
Tunneling Robot

A Major Qualifying Project

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

May 13, 2020

Submitted By:
Thomas Gibbia

tjgibbia@wpi.edu
Spencer Howes

sghowes@wpi.edu
Theodorus Lundblade
trlundblade@wpi.edu

Tomás Ringer-Silva
tfringersilva@wpi.edu

Benjamin Stevens
bgstevens@wpi.edu

Christian Tweed
cdtweed@wpi.edu

Project Advisors:
Professor Michael A. Gennert

Professor Pradeep Radhakrishnan
Professor Jerome Schaufeld

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or

peer review. For more information about the projects program at WPI, please see

http://www.wpi.edu/academics/undergraduates/project-learning.html

i | P a g e

Table of Contents
Table of Figures ... iv

List of Tables ... vii

Authorship Page ... viii

Acknowledgements .. xi

Abstract .. xii

Executive Summary .. 1

Introduction ... 2

Stakeholders and Scope ... 2

Design Goals: ... 2

Stakeholder Introduction and Background: .. 2

Background .. 3

Applications... 4

Oil Industry... 4

Giant Tunnel Boring Machines ... 4

Underground Utilities ... 5

Technology: ... 7

Drill Rod and Bent Sub .. 7

Mud Motor ... 7

Jetting: .. 8

Rotary Steerable System (RSS)... 9

Drawbacks and Potential Issues .. 9

Principles of Boring Geology ... 10

Types of Soil ... 11

Obstacles within Soil ... 11

Boring Methods .. 14

Overarching Methods of Boring ... 14

Boring Heads .. 15

Forward Drive Methods ... 18

Steering Methods ... 18

Methodology .. 19

Systems ... 24

Boring ... 24

ii | P a g e

Initial Design .. 24

Fabrication .. 24

Electrical .. 25

Sensors ... 27

Assessment.. 27

Next Steps ... 28

Extension ... 29

Initial Design .. 29

Fabrication .. 29

Electrical .. 30

Assessment.. 34

Next Steps ... 34

Steering ... 39

Initial Design .. 39

Fabrication .. 41

Electrical .. 42

Assessment.. 44

Next Steps ... 44

Anchoring .. 49

Initial Design .. 49

Fabrication .. 49

Electrical .. 49

Next Steps ... 50

Chassis .. 51

Initial Design .. 51

Fabrication .. 51

Electrical Mounting ... 52

Sensors ... 53

Next Steps ... 55

Power Delivery ... 55

Software .. 56

Architecture ... 56

Frontend .. 57

Controls ... 57

Status Visualization .. 58

iii | P a g e

Path Visualization .. 60

Next Steps ... 61

Server .. 62

Next Steps ... 64

Pathing ... 65

Implementation .. 65

Next Steps ... 73

Data Layer ... 74

Downstream Communications .. 74

Upstream Communications ... 75

Error Handling ... 77

Next Steps ... 77

Embedded System .. 78

Communication.. 78

Conclusions .. 78

Bibliography ... 80

Appendix A – Videos ... 84

Appendix B – Software Architecture... 85

Appendix C – Software Usage .. 88

Source Repository .. 88

Dependencies .. 88

Frontend/JavaScript .. 88

Starting the Software ... 88

Appendix D – Methodology Chart .. 89

Appendix C – How to Use Software ... 104

Appendix D – Videos of Operations .. 105

iv | P a g e

Table of Figures

Figure 1 - A diagram of Eastman's tilting drill from the May 1934 issue of Science Direct magazine.[1]

 .. 3

Figure 2 - A curved section of the underground tunnel dug under Seattle. [37] 4

Figure 3 - A schematic showing the primary features of Bertha [38]... 5

Figure 4 - A directional drilling machine in action RMPS Solutions [39] .. 6

Figure 5 - An outline of the directional drilling process for underground utilities [40] 6

Figure 6 – A fixed angle bent sub [59]. ... 7

Figure 7 - An illustration of a mud motor in a directional boring machine. [41] 8

Figure 8 - An outline of the jetting process [42] ... 8

Figure 9 - A horizontal boring machine with real-time speed adjustment [43] .. 9

Figure 10 - A directional drilling blowout [61] .. 10

Figure 11 - The soil classification triangle [4, pp. 213–286]. ... 11

Figure 12 - A visualization of extreme karst void development in limestone [8, pp. iii–137] 12

Figure 13 - An example of a borehole log showing the depth of bedrock [8, pp. iii–137]. 13

Figure 14 - The Life Cycle of Soil [11].. 13

Figure 15 - A horizontal percussion boring machine going through a rock [14] 14

Figure 16 - A model of a drilling and reaming process [15, No. 8]. ... 15

Figure 17 - Roller Cone Bits: Tricone and Single Cone [16, pp. 365–395]. .. 15

Figure 18 - Cutterhead on a Robbins TBM for the Mumbai Water Tunnel [18, pp. 125–126]. 16

Figure 19 - Five different drag-bit designs. [19] .. 17

Figure 20 - Three ubiquitous designs of fixed-cutter bits. [16] ... 17

Figure 21 - An illustration of the shared components of a roller cone bit and a PDC bit together on a

hybrid bit [19]. .. 18

Figure 22 - A chart for the methodology of initial decisions. The expanded chart can be found in

Appendix D. ... 20

Figure 23 - The PJRC Teensy 3.6 [46] .. 21

Figure 24 - Software Architecture: Frontend and Server ... 22

Figure 25 - Software Architecture: Data Layer and Arduino Script ... 23

Figure 26 - A render of the boring module without exterior components. .. 24

Figure 27 - Chiaphua Components Limited PM25R Motor Curves [47] .. 25

Figure 28 – The boring motor, the CCL PM25R [48] .. 26

Figure 29 – Shaft speed calculation code ... 26

Figure 30 – CTR Electronics’ Victor SPX [49] ... 26

Figure 31 - SparkFun Thermocouple Breakout - MAX31855K [50] ... 27

Figure 32 - Left: the boring speed selection interface. Right: The boring output shaft with magnet and

Hall Effect sensor. ... 28

Figure 33 - A render of the initial extension design with cutaway shell. ... 29

Figure 34 - A photo of the two extension gears printed from the Form 2 SLA printer. 29

v | P a g e

Figure 35 - A render of the final extension module. .. 30

Figure 36 - A section view of the final extension module. .. 30

Figure 37 - uxcell DC 12V 335RPM Gear Box Motor with centric output shaft model no.

a18030100ux0053 [51] ... 31

Figure 38 - Specifications for similar 300RPM motor [51] .. 31

Figure 39 - Extension Tachometry Setup .. 31

Figure 40 - DROK L298 Dual H Bridge Motor Speed Controller [52] .. 32

Figure 41 – H Bridge control code.. 32

Figure 42 - Extension Limit Switches ... 33

Figure 43 - Extension Motor Safety Logic ... 33

Figure 46 - Limit switch wires under compression ... 38

Figure 48 - Limit Switch Mounting ... 39

Figure 49b - A section view of the steering module. .. 40

Figure 49c - A section view of the steering module with the dynamic components emphasized. 40

Figure 50 - A series of images showing the manufacture of the aluminum sliders. Clockwise from

upper left: CAM of the part, cut stock, a minimill control screen, a finished part, and a milling

operation. .. 41

Figure 51 - uxcell 12V DC 250RPM Gear Motor with eccentric output shaft model no.

A16071400ux0622 [53] ... 42

Figure 52 - Steering Motor Specifications [53] .. 42

Figure 53 – Vishay 10 turn Potentiometer 534B1103JL [54] .. 43

Figure 54 - Steering with installed bands .. 43

Figure 55 - Steering angle as a function of slider block progression. ... 44

Figure 56 - Two different failure states of current spur gears. Red indicates fracture lines, while blue

indicates mode of force. .. 45

Figure 57 - An example of the FEA load setup and results. ... 45

Figure 58 - Stress concentrations on the gear tooth. Note the three primary locations of stress. Force

is applied from the left in both images. .. 46

Figure 59 - A view of stresses in the gear created by isolating stresses above a certain point. 46

Figure 60 - Deflection of the gear tooth by material and tooth count. ... 47

Figure 61 - Gear safety factors by tooth count and material. .. 47

Figure 62 - Left: the current steering gearing on the prototype. Right: the proposed gearing for future

iterations. ... 48

Figure 63 – An illustration of force components on the steering slider, left, and steering roller, right.

 .. 49

Figure 64 - DIMINUS DC 6V Mini Air Pump [55] ... 50

Figure 65 – Honeywell Pressure Sensor HSCDANN030PA2A3 [56] ... 50

Figure 66 - A render of the chassis for the boring module. .. 51

Figure 67 - A photo of the original chassis with many of the components in place. 52

Figure 68 – Top view of wiring for Teensy, motor controllers, and power supply 52

Figure 69 – Side view of motor controller mounting assembly with top controller removed 53

vi | P a g e

Figure 70 – SparkFun’s LSM9DS1 breakout board, aka 9DoF Sensor Stick [57] 53

Figure 71 - The IMU affixed next to the Teensy .. 54

Figure 72 – Attitude calculation code [58] ... 54

Figure 73 - Power supply with voltage regulators ... 56

Figure 74 - Early Controls UI Iteration…………………………………………………………57

Figure 75a - Final Controls UI Iteration………………………………………………………58

Figure 1b - Final Command Log Iteration…………………………….………………………….58

Figure 76 - D3 Status Visualization …………………………………………………………..59

Figure 77 – Example Rendering……………………………………………………………………63

Figure 78 - Database Schema………………………………………………………………………63

Figure 79 - Protocol Diagram for the Server ... 64

Figure 80 - Angle Subdivision where ϑ= 3.5 ... 66

Figure 81 - Rendering of all paths with 10º turns ... 67

Figure 82 - Rendering of all paths with 3.5º turns .. 68

Figure 83 - Yaw and Pitch Testing .. 70

Figure 84- Drawing Sub-curves ... 71

Figure 85 - Knot formulation [32] ... 72

Figure 86 - Catmull-Rom Spline [33] .. 72

Figure 87- Result of Path Correction and Centripetal Catmull-Rom Spline ... 73

Figure 88 - Controls JSON Message Format... 74

Figure 89 - Path JSON Message Format .. 75

Figure 90 - Main Module Communication Loop .. 75

Figure 91 - Status JSON Message Format ... 76

Figure 92 - pathStatus JSON message format ... 77

Figure 93 - Error JSON message format ... 77

vii | P a g e

List of Tables

Table 1 - Initial design goals deciding during the planning phase. ... 2

Table 2 - Summary of trenchless boring methods .. 10

Table 3 – Pressure loss in a hydraulic line [45] ….35

Table 4 - Table of values for gear calculations and FEA. ……45

Table 5 - Power Consumption Calculations …… …….55

viii | P a g e

Authorship Page

Section Author(s)

Abstract Tomás Ringer-Silva

Executive Summary Tomás Ringer-Silva/Benjamin Stevens

Introduction
Stakeholders and Scope Theo Lundblade

Design Goals: Theo Lundblade

Stakeholder Introduction Theo Lundblade

Background
Applications Benjamin Stevens

Oil Industry Benjamin Stevens

Giant Tunnel Boring Machines Benjamin Stevens

Underground Utilities Benjamin Stevens

Technology: Benjamin Stevens

Drill Rod and Bent Sub Benjamin Stevens

Mud Motor Benjamin Stevens

Jetting: Benjamin Stevens

Rotary Steerable System (RSS) Benjamin Stevens

Drawbacks and Potential Issues Benjamin Stevens

Principles of Boring Geology Tomás Ringer-Silva

Types of Soil Tomás Ringer-Silva

Obstacles within Soil Tomás Ringer-Silva

Boring Methods Tomás Ringer-Silva

Overarching Methods of Boring Tomás Ringer-Silva

Boring Heads Tomás Ringer-Silva

Forward Drive Methods Tomás Ringer-Silva

Steering Methods Tomás Ringer-Silva

Methodology Christian Tweed/Benjamin Stevens

Systems
Boring

Initial Design Tomás Ringer-Silva

Fabrication Tomás Ringer-Silva

Electrical Spencer Howes

Sensors Spencer Howes

Assessment Tomás Ringer-Silva

Next Steps Tomás Ringer-Silva

Extension
Initial Design Tomás Ringer-Silva

Fabrication Tomás Ringer-Silva

Electrical Spencer Howes

Assessment Tomás Ringer-Silva

ix | P a g e

Next Steps Benjamin Stevens/Tomás Ringer-Silva

Steering
Initial Design Tomás Ringer-Silva

Fabrication Benjamin Stevens

Electrical Spencer Howes

Assessment Tomás Ringer-Silva

Next Steps Tomás Ringer-Silva

Anchoring
Initial Design Benjamin Stevens

Fabrication Benjamin Stevens

Electrical Spencer Howes

Next Steps Benjamin Stevens

Chassis

Initial Design Tomás Ringer-Silva

Fabrication Tomás Ringer-Silva

Electrical Mounting Spencer Howes

Sensors Spencer Howes

Next Steps Benjamin Stevens/ Tomás Ringer-Silva

Power Delivery Spencer Howes

Software
Architecture Thomas Gibbia

Frontend Christian Tweed

Controls Thomas Gibbia

Status Visualization Christian Tweed/Thomas Gibbia

Path Visualization Christian Tweed

Next Steps Christian Tweed/Thomas Gibbia

Server Christian Tweed

Next Steps Christian Tweed

Pathing Christian Tweed

Implementation Christian Tweed

Next Steps Christian Tweed

Data Layer
Downstream Communications Thomas Gibbia

Upstream Communications Thomas Gibbia

Error Handling Thomas Gibbia

Next Steps Thomas Gibbia

Embedded System
Communication Thomas Gibbia

Conclusions
Bibliography Christian Tweed

Appendix A – Videos of Operations Tomás Ringer-Silva

Appendix B – Software Architecture Christian Tweed/Thomas Gibbia

Appendix C – Software Usage
Source Repository
Dependencies Christian Tweed/Thomas Gibbia

x | P a g e

Frontend/JavaScript Christian Tweed/Thomas Gibbia

Python Thomas Gibbia

Starting the Software Thomas Gibbia
Appendix D – Methodology Chart

Theo Lundblade/ Tomás Ringer-Silva

xi | P a g e

Acknowledgements

After completing this project, it became clear that certain professors were instrumental

to the process. We would like to thank our advisors, Professor Gennert, Professor

Radhakrishnan, and Professor Schaufeld. As well as professors Daniello, Stults, and Hera,

and James Loiselle, who were not officially assigned to the project, yet took time to

provide guidance to us. Seeing as how MQP is the culmination of our academic careers

thus far, it also seems fitting to take a moment to reflect on all the people who helped

make our time at WPI a valuable learning experience. Thank you to all the professors

who took the time to share their love of their subject with us and challenge us in fun

and interesting ways. Thank you to all the friends who put in late nights that often

turned into early mornings working on homework and projects with us. Most of all

thank you to everyone who supported us along the way. We look forwards to taking

what we learned in these four years into the future, wherever our paths may lead.

https://www.wpi.edu/people/faculty/jjs

xii | P a g e

Abstract

Digging tunnels is a necessary part of many construction and infrastructure projects,

but most small-scale tunnel-boring methods presently require a trench which can

disrupt aspects of daily life on the surface. There are trenchless methods, but they

require that the tunnel be completely or almost completely straight. The goal of this

project was to design a self-correcting machine capable of producing complex tunnels

without the use of a trench. Early stages of design considered many different

alternatives for steering, anchoring, and boring. A prototype was constructed as a proof

of kinematic concept with full electronic and computational systems onboard. Using

the prototype, a report was generated detailing the improvements that would need to

be made for a high-budget and marketable iteration of the device because, while the

prototype is not capable of travelling underground, it provides proof that the kinematic

designs are sound.

1 | P a g e

Executive Summary

The Modular Omnidirectional Lightweight Earthmover (MOLE) is designed to fill a need for a

more adaptable and dexterous method of undergrounding cables. Compared to traditional methods,

it disrupts surface conditions far less than conventional trench-based methods. MOLE operates in a

manner similar to directional drilling methods currently used in the oil industry as well as other

methods of trenchless boring. Boring is accomplished by displacing dirt around the body or including

a system to pump the dirt out through the robot as a slurry. Selection of a boring head that is

compatible with both the drilling paradigm and the soil conditions is important. Steering methods

vary, but all of them work by adjusting the angle of the drilling head relative to the drill rod. What sets

mole apart is that is not mechanically tied to the surface, meaning it will not need a large engine on

the surface, and it will be able to steer more effectively because it does not need stiff drill rod behind

it, and it’s built in obstacle avoidance system.

MOLE works by inch-worming its way through the soil. It is broken into two main halves. It

extends the front while it bores, and then retracts the back cyclically in order to advance. Design of

the robot was broken into separate subsystems: a boring system, an extension system, a steering

system, an anchoring system, and a housing and chassis system. It was difficult to manufacture a

boring head, and commercially available ones were out of budget. A model boring head was designed,

but due to closures surrounding the SARS-CoV-2 outbreak it could not be manufactured. The

extension system uses a custom-made linear actuator that is controlled by a single motor. The steering

system is the primary innovation of this robot; it utilizes two pairs of sliding blocks to orient a

“frustum” into position, with each pair of sliding blocks driven by a single motor and matched using

gears. The anchoring system utilizes inflatable pneumatic tubes pressed against the soil, holding either

module in position. All of the various motors and actuators receive power from an onboard power

supply in the back module and are intelligently controlled by a Teensy microcontroller. The software

side contains a server-based front-end so that an operator can control the MOLE from a standard

browser and a pathing system that can generate paths in the complex, obstacle-ridden 3D space of the

soil.

The team’s prototype is unable to bore through the earth. At the time of writing, every component

in the unit is fully mobile but it is unclear how the unit would fair in the ground. Future teams should

improve the mechanical durability of the robot, optimize its components, and improve the ease-of-

use and effectiveness of the software system.

2 | P a g e

Introduction

Stakeholders and Scope
Underground utilities have become commonplace, zigzagging through every city and town. Power lines, gas

lines, sewer pipes, and many other utilities form a complex web under the soil of our cities. Unfortunately,

installing and repairing these underground utilities can be costly, time consuming, and disruptive to nearby

citizens and businesses as the conventional process to underground power lines requires large open-air trenches.

Pedestrian and vehicular traffic must be diverted. Additionally, preexisting groundwork such as roadways,

sidewalks, and landscaping must be ripped up for such trenches. This is both counterproductive and distressing

for the landowners and businesses affected. With this project, our team seeks to propose an alternative to

digging trenches, thus eliminating many of the challenges associated with burying cables. MOLE or Modular

Omnidirectional Lightweight Earthmover is a small maneuverable tethered tunneling robot which can be

deployed from a medium-sized truck and operated by 1-2 technicians. In this initial proposal and research

summary, we will cover specification goals, estimates of the value propositions focused on the major potential

stakeholders, and research of various options for design.

Design Goals:

Bore diameter: 4”

Turning circle: 10’

Weight: Under 50 lbs

Minimum bore length: 100’

Digging material: Dirt

Table 1 - Initial design goals deciding during the planning phase.

Stakeholder Introduction and Background:
We have three target stakeholders for this boring product. First: power companies seeking to underground

electrical power lines who are constrained by preexisting construction, natural obstacles, or space. Second:

internet service providers (ISPs) seeking to install underground Ethernet, cable, or fiber lines again around or

under already existing features, such as concrete slabs. Third: construction equipment rental companies such as

Home Depot or similar who rent to homeowners and other small contractors. Conventional data and power

line undergrounding costs $4-$12 per foot depending on site limitations and generally totals $600-$2100 per lot

(based on 100-foot trench length). However much of that cost is tied up in the initial stage of hiring people and

equipment.

MOLE can allow utility providers to navigate cabling under and around surfaces or obstacles that would

otherwise have to be removed. One example of this is digging a tunnel under a homeowner’s driveway to

provide power instead of digging a trench which requires more repairs and is more disruptive to the surface

conditions. Similarly, in dense city centers, where large excavating equipment is challenging to operate and

causes significant disruption to traffic, MOLE can easily be deployed from a truck, causing minimal disturbance

to surrounding people. Additionally, with a small-bore size of 4 inches MOLE will also cause far less

environmental impact than trenches that are at least 2 feet deep and similar width. All of this combines into an

effective cost savings on projects. As the number of onsite personnel is drastically reduced, heavy equipment

3 | P a g e

is unneeded, trench shielding and safety measures are unneeded, and public opinion is more favorable. For ISPs

MOLE can simplify cable installation and reduce required labor while keeping homeowners and thus target

customers happier. Finally for equipment rental companies MOLE can potentially enable otherwise challenging

DIY projects for home improvement enthusiasts and give small contractors far more options for tracking

difficult construction situations, one example being providing foreman trailers with power and internet access

on large construction sites with smaller delays.

Background
Directional drilling was first implemented in 1934, when a well in Conroe Texas exploded and erupted into

flames, filling a lake with flaming oil. John Eastman devised a solution where they would drill a second well

from a safe distance, and then steer it towards the first well to drain the oil that had not yet ignited. Eastman’s

process involved cutting a straight hole, and then inserting a vertical bit with a universal joint at the end and an

angled guide so that the drill cut at an angle (figure 1)[1]. The angled hole was monitored by removing the bit,

dropping a camera and a level into the hole taking a picture and then replacing the bit in combination with a

glass bottle full of acid which was lowered into the hole, and then when it was removed the angle of the acid-

etched line was examined. From this, the position of the drill bit could be calculated. The technology Eastman

devised to solve this crisis helped pave the way for advancements in both the oil industry and other areas. [1]

Figure 2 - A diagram of Eastman's tilting drill from the May 1934 issue of Science Direct magazine.[1]

4 | P a g e

Applications
Directional drilling is an integral part in the construction of modern infrastructure. It is commonly used in

everything from transportation to oil drilling to laying utility cables. The benefits of this technology include

access to remote areas, ability to drill a horizontal hole at a set depth, accessing areas underground without

disrupting surface conditions, and even drilling straighter downward holes.

Oil Industry
The oil industry is one of the biggest users of directional drilling. Since petroleum resources are generally

stratified, a single drill can be used far more effectively, because a single drill can be directed horizontally to

follow the pay zone. By guiding the drill along veins of oil resources as opposed to stopping at one point in the

well, oil can be removed far more efficiently.

Giant Tunnel Boring Machines

Figure 3 - A curved section of the underground tunnel dug under Seattle. [37]

The same technology scaled up was used in the installation of an auto tunnel directly under Seattle (figure

2). This was completed by a tunnel boring machine (TBM) named Bertha [37]. Some of the issues that came

up were a result of the non-uniform geology of the region. Bertha had to drill through eight types of soil, ten

different geologic zones, and even below the waterline. Bertha worked by drilling a section of tunnel with a

modular cutting head, changing out different inserts to match the current geological conditions. The ground-

up rock was removed by a screw mechanism, and then to a conveyer where it could be trucked out (figure 3).

The bit was driven by a ring of hydraulically powered linear actuators. When the throw of these was reached, it

installed in prefabricated tunnel sections behind it.

5 | P a g e

Figure 4 - A schematic showing the primary features of Bertha [38]

Underground Utilities
Directional drilling (figures 4 and 5) is also useful in laying underground utilities such as water and sewage

lines and fiber optic cables. Traditionally, underground utilities are installed by digging a trench, laying the lines,

and reburying them. This can pose issues, especially if the lines need to go under a road or sidewalk where

stopping the flow of traffic would be not only expensive, but possibly damaging to public relations. Directional

drilling provides an alternative that causes minimal surface disturbance. The basic process of directional drilling

begins with drilling a small pilot hole through the ground with a spade shaped bit. This allows the operator to

steer the hole, by aligning the bit with the desired direction, and then forcing it in that direction without spinning

the drill rod. Once the hole is established, the drill rod is rotated again, and normal drilling is resumed. Since

there is an exit hole, there are more techniques available to the operator than blind holes like in oil wells. Once

the hole breaks the surface, a reamer is attached to the end and it is pulled back through to enlarge the hole

[44]. After the hole is enlarged, a reamer is dragged through a second time, but this time the payload is pulled

behind it.

6 | P a g e

Figure 5 - A directional drilling machine in action RMPS Solutions [39]

Figure 6 - An outline of the directional drilling process for underground utilities [40]

7 | P a g e

Technology:
There are many existing techniques in the field of directional drilling and often multiple are used on the

same job depending on the geological conditions, like in the case of Bertha in Seattle, where the conditions

changed multiple times over the course of the hole. For example, in harder soil or rock, the drill rod cannot be

used to transmit enough torque, so a downhole motor must be used.

Drill Rod and Bent Sub
Drill rod is used to connect the bit to the surface. It is made up of hollow threaded sections that can be

combined to required length. They are specially designed to be able to transmit torque along their length, yet

still be flexible enough to bend and follow a curved hole. They are hollow so that hydraulic fluid and electrical

wires can be run through the hole. At the end of the drill rod is a section called a bent sub. The bent sub is

critical to steering the hole. It is a slightly bent piece of drill rod that is either fixed at one angle or adjustable

and used to control the direction of the hole. By adjusting the angle of the entire drill string, the bent sub will

point in a different direction, the hole is advanced in that direction by removing material without changing the

angle of the bent sub (figure 6).

Figure 7 – A fixed angle bent sub [59].

Mud Motor
Mud motors are useful in applications such as hard rock where torque cannot be transmitted down the drill

pipe. A mud motor is a hydraulic device capable of producing incredibly high torques. It consists of an

eccentrically rotating helically lobed shaft, in a housing with helical channels in a quantity one greater than the

lobes. The eccentric helix rotates and changes where the hydraulic fluid flows in causing it to rotate both radially

and eccentrically. This is closely related to the way a radial aircraft engine works.

The mud motor is connected to the drill stem at one end, and the bent sub at the other. It is either connected

to the bit by way of a universal joint, and placed above the bent sub, or placed below the bent sub as seen in

figure 7, and connected by a fixed shaft. The angle of the drilling head is guided by controlling the angle of the

rod from the top, thus changing where the bent sub is pointing.

8 | P a g e

Figure 8 - An illustration of a mud motor in a directional boring machine. [41]

Jetting:
For softer earth, a jetting process can be used. Jetting works similarly to a downhole motor. The bit is

directed by a bent sub, and then a jet of hydraulic fluid is forced out a nozzle in that direction. The bit is forced

down without rotating, and it moves through the soil softened by the jet. Once the bit trajectory has been

steered the desired amount, normal rotary drilling is resumed. Since the bit is driven from the top, and there is

a bent stem, this means that the bit will be rotating eccentrically, and will therefore need to be able to cut with

its side.

Figure 9 - An outline of the jetting process [42]

9 | P a g e

Rotary Steerable System (RSS)
A newer technology made possible by modern computing elements, RSS, allows for real time speed

adjustment. It uses the same downhole mud motor but is able to bend the shaft in real time to steer the bit.

This allows for more complex hole geometry, and cleaner curves to be attained, because the hole trajectory can

be adjusted on the fly, and the desired angle can be slowly approached, rather than being limited to the angle

of the bent sub. The three main parts are a nonrotating sleeve with actuator, a stabilizer, and the cutting end.

The stabilizer acts as a fulcrum, allowing the rest of the shaft to be bent relative to the hole. The drive shaft

runs through the non-rotating assembly, where linear actuators bend the shaft and steer the bit.

Figure 10 - A horizontal boring machine with real-time speed adjustment [43]

Drawbacks and Potential Issues
The main safety issue that has come up in horizontal directional drilling is blowouts. A blowout is when the

bit breaks through the surface after wandering off course. It is much easier to break through the surface while

drilling horizontally than it is in a vertical well. Also, because directional drilling is being applied to fields such

as laying utilities, where the hole is much closer to the surface, there is an increased risk of blowouts.

10 | P a g e

Figure 11 - A directional drilling blowout [61]

Table 2 - Summary of trenchless boring methods

Principles of Boring Geology
The diverse history of horizontal drilling has led to a wide variety of principles and systems. In order to

properly choose which principles and systems to apply to MOLE, a comprehensive understanding of the

science of boring is necessary.

11 | P a g e

Types of Soil
In order to determine the range of difficulty of the materials that a boring machine must bore through, it is

useful to have a systematic determination scheme for soil types. There have been multiple soil classification

systems over time. Currently, the Unified Soil Classification System has been accepted for tunnel engineering

because it can be used to predict soil behavior [2, pp. 4507–4518] . The system breaks soil down by size, liquid

limit, and plasticity; there are eight groups of coarse-grained soil, six groups of fine-grained soil, and only one

group of highly organic soils such as peat [3] . These classifications can be used to predict the compaction

characteristics and stability of the soil, useful for estimating the ease of drilling and locomotion. Another useful

system for classification of soil is using the “soil classification triangle” which describes soil by the

concentrations of sand, silt, and clay (themselves defined by particle size) [4, pp. 213–286]. The soil classification

triangle can be seen in Figure 12. The primary value of these soil classifications is estimating the friction and

viscosity present and different stages of boring [5, pp. 360–371].

Figure 12 - The soil classification triangle [4, pp. 213–286].

Obstacles within Soil
The ground that boring machines travel through contains much more than simply soil. There are obstacles

that the machine will meet that it must have ways to contend with, either by avoiding them or going through

them.

Utility Lines
There are dozens of types of utility networks running underneath urban and rural areas, ranging from

electrical lines and small residential plumbing pipes to fire safety mains and gas lines. Whichever type they are,

avoiding them is a high priority, and there are multiple ways to do this. The first is through reference

documentation provided by utility companies with locations of existing lines. The second is through subsurface

imaging of potential obstacles. When the two strategies are combined, it is known as subsurface utility

engineering. [6]

12 | P a g e

Voids
Below the ground’s surface are spaces that contain neither soil nor rock. These are known as voids. Most

voids are formed from a phenomenon known as Karst, in which some materials such as limestone or gypsum

are dissolved by acidic rainwater and develop fissures. [7] While these voids pose a danger to surface operations

in the form of sinkholes, they also present a risk to a boring machine. If a boring unit falls into a karst void, it

could prove irretrievable. In addition, voids frequently contain water or even methane, so should be avoided.

Luckily, however, voids do not occur in every material, rarely occur in soil, and can be detected using ground

imaging.

Figure 13 - A visualization of extreme karst void development in limestone [8, pp. iii–137] .

Rocks and Drillability
Boulders can either be drilled through or avoided if they are detected. Rocks are rated for drillability on a

five-point scale from fast to slow based on their hardness, texture/density, fracture pattern, and structure [9,

pp. 287–292]. The drilling operation can be described in terms of speed of drilling if the machine properties

are known. Importantly, the drillability is not simply related to the brittleness of the rock, so specialized systems

of characterization must be employed [10, pp. 406–414].

Bedrock
Underneath the layer of soil lies a layer of hard rock. Figure 15 shows the development process of soil [11].

As can be seen, the soil is nothing more than a layer of carbon-rich eroded rock above a layer of uneroded rock,

so at a certain depth all soil layers—known as regolith—will give way to rock layers. The top of the bedrock

layer, or the rockhead, is in most cases the maximum boring depth and so should be known. It can be found

by imaging, core sampling, or referencing known bedrock depths [12].

13 | P a g e

Figure 14 - An example of a borehole log showing the depth of bedrock [8, pp. iii–137].

Figure 15 - The Life Cycle of Soil [11].

14 | P a g e

Boring Methods
Overarching Methods of Boring

Boring can be done in many ways depending on the use case and type of hole desired. The following are

some methods that are currently used in industry to create horizontal boreholes.

Drill and Compress
A drill and compress method breaks the soil using a cutter of some sort and then compresses the soil into

the walls of the borehole. This method works best in soft soils and is less effective in sand or rock. The benefit

of a drill and compress system is that there is no need for a removal system for the muck generated in the

boring process. The disadvantage is that its use cases are limited, and any incompressible region will be

impassable to the boring unit.

Drill and Displace
A drill and displace system uses a cutting head to break the boring material and then uses a muck removal

system to translate the bored material back to a collection system or to the entrance of the hole. The systems

do not rely on the compressibility of the drilling substrate but do require a much more complex machine and

provide less room for a cable payload.

Pulverize
Certain systems use percussive methods of traveling through the ground. One such method is the pneumatic

boring cylinder created in the 60s in the USSR, comprised of a containment rod and a hammering mechanism

that both forced the rod through the ground and broke and displaced all dirt ahead of the machine; even back

in 1964, the machines could travel horizontally 20 meters with a deflection of only 15-20 centimeters [13, pp.

165–168]. The system relies on a two-fold system of propelling the anvil and then the cylinder forward on

separate strikes of the pneumatic hammer, as shown in Figure 16.

Figure 16 - A horizontal percussion boring machine going through a rock [14] .

15 | P a g e

Drill and ream
A drill and ream system uses progressively larger units to expand a hole that has already been drilled. In

some systems, the reamer follows the drill as it is boring. In other systems, the reamer is pulled through on a

cable through a borehole that has already been created by the tunneling machine. The drilling and reaming

process is shown in Figure 17.

Figure 17 - A model of a drilling and reaming process [15, No. 8].

Boring Heads
Any boring method needs a boring head to create the hole that the rest of the unit continues through. The

following are types of boring heads used in different boring industries. Not all will prove appropriate for the

MOLE, but it is good to have an idea of the existing methods prior to selection of a specific bit. Some of the

bits are used primarily in the petroleum industry, so they specialize in rock drilling; while the MOLE may not

be designed for going through rock, it is possible that future iterations of the design will be so an accounting

of rock-specific methods is still useful.

Roller Bit
Roller bits are designed for hard rock, crushing and fracturing the material as the cones roll across it. The

torque is supplied only to the chassis of the bit, with the rollers being driven only with their interaction at the

surface of the borehole [16, pp. 365–395]. Because the method of boring is fracture, roller bits are nearly

ineffective for softer materials. Figure 18 shows single and triple roller cone bits.

Figure 18 - Roller Cone Bits: Tricone and Single Cone [16, pp. 365–395].

16 | P a g e

Auger
An auger is a screw-shaped device used for transporting material linearly using a rotational motion. Current

auger-based boring methods utilize an initial cutting tool followed by a chain of augers to remove material from

the hole [17]. Augers themselves are not used as cutting heads unless the length of the desired borehole is less

than the length of the auger. Augers cannot be used in hard rock.

TBM Cutterheads
The massive cutterheads on hard-rock TBMs are flat in design with small circular cutters arranged

tangentially and radially, protruding several inches from the face of the cutter; these cutters can be exchanged

from behind the cutterhead, so they are designed to be semi-disposable [18, pp. 125–126]. TBM cutterheads

are designed for hard rock and would need to be heavily modified to bore through softer materials. Figure 19

shows the cutterhead from a hard-rock TBM.

Figure 19 - Cutterhead on a Robbins TBM for the Mumbai Water Tunnel [18, pp. 125–126].

Drag Bits
There are several designs of fixed cutter bits, each slightly different from the others. Drag bits are the

simplest boring head design and have largely gone out of use for oil well boring due to their soft-soil restrictions.

It is very effective at breaking soils of various types and is used in conjunction with a high-volumetric-flow

hydraulic system for clearing excess material.

17 | P a g e

Figure 20 - Five different drag-bit designs. [19]

Modern Fixed Cutter Bits
Modern fixed cutter bits come in three primary types. The polycrystalline diamond cutter (PDC) bit uses

diamond cutters in conjunction with normal soft-material blades to cut through soft and medium rock, while

the impregnated bit and natural diamond bit both use diamond cutters on their surface to drill through hard

and abrasive rock [16, pp. 365–395] .

Figure 21 - Three ubiquitous designs of fixed-cutter bits. [16]

Hybrid bits
Hybrid bits are fixed cutter bits combined with roller cone bits. They offer excellent performance in both

fracturing and cutting and easily accommodate directional operations. They can be used in soft, medium, hard,

and abrasive rock [16, pp. 365–395].

18 | P a g e

Figure 22 - An illustration of the shared components of a roller cone bit and a PDC bit together on a hybrid bit [19].

Forward Drive Methods
Locomotion Source at Surface

Most methods currently on the market use a source of locomotion at the entrance to the borehole. These

are driven via a large pneumatic jack or other drive system and are connected the boring unit by a semi-rigid

conduit. This method provides more reliable thrust but is less mobile underground.

Locomotion Source at Unit
A locomotion source at the unit will provide more mobility but less thrust. Current methods primary use

and auger-propelled unit, but this requires a stiff shaft back to the borehole entrance. A truly self-propelled

boring unit does not exist.

Steering Methods
One of the three steering methods below will work for the MOLE. These methods are not specific

technologies; rather, they are umbrella methods than encapsulate many different systems. Selecting one of the

three systems below will lead to a further investigation of systems.

Whipstock
The whipstock is the earliest method for steering a horizontal drill. It is shown in Figure 2 and consists of

a single angled plate that deflects the drill in a specific direction. This method will not work for the MOLE as

the drill is not multidirectional; rather than steer, it can simply turn once.

Push-the-Bit
The push-the-bit method uses some sort of system to deflect the front of the drill away from one of the

sides of the walls. It provides a very large turning radius but relies on a simple and reliable system. This method

will only work is a hard-walled boring substance.

Point-the-Bit
The point-the-bit method uses an internal curved shaft and eccentric rotary housing or a lever mechanism

to point the drill bit in a specific direction. This method is notable for its freedom of movement of the drill bit

but must be accompanied by a mechanism to turn the machine in the middle in order to get the small turning

radii that it is capable of.

19 | P a g e

Angle-the-Machine
An angle-the-machine method makes use of a sub as shown in Figure 7 to angle the machine midshaft. This

allows the drill bit to use its edges against the borehole with leverage from the back of the shaft.

Methodology

The overall goal was to design a system capable of laying cables underground without any mechanical

tethering to the surface. This will require it to bore, steer, and advance. There are multiple methods of

accomplishing this that can be split into two paradigms. One is a system for continuous advancement, the other

is an inchworm type motion where it anchors and extends and bores. The inch worming method makes a lot

more sense, because regardless of how it is accomplished, there will need to be an anchoring system, but for

continuous advancement, it will need to both anchor and advance simultaneously which will be a complex

system to design. This will also limit the ability to anchor with mechanical interference. On the other hand,

anchoring and extending in steps allows for a more robust system to be developed. It is also not time sensitive,

so anchoring methods that take longer can be used. After selecting the boring and anchoring as separate systems

the robot will need a system to bore, a system to extend the boring system while it cuts that also is able to

retract into the rest of the body, a system to steer the angle of boring, and two anchoring systems. One that

works for advancement, and one that works to pull the rest of the robot towards the boring head. The chart in

Appendix D shows the entire decision tree for the project, including the methodologies for the design of various

components and systems.

The electrical components of the MOLE were chosen for their price, obtainability, and capability. Without

the funding of a sponsor, many components onboard can be bought from commercial sources such as Amazon

and SparkFun. Most of the interchangeable components of the robot such as the motors, motor controllers,

and sensors were chosen with this in mind. There are definitely more advanced and expensive components

which can provide the same fundamental operations the robot needs to carry out. As this is the first iteration

of the project, the performance requirements of these components were not known, so optimizing for ease of

access and price seemed reasonable.

Major components like the robot’s computer and power supply were chosen for their capabilities. The

power supply is an industrial grade component which was chosen because it provides the most power for still

fitting within the MOLE’s thin chassis. The Teensy 3.6 is a USB-based microcontroller featuring a 32-bit 180

MHz ARM Cortex-M4 processor.8 With 6, 16-bit PWM timers able to use 22 pins on the board, it has the

facilities to run multiple PID loops simultaneously. The Teensy has 62 digital I/O pins all interrupt capable for

limit switches, encoders, and hall effect sensors. The Teensy also features 5 PWM timers which allows for the

control of up to 5 motors without the need for timer multiplexing.

20 | P a g e

Figure 23 - A chart for the methodology of initial decisions. The expanded chart can be found in Appendix D.

21 | P a g e

Figure 24 - The PJRC Teensy 3.6 [46]

The design of the software that drives the MOLE was broken down into four main subsystems:

frontend/UI, server, data layer, and Arduino script. Each of these subsystems contains modules which interact

with one another within the subsystem, and modules which interact with edge modules of other subsystems.

A JavaScript/HTML frontend user interface is the only software subsystem that an operator will interact

with directly. The frontend contains modules for manual control, autonomous path planning, and status

visualization. The frontend also contains static HTML web pages: a welcome page and about section. The path

planning, controls, and status visualization modules are the edge modules of this subsystem and communicate

with the server via HTTP GET and POST requests.

A Node.js server is a JavaScript environment that utilizes Chrome’s V8 engine. An HTTP server is initialized

and maintained with Node’s HTTP module, and a TCP server with network sockets to connect to the Python

data layer. The server also has a local database using lowdb which stores previous status reports in addition to

controls commands sent to the Arduino. The Node.js server also acts as a gate to make sure that the commands

sent to the robot are correctly formatted before they are passed along to the data layer.

The Frontend and Node.js server, along with their modules, are illustrated in Figure 25 below.

22 | P a g e

Figure 25 - Software Architecture: Frontend and Server

Between the Node.js server and the Arduino script lies a data/communication layer. This subsystem is

written in Python 2.7 and contains three modules. A network socket edge module receives communications

from the Node.js server in the form of JSON strings. These strings are passed through a translation module,

which converts them into an Arduino-friendly format. The final module is the serial communication module,

another edge system. This module opens a serial connection to the MOLE on-board embedded system, sends

and receives string messages between the subsystems. This module was developed in Python due to the

languages versatility in implementing various control protocols, including network sockets to communicate

with the Node.js server, and serial protocols to communicate with the on-board microcontroller.

The final subsystem of MOLE software is the Arduino script, running on the Teensy 3.6 platform. A

message parsing edge module receives messages from the data/communication layer, parsing, and storing

relevant information contained within the message, and calling appropriate subroutines from the next module,

the hardware controller. The hardware control module of the Arduino script interacts directly with MOLE’s

hardware (motors, sensors, pumps, etc.) through digital and analog IO, using software control protocols such

as I^2C, PWM and PID.

23 | P a g e

The data/communication layer, and Arduino script along with their modules, are illustrated in Figure 26

below.

Figure 26 - Software Architecture: Data Layer and Arduino Script

24 | P a g e

Systems

Overall Design

Boring
Initial Design

Figure 27 - A render of the boring module without exterior components.

The boring head is threaded onto a gearset. The gearset is taken from a drill, so the two ends need to be

worked into the power train. The sun gear is pressed into a shaft that is then set onto the motor shaft. All

components of the drive train are held into the chassis by fasteners, as in the case of the motor, or by geometry.

The boring head shown in Figure 27 does not exist, as the SARS-CoV-2 epidemic prevented the final boring

head production. The design shown is one option of many, the selection of which is encompassed by future

work.

Fabrication
The first iteration of the boring module was primarily about fit and proved to us that the geometries we had

chosen were suitable. However, the sun gear originally did not fit properly into the gearset and, if forced,

produced uneven loading on the gears. The obstacle was clearly one of alignment and arose from one of two

sources: concentricity in the adapter and concentricity between the gearbox and the motor shaft.

To address the concentricity of the adapter, we made shaft collars on a lathe to attach motors to the drive

shaft. Starting with a cylindrical piece of brass, a small through hole was bored before the OD was turned to

size, and then a chamfer was added to the outside. The part was then cut to length before being flipped. A large

hole was then bored. Next, the part was moved to a mill where it was fixtured in a square collet block. The

center of the diameter was found using an edge finder, and a set screw hole was added. To ensure that the

threads were concentric to the hole, a spring center was placed in the drill chuck on the mill, and the hole was

tapped using the spring center to align the tap. Using a lathe guaranteed concentricity, but access to the lathe is

very limited and it is unlikely that any volume of parts can be created on the lathe. A CNC lathe would provide

the capacity for increased production volume. This would benefit areas such as steering where duplicate parts

are needed.

25 | P a g e

To address the issue of concentricity of the gear box to the motor shaft, the plate directly behind the gear

box was replaced with an acrylic plate that had been cut to accommodate the very specific geometry of the gear

box. Due to the imprecision of the laser cutter, this had to be attempted several times, but the final plate forces

the center of the gearbox to within 1 thou of the exact center of the robot. This gives us concentricity and

proves the superior tolerancing of the acrylic plates during cutting (a product primarily of the lack of warp in

the acrylic sheets as opposed to the plywood sheets).

Electrical
Drilling could benefit from more power, not just slow-moving torque, so this motor, capable of outputting

a nearly half a mechanical horsepower was selected. Figure 28 shows the motor curves which show how the

motor will behave under a given set of circumstances from the manufacturer of the CIM Motor which will be

used for drilling. The most efficient speed for the motor is 2625 rpm with 4.5 kg cm of torque, while the

maximum speed is 4500 rpm with 17 kg cm of torque.

Figure 28 - Chiaphua Components Limited PM25R Motor Curves [47]

26 | P a g e

Figure 29 – The boring motor, the CCL PM25R [48]

A speed control loop running on the drilling motor is monitored by a non-latching Hall Effect sensor with

a small magnet attached to the output shaft. By utilizing one of the I/O pins on the Teensy and attaching that

pin to an interrupt, RPM calculations can be made every revolution of the driveshaft in real-time. The code

which accomplishes this task is shown below.

Figure 30 – Shaft speed calculation code

The drilling motor is the most power-hungry electrical component on the robot and is capable of drawing

high current. According to its data sheet, the CIM motor draws 94.6 A at max power and about 175 A at stall.

In order to correctly control this motor, a motor controller capable of handling comparable currents is required.

The Victor SPX was chosen for this reason.

Figure 31 – CTR Electronics’ Victor SPX [49]

27 | P a g e

The Victor SPX can manage 60A continuously and handle surges of 100A for 2 second intervals. This

control signal from the Teensy to this controller is PWM, but the Victor SPX also features CAN protocols if a

future team would like to utilize CAN daisy-chaining rather than running numerous, messy PWM wires.

Sensors
As the boring process will load the boring motor quite heavily, the motor is going to generate a considerable

amount of heat. This thermocouple breakout board made by SparkFun is compatible with a standard Type-K

thermocouple and is digitally interfaced with the Teensy which allows for thermal monitoring of the boring

motor.

Figure 32 - SparkFun Thermocouple Breakout - MAX31855K [50]

The manufacturer of the boring motor, Chiaphua Components Limited Industrial Motors, states that our

PM25R series motor, can be produced with insulation classes A, E, or B. As it is unclear which class our motor

was produced to meet, a safe estimate is to assume the lowest class, Class A. According to NEMA (National

Electrical Manufacturers Association), the maximum operational temperature allowed for a Class A motor is

221 °F. This means that the user interface, on top of showing continuous temperature feedback, will audibly

or visually warn the operator when the temperature surpasses 200 °F. The Teensy will disable the CIM motor

when the temperature reaches 220 °F and will not resume operation until below 150 °F.

A single AH1815 non-latching Hall effect sensor is used for tachometry on the boring shaft. The tachometry

provided by the Hall effect sensor and a single magnet is a cheap solution to monitor shaft speed. This Hall

effect sensor requires a minimum 175ms to sense a magnetic field and provide the corresponding output. This

limits the maximum shaft speed the sensors can measure. The single magnet also means that the RPM reading

is only updated once per revolution. This is a problem if the shaft is suddenly loaded and stopped entirely. This

prevents the speed control loop from updating and will continue to command a low amount of power

insufficient to move the shaft again. This means that the shaft will never rotate again unless unloaded. In order

to prevent this behavior, the computer constantly predicts the shaft’s speed based on how long it has gone

without an update. If the predicted speed drops below the previous speed calculation, the predicted speed is

used as the control loop’s process variable. The process variable reverts to being the actual shaft speed

calculation upon update.

Assessment
The boring motor can be accurately controlled by a computer. When set to 60, as shown in Figure 33, the

boring motor will turn at 1 revolution per second or 60rpm. Because the motor is dynamically monitored based

on the response from the Hall Effect sensor, the equal values demonstrate that the computational, electrical,

28 | P a g e

and mechanical systems are able to rotate at the proper speeds. Given the accuracy of the speed control and

the 1:22 reduction across the gear train, the maximum torque generated by the boring motor is 374 kg cm,

27.05 ft lb, or 36.7 Nm. Given the lack of a physical boring head, the team was unable to ascertain whether the

available torque is sufficient to bore through the soil.

Figure 33 - Left: the boring speed selection interface. Right: The boring output shaft with magnet and Hall Effect sensor.

Next Steps
The boring section is essentially finished. The next steps are to improve rigidity and concentricity, iterate

through boring head designs, and finalize dimensions. It would also be beneficial to optimize the boring system

to be shorter in order to reduce the lever arm of the cutting head and the steering forces.

Flow Simulation
In order to determine the ideal geometry for boring in multiple types of soil, a simulation could be done.

Similar systems have been modeled using EDEM software [20, No. 194].

Electrical
There remains the possibility of using an AC induction motor for boring. An AC motor was not used in

this prototype as its control would require a variable frequency drive which is much more expensive than a DC

motor controller. An AC induction motor of the correct size would be more efficient and possibly more

powerful than the CIM motor used in this prototype.

Sensors
In order to increase the reliability of shaft speed readings, incremental encoders or pairing a more advanced

Hall effect with a trigger wheel should be used to increase the readings per rotation. This will allow the control

loop to be tuned with more aggressive gains and therefore be more responsive to deviations in shaft speed.

https://wpi0.sharepoint.com/sites/gr-TunnelingRobotMQP897/Shared%20Documents/General/Reports/Flow%20Simulation

29 | P a g e

Extension
Initial Design

Figure 34 - A render of the initial extension design with cutaway shell.

The original design for the extension system was based on the designs of electronic linear actuators. In those

actuators, a travelling nut is rotated at the end of a shaft. In this design, a nut is pressed into a PVC shaft that

rotates in a bearing. The later design replaces the PVC with a block of acrylic, as discussed later. The base of

the shaft buts against a plate and, near the base, a gear is affixed to the outside of the shaft. This gear is driven

by the extension motor at the highest reduction that reasonably fits inside the robot.

Fabrication
The initial fabrication of the extension region went poorly. A total of three shafts were manufactured and

each had different problems. One was bent due to the application of heat for inserting the nut. Another had a

crooked nut due to inaccuracies in forming the internal hex seating for the nut. All in all, forming the shafts

proved to be time consuming and ineffective. Between the inaccuracies in the shaft and the overall non-rigidity

of the assembly, the threads were binding on almost every revolution. The team decided to redesign the

extension assembly.

Figure 35 - A photo of the two extension gears printed from the Form 2 SLA printer.

Luckily, the modular approach to prototype design meant that the extension region could be entirely

redesigned without affecting the designs of the front or back modules. The first step was to decrease the total

travel of the assembly to improve rigidity. Travel was reduced to three inches with a minimum of five threads

engaged at any given time. The second step was to move the nut directly into the gearing assembly. Without

the shaft, the assembly loses a source of imprecision and gains rigidity. Lastly, the nut was set into a pair of

30 | P a g e

bulky, high-accuracy bearings which were in turn set into nine consecutive plates of acrylic. The bearing

alignment provided some difficulty, so the resulting block of acrylic maintains a high rigidity in the extension

module.

Figure 36 - A render of the final extension module.

Figure 37 - A section view of the final extension module.

Electrical
For extension, a motor less powerful than the boring motor was chosen. Its rated torque is approximately

80 oz-in while consuming 0.1A. This gear motor features a 1:24 reduction which gives it this large amount of

torque with low current draw. This limits its no-load speed to 335 RPM, but as extending the robot should be

31 | P a g e

a slow, strong, and steady process anyway, this motor is an excellent choice. Its shaft speed is also monitored

with an identical setup described in boring. Pulses from a non-latching Hall effect sensor are timed by the

Teensy to determine the RPM of the extension shaft. This allows the robot to accurately control its feed rate

of the boring head. This motor has been discontinued and its specifications are no longer available.

Figure 38 - uxcell DC 12V 335RPM Gear Box Motor with centric output shaft model no. a18030100ux0053 [51]

Figure 39 - Specifications for similar 300RPM motor [51]

Figure 40 - Extension Tachometry Setup

32 | P a g e

This motor is driven by a L298 Dual H Bridge Motor Speed Controller. This motor controller is rated to

output 7A on a single channel, which is much more than required for the expected loading on this motor. The

motor controller also features under voltage protection so in the event that the 12V rail begins to falter, the

controller is not damaged by sudden spike in current. This motor controller is based off simple H-bridge

mechanics, so it only uses PWM control.

Figure 41 - DROK L298 Dual H Bridge Motor Speed Controller [52]

Although this requires more wires than the Victor SPX for the same number of motors, the code is simple.

Figure 42 – H Bridge control code

This code receives the output of the speed control PID for extension motor and drives it accordingly. In

most conditions, if the rate of extension increases, the speed of the drilling motor will decrease. Even if the

drilling motor is running at full power, it might not be able to spin at our desired speed. This means the control

loop on the extension motor has two process variables. One is its own speed, and the other is the drill motor’s

speed.

Instead, if two process variables of the extension motor were its own speed and the error in the drill motor

control loop, they could be combined.

P.V. = (Extension Motor Speed) – KE*(Drill Motor Error)

This means that if the drill motor’s error is negative, the resulting process variable will be larger than the

extension motor’s real speed which will cause its PID controller to slow the motor to correct. In turn, this

33 | P a g e

should allow the drill motor to increase speed, reducing its error and the extension motor would increase speed

again. In the above equation, KE is a scalar constant to multiply the drill error by in order to change the

magnitude of its impact on the extension motor. The limits of extension are detected with upper and lower

limit switches. This prevents the Teensy from driving the extension past its operational boundaries.

Figure 43 - Extension Limit Switches

These limit switches interrupt the computer and cause the extension motor controller to go into brake

mode. This immediately stops the motor before simple logic takes over to ensure the motor can move when

commanded, but only in the correct direction. This logic is shown below.

Figure 44 - Extension Motor Safety Logic

This function is checked when the extension motor is commanded to move by the user sending a speed

setpoint. If the movement is not allowed, the motor controller remains in brake and the setpoint is overwritten

to be 0 RPM. This prevents integral windup in its speed controller, avoiding overspeed when an allowed

movement is eventually commanded.

34 | P a g e

Assessment
When the extension control is set to -40, it travels the full length and stops when the limit switch is triggered.

It does so at a rate of 14 threads in 21 seconds, equivalent to 40 rpm or 4 in/min. The thread pitch of 10 makes

it convenient for the operator to switch between linear and angular velocity. The equality of the input and

output proves that all the intermediate systems are fully functional. With a maximum rotational speed of 350

rpm, the maximum linear extension rate is 35 in/min. At that speed, accounting for the contraction cycle but

not accounting for the additional resistance due to boring through soil, it would take 69 minutes to go 100 feet.

Figure 44 "Left: image of control interface with speed set to 60 rpm. Right: a still of the boring head attachment shaft rotating at 60 rpm."

Next Steps
The extension system is one of the most important subsystems in the robot, but it is also the one that will

change the most for the non-prototype design. We are using a custom linear actuator primarily for reasons of

cost, but we are recommending a hydraulic cylinder for the final version. A working extension region is needed

to validate other elements of the design. Modeling soil provides difficulties so a working extension system is

required to validate boring and extension empirically

There are three main types of actuators. Ones using pneumatics, ones using electric motors with screws and

followers, and hydraulic powered ones. Pneumatic actuators are not good in high force applications, so

hydraulic, electric and hybrid systems will be considered. In a vacuum, hydraulic actuators are superior to

electric actuators, they provide much higher force in the same footprint. A hydraulic cylinder that would fit in

the same footprint as a 100lb electric actuator can produce 4420lbs of force. This increase in power can seem

incredibly appealing, but there are certain design considerations that come with it. The failure point will likely

be in the anchoring system so it doesn’t make sense to have an extension system strong enough to break the

robot loose from its anchoring. In selecting a new extension system, it is important to consider the overall

length. Reducing the length of the robot will reduce the lever arm of the boring head, and reduce the force

required to turn. The extension system would also need to be compatible with some sort of cutting force sensor

in order to ensure that it feeds at the same rate that material is removed at.

One of the first considerations is whether to use a hydraulic actuator with an onboard pump, known as an

electro-hydraulic actuator (EHA) or one with a pump on the surface. The benefit to an external pump is it takes

up the least space per power because it does not need a motor or pump next to it. This allows for a bigger more

powerful cylinder to be used in the same sized bore. Another benefit is the reduced length per stroke length.

The pump on the surface will need to be stronger than an onboard pump to account for the pressure loss due

to fluid friction, but this is less of an issue, because there are not tight space constraints above ground. This

35 | P a g e

type of hydraulic systems will require a circuit to meet the specific controls needs of measurable extension and

load limiting. This would at the minimum need to include a fluid control valve and an overpressure system.

This would allow for control of feed rate, which is important to ensure that cutting forces remain within a safe

threshold. If cutting forces are increasing near an unsafe level, the feed rate should be backed off. The

overpressure system would serve as a failsafe if too much pressure is built up in the lines. Since hydraulics are

victim to sticking and slipping, a distance sensor will be needed to tell where in the extension it is for accurate

path tracing.

Table 3 – Pressure loss in a hydraulic line [45]

A system with an onboard pump, known as an EHA would offer the benefits of being easier to mount in

the robot since it only requires electrical power which is easier to rout than hydraulic lines, and it would not

suffer the same losses of long distance hydraulic power transfer. EHAs also often come with onboard sensor

packages and are powered by servo or stepper motors so closed loop control is possible. Since all the sensing

and power is in one component it would be simpler to install and maintain than a standard hydraulic actuator.

In addition, it has the advantage of being a closed system, with fewer pipe fittings, and thus fewer points of

failure. The tradeoff off is a decrease in power density, and an increase in length. The robot may need to be

redesigned to fit larger components if this solution is to be used.

Electric actuators have the benefit of better fine control, their exact position can be calculated by the motor

turns without the need for an additional distance sensor. Another benefit to electric actuators is they are cleaner.

Hydraulic systems have seals that can spring small leaks which if unchecked might damage electronics. If an

electrical system were to fail, it would be far less catastrophic than a hydraulic system. If hydraulic fluid leaks in

the robot it is likely that additional components will need to be repaired or replaced whereas if the electric

actuator breaks, only it will need replacement.

 Another option to consider is a servo hydraulic system. This presents the best of both worlds. It is

precisely controllable and powerful. They work by using a standard electrical actuator that is assisted by

hydraulics. When the output piston begins to move, it actuates an NC valve that allows high pressure fluid to

flow behind it and assist the motion. This works in both directions. While this is functionally the best option,

they are difficult to find, and a higher complexity will translate into a higher overall cost.

Guidance Posts for Eliminating Torsion
The current guidance posts for extension use a thin internal rod the slides in an outer rod. The purpose of

this design is to keep the extension axially aligned and to resist the torsion generated in extension in boring.

The table below shows a few comparisons of potential shapes tested in three cases. The first is torsion at 30 in-

36 | P a g e

lb based on the maximum torque generated by the boring motor. This simulates a rear-anchored situation with

the boring motor at full torque, completely locked in the boring substrate. The second is a 50lb force generated

perpendicular to the robot, in line with the opposite posts. This represents the full weight of the robot, which

is the highest pure turning stress it will experience. The third is the same force at 45 degrees to the second, the

weakest orientation of the rods. The material is Aluminum 1060 Alloy. Stress is measured in ksi. Deflection is

in inches and is exaggerated in the images.

Four cylindrical rods.

Max Stress: 3.068 ksi
Max Deflection: 5.831e-3 in

Max Stress: 10.80 ksi
Max Deflection: 2.06e-2 in

Max Stress: 1.114e1
Max Deflection: 2.059e-2 in

Six cylindrical rods.

Max Stress: 1.937 ksi
Max Deflection: 3.850e-3 in

Max Stress: 7.675 ksi
Max Deflection: 1.366e-2 in

Max Stress: 7.620 ksi
Max Deflection: 1.367e-2 in

Eight cylindrical rods.

Max Stress: 1.58 ksi
Max Deflection: 2.917e-3 in

Max Stress: 5.848 ksi
Max Deflection: 1.029e-2 in

Max Stress: 6.145 ksi
Max Deflection: 1.026e-2 in

Four curved rods, 20 deg

Max Stress: 0.3518 ksi
Max Deflection: 3.796e-4 in

Max Stress: 2.055 ksi
Max Deflection: 2.635e-3 in

Max Stress: 1.961 ksi
Max Deflection: 2.635e-3 in

37 | P a g e

Four curved rods, 35 deg

Max Stress: .1790 ksi
Max Deflection: 1.458e-4 in

Max Stress: 1.164 ksi
Max Deflection: 1.199e-3 in

Max Stress: 1.238 ksi
Max Deflection: 1.204e-3 in

From a manufacturing perspective, the round rods would be desirable because they are far easier to make than

the rectangular ones due to their symmetrical cross-section. In addition, during assembly, fitting the round pegs

will be easier since only their position must be considered whereas the rectangular strips must also be aligned

to the proper angle.

Figure 45 - Cross sections of two different post types. Left: Eight circular rods. Right: Rounded curved rods at 35 degrees (angle in blue).

Electrical
The next step for electrical in extension is to devise a more robust way of running wires and affixing limit

switches. Under compression, wires are forced to bend out and around the bottom extension plate. This will

not be possible on the real robot as wires should not leave the confines of the robot’s outer wall.

38 | P a g e

Figure 456 - Limit switch wires under compression

The limit switches themselves barely fit in the area around the extension shaft. They are glued to small pieces

of scrap wood that were diligently cut and sanded to mate the flat sides of the switches to the round outer wall.

Figure 47 - Limit Switch Prep

39 | P a g e

Figure 468 - Limit Switch Mounting

This rudimentary mounting worked for bench testing and is a product of the quarantine during this term.

Future implementations should provide proper mounting points for limit switches and preferably utilize the

mounting holes featured on the switches.

The tachometer setup is identical to the setup described for the boring system. This setup would also benefit

from the same recommendations and improvements therein.

Steering
Initial Design

The initial design proved to be very effective, although difficult to manufacture. The design consisted of

two motors driving two threaded rods via shaft adapters, with each rod in turn driving a sliding block forward

and backward depending on the motor’s rotation. Each driving rod is paired with a driven rod via four spur

gears. The driven rod, ideally, matches the driving rod’s rotation exactly so that the sliding block remains in

contact with the frustum. The frustum is held in a specific orientation by the sliding blocks and is what provides

the steering actuation.

40 | P a g e

Figure 49a - A render of the steering module.

Figure 479b - A section view of the steering module.

Figure 48c - A section view of the steering module with the dynamic components emphasized.

41 | P a g e

Fabrication
The slider blocks were machined, and test fit in the steering assembly. The sliders started as a block of

aluminum cut to length on a band saw. One side was faced and then the part was flipped, and the outside was

roughed out with a face mill. The holes were drilled, and the outside finished with a ball mill. The center hole

was tapped using a spring center in a drill press to ensure centering. It was found that the guide rod hole size

.257in (F drill) created clearance issues causing the sliders to occasionally bind when the steering module was

assembled) After holes were enlarged to .261in (G drill), the blocks slid well and the slider mechanism could be

operated with a hand drill. The holes are not perfectly square to the part, but it is a cosmetic issue and will not

impact performance because they are only off-axis relative to the curved contactor. This will change the range

of angles by shifting the minimum and maximum angle but will not impact performance because the part was

designed with built in tolerance. This issue was created by stock not being sufficiently squared before machining.

Because it was band saw–cut on both sides and initially faced with the cut side on the parallels, the opposing

side was faced to be parallel to the side that was not perpendicular to the walls. This could be fixed in the future

by fixturing the part such that the extruded sides are on the parallels and machining off the band saw–cut side

with an end mill thus ensuring perpendicularity.

Figure 49 - A series of images showing the manufacture of the aluminum sliders. Clockwise from upper left: CAM of the part, cut stock, a minimill control
screen, a finished part, and a milling operation.

Square parts show a keen attention to detail, and contribute to the overall professional appearance of the

part, and, while the current slider blocks work, it is important to ensure that if the design is mass produced that

the blocks are square to demonstrate well thought out design and machining skill.

The frustum was also supposed to be machined, but the tall narrow shape posed fixturing issues. The mill

was able to unseat the part. After this, we elected to 3D print a facsimile for the prototype. It is still

recommended to use metal on a more final version.

42 | P a g e

Our budget did not leave space for metal gears, resulting in use of gears made on a resin 3d printer. They

worked well until they were tested under load, and teeth fell off. Hole spacing tolerance also created issues,

and this was resolved by redesigning gears with larger teeth to allow for looser tolerance. To replace the 3D

printed gears, we laser cut a batch of gears out of acrylic. This serves two purposes. They are stronger than the

3D printed gears and have an incredibly short turnaround time for replacement parts. Metal gears would be

stronger, but they require specialized tooling such as a dividing head, or spindexer, in combination with a form

cutter, or a gear hob none of which are easy to access at WPI. They could also be made less precisely by using

a very small endmill.

Electrical
The motors used for actuating the steering assembly are also gearmotors with preinstalled a 1:22 reduction

gearbox. These motors have a rated torque of approximately 14 oz-in which happens when they draw 0.6 A.

Figure 50 - uxcell 12V DC 250RPM Gear Motor with eccentric output shaft model no. A16071400ux0622 [53]

Figure 51 - Steering Motor Specifications [53]

These motors were chosen as they have eccentric output shafts which allows them to be mounted as closely

to the chassis wall as possible. This means the steering rods can maintain their close proximity to the outer wall

as well without the need for another gear set.

The steering motors are also controlled by another L298. As the L298 is a dual H bridge, only one more is

required to actuate the entire steering system. To sense steering position, industrial 10K, 10-turn potentiometers

are used.

43 | P a g e

Figure 52 – Vishay 10 turn Potentiometer 534B1103JL [54]

These potentiometers made by Vishay Intertechnology have a linearity of +/- 0.25%, ensuring reliable

position readings. By using a simple pulley reduction, the near 40 turns of the steering rods can be brought

down to the 10 turns these potentiometers can handle. The computer's onboard ADC provides 10-bit

resolution to each steering shaft. There were a few reasons why using a potentiometer over an encoder made

sense in this application. The shaft being measured is not spinning fast enough to worry about wearing out the

potentiometer’s internals and a potentiometer requires fewer wires for operation than an incremental encoder.

An incremental encoder would have had the added complication of installing limit switches in order to carry

out a homing routine. Purchasing absolute encoders capable of multi-turn encoding would have been more

expensive than these precision potentiometers with no clear benefit.

Figure 53 - Steering with installed bands

The rubber band also prevents damage to the potentiometer by slipping if the potentiometer ever reaches

one of its hard stops. The independent control of the two motors also required each motor to have a devoted

PWM timer on the Teensy. As the Teensy has 5 PWM timers, 4 of which are configurable, all motors on this

prototype have independent timers configured to be the maximum frequency the controllers can handle. If

more actuators requiring PWM control are added, timer multiplexing would need to be performed.

44 | P a g e

Assessment
Outside of the failure of the gears, the steering works as expected. Figure 54 shows change in the angle of

the front module relative to the back module as a function of the progression of the slider block. The steering

system is able to completely lift the front module without slowing so it stalls far above the 20 lb of the front

module. The team was unable to test the maximum force because the SARS-CoV-2 closures meant that no part

of the robot could be replaced and the risk of breaking components was too great.

Figure 54 - Steering angle as a function of slider block progression.

Next Steps
The steering system has now been validated under light loading. It now has to become strong enough to be

validated for heavy loading, especially because—unlike the extension region—the design for steering is one of

the aspects that is intended to be very similar in the final version. To that end, stronger gears are needed, and

it seems as though those will either need to be purchased (which we cannot afford) or made out of metal (which

we likely cannot do). For the time being, the laser cut gears seem to be strong enough. A future team might

want to attempt to make the gears on a CNC. The motor adapters could also be improved if desired, but they

are currently fully functional if not very precise.

Gear Design Specifics
Currently, the point of failure in the steering system is the laser-cut and 3D-printed gears. In standard

operation, the gears experience fracturing failure along the lines indicated in red in Figure 55. In addition, the

gears experience smaller-scale fracturing in the teeth, which causes binding and skipping. While the final model

will replace spur gears with a worm and wheel system, a prototype will need functional spur gears if it is to be

tested in any sort of boring substrate. In order to design gears that are strong enough, two primary decisions

need to be made. The first is the material selection. Acrylic was chosen because it could be laser-cut and was

stronger than the 3D-printed gears, but it has proven too fragile for this application. The second decision is the

geometry of the gears. Many decisions can be made around geometry, so a few common ones will be explored

below.

45 | P a g e

Figure 55 - Two different failure states of current spur gears. Red indicates fracture lines, while blue indicates mode of force.

The forces acting on the gear can be calculated from the motor torque using the equations below. In these

equations, T is input torque in Nm, d is the pitch diameter, Ft is tangential force, Fr is radial force, and α is the

pressure angle. The equations are in metric but converting to imperial is trivial. The values for the gear are

shown in Table 4. In this case, the maximum motor torque is estimated as four times the rated torque of 14 oz-

in.

𝐹𝑡 =
2000𝑇

𝑑
 𝐹𝑟 = 𝐹𝑡 tan 𝛼

Input Torque T 8.7032 Nm

Gear Diameter d 22.098 mm

Pressure Angle a 20 deg

Tangential Force Ft 787.69 N

Radial Force Fr 286.69 N

Tangential Force Ft 177.08 lbf

Radial Force Fr 64.451 lbf
Table 4 - Table of values for gear calculations and FEA.

The first FEA set was motivated by the need to find an adequate material. The limitations of mesh sizing—

especially with the SolidWorks implementation, can lead to singularities that would misrepresent the maximum

stresses. To avoid this, forces were distributed across a thin strip of material rather than a single line. The

original CAD was based on a McMaster Carr gear which was not optimized for adjustment, so changes had to

be made to the fillet between the teeth. This was an import change because the fillet is where the highest stresses

occur, and the longer the tooth is the greater the bending moment applied at the base. It is advisable that a new

equation-driven gear CAD is created, as the McMaster Carr version is not mathematically ideal and does not

follow gearing standards when adjusted.

Figure 56 - An example of the FEA load setup and results.

Figure 57 shows the results of the FEA from two different angles. In both cases, force is applied left-to-

right on the left side of the tooth. Compression on the back side of the failing tooth seems to be the cause in

most cases, so a compressive yield strength should be used to calculate safety factors. The three primary

46 | P a g e

locations are unsurprising and resemble the real-world failure modes; the tooth breaks at the base when peak

stress is at the bottom, but sometimes fractures off a piece along the tip instead.

Figure 57 - Stress concentrations on the gear tooth. Note the three primary locations of stress. Force is applied from the left in both images.

The charts in Figure 59 and Figure 60 can be used to motivate a decision around gear material. This group

selected acrylic because it within budget, but a later project group may have a greater budget. The charts show

that steel is the only material that can provide a safety factor above 1.5 based on the internal SolidWorks yield

strengths. This can be modified by changing the geometry of the gear to reduce stress concentrations and

provide reinforcement to the teeth. Alternatively, the next group could decide to skip the spur gears and move

onto a better system, such as the one described in the next section. Lastly, Figure 58 shows the stresses the

result from reversing the forces so that the key experiences the force while several gear teeth are held immobile.

The stresses follow paths that resemble the left-hand failure mode in Figure 55. This can also be mitigated, ad

reducing stress concentrations will also reduce the likelihood of crack formation and propagation.

Figure 58 - A view of stresses in the gear created by isolating stresses above a certain point.

47 | P a g e

Figure 59 - Deflection of the gear tooth by material and tooth count.

Figure 60 - Gear safety factors by tooth count and material.

0.0001

0.001

0.01

0.1

1

10 15 20 25 30 35 40

M
ax

im
u

m
 G

ea
r

To
o

th
 D

ef
le

ct
io

n
 (i

n
)

Tooth Count

Deflection of Gear by Material and Tooth Count

Acrylic ABS 1060 Aluminum Nylon Plain Carbon Steel

0.01

0.1

1

10

10 15 20 25 30 35 40

Sa
fe

ty
 F

ac
to

r

Tooth Count

Safety Factor of Gear by Material and Tooth Count

Acrylic ABS 1060 Aluminum Nylon Plain Carbon Steel

48 | P a g e

Future Gear setup
A future iteration of the robot will ideally not use spur gears and will instead have a more robust and reliable

gearing system. The current design consists of four spur gears in a line. It is the minimally effective solution

given the financial constraints of the current prototype. Figure 61 shows the current design on the left and the

proposed design on the right. The primary difference between the current design and the one on the right is

the integration of a worm gear. This system provides several advantages. First and foremost, worm gears are

almost insusceptible to back-drive. This allows the steering to be very deterministic and protects the motors

from unexpected sudden loading. Second, it reduces backlash. This is not a large concern for the current

iterations, but it will become one as the unit gets more rigid and precise. Third, the length of the worm gear

provides much more flexibility in positioning the steering motors. While the spur gears have to be attached at

one of the four gear center-points, the worm gear can attach anywhere along its length. The precise method of

linking the motor to the gearing depends on the design of the motors, one method is the use of two bevel gears

to transfer rotation 90 degrees, from axial to transverse relative to the robot.

Figure 61 - Left: the current steering gearing on the prototype. Right: the proposed gearing for future iterations.

Frustum Geometry Considerations
The frustum is a very important structural component, and the current one will need to be replaced. There

are some considerations in its design. Foremost, there is an obstruction that occurs if a flat sliding block is used

with a flat frustum wall. This can be difficult to visualize, but it is the reason that the surfaces of the sliding

blocks are curved. If the frustum is held in place by four flat sliding blocks, then the motion of one of the pairs

of blocks will not drive it. It will be held in place by the other pairs, because moving them as flat pieces would

require the frustum to phase through one side of the sliding blocks.

Potentiometer Pulley
The potentiometer that tracks steering needs a small redesign. Currently, the rubber band has a tendency to

walk off of the two pulleys. In order to fix this, one of the pulleys needs a wall. This is a trivial fix, but it is

worth mentioning. The only real design constraint is that the ratio between the pulleys has to be high enough

that the potentiometer’s maximum of ten turns is not reached.

Using Rollers Instead of Sliders
Currently, the steering blocks slide across the frustum to generate motion. The resulting friction is necessary

with the current design to prevent back-drive. However, a future design could utilize rollers rather than simple

sliding blocks. The addition of a worm gear drive as described above would do a lot to prevent back drive.

Having a roller would prevent “skipping” or stuttering motion at high load, increasing the precision of the

49 | P a g e

steering. While it would run smoother, which would reduce the strain on the gears, it would introduce added

design complexity and failure points. Of course, the wheel would have to be very strong. There are bearings

that can withstand that strength, or the team could decide to use a single piece of metal turned down to shape.

Figure 62 – An illustration of force components on the steering slider, left, and steering roller, right.

Anchoring
Initial Design

In order to ensure proper movement of the robot, the back and front sections must be able to anchor

themselves to the surrounding earth. The anchoring system must be able to resist the backwards force of the

extension, and the torque from drilling. In addition, they need to be able to be retracted flush to the robot to

ensure that the front and back modules can slide easily during the inchworm motion.

Fabrication
For the prototype this will be accomplished by air bladders constructed out of lawnmower tire inner tubes.

They will be inflated by an onboard pump, which can hold pressure while it runs, and then pressure can be

released with a solenoid bleeder valve. These work by expanding in diameter and pushing on the outside of the

tunnel wall. This will work predominantly through friction with the walls, and, in softer soils, it might deform

them slightly and create a slight interference fit. While the anchoring tubes were never mounted on the

prototype, the pneumatic system was connected to the power supply and functioned in the desired sequence

of expansion and contraction.

Electrical
The anchoring system relies on air bladders inflating around the robot to press against the walls of the

tunnel, holding the robot in place while boring. For inflating the air bladders, two small, low power air pumps

were purchased. By using two air pumps, one for the front section of the robot and one in the rear, pneumatic

lines do not need to be managed within the extension portion of the robot.

50 | P a g e

Figure 63 - DIMINUS DC 6V Mini Air Pump [55]

In order to reliably achieve the maximum amount of anchoring the bladders are capable of, air pressure

sensors monitor the pneumatic line to each set of bladders.

Figure 64 – Honeywell Pressure Sensor HSCDANN030PA2A3 [56]

Not only will these sensors ensure the correct pressures for anchoring in dirt, they allow for future iterations

of this project to safely and accurately inflate to optimal pressures for other tunneling conditions such as rock

or clay. The sensors also have integrated temperature sensing which can help detect ambient temperature within

the robot.

Next Steps
The likely failure mode of this system is shear force within the inner tube, causing it to slip torsionally or

axially when the boring head is in use. Because it is completely round, there is no interference between the tube

and the tunnel wall. It is for this reason that it is recommended to upgrade the anchoring system for the final

product. Given the goal of the final product is to be useful under multiple soil conditions, it is recommended

that the anchoring be modular. The basic design will consist of retractable spikes that engage in whatever is

being drilled to provide mechanical interference against torque and axial loads. Given this system, it makes

sense to add an assortment of different anchoring attachments to be compatible with a wide range of soil

conditions. For example, larger flat shovel bits would work well in sand, and shorter spike shapes would

perform better in rocky soil. It is also possible that a single design could work, which can be researched.

The pressure sensors communicate through I2C and unfortunately as they are the same component, share

the same address. Using them is possible by either using their enable pins like chip select and using the Teensy

to enable them independently. Software can also be used to create another I2C bus on a software level.

51 | P a g e

Chassis
Initial Design

Figure 65 - A render of the chassis for the boring module.

The initial design for the chassis was very simple. Components would be primarily supported by ¼” or ½”

thick discs throughout the robot. The discs would be placed on threaded rods that extend the length of the

robot. The disks would be spaced apart from each other by spacers made out of clear PVC for prototyping and

metal for the final product. Similarly, discs were to be cut out of plywood on a laser cutter for the prototype,

and steel in the final version. The discs would be placed on threaded rods that extend the length of the robot.

The rods would be spaced apart from each other by spacers made out of clear PVC in the short term and metal

in the long term.

Fabrication
Very little change was seen in the design paradigm for the chassis, but small changes had to be made

throughout the process. The laser cut turned out to be far less precise than was originally thought (imprecision

of up to 10 thou), and the software used to send files to the cutter scales each print by between 99.5% and

101%. Some iteration was required, but in the end it was determined that the laser cutter was still the best tool

for prototyping the discs. Some discs had to be modified by hand, so the CAD was subsequently updated.

The threaded rods worked perfectly. A stiffer steel would provide better overall rigidity, but the slight

elasticity is below a threshold that affects the prototype. The manufacture of the spacers proved more difficult

than expected. PVC cutters deflect within the material, so a degree of variability occurs. The largest deflection

was .025” and the resulting end surface is not flat. However, the spacers can be finished on a belt sander for

better dimensioning. Sanding the spacers to square provides a better contact surface ensuring that when the

threaded tie rods are tightened the disks remain square to each other. If there is any unevenness, the disks will

rock. A lack of square disks can also cascade into the disks being parallelogrammed relative to each other

because, while the specified dimension may be somewhere in the contact surface, there is no guarantee that it

is actually what is making contact and thereby setting the spacing.

52 | P a g e

Figure 66 - A photo of the original chassis with many of the components in place.

Electrical Mounting
One difficulty presented by a small robot is that finding space for components that are not actuators or

sensors is challenging. Although the Teensy 3.6 microcontroller onboard the MOLE is small, it is a critical

component of the robot and needs adequate room for control wires. The motor controllers share this issue,

and the space allocated for them and their wires needs to be of adequate size. Even just finding space for wires

themselves proved to be difficult.

 The backmost module of the robot holds most of the robot’s essential electronics. It does come with the

benefit of keeping all the motor controllers close to the Teensy, so abundant thin control wires do not need to

be carefully run throughout the robot. By finding novel places to mount motor controllers close to the Teensy,

only motor power needs to be routed. And as the power supply is also very close, the wires running motor

power should be the only place for noticeable power loss. This can be mitigated by running slightly oversized

wires to the motors. For example, the drilling motor, which draws the most current, has 12 AWG wire leads,

although its factory leads are 14 AWG.

Figure 67 – Top view of wiring for Teensy, motor controllers, and power supply

53 | P a g e

Figure 68 – Side view of motor controller mounting assembly with top controller removed

As shown above, motor controllers can be mounted in different orientations so long as they are not crushed

by anything. The pair of motor controllers which operate extension and steering are mounted similar to a bunk

bed and were fitted with right angled headers, so control wires are not dangerously bent to fit. These female

headers were installed upside down in order to interface correctly with the controllers. The remaining pins,

meant to be soldered into a PCB, did not leave adequate space for jumpers to securely attach. This means that

pin extensions had to be manually soldered, allowing for secure connection.

The boring motor’s controller is not shown in these images. It is mounted beneath the power supply,

recessed into the mounting plate of the chassis.

Sensors
Knowing the chassis’ orientation allows steering commands to be given in intuitive world coordinates and

transformed into local coordinates. This means that regardless of the robot’s orientation, the command to drill

left will actuate the correct set of contactor blocks to ensure it turns to its left relative to its internal coordinate

system.

Figure 69 – SparkFun’s LSM9DS1 breakout board, aka 9DoF Sensor Stick [57]

54 | P a g e

Figure 70 - The IMU affixed next to the Teensy

A dilemma emerged when bench testing of the SparkFun 9DoF Sensor Stick began. The IMU provides

accurate and consistent pitch and roll readings, but its yaw readings were unstable and jittery. Upon rotating

about the Z axis, the yaw reading would change as expected, but only for about 40 degrees before jumping

back to its initial value. The yaw value of this IMU utilizes its onboard magnetometer to compute heading based

off the Earth’s magnetic field. Even after accounting for WPI’s declination, the sensor still gave poor readings.

The pitch and roll readings rely on the accelerometer to detect the direction of Earth’s gravitational pull and

can work out the IMU’s orientation. The code which performs these calculations is shown below.

Figure 71 – Attitude calculation code [58]

The poor yaw readings are either the result of a faulty chip, or from being a cheap sensor. Without correct

yaw readings, performing accurate control transformations is impossible.

55 | P a g e

Next Steps
The chassis successfully housed all of the components and allowed for their motion. This helped us validate

the design of other subsystems at a kinematic level. The next steps are to produce every spacer, as some are

missing due to the fluctuating dimensions of various modules. In addition, some spacers and discs could be

converted to metal. In order to measure all three axes accurately, a more expensive and better designed IMU

should be bought, preferably an IMU which implements some sort of sensor fusion or Kalman filtering.

Ingress Protection
If the unit is to bore through soil, it will have to be protected from the various solids and fluids that can be

found underground. The engineering standard for creating an enclosure that can prevent material penetration

is the Ingress Protection (IP) rating system. The rating is denoted by two numbers following the letters “IP”,

as in IP56. The first numeral represents the ability of the enclosure to protect against solid objects of decreasing

size while the second number represents protection against liquids, with the lowest being IP00 and the highest

IP68. Because the unit will be under solid and water pressure for most of its operation, it will most likely need

to adhere to the IP68 or IP58 ratings, representing total or near-total dust protection and total liquid protection

despite long periods of immersion under pressure. [60] It is possible that the specific machine design used in

later iterations of the robot will allow a less strict rating for most of the chassis with a robust protection system

around the sensitive components (e.g. electronics or gears). Regardless of the approach, meeting the desired IP

ratings will pose a significant engineering challenge.

Power Delivery
With a handful of motors, and one of them having a large peak power, the highest wattage AC to DC

converter that can fit inside our small chassis would allow the robot to maximize performance. A literature

review showed that 220W is the highest power AC to DC converter in the consumer market that would fit

within the robot. Using a less user-friendly search among industrial converters eventually yields a 500 W power

supply that will fit inside the robot and is within budget.

Table 5 - Power Consumption Calculations

Device Voltage Current Count Wattage

Teensy 3.6 5 V 500 mA

(max)

1 2.5 W

Steering Motors 12 V 0.6A 2 14.4 W

Air Pump 6 V 260 mA(max) 2 3.12 W

Air Solenoids 12 V 540 mA 2 13 W

Hall Effect

Sensors

@ 3 V 8 μA 2 48 μW

10kΩ, 10-turn

Potentiometers

@ 3.3 V 2.178 mA 2 14.375 mW

Pressure Sensors 3.3 V 4 mA 2 26.4 mW

9DoF IMU 3.3 V 50 mA 1 165 mW

Extension Motor 12 V 0.6 A 1 7.2 W

 Total: 40 W

Error! Reference source not found. above shows calculation of power draw for many of the robot’s

electrical components. The major entries which are missing are the motor controllers and the drilling motor.

The motor controllers draw current for their respective motors and any current they require for control logic

56 | P a g e

can be neglected. With the maximum power draw of the robot coming to 40.425 W, there is 459 W left for the

drilling motor. This equates to just over 38 A of current draw, which the Victor SPX motor controller can easily

handle.

Figure 72 - Power supply with voltage regulators

Having this converter on-board replaces the need for much more expensive batteries which would limit the

robot's tunneling distance as they would require charging or changing. Also, as the robot is powered by an AC

line, power loss is considerably less than a DC tether, and the tunneling length limit is only dependent on the

length or amount of extension cord available.

Software

Architecture
The MOLE software consists of four main components, each with individual modules to accomplish

various tasks within the normal operation of the MOLE. These tasks include controlling the robot through

user input, viewing the data collected by the robot’s on-board sensors, communicating user input from the

frontend to the MOLE’s on-board computer, and driving electrical components via digital I/O. The software

developed to accomplish these tasks will be discussed in this section. Controlling the robot and seeing its status

are done in the first software module: the frontend and UI which are based in JavaScript utilizing a Node.js

server. Communication between the frontend and the on-board computer is accomplished through a Python

communication layer. Finally, the software on the on-board computer is an Arduino script running on the

Teensy 3.6 platform.

The Node.js server communicates user input received from the UI with the Python data layer over a socket

connection, using JSON objects to encode data. Similarly, the Python data layer communicates system status

to the Node.js server via JSON objects which encode fields corresponding to the MOLE’s on-board sensors.

This information is then served to the user via a web browser. All communication between the Python data

layer and the MOLE itself is performed over a serial connection. Encoded controls data are sent to the MOLE,

and it replies with status information about MOLE operation. A full description of system architecture can be

found in the Methodology chapter, and an illustration of system architecture is contained in Appendix B –

Software Architecture.

57 | P a g e

Frontend
The first software module is the Frontend, which consists of user interface components for both controlling

the MOLE and viewing its status information. Pathing or manual control information can be passed in by the

user and sent to the MOLE. A lowdb database stores all status information received by the frontend and can

be served to the user through a D3js visualization or exported into .csv data format. All the frontend modules

are hosted on a local Node.js server and are accessed through a web browser.

Controls
In the controls section of the frontend user interface, an operator will be able to manually set the various

control parameters of the MOLE. The parameters an operator is able to set include the MOLE’s boring head

RPM, extension rate (with negative values indicating to drive the system in reverse), turning angle in the X and

Z directions, and inflation of the front and rear anchoring systems. These controls were created using a HTML

form and styled with standard CSS. Figure below shows an early iteration of the controls UI.

Figure 74 - Early Controls UI Iteration

The controls system parses the input to the various control fields, and POSTs them to the Node.js server,

which then formats and passes along the controls information to the Python communication layer. A running

log of all sent commands is kept and presented to the user in a command log to the right of the control inputs.

This command log also notifies an operator if a command they attempted to send did not change any of the

already set parameters. After the functionality of the control system was verified, the team went on to apply

CSS styling to this module to make it more user friendly and visually appealing; Figures 75 a and b Figure below

show the final user interface controls and command log, respectively. The bounds of the various control

systems were also adjusted as hardware limitations were understood and specific mechanical systems were

implemented, and the system is implemented to allow for changes as the mechanical design evolves. Boring

speed is set in RPM, on a 0 to 100 scale. Extension is configured from -100 to 100, representing a percentage

of full speed backward or forward, respectively. Turning X and Z are on a 0 to 1 scale, with 0 representing no

turning, and 1 representing full turning in one direction. Due to hardware and manufacturing constraints, the

robot can only turn in one direction on each axis.

58 | P a g e

Figure 75a - Final Controls UI Iteration

Figure 75b - Final Command Log Iteration

Status Visualization
Presentation of status information to the operator is accomplished with a data visualization created with the

D3js library. D3, or Data Driven Documents, is a powerful framework that allows for the creation of dynamic

and versatile data visualizations with real-time updating data and can be seamlessly integrated into web pages

and the Node.js server. Data to be visualized are passed to the web application from the embedded system

through a Python data layer (described below). The status visualization allows for dynamic switching between

different datasets, which allows an operator to view the different sensor values of the MOLE.

59 | P a g e

Figure 76 - D3 Status Visualization

D3 allows for the creation and manipulation of document objects using arbitrary data, which can

dynamically change, updating the document in the process. The MOLE status visualization makes use of D3’s

enter, update, exit model [4]. To begin, an empty array of data is bound to an empty selection of SVG elements.

When new data are added to the array, the enter routine runs. The MOLE visualization makes use of two types

of SVG objects: circles for the data points, and SVG lines to connect the data points to each other. When new

data are added to the array, the enter routine creates new circles and lines and appends them to the SVG object.

Figure 76 above shows the D3 status visualization, displaying some sample data.

When data changes, (including when new data are inserted) the update routine runs. This allows for the

document to quickly adapt to changing data. The update routine is also where the data-driven properties of an

object are defined and applied. X and Y positions, as well as object color, are all defined in the update routine.

X and Y position make use of D3’s scaleLinear functionality is used to ensure that objects remain within the

bounds of the visualization area. The scaleLinear functionality is also used to define the color scale that applies

to the points, as a linear scale in D3 can map any numeric domain to an arbitrary range, including a color range

that is automatically interpolated.

Finally, when data are deleted from the array, the exit routine runs. In this visualization, the exit routine

simply removes the associated point and line from the visualization.

Data to be visualized are pulled from a local database, and all data are persistent across runs of the MOLE

system or reloads of the visualization page itself. Any data that are loaded into the visualization from the MOLE

must first pass through the database to be stored for future use; although this introduces a slight delay when

compared to polling directly from the communication layer, allowing the data to be stored in a persistent

manner allows for a more robust data infrastructure and easier integration with the other modules of the MOLE

software.

D3’s enter, update, exit pattern was determined to be the best solution for this project as the data being

presented to the user are constantly updating and changing, and D3’s dynamic nature allows us to present

changing data seamlessly. Other tools considered, such as Python’s matplotlib and NumPy libraries allow for

easier creation of visualizations, but do not easily allow for live updates with changing data. The plotly library

was also considered, as it would allow for easy integration into the Node.js server, due to it creating HTML

60 | P a g e

pages containing a visualization. Like the other alternatives explored, plotly fails to capture the behavior we

required when dealing with data that are updating rapidly.

Path Visualization
In order to meaningfully display the pathing information, a 3D render must be made of the world that the

robot is moving through. This is accomplished by using WebGL, which is a JavaScript API for rendering

graphics on a webpage. WebGL was an advantageous choice for our team because it is the primary graphics

language taught at WPI in CS4731: Computer Graphics, and it allowed us to keep the pathing visualization in

the same place as the controls. In addition, working within the browser allowed us to include the pathing and

the pathing visualization within the full stack. WebGL is a JavaScript API, meaning it is cross-platform which

allows our software to be picked up by another team without too much effort. In addition, the pathing

visualization depends on the MV library provided in CS4731.

Since the scale for the entire area that is encompassed by the MOLE’s path can be extremely large, a way to

navigate the space was required. The way to solve this issue was to implement a camera that could be controlled

by the user to navigate the 3d space. We used the Gram-Schmidt method of composing a view matrix that

creates a view space and transforms the objects according to its direction and position [24]. This allows a user

to move through space via a “direction vector” and we can alter a camera’s translation and rotation by affecting

this "direction vector" and the camera’s position [24]. The pathing visualization system keeps track of the

camera's front-facing vector along with the camera's yaw and pitch, and the camera’s right vector can be found

at any time by the cross product of the direction vector and the world’s y-axis.

Also, because the camera is composed with the Gramm-Schmidt method we cannot allow the user to rotate

the camera’s pitch to –90 or 90 degrees as that would cause Gimbal-lock, so we added the constraint to keep

the camera’s pitch within the bounds of –89 and 89 degrees. Gimbal-lock is an issue that arises when

implementing 3D rotations with Euler angles; it is caused when one axis of rotation becomes parallel with

another axis [29]. The common situation is that the pitch becomes –90 or 90 degrees, and the effect of this is

that the yaw axis is collapsed into the roll axis and any yaw movement instead becomes a rotation on the roll

or bank axis. In addition to this, we added a similar constraint to the camera’s yaw as whenever the yaw reaches

360, the yaw is set to 0. Since the yaw is stored as a float, if it reaches large numbers imprecision in the yaw will

cause distortion. Keeping the yaw in the boundary will prevent this.

The camera also can move along its forward vector, right vector, and the world’s y-axis. It is preferable to

move along the world’s y-axis instead of the camera's up vector, because while a user knows what direction is

forward and left, they are not guaranteed to be aware of where their up direction is. In addition, it is expected

that when we wish to translate upwards it is an increase of height relative to other objects, and this is not

guaranteed for every direction of the camera. The controls are listed below.

 ‘w’ - Translate the camera forwards

 ‘s’ - Translate the camera backwards

 ‘a’ - Translate the camera left

 ‘d’ - Translate the camera right

 ‘spacebar’ - Increase the camera’s y position

 ‘control + spacebar’ - Decrease the camera’s y position

 ‘Up’ - Increase camera’s pitch

 ‘Down’ - Decrease camera’s pitch

 ‘Left’ - Decrease camera’s yaw

61 | P a g e

 ‘Right' - Increase camera's yaw

Obstacles are rendered in the world as cubes, and any path is rendered as a line segment. They are also

stored in different arrays before they are drawn so that way they can be accessed or modified before they are

drawn. For both the line segments and the cubes, we can specify the colors we wish to use when we make a

call to “draw()”, which draws the entire scene. Figure 77 is an example of a rendering of the world axes, a basic

example semi-circle as a path, and a random distribution of obstacles.

Figure 77 – Example Rendering

Next Steps
The MOLE user interface was developed and tested within the project team. To better understand the

functionality of the user interface, a user study should be performed. Having an individual or group of

individuals who are not familiar with the MOLE project will help discover flaws in the user interface design

that the development team may have missed.

Better visualization of the MOLE as it performs a boring routine is an element currently missing from the

system’s frontend. Using information about the MOLE’s orientation and position, determined through its on-

board inertial measurement unit (IMU), a 3D rendering of the MOLE as it moves could be created. 3D object

files of the MOLE were created in SolidWorks and can be exported to .stl file format, which can then be read

into and drawn-to-screen using WebGL or another browser-based graphics library. In combination with the

existing path visualization, a full scene of the mole as it moves along the planned path, with visualizations of

drift or deviation from the ideal path, could be created. Another issue with the WebGL rendering of the pathing

system is that it lacks a skybox or any sort of background. This can mean that when the user is trying to look

around the scene, they can get lost against the default black background of the scene. In addition, an interface

with the WebGL should be added to the HTML document like in the Controls page.

62 | P a g e

The current status visualization represents a one-dimensional array of numeric data. The y-axis encodes to

the data values in the array, and the x-axis encodes to the index of that value into the array. This is useful for

sensor data that are logical as a function of time, such as the temperature of the boring head, or the pressure in

the anchoring air bladders. Other data points, like the acceleration in various directions require a different

visualization. Some of these data, such as the boring head RPM, do not need to be viewed in a complex data

visualization, as an operator is only interested in the current value, and if it matches up with their set points.

Other data, such as acceleration along the 3 spatial axes, may be best served as instantaneous data points, but

with a more complex 3-dimensionsal render of how those values influence one another and how they relate to

the MOLE’s surroundings.

Server
In addition to the Python Data Layer, the server acts as a main communication gate. The server is

programmed in the Node.js environment for a multitude of reasons [26]. A server was chosen as part of the

MOLE software as it allows the team to implement the various communication protocols needed to show and

process the user interface and communicate with the embedded system. The MOLE required a serial

connection, and since it is dynamically communicating with the user, we could not simply compile an instruction

set and send it to the MOLE. Because Node.js runs on the Chrome V8 engine, it allows the software to be

extremely portable which allowed our team to be able to run the server on all our local machines [26]. Node.js

also has a minimal setup time which enabled us to immediately begin work on the design features of the robot.

It uses an HTTP server to communicate with the front-end and a TCP server for communicating with the data

layer.

The basis for the TCP connection with the Python Data Layer is the “Net” module provided by Node.js

[3]4. The reason we used a TCP connection was it allowed us to use the JSON files we receive from the front-

end to handle data for communicating with the data layer. JSON files are exceptionally accessible in terms of

data types that are communicated across programming languages, so that way we do not have to worry about

data type implementation. In addition to this, Node.js does not have an official serial module and we wanted

to keep this aspect of the stack using modules that we know will be consistently updated. For instance, we

considered using Browserify which would allow us to have access to Node modules on the client side of the

applications [23]. One of these modules we had considered was “net-browserify,” and it seemed to solve a few

issues with being able to access TCP connections through a browser interface [25]. However, it has recently

been archived, and when using custom frameworks or Node packages on long running projects we thought

that trying to keep with supported modules would allow teams in the future to be able to add on to the structure

of the server without having to refactor components that have become out of date.

One of the key components of the server is its local database. This allows the user to navigate between

pages and still retain the data and information from MOLE’s operations. There may be situations wherein an

operation with this robot may take a few days, and it is important that all the relevant data from the operation

is persistent. The database is implemented with ‘lowdb,’ and is stored in JSON format as well [27]. This allows

us to quickly save any information from either the client or the data layer without having to worry about type

conversion. Moreover, since lowdb uses JSON files this allowed us to import the module ‘json2csv,’ which a

module that is frequently maintained by its author [28]. With this module, the user can download a summary

of their data in the form of a csv file. CSV files can be opened in almost any spreadsheet program, and because

of this it allowed us to maintain the theme of cross-platform portability with our application. Figure 78Figure

is the schema of the database.

63 | P a g e

Figure 78 - Database Schema

As seen above, many of the fields of the database are related to the status of the MOLE itself. The database

also keeps track of any requests sent to the MOLE. This allows a user to keep track of the decisions that they

made during the operation in case any of that data would be relevant to future operations. In addition to that,

it provides future teams with the capability of tracking any operations that they execute for any reason

concerning testing. Another important thing to notice about the pathing information is that it is broken up into

multiple fields. The first field is “idealPathPoints,” and this is the list of points that is initially generated by

pathing module. This is because we wish for the data to be persistent across page navigation, and it also allows

us to be able to re-render at any point an earlier path. This is helpful because it allows us to compare different

solutions to earlier pathing situations, and because of this we can evaluate previous pathing routes in order to

judge their efficiency. For the fields ‘sentPaths,’ and ‘correctedPathPoints,” we wished to differentiate between

what the MOLE following the initially generated path and the corrections that the MOLE must make. This

again is a metric that could be a measure of the MOLE's pathing efficiency, and, depending on how well the

MOLE can determine environmental factors, could be used to develop a stronger understanding of the field

of operation for future operations. Both of the 'sentPaths,’ and the 'correctedPathPoints,' contain the end point

destination, Euler angle representations of the movement with distance, and the index within the series of

movements executed.

The Node.js server uses a typical HTTP server to communicate with the front-end, with the common REST

API. This is achieved through Node’s HTTP module which provides a variety of API calls that allows for

flexible design with the server [35]. Because the user can perform a multitude of actions with the MOLE, and

the Data Layer can also respond in multiple ways, the server acts as an API for possible operations. It makes

sure that the communication between layers is handled properly and notifies both ends of the stack if there is

an error. The typical pattern is that the user sends an HTTP POST request when they wish to interface with

the MOLE or the database. The server then checks whether the data is formatted correctly, if it is not the server

sends the client a 400 error, and the request is not sent to the Data Layer. A 'type' field which allows us to

define our API with a basic comparison to find the proper layout of the data and the correct operation. If the

64 | P a g e

data is valid the server then processes the data, saves it to the database and sends it over the TCP socket to the

python Data Layer. The interaction with the Data Layer is based around the JavaScript Promise API. Node.js

cannot return information from an event-handler, so in order to access that information outside of the event-

handler, we implemented the interaction with the TCP socket with asynchronous Promises [36]. The received

data is then saved to the database and passed up to the user.

At any point the user can send a GET request to the server to ask the database for information. The

convention for distinguishing the query to the database and general file requests (HTML, CSS, or JavaScript

files for the client side application) is to append the url with ‘/db/’ and then specify what field in the database

is required. Like the POST requests mentioned above, if the request is not formatted correctly, then the server

will send an error response to the client without passing the information to the Data Layer. If at any point the

server receives a request with the JSON type specified as ‘error,’ the server will save the error message to the

database, and then pass the error to the other party. Figure 79Figure shows the server’s protocol in a visual

format.

Figure 79 - Protocol Diagram for the Server

Next Steps
The server is one of the more flushed out modules of the stack, but it is still not without its issues. Currently,

the API does not need to process most of the data received from the user or the Data Layer. The only API

command that has its data altered is the pathing commands, and this is because the MOLE does not need to

know the cartesian coordinates nor the index and so they are trimmed from the JSON file. As the MOLE’s

65 | P a g e

complexity grows to incorporate more features to better suit it to its task the API and the server will have to

accommodate these changes with different options and actions. In addition to this, the API lacks a behavior

for receiving an error except to pass along the error and robot could occur it is difficult to properly define the

correct course of action in advance. One other feature that the server (and API in general) lacks is a ‘finished’

or ‘done’ type of command, and this feature will be important to have once the MOLE enters its testing phase.

Pathing
One of the core aspects of the problem that our software is designed to accomplish is to decide how to

move the MOLE throughout the underground space it is a part of. A particularly difficult aspect to this problem

is that the MOLE has two axes of rotation that it can act on at any time: pitch and yaw. However, the medium

of the space is different from traditional pathfinding problems. Typically, a robot is constrained to be able to

move along a plane like a normal object in above ground space, and in typical situations like this the robot

cannot move along by pitch without the ground changing beneath it. The MOLE is also characterized by its

difference from aeronautic pathfinding strategies because it lacks the capability of changing its bank/roll. This

limitation of having to move through a 3d space without ground as a reference plane, nor the full six degrees

of freedom that air crafts utilize. The MOLE also cannot turn in place and it has a hard limitation on any

rotation it makes. What this meant was that the pathing system had to focus on a method to avoid any obstacle

with these limitations on movement and be able to get to desired points that the client requires to complete

their task.

Since the space is not a simple 2D grid, we could not revert to previous graph or grid-based algorithms such

as A* or Dijkstra’s algorithm. Both of these algorithms assume that it is easy to determine the weights for the

grid squares or graph edges, but it is not easy to determine what movements are possible or not possible with

the MOLE and so that meant we had to focus on determining proper ways to move through the space with

our constraints. The space in which MOLE is operating is 3D and is not always going to be of consistent size,

so it was appropriate to not represent the world space as a 3D array. So, in order to address this problem, we

decided to instead represent the space through mathematical functions because while they were difficult to

implement, we never had issues with the representation of the world itself.

Implementation
The first implementation was the idea that we should subdivide a semi-circle by inner angles, and, while this

method was abandoned, the idea of using semi-circles as a path “unit” was kept. The issue with this method

was twofold. First, the internal angle division does not correspond to the MOLE’s actual turn angle, and

because of that we could not ensure that the semi-circle's path was possible. Second, because the angle was not

determined relative to the MOLE, we could not append a second path to the original. This is a design issue for

many reasons, but primarily because it prevents any capability of avoiding any obstacle and especially those that

have not been discovered on the path yet. However, the idea of creating semi-circles as path units did stay until

the final design.

The second implementation of the curve generation algorithm was closer to our current implementation,

but it was still riddled with some of the same issues that occurred in the previous implementation. They were

both developed around the same time, but we were unsure of the validity of either implementation, and so we

tested both and the results between these two methods were wildly inconsistent with each other. This second

implementation still had the same issues as before, because there was no clear way properly append new paths

to a generated one. Both implementations were also incredibly difficult to translate to the 3D space in which

we were working. However, the equation for this implementation was still valuable, and some of the later

equations we used were related to this one. So, the equations for the first and second implementation are shown

66 | P a g e

below. Note that “ϑ” refers to the maximum turning angle that the MOLE can accomplish, and “d” refers to

the maximum extension distance the robot can achieve.

Angle Subdivision Implementation

θ =
180

ϑ

𝑥 = 𝑟𝑐𝑜𝑠(𝜃)

𝑦 = √𝑟2 − 𝑥2

Figure 80 - Angle Subdivision where ϑ= 3.5

Incremental Angle Implementation

𝑎 =
90

ϑ

𝑥𝑛 = ∑ 𝑑𝑐𝑜𝑠(90 − 𝑛ϑ)

𝑛=𝑎

𝑛=0

+ 𝑥𝑛 − 1

𝑦𝑛 = ∑ 𝑑𝑠𝑖𝑛(90 − 𝑛ϑ)

𝑛=𝑎

𝑛=0

+ 𝑦𝑛 − 1

The third and final major implementation of the problem is the one we ended up using because, unlike the

other two implementations, the movement is localized to the line of sight of the robot itself. While the second

implementation does not require a known radius, unlike the first, dependent upon the angle relationships of a

circle. The third implementation is conceptually based around the robot’s line of sight, and because of that the

path is not limited to simple semi-circles and can be used to move through the world in very complex paths.

We continued with semi-circles for this initial phase of the project, but this is extendable to a multitude of

contexts.

67 | P a g e

First, at any time if we know our previous and current locations, we can determine our line of sight as a

vector that is found from the difference between these two points. With this vector we can rotate it to any

location using a series of yaw and pitch rotations. This rotation is accomplished by first extending the vector

by the distance of the movement we wish to perform, and then multiplying it by a rotation matrix in order to

find the next point. This vector then is appended to the previous vector. The 2D implementation of this is

shown below. d represents distance, v represents the line-of-sight vector (the intended direction without

changing the MOLE’s turning), x and y represent the new location coordinates.

𝑢 = ||𝑣||

[
𝑥′
𝑦′

] = [
𝑐𝑜𝑠(𝜃) − 𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] [

𝑢𝑥

𝑢𝑦
]

𝑥 = 𝑑𝑢𝑥 + 𝑥0

𝑦 = 𝑑𝑢𝑦 + 𝑦0

To determine a direction vector from yaw and pitch, we use the transformation below.

[
𝑥
𝑦
𝑧

] = [

𝑐𝑜𝑠(𝑦𝑎𝑤) ⋅ 𝑐𝑜𝑠(𝑝𝑖𝑡𝑐ℎ)

𝑠𝑖𝑛(𝑝𝑖𝑡𝑐ℎ)

𝑠𝑖𝑛(𝑦𝑎𝑤) ⋅ 𝑐𝑜𝑠(𝑝𝑖𝑡𝑐ℎ)
]

However, since the rotations are different for 3D, we took this concept and used the Euler angles of yaw

and pitch. This allows us to not have to start on the X-Y axis and branch out to other orientations, but there

are limitations to this method we will discuss soon. The conversion of the yaw and pitch to a unit vector is the

same way in which we update the front of the camera when we change the pitch or yaw [24].

Through this method, we rendered a view of five possible movements a path could take, where at each

point the robot could increase pitch, decrease pitch, increase yaw, decrease yaw, or simply head straight. The

renders of this method are shown in Figure 81 - Rendering of all paths with 10º turns and Figure 82.

Figure 81 - Rendering of all paths with 10º turns

68 | P a g e

Figure 82 - Rendering of all paths with 3.5º turns

While these renders are incredibly informative about the importance of the turning angle and why an

increase in the maximum turning angle would lead to a considerable improvement in the MOLE, the

computation for this calculation is extremely expensive due to it being a recursive function. Discounting matrix

multiplication in this process, the rendering of all possible paths is O(5n). If we do count the matrix

multiplication, then this render is O(80n) where n is the number of iterations.

One of the last major problems we solved was how to append paths to each other, and this is one of the

key features of the MOLE’s software if in the future the MOLE can correct its own path. The first step in

merging two curves is being able to detect the change in yaw and pitch from turn to turn, so that we can validate

if two curves are capable of merging. The equations used to determine these values are shown below.

𝑢1 = ||𝑣1||

𝑢2 = ||𝑣2||

𝑦𝑎𝑤 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑢𝑧, 𝑢𝑥)

𝑝𝑖𝑡𝑐ℎ = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑢𝑦)

𝛿𝑦𝑎𝑤 = 𝑢2𝑦𝑎𝑤
− 𝑢1𝑦𝑎𝑤

𝛿𝑝𝑖𝑡𝑐ℎ = 𝑢2𝑝𝑖𝑡𝑐ℎ
− 𝑢1𝑝𝑖𝑡𝑐ℎ

In addition to these equations to show the change in yaw and pitch, we also needed to be able to determine

whether any arc will collide with a known obstacle. Obstacles are represented as boxes in the world space to

simplify collision detection. The collision detection is implemented with Plücker coordinates which are a reliable

way to determine when a line segment will intersect with a plane, and since there are six planes that define a

cube we need to perform this calculation six times per segment [30]. First given three points, we need to both

determine the fourth point of the bounding square and the plane coordinates that represent that face of the

cube. The fourth point can just be determined by O = P – Q + R, where P, Q, and R are in counterclockwise

orientation. When a bounding box for an obstacle is drawn, it is represented as twelve triangles, which all follow

this counterclockwise orientation.

𝑆 = 𝑃 – 𝑄

69 | P a g e

𝑇 = 𝑅 – 𝑄

[𝑎, 𝑏, 𝑐] = 𝑆 𝑥 𝑇

𝑑 = −𝑎𝑥 − 𝑏𝑦 − 𝑐𝑧

In order to find d, you can simply plug in one of the three coordinates used to determine the other plane

coefficients. The Plücker coordinate representation of the plane is [N:n], where N represents a tuple containing

a, b, and c, while n is the coordinate d [30]. In order to represent line segment in Plücker coordinates, an

additional amount of vector math is necessary. A line in Plücker coordinates is defined by {U: V} where, U =

A – B, and V = A x B, where A and B are the points defining the line segment [30]. From these two coordinate

sets, the intersection between the line and the plane is determined by (V x N – nU: U•N) where this tuple is a

set of homogenous coordinates [30]. The Cartesian coordinates are then found by dividing the three coordinates

that define the first tuple of this representation by the coordinate that is the second tuple. This gives us a

coordinate [x,y,z] where the line intersects the plane. However, this does not check if the line intersects the

plane within the given triangle or square. In order to do that, we need to check if the intersection point is within

the range specified by the coordinates defining the cube. Finally, the intersection point can still be outside the

points defining the line segment. In order to test for this, let AC be the vector between the intersection point

and the furthest point, and AB be the vector defined by the furthest point and other defining point of the line

segment. The following conditions must be true if the point is in-between both ends of the line segment [31]:

 ‖𝐴𝐶 𝑥 𝐴𝐵‖ = 0

 𝐴𝐶 ⋅ 𝐴𝐵 > 0

 (𝐴𝑥 − 𝐵𝑥)2 + (𝐴𝑦 − 𝐵𝑦)
2

> 𝐴𝐶 ⋅ 𝐴𝐵

Any time a line intersects an obstacle, unless the obstacle is at the start or end of the line, it must have an

exit point. We test for collision over the entire series of line segments and note the two line segments that enter

and leave an obstacle. The line segments help us to define where on the line the obstacle lies. From this we use

the equation defined below to determine the distance of the endpoints of these two line segments.

𝑑 = √2𝑟2(1 − 𝑐𝑜𝑠 θ)

From this we find the distance that needs to be traveled by MOLE every time it extends in order to reach

the desired radius. The radius between these two points can be found by the distance between these two points,

and with the radius we can solve the equation for the distance. These provide us enough information to

construct a curve before we specify yaw and pitch. From this we can construct three curves, all three with the

same change in pitch, but the difference between the three curves is that the yaw values for the curves are the

zero, and the negative and positive max yaw values that the robot can turn on.

The way the path correction works for appending a dynamically created curve around an obstacle the mole

will collide with is that we check the change across the four points forming the connecting line between both

curves, and from here will be referred to as P0, P1, P2, and P3. P1 and P2 lie on the initial curve, and P3 and

P4 lie on the newly generated curve. In order for the curves to be able to merge, the lines bounded by P1, P2,

P3 and P2, P3, P4 must change their yaw and pitch within the turning range of the MOLE. It is clear that not

every two curves can be merged together at desired points, and so the way to deal with that is to iterate over

the initial curve and test sets of line segments until we either have no more points to test on the inner curve or

have found a proper place to merge the two curves. Figure 83 is a visualization of this testing method.

70 | P a g e

Figure 83 - Yaw and Pitch Testing

If there are no valid merge points on the inner curve, we test the next set of points along the initial curve,

slowly expanding our radius. Figure 84 shows the series of smaller curves that can be drawn from the initial

curve. This solution is a brute-force method as it checks every combination and will need to be improved upon

in the future.

71 | P a g e

Figure 84- Drawing Sub-curves

However, once two curves are deemed as valid to merge, we treat the fully merged line as a series of splines

and use a Centripetal Catmull-Rom Spline to smooth out any possible sharp turns that may remain within the

curve. A Catmull-Rom Spline is a form of a Cubic Hermite spline that was developed by the leading engineers

at Pixar for the specific purpose of developing a way of producing smooth curves [32]. Initially, we wanted to

use Bezier curves to merge series of points together, but Bezier curves’ slope is hard to control and can react

strongly to a change in a control point causing the slope to vary wildly.

The Centripetal Catmull-Rom Spline is formed by taking a series of four controls points that the curve must

pass through and interpolating across these using a knot formation. The equations defined for the interpolation

across P1 and P2, are defined as follows [33].

 𝑡0 = 0

𝐴1 =
𝑡1 − 1

𝑡1 − 𝑡0
𝑃0 +

𝑡 − 𝑡0

𝑡1 − 𝑡0
𝑃1

𝐴2 =
𝑡2 − 𝑡

𝑡2 − 𝑡1
𝑃1 +

𝑡 − 𝑡1

𝑡2 − 𝑡1
𝑃2

A3 =
t3 − t

t3 − t2
P2 +

t − t2

t3 − t2
P3

B1 =
t2 − t

t2 − t0
A1 +

t − t0

t2 − t0
A2

B2 =
t3 − t

t3 − t1
A2 +

t − t1

t3 − t1
A3

C =
t2 − t

t2 − t1
B1 +

t − t1

t2 − t1
B2

ti+1 = (√(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2)
α

+ ti

72 | P a g e

α =  0.5 for centripetal Catmull-Rom splines

α = 0 for chordal Catmull-Rom splines

α = 1 for uniform Catmull-Rom splines

Figure 85 - Knot formulation [32]

Figure 86 - Catmull-Rom Spline [33]

We use this spline across the entire series of points of the two fully merged curves to produce an

exceptionally smooth curve. For example, Figure 87 shows the result of the pathing correction algorithm from

the equations above and Figure 85 and Figure 86.

73 | P a g e

Figure 87- Result of Path Correction and Centripetal Catmull-Rom Spline

Next Steps
This design of navigation through the world is far from perfect and needs to be improved in several areas.

First, Euler angles will not continue to suffice for these operations as they tend to be inconsistent with

calculations and require many matrix operations to utilize effectively. Moreover, they are prone to Gimbal-lock

as discussed above [29]. Our recommendation is to switch to a Quaternion based rotation system to both

minimize the possible errors with Euler angles, and so that way the next team may implement as robust a form

of this navigation system as they desire.

Second, while the merging two curves algorithm works, it is a brute-force solution, and thus is not a

satisfactory solution to the unique issue presented by this robot. Instead, the next team should still utilize the

Catmull-Rom Spline, but for it to become more useful, there needs to be a way to meaningfully discern proper

control points for the path. This could even mean discarding the semi-circle idea altogether.

Third, a full control loop with dynamic path correction and generation still needs to be implemented, at the

current state most of the pieces are assembled. However, in order for the robot to be fully functional, the robot

needs to be able to both generate a path with a start and end point that navigates around any known obstacles

in a scene and not just one obstacle.

Finally, one of the most important aspects of the pathing system that was not developed was a proper way

to test or validate the functions and data we are generating. Since it was crucial for this iteration to demonstrate

74 | P a g e

a proof of concept and lay out a pathway to a solution to begin with, the validation and testing was not a feasible

avenue to pursue. Upon further iterations of the pathing system, comparisons with other known pathing

methods could be a fruitful examination.

Data Layer
A Python-based data translation and communication layer lies between the Node.js server and frontend,

and the software running on the embedded system on-board the MOLE. This component acts as a middleware,

freeing up resources on both the server and embedded system by handling message translation and ensuring

data completeness. The data layer communicates upstream with the Node.js server via a socket connection and

communicates downstream with the embedded system over a serial port connection.

Downstream Communications
The Python data layer communicates with the Node.js server over a socket connection. Both of these

components can build and parse JSON objects and send JSON strings over this socket connection to

communicate. When an operator sends a request containing controls instructions to the server via the controls

UI (described above), a JSON object which encodes the control fields is created and sent downstream to the

data layer. This JSON object contains seven fields, summarized in Figure 88.

Figure 88 - Controls JSON Message Format

These fields are received as a JSON string and parsed into a Python dictionary using the json.loads() function

from Python’s JSON library. A similar process takes place when the data layer receives a path message. These

messages have a simpler format, with only five fields, shown in Figure 89.

75 | P a g e

Figure 89 - Path JSON Message Format

After parsing these messages into Python dictionaries so they can be handled by the data layer itself, the

translation into an Arduino compatible format is performed. When specifying the format of the Arduino

message, the team wanted to ensure a format which was lightweight, extensible, and robust. Although the JSON

string format could be pushed directly to Arduino over the serial connection, that format makes liberal use of

whitespace, and is not as efficient as possible. The team specified a simple, yet robust format for communicating

with the Arduino: comma-delimited strings with the appropriate fields in the order they appear in the respective

JSON string, terminated by a ‘!’ character. These messages also encode the message type as a single character:

0 for controls, 1 for path, and 3 for error, to increase efficiency. The Arduino script running on the embedded

system reads these messages character-by-character and has the ability to quickly parse messages or handle

malformed messages. Once the message is transformed from a JSON string to an ‘Arduino string’ they are

passed over a serial connection in a call to Serial.write() from the pyserial Python library. After sending a

message downstream to the embedded system, the data layer waits for a response from it, which will contain

status information, or, in the event of an error, error diagnostic information. Figure 90 below shows the

information flow through the different modules.

Figure 90 - Main Module Communication Loop

Upstream Communications
After a message is sent downstream to the embedded system, the data layer waits for a response using

serial.readline(), again from the pyserial library. Messages sent up to the data layer from the embedded system

76 | P a g e

take a similar format to the messages sent from the data layer down to the embedded system. Again, status

messages are encoded as comma-delimited strings.

After processing a manual control type message, the embedded system will compile all available sensor data

into a comma-delimited string, with a type of ‘status’ prepended. This message is then sent over the serial

connection to the data layer.

Upon receiving a ‘status’ type message from the embedded system, the data layer checks the message for

completeness, ensuring that the correct number of values (14) are present, as these strings contain only data

values and a type field, no other field indicators or headers. If the message passes the correctness check, it is

parsed into a Python dictionary with 14 fields, which hold various sensor readings from the MOLE.

Figure 91 - Status JSON Message Format

The resulting Python dictionary is compiled into a JSON string using json.dumps(), which is then sent to

the Node.js server via the socket connection. The full format of this JSON object is shown in Figure 91 above.

When the data layer processes and sends a ‘path’ type message to the embedded system, it performs a similar

process, but expects a different message format. Upon receiving a ‘pathStatus’ type message from the embedded

system, the message parsed and the number of values (3) is checked. If the correctness check is passed, the

‘pathStatus’ message is parsed into a Python dictionary with four fields, summarized in Figure 92.

77 | P a g e

Figure 92 - pathStatus JSON message format

The type field indicates to the server what this message contains, while the other fields indicate how far off

the ideal path the MOLE has deviated. The resulting Python dictionary is compiled into a JSON string and sent

upstream to the Node.js server over a socket connection.

Error Handling
If, at any time during the data layer’s main communication loop, a message fails to send, or an incorrect

message is received, the system will transition into an error handling mode. In the event of a failed

communication with the embedded system, the data layer will attempt to re-establish connection and send an

emergency stop message, which triggers a routine shutting down all motors and pumps. Additionally, when an

error of this type occurs, an ‘error’ type JSON message, with the format shown in Figure 93 is sent upstream

to the Node.js server.

Figure 93 - Error JSON message format

The type field indicates to the server that an error has occurred, and the message is printed to the user,

indicating that there was an error communicating with the embedded system, and that the system is now in an

error state.

Next Steps
As the MOLE functionality changes to add more abilities or sensors, the data layer will need to be updated

to match newly defined message formats. This may take the form of entirely new message ‘types,’ such as the

result of an on-board sensor mapping out the area around the MOLE. These changes could also take the form

of adding new fields to the existing ‘status’ or ‘pathStatus’ messages, if a new sensor is added, or the precision

of one is improved such that a floating point number is no longer precise enough.

The system’s error handline is barebones, and simply stops the robot’s operations and alerts the user when

an error state is detected. More graceful error handling and recovery is an area the system could expand on.

Replacing the simple error message format, which currently only contains a string to describe the error, with a

more comprehensively defined system of error states or status codes could improve the system’s ability to

recover from errors. For example, if the system detected an error with the serial connection to the embedded

78 | P a g e

system, that error code could be processed by the server to advise the operator of a disconnect, while the data

layer runs a routine which attempts to re-establish the connection.

Finally, the data layer is written for and runs on Python 2.7. During the MOLE project lifecycle, Python 2.7

reached end-of-life. The data layer will need to be updated for compatibility with Python 3.7 or later versions.

Additionally, Python 3.7 versions of included libraries will need to be utilized or alternatives will need to be

found or developed. The software will continue to run on Python 2.7, and Python 2.7 will continue to be

available for download from the Python Foundation, but the software must be updated to Python 3.7+ to

avoid potential security vulnerabilities in the no longer supported version of Python [22].

Embedded System
The final software component is an Arduino script running on the Teensy 3.6 platform. This module has

three main responsibilities. First, it must parse messages coming from the data layer over serial connection and

take action corresponding to the message contents. Second, it must interface with hardware components to

drive motors, run pumps. Finally, it must dead various sensors and adjust the system according to their values.

Communication
The Arduino script listens for messages over a serial connection with the Python data layer described above.

This serial connection operates at a 9600 bits/second, one of the suggested values when using the Teensy 3.6

platform. To prevent message parsing from slowing down system operations when there is no message to be

received, a call to Serial.available() is made to determine if there is a message waiting to be read.

Messages are parsed one character at a time, using Serial.read() to build up an Arduino/C++ String object,

rather than a C-style character array. After the value is read in its entirety, (determined by reaching the comma

delimiter or the ‘!’ end of message character) the String message fragment is converted to the appropriate data

type, using atof() to convert the Strings to an floating-point value that the string represents. Although the

inflation of the front and rear modules are represented as a binary inflated or deflated, converting all the message

fragments to floats keeps the processing in a more general form, and the storage of 2 extra floating point values

has no meaningful impact on the usage of system memory. After parsing the entire message, a function is called

which runs the routine to set various control setpoints. This functionality was initially developed as a series of

stub functions with only prints to the serial communication line or blinking LED as validation that the controls

were parsed correctly. As the system developed, and motor controllers and other components were acquired

and installed, the stub framework made for easier integration of communication code with hardware control

code.

Conclusions
This group succeeded in creating what could be called a prototype but should more accurately be called a

“full-stack proof of kinematic concept.” The background research and design process were a significant portion

of the project and the mechanical team proposed that materials and linkages of sufficient strength would not

be possible with the given budget. Because of this, the present assembly has three primary purposes: (1) it can

be used to validate that the motion is generated correctly, (2) it provides a full-stack foundation in which any

portion of the stack can be improved upon, and (3) the prioritization on modularity means that retrofit is an

easy task. The team accomplished the above three objectives, and successfully created a robot to serve as a

kinematic proof of concept.

79 | P a g e

The current platform does not function in soil, but there is no hypothetical reason that the platform the

current team has provided would be unable to be retrofitted to operate in soil. The specific form of retrofit will

depend on the nature of the next team to take over the project. A mechanical team could focus on any of the

individual systems or could focus on a single upgrade, such as creating a fully metal chassis or replacing the

electrically driven systems with hydraulics or off-the-shelf actuators. An electrical team, depending on their

specialty, could introduce a dynamic sub-surface sensor system for detecting obstacles and pinpointing the

system’s location underground. A computer science team could create a much more robust front end with full

integration of pathing, potentially with live path-generation around detected obstacles. Specific next steps can

be found in the Next Steps sections throughout the report. Regardless of the direction the project takes in the

future, the team looks forward to a viable technology for this completely unfilled niche and wishes the best of

luck to the next team to take on the mantle.

80 | P a g e

Bibliography
[1] M. . Doula and A. Sarris, Soil Environment. Germany: Bartens, 2016, pp. 213–286.

[2] T. Ma, P. Chen, and J. Zhao, “Overview on vertical and directional drilling technologies for the
exploration and exploitation of deep petroleum resources,” vol. 4, no. 2, pp. 365–395, Dec. 2016,
[Online]. Available: https://link.springer.com/article/10.1007/s40948-016-0038-y.

[3] J. Rostami and S.-H. Chang, “ScienceDirect,” no. 10, pp. 125–126, 2017, [Online]. Available:
http://lib.cqvip.com/qk/85265X/201710/72747566504849554948484955.html.

[4] M. Bostock, D3.js - Data Driven Documents, 2019. [Online], Available: https://d3js.org/.

[5] “Life cycle of a soil.” https://museum.isric.org/content/themestation/life-cycle-soil/landscapeb2.

[6] “Auger Boring - Frequently Asked Questions.” Earth Boring Company Limited.
http://66.226.137.91/faqs/auger-boring/

[7] D. Watson et al., “Raiders of the Lost Mud: the geology behind drilling incidents within the Balder
Formation around the Corona Ridge, West of Shetland ,” 2/7/19.

[8] J. C. Obi, “Geophysical Imaging of Karst Features in Missouri,” Doctoral Dissertations. Missouri
University of Science and Technology, 2016.

[9] “Quarrying and the Environment: Caves and Karst,” 2017.
http://www.bgs.ac.uk/mendips/caveskarst/karst_3.htm.

[10 B. Singh and R. K. Goel, Chapter 22 - Rock Drillability. Engineering Rock Mass Classification. Boston:
Butterworth-Heinemann, 2011, pp. 287–292.

[11] E. Cooley, F. Madison, D. Frame, and A. Wunderlin, “Mapping Bedrock: Using models to determine
bedrock depth across a large area,” University of Wisconsin, 2013. Accessed: 10/14/19. [Online].
Available:
http://www.uwdiscoveryfarms.org/UWDiscoveryFarms/media/sitecontent/PublicationFiles/mappi
ngbedrock/Using-models-to-determine-bedrock-depth-factsheet.pdf?ext=.pdf.

[12] T.-T. G. & C. KG, ““GRUNDOMAT,” 2019. https://www.tracto-technik.de (accessed Oct. 15, 2019).

[13] J. B. B. Ucgul Jacky M. A. Desbiolles, John M. Fielke, Mustafa, “Development and field evaluation of a
high-speed no–till seeding system,” no. 194, Jul. 2019, [Online]. Available:
https://www.researchgate.net/publication/33gure

94560_Development_and_field_evaluation_of_a_high-speed_no-till_seeding_system.

[14] I. T. Association, “The drillability assessment of rocks using the different brittleness values,” vol. 26, no.
2, pp. 406–414, Mar. 2011, [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0886779810001677.

[15] S. Gleason, “Slanted Oil Wells.” Popular Science. May 1934.

[16] S. N. Warren, R. R. Kallu, and C. K. Barnard, “Correlation of the Rock Mass Rating (RMR) System with
the Unified Soil Classification System (USCS): Introduction of the Weak Rock Mass Rating System
(W-RMR),” vol. 49, no. 11, pp. 4507–4518, Nov. 2016, [Online]. Available:
https://link.springer.com/article/10.1007/s00603-016-1090-1.

https://www.researchgate.net/publication/33gure

81 | P a g e

[17] S. Alam, E. N. Allouche, C. Bartlett, A. Sherpa, and B. Keil, “Experimental Evaluation of Soil-Pipe
Friction Coefficients for Coated Steel Pipes,” 2013, pp. 360–371, doi: 10.1061/9780784413012.034.

[18] J. R. Allen and N. P. Zembillas, “Power Engineering.” Penn Well, Sep. 2013, [Online]. Available:
http://www.tshtbe.ca/download/PowerEngSept2007.pdf.

[19] B. V. Sudnishnikov, A. D. Kostylev, and K. K. Tupitsyn, “Pneumatic boring tools in constructional
engineering and mining,” vol. 6, no. 2, pp. 165–168, Mar. 1970, [Online]. Available:
https://link.springer.com/article/10.1007%2FBF02502153?LI=true.

[20] C. J. Yang, W. D. Zhu, W. H. Zhang, X. H. Zhu, and G. X. Ren, “Determination of Pipe Pullback Loads
in Horizontal Directional Drilling Using an Advanced Computational Dynamic Model,” vol. 140, no.
8, Jul. 2014, [Online]. Available:
https://www.researchgate.net/publication/264041657_Article_Determination_of_Pipe_Pullback_L
oads_in_Horizontal_Directional_Drilling_Using_an_Advanced_Computational_Dynamic_Model.

[21] “ASTM D2487 Unified Soil Classification System - ANSI Blog,” 2018.
https://blog.ansi.org/2018/03/unified-soil-classification-astm-d2487-17/ (accessed Oct. 14, 2019).

[22] P. Foundation, Sunsetting Python 2, n.d., [Online]. Available: https://www.python.org/doc/sunset-python-
2/.

[23] Browserify.org, Browserify, n.d., [Online]. Available: http://browserify.org.

[24] J. de Vries, ‘LearnOpenGL - Camera’, 2014. [Online]. Available: https://learnopengl.com/Getting-
started/Camera

[25] S. Ser, ‘emersion/net-browserify,’ Github, 2016, [Online]. Available: https://github.com/emersion/net-
browserify

[26] OpenJS Foundation, ‘Node.js’, Node.js, n.d., [Online]. Available: https://nodejs.org/en/

[27] Typicode, ‘typicode/lowdb’, Github, 2019, [Online]. Available: https://github.com/typicode/lowdb

[28] Z. Mirco, ‘zemirco/json2csv’, Github, 2020, [Online]. Available: https://github.com/zeMirco/json2csv

[29] A. Popa, ‘What is meant by the term gimbal lock’, MadSci Network: Engineering, 1998, [Online]. Available:
http://www.madsci.org/posts/archives/aug98/896993617.Eg.r.html

[30] T. Jones, ‘Introduction to Plücker Coordinates’, flipcode, 2000. [Online]. Available:
https://www.flipcode.com/archives/Introduction_To_Plcker_Coordinates.shtml

[31] C. Ka, ‘How can you determine a point is between two other points on a line segment’, Stack Overflow,
2008. [Online]. Available: https://stackoverflow.com/questions/328107/how-can-you-determine-a-
point-is-between-two-other-points-on-a-line-segment

[32] E. Catmull and R. Rom, ‘A Class Of Local Interpolating Splines’, Computer Aided Geometric Design, pp.
317-326, 1974.

[33] P. Barry and R. Goldman, ‘A recursive evaluation algorithm for a class of Catmull-Rom splines’,
Proceedings of the 15th annual conference on Computer graphics and interactive techniques – SIGGRAPH 88, 1998.

[34] ‘Node.js v14.2.0 Documentation’, Net | Node.js v14.2.0 Documentation. [Online]. Available:
https://nodejs.org/api/net.html

[35] ‘Node.js v14.2.0 Documentation’, HTTP | Node.js v14.2.0 Documentation. [Online]. Available:
https://nodejs.org/api/http.html

https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
http://browserify.org/
https://learnopengl.com/Getting-started/Camera
https://learnopengl.com/Getting-started/Camera
https://github.com/emersion/net-browserify
https://github.com/emersion/net-browserify
https://nodejs.org/en/
https://github.com/typicode/lowdb
https://github.com/zeMirco/json2csv
http://www.madsci.org/posts/archives/aug98/896993617.Eg.r.html
https://www.flipcode.com/archives/Introduction_To_Plcker_Coordinates.shtml
https://stackoverflow.com/questions/328107/how-can-you-determine-a-point-is-between-two-other-points-on-a-line-segment
https://stackoverflow.com/questions/328107/how-can-you-determine-a-point-is-between-two-other-points-on-a-line-segment
https://nodejs.org/api/net.html
https://nodejs.org/api/http.html

82 | P a g e

[36] ‘Node.js v14.2.0 Documentation’, Events | Node.js v14.2.0 Documentation. [Online]. Available:
https://nodejs.org/api/events.html

[37] Metcalfe, J., Explore Seattle's Bertha Tunneling Machine In Awesome 360 Video. [online] CityLab.
2017. Available at: <https://www.citylab.com/life/2017/03/take-a-360-degree-dive-with-seattles-
massive-tunnel-borer/519447/>

[38] Szondy, David, Hard grind: The epic journey of the world's biggest tunnel boring machine [online] May
01, 2017 Available at: https://newatlas.com/bertha-boring-machine-seattle/48862/

[39] RMPS Solutions, Directional Drilling, 2018 , available at: https://rmpsolutions.com/directional-drilling/

[40] J.D.Hair&Associates,Inc., Consulting Engineers SITE INVESTIGATION REQUIREMENTS FOR
LARGE DIAMETER HDD PROJECTS, available at:
https://www.fws.gov/Midwest/endangered/permits/hcp/nisource/2013NOA/pdf/NiSourceHCPf
inalAppndxJ_HDD.pdf

[41] Mamedbekov, Oktay., Directional Drilling. Deflection Tools. Available at: http://drilling-
engineering.com/lec/4_Deflection_Tools_final.pdf

[42] IADC, Evolution of directional drilling since 1900, IADC Drilling Manual, 2015 available at:
https://www.iadc.org/wp-content/uploads/2015/08/preview-dd.pdf

[43] Kim, Jongheon, and Hyun Myung., “Development of a Novel Hybrid-Type Rotary Steerable System for
Directional Drilling.” IEEE Access, vol. 5, 2017, pp. 24678–24687.,
doi:10.1109/access.2017.2768389.

[44] Brandt, M., Johnson, K., Elphinston, A. and Ratnayaka, D., n.d. Twort's Water Supply. 7th ed. pp.659-
652.

[45] Hosecon.com. 2020. Hydraulic System Pressure Drop. [online] Available at:
<https://www.hosecon.com/PDF/Engineering/HydraulicPressureDrop.pdf> [Accessed 16 May
2020].

[46] Sparkfun.com. 2020. Teensy 3.6 (Headers) - DEV-14058 - Sparkfun Electronics. [online] Available at:
<https://www.sparkfun.com/products/14058> [Accessed 16 May 2020].

[47] clmotors.com, 2020. [Online]. Available:
https://www.cclmotors.com/public/assets/common/images/product/product/product-
81/spec.pdf?1589597594. [Accessed: 16- May- 2020].

[48] VEX Robotics. 2020. CIM Motor. [online] Available at: <https://www.vexrobotics.com/217-2000.html>

[Accessed 16 May 2020].

[49] Cclmotors.com, 2020. [Online]. Available:
https://www.cclmotors.com/public/assets/common/images/product/product/product-
81/spec.pdf?1589597594. [Accessed: 16- May- 2020].

[50] Sparkfun.com. 2020. Sparkfun Thermocouple Breakout - MAX31855K - SEN-13266 - Sparkfun Electronics.
[online] Available at: <https://www.sparkfun.com/products/13266> [Accessed 16 May 2020].

[51] Amazon.com. 2020. [online] Available at: <https://www.amazon.com/uxcell-Torque-Reduction-
Gearbox-
Eccentric/dp/B07CGJDDNP/ref=sr_1_17?dchild=1&keywords=eccentric+output+shaft+gear+m
otor&qid=1589668655&s=hi&sr=1-17> [Accessed 16 May 2020].

https://nodejs.org/api/events.html

83 | P a g e

[52] Amazon.com, 2020. [Online]. Available: https://www.amazon.com/DROK-Controller-Regulator-
Industrial-
Optocoupler/dp/B06XGD5SCB/ref=sr_1_1?dchild=1&keywords=drok+l298&qid=1589598198&
s=hi&sr=1-1. [Accessed: 16- May- 2020].

[53] Amazon.com. 2020. Uxcell 12V DC 200-250RPM Gear Motor High Torque Electric Micro Speed Reduction
Geared Motor Eccentric Output Shaft. [online] Available at: <https://www.amazon.com/uxcell-220RPM-
Electric-Reduction-Eccentric/dp/B01KTYONKO/ref=pd_di_sccai_1/146-6143624-
1298927?_encoding=UTF8&pd_rd_i=B01KTYONKO&pd_rd_r=f33b0d03-3cd4-4c4f-9bef-
c433c8504257&pd_rd_w=t4tNg&pd_rd_wg=wICVW&pf_rd_p=e532f109-986a-4c2d-85fc-
16555146f6b4&pf_rd_r=6QD2DSVF7Z3JJ0N5MDDV&psc=1&refRID=6QD2DSVF7Z3JJ0N5M
DDV> [Accessed 16 May 2020].

[54] Mouser Electronics. 2020. 534B1103JL Vishay / Spectrol | Mouser. [online] Available at:
<https://www.mouser.com/ProductDetail/Vishay-
Spectrol/534B1103JL?qs=sGAEpiMZZMtC25l1F4XBUwJCNzrDHISWvHH0ha%252BsgXDVjcK
LfUzSmA%3D%3D> [Accessed 16 May 2020].

[55] Amazon.com. 2020. DIMINUS DC 6V Mini Air Pump Motor, DIY And Replacement Accessories, Best For
Aquarium Tank Oxygen Circulate (4 Pack). [online] Available at:
<https://www.amazon.com/DIMINUS-Replacement-Accessories-Aquarium-
Circulate/dp/B06Y2CXZ67/ref=pd_sbs_60_2/146-6143624-
1298927?_encoding=UTF8&pd_rd_i=B06Y2CXZ67&pd_rd_r=cd16babd-bca8-443e-b8d7-
c16453e04753&pd_rd_w=XYP6Z&pd_rd_wg=cD1JB&pf_rd_p=12b8d3e2-e203-4b23-a8bc-
68a7d2806477&pf_rd_r=JWCRT5YJW2YGSJCKEZF0&psc=1&refRID=JWCRT5YJW2YGSJCK
EZF0> [Accessed 16 May 2020].

[56] Mouser Electronics. 2020. HSCDANN030PA2A3 Honeywell | Mouser. [online] Available at:
<https://www.mouser.com/ProductDetail/Honeywell/HSCDANN030PA2A3?qs=pcUO8jIlt0a2x
NetHRJOJw%3D%3D> [Accessed 16 May 2020].

[57] Sparkfun.com. 2020. Sparkfun 9Dof Sensor Stick - SEN-13944 - Sparkfun Electronics. [online] Available at:
<https://www.sparkfun.com/products/13944> [Accessed 16 May 2020].

[58] Lewis, P., 2020. Sparkfun/Sparkfun_LSM9DS1_Arduino_Library. [online] GitHub. Available at:
<https://github.com/sparkfun/SparkFun_LSM9DS1_Arduino_Library> [Accessed 16 May 2020].

[59] Holeproducts.com. 2020. Bent Sub - HDD50. [online] Available at:
<https://www.holeproducts.com/Bent-Sub-HDD50> [Accessed 16 May 2020].

[60] Bloch, H., 2009. Ingress Protection code explained. World Pumps, 2009(11), p.26.

[61] Hedmond, S., 2020. [VIDEO] Horizontal Directional Drilling Goes Off Course And Into Innocent SUV
— Construction Junkie. [online] Construction Junkie. Available at:
<https://www.constructionjunkie.com/blog/2017/8/10/video-horizontal-directional-drilling-goes-
off-course-and-into-innocent-suv> [Accessed 16 May 2020].

84 | P a g e

Appendix A – Videos
There are two videos attached below. The first is a three-minute presentation that was given about the

project. The second is a video of the prototype operating on a table, demonstrating all the working components.

This second video represents the full-stack accomplishments of the team. Both videos are embedded from the

web, so if they are not working it is either a problem connecting to the internet or they no longer exist.

https://www.youtube.com/embed/y0Y-DYHJnAs?feature=oembed
https://www.youtube.com/embed/eQmIZHA0gr0?feature=oembed

85 | P a g e

Appendix B – Software Architecture

86 | P a g e

87 | P a g e

88 | P a g e

Appendix C – Software Usage

Source Repository
All source code for the MOLE software is available online, hosted in a public GitHub repository. This

repository is located at: https://github.com/TweedChristian/MOLE, and can be cloned or forked.

Dependencies
The MOLE software relies on several 3rd party software libraries.

Frontend/JavaScript
The following Node packages are required to run the MOLE software. They can be installed by running

`npm install` in the project directory.

 Node.js

 LowDB

 JSONtoCSV

In addition, there are two other outside imports that don’t require installation, but do either require modern

browsers or a script tag in the HTML file.

 WebGL

 D3js

 Python

The following python packages are required to run the MOLE software. It can be installed by running `pip

install pyserial`

 Pyserial

Starting the Software
Two separate modules of the MOLE software must be started in sequence. First, run the Node server with

the command `node ./app/server/server.js` from the project root directory. Next, run the python data layer

with the command `python ./python/client.py <serialPort>` where <serialPort> is replaced by the name of

the serial port the Teensy 3.6 is connected to, or ‘test’ to run the software in testing mode. The user interface

can be accessed by navigating to localhost:3000 in any web browser. A shell script is included in the software

repo to automatically start the system on Unix-based systems, run `./start.sh <serialPort>` in the project root

directory.

https://github.com/TweedChristian/MOLE

89 | P a g e

Appendix D – Methodology Chart
Below is the entirety of the methodology chart. Because it is too large to be conveniently integrated in any

format, it has been replicated on several different pages. This page can be used as reference.

90 | P a g e

91 | P a g e

92 | P a g e

93 | P a g e

94 | P a g e

95 | P a g e

96 | P a g e

97 | P a g e

98 | P a g e

99 | P a g e

100 | P a g e

101 | P a g e

102 | P a g e

103 | P a g e

104 | P a g e

Appendix C – How to Use Software

105 | P a g e

Appendix D – Videos of Operations

