df_answers.shape[0] == 0,
 p_correct_answer.shape[0] == 0
]
 if True in conds:
 rem_ids.append(p_id)
 continue

 #basic time data; when problem started, stopped
 p_start = parse_time(rem_quotes(df_rows(df_problem,'Action
Type','"start"')['Timestamp'].iloc[0]))
 p_end = parse_time(rem_quotes(df_rows(df_problem,'Action
Type','"end"')['Timestamp'].iloc[0]))
 p_total_time = (p_end - p_start).total_seconds()

 #timestamps of hints
 p_hint_timestamps = list(map(lambda x: parse_time(rem_quotes(x)),
list(df_rows(df_problem,'Action Type','"hint"')['Timestamp'])))
 p_n_hints = len(p_hint_timestamps)

 #actions and their timestamps
 p_action_order = list(df_rows(df_problem,'Action Type',['"hint"',
'"answer"'],isin=True)['Action Type'])
 p_action_timestamps = list(map(lambda x: parse_time(rem_quotes(x)),
list(df_rows(df_problem,'Action Type',['"hint"',
'"answer"'],isin=True)['Timestamp'])))

 #add mistake messages
 p_messages = {}
 for i,mistake in enumerate(p_mistakes):
 if p_id.strip('"') in mistake_message_dict: #if problem has mistake
messages
 if mistake.strip('"') in mistake_message_dict[p_id.strip('"')]:
#if this kids answer yields a mistake message
 p_messages[mistake.strip('"')] =
mistake_message_dict[p_id.strip('"')][mistake.strip('"')]

 #save data
 s_correct_answers[p_id] = p_correct_answer.iloc[0] #correct answer given
the problem
 s_mistakes[p_id] = p_mistakes #list of mistakes student made
 s_n_mistakes[p_id] = len(p_mistakes)
 s_messages[p_id] = p_messages #dict of messages student received
 s_n_messages[p_id] = len(p_messages)
 s_starts[p_id] = p_start #when student started given problem
 s_ends[p_id] = p_end #when student ended given problem
 s_total_time[p_id] = p_total_time #end - start

 s_action_order[p_id] = p_action_order #sequence of hints and answers as s
or h
 s_action_timestamps[p_id] = p_action_timestamps #all response times for a
given problem
 s_n_hints[p_id] = p_n_hints #how many hints the student asked for on the
given problem
 s_hint_timestamps[p_id] = p_hint_timestamps #how many hints the student
asked for on the given problem
 s_answer_timestamps[p_id] = p_answer_timestamps

 #if student not from selent's study
 if s_answer_timestamps[p_id][0].year <= 2016:
 student_is_old = True
 break

 #if student not from selent’s study
 if student_is_old: continue

 for id_ in rem_ids:
 s_problem_ids.remove(id_)
 if len(s_problem_ids)==0: continue

 #save student as Student object and turn object into json
 students[s_id] = json.dumps(Student(
 user_id=s_id,
 problem_ids=s_problem_ids,
 correct_answers=s_correct_answers,
 mistakes=s_mistakes,
 n_mistakes=s_n_mistakes,
 messages=s_messages,
 n_messages=s_n_messages,
 starts=s_starts,
 ends=s_ends,
 total_times=s_total_time,
 action_orders=s_action_order,
 action_timestamps=s_action_timestamps,
 n_hints=s_n_hints,
 hint_timestamps=s_hint_timestamps,
 answer_timestamps=s_answer_timestamps
),
 default=encode_student)

with open(FILEPATH_OUTPUT+F_NAME_STUDENTS, "w") as f_out:
 json.dump(students,f_out)
pk.dump(students,gzip.open(FILEPATH_OUTPUT+F_NAME_STUDENTS,'wb'))

Appendix C: Loading Students
import tqdm
import pandas as pd
import tqdm
import pandas as pd
import dill as pk
import gzip
import json
import datetime
from datetime import datetime

FILEPATH_PROBLEM_LEVEL = '../data/PSAHQV-02-01-2021-13-26-42-ProblemLevel.csv'
FILEPATH_OUTPUT = '../export/'
F_NAME_MISTAKE_MESSAGES = 'mistake_messages.p.gzip'
F_NAME_STUDENTS = 'students.json'
PATH =FILEPATH_OUTPUT+F_NAME_STUDENTS

with gzip.open(FILEPATH_OUTPUT+F_NAME_MISTAKE_MESSAGES,'rb') as f:
 mistake_messages = pk.load(f)

df_prob = pd.read_csv(FILEPATH_PROBLEM_LEVEL,low_memory=False)
problem_ids = pd.Series(list(map(lambda x: '"%s"'%(x),
list(mistake_messages.keys()))))

class Student:
 def __init__(self,user_id='',
 problem_ids=[],
 correct_answers={},
 mistakes={},
 n_mistakes={},
 messages={},
 n_messages={},
 starts={},
 ends={},
 total_times={},
 action_orders={},
 action_timestamps={},
 n_hints={},
 hint_timestamps={},
 answer_timestamps={}):

 self.user_id=user_id
 self.problem_ids=problem_ids
 self.correct_answers=correct_answers
 self.mistakes=mistakes
 self.n_mistakes=n_mistakes

 self.messages=messages
 self.n_messages = n_messages
 self.starts=starts
 self.ends=ends
 self.total_times=total_times
 self.action_orders=action_orders
 self.action_timestamps=action_timestamps
 self.n_hints=n_hints
 self.hint_timestamps=hint_timestamps
 self.answer_timestamps=answer_timestamps

def DatetimeDecoder(d):
 return datetime.strptime(d, '%m/%d/%Y %H:%M:%S.%f')

def DictDecoder(d,decoder):
 new_d = {}
 for key in d:
 if type(d[key]) == list:
 tmp = []
 for item in d[key]:
 tmp.append(decoder(item))
 new_d[key] = tmp
 else:
 new_d[key] = decoder(d[key])
 return new_d

def decode_student(s):
 return Student(
 user_id=s['user_id'],
 problem_ids=s['problem_ids'],
 correct_answers=s['correct_answers'],
 mistakes=s['mistakes'],
 n_mistakes=s['n_mistakes'],
 messages=s['messages'],
 n_messages=s['n_messages'],
 starts=DictDecoder(s['starts'],DatetimeDecoder),
 ends=DictDecoder(s['ends'],DatetimeDecoder),
 total_times=s['total_times'],
 action_orders=s['action_orders'],
 action_timestamps=DictDecoder(s['action_timestamps'],DatetimeDecoder),
 n_hints=s['n_hints'],
 hint_timestamps=DictDecoder(s['hint_timestamps'],DatetimeDecoder),
 answer_timestamps=DictDecoder(s['answer_timestamps'],DatetimeDecoder)
)

with open(PATH, "r") as f_in:
 students = json.load(f_in)

for student in tqdm.tqdm(students):
 students[student] = decode_student(json.loads(students[student]))

Appendix D: Filtering Messages + Generating Plots/Spreadsheet
from load_students import *
F_NAME_QUESTIONS_S1 = 'questions.p.gzip'
F_NAME_QUESTIONS_S2 = 'questions_S2.p.gzip'

#multiplication
mistakes_a = [
 lambda x,y,z: (y-z) / x,
 lambda x,y,z: z-y,
 lambda x,y,z: (z-y) * x,
 lambda x,y,z: (z+y) / x,
 lambda x,y,z: (z-y-x),
 lambda x,y,z: (y+z),
 lambda x,y,z: ((z-y) / x)+1,
 lambda x,y,z: ((z-y) / x)-1,
]

#division
mistakes_b = [
 lambda x,y,z: (z-y) * x * (-1),
 lambda x,y,z: x * (y+z),
 lambda x,y,z: (z*x) - y,
 lambda x,y,z: z*x,
 lambda x,y,z: z-y,
 lambda x,y,z: z-y-x,
 lambda x,y,z: z*x+y,
 lambda x,y,z: (z-y)/x,
 lambda x,y,z: (z-y)/x*(-1)
]

#multiplication
mistakes_a_labels = {
 '0a': '(z-y) * x * (-1)',
 '1a': 'x * (y+z)',
 '2a': '(z*x) - y',
 '3a': 'z*x',
 '4a': 'z-y',
 '5a': 'z-y-x',
 '6a': 'z*x+y'
}

#division
mistakes_b_labels = {
 '0b': '(z-y) / x',
 '1b': 'z-y',
 '2b': '(z-y) * x',
 '3b': '(z+y) / x',

 '4b': '(z-y-x)',
 '5b': '(y+z)',
 '6b': '(z-y) / x+1',
 '7b': '(z-y) / x-1'
}

def mistake_label_mapper(m):
 if 'b' in m:
 return mistakes_b_labels[m]
 elif 'a' in m:
 return mistakes_a_labels[m]
 else:
 return 'other'

import ast, math

#helper for evaluate()
locals = {key: value for (key,value) in vars(math).items() if key[0] != '_'}
locals.update({"abs": abs, "complex": complex, "min": min, "max": max, "pow":
pow, "round": round})

class Visitor(ast.NodeVisitor):
 def visit(self, node):
 if not isinstance(node, self.whitelist):
 raise ValueError(node)
 return super().visit(node)

 whitelist = (ast.Module, ast.Expr, ast.Load, ast.Expression, ast.Add,
ast.Sub, ast.UnaryOp, ast.Num, ast.BinOp,
 ast.Mult, ast.Div, ast.Pow, ast.BitOr, ast.BitAnd, ast.BitXor,
ast.USub, ast.UAdd, ast.FloorDiv, ast.Mod,
 ast.LShift, ast.RShift, ast.Invert, ast.Call, ast.Name)

#evalutes string expression
def evaluate(expr, locals = {}):
 if any(elem in expr for elem in '\n#') : raise ValueError(expr)
 try:
 node = ast.parse(expr.strip(), mode='eval')
 Visitor().visit(node)
 return eval(compile(node, "<string>", "eval"), {'__builtins__': None},
locals)
 except Exception: raise ValueError(expr)

#gets the index of the first mistake
def get_fmi(s,m):

 if m == 'mistake':
 for i,pid in enumerate(s.problem_ids):
 if s.n_mistakes[pid] != 0:
 return i

#get's string formula for question
def get_equation(nums,typ):
 if typ == 'multiplication':
 l = list(map(lambda x: str(x), nums))
 return '%s*x + %s = %s' % (l[0],l[1],l[2])
 else:
 l = list(map(lambda x: str(x), nums))
 return 'x/%s + %s = %s' % (l[0],l[1],l[2])

#gets answer to question
def get_answer(nums,typ):
 if typ == 'multiplication':
 l = nums
 return (l[2]-l[1])/l[0]
 else:
 l = nums
 return (l[2]-l[1])*l[0]

#converts string mistake or unsolved mistake into mistake
def parse_mistake(mistake):
 m = mistake.strip('"').replace('[','').replace(']','').replace('
','+').replace('%','').replace('-0','-')
 if m[0] == '(' and m[-1] == ')':
 m = m.strip('()')
 m = m.replace('(','*(')
 if m[0] == '*':
 m = m[1:]
 m = evaluate(m)
 if m == int(m): m = int(m)
 return m

#load questions
with gzip.open(FILEPATH_OUTPUT+F_NAME_QUESTIONS_S1,'rb') as f:
 question_dict_s1 = pk.load(f)

with gzip.open(FILEPATH_OUTPUT+F_NAME_QUESTIONS_S2,'rb') as f:
 question_dict_s2 = pk.load(f)

#messages for each question
s1_messages = {}
s2_messages = {}

#types of each question

message_types_s1 = {}
message_types_s2 = {}

#store mistake messages S1
for question in tqdm.tqdm(question_dict_s1):
 q = question_dict_s1[question]
 message_types_s1[question] = {}
 messages = {}
 if q[0] == 0:
 for i in range(len(mistakes_a)):
 messages[mistakes_a[i](q[1],q[2],q[3])] = []
 message_types_s1[question][mistakes_a[i](q[1],q[2],q[3])] = i
 else:
 for i in range(len(mistakes_b)):
 messages[mistakes_b[i](q[1],q[2],q[3])] = []
 message_types_s1[question][mistakes_b[i](q[1],q[2],q[3])] = i
 s1_messages[question] = messages

#Store mistake messages S2
for question in question_dict_s2:
 q = question_dict_s2[question]
 message_types_s2[question] = {}
 messages = {}
 if q[0] == 0:
 for i in range(len(mistakes_a)):
 messages[mistakes_a[i](q[1],q[2],q[3])] = []
 message_types_s2[question][mistakes_a[i](q[1],q[2],q[3])] = i
 else:
 for i in range(len(mistakes_b)):
 messages[mistakes_b[i](q[1],q[2],q[3])] = []
 message_types_s2[question][mistakes_b[i](q[1],q[2],q[3])] = i
 s2_messages[question] = messages

s1_ = set(question_dict_s1.values())
s2_ = set(question_dict_s2.values())

A = []
B = []

##
#filtering
#remove students with no mistake
tmp = {}
for sid in students:
 s = students[sid]
 fmi = get_fmi(s,'mistake')
 if fmi == None: continue

 tmp[sid] = s
students = tmp
print(len(students))

#remove students by time
tmp = {}
counter = 0
for sid in students:
 s = students[sid]
 fmi = get_fmi(s,'mistake')
 fmpid = s.problem_ids[fmi]
 if s.answer_timestamps[fmpid][0].year > 2016:
 counter+=1
 tmp[sid] = s
print(counter)
students = tmp
##

#first mistake problem ids
A_fmpids = []
B_fmpids = []

#emperical mistakes made for given pid
s2_mistakes = {}
s1_mistakes = {}

#attempt counter for all problems
s1_total_attempted = {}
s2_total_attempted = {}

#attempt counter for students' first problems
s1_first_attempted = {}
s2_first_attempted = {}

#mistake counter for all problems
s1_total_mistake_counts = {}
s2_total_mistake_counts = {}

#mistake counter for students' first problems
s1_first_mistake_counts = {}
s2_first_mistake_counts = {}

#get difficulty
difficulty_dict = dict(zip(list(df_difficulty['Problem ID']),
list(df_difficulty.iloc[:,3])))

s1_first_pids = []
s2_first_pids = []

#iterate through students to get information about problems they've solved
for sid in tqdm.tqdm(students):
 s = students[sid]

 #iterate through problems student has actions for
 for q,pid in enumerate(s.problem_ids):
 #problem was in control group

 if pid.strip('"') in s1_messages:
 s1_first_pids.append(pid.strip('"'))

 if pid.strip('"') in s1_messages:
 if q == 0:
 #first problem that student attempted
 if pid.strip('"') not in s1_first_attempted:
s1_first_attempted[pid.strip('"')] = 1
 else: s1_first_attempted[pid.strip('"')] +=1

 if pid.strip('"') not in s1_mistakes: s1_mistakes[pid.strip('"')] =
[]

 if pid.strip('"') not in s1_total_attempted:
s1_total_attempted[pid.strip('"')] = 1
 else: s1_total_attempted[pid.strip('"')] +=1
 A_fmpids.append(pid)

 #student made at least 1 mistake
 if len(s.mistakes[pid]) > 0:
 if q == 0:
 #first problem student attempted AND a mistake
 if pid.strip('"') not in s1_first_mistake_counts:
s1_first_mistake_counts[pid.strip('"')] = 1
 else: s1_first_mistake_counts[pid.strip('"')] +=1

 #ANY Problem was a mistake for student
 if pid.strip('"') not in s1_total_mistake_counts:
s1_total_mistake_counts[pid.strip('"')] = 1
 else: s1_total_mistake_counts[pid.strip('"')] +=1

 #iterate through student's mistakes
 for mistake in s.mistakes[pid]:
 if "/0" in mistake: continue
 m = parse_mistake(mistake)

 #save as emperical mistake for given pid

 s1_mistakes[pid.strip('"')].append(m)

 #mistake was a CWA
 if m in list(map(lambda x: eval(str(x)),
s1_messages[pid.strip('"')])):
 A_fmpids.append(pid.strip('"'))
 break
 break

#iterate through students in s2
for sid in tqdm.tqdm(students):
 s = students[sid]

 #iterate through problems student has actions for
 for q,pid in enumerate(s.problem_ids):
 #problem was in control group

 if pid.strip('"') in s2_messages:
 s2_first_pids.append(pid.strip('"'))

 if pid.strip('"') in s2_messages:
 if q == 0:
 #first problem that student attempted
 if pid.strip('"') not in s2_first_attempted:
s2_first_attempted[pid.strip('"')] = 1
 else: s2_first_attempted[pid.strip('"')] +=1

 if pid.strip('"') not in s2_mistakes: s2_mistakes[pid.strip('"')] =
[]
 #if pid.strip('"') == 'PRATUWT':continue
 if pid.strip('"') not in s2_total_attempted:
s2_total_attempted[pid.strip('"')] = 1
 else: s2_total_attempted[pid.strip('"')] +=1
 B_fmpids.append(pid)

 #student made at least 1 mistake
 if len(s.mistakes[pid]) > 0:
 if q == 0:
 #first problem student attempted AND a mistake
 if pid.strip('"') not in s2_first_mistake_counts:
s2_first_mistake_counts[pid.strip('"')] = 1
 else: s2_first_mistake_counts[pid.strip('"')] +=1

 #ANY Problem was a mistake for student
 if pid.strip('"') not in s2_total_mistake_counts:
s2_total_mistake_counts[pid.strip('"')] = 1
 else: s2_total_mistake_counts[pid.strip('"')] +=1

 #iterate through student's mistakes
 for mistake in s.mistakes[pid]:
 if "/0" in mistake: continue
 m = parse_mistake(mistake)

 #save as emperical mistake for given pid
 s2_mistakes[pid.strip('"')].append(m)

 #mistake was a CWA
 if m in list(map(lambda x: eval(str(x)),
s2_messages[pid.strip('"')])):
 B_fmpids.append(pid.strip('"'))
 break
 break

s1_diff = Counter([difficulty_dict[pid] for pid in s1_first_pids])
s2_diff = Counter([difficulty_dict[pid] for pid in s2_first_pids])

#top observed all answers
s1_hist_all = {pid:Counter(s1_mistakes[pid]) for pid in s1_mistakes}
s2_hist_all = {pid:Counter(s2_mistakes[pid]) for pid in s2_mistakes}

#top observed selent answers
s1_hist_cwa = {pid:Counter([mistake for mistake in s1_mistakes[pid] if mistake in
list(map(lambda x: eval(str(x)), s1_messages[pid]))]) for pid in s1_mistakes}
s2_hist_cwa = {pid:Counter([mistake for mistake in s2_mistakes[pid] if mistake in
list(map(lambda x: eval(str(x)), s2_messages[pid]))]) for pid in s2_mistakes}

IMAGE_OUTPUT = '../figures/'

for pid in s1_hist_all:
 #l1: all students who mistaked pid, l2: students who mistaked pid on first
problem
 l_cwa = {str(mistake):s1_hist_cwa[pid][mistake] for mistake in
s1_hist_cwa[pid]}
 l_all = {str(mistake):s1_hist_all[pid][mistake] for mistake in
s1_hist_all[pid]}

 if question_dict_s1[pid][0] == 0: qtype = 'multiplication'
 else: qtype = 'division'

 fig, (ax1, ax2,ax3) = plt.subplots(1, 3, figsize=(12, 4))

 #top observed wrong answers
 ax1.set_title('Top WA')
 ax1.bar(l_all.keys(), l_all.values())
 fig.autofmt_xdate(rotation=45)

 #top common wrong answers
 ax2.set_title('Top Selent WA')
 ax2.bar(l_cwa.keys(), l_cwa.values())
 fig.autofmt_xdate(rotation=45)

 #statistics
 ax3.set_xticks([])
 ax3.set_yticks([])
 ax3.set_xlim([0,1])
 ax3.set_ylim([0,1])

 stats = ['Problem ID: %s'%(pid),
 'Group: S1',
 'Problem Type: %s'%qtype,
 'Equation: %s'%get_equation(question_dict_s1[pid][1:4],qtype),
 'Answer: %d'%get_answer(question_dict_s1[pid][1:4],qtype),
 'A: %s'%question_dict_s1[pid][1],
 'B: %s'%question_dict_s1[pid][2],
 'C: %s'%question_dict_s1[pid][3],
 'N Students Wrong First Problem: %d'%s1_first_mistake_counts[pid],
 'N Students Attempted First Problem: %d'%(s1_first_attempted[pid]),
 'First Prob Accuracy:
%.2f%%'%(100*abs(s1_first_attempted[pid]-s1_first_mistake_counts[pid])/s1_first_a
ttempted[pid]),
 'N Students Wrong Overall: %d'%s1_total_mistake_counts[pid],
 'N Students Attempted Overall: %d'%s1_total_attempted[pid],
 'Problem Overall Accuracy:
%.2f%%'%(100*abs(s1_total_mistake_counts[pid]-s1_total_attempted[pid])/s1_total_a
ttempted[pid]),
 'CWA/TOWA: %.2f%%' % (100*sum(list(l_cwa.values()))/(sum(l_all.values())))]

 for i,stat in enumerate(stats):
 ax3.text(.07,1 - (i+1)*(1/(len(stats)+1)),stat)
 for i,stat in enumerate(stats):
 ax3.text(.07,1 - (i+1)*(1/(len(stats)+1)),stat)
 plt.tight_layout()
 plt.show()
 #plt.savefig(IMAGE_OUTPUT + '_s1_'+pid)

for pid in s2_hist_all:
 l1 = {str(mistake):B_hist[pid][mistake] for mistake in B_hist[pid] if
B_hist[pid][mistake]}# >=
max(2,B_hist[pid].most_common()[len(s2_messages[pid])][1])}
 l2 = {str(mistake):B_hist_actual[pid][mistake] for mistake in
B_hist_actual[pid]}

 if question_dict_s2[pid][0] == 0: qtype = 'multiplication'

 else: qtype = 'division'

 fig, (ax1, ax2,ax3) = plt.subplots(1, 3, figsize=(12, 4))
 #top observed wrong answers
 ax1.set_title('Top Observed WA')
 ax1.bar(l1.keys(), l1.values())
 fig.autofmt_xdate(rotation=90)

 #top common wrong answers
 ax2.set_title('Common WA')
 ax2.bar(l2.keys(), l2.values())
 fig.autofmt_xdate(rotation=90)
 fig.xticks(rotation=45)
 #show statistics
 ax3.set_xticks([])
 ax3.set_yticks([])
 ax3.set_xlim([0,1])
 ax3.set_ylim([0,1])

 stats = ['Problem ID: %s'%(pid),
 'Group: S2',
 'Problem Type: %s'%qtype,
 'Equation: %s'%get_equation(question_dict_s2[pid][1:4],qtype),
 'Answer: %d'%get_answer(question_dict_s2[pid][1:4],qtype),
 'A: %s'%question_dict_s2[pid][1],
 'B: %s'%question_dict_s2[pid][2],
 'C: %s'%question_dict_s2[pid][3],
 'N Students Wrong First Problem: %d'%s2_first_mistake_counts[pid],
 'N Students Attempted First Problem: %d'%(s2_first_attempted[pid]),
 'First Prob Accuracy:
%.2f%%'%(100*abs(s2_first_attempted[pid]-s2_first_mistake_counts[pid])/s2_first_a
ttempted[pid]),
 'N Students Wrong Overall: %d'%s2_total_mistake_counts[pid],
 'N Students Attempted Overall: %d'%s2_total_attempted[pid],
 'Problem Overall Accuracy:
%.2f%%'%(100*abs(s2_total_mistake_counts[pid]-s2_total_attempted[pid])/s2_total_a
ttempted[pid]),
 'CWA/(CWA + TOWA): %.2f%%' %
(100*sum(list(l2.values()))/(sum(list(l1.values()))+sum(list(l2.values()))))]

 for i,stat in enumerate(stats):
 ax3.text(.07,1 - (i+1)*(1/(len(stats)+1)),stat)

 plt.tight_layout()
 plt.savefig(IMAGE_OUTPUT + '_s2_'+pid)

#export dataframe

s1_rows = []
s2_rows = []

colnames = ['Problem ID',
 'Group',
 'Problem Type',
 'Equation',
 'Answer',
 'A',
 'B',
 'C',
 'N Students Wrong First Problem',
 'N Students Attempted First Problem',
 'First Prob Accuracy',
 'N Students Wrong Overall',
 'N Students Attempted Overall',
 'Problem Overall Accuracy',
 'CWA/(CWA + TOWA)'
]

dfs1 = pd.DataFrame(s1_rows, columns = colnames)
dfs2 = pd.DataFrame(s2_rows, columns = colnames)

dfs1.to_csv(IMAGE_OUTPUT +'s1.csv')
dfs2.to_csv(IMAGE_OUTPUT +'s2.csv')

Appendix E: Overlapping Messages
import pickle as pk
from collections import Counter
import gzip

FILEPATH_OUTPUT = '../export/'

#multiplication
mistakes_a = [
 lambda x,y,z: (y-z) / x,
 lambda x,y,z: z-y,
 lambda x,y,z: (z-y) * x,
 lambda x,y,z: (z+y) / x,
 lambda x,y,z: (z-y-x),
 lambda x,y,z: (y+z),
 lambda x,y,z: ((z-y) / x)+1,
 lambda x,y,z: ((z-y) / x)-1,
]

#division

mistakes_b = [
 lambda x,y,z: (z-y) * x * (-1),
 lambda x,y,z: x * (y+z),
 lambda x,y,z: (z*x) - y,
 lambda x,y,z: z*x,
 lambda x,y,z: z-y,
 lambda x,y,z: z-y-x,
 lambda x,y,z: z*x+y,
 lambda x,y,z: (z-y)/x,
 lambda x,y,z: (z-y)/x*(-1)
]

all_first_mistakes=pk.load(gzip.open(FILEPATH_OUTPUT+"all_mistakes.p.gzip",'rb'))
all_cwa_types=pk.load(gzip.open(FILEPATH_OUTPUT+"all_cwa_types.p.gzip",'rb'))
all_question_dict=pk.load(gzip.open(FILEPATH_OUTPUT+"all_question_dict.p.gzip",'r
b'))

def get_correct_ans(nums,typ):
 if typ == 0:
 eq = lambda x,y,z: (z-y)/x
 if typ == 1:
 eq = lambda x,y,z: (z-y)*x

def get_n_repeated(l):
 d = {}
 c = Counter(l)
 acc = []

 for x in set(l):
 acc.append(c[x]) #save counts
 return len(set(acc) - set([1]))

def get_repeated_indeces(l):
 c = dict(Counter(l))
 print(c)
 c = {k:[i for i, v in enumerate(l) if v == k] for k in c if c[k]>1}
 return c

def get_equation(nums,typ):
 if typ == 0:
 l = list(map(lambda x: str(x), nums))
 return '%s*x + %s = %s' % (l[0],l[1],l[2])
 else:
 l = list(map(lambda x: str(x), nums))
 return 'x/%s + %s = %s' % (l[0],l[1],l[2])

#calculate which problems have repeated messages

for pid in all_question_dict:
 q = all_question_dict[pid]
 a=q[1]
 b=q[2]
 c=q[3]
 ECWAS = []

 if q[0] == 0:
 for i in range(len(mistakes_a)):
 ECWAS.append(mistakes_a[i](a,b,c))
 else:
 for i in range(len(mistakes_b)):
 ECWAS.append(mistakes_b[i](a,b,c)
 #length less than n ECWAs means we have repeats
 print(pid, len(set(ECWAS)))

Appendix F: Problem Spreadsheet

Problem
ID

Grou
p Type

Equatio
n

Answ
er A B C

Problem
Overall
Accurac
y

First
Prob
Accurac
y

CWA/(TOW
A) B < C

Accurac
y Not
First

First
acc >
Not
First
acc

N
Student
s
Wrong
First
Proble
m

N
Students
Attempte
d First
Problem

N
Student
s
Wrong
Overall

N
Students
Attempte
d Overall

Accurac
y diff

PRATU5D S1 division
x/7 + 8
= 1 -49 7 8 1 36.97% 14.29% 43.75%

FALS
E 43.83% TRUE 42 49 133 211 29.54%

PRATU5R S1 division
x/6 +
11 = 5 -36 6

1
1 5 44.97% 12.50% 31.03%

FALS
E 52.55% TRUE 28 32 93 169 40.05%

PRATU5H S1 division
x/7 +
11 = -1 -84 7

1
1 -1 45.61% 15.00% 41.63%

FALS
E 54.96% TRUE 34 40 93 171 39.96%

PRATU5Z S1 division
x/11 +
9 = 2 -77

1
1 9 2 49.44% 18.52% 38.79%

FALS
E 54.90% TRUE 22 27 91 180 36.38%

PRATU5X S1 division
x/3 +
10 = 2 -24 3

1
0 2 50.00% 16.67% 43.98%

FALS
E 57.25% TRUE 25 30 84 168 40.58%

PRATU52 S1 division
x/9 + 7
= 3 -36 9 7 3 53.22% 29.41% 41.72%

FALS
E 59.12% TRUE 24 34 80 171 29.71%

PRATU55 S1 division
x/3 + 9
= 4 -15 3 9 4 55.56% 44.44% 41.26%

FALS
E 57.78% TRUE 15 27 72 162 13.34%

PRATU5Q S1 division
x/7 + 2
= 9 49 7 2 9 56.41% 39.29% 32.35% TRUE 60.16% TRUE 17 28 68 156 20.87%

PRATU54 S1 division
x/4 + 4
= 3 -4 4 4 3 57.46% 22.86% 43.27%

FALS
E 65.75% TRUE 27 35 77 181 42.89%

PRATU5E S1 division
x/5 + 6
= 5 -5 5 6 5 57.96% 31.03% 38.36%

FALS
E 64.06% TRUE 20 29 66 157 33.03%

PRATU48 S1 division
x/6 + 8
= 4 -24 6 8 4 58.16% 17.65% 38.13%

FALS
E 63.71% TRUE 14 17 59 141 46.06%

PRATU5K S1 division
x/6 + 5
= 3 -12 6 5 3 59.02% 21.21% 35.57%

FALS
E 67.33% TRUE 26 33 75 183 46.12%

PRATU5V S1 division
x/7 + 5
= 0 -35 7 5 0 61.18% 40.00% 47.45%

FALS
E 65.71% TRUE 18 30 66 170 25.71%

PRATU5Y S1 division
x/11 +
9 = 7 -22

1
1 9 7 62.21% 22.73% 41.43%

FALS
E 68.00% TRUE 17 22 65 172 45.27%

PRATU5P S1 division
x/10 +
5 = 3 -20

1
0 5 3 62.66% 30.00% 37.88%

FALS
E 67.39% TRUE 14 20 59 158 37.39%

PRATU5F S1 division
x/8 + 2
= 4 16 8 2 4 63.10% 42.86% 28.77% TRUE 67.14% TRUE 16 28 62 168 24.28%

PRATU5T S1 division
x/2 + 5
= 7 4 2 5 7 63.64% 41.38% 29.55% TRUE 68.03% TRUE 17 29 64 176 26.65%

PRATU5A S1 division
x/8 + 7
= 6 -8 8 7 6 66.46% 44.44% 40.71%

FALS
E 70.90% TRUE 15 27 54 161 26.46%

PRATU5B S1 division
x/1 + 5
= -1 -6 1 5 -1 68.42% 64.00% 38.02%

FALS
E 69.18% TRUE 9 25 54 171 5.18%

PRATU5
W S1 division

x/1 + 6
= 2 -4 1 6 2 68.65% 54.55% 37.96%

FALS
E 73.05% TRUE 20 44 58 185 18.50%

PRATU53 S1 division
x/1 + 9
= 7 -2 1 9 7 74.52% 55.00% 32.53%

FALS
E 77.37% TRUE 9 20 40 157 22.37%

PRATU5U S1 division
x/1 + 5
= 4 -1 1 5 4 75.56% 61.76% 43.00%

FALS
E 78.77% TRUE 13 34 44 180 17.01%

PRATU49 S1 division
x/1 +
10 = 11 1 1

1
0

1
1 85.16% 72.22% 25.71% TRUE 86.86% TRUE 5 18 23 155 14.64%

PRATU5G S1 division
x/1 + 2
= 7 5 1 2 7 87.26% 79.17% 29.63% TRUE 88.72% TRUE 5 24 20 157 9.55%

PRATU5S S1 division
x/1 + 4
= 6 2 1 4 6 90.00% 84.21% 42.11% TRUE 90.91% TRUE 3 19 14 140 6.70%

PRA26BE S2 division
x/9 +
10 = 5 -45 9

1
0 5 43.90% 14.29% 45.27%

FALS
E 50.00% TRUE 24 28 92 164 35.71%

PRA26BQ S2 division
x/6 + 8
= 2 -36 6 8 2 45.09% 29.17% 35.54%

FALS
E 47.65% TRUE 17 24 95 173 18.48%

PRA26BF S2 division
x/2 + 6
= 4 -4 2 6 4 45.28% 22.58% 37.24%

FALS
E 50.78% TRUE 24 31 87 159 28.20%

PRA26B3 S2 division
x/-1 +
11 = -2 13 -1

1
1 -2 47.06% 20.00% 43.65%

FALS
E 52.86% TRUE 24 30 90 170 32.86%

PRA26BZ S2 division
x/-1 + 9
= 0 9 -1 9 0 47.54% 34.48% 44.95%

FALS
E 50.00% TRUE 19 29 96 183 15.52%

PRA26BN S2 division
x/8 + 6
= 4 -16 8 6 4 48.43% 28.12% 37.28%

FALS
E 53.54% TRUE 23 32 82 159 25.42%

PRA26B2 S2 division
x/4 + 7
= -1 -32 4 7 -1 48.82% 33.33% 33.84%

FALS
E 52.14% TRUE 20 30 87 170 18.81%

PRA26B4 S2 division
x/-1 + 2
= 0 2 -1 2 0 49.10% 25.00% 46.61%

FALS
E 54.81% TRUE 24 32 85 167 29.81%

PRA26BR S2 division
x/2 + 4
= -1 -10 2 4 -1 50.00% 24.14% 46.89%

FALS
E 55.10% TRUE 22 29 88 176 30.96%

PRA26BV S2 division
x/7 + 2
= -1 -21 7 2 -1 51.72% 18.18% 43.75%

FALS
E 59.57% TRUE 27 33 84 174 41.39%

PRA26BC S2 division
x/6 + 9
= 3 -36 6 9 3 52.73% 9.52% 36.00%

FALS
E 59.03% TRUE 19 21 78 165 49.51%

PRA26BU S2 division
x/10 +
3 = 1 -20

1
0 3 1 56.36% 22.22% 37.44%

FALS
E 63.04% TRUE 21 27 72 165 40.82%

PRA26B6 S2 division
x/2 + 6
= 1 -10 2 6 1 57.14% 36.67% 43.51%

FALS
E 61.83% TRUE 19 30 69 161 25.16%

PRA26BM S2 division
x/6 + 4
= 3 -6 6 4 3 58.28% 26.67% 38.93%

FALS
E 66.12% TRUE 22 30 63 151 39.45%

PRA26BK S2 division
x/10 +
3 = 2 -10

1
0 3 2 58.44% 30.00% 40.28%

FALS
E 65.32% TRUE 21 30 64 154 35.32%

PRA26BG S2 division
x/3 + 6
= 9 9 3 6 9 58.50% 26.67% 34.09% TRUE 64.12% TRUE 22 30 83 200 37.45%

PRA26BJ S2 division
x/-2 + 6
= 6 0 -2 6 6 62.65% 52.38% 35.62%

FALS
E 64.14% TRUE 10 21 62 166 11.76%

PRA26BD S2 division
x/5 + 2
= 5 15 5 2 5 63.12% 42.86% 38.69% TRUE 66.19% TRUE 12 21 59 160 23.33%

PRA26BX S2 division
x/8 + 5
= 7 16 8 5 7 67.48% 35.71% 32.99% TRUE 74.07% TRUE 18 28 53 163 38.36%

PRA26BY S2 division
x/4 + 9
= 9 0 4 9 9 68.83% 51.61% 21.51%

FALS
E 73.17% TRUE 15 31 48 154 21.56%

PRA26BP S2 division
x/5 + 4
= 7 15 5 4 7 72.33% 35.00% 36.46% TRUE 77.70% TRUE 13 20 44 159 42.70%

PRA26B
W S2 division

x/11 +
3 = 5 22

1
1 3 5 75.97% 47.83% 33.33% TRUE 80.92% TRUE 12 23 37 154 33.09%

PRA26BS S2 division
x/1 + 3
= 4 1 1 3 4 85.51% 84.00% 37.78% TRUE 85.84% TRUE 4 25 20 138 1.84%

PRATUW
7 S1

multiplicati
on

10*x +
8 = -2 -1

1
0 8 -2 51.59% 44.00% 46.70%

FALS
E 53.03% TRUE 14 25 76 157 9.03%

PRATUW
3 S1

multiplicati
on

11*x +
5 = -6 -1

1
1 5 -6 51.95% 29.63% 44.79%

FALS
E 56.69% TRUE 19 27 74 154 27.06%

PRATUW
Z S1

multiplicati
on

10*x +
3 = -27 -3

1
0 3

-2
7 52.35% 40.00% 42.26%

FALS
E 54.84% TRUE 15 25 71 149 14.84%

PRATUW
5 S1

multiplicati
on

2*x +
11 = 3 -4 2

1
1 3 54.82% 23.08% 41.00%

FALS
E 60.71% TRUE 20 26 75 166 37.63%

PRATUW
T S1

multiplicati
on

11*x +
8 = -25 -3

1
1 8

-2
5 58.39% 37.50% 39.76%

FALS
E 63.57% TRUE 20 32 67 161 26.07%

PRATUW
V S1

multiplicati
on

7*x + 2
= -26 -4 7 2

-2
6 59.35% 48.00% 41.13%

FALS
E 61.54% TRUE 13 25 63 155 13.54%

PRATUXF S1
multiplicati
on

6*x +
10 = -2 -2 6

1
0 -2 59.44% 50.00% 34.01%

FALS
E 60.98% TRUE 10 20 58 143 10.98%

PRATUW
9 S1

multiplicati
on

4*x + 5
= -11 -4 4 5

-1
1 63.19% 34.78% 34.59%

FALS
E 67.86% TRUE 15 23 60 163 33.08%

PRATUXH S1
multiplicati
on

9*x + 8
= 8 0 9 8 8 71.33% 58.82% 32.53%

FALS
E 72.93% TRUE 7 17 43 150 14.11%

PRATUXB S1
multiplicati
on

10*x +
9 = 9 0

1
0 9 9 74.23% 53.57% 33.33%

FALS
E 78.52% TRUE 13 28 42 163 24.95%

PRATUW
S S1

multiplicati
on

2*x + 4
= 18 7 2 4

1
8 75.51% 54.55% 44.44% TRUE 79.20% TRUE 10 22 36 147 24.65%

PRATUW
4 S1

multiplicati
on

2*x + 7
= 15 4 2 7

1
5 75.52% 60.71% 42.11% TRUE 79.13% TRUE 11 28 35 143 18.42%

PRATUXD S1
multiplicati
on

4*x +
10 = 10 0 4

1
0

1
0 78.44% 61.90% 37.50%

FALS
E 80.82% TRUE 8 21 36 167 18.92%

PRATUW
X S1

multiplicati
on

6*x + 8
= 14 1 6 8

1
4 78.70% 64.00% 45.57% TRUE 81.25% TRUE 9 25 36 169 17.25%

PRATUXJ S1
multiplicati
on

4*x +
11 = 39 7 4

1
1

3
9 80.12% 68.00% 38.33% TRUE 82.27% TRUE 8 25 33 166 14.27%

PRATUW
2 S1

multiplicati
on

7*x + 6
= 41 5 7 6

4
1 82.39% 80.77% 39.47% TRUE 82.71% TRUE 5 26 28 159 1.94%

PRATUXA S1
multiplicati
on

6*x + 7
= 31 4 6 7

3
1 82.91% 75.00% 37.50% TRUE 83.80% TRUE 4 16 27 158 8.80%

PRATUXE S1
multiplicati
on

5*x +
10 = 45 7 5

1
0

4
5 83.23% 57.89% 38.00% TRUE 86.62% TRUE 8 19 27 161 28.73%

PRATUW
8 S1

multiplicati
on

6*x +
11 = 23 2 6

1
1

2
3 84.62% 68.18% 44.00% TRUE 87.60% TRUE 7 22 22 143 19.42%

PRATUW
U S1

multiplicati
on

7*x + 2
= 51 7 7 2

5
1 84.81% 86.96% 42.59% TRUE 84.44%

FALS
E 3 23 24 158 -2.52%

PRATUW
6 S1

multiplicati
on

6*x + 6
= 18 2 6 6

1
8 84.97% 59.09% 40.79% TRUE 89.31% TRUE 9 22 23 153 30.22%

PRATUW
Y S1

multiplicati
on

11*x +
7 = 51 4

1
1 7

5
1 85.38% 69.23% 44.44% TRUE 88.28% TRUE 8 26 25 171 19.05%

PRATUW
W S1

multiplicati
on

5*x + 2
= 42 8 5 2

4
2 87.25% 79.31% 40.00% TRUE 89.17% TRUE 6 29 19 149 9.86%

PRATUXC S1
multiplicati
on

9*x + 7
= 52 5 9 7

5
2 87.34% 70.83% 38.71% TRUE 90.30% TRUE 7 24 20 158 19.47%

PRATUX
G S1

multiplicati
on

10*x +
6 = 76 7

1
0 6

7
6 87.59% 68.42% 44.44% TRUE 90.68% TRUE 6 19 17 137 22.26%

PRA26AJ S2
multiplicati
on

6*x + 6
= -6 -2 6 6 -6 52.00% 17.65% 42.15%

FALS
E 60.28% TRUE 28 34 84 175 42.63%

PRA26AE S2
multiplicati
on

3*x + 3
= -3 -2 3 3 -3 52.17% 21.21% 42.31%

FALS
E 58.94% TRUE 26 33 88 184 37.73%

PRA2594 S2
multiplicati
on

4*x +
10 = -6 -4 4

1
0 -6 58.58% 44.44% 42.61%

FALS
E 61.27% TRUE 15 27 70 169 16.83%

PRA26AC S2
multiplicati
on

4*x + 8
= -8 -4 4 8 -8 59.06% 52.63% 41.67%

FALS
E 59.87% TRUE 9 19 70 171 7.24%

PRA259U S2
multiplicati
on

7*x + 2
= -19 -3 7 2

-1
9 66.90% 47.83% 39.84%

FALS
E 70.49% TRUE 12 23 48 145 22.66%

PRA2596 S2
multiplicati
on

6*x + 2
= -22 -4 6 2

-2
2 68.45% 39.29% 38.41%

FALS
E 74.29% TRUE 17 28 53 168 35.00%

PRA2592 S2
multiplicati
on

9*x + 6
= 6 0 9 6 6 72.88% 51.72% 22.33%

FALS
E 77.03% TRUE 14 29 48 177 25.31%

PRA259Y S2
multiplicati
on

7*x + 6
= 6 0 7 6 6 73.30% 71.43% 33.64%

FALS
E 73.55% TRUE 6 21 47 176 2.12%

PRA259W S2
multiplicati
on

6*x + 5
= 5 0 6 5 5 74.58% 53.85% 26.67%

FALS
E 78.15% TRUE 12 26 45 177 24.30%

PRA26AG S2
multiplicati
on

4*x + 5
= 13 2 4 5

1
3 79.59% 73.08% 43.64% TRUE 80.99% TRUE 7 26 30 147 7.91%

PRA2595 S2
multiplicati
on

11*x +
9 = 31 2

1
1 9

3
1 79.88% 63.64% 41.18% TRUE 82.39% TRUE 8 22 33 164 18.75%

PRA26AB S2
multiplicati
on

9*x + 7
= 61 6 9 7

6
1 81.10% 62.50% 40.91% TRUE 84.29% TRUE 9 24 31 164 21.79%

PRA259Z S2
multiplicati
on

9*x + 3
= 39 4 9 3

3
9 81.76% 52.63% 43.48% TRUE 85.71% TRUE 9 19 29 159 33.08%

PRA259S S2
multiplicati
on

8*x + 2
= 18 2 8 2

1
8 81.82% 61.76% 38.78% TRUE 87.02% TRUE 13 34 30 165 25.26%

PRA26AF S2
multiplicati
on

6*x +
10 = 52 7 6

1
0

5
2 82.32% 50.00% 42.65% TRUE 88.41% TRUE 13 26 29 164 38.41%

PRA259R S2
multiplicati
on

9*x +
10 = 28 2 9

1
0

2
8 82.35% 72.73% 41.67% TRUE 83.97% TRUE 6 22 27 153 11.24%

PRA2597 S2
multiplicati
on

4*x +
11 = 31 5 4

1
1

3
1 84.28% 66.67% 35.00% TRUE 87.41% TRUE 8 24 25 159 20.74%

PRA26AA S2
multiplicati
on

10*x +
7 = 27 2

1
0 7

2
7 84.56% 59.26% 43.08% TRUE 90.16% TRUE 11 27 23 149 30.90%

PRA2599 S2
multiplicati
on

7*x + 5
= 61 8 7 5

6
1 84.66% 87.80% 40.00% TRUE 83.78%

FALS
E 5 41 29 189 -4.02%

PRA259T S2
multiplicati
on

9*x + 4
= 67 7 9 4

6
7 85.28% 84.00% 44.44% TRUE 85.51% TRUE 4 25 24 163 1.51%

PRA2593 S2
multiplicati
on

7*x + 5
= 19 2 7 5

1
9 86.18% 81.82% 41.30% TRUE 86.52% TRUE 2 11 21 152 4.70%

PRA26AD S2
multiplicati
on

9*x +
11 = 65 6 9

1
1

6
5 86.59% 81.25% 42.37% TRUE 87.16% TRUE 3 16 22 164 5.91%

PRA259X S2
multiplicati
on

9*x + 4
= 76 8 9 4

7
6 88.19% 73.91% 38.46% TRUE 90.91% TRUE 6 23 17 144 17.00%

PRA26AH S2
multiplicati
on

10*x +
7 = 67 6

1
0 7

6
7 89.29% 86.96% 39.02% TRUE 89.74% TRUE 3 23 15 140 2.78%

PRA259V S2
multiplicati
on

10*x +
2 = 82 8

1
0 2

8
2 90.17% 73.91% 34.15% TRUE 92.67% TRUE 6 23 17 173 18.76%

Appendix G: Problem Figures

Appendix H: 1.0 Messages
Example division problem with corresponding mistake messages

Example multiplication problem with corresponding mistake messages

Appendix I: 2.0 Messages
Example division problem

Corresponding mistake messages without sentiment

’

Corresponding mistake messages with sentiment

