
Translating Alloy to SMT-LIB

by

Forrest C. Cinelli, Kyle D. McCormick

A Major Qualifying Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Computer Science and Mathematical Sciences

by

March 2018

APPROVED:

Daniel J. Dougherty

Abstract

Alloy is a tool for writing specifications and constructing instances of these specifica-

tions, based on relational logic. Satisfiability Modulo Theories (SMT) solvers embody

another popular approach to specification and instance-generation; most solvers imple-

ment a language based on the SMT-LIB standard. The Alloy language and the core of

SMT-LIB are each formally equivalent, over finite structures, to first-order mathematical

logic; however, they support quite different modeling idioms. To help bridge this gap we

have initiated a project to construct a translation from Alloy to SMT-LIB.

This document is a report on a the first stage of this work: a formal definition of

the translation, a proof-of-concept implementation, and some preliminary performance

measurements.

Acknowledgements

We would like to extend our sincerest gratitude to Professor Dougherty, whose men-

torship, patience, and expertise made this project possible. Professor Dougherty consis-

tently went out of his way to make sure that we were challenged and engaged by the

project work, and took personal interest in helping us grow as researchers. When a part of

the project proved more difficult than expected, Professor Dougherty was understanding

and helpful, but still firm as a teacher, giving us the time and resources we needed to solve

a problem rather than simply giving us the answer.

Furthermore, we would like to thank all the family, friends, and teachers who have

supported and encouraged us in our academic endeavors over the years. Kyle would also

like to specifically thank his high school teacher Mr. John Lecce, who kindled his interest

in computer science and pure mathematics.

i

Contents

1 Introduction and Motivation 1

1.1 Model Finding . 2

1.2 SMT and SMT-LIB . 4

1.3 Alloy . 5

2 Design Decisions 7

2.1 Design: Mathematical Concerns . 7

2.1.1 Relations as Boolean Valued Functions 7

2.1.2 Core Alloy . 7

2.1.3 The Intermediate Language . 8

2.1.4 The Universal Sort, and Sigs as Unary Predicates 9

2.2 Design: Software Engineering Concerns 10

3 Preliminaries 14

3.1 Supported Alloy . 15

3.1.1 Supported Subset of Alloy . 15

3.1.2 Unsupported Features . 17

3.2 Core Alloy . 23

3.3 The Intermediate Language . 26

3.3.1 Relationship to the Haskell Data Structure 29

ii

3.4 SMT-LIB . 29

4 The Translation 31

4.1 Supported Alloy to Core Alloy . 32

4.2 Core Alloy to Intermediate Language 52

4.3 Normalization of the Intermediate Language 60

4.4 Normalized Intermediate Language to SMT 63

5 Properties of the Intermediate Language 67

5.1 Definitions . 67

5.2 Proof of Strong Normalization . 69

5.3 Proof of Confluence . 76

6 Code Discussion 82

6.1 Tools and Methodology . 82

6.2 Takeaways and Lessons Learned . 84

7 Evaluation of the Translator 86

7.1 Feature Support . 86

7.2 Correctness Propositions . 87

7.2.1 Terminology . 87

7.2.2 Model Conversion . 89

7.2.3 Proof of Correctness: Outline . 90

7.3 Testing . 91

7.3.1 Method . 91

7.3.2 Data . 93

7.3.3 Discussion . 96

iii

8 Related Work 97

9 Conclusion and Future Work 99

9.1 Future Work . 99

9.2 Summary and Conclusion . 100

Appendices 104

A Notation 105

iv

Chapter 1

Introduction and Motivation

Alloy comprises a language for writing logical specifications and a tool for analyzing

those specifications. Constraints are expressed in the Alloy language using relational

algebra. The Alloy Analyzer is the tool that analyzes specifications written in the Alloy

language. It works by translating an Alloy language specification into propositional logic,

which it then passes to a SAT solver.

Satisfiability Modulo Theories (abbreviated SMT) problems are Boolean satisfiability

problems defined with respect to a fixed background theory. The SMT-LIB language is

the industry standard for capturing SMT problems, and many tools exist to solve SMT

problems specified in the SMT-LIB language.

Alloy and SMT-LIB each have their own tool ecosystem and community. By working

towards interoperability of the two languages, we hope to bridge this gap, encouraging

collaboration between their communities. For example, by making SMT solvers a viable

backend for Alloy, Alloy users may then be able to take advantage of tools that were only

previously available to SMT-LIB users.

Another difference between Alloy and SMT is that Alloy does its analysis relative

to a user-defined finite scope, which means that it cannot prove that no counterexam-

1

ple to a statement exists, or that a specification definitely has no instances at all. This

method “limits the analysis to models with explicit and concrete cardinality bounds on

the relations involved; hence it is appropriate only for proving the consistency of a model

or disproving that a given property, encoded as a formula, always holds for a model”

[MRTB17]. SMT solvers do not have these limitations, so it is natural to want to analyze

Alloy relational algebra using an SMT solver rather than a SAT solver.

SMT solvers also have access to more background theories, such as background the-

ories for real number arithmetic or collections like arrays or sets, so with further work the

capabilities of the Alloy language could be expanded even more.

Finally, SMT solvers like Z3 are highly optimized, achieving fast runtimes in a wide

variety of situations. It would interesting to explore whether using SMT solvers as a

backend to the Alloy language could lead to significant performance improvements over

the Alloy Analyzer. A translation such as the one developed here can help explore this

question.

1.1 Model Finding

For critical applications like billing systems, firmware, and security, it is useful to be able

to prove facts about the specification of an application and its behavior. While reasoning

generally about computer programs themselves is undecidable, human users can write a

formal theory that is an abstraction of a system, and attempt to prove or disprove asser-

tions about this abstraction. Given a first-order theory that expresses known properties

of some system, and a statement that a user hopes holds about the system, one can use

an automated deduction system to determine whether the given statement holds in the

presence of the given theory, i.e. whether the theory entails the statement.

An alternative approach is to explore the models of the given theory. Satisfiability is

2

capable of everything automated deduction is, since checking whether a theory entails a

statement is equivalent to checking that the conjunction of the theory and the negation

of the statement has no models. Formally, satisfiability is determining whether there

exist models of a theory. A formula is satisfiable if a model does exist, and unsatisfiable

otherwise [SLM+92].

Model finding, however, can be even more useful. Unlike satisfiability, which is de-

termining whether models of a theory exist, model finding is actually searching for and

reporting specific models. Finding and displaying specific models has several benefits.

Most obviously, if a user checks a property and that property fails unexpectedly, it can

be helpful to see example situations in which the property failed. But even beyond that,

model finding can be used to organically explore the possibilities left open by a theory.

For example, if a user has a theory that represents a building access policy, and wants to

know "who can enter the maintenance tunnels after 11pm?" they could search for models

of their access theory and the statement "a person enters the maintenance tunnels after

11pm." Such an exploration will often uncover situations the user expected, but may also

yield models of situations that the user wasn’t aware were possible, or even that the user

intended to be impossible. This kind of exploration of a formal specification of the be-

havior of a system is the core offering of model finding.

An important and direct application of satisfiability is logical consequence: to show

that a statement a entails another statement b, it suffices to show that the formula a∧

¬b is unsatisfiable, that is, in the presence of a, ¬b is never true, which means that a

entails b. This problem, like satisfiability itself, is undecidable [Tra50]. However, logical

consequence is semi-decidable, so satisfiability is co-semi-decidable.

In the next sections, we describe the parts of the field of model finding relevant to our

work.

3

1.2 SMT and SMT-LIB

The Boolean satisfiability problem, often referred to as the SAT problem, is determining

whether there is a model that satisfies a given Boolean formula, expressed in propositional

logic. For example, the SAT problem from a∨b is satisfiable, and one model witnessing

this is the one that sets a to true and b to false. Satisfiability Modulo Theories (a.k.a. SAT

Modulo Theories, abbreviated SMT) problems are SAT problems with respect to a fixed

background theory. For example, in the problem x < y for x and y integers, it’s likely

that one would rather have the meaning of < be fixed to always refer to the function that

orders integers, rather than letting it range over all possible meanings a SAT solver might

consider.

When an SMT problem has the background theory which makes no restrictions on

any objects, sometimes called the ‘theory of equality’ or the ‘theory of equality with

uninterpreted functions,’ the problem is simply SAT for first-order logic. In general, this

problem is undecidable. [BSST09]

SMT-LIB is a research initiative aimed at facilitating research into SMT. Their most

interesting product for our purposes here is the SMT-LIB 2.6 language which the SMT-

LIB organization writes the specification for. The SMT-LIB language maps directly to

first-order logic, unlike the relational semantics of Alloy. As in Alloy, the building blocks

of SMT-LIB theories are terms, but a term can be of any type, including Boolean type

[C+]. It will sometimes be useful to refer to a boolean-valued SMT-LIB term as a formula,

only for brevity. For a complete and rigorous description of Version 2.6 of the SMT-LIB

language, see [BFT17].

4

http://www.smt-lib.org

1.3 Alloy

Alloy is a language and a tool. The Alloy language expresses a logic based on rela-

tions and relational algebra, and it can model an inheritance hierarchy among its different

signatures, which are sets akin to SMT-LIB sorts. A specification written in the Alloy

language is often called a model in the Alloy community, but we will refer to one as a

“specification,” rather than as a model, to avoid confusion with the definition of “model”

used in the field of satisfiability and model finding, as described above. Furthermore, in

the Alloy community, the mathematical thing known as a “model” is called an instance.

The Alloy Analyzer is a tool for analyzing Alloy specifications. It translates an Al-

loy specification into a SAT problem, which is then solved by the Kodkod SAT solver

[Jac12a]. The Alloy Analyzer is a model finder: it searches for instances in which the

theory and a given statement are true. It can easily be used to find counterexamples to a

statement as well by simply negating the statement and then proceeding in the same way.

In order to ensure decidability, the Alloy Analyzer performs model finding over a

restricted scope, that is, it limits its search to models with fewer unique objects than a

given number. Alloy applies this restriction on a per-signature basis: each individual

signature has a maximum number of elements. The user can specify this scope for each

signature, and the Analyzer will use a default value for the number of members of any

signature whose size wasn’t restricted by the user [Jac12b]. This means that the analyzer

may reject as possibly inconsistent a specification which can have models, and may fail

to find a counterexample for a specification that has one.

The fundamental building blocks of an Alloy specification are terms. A term is either

a formula or an expression. A formula is a boolean-valued term, and an expression is a

non-boolean-valued term.

An Alloy specification is composed of a list of syntactic constructs, each of which is

5

one of the following:

• Sigs, which denote sets of elements.

• Relation declarations, which are, in the concrete syntax, bundled with sig decla-

rations.

• Facts, which are formulas. The Alloy Analyzer will only report instances which

satisfy the conjunction of all the facts in the Alloy specification it is analyzing.

• Assertions, which are formulas that can be referenced by commands.

• Functions, which are a list of variable declarations which are the function’s param-

eters, and a body which is any expression.

• Predicates, which are functions which have a formula as their body rather than an

expression.

• Commands. A command is either a run or a check. A command takes a formula,

a reference to a function, or a reference to an assertion or predicate.

A run command searches for an instance where the given formula or assertion

or predicate is true, while a check command searches for an instance which is a

counterexample to the given formula or assertion or predicate.

For a complete discussion of the grammar and syntax of the Alloy language, see

[Jac12b], appendix B of [Jac12a].

6

Chapter 2

Design Decisions

2.1 Design: Mathematical Concerns

Two languages were introduced as intermediaries in the translation from Alloy to SMT-

LIB. The first of these is called Core Alloy, and is a simplified version of Alloy with

the same semantic power. Its specifics are primarily software engineering concerns, and

are therefore discussed in later sections. The second of these is called the Intermediate

Language.

2.1.1 Relations as Boolean Valued Functions

Relations abound in Alloy, but they are not directly modeled by any SMT-LIB structure.

However, relations are logically equivalent to Boolean valued functions, so our translation

uses them to represent Alloy relations.

2.1.2 Core Alloy

The Alloy language has many groups of constructs that are similar to one another. For

example, the command check searches for a model that is a counterexample to a given

7

formula, and the command run searches for a model that satisfies the specification and

the given formula. But the command checkx is logically equivalent to run¬x, so rather

than individually translate both of these concepts, it is simpler to first express every in-

stance of one in terms of the other. Additionally, syntactic sugar in Alloy can be removed

before translation. For example, the inheritance hierarchy of Alloy sigs can be expressed

in a list of facts rather than a group of syntactic constructs around the sig declarations.

The purpose of defining a core was to simplify the translator, so we chose whether or

not to include different constructs in the core or not based on how parallel to SMT-LIB

(the target language) a feature of the Alloy language is. We could have simplified Core

Alloy much more: in Appendix C of Software Abstractions [Jac12a], Jackson defines

the Alloy kernel, which is the smallest possible subset of Alloy which can capture the

functionality of the whole language. Its grammar is only a few lines long. We chose

not to reduce Alloy this much because it was ultimately unnecessary: we would sacrifice

readability of the generated code without significantly simplifying our pipeline (simply

moving implementation complexity from the translator to the reduction to Core Alloy).

Striking a balance in how much to simplify Alloy during the translation to core was an

interesting challenge, and one we think we met well. The translator to core removes a lot

of complexity, but Core Alloy is still readable and expressive, and ultimately Core Alloy

is much more similar to SMT-Lib than Alloy is. In section 3.2 we describe in detail which

structures are included in the Alloy core and which are not.

2.1.3 The Intermediate Language

We decided early on that it would be better to divide the translation from Core Alloy to

SMT-LIB into two steps: first, we would translate Alloy into a higher order logic, and

then reduce the higher-order logic representation to SMT-LIB. This is helpful because

Alloy is (on the surface) second-order; that is, variables in Alloy may be relation-valued,

8

while variables in SMT-LIB, are strictly scalars. A single Alloy variable may be thought

of as a table, whose number of rows equals the cardinality of the relation, and whose

number of columns equals the arity of the relation. While these constructions are more

complex, the Alloy analyzer rejects constructions that are truly not first-order, and so

does our translation. Stepping into higher order logic during the translation affords us the

mechanical flexibility needed to represent the complex objects that are Alloy variables as

more elementary expressions that are easily expressed in SMT-LIB.

We chose to make the Intermediate Language as close to SMT-LIB as possible. In

fact, to define the Haskell data structures to represent the IL, we copied the SMT-LIB

data structures from the SMT2Lib library which we used later in the pipeline to represent

SMT-LIB, and modified them to be higher order. Ultimately, the Intermediate Language

simply became SMT-LIB with abstraction terms and tuple terms, so reduction from the

Intermediate Language to SMT-LIB is simply beta reducing every redex (a redex is an

application of an abstraction to some arguments) and breaking apart tuples. In this scheme

it is also easy to determine whether our translator’s output is first-order: to do so, simply

check that every abstraction term is contained within a redex.

Specifying the Intermediate Language further simplified the transformation that the

translator itself needed to do, which also simplified and streamlined the code of the trans-

lator, and ultimately allowed the entire pipeline to be more straightforward and simple.

2.1.4 The Universal Sort, and Sigs as Unary Predicates

The Alloy language has sigs, which are sets containing elements. Membership of scalars

in sigs can be tested easily, and functions and relations can have domain or range restricted

to certain sigs in their definition, for example fun f [a:S]: T, whose parameter a must

9

be from sig S and whose range must be contained in T1. The natural analogue of Alloy

sigs in SMT-LIB is sorts, which are used in very similar ways. However, SMT-LIB sorts

must be disjoint. While “top-level” Alloy sigs must all be disjoint, Alloy sigs can have

complex, arbitrary relationships between a given sig and all of its “children,” other sigs

defined with extra syntax reminiscent of inheritance patterns in object-oriented program-

ming languages like Java. Formally, top-level sig is simply a sig that does not extends

another sig and is not in another sig, and a child sig is one that does extends another

sig or is in another sig. For example, the Alloy code

sig S{}

sig A, B extends S{}

Has three sigs A, B, and S, and also states that A and B are (1) subsets of S, and (2)

disjoint from each other.

Because SMT-LIB sorts are always disjoint from each other, they cannot be used

to model inheritance relationships between Alloy sigs. SMT-LIB does, however, allow

unary predicates, which are functions that take one argument and return a Boolean. Math-

ematically, a sort is simply a set, and a unary predicate is a function that induces a set,

i.e. the set of all arguments it is true for. So broadly, there are two options: (1) model

top-level Alloy sigs as sorts, and model sub-sigs with unary predicates, or (2) have one

universal sort (which every scalar is a member of) and model all sigs from the input Al-

loy specification as unary predicates. We chose option (2) because the uniformity of that

approach made it simpler to implement, both mathematically and programmatically.

2.2 Design: Software Engineering Concerns

Pipeline Architecture
1In reality, the exact meaning of these type notations is a little more complex. See [Jac12a], especially

[Jac12b], for details

10

As we thought about the structure the code would have to take to solve the problem,

and the behavior we wanted it to have, organizing the translator into a pipeline became

the natural choice. The first step in translating any programming language into another is

lexing and parsing the text representing the input language. Additionally, as we thought

about the how the translation itself would work from a mathematical perspective, it be-

came clear that we wanted to express the meaning of Alloy specifications in higher order

logic, which we would later reduce to first order logic (which was possible since rela-

tional algebra, which Alloy is based on, is also first order), rather than move directly to

a first order representation. Finally, we also saw the value in specifying a simplified core

of Alloy, expressing complicated syntactic constructs in terms of other, simpler parts of

Alloy, and then translating this simplified specification. The result of this early thinking

was that we all but fell into the idea of a multi-stage pipeline: the translation was clearly

going to be a series of transformations, so a pipeline architecture was the most obvious

choice to proceed with.

One disadvantage of a pipeline architecture is that it introduced some redundancy

into the code. Every stage of the pipeline needs to traverse the entire tree representing

a specification, but may not actually need to modify most terms. The normalizer is the

most egregious example of this: it has to explore the entire tree, but except for abstraction

terms it leaves every other term untouched! However, we think that for this project, the

benefits of the pipeline architecture outweigh the drawbacks. The redundant code is not

very complex, so it is not a major source of errors, nor does it significantly impact the

execution time of the complete program. The separation of concerns, code simplification,

and debugging advantages provided by the pipeline architecture more than justify this

drawback.

The pipeline we implemented has six stages:

1. Lexing, in which input Alloy source code is split into tokens. The Haskell code for

11

this was generated by the Alex lexer generator.

2. Parsing, in which the tokens are parsed into an abstract syntax tree. The Haskell

code for this was generated by the Happy parser generator. No type- or arity-

checking is done in this stage, since Happy is not equipped to do them.

3. Translation to Core Alloy. Core Alloy is a smaller yet semantically equivalent

subset of Alloy. As it is generally easier to write and maintain two distinct, smaller

algorithms than it is to maintain one large one, we chose to section off Core Alloy

from the language as a whole. By reducing to a core source language, we minimize

the size and complexity of the code necessary to translate to the target language.

We believe this decision made the next pipeline stage, simpler, less redundant, and

easier to code robustly than it would have been otherwise.

In addition to reducing to the Core, this pipeline stage also differentiates between

Alloy formulas (boolean-valued terms) and expressions (non-boolean-valued terms)

and checks that arguments to operators have valid arities. This metadata is built in

to the Core Alloy AST data structure.

Core Alloy and the translation to it are described in depth later in this chapter.

4. Translation to the Intermediate Language. The Intermediate Language (IL) is a

higher-order, simply-typed, lambda-calculus that is an abstraction over both Alloy

and SMT, enabling us to bridge the gap between the two languages. It treats Alloy

expressions as abstractions that return Booleans. Furthermore, the only types in the

language are booleans, univ (the set of non-boolean scalars), tuples, and functions.

The details of the IL are described in greater detail later in this section, and some

mathematical properties of the IL are discussed in Section 4.

5. Normalization. All redexes (applications of abstractions to arguments) are beta-

12

reduced (the act of substituting in the arguments to an anonymous function for

its parameters). This is done using a tree traversal that should, for all valid input

Alloy specifications, leave no abstractions in the normalized IL. Normalization is

described in more detail later in this section.

6. Translation to SMT. Because the IL is already very similar to SMT, this is a simple

transformation that involves primarily lowering tuples into separate scalar values.

This stage is described in more detail later in this section.

Finally, after each stage of processing, the resulting SMT abstract syntax tree is for-

matted and printed to standard output.

13

Chapter 3

Preliminaries

In this chapter we will discuss four languages that roughly correspond to the stages of the

translation: Supported Alloy, Core Alloy, the Intermediate Language (the IL), and SMT-

LIB. Supported Alloy is a subset of the Alloy 4 language; we will show its grammar and

give notation to represent the components of a Supported Alloy specification. Core Alloy

is a transformed version of Supported Alloy that is desugared, requires fewer syntactic

constructs, and has fewer operations; it is designed to simplify Alloy in order to decrease

the complexity of the translation to IL. The IL is a simply-typed lambda calculus which

allows the translation to generate fragments which are higher-order. However, the trans-

lation of a formula is still guaranteed to be first-order, so any IL the translation generates

can be lowered into normal form. Once this is done, it can be translated into SMT-LIB,

the destination language.

Of these four languages, we will give precise definitions for Supported Alloy, Core

Alloy, and the IL. Once normalized, the IL is very similar to a subset of SMT-LIB, making

the transformation very straightforward. Hence, we omit a full mathematical definition of

SMT-LIB and simply refer the reader to [BFT17], the SMT-LIB language standard.

14

3.1 Supported Alloy

The translation described in this paper handles a subset of the Alloy language, which we

refer to as Supported Alloy. In this section we outline the features of Alloy our translator

does support and does not support. We will attempt to justify more interesting choices.

For a more detailed description of any of the parts of the Alloy language listed below, see

[Jac12b], the Alloy language reference. At the time of writing this reference is available

for free online.

3.1.1 Supported Subset of Alloy

We support the following operators and syntactic constructs of the Alloy Language:

• Defining functions and predicates.

• Functions and predicates with multiplicity and/or disjointness constraints in param-

eters. For example, the function declaration
〈
f [disj a, b: S]

〉
is supported.

• Defining sigs, including:

– Sigs that are abstract, or extends or are in other sigs.

– Sigs with multiplicity constraints such as one or some.

– Defining relations with simple multiplicity constraints (that is, multiplicity

constraints that are not embedded within Cartesian product expressions).

– Defining relations as disjoint, e.g.
〈
sig S{disj u, v : S}

〉
.

• Defining facts.

• Defining assertions.

• Running blocks, running predicates, checking blocks, and checking assertions.

15

• User-defined scopes on runs and checks.

• The special relations iden, none, and univ.

• Formula blocks, which we translate as the conjunction the translation of every for-

mula in the block.

• Quantification, i.e. expressions of the form
〈
{m x: e | f}

〉
, where m is a multi-

plicity keyword (no, lone, some, one, or all) x is a variable of type e, and f is

a formula. The translator understands that these expressions are formulas checking

that the members of the set
〈
{x: e | f}

〉
satisfy m.

• Set constructors, including declarations with thedisj keyword. These are of the

form
〈
{x : e | f}

〉
, where x is a variable of type e, and f is a formula. The

translator understands the meaning of these expressions as the set containing every

element of e for which f is true, which is different from quantification formulas.

• Multiplicity formulas, e.g.
〈
some x

〉
• Box join and dot join.

• let expressions and formulas.

• implies-else expressions and formulas.

• Product expressions without multiplicities, e.g.
〈
S -> T

〉
, but not

〈
S one -> T〉

and not
〈
S -> some T

〉
.

• Cardinality formulas of the form
〈
S <= n

〉
or
〈
S = n

〉
, where S is a sig and

n is a natural number.

16

• The operations union (denoted +), difference (denoted -), intersection (denoted

&), domain restriction (denoted <:), range restriction (denoted :>), and relational

override (denoted ++).

• The operators and, or, implies, and iff.

• The subset operator (denoted in) and equality operator (denoted =).

• Function and predicate application though box join, dot join, or some combination

of the two.

3.1.2 Unsupported Features

We chose to not translate certain features of Alloy for one of three reasons. Firstly,

we saw some features of Alloy as outside the core objective of this Major Qualifying

Project (MQP); we ignored issues like modules, imports, and enumerations, which are

more “quality-of-life” features than interesting mathematical concepts. Secondly, there

were some other features that, although mathematically interesting, we deemed beyond

the scope of this MQP given the time project’s time constraints. Finally, there are a few

features we were capable of doing and planned to support, but simply ran out of time to

do. We hope to revisit those features later, and below we describe what we would do to

implement each of them in our translator.

Outside the Objective of This MQP

• Modules, importing and exporting, and the private keyword. The primary goal

of this MQP was to investigate the mathematical relationship between Alloy and

SMT. We mention in Future Work that if this translator were to one day become a

robust, professionally-used tool, support for modules should be added.

17

• Qualified names (names of the form “namespace/x”), for similar reasons the pre-

vious item.

• Enumerations, because they do not add new mathematical meaning to the language.

Enumerations have a clear analogue in SMT-LIB, so implementing them in the

translator would be straightforward.

Out of Scope

• Quantification over sets (e.g.
〈
all a:set A | ...

〉
), which is not necessar-

ily first-order. Alloy only allows this in special situations which its Analyzer can

handle.

• Arithmetic, which is simply not a primary focus of Alloy.

• Transitive closure, which cannot be fully expressed in first order logic[EGTH15].

• Sequences. We simply decided that the sequence data type was outside the main

scope of comparing relational algebra to first order logic, so what we estimated

would be a large amount of work would be better spent focusing on the core of the

Alloy language. This is another feature which would be important for the translator

to be a fully fledged tool, rather than just an experiment as it is now.

• Arbitrary cardinality formulas. The translator currently supports cardinality formu-

las of the form
〈
a = b

〉
or
〈
a <= n

〉
, for a sig a and an integer n It would

be straightforward to extend this to include operators <, > and >=, and generalize

a to all expressions. However, cardinality formulas of the form
〈
a op # b

〉
,

for some comparator op and expressions a and b, would be more challenging. We

concluded that these formulas are not related to the core functionality of Alloy and

so could be omitted. The problem they pose is interesting, however, and could be

the subject of some enlightening future work.

18

Abandoned Because of Time Constraints

• Product expressions with multiplicities. These are expressions of the form
〈
a m

-> n b
〉
, where a and b are expressions and m and n are multiplicities. Note that

a and b can themselves be of the form
〈
a m -> n b

〉
, so a translation would have

to handle the case where these expressions are nested. Right now these expressions

are not in Core Alloy, and we believe that the best way to handle them would

be somehow extracting the multiplicity constraints during the translation to Core

Alloy.

• Defining predicates or functions using receiver notation. Handling this would sim-

ply be a matter of expressing the rules for Alloy receiver notation in the Haskell

code so that the translator can correctly infer when items should be implicitly joined

with the parent sig.

• The keyword this, which is closely related to receiver notation.

• Signature facts. The transformation from sig facts to top-level facts would be trivial

if the translator understood receiver notation.

• Gracefully handling multiple run or check commands. Solving this problem

would involve deciding what the behavior of the translator should be in addition

to actually implementing it. Supporting this feature would be vital in bringing the

translator from a research experiment to a robust tool.

One final restriction of Supported Alloy is that it must have exactly one command

(that is, exactly one paragraph in the form
〈
run ...

〉
or
〈
check ...

〉
).

The grammar of Supported Alloy is defined below. Note that some of the rule names

are underlined; this is explained in 3.1.2.

19

Definition 3.1.1 (Grammar of Supported Alloy).

spec ::= para*

para ::= sigDecl
∣∣ predDe f

∣∣ f unDe f
∣∣ assert

∣∣ f act
∣∣ cmd

sigDecl ::=
(

abstract? sigMult?
∣∣ sigMult? abstract?

)
sig names extClause? { decls }

abstract? ::=
[
abstract

]
sigMult? ::=

[
lone

∣∣ some ∣∣ one]
extClause? ::=

[
extends name

∣∣ in name
(
+ name

)
∗
]

predDe f ::= pred name[decls] block
∣∣ pred name(decls) block

f unDe f ::= fun name[decls] : expr { expr }
∣∣ fun name(decls) : expr { expr }

assert ::= assert name block

f act ::= fact name block

cmd ::=
[

name
]

cmdType
(

name
∣∣ block

)
scope?

cmdType ::= run
∣∣ check

scope? ::=
[
for wholeNum

∣∣ for wholeNum but typescopes
∣∣ for typescopes

]
typescopes ::= typescope

(
, typescope

)
∗

typescope ::=
[
exactly

]
wholeNum name

term ::=
(

expr
∣∣ f mla

)

f mla ::= block
∣∣ app

∣∣ multFmla
∣∣ quantFmla

∣∣ logFmla
∣∣ cmpFmla

∣∣ cardFmla
∣∣ letFmla

block ::= { f mla* }

exprMult ::= no
∣∣ lone ∣∣ one ∣∣ some

20

quantFmla ::= quant quantDecls block
∣∣ quant quantDecls | f mla

quant ::=
(
no

∣∣ lone ∣∣ one ∣∣ some)
logFmla ::= not f mla

∣∣ f mla binaryFmlaOp f mla
∣∣ iteFmla

binaryFmlaOp ::= &&
∣∣ and ∣∣ || ∣∣ or ∣∣ => ∣∣ implies ∣∣ <=> ∣∣ iff

iteFmla ::= f mla implies f mla else f mla
∣∣ f mla => f mla else f mla

cmpFmla ::= f mla
[

not
]
in f mla

∣∣ f mla
[

not
]
= f mla

cardFmla ::= # name <= natNum
∣∣ # name = natNum

letFmla ::= let letBindings block
∣∣ let letBindings | f mla

not ::= !
∣∣ not

expr ::= atom
∣∣ app

∣∣ setComp
∣∣ iteExpr

∣∣ ~ expr
∣∣ expr exprOp expr

atom ::= univ
∣∣ none ∣∣ iden ∣∣ name

setComp ::= { quantDecls block }
∣∣ { quantDecls | f mla }

iteFmla ::= f mla implies expr else expr
∣∣ f mla => expr else expr

exprOp ::= +
∣∣ - ∣∣ & ∣∣ . ∣∣ <: ∣∣ :> ∣∣ ++

app ::= expr . expr
∣∣ expr[expr

(
, expr

)
∗]

letBindings ::= letBinding
(
, letBinding

)
∗

letBinding ::= name = term

decls ::= decl
(
, decl

)
∗

decl ::=
[
disj

]
names :

[
relMult

]
expr

quantDecls ::= quantDecl
(
, quantDecl

)
∗

quantDecl ::=
[
disj

]
name

(
, name

)
∗ : expr

21

names ::= name
(
, name

)
∗

name ::=
(
A-Za-z

)(
A-Za-z0-9_’"

)
∗

natNum ::=
(
0-9

)(
0-9

)
∗

3.1.2 Notation (Elements of Supported Alloy). The names of some rules in the above

grammar are underlined. We highlight these rules because the syntactic expressions that

follow them form sets that we refer to throughout this document. We denote these sets

using cursive letters with the subscript “A” (for “Alloy”). The notation scheme is defined

in Table A.

3.1.3 Notation (Alloy Code Within This Report). We use the following conventions when

writing Alloy code within this report:

• When a line of Supported Alloy code is presented within prose or mathematical

expressions, it is enclosed in angle brackets. For example:
〈
run f for 2

〉
.

• When a block of Supported Alloy code is presented, it is indented. For example:

pred f[x: A] {

some x

x in B

}

• Optional code phrases are enclosed in large square brackets. For example,
〈
all

[
disj

]
x, y:Z {}

〉
indicates that disj is optional. These brackets are not to be

confused with literal brackets, [and].

• Keywords and operators are written in bold monospace text. For example: sig

, implies , + , <=>

22

• Literal symbols are written in plain monospace text. For example: x, _hello_.

• Lastly, variable terms (i.e., expressions, names, and symbols that depend on rules

within this report) are written in italicized “math” text. For example: u, CrRelCnstr(n).

3.2 Core Alloy

Core Alloy is a subset of Supported Alloy that is desugared, but also transformed in

several key ways that prepare for the translation from Core Alloy into the Intermediate

Language (IL). Core Alloy is still valid Alloy, and can be interpreted by the Alloy Ana-

lyzer.

The additional Alloy sig (sig) _univ is present in all Core Alloy files, and every

other sig’s entire declaration is of the form sig n in _univ, where n is the name of the

sig. All relation declarations are made in the _univ sig. In Core Alloy, the inheritance

hierarchy, as well as the types and properties of the declared relations, are modeled using

facts instead of Alloy’s special syntactic constructs.

Some complicated terms are not allowed in favor of simpler alternatives. For example,

let is not present in Core Alloy, box join is used only for function application, and dot

join is only used for joining between relations.

Finally, scopes (e.g., for 3 but 1 S, in the context of a run or check) are not

allowed on the command. Instead, a scope is enforced using facts that make equivalent

assertions about the cardinality of the relevant sigs. Additionally, there is an option (see

4.1.21) that, when enabled, makes it so the output Core Alloy explicitly enforces the

implicit cardinality bound of 3 on all top-level sigs.

The translation we specify in Chapter 4 from Core Alloy to the Intermediate Language

is defined for every valid Core Alloy file. This is in contrast to Alloy, which we do not

translate some parts of, e.g. transitive closure.

23

The grammar of Core Alloy is defined below. Note that some of the rule names are

underlined; this is explained in 3.2.2.

Definition 3.2.1 (Grammar of Core Alloy).

spec ::= vocab f unDe f∗ predDe f∗ f act* cmd

vocab ::= univSigDecl subSigDecls

univSigDecl ::= sig _univ { decls }

subSigDecls ::= sig name
(
, name

)
∗ } in _univ

predDe f ::= pred name[decls] block

f unDe f ::= fun name[decls] : _univ { expr }

f act ::= fact block

cmd ::= cmdType
(

name
∣∣ block

)
for z _univ

cmdType ::= run
∣∣ check

f mla ::= block
∣∣ app

∣∣ multFmla
∣∣ quantFmla

∣∣ logFmla
∣∣ cmpFmla

∣∣ cardFmla

block ::= { f mla* }

exprMult ::= no
∣∣ lone ∣∣ one ∣∣ some

quantFmla ::= quant decls block

quant ::=
(
no

∣∣ lone ∣∣ one ∣∣ some)
logFmla ::= not f mla

∣∣ f mla binaryFmlaOp f mla
∣∣ iteFmla

binaryFmlaOp ::= &&
∣∣ || ∣∣ => ∣∣ <=>

iteFmla ::= f mla => f mla else f mla

cmpFmla ::= f mla in f mla
∣∣ f mla = f mla

cardFmla ::= # name <= natNum
∣∣ # name = natNum

24

expr ::= atom
∣∣ app

∣∣ setComp
∣∣ iteExpr

∣∣ ~ expr
∣∣ expr exprOp expr

atom ::= univ
∣∣ none ∣∣ iden ∣∣ name

setComp ::= { decls block }

iteFmla ::= f mla implies expr else expr

exprOp ::= +
∣∣ - ∣∣ & ∣∣ . ∣∣ <: ∣∣ :> ∣∣ ++

app ::= expr[expr
(
, expr

)
∗]

decls ::= decl
(
, decl

)
∗

decl ::= name : _univ

name ::=
(
A-Za-z

)(
A-Za-z0-9_’"

)
∗

natNum ::=
(
0-9

)(
0-9

)
∗

3.2.2 Notation (Elements of Core Alloy). The names of some rules in the above grammar

are underlined. We highlight these rules because the syntactic expressions that follow

them form sets that we refer to throughout this document. We denote these sets using

cursive letters with the subscript “C” (for “Core”). The notation scheme is defined in

Table A.

3.2.3 Notation (Core Alloy Code Within This Report). Core Alloy code within this report

is written using the same notation described in 3.1.3.

3.2.4 Notation (Products of _univ).

_univn =
〈
_univ -> _univ -> _univ -> ...

〉
for n repetitions of “_univ”.

25

3.3 The Intermediate Language

The Intermediate Language (IL) is a higher-order, simply-typed lambda-calculus that is

an abstraction over both Alloy and SMT, enabling us to bridge the gap between the two

languages.

An Alloy programmer may think of Alloy expressions as sets of values, where each

set contains values of the same arbitrary arity. For the purposes of this translation, though,

we think of Alloy expressions as relations, where some relation e contains the mapping

a1→ a2→ ··· → aN if and only if a1 -> a2 -> ...-> aN in e. The Intermediate

Language stores relations as single-argument predicates, (i.e., Boolean-valued functions),

where the argument is a tuple with the same arity as the relation.

The IL has one sort, univ, because we use unary predicates to represent Alloy sigs,

which itself is because SMT-LIB sorts are disjoint, while Alloy sorts can have complex

inheritance patterns. See section 2.1 for a thorough discussion of why we represent Alloy

sigs as unary predicates.

As an example illustrating the above descriptions, given an Alloy expression e with

the type A -> B -> C, the type of TrExpr(e) is U →U →U → B.

Definition 3.3.1 (IL Theories). An IL theory is an ordered pair < v,A > where:

• v is the signature of the theory.
• A is a set of Boolean-typed terms that make up the axioms of the theory.

Definition 3.3.2 (IL Signatures). An IL signature (not to be confused with an Alloy or

Core Alloy sig, which has a completely different meaning), is a set of constant function

declarations, each of which is denoted by n : T →V for some name n, 0-order IL type T ,

and atomic IL type V .

The IL is a simply typed lambda calculus with the following types:

26

Definition 3.3.3 (IL Types).

1. Atomic Types: There are two atomic types, U and B.

2. Tuple Type: A tuple type is the Cartesian product T1× T2× ·· · × Tk, for k ≥ 0,

denoted < T1, . . . ,Tk >.

3. Function Type: A function type is a parameter type T and a return type V , written

T →V .

3.3.4 Notation (Tuple Shorthand: T n). For convenience, we define T n to be the tuple type

< T , T , . . . , T > for n repetitions of T , where T is a type and n > 0.

Definition 3.3.5 (Order of Types).

1. A type T has order 0 if it is either a base type or is of the form (T1×·· ·×Tn), n > 1,

with each Ti of order 0.

2. A type T has order 1 if it is (T1→ ··· → Tn), n > 1, with each Ti of order 0.

We say that a term has order 0 (or 1) if its type has order 0 (or 1).

An IL term can be:

Definition 3.3.6 (IL Terms). An IL term takes one of the following forms:

1. Constant: A constant term is an ordered pair < n, t > of a name n and a type t.

Declared functions are constants.

2. Variable: A variable term is an ordered pair < n, t > of a name n and a type t.

3. Tuple: Given terms t1, . . . , tk (k≥ 0) whose types are T1, . . . ,Tk, the term < t1, . . . , tk >

is a tuple of type < T1, . . . ,Tk >. The terms of a tuple do not need to be of the same

type.

27

4. Abstraction: Given a variable x whose type is T , and a term v whose type is V ,

λx.v is a function of type T →V .

5. Application: Given a term t of type S→ V and a term s of type S, ts is a term of

type V .

6. Projection: Given a term < t1, . . . , tk > of type < T1, . . . ,Tk >, and an integer i, πit

is a term of type Ti.

7. Forall: Given a term b of Boolean type and a variable x which is free in b, ∀x.b is

a term of Boolean type.

8. Exists: Given a term b of Boolean type and a variable x which is free in b, ∃x.b is

a term of Boolean type.

While discussing the Intermediate Language we will use the following notation:

3.3.7 Notation (Substitution). Use t[x := s] to denote the usual capture-avoiding substi-

tution of s for x in t.

Note that t[y := r][x := s] = (t[x := s])[y := r]

The terms of the Intermediate Language are subject to the following two axioms:

Definition 3.3.8 (Axioms).

1. πi < t1, . . . , tn >= ti, where t is a tuple whose ith element is ti
2. (λx.v)u = v[x := u]

Definition 3.3.9 (Reduction).

1. πi < t1, . . . , tn >→ ti, where t is a tuple whose ith element is ti
2. (λx.v)u→ v[x := u]

Definition 3.3.10. t � s if there is a sequence {ti}n
1 such that t → t1 → ··· → tn → s,

where n≥ 0.

28

3.3.1 Relationship to the Haskell Data Structure

The IL is motivated by the desire to represent higher order constructions, specifically

abstraction, in a format reminiscent of SMT-LIB. The translator produces IL which, when

normalized, contains no abstractions or higher order constructions, and so can be reduced

into SMT-LIB.

In the Haskell data structure representing the IL, there are three operations related

to tuples: tuple, which creates a tuple, concat, which takes two tuples and combines

them into one (flat) tuple, and slice, which takes two numbers i and j and a tuple, and

returns a tuple which is the elements of the given tuple whose index is between i and

j, inclusive. This is fine programmatically, but it is a relatively non-standard way to

represent a lambda calculus mathematically, so we chose to instead use the more standard

tuple (< t1, . . . , tn >) and projection (πit) constructors.

Similarly, in the Haskell data structure representing the IL, there is a single type of

term ref which can model both constants and variables. This was useful programmati-

cally, but it was more convenient mathematically to represent variables and constants with

two separate kinds of terms.

3.4 SMT-LIB

SMT-LIB is a many-sorted logical specification language closely based in first-order

logic. The building blocks of an SMT-LIB specification are terms, which are logical

statements. Basic boolean operations like and and or, and quantification (forall and

exists) are examples of terms.

There are three top level syntactic constructs that contribute to the specification of an

SMT-LIB theory1: sort declarations, function definitions and declarations, and assertions.

1Most implementations of SMT-LIB have a few additional constructs that can control an SMT solver’s

29

Sort declarations declare sorts, which are sets. All sorts are disjoint, and SMT-LIB terms

can reference sorts. SMT-LIB supports declaration of functions (specifying only their

types) and definition of functions, where the user provides a specific value for the func-

tion. Finally, an assertion simply wraps a boolean-valued term, and commands the SMT

solver to only search for models where the term’s value is True.

For a mathematically precise definition of SMT-LIB and the SMT-LIB grammar, see

[BFT17], the SMT-LIB language standard.

behavior. For example, the Z3 analyzer accepts the command (check-sat, which causes it to print either
“sat” or “unsat” depending on the given specification

30

Chapter 4

The Translation

Recall that the translation is conducted in six steps:

• Lexing, in which the text of the given Alloy specification is tokenized.

• Parsing, in which the tokenized Alloy is parsed into an abstract syntax tree.

• Translation to Core, in which the Alloy abstract syntax tree is desugared and sim-

plified into a Core Alloy syntax tree.

• Translation to IL, in which the Core Alloy syntax tree is lifted into higher order

logic and represented in our Intermediate Language (IL).

• Normalization, in which the IL terms from the translation to IL are beta reduced.

For input specifications generated by the translation to IL, the resulting specifica-

tions never contain abstraction terms.

• Translation to SMT-LIB, in which the IL terms are expressed in SMT-LIB. Math-

ematically, this step is simple, but programmatically it involves converting tuples

and variables of tuple type into lists, and converts from IL data structures to SMT-

LIB data structures.

31

In this chapter, we give a detailed description of the translation to core, translation to IL,

and a brief description of normalization and translation to SMT-LIB.

4.1 Supported Alloy to Core Alloy

The name of Core Alloy implies that the translation to it should simply desugar Alloy.

The translation to core does desugar the given Alloy, but it also transforms the Alloy

in other ways to prepare for the next step, translation into the Intermediate Language.

The translation to core removes many complex syntactic constructs like relation types

and the inheritance hierarchy between Alloy sigs, and expresses these with facts instead.

By simplifying the syntax and structure of the Alloy specification, the translation to core

allows the translation to the Intermediate Language to be simpler and more focused.

4.1.1 Notation (Translation Functions). In this section, we describe the translation to

Core Alloy using a number of mutually-recursive functions:

• CrSpec: Translate from an Alloy specification to a Core Alloy specification.
• CrVoc: Translate from an Alloy vocabulary to a Core Alloy vocabulary.
• CrSigInhCnstr: Extract a Core Alloy constraint that replicates the properties of

the inheritance hierarchy described by an Alloy sig extension clause.
• SigChildren, SigParents, SigDis jSiblings: Get the children of, parents of, and

siblings that are disjoint from the given sig (respectively).
• CrDecl: Translate from an Alloy declaration to a Core Alloy declaration.
• CrRelCnstr: Extract Core Alloy constraints enforcing the type, multiplicity, and

(if applicable) disjointness of relations declared in Alloy.
• CrParamCnstr: Extract Core Alloy constraints enforcing the type, multiplicity,

and (if applicable) disjointness of predicate parameters declared in Alloy.
• CrDeclDis jCnstr: If applicable, extract a Core Alloy constraint enforcing dis-

jointness between elements declared in Alloy. Otherwise, return a tautology.

32

• CrPred: Translate from an Alloy predicate definition to a Core Alloy predicate

definition.
• CrFunc: Translate from an Alloy function definition to a Core Alloy function

definition.
• CrAssert: Translate from an Alloy assertion to a Core Alloy predicate definition.
• CrFact: Translate from an Alloy fact to a Core Alloy fact.
• CrCmd: Translate from an Alloy command to a Core Alloy command.
• CrPredRun: Translate from a directly-run Alloy predicate to a directly-run Core

Alloy predicate.
• CrScope: Translate from an Alloy scope to a Core Alloy formula block replicat-

ing the constraints imposed by that scope.
• CrT Scope: Translate from an Alloy type-scope to a Core Alloy formula block

replicating the constraints imposed by that type-scope.
• CrFmla: Translate from an Alloy formula to a Core Alloy formula.
• CrQFmla: Translate from an Alloy quantifier formula to a Core Alloy quantifier

formula.
• CrExpr: Translate from an Alloy expression to a Core Alloy expression.
• CrSetCompr: Translate from an Alloy set comprehension to a Core Alloy set

comprehension.
• CrJoin: Translate from an Alloy dot- or box- join to a Core Alloy dot- or box-

join.

Definition 4.1.2 (Translation of Specifications: CrSpec). Let t be a Supported Alloy

specification consisting of v, P, U , R, F , and c, where:

• v ∈ VA is the vocabulary of t, i.e. the set of sig and relation declarations in t.
• P⊆ PA is the set of predicate definitions in t.
• U ⊆ UA is the set of function definitions in t.
• R⊆ RA is the set of assertions in t.
• F ⊆BA is the set of blocks that make up the facts of t.
• c ∈ CA is the command1 in t.

1Although Alloy specifications may have more than one command, Supported Alloy only includes spec-
ifications with a single command.

33

Then, the translation CrSpec(t) of t contains v′, P′, U ′, F ′, and c, where:

• v′ =CrVoc(v) is the translated vocabulary.
• P′ = {CrPred(p) | p ∈ P} is the set of translated predicate definitions.
• U ′ = {CrFunc(u) | u ∈U} is the set of translated function definitions.
• F ′ = {CrFmla(f) | f ∈ F} is the set of translated fact blocks.
• c′ =CrCmd(c) is the translated command, which includes exactly one Core Al-

loy command, and zero or one Core Alloy predicate definitions.

Definition 4.1.3 (Translation of Vocabularies: CrVoc). Let v =[
abstract

]
m1 sig n1,1 . . . n1,k1 x1 { d1,1 . . . d1,`1 }

. . .[
abstract

]
m j sig n j,1 . . . n j,k j xn { d j,1 . . . d j,` j }

be an Alloy vocabulary2, where, for all i > 0:

• mi ∈ {lone,one,some} is a “sig multiplicity”.
• ni,1 , . . . , ni,ki are “sig names”.
• xi is a sig extension clause.
• di,1 , . . . , di,`i are “relation declarations”.

The translation CrVoc(v) of v is given by:

// Universal sig with all relations

sig _univ {

CrDecl(d1,1) , . . . , CrDecl(d1,`1) ,

. . . ,

CrDecl(d j,1) , . . . , CrDecl(d j,` j)

}

// Sub-sigs, all in universal sig

sig n1,1 , . . . , n1,k1

2Note that for all i, it is also syntactically valid for abstract to appear directly after mi, which has
the same effect as it appearing before mi.

34

. . . ,

n j,1 , . . . , n j,k j in _univ {}

// Fact replicating sig multiplicities

fact {

(m1 n1,1) && . . . && (m1 n1,k1)

. . .

(m j n j,1) && . . . && (m j n j,k j)

}

// Fact replicating inheritance relationships

fact {

CrSigInhCnstr(n1,1) && . . . && CrSigInhCnstr(n1,k1)

. . .

CrSigInhCnstr(n j,1) && . . . && CrSigInhCnstr(n j,k j)

}

// Fact replicating declaration types and multiplicities

fact {

CrRelCnstr(n1,d1,1) && . . . && CrRelCnstr(n1,d1,`1)

. . .

CrRelCnstr(n j,d j,1) && . . . && CrRelCnstr(n j,d j,` j)

}

4.1.4 Example (Translation of a Vocabulary). Let v =

some sig A { }

sig B { r: A -> A }

The translation CrVoc(v) of v is then:

// Universal sig with all relations

35

sig _univ { r: _univ -> _univ }

// Sub-sigs, all in universal sig

sig A, B in _univ {}

// Fact replicating sig multiplicities

fact { some A }

// Fact replicating inheritance relationships

fact { no (A & B) }

// Fact replicating declaration types and multiplicities

fact { r in (B -> A -> A) }

Definition 4.1.5 (Extracting Signature Inheritance Constraints: CrSigInhCnstr). Let n ∈

N be a given sig name. We define the inheritance constraint CrSigInhCnstr(n) of the sig

whose name is n as
〈

fp && fd && fa
〉
, where:

• fp =
〈
(n in (p1 + . . . + pk))

〉
constrains the sig to be a subset of its parents,

where {p1 , . . . , pk}= SigParents(n)

• fd =
〈
no ((n & b1) + . . . + (n & b j))

〉
constrains the sig to be disjoint with its

siblings, where {b1 , . . . , b j}= SigDis jSiblings(n). However, if SigDis jSiblings(n)

is an empty set 3, then fd =
〈
{}
〉
.

• fa constrains an abstract sig to be a subset of its children, and is defined as:

fa =



〈
no n

〉
if k = 0〈

n in (c1 + . . . + ck)
〉

if n is declared with abstract〈
{}
〉

otherwise

3SigDis jSiblings(n) is an empty set when n is in its parents or n has no siblings.

36

where {c1 , . . . , ck}= SigChildren(n).

4.1.6 Example (Extracting a Signature Inheritance Constraint). Consider the following

sig declarations.

abstract sig A {}

sig B, C in A {}

Then, CrSigInhCnstr(A) =
〈
(A in _univ) && ({}) && (A in (B + C))

〉
.

And, CrSigInhCnstr(B) =
〈
(B in _univ) && (no (B & C)) && ({})

〉
.

Definition 4.1.7 (Signature Inheritance Inspection: SigParents, SigChildren, SigDis jSiblings).

Consider a Supported Alloy specification with a set of sig declarations S, whose names

form the set N. Let s ∈ S be a sig declaration with the name n ∈ N and extension clause x.

We define the following functions for n, which provide information about the relationship

of s with other sig declarations in the inheritance hierarchy.

• SigParents(n) gives the names of the parents of s, and is defined as:

SigParents(n) =


{_univ} if x =

〈〉
{p} if x =

〈
extends p

〉
{p1, . . . , pk} if x =

〈
in p1 + . . . + pk

〉
• SigChildren(n) gives the names of the children of s, and is defined as:

SigChildren(n) = {c ∈ N | c extends or is in n}

• SigDis jSiblings(n) gives the only the siblings of s with which it must be disjoint,

37

and is defined as:

SigDis jSiblings(n)=


{} if x =

〈
in . . .

〉
{b ∈ N | (SigParents(n)∩SigParents(b)) 6= {}} otherwise

Definition 4.1.8 (Translation of Declarations: CrDecl). Let d =[
disj

]
n1 . . . nh :

[
m
]

e

be an Alloy declaration, where:

• n1 , . . . , nh ∈N are the “declared names”.
• m ∈ {lone,one,set,some} is the “declared multiplicity”, which is not used

in this rule.
• e ∈ EA is the “declared type”.

The translation CrDecl(d) of d is given by:

n1 : _univAr(e) , . . . , nh : _univAr(e)

4.1.9 Example (Translating a Declaration). Let d =
〈
r, s : T -> V

〉
.

Then, CrDecl(d) =
〈
r : _univ -> _univ, s : _univ -> _univ

〉
.

Definition 4.1.10 (Extracting Constraints from Relation Declarations: CrRelCnstr). Let

s be a sig name.

Let d =[
disj

]
n1 . . . nh :

[
m
]

e

be an Alloy relation declaration on s, where:

• n1 , . . . , nh ∈N are the “declared names”.
• m∈{lone,one,set,some} is the “declared multiplicity”, and defaults to set

if not given.
• e ∈ EA is the “declared type”.

38

Then, the constraints CrRelCnstr(s,d) extracted from a relation d declared in sig s are:

(n1 + . . . + nh) in (s -> e)

all _var_s: _univ {

(_var_s in s) => (

(m′ (_var_s. n1)) . . . (m′ (_var_s. nh))

)

}

CrDeclDis jCnstr(d)

where:

m′ =


〈
m
〉

if m ∈ {lone,one,some}〈〉
if m = set

Definition 4.1.11 (Extracting Constraints from Parameter Declarations: CrParamCnstr).

Let d = [
disj

]
n1 . . . nh :

[
m
]

e

be an Alloy declaration, where:

• n1 , . . . , nh ∈N are the “declared names”.
• m∈{lone,one,set,some} is the “declared multiplicity”, and defaults to set

if not given.
• e ∈ EA is the “declared type”.

Then, the constraints CrParamCnstr(d) extracted from d are:

(n1 + . . . + nh) in e

(m′ n1) . . . (m′ nh)

CrDeclDis jCnstr(d)

where:

m′ =


〈
m
〉

if m ∈ {lone,one,set,some}〈〉
if m = set

39

Definition 4.1.12 (Extracting Disjointness Constraints from Declarations: CrDeclDis jCnstr).

Let d = [
disj

]
n1 . . . nh :

[
m
]

e

be an Alloy declaration, where:

• n1 , . . . , nh ∈N are the “declared names”.
• m ∈ {lone,one,set,some} is the “declared multiplicity”, which is not used

in this rule.
• e ∈ EA is the “declared type”.

If disj is present in the declaration, then the extracted disjointness constraint CrDeclDis jCnstr(d)

=

no (

(n1 & n2) + (n1 & n3) + . . . + (n1 & nh) +

(n2 & n3) + (n2 & n4) + . . . + (n2 & nh) +

. . . +

(nh−2 & nh) + (nh−1 & nh) +

(nh−1 & nh)

)

Otherwise, CrDeclDis jCnstr(d) =
〈
{}
〉
.

4.1.13 Example (Extracting a Disjointness Constraint). Consider the Supported Alloy

declaration
〈
disj q, r, s, t: A

〉
.

Its extracted disjointness constraint would be:

no (

(q & r) + (q & s) + (q & t) +

(r & s) + (r & t) +

(s & t)

)

40

Definition 4.1.14 (Translation of Predicate Definitions: CrPred). Let p, an Alloy predi-

cate definition, equal one of the following two (semantically-equivalent) phrases:

•
〈
pred n[d1 , . . . , dh] b

〉
•
〈
pred n(d1 , . . . , dh) b

〉
where:

• n ∈N is the name of the predicate.
• d1 , . . . , dh ∈DA are the “parameter declarations”.
• b ∈BA is a block that is the “body”.

Then, the translation CrPred(p) of p is given by:

pred n[CrDecl(d1) , . . . , CrDecl(dh)] CrFmla(b)

Definition 4.1.15 (Translation of Function Definitions: CrFunc). Let u, an Alloy function

definition, equal one of the following two (semantically-equivalent) phrases:

•
〈
fun n[d1 , . . . , dh] : e1 { e2 }

〉
•
〈
fun n(d1 , . . . , dh) : e1 { e2 }

〉
where:

• n ∈N is the name of the function.
• d1 , . . . , dh ∈DA are the “parameter declarations”.
• e1 ∈ EA is the “return type”.
• e2 ∈ EA is the “return value”.

Then, the translation CrFunc(u) of u is given by:

fun n[CrDecl(d1) , . . . , CrDecl(dh)] : _univAr(e1) { CrExpr(e2) }

41

Definition 4.1.16 (Translation of Assertions: CrAssert). Let r, an Alloy assertion, equal

one of the following:

•
〈
assert n b

〉
•
〈
assert b

〉
where:

• n ∈N is the “name”.
• b ∈BA is a block that is the “body”.

If n is not specified, then the entire assertion is ignored, as there is no way to reference an

unnamed assertion in Alloy. Otherwise, the translation CrAssert(r) of r is given by:

pred _assert_n[] CrFmla(b)

Definition 4.1.17 (Translation of Facts: CrFact). Let a, an Alloy fact, equal one of the

following:

•
〈
fact n b

〉
•
〈
fact b

〉
be an Alloy fact, where:

• n ∈N is an optional “name”, which we ignore.
• b ∈BA is a block that is the “body”.

Then, the translation CrFact(a) of a is given by:

fact CrFmla(b)

Definition 4.1.18 (Translation of Commands: CrCmd). Given an Alloy command c∈ CA,

its translation CrCmd(g) is defined as:

42

CrCmd(c)=



〈
run { CrScope(k) && ! CrFmla(b) } for z _univ

〉
if g =

〈
check b k

〉
; b ∈BA,k ∈KA〈

run { CrScope(k) && ! _assert_n } for z _univ
〉

if g =
〈
check n k

〉
; n ∈N,k ∈KA〈

run { CrScope(k) && CrFmla(b) } for z _univ
〉

if g =
〈
run b k

〉
; b ∈BA,k ∈KA

CrPredRun(g) if g =
〈
run n . . .

〉
; n ∈N,k ∈KA

where z is the sum of the upper cardinality bounds of all top-level sigs in the original

Alloy specification.

Note that
〈
for z _univ

〉
is only included so that the Core Alloy specification is

semantically equivalent to the source Alloy specification; it is disregarded when trans-

lating to the IL. We do not elaborate any more on this specific subtlety, as it is not a

mathematically interesting problem in the context of this project.

Definition 4.1.19 (Translation of Directly-Run Predicates: CrPredRun). Let c=
〈
run n k

〉
be an Alloy command that directly runs a predicate. Let p, the Alloy predicate named by

n, be declared in one of the following (semantically-equivalent) ways:

•
〈
pred n[d1 , . . . , dh] b

〉
•
〈
pred n(d1 , . . . , dh) b

〉
where:

• n ∈N is the name of the predicate.
• d1 , . . . , dh ∈DA are the “parameter declarations”.
• b ∈BA is a block that is the “body”.

Then, the translation CrPredRun(c) of c is given by:

pred _proxy_n[d′1 , . . . , d′k] {

CrParamCnstr(d1) . . . CrParamCnstr(dh)

CrScope(k)

43

p[a1 , . . . , ak]

}

run _proxy_n for z _univ

where:

• d′1 . . .d
′
k = CrDecl(d1) . . .CrDecl(dh)

• a1 . . .ak are the names from the declarations d′1 . . .d
′
k.

• z∈N is the sum of the upper cardinality bounds of all top-level sigs in the original

Alloy specification.

Definition 4.1.20 (Translation of Command Scopes: CrScope). Given an Alloy command

scope k, define its translation CrScope(k) as:

CrScope(k)=



〈
{}
〉

if k =
〈〉

and Θ =⊥〈
{ (# s1 <= 3). . .(# s j <= 3) }

〉
if k =

〈〉
and Θ =>〈

{ (# s1 <= z). . .(# s j <= z) }
〉

if k =
〈
for z

〉
〈
{ CrT Scope(y1) . . .CrT Scope(yh) (# s1 <= z). . .(# s j <= z) }

〉
if k =

〈
for z but y1,. . .,yh

〉
〈
{ CrT Scope(y1) . . .CrT Scope(yh) }

〉
if k =

〈
for y1,. . .,yh

〉
where:

• z ∈ N is the “general bound”.
• y1 , . . . , yh ∈ YA are the “type-scopes”.
• s1 , . . . , s j ∈ N are the Alloy top-level sigs not referenced in any of the type-

scopes y1 , . . . , yh.
• Θ is a boolean indicating whether the default cardinality bound (see 4.1.21) is

being enforced.

4.1.21 Note (Default Cardinality Bound). When searching for instances of a specification,

Alloy places a default upper bound of 3 on the cardinalities of all top-level sigs that are not

otherwise explicitly bounded. This is due to a technical restriction of the Alloy Analyzer

that requires boundedness in order to analyze a specification.

44

SMT solvers do not have this technical restriction, so implicit bounds are not required.

It is reasonable, then, to think that the translator should simply disregard this default

cardinality bound. However, it can be argued that, in order for the translation to correctly

preserve satisfiability, the translator should replicate the default cardinality bound.

We strike a compromise: the definition of CrScope (see 4.1.20) describes how to

translate scopes in both cases.

Definition 4.1.22 (Translation of Command Type-Scopes: CrT Scope). Let y =[
exactly

]
z n

be an Alloy command type-scope, where:

• z ∈ N is the “upper bound”.
• n ∈N is the name of the sig for which the type-scope establishes a bound.

Then,

CrT Scope(y) =


〈
n = z

〉
if exactly is included〈

n <= z
〉

otherwise

4.1.23 Example (Translating a Command that Directly Runs a Predicate). Consider the

following Supported Alloy specification.

sig A, B {}

pred p[a : one A] { ... }

run p for 5

The Core Alloy translation of the run command is:

pred _proxy_p[a : _univ] {

(a in A) (one a) (#A <= 5) p[a]

}

run _proxy_p for 10

45

4.1.24 Example (Translating a Command with a Scope). Consider a Supported Alloy

specification with the zero-argument predicate q, sigs A, B, C and the command:

check q for 4 but 1 A, exactly 2 B

The Core Alloy translation of such a command is:

run {

{ (#A <= 1) (#B = 2) (#C <= 4) } &&

!q

} for 7 _univ

4.1.25 Notation (Symbols Used in Term Translation). Within the definitions of CrExpr

and CrFmla:

• All instances of n represent an element of N, i.e. a name.
• All instances of e or eh (for h > 0) represent an element of EA, i.e. an Alloy

expression.
• All instances of f or fh (for h > 0) represent an element of FA, i.e. an Alloy

formula.
• All instances of b or bh (for h > 0) represent an element of BA, i.e. a formula

block.
• All instances of m or mh (for h > 0) represent an element of (EA ∪FC), i.e. an

Alloy formula or expression.
• All instances of q or qh (for h > 0) represent an element of QA, i.e. a quantifier

variable declaration.

Definition 4.1.26 (Translation of Formulas: CrFmla). Given an Alloy formula g ∈ FA,

46

its translation CrFmla(g) is defined as:

CrFmla(g)=



〈
CrExpr(e1) in CrExpr(e2)

〉
if g =

〈
e1 in e2

〉
〈
! (CrExpr(e1) in CrExpr(e2))

〉
if g =

〈
e1 ! in e2

〉
〈
CrExpr(e1) = CrExpr(e2)

〉
if g =

〈
e1 = e2

〉
〈
! (CrExpr(e1) = CrExpr(e2))

〉
if g =

〈
e1 ! = e2

〉
〈
CrFmla(f1) && CrFmla(f2)

〉
if g =

〈
f1 && f2

〉
〈
CrFmla(f1) || CrFmla(f2)

〉
if g =

〈
f1 || f2

〉
〈
CrFmla(f1) => CrFmla(f2)

〉
if g =

〈
f1 => f2

〉
〈
CrFmla(f1) <=> CrFmla(f2)

〉
if g =

〈
f1 <=> f2

〉
〈
no CrExpr(e)

〉
if g =

〈
no e

〉
〈
lone CrExpr(e)

〉
if g =

〈
lone e

〉
〈
one CrExpr(e)

〉
if g =

〈
one e

〉
〈
some CrExpr(e)

〉
if g =

〈
some e

〉
〈
CrQFmla(f)

〉
if g =

〈
all q . . .

〉
〈
CrQFmla(f)

〉
if g =

〈
no q . . .

〉
〈
CrQFmla(f)

〉
if g =

〈
lone q . . .

〉
〈
CrQFmla(f)

〉
if g =

〈
some q . . .

〉
〈
CrQFmla(f)

〉
if g =

〈
one q . . .

〉
〈
CrExpr(e2)[CrExpr(e1)]

〉
if g =

〈
e1 . e2

〉
〈
CrExpr(e2)[CrExpr(e1)]

〉
if g =

〈
e2[e1]

〉
〈
{CrFmla(f1) CrFmla(f2) . . . CrFmla(f3)}

〉
if g =

〈
{e1 f2 . . . f3}

〉
〈
CrFmla(b)[~n := ~m]

〉
if g =

〈
let n1 = m1, . . . , nh = mh b

〉
〈
CrFmla(f)[~n := ~m]

〉
if g =

〈
let n1 = m1, . . . , nh = mh | f

〉

Alloy permits use of both symbols and keywords for expressing logical formulas.

Core Alloy only permits use of the symbols. In order to make the above definition more

47

concise, the following transformations are implicitly made:

• All occurrences of not are replaced with ! .
• All occurrences of and are replaced with && .
• All occurrences of or are replaced with || .
• All occurrences of implies are replaced with => .
• All occurrences of iff are replaced with <=> .

Definition 4.1.27 (Translation of Quantifier Formulas: CrQFmla). Let f , an Alloy quan-

tifier formula, equal one of the following two (semantically-equivalent) phrases:

•
〈
w q1 . . . qh f

〉
•
〈
w q1 . . . qh | f

〉
where:

• w ∈ {all,no,lone,one,some} is the “quantification keyword”.
• {q1 . . .qh} ⊆ QA are the “quantifier variable declarations”.
• For the first syntactic case: f ∈BA is the “body”.
• For the second syntactic case: f ∈ FA is the “body”.

When w = all, CrQFmla(f) =

all CrDecl(q1) . . . CrDecl(qh) {

{ CrQuantVarCnstr(q1) . . . CrQuantVarCnstr(qh) } =>

CrFmla(f)

}

When w ∈ {no,lone,one,some}, CrQFmla(f) =

q CrDecl(q1) . . . CrDecl(qh) {

CrQuantVarCnstr(q1) . . . CrQuantVarCnstr(qh)

CrFmla(f)

}

48

4.1.28 Example (Translating a Quantifier Formula). Let f =

all x, y : A | q[x, y]

Then, CrQFmla(f) =

all x : _univ, y : _univ {

{ (x in A) (y in A) } =>

q[x, y]

}

Definition 4.1.29 (Extracting Constraints from Quantified Variable Declarations: CrQuantVarCnstr).

Let d = [
disj

]
n1 . . . nh : e

be an Alloy declaration, where:

• n1 , . . . , nh ∈N are the “declared names”.
• e ∈ EA is the “declared type”.

Then, the constraint CrQuantVarCnstr(d) extracted from d is:

((n1 + . . . + nh) in e) && CrDeclDis jCnstr(d)

Definition 4.1.30 (Translation of Expressions: CrExpr). Given an Alloy paragraph x ∈

EA, its translation CrExpr(x) is defined as:

49

CrExpr(x)=



〈
none

〉
if x =

〈
none

〉
〈
iden

〉
if x =

〈
iden

〉
〈
univ

〉
if x =

〈
univ

〉
〈
n
〉

if x =
〈
n
〉

〈
∼ CrExpr(e)

〉
if x =

〈
∼ e
〉

〈
CrExpr(e1) + CrExpr(e2)

〉
if x =

〈
e1 + e2

〉
〈
CrExpr(e1) - CrExpr(e2)

〉
if x =

〈
e1 - e2

〉
〈
CrExpr(e1) & CrExpr(e2)

〉
if x =

〈
e1 & e2

〉
〈
CrJoin(x)

〉
if x =

〈
e1. e2

〉
〈
CrJoin(x)

〉
if x =

〈
e2[e1]

〉
〈
CrExpr(e1) -> CrExpr(e2)

〉
if x =

〈
e1 -> e2

〉
〈
CrExpr(e1) <: CrExpr(e2)

〉
if x =

〈
e1 <: e2

〉
〈
CrExpr(e1) :> CrExpr(e2)

〉
if x =

〈
e1 :> e2

〉
〈
CrFmla(f) => CrExpr(e1) else CrExpr(e2)

〉
if x =

〈
f => e1 else e2

〉
〈
CrExpr(e)[~n := ~m]

〉
if x =

〈
let n1 = m1, . . . , nh = mh { e }

〉
〈
CrExpr(e)[~n := ~m]

〉
if x =

〈
let n1 = m1, . . . , nh = mh | e

〉
Definition 4.1.31 (Translation of Set Comprehensions: CrSetCompr). Let x, an Alloy set

comprehension, equal one of the following two (semantically-equivalent) phrases:

•
〈
{q1, . . ., qh f }

〉
•
〈
{q1, . . ., qh | f }

〉
where:

• {q1 . . .qh} ⊆ QA are the “quantifier variable declarations”.
• For the first syntactic case: f ∈BA is the “body”.
• For the second syntactic case: f ∈ FA is the “body”.

50

Then, the translation CrSetCompr(x) of x is given by:

{ CrDecl(q1), . . . , CrDecl(qh) {

CrQuantVarCnstr(q1) . . . CrQuantVarCnstr(qh) CrFmla(f)

} }

Definition 4.1.32 (Translation of Joins: CrJoin). Let x, an Alloy join expression, equal

one of the following two phrases:

•
〈
eh−1 . (eh−2 (e2 . e1) . . .)

〉
•
〈
e1[e2, . . ., eh−1, eh]

〉
where e1, . . . ,eh ∈ EA are Alloy expressions. Although these two phrases look different,

they are actually semantically equivalent. That is, a series of dot joins is equal to a box

join in the “reverse order”. Either phrasing can be used both for relational joins and for

calls to functions and predicates.

Core Alloy is more consistent. It requires that that the first phrasing (“dot join”)

is used only for relational joins, and the second phrasing (“box join”) is used only for

function and predicate application.

Let us first consider the case that e1 is an incompletely-applied function or predi-

cate. That is, e1 is a function or predicate reference that does not have all its parame-

ters applied. We box join e2 to e1 (thereby “calling” e1), and then invoke CrJoin again

on the resulting expression with the rest of the arguments box joined to it. Formally,

CrJoin(x) =CrJoin
〈
(e1[CrExpr(e2)])[e3, . . ., eh−1, eh]

〉
.

If e1 is any other type of expression, we simply dot join the inner expression to the

translation of e1. Formally, CrJoin(x)=
〈
CrJoin

〈
eh . (eh−1 (e3 . e2) . . .)

〉
. CrExpr(e1)

〉
.

4.1.33 Example (Translating a Series of Joins). Given the following:

51

• f is the name of a function that takes 2 arguments and returns a relation with arity

3.

• a, b, c, d, and e are local variables with arities of 1.

• x =
〈
e.((c.f[a, b])[d])

〉
.

Then, CrJoin(x) =
〈
e . (d . f[a][b][c])

〉
.

4.2 Core Alloy to Intermediate Language

The translator to the Intermediate Language (IL) is the most mathematically interesting

phase of the translation. Here the relational algebra of (Core) Alloy is translated into

higher order logic, represented by the IL, a lambda calculus. While individual Core Alloy

terms are translated into higher order objects, the translation of a formula is always first-

order, so any IL specification that this translation could generate will be in normal form

once it is normalized. The translation to IL converts Core Alloy formulas into IL formu-

las, and Core Alloy expressions into abstractions (i.e. anonymous functions). Declared

relations from Core Alloy of type T1×·· ·×Tn are represented by IL declared functions

of type (T1×·· ·×Tn)→ B.

4.2.1 Notation (Translation Functions). In this section, we describe the translation to the

Intermediate Language using a number of mutually-recursive functions:

• TrSpec: Translate from a Core Alloy specification to an IL theory.
• TrVoc: Translate from a Core Alloy vocabulary to a series of IL sort and function

declarations.
• TrCmd: Translate from a Core Alloy command to a series of IL function decla-

rations and axioms.
• TrDirRun: Translate from a Core Alloy directly-run predicate to a series of IL

function declarations and axioms.

52

• TrFmla: Translate from a Core Alloy formula to a boolean-typed IL term.
• TrExpr: Translate from a Core Alloy expression to a function-typed IL
• TrPredRe f : Translate from a Core Alloy referenced predicate to an IL term.
• TrFuncRe f : Translate from a Core Alloy referenced function to an IL term.

Definition 4.2.2 (Translation of Specifications: TrSpec). Let t be a Core Alloy specifica-

tion consisting of v, P, U , F , and c, where:

• v ∈ VC is the vocabulary of s.
• P⊆ PC is the set of predicate definitions in s.
• U ⊆ UC is the set of function definitions in s.
• F ⊆BC is the set of formula blocks that make up the facts of s.
• c ∈ CC is the command in s.

Recalling that an IL theory is a pair containing a set of function declarations and a set of

axioms, we define the translation TrSpec(t) of s as such:

TrSpec(t) =< DB ∪ DV ∪ DC , AF ∪ AC >

where:

• DB is the base signature (i.e., the set of predefined functions), which is defined

below.
• DV = TrVoc(v) is the set of function declarations resulting from the translation

of the Core Alloy vocabulary.
• AF = {TrFmla(f) | f ∈ F} are the IL axioms that are the translations of the Core

Alloy fact blocks.
• < DC,AC >= TrCmd(c) are, respectively, the sets of IL function declarations

and IL axioms that are the translation of the Core Alloy command.

Definition 4.2.3 (Base Signature: DB). The base signature is the set of predefined IL

functions that are included in every IL signature. It contains the following, along with the

shorthand we use to denote them in this section:

53

1. Logical Negation

• Formal Declaration: N : B→ B
• Shorthand: ¬ a denotes Na.

2. Logical Conjunction

• Formal Declarations: {An : Bn→ B | n≥ 0}
• Shorthand: a ∧ b denotes A2 < a,b >.

3. Logical Disjunction

• Formal Declarations: {On : Bn→ B | n≥ 0}
• Shorthand: a ∨ b denotes O2 < a,b >.

4. Logical Implication

• Formal Declaration: I :< B,B>→ B
• Shorthand: a ⇒ b denotes I < a,b >.

5. Logical Equivalence

• Formal Declaration: L :< B,B>→ B
• Shorthand: a ⇔ b denotes L < a,b >.

6. Universal Quantification

• Formal Declarations: {Fn1...nk : (<Un1 , . . . , Unk >→ B)→ B | n≥ 0}
• Shorthand: ∀ t1 . . . tk. f denotes FAr(t1)...Ar(tk)(λ < t1 , . . . , tk > . f).

7. Existential Quantification

• Formal Declarations: {Xn1...nk : (<Un1 , . . . , Unk >→ B)→ B | n≥ 0}
• Shorthand: ∃ t1 . . . tk. f denotes XAr(t1)...Ar(tk)(λ < t1 , . . . , tk > . f).

8. Equality

• Formal Declarations: {ET,n : T n→ B | n≥ 0}
• Shorthand: s = t denotes ET,2 < s, t >, where T is contextually implied.

9. Inequality

• Formal Declarations: {QT,n : T n→ B | n≥ 0}
• Shorthand: s 6= t denotes QT,2 < s, t >, where T is contextually implied.

54

Definition 4.2.4 (Translation of Vocabularies: TrVoc). Let v =

sig _univ {n1 : _univk1, ... , nh : _univkh }

sig s1 , ... , si {} in _univ

be a Core Alloy vocabulary, where:

• r1 . . .rh ∈N are the “relation names”.
• k1 . . .kh ∈ N are the arities that correspond to r1 . . .rh.
• s1 . . .si ∈N are the “sig names”.

Then, we define the translation TrVoc(v) of v as such:

TrVoc(v) = R′∪S′

, where:

• R′ = {r1 : (U (k1+1))→B , . . . , rh : (U (kh+1)→B} is the set of translated relation

declarations.
• S′ = {is-s1 : (U1 → B) , . . . , is-si : (U1 → B)} is the set of translated sig

declarations.

Definition 4.2.5 (Translation of Commands: TrCmd). Given a Core Alloy command

c ∈ CC, we define its translation TrCmd(c) as such:

TrCmd(c)=


< {} , TrFmla(b) > if c =

〈
run b for z _univ

〉
;b ∈BC,z ∈ N

TrDirRun(p),where n names p if c =
〈
run n for z _univ

〉
;n ∈N,z ∈ N

Definition 4.2.6 (Translation of Directly-Run Predicates: TrDirRun). Let p =

pred n[a1 : _univk1, ... , ah : _univkh] b

be the definition of a directly-run predicate p. Then,

TrDirRun(p) =< D , {a} >

55

where:

• D = {n@ai : Uki → B | i > 0} is the set of function declarations generated by the

predicate parameters.
• a = (TrPredRe f (n) n@a1 . . . n@ah) is a formula. It applies the translation of the

predicate reference, which is a function, to n@a1 , . . . , n@ah, yielding a boolean

value.

4.2.7 Example (Translating a Command that Directly Runs a Predicate). Given the fol-

lowing:

pred _p_proxy[a : _univ, b : _univ -> _univ] { ... }

run _p_proxy for 8 _univ

The translation of the run command equals < D,{a}>, where:

• D = { _p_proxy@a : U1→ B , _p_proxy@b : U2→ B }.
• a = (TrPredRe f (_p_proxy) _p_proxy@a _p_proxy@b).

4.2.8 Notation (Symbols Used in Term Translation). Within the definitions of TrFmla

and TrExpr:

• All instances of n represent an element of N, i.e. a name.
• All instances of s or sh (for h > 0) represent an element of S, where S⊆N is the

set of sig names in the Core Alloy specification.
• All instances of e or eh (for h > 0) represent an element of EC, i.e. a Core Alloy

expression.
• All instances of f or fh (for h > 0) represent an element of FC, i.e. a Core Alloy

formula.
• All instances of m or mh (for h > 0) represent an element of (EC ∪FC), i.e. a

Core Alloy formula or expression.

56

Definition 4.2.9 (Translation of Formulas: TrFmla). Given a Core Alloy formula g, we

define its translation TrFmla(g) as:

TrFmla(g)=



TrPredRe f (f)e1 . . .en if g =
〈

p[e1, . . . ,en]
〉
, where p is a predicate

TrFmla(f1) ∧ . . . ∧ TrFmla(fn) if g =
〈
{ f1 ... fn}

〉
¬ TrFmla(f) if g =

〈
not f

〉
TrFmla(f1) ⇔ TrFmla(f2) if g =

〈
f1 <=> f2

〉
∀ x.TrExpr(e1)x ⇒ TrExpr(e2)x if g =

〈
e1 in e2

〉
TrFmla(f1) ∨ TrFmla(f2) if g =

〈
f1 || f2

〉
TrFmla(f1) ∧ TrFmla(f2) if g =

〈
f1 && f2

〉
TrFmla(f1) ⇒ TrFmla(f2) if g =

〈
f1 => f2

〉
∀ x.TrExpr(e1)x ⇔ TrExpr(e2)x if g =

〈
e1 = e2

〉
∀ x1 . . .xk.TrFmla(f) if g =

〈
all x1, . . ., xk : _univ | f

〉
∀ x1 . . .xk.¬ f if g =

〈
no x1, . . ., xk : _univ | f

〉
∀ ~z1~z2. f [~x := ~z1] ∧ f [~x := ~z2] ⇒ (~z1 = ~z2) if g =

〈
lone x1, . . ., xk : _univ | f

〉
TrFmla((lone x1, . . ., xk : _univ | f)

&& (some x1, . . ., xk : _univ | f))
if g =

〈
one x1, . . ., xk : _univ | f

〉
∃ x1 . . .xn.TrFmla(f) if g =

〈
some x1, . . ., xk : _univ | f

〉
∀ x.¬ TrExpr(e)x if g =

〈
no e

〉
∃ x1x2.(TrExpr(e)x1 ∧ TrExpr(e)x2) ⇒ (x1 = x2) if g =

〈
lone e

〉
TrFmla(lone e&& some e) if g =

〈
one e

〉
∃ x.TrExpr(e)x if g =

〈
some e

〉
TrFmla(# S <= z) ∧ ∃ x1 . . .xz.

(is-S(x1) ∧ . . . ∧ is-S(xz) ∧ QS,z < x1, . . . ,xz >)

if g =
〈
S = z

〉
, where z ∈ N

∀ x1 . . .xz+1.(is-S(x1) ∧ . . . ∧ is-S(xz+1)) ⇒

(¬ QS,z+1 < x1, . . . ,xz+1 >)

if g =
〈
S <= z

〉
, where z ∈ N

57

Definition 4.2.10 (Translation of Expressions: TrExpr). Given a Core Alloy expression

x, we define its translation TrExpr(x) as:

TrExpr(x)=



n if x =
〈
n
〉
, where n names a constant

n if x =
〈
n
〉
, where n names a variable

n if x =
〈
n
〉
, where n names a relation

λz. is-n(z) if x =
〈
n
〉
, where n names a sig

TrFuncRe f (n)e1 . . .en if x =
〈
n[e1 , . . . , en]

〉
λz. π1z = π2z if x =

〈
iden

〉
λz. true if x =

〈
univ

〉
λz. f alse if x =

〈
none

〉
λz. TrExpr(e1)z ∨ TrExpr(e2)z if x =

〈
e1 + e2

〉
λz. TrExpr(e)< π2z,π1z > if x =

〈
~ e
〉

λz. TrExpr(e1)z ∧ TrExpr(e2)z if x =
〈
e1& e2

〉
λz. TrExpr(e1)z ∧ ¬ TrExpr(e2)z if x =

〈
e1− e2

〉
λz. ∃ w.TrExpr(e1)< π1z, . . . ,πAr(e1)−1z,w >

∧ TrExpr(e1)< w,πAr(e1)z, . . . ,πAr(e1)+Ar(e2)−1z > if x =
〈
e1. e2

〉
λz. TrExpr(d)π1z ∧ TrExpr(r)z if x =

〈
d<: r

〉
λz. TrExpr(d)πAr(d)z ∧ TrExpr(r)z if x =

〈
r:> d

〉
λz. TrExpr(e2)z

∨ (TrExpr(e1)z∧¬ ∃ y.TrExpr(e2)y ∧ π1y = π1z) if x =
〈
e1++ e2

〉
λz. TrExpr(e1)< π1z, . . . ,πAr(e1)z >

∧ TrExpr(e2)< πAre1+1z, . . . ,πAr(e1)+Ar(e2)z > if x =
〈
e1-> e2

〉
λz. TrFmla(f) if x =

〈
{ x : _univ | f }

〉
Definition 4.2.11 (Translation of Predicate References: TrPredRe f). Let p =

pred n[a1 : _univk1, ... , a j : _univkh] b

be the definition of a predicate, where:

58

• n ∈N is the name of the predicate.
• a1 , . . . , a j ∈N are the “parameter names”.
• k1 , . . . , k j ∈ N are the “parameter arities”.

Then,

TrPredRe f (n) = λa1 . . .a j. TrFmla(b)

where, in the IL:

• a1 : (Uk1 → B) , . . . , a j : (Uk j → B).
• TrPredRe f (n) : B

4.2.12 Example (Translating a Predicate Reference). Consider the following predicate

definition:

pred disjoint[a : _univ, b : _univ] { no (a & b) }

Then, TrPredRe f (disjoint) = λab. ∀ x.¬ ((a x) ∧ (b x)).

Definition 4.2.13 (Translation of Function References: TrFuncRe f). Let f =

fun n[a1 : _univk1, ... , ak : _univkh] : _univ` { e }

be the definition of a function, where:

• n ∈N is the name of the function.
• a1 , . . . , a j ∈N are the “parameter names”.
• k1 , . . . , k j ∈ N are the “parameter arities”.
• ` ∈ N is the “return type arity”.
• e ∈ EC is an expression that is the “return value”, where Ar(e) = `.

Then,

TrFuncRe f (n) = λa1 . . .a j. TrExpr(e)

where, in the IL:

• a1 : (Uk1 → B) , . . . , a j : (Uk j → B).

59

• TrFuncRe f (n) : U`→ B

4.2.14 Example (Translating a Function Reference). Consider the following function def-

inition:

fun union3[a : _univ, b : _univ, c : _univ] { a + b + c }

Then, TrFuncRe f (union3) = λabcx. ((a x) ∨ (b x) ∨ (c x)).

4.3 Normalization of the Intermediate Language

We will prove in chapter 5 that the Intermediate Language is strongly normalizing and

confluent. These properties mean that any reduction strategy will eventually lead to a

single normal form theory. We will now outline the particular normalization strategy we

used.

To normalize a term, we walk through the tree the term represents, converting any

redexes we find. A redex can be converted if the term being applied is an abstraction.

The output of the translator to IL is designed such that when it is reduced, no abstractions

will remain. This is necessary because SMT-LIB does not support anonymous functions.

In fact, this is necessary because abstractions are higher order objects, and SMT-LIB is

first-order. The fact that the translator to IL outputs IL that, when normalized, will have

no abstractions remaining, means that the output of the translator to IL really is first order,

even though it is being expressed in a higher order language.

For an IL term of the form ts, where t is of type S→V and s is of type S, the normalizer

first normalizes t, naming the resulting term t ′, and then checks if t ′ is an abstraction. If

it is, the normalizer beta reduces the redex and normalizes the result. If t ′ is not an

abstraction, the normalized form of ts is simply t ′s′, where s′ is s normalized.

However the Haskell representation of the IL that we used actually allows abstractions

60

to take multiple arguments, so an application is of the form App t [s1, . . . ,sn]. If the

result of norm t is an abstraction, the result of norm (App t [s1, . . . ,sn]) is simply the

result of normalizing the result of beta reduction of the arguments [s1, . . . ,sn] into t’.

If norm t is not an abstraction, then norm (App t [s1, . . . ,sn]) is just App (norm t)

[norm s1, ..., norm sn].

The normalization algorithm makes calls to betaReduce, a procedure for capture-

avoiding beta reduction, which when given a term that is a redex (lambda ~x v)~s returns

v[~x :=~s]. The normalization algorithm also makes calls to the map procedure, whose first

argument is a function which it applies to each member of its second argument, which is

a list.

The definition of the normalization algorithm on terms is given by:

norm t =

Case t = (Var x) : t

Case t = (Const x) : t

Case t = (Tuple ts) : Tuple (map norm ts)

Case t = (Lambda params body) : Lambda params (norm body)

Case t = (App f args) :

let res = norm f

If res is of the form (Lambda params body)

then

norm (betaReduce res args)

else

App res (map norm args)

Case t = (Forall decls body) : Forall decls (norm body)

Case t = (Exists decls body) : Exists decls (norm body)

Case t = (Project t i) : Project (norm t) i

61

One can see that the entire algorithm is a straightforward tree traversal, except for the

case handling applications, which identifies redexes and reduces them.

Now we state two lemmas that, together, show that after normalization, no abstrac-

tions will remain in an IL specification generated by the translation to IL.

Lemma 4.3.1. A top-level term t generated by the normalization process is of order 0 and

is in normal form, and every constant and free variable occurring in t has order 0 or 1.

Proof. Clear by inspection of the cases of the normalization algorithm, above. ///

Lemma 4.3.2. Let t be an IL term such that

1. t is of order 0;

2. every constant and free variable occurring in t has order 0 or 1;

3. Quantification is over variables of order 0.

4. t is irreducible.

Then no subterm of t is an abstraction.

Proof. The proof is by induction on t.

• If t is a constant or variable there is nothing to prove.

• We cannot have t itself be an abstraction t is of order 0.

• If t is a tuple < t1, . . . , tk > then each ti is of order 0, and the result holds by the

induction hypothesis applied to each ti.

• If t is an application, write t as t0t1 . . . tn where n > 0 and t0 is not an application,

then t0 cannot be an abstraction since t is in β-normal form. So t0 is either a variable

or a constant. By assumption, t0 has first-order type and so t1, . . . , tn are of order 0.

So the induction hypothesis applies to each ti and the result follows.

62

• If t is a projection πit ′ then t ′ cannot be a tuple since t is irreducible. So t ′ is of

the form t0t1 . . . tn where n > 0 and t0 is not an application. We can apply the same

argument as in the application case above.

• If t is an existential quantification ∃x1 . . .xn.b then (since we only quantify over

type-0 variables) the induction hypothesis applies to b and the result follows. The

same reasoning applies when t is a universal quantification.

///

With norm defined, the definition of the normalization of IL theories becomes trivial.

Definition 4.3.3 (Translation of IL Theories: NrmT heory). Let t =< v,A > be an IL

theory.

The normalization NrmT heory(t) of t equals < v,{norm a | a ∈ A}>.

4.4 Normalized Intermediate Language to SMT

Once the Intermediate Language specification is normalized, it can be reduced to SMT-

LIB. This stage of the pipeline performs four operations:

1. Check that there are no abstractions remaining, and raise an error if there are.

2. Reduce tuples to multiple singletons.

3. Rename symbols that would be syntactically invalid in SMT-LIB.

4. Move from IL data structures to SMT-LIB data structures.

Of these, only the second operation is mathematically interesting. Converting tuples

to singletons is done by converting the tuple of terms to a list of terms. Where terms

accept a list of arguments, we simply flatten the list of lists given by translating its list

63

of arguments (e.g., [[1], [2, 3]] becomes [1, 2, 3]). Where terms must have an argument

that is only one term, we simply unpack the list and see that it has exactly one element,

throwing an error otherwise.

The equals and not equals operations represent a special challenge. For two tuples to

be equal, they must be of the same length, and each element of the first tuple must be

equal to the corresponding element of the second tuple. That is, for a =< a1, . . . ,an >

and b =< b1, . . . ,bn >, a = b if and only if a1 = b1∧·· ·∧an = bn. Comparing two tuples

for inequality, i.e. a 6= b, is similar: a 6= b if and only if a1 6= b1∨·· ·∨an 6= bn.

The pseudocode we will give below refers to the following helper functions:

• concat: given a list of lists, flattens it into a single list. For example, concat

[[1], [2, 3], [4, 5]] = [1, 2, 3, 4, 5].

• ttsVarRef: given an IL variable reference that is to a tuple, returns a list con-

taining a variable reference for each element of the tuple. For any other variable

reference, simply returns a list containing the variable reference.

• ttsVarDecl: given an IL variable declaration for a tuple, returns a list con-

taining a variable declaration for each element of the tuple. For any other variable

declaration, simply returns a list containing the declaration.

• ttsConstRef: given a constant, determines if it’s a built-in. If so, applies the

appropriate special behavior. Otherwise, translates constant references the same

way variable references are translated.

64

The definition of the algorithm for translation of normalized IL terms to SMT-LIB is

given in cases by:

ttsmt t =

Case t = (Var x) : ttsVarRef t

Case t = (Const x) : ttsConstRef t

Case t = (Tuple ts) : concat (map ttsmt ts)

Case t = (Lambda params body) : error

Case t = (App f args) :

let args’ = concat (map ttsmt args)

App f args’

Case t = (Forall decls body) :

let decls’ = concat (map ttsVarDecl decls)

let body’ = ttsmt body

If length body’ == 1

then

let body’ = body’[1]

else

error

Forall decls’ body’

Case t = (Exists decls body) : ((Identical to Forall))

Case t = (Project t i) : (ttsterm t)[i]

We then go on to define T sT heory, which describes how to translate from IL theories

to SMT theories, along with two helper functions T sDecl and T sZeroOrderType.

Definition 4.4.1 (Translation of IL Theories: T sT heory). Let t =< v,A> be a normalized

IL theory.

65

The translation T sT heory(t) of t is an SMT theory with:

• The sorts U and B.
• The function declarations {T sDecl(d) | d ∈ v}.
• The axioms {ttsmt a | a ∈ A}.

Definition 4.4.2 (Translation of IL Function Declarations: T sDecl). Consider an normal-

ized IL function declaration d, which takes the form n : T →V .

The translation T sDecl(d) of d is an SMT declaration with the name n and the type

T sZeroOrderType(T)→ T sZeroOrderType(V).

Definition 4.4.3 (Translation of Zero-Order IL Types: T sZeroOrderType). Let t be an

IL type.

If t = B or t =U , then T sZeroOrderType(t) = t.

Otherwise, if t = T1×·· ·×Tn, then:

• Let V1,1×·· ·×V1,m1 = T sZeroOrderType(T1).
• . . .
• Let Vn,1×·· ·×Vn,mn = T sZeroOrderType(Tn).

Then, T sZeroOrderType(t) =V1,1×·· ·×V1,m1×·· ·×Vn,1×·· ·×Vn,mn .

66

Chapter 5

Properties of the Intermediate

Language

The Intermediate Language is a simply-typed lambda calculus. It is defined in section

3.3.

5.1 Definitions

The proofs in this section will rely on the following definitions.

First, to make the arguments in this section simpler and cleaner, we will work with a

variation on the Intermediate Language whose terms are as follows:

Definition 5.1.1 (Terms of the Constant-Based IL). An IL term will take one of the

following forms:

1. Constant: A constant term is an ordered pair < n, t > of a name n and a type t.

Declared functions are constants. A constant can be of any type.

2. Variable: A variable term is an ordered pair < n, t > of a name n and a type t. A

variable can be of any type.

67

3. Tuple: Given terms t1, . . . , tk (k≥ 0) whose types are T1, . . . ,Tk, the term < t1, . . . , tk >

is a tuple of type < T1, . . . ,Tk >. The terms of a tuple do not need to be of the same

type.

4. Abstraction: Given a variable x whose type is T , and a term v whose type is V ,

λx.v is a function of type T →V .

5. Application: Given a term t of type S→ V and a term s of type S, ts is a term of

type V .

6. Projection: Given a term < t1, . . . , tk > of type < T1, . . . ,Tk >, and an integer i, πit

is a term of type Ti.

We call this language the “constant-based IL,” as opposed to the IL used in the trans-

lation itself, which can be thought of as the “constructor-based IL.” In section 5.2, where

we prove that this constant-based IL is strongly normalizing, we will also show that if this

IL is strongly normalizing, than the constructor-based IL used by the translation must be

also.

Definition 5.1.2 (Reduction Relation). Given any set T and a binary relation→ on T ,→

is a reduction relation.

Definition 5.1.3 (Strong Normalization). A reduction relation→ is strongly normalizing

if every sequence of terms t→ t1→ t2→ . . . is finite.

Definition 5.1.4 (Confluence). A reduction relation→ is confluent if for all terms t, t1, t2

such that t→ t1 and→ t2, there exists a term w such that t1→ w and t2→ w.

Definition 5.1.5 (ν). If t is a strongly normalizing term, consider the tree representing

all possible reductions from t, where each node is a term reachable from t and each edge

connects a term a to a term b such that a→ b. Then, ν(t) is the number of edges in this

tree.

68

Note that for a term t that is normal, ν(t) = 0.

Definition 5.1.6. A term t is neutral if it is

• c, a constant

• x, a variable

• πit, a projection

• ts, an application

Note that this is equivalent to saying that t is not of the form λx.v or < t1, . . . , tn >.

Definition 5.1.7 (RT). RT is the set of terms that are ’reducible of type T .’ A term t of

type T is a member of RT if

1. If T is atomic (U or B), t ∈ RT if t is strongly normalizing.

2. If T is a tuple type < T1, . . . ,Tn >, t ∈ RT if πit ∈ RTi ∀i ∈ {1, . . . ,n}

3. If T = S→V , an arrow type, t ∈ RT ⇔∀s ∈ RS, ts ∈ RV

5.2 Proof of Strong Normalization

This section is a proof that the Intermediate Language is strongly normalizing (SN). That

is, for every term t, every sequence of reductions starting from t terminates.

The fact that the lambda calculus is strongly normalizing was first proven by Tait,

who showed the proof in [Tai67]. We show an adaptation of the proof to the Intermediate

Language. The form of the proof is heavily inspired by its presentation by Girard in

chapter 6 of [GLT89].

First we show that proving SN for our constant-based version of the IL is sufficient.

To do this we first give the following definition and prove the following lemma:

69

Definition 5.2.1 (f). f is a map from constructor-based IL terms to constant-based IL

terms. It sends ∀x.b to ∀λx. f (b), and similarly sends ∃x.b to ∃λx.b, and leaves other

terms unchanged.

Lemma 5.2.2. Given a reduction sequence t0→ t1→ . . . of constructor-based IL terms,

this map induces a reduction sequence t ′0→ t ′1→ . . . of constant-based IL terms.

Proof. It is clear that from the sequence {ti} the map induces a parallel sequence { f (ti)},

but we must show that for any i, ti→ ti+1 implies that f (ti)→ f (ti+1).

This is clear for constructor-based IL terms besides ∀x.b and ∃x.b, since the map f

does not change those other terms.

For terms of the form ∀x.b and ∃x.b, which map to terms of the form ∀λx. f (b) and

∃λx. f (b), respectively, all reduction sequences occur entirely within the term b. Here

there are two cases:

1. Neither b nor any subterm of b is ∀ or ∃. Then reduction sequences starting from b

and reduction sequences starting from f (b) are identical.

2. Otherwise, we can see inductively (with (1) as the base case) that for reduction

sequences starting from b, their analogues starting from f (b) will still be present.

Thus ti→ ti+1 does imply that f (ti)→ f (ti+1).

///

Note that we do not need to (and do not) preclude the possible existence of two

constructor-based IL terms t1 and t2 such that t1 does not reduce to t2, but f (t1)→ f (t2).

With the above map and definition in place, we can prove

Theorem 5.2.3. If the constant-based Intermediate Language, defined in section 5.1 above,

is strongly normalizing, then the constructor-based Intermediate Language, defined in

section 3.3, is also strongly normalizing.

70

Proof. By lemma 5.2.2 reduction sequences in the constructor-based IL map to reduction

sequences of the same length or longer in the constant-based IL. But by assumption,

reduction sequences in the constant-based IL are always finite, so therefore reduction

sequences in the constructor-based IL must also always be finite. ///

Now we can seek to prove that the constant-based IL, simply called “the IL” hereafter,

is Strongly Normalizing (SN). There are three lemmas that will be needed to complete

the proof. First,

Lemma 5.2.4. The following are true:

(F1) t ∈ RT ⇔ t is strongly normalizing.

(F2) t ∈ RT and t � t ′⇒ t ′ ∈ RT

(F3) If t is neutral and all reductions of a redex in t yield a term t ′ ∈ RT , then t ∈ RT

Note that a special case of (F3) is that if t is neutral and normal, then the second

condition of (F3) is vacuously true and so t ∈ RT .

Proof. By simultaneous induction on the types of terms.

Base Case: Let t a term of atomic type T .

(F1) By definition of RT

(F2) Notice that t must be strongly normalizing. Any term t ′ st t � t ′ must be also.

(F3) Assume conversion of any redex in t results in a term t ′ such that t ′ ∈ RT . Let a

reduction path r be given. It must pass through one of the t ′. But these are strongly

normalizing, so r must be of finite length. In fact, (max
t ′ s.t. t→t ′

ν(t ′))+1 = ν(t).

Since t is strongly normalizing, it is in RT by definition.

71

Inductive Step: There are two remaining cases: T is either a tuple type, or an arrow type.

Tuple Type: t = < t1, . . . , tn >

(F1) t ∈ RT ⇒ ti ∈ RTi∀i by definition of RT . By the induction hypothesis, the ti are

strongly normalizing, and ν(ti) is defined ∀i.

Note ν(t)≤ ν(πit)∀i since for any reduction sequence t, t ′, . . . the parallel sequence

πit,πit ′, . . . where the projection is not reduced also exists. But ti strongly normal-

izing implies πit strongly normalizing ∀i, i.e. ν(πit) exists and therefore ν(t) ≤

ν(πit)∀i⇒ ν(t) exists, i.e. t ∈ RT .

(F2) t � t ′⇒ πit � πit ∀i. t is reducible by hypothesis and therefore so is πit ∀i. Thus

by (F2) of the induction hypothesis, πit ′ is reducible ∀i, which is the definition of

t ′ ∈ RT .

(F3) Take T =< T1, . . . ,Tn >. Let t neutral and all t ′ such that t → t ′ are in RT . Note

that t neutral implies t is not a tuple term. Therefore, any single step reduction of

πit will yield a term of the form πit ′. t ′ ∈ RT ⇒ πit ′ ∈ RTi . πit is neutral, so since

all one step reductions yield a reducible term, we have by the inductive hypothesis

that πit ∈ RTi ∀i, but that is the definition of t ∈ RT .

Arrow Type:

(F1) Take T = S→ V . Given t ∈ RS→V , let x of type S. By the inductive hypothesis

(F3), x neutral and normal⇒ x ∈ RS. Thus tx ∈ RV by definition. By the inductive

hypothesis, tv is strongly normalizing, i.e. ν(tv) is finite.

Note that for every reduction sequence t→ t ′→ . . . there is a parallel reduction se-

quence tv→ t ′v→ . . . in which the redex of t applied to v is not reduced. Therefore

ν(t) ≤ ν(tv). But since ν(tv) is finite this means that ν(t) is also, i.e. t is strongly

normalizing.

72

(F2) Take T = S→V . Let t ∈ RS→V and t ′ such that t � t ′. Want t ′ ∈ RS→V .

Let x ∈ RS. t ∈ RS→V ⇔ tx ∈ RV , so tx ∈ RV . Note that tx � t ′x. By the induction

hypothesis (F2), t ′x ∈ RV , but (t ′x ∈ RV∀x ∈ RS)⇔ t ′ ∈ RS→V

(F3) Take T = S→V . Let t neutral and all t ′ such that t→ t ′ are in RT . Let x∈ RS. Want

tx ∈ RV

By (F1) of the induction hypothesis, x is strongly normalizing, i.e. ν(x) is finite.

Note that t neutral means that t is not of the form λa.b. Therefore tu converts in

one reduction step to either t ′x or tx′.

t’ x: We have t ′ ∈ RT , and x∈ RS also. By definition, t ′ ∈ RT ⇔ (∀x,x∈ RS⇒ t ′x∈

RV).

t x’: By (F2) of the inductive hypothesis, x′ ∈ RS. Note that ν(x′) < νx. By the

inductive hypothesis for x′, tx′ is reducible.

We can see that in either case tx converts to reducible terms only. (F3) for type V

then shows that tx is reducible. But x was arbitrary, so t is reducible by definition.

///

Lemma 5.2.5 (Pairing). If ti ∈ RTi ∀i, then < t1, . . . , tn >∈ R<T1,...,Tn>

Proof. Note that by (F1), ν(ti) exists for every i. Proceed by induction on ∑
n
i=1 ν(ti):

Base Case: ∑
n
i=1 ν(ti) = 0

Since ν(t) can never be negative, we have that ν(ti) = 0 ∀i. Therefore ti is reducible

and normal. By (F3), πi < t1, . . . , tn > is reducible, and so < t1, . . . , tn > is reducible by

definition.

Inductive Step:

πi < t1, . . . , tn > converts in one reduction step to

73

• ti, assumed to be reducible.

• πi < t1, . . . , t ′j, . . . , tn >, with t j → t ′j. We supposed that t j is reducible, so by (F2)

t ′j is reducible. ν(t ′j) < ν(t j), so < t1, . . . , t ′j, . . . , tn > is reducible by the inductive

hypothesis.

∀i,πi < t1, . . . , tn > is neutral and all one step reductions lead to a reducible term, so by

(F3) it is reducible. Therefore < t1, . . . , tn > is reducible by definition. ///

Lemma 5.2.6 (Abstraction). If ∀s ∈ RS, v[x := s] ∈ RV , then (λx.v) ∈ RS→V .

Proof. By definition, (λx.v) ∈ RS→V ⇔ (∀s ∈ RS,(λx.v)s ∈ RV)

Let s ∈ RS be given. We can then proceed by induction on ν(s)+ν(v):

Base Case: ν(s)+ ν(v) = 0 Since ν(x) ≥ 0 ∀x, we must have ν(v) = 0 and ν(s) = 0,

i.e. v and s are normal. (λx.v)s is neutral and normal so by (F3) it is in RV . Since s was

arbitrary, we have ∀s such that ν(s) = 0,s ∈ RS⇒ ts ∈ RV ⇔ t ∈ RS→V .

Inductive Step:

(λx.v)s converts to one of the following:

v[x := s] : reducible by hypothesis.

(λx.v′)s : for v→ v′. (F2) implies v′ ∈ RV , so (F1) implies that ν(v′) exists. Clearly ν(v′) <

ν(v), so by the inductive hypothesis (λx.v′)s ∈ RV .

(λx.v)s′ : for s→ s′. (F2) implies s′ ∈ RS. So by (F1), ν(s′) exists. ν(s′) < ν(s), so by the

inductive hypothesis this is reducible.

Every term t ′ such that (λx.v)s→ t ′ is reducible, so by (F3) it is reducible. But s was

arbitrary, so we have that ∀s ∈ RS,(λx.v)s ∈ RV ⇔ λx.v ∈ RS→V . ///

With these in place, we are ready to prove that all terms are strongly normalizing.

We will do this by proving that all terms are reducible (which implies by (F1) that all

74

terms are strongly normalizing). However to do this we need a slightly stronger inductive

hypothesis, so we first must prove the following:

Lemma 5.2.7. Let t be any term (not necessarily reducible), and name all the free vari-

ables in t ~x = x1, . . . ,xn, whose types are T1, . . . ,Tn, respectively. If ~s = s1, . . . ,sn are

reducible terms of types T1, . . . ,Tn, then t[~x :=~s] is reducible.

Proof. By induction on t. There are 5 cases:

1. t is c, a constant. A constant is clearly normal, and it is neutral, so by (F3), it is

reducible.

2. t is xi, a var. So t[~x :=~s] = si, which is reducible.

3. t is πit ′, a projection of a term t ′ of tuple type. By the inductive hypothesis, t ′[~x :=

~s] ∈ RT , and therefore so is πit ′[~x :=~s] = t[~x :=~s].

4. t is < t1, . . . , tn >. By the inductive hypothesis, t1, . . . tn are reducible, so by lemma 5.2.5

t is also.

5. t is wv. By the inductive hypothesis w[~x := ~s] and v[~x := ~s] are reducible. So

(w[~x := ~s])v[~x := ~s] ∈ RT by the definition of reducibility, but that term is just

t[~x :=~s].

6. t is λy.w of type T = V →W . By the inductive hypothesis, we have ∀v : V,w[~x :=

~s,y := v] ∈ RW . This satisfies the hypothesis of lemma 5.2.6, which states that

t[~x :=~s] ∈ RT .

///

Note that all variables are reducible. Therefore one can substitute the free variables for

themselves to find that any term is reducible. So by (F1), any term is strongly normalizing.

75

5.3 Proof of Confluence

We will prove in this section that the Intermediate Language, which is a simply typed

lambda calculus, is confluent. While we will not show it here, it happens to be true

that a lambda calculus does not need to be strongly normalizing, or simply typed, to be

confluent.

We seek to prove that the Intermediate Language is confluent, i.e. that for all terms

t, t1, t2 such that t � t1 and t � t2, there exists a term w such that t1 � w and t2 � w.

However, there is a similar claim, called weak confluence:

Definition 5.3.1 (weak confluence). for all terms t, t1, t2 such that t→ t1 and t→ t2, there

exists a term w such that t1 � w and t2 � w.

Note that these two definitions are not equivalent. Take for example the lambda calcu-

lus with four unique terms a, b, c, and d, with the reduction relation a→ b, b→ a, a→ c,

and b→ d. This calculus is weakly confluent but not confluent.

However, weak confluence and confluence are equivalent in the presence of strong

normalization (the example reduction relation above is clearly not strongly normalizing;

there is a reduction path starting with a→ b→ a→ . . . that does not terminate). This

result is called Newman’s Lemma, and its first proof was given by Newman in [New42].

We repeat the proof here:

Theorem 5.3.2. Let→ be some reduction relation. If

1. → is strongly normalizing, and

2. ∀t, t1, t2 such that t→ t1 and t→ t2, ∃w such that t1 � w and t2 � w,

then ∀t, t1, t2 such that t � t1 and t � t2, ∃w such that t1 � w and t2 � w.

76

Proof. Let t,s,v such that t � s and t � v be given. There is a reduction sequence t →

t1→ ··· → s and a reduction sequence t→ t2→ ··· → v. Since→ is weakly confluent by

hypothesis, there is a term w such that t1 � w and t2 � w.

Proceed by induction on ν(t):

Since ν(t1)< ν(t) and both s and w reduce from t1, we have by the inductive hypoth-

esis that there is some term u1 such that s→ u1 and w→ u1.

Since ν(t2) < ν(t) and both u1 (through w) and v reduce from t2, we have by the

inductive hypothesis that there is some term u such that u1 � u and v � u.

But s→ u1→ u also, i.e. u is such that s→ u and v→ u. ///

So we can set out to prove that the Intermediate Language is weakly confluent, i.e.:

Theorem 5.3.3. For any term t, for all t1, t2 such that t→ t1 and t→ t2, there exists a term

w such that t1 � w and t2 � w.

To do this, we will rely on the following three lemmas:

Lemma 5.3.4. If s1, s2, and t are terms, x is a free variable in that might appear in s2 and

t, and y is a free variable that might appear in t, then t[y := s2][x := s1] = t[x := s1][y :=

s2[x := s1]].

Proof. By induction on t.

• t is a constant. x and y do not appear in t, so t[y := s2][x := s1] = t and t[x := s1][y :=

s2[x := s1]] = t.

• t is a variable. If it is neither x nor y, the situation is just as the constant case.

Otherwise, if t = x, then t[y := s2][x := s1] = s1 and t[x := s1][y := s2[x := s1]] =

s1[y := s2[x := s1]], but y does not appear in s1 by hypothesis so s1[y := s2[x :=

s1]] = s1.

77

If t = y, then t[y := s2][x := s1] = t[y := s2[x := s1]] = s2[x := s1] and t[x := s1][y :=

s2[x := s1]] = s2[x := s1].

• t is a tuple < t1, . . . , tn >. t[y := s2][x := s1] = < t1, . . . , tn > [y := s2][x := s1] = <

t1[y := s2][x := s1], . . . tn[y := s2][x := s1]>.

By the inductive hypothesis, < t1[y := s2][x := s1], . . . tn[y := s2][x := s1] > = <

t1[x := s1][y := s2[x := s1]]tn[x := s1][y := s2[x := s1]]>, but that is just t[x := s1][y :=

s2[x := s1]].

• t is a projection πit ′. By the inductive hypothesis, t ′[y := s2][x := s1] = t ′[x :=

s1][y := s2[x := s1]], and clearly πib[x := s] = πib[x := s] for any s, b, and i, so

t[y := s2][x := s1] = t[x := s1][y := s2[x := s1]].

• t is an abstraction λx.b. By the inductive hypothesis, b[y := s2][x := s1] = b[x :=

s1][y := s2[x := s1]], and clearly λx.b[x := s] = λx.b[x := s] for any s, b, and i, so

t[y := s2][x := s1] = t[x := s1][y := s2[x := s1]].

• t is a redex (λx.b)s. ((λx.b)s)[y := s2][x := s1] is just (λx.b[y := s2][x := s1])(s[y :=

s2][x := s1]).

But by the inductive hypothesis, b[y := s2][x := s1] = b[x := s1][y := s2[x := s1]]

and s[y := s2][x := s1] = s[x := s1][y := s2[x := s1]], so t[y := s2][x := s1] = t[x :=

s1][y := s2[x := s1]].

///

Lemma 5.3.5. Let s,s′ such that s→ s′ be given. Let b be any term. Let x be some

variable of the same type as s that is free in b. Then b[x := s]� b[x := s′]

Proof. By induction on b.

78

• b is a constant. So x does not appear in b, so s does not appear in b[x := s]. Thus

b[x := s] = b[x := s′], which of course means that b[x := s]� b[x := s′].

• b is a variable. If b 6= x, it is just as in the constant case. Otherwise, b[x := s] = s.

But s→ s′ by hypothesis, so b[x := s]→ b[x := s′].

• b is a tuple < b1, . . . ,bn >. By the inductive hypothesis, bi[x := s]� bi[x := s′] for

all i, so < b1, . . . ,bn > [x := s]�< b1, . . . ,bn > [x := s′].

• b is a projection πib′. By the inductive hypothesis, b′[x := s]� b′[x := s′]. Then,

πib′[x := s] = πib[x := s]→ πib[x := s′] = πib[x := s′].

• b is an abstraction λy.v. By the inductive hypothesis, v[x := s] � v[x := s′], but

λy.v[x := s] = λy.v[x := s]→ λy.v[x := s′] = λy.v[x := s′].

• b is a redex (λy.v)r. By the inductive hypothesis, v[x := s]� v[x := s′] and r[x :=

s]� r[x := s′], but ((λy.v)r)[x := s] = (λy.v[x := s])(r[x := s])→ (λy.v[x := s′])(r[x :=

s′]) = ((λy.v)r)[x := s′].

///

Lemma 5.3.6. Let b,b′ be given such that b→ b′. Let x be some variable that is free in

b. Finally let s be a term of the same type as x. Then, b[x := s]� b′[x := s]

Proof. By induction on b.

• b is a constant or a variable: This cannot happen. Because constants and variables

are always normal, no such b′ could exist.

• b is a tuple < b1, . . . ,bn >: so b′ is of the form < b1, . . . ,b′i, . . . ,bn >, for b′i such that

bi→ b′i. By the inductive hypothesis, bi[x := s]→ b′i[x := s], so b[x := s]� b′[x := s].

• b is a projection πiv: So there are two cases.

79

– v is a tuple < v1, . . . ,vn > and the reduction is converting b to vi. Clearly

v[s := x]→ vi[x := s], so b[x := s]� b′[x := s].

– Otherwise, b′ is of the form πiv′ for some v′ such that v→ v′. By the inductive

hypothesis, v[x := s]→ v′[x := s], so b[x := s]� b′[x := s].

• b is an abstraction λy.v: So b′ is of the form λy.v′ for v′ such that v→ v′. By the

inductive hypothesis, v[x := s]→ v′[x := s], so b[x := s]� b′[x := s].

• b is an application l r. There are two cases:

– l is an abstraction λy.v, and b′ is of the form v[y := r]. Recall that substitutions

are written such that the outermost substitution is the one that should be ap-

plied first. We have that (lr)[x := s]→ v[y := r[x := s]][x := s], and by lemma

5.3.4, v[y := r][x := s] = v[x := s][y := r[x := s]], so (l r)[x := s]→ (v[y :=

r])[x := s].

– Otherwise, we can simply use the inductive hypothesis. l[x := s]→ l′[x := s]

and r[x := s]→ r′[x := s] for r′ and l′ such that r→ r′ and l→ l′, so (lr)[x :=

s] = b[x := s]→ b′[x := s].

///

Now we are ready to prove theorem 5.3.3, i.e. for any term t, for all t1, t2 such that

t→ t1 and t→ t2, there exists a term w such that t1 � w and t2 � w.

Proof. Let such terms t, t1, t2 be given. Proceed by induction on t. There are five cases:

• t is a variable or a constant. Such a term is normal so there can be no such t1 and t2.

• t =< v1, . . . ,vn >, a tuple. So t1 is of the form < v1, . . . ,v′i, . . . ,vn > and t2 is of the

form < v1, . . . ,v′j, . . . ,vn >, where vi→ v′i and v j→ v′j. There are two cases:

80

– i = j. vi is confluent by the inductive hypothesis.

– i 6= j. Let w =< v1, . . . ,v′i, . . . ,v
′
j, . . . ,vn >. t1→ w and t2→ w.

• t = πit ′. Here t ′ is confluent by the inductive hypothesis.

• t = λx.b. Here b is confluent by the inductive hypothesis.

• t = (λx.b)s. There are three cases:

– t1 = (λx.b′)s and t2 = (λx.b)s′, where b→ b′ and s→ s′. Let w = (λx.b′)s′.

Clearly t1→ w and t2→ w.

– t1 = (λx.b′)s and t2 = b[x := s]. Let w = b′[x := s]. Clearly t1→ w. And by

lemma 5.3.6, t2 � w.

– t1 = (λx.b)s′ and t2 = b[x := s]. Let w = b[x := s′]. Clearly t1→ w. And by

Lemma 5.3.5, t2 � w.

///

81

Chapter 6

Code Discussion

In section 2.2, we explain the structure of the translator program at a high level. In this

section, we state which tools we used to implement our design, and then reflect on the

benefits and drawbacks of the design, our execution of it, and what we learned from the

process.

6.1 Tools and Methodology

Git

Version control is vital for the success of a modern software project. Our team was

most familiar with Git so we chose to use that version control system. We did not need the

particular advantages that its competitors have, like locking files from Subversion, which

was not needed for a team of two, and the general user friendliness of Mercurial, which

was not needed for programmers who already knew Git.

Haskell

We wrote the translator in Haskell1, a purely functional language with a strong type

system. Haskell initially entered our consideration for the intensely practical reason that

1https://www.haskell.org/

82

https://www.haskell.org/

our advisor and one of us (Kyle McCormick) were already experienced with Haskell.

However, Haskell’s merits are what led us to choose it as the primary language of the

translator.

We saw three main benefits of choosing Haskell over any alternative. First, Haskell’s

type system is very strong, meaning that many programming mistakes are actually caught

by the compiler. This is more pleasant for the programmer and also considerably in-

creases development speed. Second, Haskell’s functional and compositional nature, and

its monad data type, make Haskell excellent for flexibly and quickly specifying pipelines.

We knew early on that the translator would be a series of steps at the top level — lexing,

then parsing, then reducing alloy to a simpler core, etc. — and it quickly became clear

that the core structure of Haskell is well suited for creating pipelines. Third and finally,

the monadic error reporting system makes tracking errors though a pipelines far easier:

all the cruft of throwing and handling exceptions is done implicitly and consistently by

the Haskell type system, accelerating development time both upfront and later on during

debugging.

Stack

Haskell comes with the Cabal package manager to manage third party Haskell pack-

ages, but it has problems with encapsulation and requires a significant amount of manual

input. Stack2 is a tool built on top of Cabal that gives each project its own environment

and automatically handles package dependencies. Around halfway through this project,

we switched to from vanilla Cabal to using Stack to organize builds and manage depen-

dencies. This simplified our build process and preemptively prevented issues that could

have been caused by modifying packages for other projects.

Java

The Alloy Analyzer is written in Java3. Most of the functionality of the Alloy Ana-

2https://docs.haskellstack.org/en/stable/README/
3https://www.oracle.com/java/index.html

83

https://docs.haskellstack.org/en/stable/README/
https://www.oracle.com/java/index.html

lyzer is available as libraries in the Alloy.jar file that holds the Analyzer. We used Java 1.8

during this project to write a simple CLI that would allow some of our Haskell programs

to interact with the Alloy Analyzer.

Alex and Happy

The first stage of the pipeline is built using the Alex4 lexer generator. Alex is a tool that

takes a specification on how to split a string into tokens as input, and produces a Haskell

function that perform said tokenization. Similarly, the second stage of the pipeline is built

using the Happy5 parser generator. Happy is a tool takes a specification on how to build

an abstract syntax tree from a token stream as input, and produces a Haskell function that

performs said parsing.

Both these tools were chosen because they are free and open source, seemed easy to

use, and target Haskell as their output language.

6.2 Takeaways and Lessons Learned

Forrest had never used Haskell before this project. Learning the language was useful

in and of itself, but also illustrated deep ideas about functional programming and type

systems. Understanding monads will likely be very useful in the future.

We struggled with establishing clear and general naming conventions for variables and

entities in this project. We often had to choose between conciseness and descriptiveness.

The result of this is that our code is more difficult to read than it needed to be. Spending

more time planning naming conventions more thoroughly and asking for more guidance

would have been beneficial.

Testing could have been done better for this project. We made small Alloy files and

wrote their expected output, but we never automated these integration tests or made unit

4https://www.haskell.org/alex/
5https://www.haskell.org/happy/

84

https://www.haskell.org/alex/
https://www.haskell.org/happy/

tests for smaller pieces of the code. There were several situations in which automated

tests and/or unit tests obviously would have helped us. Further, better testing would have

helped us be more confident to make claims about the translator’s behavior.

Related to insufficient testing, we let our progression of the project fall into the big

bang integration methodology: we got every piece of the pipeline sort of working, and

then tied it all together at once and fixed dozens of bugs throughout the entire pipeline. It

certainly would have been more efficient to clearly specify what each stage of the pipeline

should do, and finish each stage of the pipeline individually, testing them one at a time

before integrating the entire translator. An alternative approach would have been taking

narrow vertical slices: first making the translator able to correctly translate a very small

subset of Alloy, and progressively adding on more features, one at a time. We achieved

this workflow sometimes, but not consistently, which slowed our progress.

85

Chapter 7

Evaluation of the Translator

7.1 Feature Support

In this section we outline the features of Alloy our translation does support but that our

translator does not support (i.e., whose translation we defined mathematically, but whose

translation we did not implement in our proof-of-concept translator). These were mainly

abandoned due to time constraints.

• Defining relations whose types reference relations within the same sig declaration.

For example, the declaration of s referencing r as its type makes the following code

snippet fail in our translator: sig A {} sig B { r: A, s: r }. This was a

software engineering issue, and was not fixed solely due to time constraints.

• Gracefully handling multiple "runs" or "checks"; currently they are just conjoined.

This problem is just as much deciding what the behavior of the translator should

be as actually implementing it. This would be another vital feature for taking the

translator from an experiment and making it into a robust tool that professionals

would use to analyze their Alloy specifications with SMT solvers.

86

• Optionally disabling implicit scope of 3 on all runs. One of the main advantages

of SMT over Alloy is that SMT solvers often don’t need boundedness to analyze

a specification, while Alloy does. The translator would be massively more useful

and informative if we could modify the translator to optionally omit the bounds.

The translator could easily, if tediously, be modified to pass boolean flags and other

configuration data through the entire pipeline, which would then make it trivial to

conjoin certain formulas to the specification only when a given flag is set to ‘false.’

7.2 Correctness Propositions

Due to lack of time, the correctness of the translation was not formally proven. This

section gives a precise statement of our correctness claim, and identifies the intermediate

results that comprise the proof.

7.2.1 Terminology

Recall that:

• TA is the set of Alloy specifications.
• TC is the set of Core Alloy specifications.
• TI is the set of IL theories.
• TS is the set of SMT theories.
• CrSpec translates from an Alloy specification to a Core Alloy specification.
• TrSpec translates from a Core Alloy specification to an IL theory.
• T sT heory translates from an IL theory to an SMT theory.
• Alloy / Core Alloy specifications and IL/SMT theories correspond to logical

theories.
• Alloy / Core Alloy instances and IL/SMT structures are the respective interpre-

tations of specifications and theories.

87

Furthermore, in order to articulate the correctness propositions, we define several

terms:

Definition 7.2.1 (Elements). In Alloy, Core Alloy, the IL, and SMT, elements are unary,

scalar values.

Definition 7.2.2 (Tuples of Elements). Given a set of elements E, the tuples of E are all

the tuples e1×·· ·× en that can be formed from all {e1 . . .en} ⊆ E.

We denote the tuples of E by T (E).

Definition 7.2.3 (Alloy Instances: IA). An Alloy instance consists of:

• A set of non-B elements U .
• A set of sigs, each of which contains a subset of U .
• A set of relations on U .

Definition 7.2.4 (Core Alloy Instances: IC). A Core Alloy instance is an Alloy instance

for which there exists an explicit sig, _univ, which includes all elements in U .

Definition 7.2.5 (IL Structures: II). An IL Structure M1 is a first-order “slice” of a stan-

dard IL model M, constructed as follows:

The sorts of M1 are the first-order sorts of M, and the M1-interpretations of the func-

tions are as in M. (Recall that by definition, functions declared in IL have first-order

types.)

Definition 7.2.6 (SMT Structures: II). An SMT structure consists of:

• A set of sorts, each of which contains a set of elements.
• A set of functions from T (E) to E, where E is the union of the sets of elements

that make up the sorts.

88

7.2.2 Model Conversion

Definition 7.2.7 (Conversion of Alloy Instances: CrInst). Let i be an Alloy instance with

elements U .

The Core Alloy conversion CrInst(i) of i is equal to i, with the exception of the addi-

tion of the _univ sig, which contains every element in U .

The following definition describes the key bridge between the semantics of Alloy and

the semantics of SMT-Lib.

Definition 7.2.8 (Conversion of Core Alloy Instances: TrInstance). Let v be a Core Alloy

vocabulary, S be the names of sigs declared in v, and R be the relations declared in v.

Let i be a Core Alloy instance with the elements U .

The IL conversion TrInstance(i) of the Core Alloy instance i consists of:

• The set of elements U, which equals U .
• The following functions:

– For each sig name s ∈ S, we have the function is-s : U→ B, interpreted in

the obvious way.
– For each relation name r∈R, which represents a k-artiy Core Alloy relation,

we have the IL function r : U(k)→ B, interpreted in the obvious way.

Definition 7.2.9 (Conversion of IL Structures: T sStruct). The SMT conversion T sStruct(s)

of an IL structure s containing the functions F consists of:

• The sort B, which contains the elements true and f alse.
• The sort U.
• The set of functions G, which is built by taking the functions in F and flattening

their input tuples.

89

7.2.3 Proof of Correctness: Outline

Alloy to Core Alloy

The following proposition states that for every Alloy specification tA, the set of conver-

sions of the instances that model tA equals the set of instances that model the translation

of tA.

Proposition 7.2.10 (Correctness of Translation to Core Alloy). ∀tA ∈TA,{CrInst(iA)| iA ∈

IA∧ iA |= tA}= {iC| iC ∈ IC∧ iC |=CrSpec(tA)}.

Proof. Since the translation to Core Alloy consists of syntax manipulations with the Alloy

language, it is straightforward to verify that each transformation preserves meaning. ///

Core Alloy to Intermediate Language

The one aspect of our translation that is neither syntactic de-sugaring (as is the case for

translation to Core Alloy) nor well-known transformations (such as β-reduction or tuple-

flattening) is the translation from Core Alloy to the IL. It is here where the two languages

have different notions of “model.” Definition 7.2.8 described the bridge between these

two notions. The following proposition expresses the claim that our translation is correct

relative to this conversion.

Proposition 7.2.11 (Correctness of Translation to IL). ∀tC ∈ TC,{TrInstance(iC)| iC ∈

IC∧ iC |= tC}= {iI| iI ∈ II ∧ iI |= TrSpec(tC)}.

Intermediate Language to SMT

The following proposition states normalizing an IL theory does not change its models.

Proposition 7.2.12 (Correctness of Normalization of the IL). ∀tI ∈ TI, iI ∈ II,(tI |= iI)⇔

(NrmT heory(tI) |= iI))

90

Proof. This is simply the correctness of β-reduction. ///

The following proposition states that for every normalized IL theory tI , the set of

translations of the structures that model tI equals the set of structures that model the

translation of tI .

Proposition 7.2.13 (Correctness of Translation to SMT). ∀tI ∈ TI′,{T sStruct(iI)| iI ∈

II ∧ iI |= tI}= {iS| iS ∈ IS∧ iS |= T sT heory(tI)}.

where TI′ indicates the set of normalized IL theories.

Proof. This is simply the correctness of the process of flattening nested tuples. ///

7.3 Testing

7.3.1 Method

Files with Multiple Commands

Some of the Alloy test files we used have multiple commands (run or check). In the

Alloy Analyzer, the user chooses individual commands to test one at a time. The translator

does not elegantly handle multiple commands currently, so we broke each Alloy file with

n commands into n Alloy files numbered 1 to n, with one command each, all having the

full original theory. For example, the Alloy specification

sig S{}

run {no S}

check {no S}

would become the two files

sig S{}

run {no S}

91

and

sig S{}

check {no S}

Tools

We used the Unix time command to time certain Unix commands. We used the Unix

wc command with the -w argument to count the number of words in the input Alloy files

and their translations. We used Java to run AlloyCLI, a Java program we made for this

testing. To evaluate the SMT2 files written by the translator, we used z3, a popular open

source SMT solver provided by Microsoft Research.

Testing Procedure

For each Alloy file (which now has one command) with the name <filename>, we

ran the following shell commands:

time java -classpath .:alloy4.2.jar AlloyCLI <fileName>

time cat <fileName> | stack exec alloy2smt -- > out.smt2

wc -w <fileName>

wc -w out.smt2

time z3 out.smt2

In the above commands alloy2smt is the the name of the executable translator.

We recorded the time given by the three time commands (we summed the time spent

in user space and the time spent in the kernel), the output given by AlloyCLI (stating

what the result of the Alloy command in the given file was), the result of the two word

count commands, and the result of z3 on the translated file (the translated files contain the

command (check-sat), which commands z3 to search for a model of the formula stated

in the given file). We ran the time commands fifteen times, and present the average of the

times in the table below. All tests were run on an Intel Core i3-4005U CPU at 1.70GHz.

92

http://github.com/Z3Prover/z3

7.3.2 Data

We collected the Alloy files we used to test the translator from Daniel Jackson’s Software

Abstractions ([Jac12a]). The files are also available from the book’s website. We omitted

the Alloy files that our translator does not support. Unfortunately transitive closure, which

the translator does not support, is a widely used feature of Alloy, forcing us to omit many

of the Alloy specifications from Software Abstractions.

Below is a table showing the results of testing the supported Alloy files. The second

column, “Alloy Analyzer Result,” will have different values depending on whether the

command of that file was a run or a check. Both of these commands take a formula

as an argument. When the Alloy Analyzer is given a run command, it searches for an

instance (recall that what the SMT community calls a “model,” the Alloy community calls

an “instance,” and what the SMT community calls a “specification,” the Alloy community

calls a “model”) which satisfies the specification and the given formula. If the Analyzer

finds such an instance, the result is “instance found,” and otherwise it reports “no instance

found.” Our translation is equisatisfiable with an Alloy file with a run command if it is

“sat,” i.e. it has a model, when there is an Alloy instance satisfying the run command (i.e.

the Analyzer reports “instance found”). If there is no instance that satisfies the theory and

the run command, so Alloy Analyzer reports “no instance found,” the translation would

be correct if it were “unsat.”

When the Alloy Analyzer is given a check command, it searches for an Alloy in-

stance which satisfies the theory but which makes the given formula false. If the Analyzer

does not find such an instance, the result is “no counterexample” and otherwise (if it can

find such an instance) it reports “counterexample found.” An Alloy file with a check

command is equisatisfiable with its translation if the translation is “sat” when the Alloy

file is “no counterexample found,” and the translation is “unsat” when the Alloy file is

“counterexample found.”

93

http://softwareabstractions.org/models/a4-models-index.html

Finally, the Alloy file barbers.als is an inconsistent specification (it is from a home-

work problem in [Jac12a] in which students modify the specification in different ways

to make it consistent). We inserted the command run {} into this file, and because the

Alloy specification itself is contradictory, that command returned “no instance found.” In

this case as in other cases of “no instance found,” it would be correct for the translation

to be “unsat.”

The table is visually separated into three sections based on which type of command

the Alloy files have: first run, then check, and lastly barbers which is an inconsistent

specification.

The timing commands were run fifteen times, and the entries in the table represent an

average of those fifteen times.

94

Alloy Specifica-

tion Name

Alloy Analyzer

Result

Alloy Analyzer

Average Run-

time (seconds)

Translator Av-

erage Runtime

Alloy File

Number of

Words

SMT-LIB

File Number

of Words

Translation

Result

Translation Average

Runtime (seconds)

properties no instance found 1.230 0.278 76 246 unsat 0.024

barbers no instance found 0.991 0.208 31 195 unsat 0.031

AddressBook 1 † instance found 1.305 0.207 264 393 sat 0.033

AddressBook 2 instance found 1.313 0.224 264 496 sat 0.036

AddressBook 3 † no counterexample 1.398 0.217 264 441 sat 0.038

AddressBook 4 no counterexample 2.585 0.223 264 791 sat 0.035

AddressBook 5 † no counterexample 1.399 0.228 264 418 sat 0.035

AddressBook 6 † no counterexample 1.300 0.218 264 392 sat 0.028

lights 1 no counterexample 1.358 0.249 164 1085 sat 0.042

lights 2 counterexample

found

1.307 0.241 164 753 unsat 0.036

lists no counterexample 1.192 0.223 91 525 sat 0.036

sets2 no counterexample 4.152 0.216 73 735 - timed out

† : Time entries for specifications marked with † represent one run, not an average of fifteen runs. We chose to test some of

the Address Book files less thoroughly because each Address Book file is exactly identical except for the command, so we took

one check command and one run command to be representative of the overall performance of the translator and its output on that

specification.

95

7.3.3 Discussion

The translator was correct for every Alloy specification tested, i.e. the original Alloy

specification and its SMT-LIB translation were equisatisfiable. The translated specifica-

tions’ performance is very good: in fact, it was faster than the Alloy Analyzer every time!

State of the art SMT solvers like z3 are highly optimized, so this is not a huge surprise,

but it does indicate that our translation doesn’t introduce any major inefficiencies. This

makes it clear that a viable option for analyzing large Alloy files that the Alloy Analyzer

takes prohibitively long to examine would be to first translate them into SMT and then

use an SMT solver.

The translator does, however, greatly increase the length of the files, with the output

having between three and ten times as many words as the original input. The Alloy

Language is certainly more expressive than SMT-LIB, so it’s likely some of this size

increase is unavoidable, but it is also worth noting that the translator does not optimize

the generated code at all, so the complexity of the output could definitely be reduced.

Reducing this complexity may also increase the speed of the SMT solver even further.

Not listed in the table is the readability of the translator’s output for each file, because

“readability” is subjective. However in the authors’ opinion the generated SMT-LIB code

is extremely difficult for a human to read, and the translator could be significantly more

useful and user-friendly if the output was made more readable. We elaborate on this

sentiment in section 9.1, Future Work.

96

Chapter 8

Related Work

The use of alternative tools, especially SMT solvers, to analyze relational algebra in gen-

eral and the Alloy language in particular, is an active area of research. An early attempt

was made by [EGT11] who translated a subset of the Alloy language into the SMT-LIB

language. The later works [EG15] and [EGTH15] from the same authors went on to

address many limitations of the original work, including describing a first-order axioma-

tization of transitive closure that does not require finitization, which while it is naturally

incomplete, works in a huge majority of cases.

Later, [MRTB17] also developed a translation that can turn Alloy specifications into

code for their SMT solver CVC4. Their translation works by reducing Alloy to a rela-

tional logic that they defined and made their SMT solver able to interpret. As the authors

mentioned, the advantage of this approach is that translating between two relational lan-

guages is relatively easy, so it’s straightforward to translate additional languages this way.

Others used mathematically similar approaches to translate Alloy into various logics

so that automated theorem provers can be used to analyze statements about Alloy spec-

ifications. For example, [Gei11] and [UGEGT12] describe a translation from Alloy to a

first-order logic used by the KeY theorem prover, which can execute fully automatic and

97

user-guided proofs.

Lastly, a major step in using theorem provers to augment or replace the Alloy Ana-

lyzer was made by [NMMB14], which describes the integration of Alloy into the Het-

erogeneous Tool Set (HeTS), which is an “open source, general framework for formal

methods integration and proof management” [MMCL13], allowing specifications in the

Alloy language to be analyzed by all the theorem provers that have also been integrated

with HeTS.

98

Chapter 9

Conclusion and Future Work

9.1 Future Work

Significant work remains to be done to turn the proof-of-concept translation program

we provide into a complete tool that professionals could use to leverage SMT solvers to

analyze their Alloy specifications.

Many features of Alloy are currently unsupported, and would need to be added. The

most important of these, like transitive closure and integers, are necessary for the trans-

lator to be practically useful to the formal methods community. Some of these missing

features are mathematically straightforward and only require programming effort to com-

plete. Others, like transitive closure, will be more interesting. See section 7.1 for a

complete list of the features of Alloy that the translator does not yet support.

Additionally, the translator’s SMT-LIB output is relatively difficult for a human to

read. Things like optimization of the generated SMT-LIB code, explanatory comments,

comments that relate the generated SMT-LIB code to portions of the input Alloy file,

and more informative variable names would make it significantly easier for a user to

gain useful information from the translation beyond just whether their theory has models,

99

and to utilize the SMT solver more efficiently. The translator could also be improved

by efforts to refactor and simplify the currently existing Haskell code: as is common in

software development, many possible improvements to our approach became apparent

after we had executed it.

Finally, the reliability of the translator needs to be continually verified by a robust

testing suite. Model finding often serves critical verification roles, so guaranteed correct-

ness is absolutely imperative for the translator to be useful to real users. By creating a

testing harness which allows many unit and integration tests to be automatically run for

every new version of the translator, we could verify and demonstrate that the translator is

working as expected.

Testing of our translator showed some suggestive performance results: while the Alloy

Analyzer always took over a second to analyze its specifications, Z3 was always able to

analyze the translation of the specifications in 30 to 40 milliseconds. Our relatively small

sample size, both in terms of distinct Alloy specifications and the number of runs we did

on each one, means that these results are not definitive, but they are suggestive. If work

towards integrating Alloy and SMT continues, investigation of the potential performance

gains would be worthwhile.

9.2 Summary and Conclusion

In this report, we gave a mathematical description of a translation from the Alloy Lan-

guage to the SMT-LIB language. This was made interesting by the fact that Alloy uses

idioms from relational algebra while SMT-LIB is based on classical first order logic. We

also built a software application that stands as a proof-of-concept for the translation. We

then evaluated the translation program and the performance of the SMT-LIB code the

translator generates. There are many avenues for future work in this area.

100

Bibliography

[BFT17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Stan-

dard: Version 2.6. Technical report, Department of Computer Science, The

University of Iowa, 2017. Available at www.SMT-LIB.org.

[BSST09] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli.

Satisfiability modulo theories. Handbook of satisfiability, 185:825–885,

2009.

[C+] David R Cok et al. The smt-libv2 language and tools: A tutorial.

[EG15] Aboubakr Achraf El Ghazi. Relational reasoning-constraint solving, deduc-

tion, and program verification. 2015.

[EGT11] Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational reasoning via

smt solving. In International Symposium on Formal Methods, pages 133–

148. Springer, 2011.

[EGTH15] Aboubakr Achraf El Ghazi, Mana Taghdiri, and Mihai Herda. First-order

transitive closure axiomatization via iterative invariant injections. In NASA

Formal Methods Symposium, pages 143–157, 2015.

[Gei11] Ulrich Geilmann. Verifying Alloy Models Using KeY. PhD thesis, Diplo-

marbeit, Karlsruhe Institute of Technology, 2011.

101

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, vol-

ume 7. Cambridge University Press Cambridge, 1989.

[Jac12a] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT

press, 2012.

[Jac12b] Daniel Jackson. Software Abstractions: logic, language, and analy-

sis. Appendix B: Alloy Language Reference. MIT press, 2012. avail-

able online: http://alloy.mit.edu/alloy/documentation/book-chapters/alloy-

language-reference.pdf.

[MMCL13] Till Mossakowski, Christian Maeder, Mihai Codescu, and Dominik Lucke.

Hets user guide-version 0.99. DKFI GmbH, Bremen, Germany, 2013.

[MRTB17] Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. Rela-

tional constraint solving in smt. In International Conference on Automated

Deduction, pages 148–165. Springer, 2017.

[New42] Maxwell Herman Alexander Newman. On theories with a combinatorial

definition of “equivalence”. Annals of mathematics, pages 223–243, 1942.

[NMMB14] Renato Neves, Alexandre Madeira, Manuel Martins, and Luís Barbosa. An

institution for Alloy and its translation to second-order logic. In Integration

of Reusable Systems, pages 45–75. Springer, 2014.

[SLM+92] Bart Selman, Hector J Levesque, David G Mitchell, et al. A new method for

solving hard satisfiability problems. In Proceedings of the Tenth National

Conference on Artificial Intelligence, volume 92, pages 440–446, 1992.

[Tai67] William W Tait. Intensional interpretations of functionals of finite type I.

The Journal of Symbolic Logic, 32(2):198–212, 1967.

102

http://alloy.mit.edu/alloy/documentation/book-chapters/alloy-language-reference.pdf
http://alloy.mit.edu/alloy/documentation/book-chapters/alloy-language-reference.pdf

[Tra50] Boris A Trakhtenbrot. Impossibility of an algorithm for the decision prob-

lem in finite classes. Doklady Akademii Nauk SSSR, 70:569–572, 1950.

[UGEGT12] Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, and Mana

Taghdiri. A proof assistant for Alloy specifications. In TACAS: Interna-

tional Conference on Tools and Algorithms for the Construction and Anal-

ysis of Systems, pages 422–436. Springer, 2012.

103

Appendices

104

Appendix A

Notation

105

Symbol Rule Description
TA spec Specifications
SA sigDecl Signature declarations
XA extClause? Signature extension clauses
PA predDe f Predicate definitions
UA f unDe f Function definitions
AA f act Facts
RA assert Assertions
CA cmd Commands
KA scope? Command scopes
YA typescope Command type-scopes
MA term Terms
FA f mla Formulas
EA expr Expressions
DA decl Parameter/Relation Declarations
QA quantDecl Quantifier Variable Declarations
N name Names
N natNum Natural (≥ 0) Numbers

Table A.1: Elements of Supported Alloy. This table relates symbols to the parts of Alloy
that they represent and to the grammar rules that define them. The grammar of Supported
Alloy can be found in Definition 3.1.1.

Symbol Rule Description
TC spec Specifications
VC vocabs Vocabularies
SC sigDecl Signature declarations
PC predDe f Predicate definitions
UC f unDe f Function definitions
AC f act Facts
CC cmd Commands
FC f mla Formulas
EC expr Expressions
DC decl Parameter/Relation Declarations
2 N name Names
N natNum Natural (≥ 0) Numbers

Table A.2: Elements of Core Alloy. This table relates symbols to the parts of Core Alloy
that they represent and to the grammar rules that define them. The grammar of Core Alloy
can be found in Definition 3.2.1.

106

	Introduction and Motivation
	Model Finding
	SMT and SMT-LIB
	Alloy

	Design Decisions
	Design: Mathematical Concerns
	Relations as Boolean Valued Functions
	Core Alloy
	The Intermediate Language
	The Universal Sort, and Sigs as Unary Predicates

	Design: Software Engineering Concerns

	Preliminaries
	Supported Alloy
	Supported Subset of Alloy
	Unsupported Features

	Core Alloy
	The Intermediate Language
	Relationship to the Haskell Data Structure

	SMT-LIB

	The Translation
	Supported Alloy to Core Alloy
	Core Alloy to Intermediate Language
	Normalization of the Intermediate Language
	Normalized Intermediate Language to SMT

	Properties of the Intermediate Language
	Definitions
	Proof of Strong Normalization
	Proof of Confluence

	Code Discussion
	Tools and Methodology
	Takeaways and Lessons Learned

	Evaluation of the Translator
	Feature Support
	Correctness Propositions
	Terminology
	Model Conversion
	Proof of Correctness: Outline

	Testing
	Method
	Data
	Discussion

	Related Work
	Conclusion and Future Work
	Future Work
	Summary and Conclusion

	Appendices
	Notation

