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Abstract 

 Cells respond to their mechanical environment by changing shape and size, migrating, or even 

differentiating to a more specialized cell type.  A better understanding of the response of cells to 

surrounding cues will allow for more targeted and effected designs for biomedical applications, such as 

disease treatment or cellular therapy.   

The spreading behavior of both human mesenchymal stem cells (hMSCs) and 3T3 fibroblasts is a 

function of substrate stiffness, and can be quantified to describe the most visible response to how a cell 

senses stiffness.  The stiffness of the substrate material can be modulated by altering the substrate 

thickness, and this has been done with the commonly-used linearly elastic gel, polyacrylamide (PA).  

Though easy to produce and tune, PA gel does not exhibit strain-stiffening behavior, and thus is not as 

representative of biological tissue as fibrin or collagen gel.   Fibroblasts on soft fibrin gel show spreading 

similar to much stiffer linear gels, indicating a difference in cell stiffness sensing on these two materials.  

We hypothesize cells can sense further into fibrin and collagen gels than linear materials due to 

the strain-stiffening material property. The goal of this work is to compare the material response of linear 

(PA) and strain-stiffening (fibrin, collagen gel) substrates through modulation of effective stiffness of the 

materials.  The two-step approach is to first develop a finite element model to numerically simulate a cell 

contracting on substrates of different thicknesses, and then to validate the numerical model by quantifying 

fibroblast spreading on sloped fibrin and collagen gels. 

 The finite element model shows that the effective stiffness of both linear and nonlinear materials 

sharply increases once the thickness is reduced below 10µm.  Due to the strain-stiffening behavior, the 

nonlinear material experiences a more drastic increase in effective stiffness at these low thicknesses.  

Experimentally, the gradual response of cell area of HLF and 3T3 fibroblasts on fibrin and collagen gels 

is significantly different (p<0.05) from these cell types on PA gel.  This gradual increase in area as 

substrate thickness decreases was not predicted by the finite element model.  Therefore, cell spreading 

response to stiffness is not explained by just the nonlinearity of the material. 
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Introduction 

 

The stiffness of the substrate on which a cell grows can dramatically influence the behavior of the 

cell.  These affected behaviors include morphology, migration, differentiation, and proliferation and vary 

between cell types.  With the behavior of cells so affected by substrate rigidity, it is critical to take the 

mechanical properties of cell substrates into consideration when studying cells.  Furthermore, a greater 

understanding of the effects of tissue rigidity on cell behavior can provide vital information in developing 

tissue engineering solutions that are aimed to treat disease or provide cellular therapy. 

The differentiation, apoptosis level, and amount of spreading of cells are influenced by the 

stiffness of the substrate on which the cells are cultured.  When grown in calcification media, valve 

interstitial cells develop calcified bone-like nodules on soft collagen gel, but have more apoptosis and 

differentiation to contractile myofibroblasts when on stiffer collagen gel (Yip et al. [1]).  Similarly, adult 

neural stem cells grown in differentiation media respond to stiffness by differentiating into neurons (soft) 

or glia (stiff) (Saha et al. [2]).  Annulus fibrosus cells harvested from the lumbar spine of rats and cultured 

on polyacrylamide (PA) gels of various stiffnesses have a more spread morphology and lower levels of 

apoptosis on stiffer substrates (Zhang et al. [3]).  This lower level of apoptosis on soft PA gel is also seen 

in 3T3 fibroblasts, though apoptosis of transformed version of these cells is not affected by substrate 

stiffness (Wang et al. [4]).  Ulrich et al. [5] found that the spreading, migration, and proliferation of 

glioblastoma multiforme cells are strongly dependent on the rigidity of the substrate.   

It is agreed upon that cells can sense the mechanical properties, specifically the stiffness, of their 

environment; however, because we cannot simply ask a cell what it is feeling, we must interpret this 

sensing by quantifying cell and substrate behavior.  Maloney et al. [6] provide several definitions of a 

critical substrate thickness where a cell can sense the effects of a rigid boundary, including the depth at 

which a certain strain exists, or a thickness that maintains a particular surface displacement due to applied 

traction.  A finite element model developed by Sen et al. [7] concluded, by measuring the strain field 
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between contracting cells, that hMSCs can sense a nearby cell if the cells are within one cell-length apart.  

Experimental results of hMSCs on PA gel by Buxboim et al. [8] agree with the aforementioned finite 

element model.  In contrast, Winer et al. [9] found that hMSCs and 3T3 fibroblasts on fibrin gel can 

deform the gel up to five cell-lengths away, concluding that cells respond to the nonlinear substrate 

properties differently than they do to those of a linear substrate.  This larger scale of sensing on a 

nonlinear substrate is shown by Leong et al. [10], where hMSCs on collagen gel spread on gels much 

thicker than those of Buxboim et al. [8]. 

There is an evident difference in how a cell responds to not just the substrate stiffness, but to the 

stress-strain relationship of the substrate.  PA gel is an easily-produced and easily-tuned linearly elastic 

material on which cell sensing is being studied.  However, materials with this linear property are not 

representative of biological tissues.  Therefore, the next step in understanding cell sensing is to study the 

cell response to substrate thickness on a more representative tissue analog. 

The strain-stiffening material property of fibrin and collagen gels lead to the hypothesis that as 

substrate thickness decreases, cells cultured on these nonlinear materials will sense the rigid boundary 

before cells cultured on PA gel.  To test this hypothesis, the approach has two steps:  

1. Develop a finite element model to quantify the increase of effective stiffness with 

decreasing thickness linear and nonlinear substrates. 

2. Experimentally validate the finite element results with cells cultured on thin nonlinear 

gels that are sloped for material consistency and for testing multiple thicknesses 

simultaneously. 

This approach will advance our knowledge of cell sensing, will lend to better understanding of cell-

substrate mechanics, and aid in more rational design of engineered tissue solutions. 

 

  



Mathilda S. Rudnicki 

 

 
3 

 

Background 

Cell responses to stiffness 

 Cellular responses to cues from the surroundings allow organisms to adapt and survive in a wide 

range of environments.  Topographical cues in the environment can lead to cell alignment and migration, 

thereby removing the dependence on chemical factors to obtain a particular cell response (Oakley et al. 

[11]).  Cell response to the chemical environment, such as growth factors, can be enhanced when used in 

combination with different substrate stiffnesses (Semler et al. [12]).  Various cell types respond to 

substrate stiffness in different ways: hMSCs show polygonal morphologies similar to osteoblasts when 

cultured on stiff substrates (Engler et al. [13]), but on the softest material, undergo neuron branching 

(Flanagan et al. [14]); on medium-stiffness substrates, myoblasts form more striated myotubules after four 

weeks in culture than on softer or stiffer substrates (Engler et al. [15]).  Fibroblasts have even been shown 

to migrate when encountering a stiffness gradient, preferring stiffer materials to soft (Lo et al. [16]). 

 The stiffness of various tissues found in the body range from under 1kPa to tens of kPa, as shown 

in Figure 1 (Buxboim et al. [8]).   

 

Figure 1.  The stiffness of biological tissues spans over two orders of magnitude.  Replotting of data from Buxboim et al. 
[8]. 

Different cell types respond and thrive - proliferate, migrate, apoptose as necessary for system function - 

at these different stiffnesses.  In particular, fibroblasts have been shown to spread in response to substrates 

increasing in stiffness within this biologically-relevant range (Engler et al. [17], Yeung et al. [18], Solon 

et al. [19]).  One of the more visible cellular responses to substrate stiffness is the area of the cells, and 

can be seen with staining the cytoskeleton or cytoplasm.  Not only do cells on stiffer substrates have 

larger areas, but also feature more stress fibers, as seen by phalloidin staining of 3T3 fibroblasts, Figure 
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2(a).  The location and prominence of the stress fibers may contribute to the varying traction that the cell 

applies to the substrate, as seen in Figure 2(b).  

 

 
 

 

             Soft                      Stiff 

(a)  

(b) 

Figure 2.  3T3 Fibroblast spread morphology.  (a) Fibroblasts on 1kPa PA gel (left) and glass (right); scale bar = 40µm.  

Solon et al. [19].  (b) Traction force microscopy of a migrating fibroblast on 2.8kPa PA gel; scale bar ≈ 20µm; traction in 

dyn/cm
2
 (10 dyn/cm

2
 = 1Pa).  Munevar et al. [20].  Reprinted with permission. 

 Interestingly, as seen in Figure 3, the cell spreading response of 3T3 fibroblasts (Solon et al. [19], 

Winer et al. [9]) is similar to that of hMSCs (Engler et al. [13]), cultured on the same PA substrate.  

Though these cell types are at different stages of differentiation, they exhibit similar spreading behavior 

on PA substrates of different stiffnesses.   

PA gel has been a popular choice of substrate for studying cell response to substrate stiffness 

since Pelham and Wang [21] used this material to study cell locomotion and focal adhesions on substrates 

of various stiffnesses.  In addition to being easily producible, the substrate is easily tuned to a specific 

stiffness, with Young’s modulus ranging from 6Pa to 150kPa by following the general procedure 

specified by Yeung et al. [18].  The tunable stiffnesses allow for a range of simulated environments, from 

soft brain-like softness to calcification-like stiffness.  Because cells will not bind to PA, there is neither 

compaction of the material nor burrowing as the cells are cultured, so the cultured cells are constrained to 

the two-dimensional environment.   
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Figure 3.  3T3 fibroblasts and hMSCs respond to increasing substrate stiffness by spreading.  The cells on the thickest PA 
gels ( , ) respond similarly to gel stiffness, but cells on thin PA gels (X) are affected by the rigid boundary.  Replotting 

of data from Solon et al. [19], Winer et al. [9], and Engler et al. [13]. 

The mechanism of cellular response to stiffness is beyond the scope of this work, thus this work 

focuses on comparison of cell stiffness sensing by quantifying the cellular spreading of fibroblasts.   

 

Effect of substrate thickness 

Defining the extent to which a cell senses stiffness leaves much room for interpretation.  Maloney 

et al. [6] compiled several definitions of a critical depth where a cell senses a rigid boundary of the 

substrate.  The definition used by this group, which modeled a focal adhesion displacing and distorting 

the surface of a substrate, considers this critical depth where the adhesion site displacement decays by a 

certain amount.  Alternatively, Krishnan et al. [22] defined the critical thickness as the depth where the 

principal strain decays to <0.1%.  Under this definition, this group’s finite element model indicated that a 

linearly elastic substrate with Young’s modulus of 18kPa would have to be 3µm thick.  The distribution 

of principal strain in substrates larger than 3µm would be entirely dissipated, and thus a cell would not be 

able to sense the rigid boundary.  Increasing the stiffness to 1800kPa reduces this critical depth to 

0.375µm, implying that there is some dependence on material stiffness.   

In an effort to change the stiffness that a cell senses but maintain substrate composition, several 

groups have experimented with modifying substrate thickness and observing the cell spreading behavior.  
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Cells cultured on thick and thin gels have been shown to present with different morphology due to the 

thickness of the substrate.   

3T3 fibroblasts (Maloney et al. [6]) cultured on PA gel for 24 hours have a very similar response 

to human mesenchymal stem cells (Buxboim et al. [8]) on the linear substrate at the same time point.  As 

the substrate thickness decreases, the cell area increases dramatically as substrates dip below 50µm, as 

shown in Figure 4.   
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Figure 4.  3T3 fibroblasts and hMSCs respond to decreasing substrate thickness by spreading.  When cultured on PA gel, 

these two cell types follow a similar curve.  Though there are only two data points for hMSCs cultured on collagen, these 

cells spread on much thicker substrates than when cultured on PA gel.  Replotting of data from Maloney et al. [6], 

Buxboim et al. [8], and Leong et al. [10]. 

This spreading is similar to that of cells on stiffer substrates; the thin substrate is effectively stiffer than the 

thick substrate.  By culturing cells on collagen gel (3 mg/mL) rather than on PA gel, Leong et al. [10] saw 

much higher cell area of human mesenchymal stem cells with reduced substrate thickness compared to 

Maloney et al. [6] and Buxboim et al. [8]; though only two thicknesses were studied, cells on these 

collagen gels at a two day time point behave as if the gels were much thinner. 

Quantification of stiffness sensing 

Linear substrates 

Finite element simulations provide a method of looking into a model during and after a series of 

events, and can be used to find areas of concern or to look at distributions of different variables.  To 
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determine how far cells sense, Sen et al. [7] developed a model describing a linearly elastic gel on which 

sits a cell (hMSC), complete with cell membrane, cytoplasm, and nucleus.  The model, as shown in 

Figure 5, is computationally simplified by defining an axis of symmetry through the center of the cell and 

then solving the two-dimensional model.   

 

Figure 5.  Schematic of the finite element model developed by Sen et al. [7].  The axisymmetric model features a rigid 
base, gel of variable stiffness, contracting cytoplasm, and non-contractile nucleus.  Reprinted with permission. 

The stiffnesses chosen by Sen et al. [7] encompass the range of biological tissue stiffnesses, as shown in 

Figure 1, from brain to osteal stiffnesses.  The gel is defined wider than the cell to model an infinite plane, 

and the gel thickness ranges from 1-50µm.  By modeling a contracting cell at more thicknesses than done 

by Krishnan et al. [22], this model quantifies cell sensing with a critical thickness.  The critical thickness, 

defined by fitting the gel surface displacement-gel thickness curve to a hyperbola, increases with 

increasing gel stiffness.  A cell on a softer substrate has a smaller critical thickness, and therefore the rigid 

boundary is not seen until the gel is quite thin; as stiffness increases, the gel must get thicker to effectively 

hide the boundary from the cell.  

 In addition to determining the critical thickness, the finite element model used by Sen et al. [7] 

allowed this group to visualize the displacement and strain gradients throughout the substrate.  To 

investigate the distance at which cells could sense one another, this group modeled two cells separated by 

various distances, as shown in Figure 6.  By examining the strain field decay in the substrate between the 

cells, the group observed that the strain between cells at least once cell-length apart decays to ~3.5%, and 

concluded that when cells are within one cell-length apart, the substrate is displaced enough to permit cell 

communication. 
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Figure 6.  Sensing scale of finite element-modeled contracting cells on a linearly elastic substrate.  Note that when the 

separation is two cell lengths, the strain field between the cells decays to zero (above).  Placing the cells only one cell-

length apart does not leave enough space for the strain to decay to zero (below).  Thus, cells can be influenced by a nearby 
cell that is within one cell length away.  Sen et al. [7].  Reprinted with permission. 

 To experimentally validate the model results, Buxboim et al. [8] cultured hMSCs on PA gels of 

different thicknesses to explore the critical thickness where a cell can sense the rigid boundary.  Instead of 

visualizing strain distributions, this group quantified the spreading area of individual cells at each 

thickness.  With the cell area plotted with gel thickness, this group showed that area begins increasing 

once the gel thickness is brought below 20µm, increasing by 50% between the 100 and 15µm data points.  

In addition, a fit of these data to an equation for hyperbolic decay showed the curvature parameter as just 

under 4µm, as shown in Figure 7.   Buxboim et al. [8] interpreted this parameter value of 3.4 as the 

thickness at which a cell can begin to see the rigid boundary.  This critical thickness agrees with the 

sensing scale determined by the finite element model of Sen et al. [7]. 
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Figure 7.  hMSCs cultured on 1kPa PA gel of various thicknesses.  The fit to the hyperbolic decay defines the critical 

thickness as 3.4µm, which is in agreement with the sensing scale of the finite element model of Sen et al. [7].  Replotting of 

data from Buxboim et al. [8]. 
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Nonlinear substrates  

 A common way of defining materials used in construction and non-biological engineering is with 

a Young’s modulus, or ratio of stress to strain in the material.  The Young’s modulus defines the linear 

elasticity of these materials: the material, if loaded under the yield stress or strain, will return to the 

original shape once unloaded before yielding, and will do so with a constant slope of the stress-strain 

curve.  Biological materials, such as skin, brain tissue, and blood vessels, also exhibit elasticity but 

experience strain-stiffening and thus, cannot be easily defined with just a Young’s modulus.  As the 

material is strained, higher stress is required to strain the material further, similar to the amount of effort 

needed to inflate a balloon.  In Figure 8, the stress required to bring the material to 50% strain is roughly 

300Pa; straining the material an additional 30% requires an additional 600Pa.  

 

 

Figure 8.  Stress-strain relationship of a 2mg/mL fibrin gel, as measured with rheometry, exhibiting strain-stiffening 
behavior.  Replotting of data from Winer et al. [9]. 

In contrast to the short distances over which cells can sense on PA gels, Leong et al. [10] showed 

that spreading occurs on soft but thick collagen gel, as shown in Figure 4.  Winer et al. [9] found that the 

cell area of fibroblasts cultured on a soft fibrin gel, with sub-kPa low-strain stiffness, was similar to that 

of fibroblasts cultured on a PA gel of relatively high stiffness, as shown in Figure 9.  This behavior is also 

seen in hMSCs, and may indicate that the cells locally increase the stiffness of the nonlinear material and 

then spread as a result of this apparently stiffer substrate.  By traction force microscopy, this group saw 

fibrin gel displacements on the order of several cell-lengths away.  In the literature, there is a difference in 
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length scales of cells on nonlinear materials (Winer et al. [9], Leong et al. [10]) from cells on linear 

materials (Sen et al. [7], Buxboim et al. [8]).  In addition to nonlinear materials better representing 

biological tissue than linear materials, the material difference may affect the ability to use the thickness to 

modulate stiffness, and warrants the further investigation of cell sensing on nonlinear substrates. 
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Figure 9.  3T3 fibroblasts cultured on PA gel increase in area as stiffness increases.  When cultured on 2mg/mL fibrin gel, 
these cells spread as if on a much stiffer substrate.  Replotting of data from Winer et al. [9]. 
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Methods 

Our approach for studying cell spreading behavior on a strain-stiffening (nonlinear) material is a 

two-step approach: first, a finite element model is developed to simulate a cell contracting on a substrate, 

and second, experimental work is done to quantify the area of cells on nonlinear substrates of different 

thickness.   

The model developed in this work will put the focus on the response of a substrate to a cell-

applied traction along a portion of the top surface.  The displacement of the substrate due to this traction 

will allow us to calculate the effective stiffness of the material; a measure of the extent to which a cell can 

deform the substrate, and the effects of a rigid boundary under the substrate.   

The model developed here has geometry and parameters different from published models, yet for 

validity, the linear model is tuned so that substrate response matches that of published finite element 

analyses.  This validation is critical for the model when the material definition is changed from linearly 

elastic to nonlinear.  The strain-stiffening behavior of the nonlinear material, which is based on 

rheological data of fibrin gel, is expected to show a different response (trend of effective stiffness versus 

gel thickness) from that of the linear material. 

The experimental work employs sloped protein gels on which fibroblasts are cultured.  The 

sloped gels allow the ligand density to remain the same throughout the sample, and also increase 

efficiency of data gathering by allows numerous substrate thicknesses within once sample. 

 

Finite Element 

Linearly elastic model development 

 The finite element model used in this research is based on the Sen et al. [7] model, with a 

simplified geometry based on that by Mehrotra et al. [23], which eliminates the complicated cell with 

internal stresses.  The removal of the modeled cell simplifies the model definition and allows for more 
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efficient post-processing of the data by focusing on the response of the substrate, rather than on modeling 

the cell. 

 The geometry of the gel is based on geometry and loading from the model of Sen et al. [7] and 

Mehrotra et al. [23], respectively (see the Appendix, p39), and are shown in Figure 10.   

 

 

(a) 

 

(b) 

Figure 10.  (a) Schematic of the finite element model: traction is applied to the top surface of a substrate.  The lower 

boundary is fixed while the left boundary can move only vertically.  Nine versions of the model are created in different 

thicknesses from 0.3-50µm.  The cell is shown for reference but is not modeled, allowing focus to be on the substrate 

response to a cell-applied traction.  (b) Revolved about the axis, the model simulates a round cell applying traction along 
an annulus of given dimensions. 

The width of the gel is semi-infinite (meaning the stresses and strains dissipate to zero); the lateral 

boundaries do not affect the deformation of gel in the area of applied traction.  The thickness of the 

substrate ranges from 0.3 to 50µm (0.3, 1, 2.5, 5, 10, 12, 15, 20, 50µm), with the thickest gel considered 

to be infinite thickness, as seen by the cell.  At the “infinite thickness” of 50µm, the rigid boundary under 

the substrate does not affect the surface deformation, as seen by the very low strains (Appendix, p46).  

The axisymmetric model makes two assumptions: first, the cell is circular, thus allowing a computation-

saving axisymmetric model to be analyzed; and second, the focal adhesion is modeled as a surface 

traction at the outer portion of the cell-gel interface, thus creating an annulus when the model is revolved 

about its axis of symmetry.  The location of the traction is based on a study by Mehrotra et al. [23] that 

observes cell behavior on thin polyelectrolyte multilayers.  This group calculated cell area and focal 

adhesion area by image analysis of highlighted areas in a region of interest with the assumption that cells 

are circular with focal adhesions toward the outer edge.  As done by Mehrotra et al. [23], cell contraction 

is modeled with a constant traction along the focal adhesion area, thereby creating an annular ring of 
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inwardly directed traction.  To ensure that this model produced results comparable to those that have been 

published, four stiffness values as per Sen et al. [7] were used in the linear finite element simulations.  

The stiffnesses range includes that of brain tissue (1kPa), the intermediate stiffness of muscle (5, 12kPa), 

and stiffer osteoids (40kPa).  Finite element simulations of the model of “infinitely” thick substrate 

(50µm) were performed with various tractions to determine the level that produces displacements on the 

order of those done by Sen et al. [7].   

 Finite element simulations were performed using ABAQUS v6.8 (Providence, RI).  CAX6M 

elements (6-node-modified quadratic axisymmetric triangular) were used, and elements ranged in number 

from 200 (for 0. 3µm) to 8000 (for 50µm) per simulation.  A Poisson’s ratio of 0.45 was used for all 

linear simulations.  

The location of the cell-applied traction from the axis of symmetry (R) and the distance over 

which the traction is applied (A), as shown in Figure 11, is based on quantification data of 3T3 fibroblasts 

by Mehrotra et al. [23].  Parametric analyses different values for R and A were performed to determine 

the substrate response to larger or smaller cells (by changing R) and larger or smaller cell-substrate 

interface (by changing A). 

 

 

Figure 11.  The size of the applied traction, A, and mean distance of the traction from the axis, R, are shown on the finite 
element substrate. 

Strain-stiffening material definition and validation 

The material definition used in the finite element model of this project is based on shear 

rheometry data of fibrin gel of 2mg/mL.  The low-strain response of the fibrin gel was obtained with 2% 

oscillatory shear strain, while the high-strain response was obtained by bringing the gel to 100% strain 
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with the same angular velocity as the low-strain response (Winer et al. [9]).  The data in this stress-strain 

relationship (shown in Figure 8) were fit to a third-order reduced polynomial model in ABAQUS with the 

following form: 

                                  
 

  
   (1) 

 

where   is the strain energy per unit volume,    is the first strain invariant, and    is a compressibility 

term.  For details on the steps for validating the strain-stiffening material, see the Appendix, p39. 

Simulating substrate response of cell contraction 

 Simulations were performed to analyze the effects of substrate thickness and cell-applied traction.  

Substrate thickness, as reported by Sen et al. [7], affects the strain distributions of a linear elastic substrate 

in such a way that cells may “feel” the very stiff underlying substrate.  The substrate thickness in the 

simulations varied from 0.3 to 50µm, stated previously.  As the material definition of this model 

experiences strain-stiffening, simulations were performed with the cell-applied traction varying from 

50Pa up to 600Pa.  These values were chosen to capture the substrate responses at low and upper-mid 

range of strains while preventing element distortion and staying within the range of cell tractions found by 

Munevar et al. [20], Wang et al. [24], and Franck et al. [25].   

Experimental 

Gel mold design and sample preparation 

Modulating the stiffness of a linearly elastic material, such as PA gel, is simply a matter of 

adjusting the polymerization components (see the Appendix, p53).  Though nonlinear protein gels cannot 

be described by one stiffness value, adjusting the protein concentration can make the material overall 

stiffer or softer.  However, cells cultured on protein gels of different concentrations are responding to the 

different mechanical properties of the material due to the increased ligand concentration, and the altered 

protein environment.   
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A method for producing a thin gel with an inclined surface was developed in this project.  Rather than 

create multiple thin, constant-thickness gels of various thicknesses, this inclined gel method allows the 

study of cells on various thicknesses of the same material within the same sample. 

 The sloped substrate was created by sandwiching unpolymerized gel between two pieces of glass 

with a spacer on one side, as shown in Figure 12.   

 

Figure 12.  Schematic of the experimental setup for creating the sloped gel sample.  The collagen or fibrin gel adheres to 

the activated No 1.5 coverslip and is formed into the sloped shape by the upper large glass slide that is weighted with a 
50g object. 

To create a sloped gel, the substrate must firmly attach to the bottom glass piece, yet separate easily from 

the top.  The slides to which the gel should adhere firmly were activated as per Pelham and Wang (1997).  

Briefly, the glass is passed over an ethanol flame, exposed to 0.1N NaOH, and air dried.  A thin coat of 3-

aminopropyltrimethoxysilane is applied to the glass and incubated at room temperature for 5 minutes, and 

then the glass was rinsed in deionized H2O.  To activate the surface, 0.5% glutaraldehyde was then 

applied to the glass and incubated at room temperature for 30 minutes, and the slides were again rinsed, 

then air dried.  To facilitate the removal of the collagen or fibrin gel from the top glass slide, Rain-X or 

Sigmacote may be applied to the glass.  However, residual Rain-X was observed to affect the health of the 

cells, so the top glass slide was left untreated.  An initial maximum thickness of 150µm is used to act as 

the substrate of infinite thickness.  Based on finite element simulations that showed 50µm-thick gels as 

infinitely thick, this 150µm thickness will be sufficiently thick to show differences in cell area and can be 

created with readily available lab materials.  To achieve this thickness, two No.1 coverslips (18x18mm, 

Electron Microscopy Sciences), each with approximate thickness of 150µm, were used as a spacer 

between the two glass pieces by attaching the coverslips to the bottom glass with silicone glue.  The 

schematic of a finished sample ready for cell seeding is shown in Figure 13. 

Large glass slide 

Activated No 1.5 coverslip 

No 1 coverslips 
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Figure 13.  Schematic of the finished sample ready for cell seeding.  Two samples are placed in a 100mm dish and the 
right side is propped up with two No 1 coverslips to ensure a level seeding surface. 

See the Appendix, p53 for the testing of glass surface treatments. 

 Collagen gel samples were prepared in a cold room (4
o
C) to minimize polymerization during 

sample preparation.  Collagen gel was prepared with acid-extracted rat tail tendon (RTT) collagen and 

polymerized with sodium hydroxide between glass slides at room temperature for approximately one 

hour.  DMEM was added to the unpolymerized mixture to bring the final collagen concentration to 

~4mg/mL.  Fibrin gels were prepared at room temperature by polymerizing fibrinogen and thrombin with 

calcium.  DMEM and HBSS were added to the unpolymerized mixture to bring the final fibrinogen 

concentration to ~4.5mg/mL.  After 15min, the top glass slide was removed, and the gel was allowed to 

polymerize for an additional 45min.  See the Appendix, p56 for protein gel protocols. 

Cell culture 

 Human lung fibroblasts (HLF) and 3T3-J2 fibroblasts, graciously donated by Prof. George Pins, 

were cultured in DMEM with 10% FBS (HLF) or 10% BCS (3T3-J2) and 1% streptomycin/penicillin, 

and incubated at 10% CO2.  Samples were seeded at approximately 3000 cells/cm
2
. To minimize effects 

of an incline, the end of the sample with the thinner substrate was propped up the appropriate amount to 

ensure a level substrate for the cells.  To make sure the cell suspension remained atop the gel, rectangular 

frames cut from a thin silicone sheet (0.015”, SM, MI) were placed on the gel immediately prior to cell 

seeding (see the Appendix, p59). 

Cell staining 

 Cells were cultured overnight (~16hr) before fixing  with 4% paraformaldehyde for 15 minutes.  

Following two five-minute rinses with PBS, cells were stained for F-actin with phalloidin (Invitrogen) 

and incubated for 30 minutes at 37 °C.  Following three ten-minute rinses, nuclei were stained with 

Hoechst 33342 (Invitrogen) for 3-5 minutes and rinsed twice.   

Protein gel 
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Cell imaging 

 In a first attempt to quantify the thickness of the substrate with the top slide removed, PA gel 

substrate samples were imaged from the side using an inverted microscope.  This method captured only 

the edge of the gel, which is prone to drying and wrinkling.  This method could not show cross sections of 

the gel at different areas of the sample, and thus, was abandoned.   

 Using the reflective properties of collagen and fibrin gels, the confocal microscope (Leica) was 

used in reflectance mode and in cross-section (XZY) mode.  Below, fibers of a collagen droplet of 3 

mg/mL RTT collagen are seen in , taken with a 40x oil objective. 

 

Figure 14.  Collagen fibers are visible in reflectance mode with a 40x oil objective on a confocal microscope. 

 In cross-section (XZY) and reflection mode, the confocal microscope produces images like the 

one shown in Figure 15(a).  Since the microscope is an inverted style, the grayscale images are upside-

down images of the sample (Figure 15(b)).  The bright lines are the result of refractive index differences 

of the materials; the topmost line is between air and glass, then glass and collagen gel, etc.  Due to these 

differences, the physical measurements of the coverslips do not agree with those from the confocal 

software (see the Appendix, p55).  The network of the protein gel can be seen as a speckled pattern.   The 

ratio of the micrometer-measured and the confocal-measured glass is roughly 1.5, which is the ratio of 

refractive indices of glass and air.  This ratio was used to correct gel thickness measurements. 
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 Due to the constraints of the confocal objective’s working distance, an acrylic holder was 

designed to which gel substrates prepared on No. 1 ½ coverslips could be attached (see the Appendix, 

p54).   These coverslips were activated as described above and attached to the acrylic holder by 

embedding into a continuous bead of rubber cement (Elmer’s) and covered with mineral oil to prevent 

substrate dehydration or swelling.  Cells were imaged with a Leica (Leica Microsystems GmbH, 

Germany)  inverted confocal microscope using a 10x dry objective; controls were imaged with a Leica 

inverted fluorescent microscope using a Leica 10x dry objective.  The gel samples were covered with 

mineral oil to prevent dehydration and swelling, and to visualize the top surface of the gel. 

 

(a) 

 

 

 

 

 

 

        

(b) 

Figure 15.  Due to its inverted setup, the cross-sectional images from the confocal microscope (a) are an upside-down 

version of the sample (b).  The activated No 1.5 coverslip is between the top and middle white lines, while the protein gel 
fibers (here, collagen) can be seen as the speckled pattern. 

 Cell area was quantified using ImageJ (NIH).  The phalloidin images were thresholded to 

highlight the cells, and these images were visually compared to the original image to ensure the threshold 

level was acceptable.  Upon review of images, only cells at least 50µm away from the nearest cell were 

included in the quantification (see the Appendix, p60).  This distance is chosen to balance minimizing 

spreading influence due to nearby cells with maintaining cell proximity seen in the natural environment.  
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Results 

Finite Element  

Linearly elastic model results 

 The linearly elastic model results are on a similar scale to the work of Sen et al. [7], as shown in 

Figure 16(a) and (b), and when normalized to results of the thickest material, closely matched the work of 

Sen et al. [7], as shown in Figure 16(c). 

The simulated cell applying inward traction on a linearly elastic substrate of four different 

stiffnesses shows four different curves of maximum substrate displacement with respect to substrate 

thickness, as seen in Figure 16(a) by Sen et al. [7].  The curves from the model developed here are in the 

same order of magnitude as those obtained by Sen et al. [7] (Figure 16(b)).  To better compare the data, 

the displacements for each stiffness are normalized to the displacement at the maximum, or infinite, 

thickness.  As seen in Figure 16(c), the normalized interfacial displacement of the model developed here 

matches well with published data.  

The simulations performed by Sen et al. [7] are post-processed to calculate the average interfacial 

strains and displacements, a process that requires requesting data on specific nodes of the model and 

calculating averages.  It was observed that there is no statistical difference (p>0.05) between maximum 

displacement of the model in the radial direction and average interfacial displacement, so for this project, 

the more time-efficient method of determining interfacial displacement - maximum displacement of the 

model - was used (see the Appendix, p43). 
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Sen et al. [7] 

(a) 

 

Current Simulations 

(b) 

 

Comparison of results from Sen et al. [7] (dashed) and current simulations (solid) 

(c) 

Figure 16.  Agreement of this finite element model with a published model.  (a) Mean interfacial displacement on gels of 

four stiffnesses, of various thickness, by Sen et al. [7].  (b) Maximum surface displacement from this model on gels of the 

same four stiffnesses, of the same various thicknesses.  (c) When normalized to the displacement at the “infinitely” thick 

(50µm) gel, the displacements of this model align with those of the published model.  The normalized displacements from 

all four thicknesses with this model collapse onto the black line. 

 

Effect of thickness on substrate displacement 

 When the traction applied to a substrate is held constant and the thickness is changed, the linearly 

elastic substrate responds similarly as the stiffness changes, as shown in Figure 17(a).   The largest 

difference in maximum substrate displacement is between 0 and 10 µm, with the response at 50 µm 

considered to be the response of a substrate of infinite thickness.  The strain-stiffening material undergoes 
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a similar response, with the largest changes occurring for substrates under 10 µm thick;  however, when a 

higher traction is applied, the strain-stiffening material behaves more like the stiffer linearly elastic 

substrate than when a smaller traction is applied, as shown in Figure 17(b). 
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(b) 

Figure 17.  Substrate displacement decreases with decreasing thickness.  By increasing the applied traction from 400Pa 
(a) to 600Pa (b), the nonlinear substrate exhibits strain-stiffening behavior by displacing like a stiffer material.   

 

Effect of traction on substrate displacement 

The effects of changing the applied traction to a substrate of “infinite” thickness were compared 

for models with a linearly elastic substrate of various stiffnesses and a model with strain-stiffening 

behavior, as shown in Figure 18(a).  The maximum displacement of the linearly elastic substrate increases 

linearly as higher traction is applied.  The substrate displacement increases proportionally as the stiffness 

of the material is decreased for both thin and thick substrates.  The strain-stiffening material deforms by a 

smaller amount as the traction is increased on the surface.  This behavior is seen in both the thin and thick 

substrates, though the thinner substrate responds more like a stiffer linearly elastic gel than the thick 

substrate, as shown in Figure 18(b).   
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Effective stiffness 

To compare the effective stiffness of substrates of different thicknesses, we have used the 

following equation, adapted from Mehrotra et al. [23]: 

     
 

      
      (2) 

 

where T is the radially-applied traction,      is the maximum substrate displacement, and   is the mean 

radius of the focal adhesion area.   

 

 

(a) 

 

(b) 

Figure 18.  The maximum displacement of the top surface of linear substrates increases linearly as traction is increased.  

However, the nonlinear material exhibits strain-stiffening behavior; as traction increases, the ability of the nonlinear 

material to deform is reduced.  This strain-stiffening effect is amplified by decreasing the substrate thickness from 50µm 
(a) to 2.5µm (b).  On the thin substrate, the gels deform to a lesser extent than the thick gels due to the impact of the rigid 

boundary under the substrate.   

 

The finite element simulations performed here indicate that the effective stiffness of a linearly 

elastic material decreases to a value close to the bulk stiffness within 10µm, as shown in Figure 19(a). 

When the traction in the model is increased slightly but thickness is held constant, the effective stiffness 

of a linearly elastic material remains the same, indicating that effective stiffness is dependent on thickness 

alone.  However, the same is not true for a nonlinear material; the effective stiffness is much higher at the 

thinner substrate, indicating that the response of the nonlinear material is dependent on both substrate 

thickness and applied traction, as shown in Figure 19(b). 
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(a) 

 
(b) 

Figure 19.  Effective stiffness increases sharply at low thicknesses.  The strain-stiffening behavior allows the nonlinear 

material to become effectively stiffer at low thicknesses when the applied traction is increased from 400Pa (a) to 600Pa 
(b). 

In Figure 20, effective stiffness is plotted versus substrate thickness and applied traction for three linearly 

elastic substrates and the nonlinear substrate.  Note that at the highest traction, the effective stiffness of 

the nonlinear material goes beyond that of the linear substrates.  As the traction increases, the nonlinear 

material experiences strain-stiffening possibly to a point where a cell’s spreading behavior would be 

affected. 

 
Figure 20.  The impact of thickness and traction on effective stiffness of the linear and the nonlinear materials are plotted 

together.  The stress-strain relationship of the linear materials allow the effective stiffness of these gels to be unaffected by 

the amount of cell-applied traction.  Due to the stiffening of the nonlinear material at high strains, the effective stiffness 
greatly increases with increasing traction. 

See the Appendix, p46 for stress and strain distributions. 
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Changing size and location of cell-applied traction 

 The defined area of cell-gel interaction is specified by Mehrotra et al. [23] with two parameters:  

focal adhesion radius, and width of the traction region.  When the radius (R) is increased (i.e., a larger 

cell) or the traction region increases (i.e., more focal adhesions), the maximum surface displacement is 

increased.  Changing the size of the cell or the size of the cell-applied traction surface also affects the 

effective stiffness of a linear material as shown in Figure 21.  An increase in R increases the effective 

stiffness, while an increase in A decreases the effective stiffness.  These simulations are performed on a 

linear elastic substrate to focus on effects of cell geometry.   

 

 

Figure 21.  The effective stiffness of a linear material is dependent on the dimensions of the applied traction, and thus on 

the geometry of the cell.  Increasing the size of the cell (R) increases the effective stiffness of the substrate.  Conversely, 
increasing the size of the traction surface (A) decreases the substrate effective stiffness.   

 The above changes in R and A are performed with a constant traction (100Pa).  Due to the 

linearity of the material, the value of the applied traction will not affect the overall response of the 

material.  To investigate the effective stiffness response of a cell that applies the same force but only at 

the very edge of the cell, the model was modified to include a smaller area of cell-applied traction and a 

higher traction to maintain the same force as 100Pa over the original area.  As shown in Figure 21, the 

effective stiffness of the material with this smaller area follows the same shape as that with the original 

area. 
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Figure 22.  With the same force but a smaller area for the cell applied traction (traction x area = constant), the linear 
material responds similarly to the original traction area, in terms of effective stiffness. 

Experimental 

Confirmation of Sloped Gels 

 To confirm the existence of the designed sloped gel and demonstrate versatility of the design, 

several cell-free samples of collagen gel were made with either one or two No 1 coverslips as spacers.  

Once the samples were mounted on the microscope, the edge of the coverslip was located, as shown in 

Figure 23(a), and a horizontal micrometer against the XY stage was set to zero.  From this position, XZY 

images were obtained at several points along the length of the sample until the gel was no longer 

detectable, as shown in Figure 23(b). 
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(b) 

Figure 23.  Beginning at the edge of the No 1 spacer coverslip (coverslip, right; collagen gel, left) (a), thickness 

measurements of the gel were taken at several points along the sample and compared to the theoretical values.  Reported 
as mean ± SE, n=4 (b). 
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Cell spread area 

 Cell spreading was quantified for HLFs on sloped fibrin and sloped collagen gels, and for HLFs 

and 3T3s on sloped fibrin gels.  The representative images in Figure 24 show the size difference of HLFs 

on thick (a) and thin (b) fibrin gels.  The cells do not show any preferred alignment direction.  Calculated 

cell areas for various positions every 5mm along the sloped gels are shown in Figure 25. 

 The HLFs on collagen are larger than those on fibrin, though the cells are from the same source.  

The 3T3 fibroblasts, being from a smaller species, are expectedly much smaller than the HLFs but still 

show the same gradual increase in area as the HLFs as the gel thickness decreases. 

 As shown in Figure 23(b), the minimum thickness that is measured consistently is ~25µm.  The 

zero-thickness (non-control) area measurements in Figure 25 were performed on images captured from 

the area of the sample where no gel was visible in cross-section mode, but had been underneath the 

treated glass surface.  For clarity, error bars are removed in Figure 26. 

 

 

(a) 

 

(b) 

Figure 24.  Representative images of HLFs on thick (a) and thin (b) fibrin gels.  Scale bar  = 250µm. 
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Figure 25.  Cell spreading is a function of gel thickness for HLFs on fibrin and collagen gels, and for 3T3 fibroblasts on 

fibrin gel.  Reported as mean ± SE; HLF on collagen, mean=9 cells per data point, n=4; HLF on fibrin, mean=10 cells per 
data point, n=5; 3T3 on collagen, mean=44 cells per data point, n=2. 
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Figure 26.  Cell spreading is a function of gel thickness for HLFs on fibrin and collagen gels, and for 3T3 fibroblasts on 
fibrin gel.  Error bars removed for clarity. 
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Discussion 

 The finite element model developed in this work is a compilation of model details and 

experimental data from literature.  The prediction of cell area based on finite element results show that the 

nonlinear substrate will lead to cells spreading earlier as thickness decreases compared to the finite 

element results from the linear substrate.  However, the finite element model does not accurately capture 

the thickness region where experimental cells begin spreading on linear substrates, indicating that more 

refinement of the model is necessary.   

 The experimental results of two cell types on sloped gels of two protein gels show that there is 

much less of a sharp increase in cell area with response to perceived substrate thickness.  Instead, cells on 

these nonlinear substrates show a more gradual area response that may be due to the cell locally stiffening 

the strain-stiffening material and behaving on thick substrates as they would on thin. 

 

Finite Element 

Linearly elastic model 

 Sen et al. [7] developed a finite element model to determine length scales of how far cells “feel” 

through their substrate to either a rigid underlying base or nearby cells.  The cell is modeled with a 

contractile prestress in the cell, thus eliminating the need to model specific focal adhesions and tractions 

applied at those adhesions.  However, the model requires the definition of cell-gel interaction, cell-

membrane interaction, and cell-nucleus interaction.  This model, while a good representation of cell 

components, unnecessarily defines a complex cell model.  The cell is being defined in the finite element 

software, yet the interest is in the response of the substrate.  A simpler model that defines a single loading 

condition on the surface of a substrate reduces the complexity of the model by focusing on the substrate 

response, and also reduces the potential variability of the cell representation. 

The loading conditions and model geometry of the model described here are different than those 

of the finite element model by Sen et al. [7].  Validation of the linearly elastic model and comparison to 
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the results of the model by this group was done by normalizing the displacement values to the 

displacement at the “infinite” thickness (50 µm).  The curves of interfacial displacement versus substrate 

thickness of the model by Sen et al. [7] all follow the same general shape, as seen below left, but when 

normalized to the displacement at the “infinitely” thick substrate, have some variation, as seen below 

right.  The complexity of the model, which includes defining a cytoplasm and nucleus of certain size and 

shape, as well as a cell prestress applied to the cytoplasm only, may lead to a discrepancy in the 

normalized displacement-thickness curves.  Reducing the complexity of the model by removing the cell 

entirely and focusing on the substrate response produces normalized displacement-thickness curves that 

are identical from one stiffness to the next, indicating that stiffness of a linearly elastic material does not 

play a role in the substrate response. 

The amount of traction that a cell applies on a substrate spans a wide range for fibroblasts: up to 

250Pa for human tendon fibroblasts (Yang et al. [26]), and up to 36kPa in 3T3 fibroblasts (Munevar et al. 

[20].  Since the finite element model used in this project uses an applied traction rather than a cell 

prestress, as in the work of Sen et al. [7], it was necessary to determine the traction value that would 

produce displacements on the same order of magnitude to those of Sen et al. [7] .  The visualization and 

quantification of cell traction force of 3T3 fibroblasts via traction force microscopy, as done by Munevar 

et al. [20], indicates that the traction applied by a cell covers a wide range of values, with the higher 

tractions being toward the advancing and trailing edges of the cell. 

Effective stiffness 

There are several ways to quantify depth sensing or stiffness sensing of a cell, whether it be from 

experimental methods or computational models.  Krishnan et al. [22] defined the thickness at which a cell 

begins to sense a rigid sub-substrate as the thickness where principal strains completely decay.  In 

addition, this group defined an alternative definition of depth sensing as the substrate thickness where the 

surface deflection is less than some percentage of the deflection of an infinitely thick substrate.  Maloney 

et al. [6] defined depth sensing as the substrate thickness that allows dissipation of adhesion site 

displacement and distortion of a certain percentage.     
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For both the linearly elastic and strain-stiffening materials, the change in substrate displacement 

is large between 1-20 µm and increases slower as the thickness of the substrate continues to increase.  

This thickness range where the surface of the substrate cannot displace as much as that of the infinitely 

thick material aligns with that found by Krishnan et al. [22].  The agreement of the critical thickness 

found by this group and the general location of the sharp increase of the effective stiffness from the finite 

element model defined in this work supports that this model produces results similar to those accepted in 

literature. 

Based on the effective stiffness of the finite element simulations, the experimental setup includes 

sloped gels that go beyond the thickness where the material’s effective stiffness will stabilize.   

Predicting cell area with finite element results 

 Fibroblasts and human mesenchymal stem cells have been shown to have spreading behavior 

with increasing substrate stiffness, as well as with decreasing substrate thickness.  Currently, spreading of 

these cell types on substrates of strain-stiffening material has not been studied.  The MSCs studied by 

Buxboim et al. [8] were cultured on 1kPa PA gel; based on  Figure 20, the area of cells on a nonlinear 

substrate are expected to increase earlier as substrate thickness decreases.  Though this cell type is 

different from that modeled with the finite element simulations, these cells show the same spreading 

behavior as 3T3 fibroblasts on PA gel (Figure 3).   

A relationship between cell area and substrate thickness is currently not in the literature for 

nonlinear substrates.  To predict this relationship for cells on a nonlinear substrate, we used our finite 

element results of the substrate response for a linear, 1kPa gel and a nonlinear gel, shown in Figure 27(a), 

and published area and stiffness data from Engler et al. [13], shown in Figure 27(b).  As seen in Figure 

27(b), there is an increase in cell area as stiffness increases, with these cells more than tripling in area 

over a twenty-fold increase in stiffness.  This increase in area as stiffness increases is expected to be 

present as a substrate becomes effectively stiffer.  We combined the mathematical relationships for area-

stiffness and effective stiffness-thickness, and the resulting prediction is shown in Figure 27(c).  The 

nonlinear prediction, as we suspected, shows that the spreading begins on thicker substrates compared to 
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the linear prediction.  However, the predictions from the finite element models reach the minimum area 

within 20µm, whereas experimental data (Buxboim et al. [8]) shows that the cells reach minimum area 

closer to 60µm.  The equations and parameters for the curve fits can be found in the Appendix, p51. 
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(c) 

Figure 27.  Prediction of cell area response to nonlinear substrate.  (a) Effective stiffness from finite element simulations 

of linear (1kPa) and nonlinear gels show strain-stiffening of nonlinear gel at low thickness.  (b) Cell area increases with 

increasing substrate stiffness (hMSCs on PA gel, Engler et al. [13]).  (c) Comparison of predicted area to hMSCs on 1kPa 
PA gel (Buxboim et al. [8]). Areas are normalized to largest area to focus on trends.  

 

Limitations of the finite element model 

 The finite element model defined in this work is based on cell geometry from cell imaging 

(Mehrotra et al. [23]), traction values from traction force microscopy (Munevar et al. [20]), and substrate 

geometry from a previous finite element model (Sen et al. [7]).  Even with these model validations, this 

model and the effective stiffness definition still do not capture the spreading behavior that is indicated by 
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experimental data (Buxboim et al. [8]).  The shape of the cell-applied traction remains the same over the 

course of the simulation, but fibroblasts have been shown to vary the area and magnitude of this traction 

(Maskarinec et al. [27]).  This varying cell-applied traction is not accounted for in this finite element 

model, and may impact the quantification of the material response.  In addition, the effective stiffness 

here is just one way of quantifying how stiff a material is perceived to be.  A definition that can capture 

increasing effective stiffness at thicknesses closer to those of literature (Buxboim et al. [8]) would be 

needed to allow better representation of substrate response with a finite element model.  

Experimental  

Selection of glass surface treatments 

 Various surface treatments were tested to find the best for protein gel adherence and non-

adherence.  The three methods for protein gel adherence were: described by Bhatia et al. [28]; described 

by Pelham and Wang [21]; and sodium hydroxide etching with a wash of pepsin-extracted collagen 

(OLAF).  The three methods for protein gel non-adherence were: no surface treatment; coating in Rain-X 

per instructions; and coating a thin layer of Sigmacote (Sigma-Aldrich).  Collagen gel was polymerized 

between two glass slides with the same surface treatment, and each sample was rotated until the sample 

fell apart.  If the sample was still intact, one of the glass slides was tapped against a solid edge three times 

with increasing pressure.  The angle or tapping pressure at which the sample released was quantified for 

comparison. 

 The samples prepared with the method described by Pelham and Wang [21] remained intact 

better than other methods; this method was used for surface preparation of the No 1.5 coverslips for all 

experiments.  The samples prepared with Rain-X and Sigmacote came apart easier than those on untreated 

glass slides; however, due to apparent cell toxicity of these materials, the top glass slides in all 

experiments were left untreated.  See the Appendix, p53 for the results of the comparison. 
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Comparison of experimental cell spreading 

As shown earlier in Figure 4 and Figure 25, the range of area for cell spreading spans from 500 to 

7000 µm
2
.  In order to compare the data between these two cell types and protein gels, the data were 

normalized to the area of the control for that particular experiment.  The same normalization was done for 

data from literature.  With the actual values of area ignored, we are able to see with the plots below that 

the two cell types behave in a similar fashion on the protein gels (Figure 28(a)).  Note that error bars and 

controls have been removed for clarity.   

The data from the work here and from literature (Maloney et al. [6], Buxboim et al. [8]) are fit to 

a two-parameter rational equation 

  
 

     
      (3) 

where A is the normalized area and t is the gel thickness, shown in Figure 28.  The parameter   

determines the level of curvature of the equation and is used for comparison of cell response to substrate 

thickness (see Table 1).  Higher values of   indicate that the cell area sharply increases as the substrate 

becomes thinner, and that the cell can “feel” the rigid boundary on these thin substrates (Figure 28(b)).  In 

contrast, the low values of   indicate a more gradual spreading response to nonlinear substrates of 

decreasing thickness that is significantly different from that of the literature (p<0.05).   
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(b) 

Figure 28.  Comparison of area, normalized to the area at minimum thickness, of cells on linear and nonlinear substrates.  

(a) On PA – linear – gel, the rigid boundary under the gel is not “seen” by both 3T3 fibroblasts and hMSCs until the gels 
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approach thicknesses under ~50µm.  (b) On fibrin and collagen – nonlinear – gels, fibroblasts sense the rigid boundary at 

gels much thicker than cells on the PA gel, and also do so in a much more gradual fashion.  Note the similarity of the 
curves for the cells on collagen.   

 

Table 1.  Comparison of curvature (parameter b) of cell area on gels of various thicknesses.  The lower values from this 

work mean that the area-thickness curve is less sharp than those from literature; the rigid boundary is more visible to 
cells on a nonlinear material. 

From Literature From this work 

3T3 on PA 

Maloney et al. [6] 

0.0435 

HLF on fibrin 

0.0142 

HLF on collagen 

0.00850 hMSC on PA 

Buxboim et al. [8] 
0.0847 

3T3 on collagen 

0.0101 

 

Limitations of the cell experiments 

 The non-control zero-thickness area measurements show results similar to those from the controls 

(tissue culture plastic with fibrin or collagen wash), as shown in Figure 25.  However, due to the 

adjustment of confocal software gel thickness measurements, it is difficult to accurately capture the 

thickness of very thin (under ~15µm) gels. 

The cell experiments performed here show greater variability than those of published data, most 

likely because the number of cells analyzed is much larger in the literature.  The shape factor (round, 

polar, multi-dendritic) of the cells could also be analyzed as a cell response to stiffness; cells that are on 

thicker substrates have a more round morphology than those on thin substrates.  The amount of roundness 

as substrate thickness changes could have less variation than quantifying cell area.   

In quantifying cell area, only cells with at least 50µm to the next cell were included in the calculation.  

This number is based on past studies of finite element simulations of depth and lateral sensing (Sen et al. 

[7], Buxboim et al. [8]), and though Winer et al. [9] showed substrate displacement of gel much farther 

from the cell on fibrin gel than on PA gel, the impact of such displacement is not clear.  In addition, this 

distance should maintain cell isolation while allowing contact with or proximity to other cells. 
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Conclusion 

Polyacrylamide gels provide a tunable and easily produced substrate for studying cell behavior on 

substrates of varying thickness or stiffness, but the linear elasticity of this material is not representative of 

biological tissue.  Through finite element simulations and experiments done here, strain-stiffening 

materials have been shown to propagate the effects of a rigid boundary to a greater extent than a linear 

material.  The impact of the nonlinearity of biological materials has not been fully realized in literature.  

With the knowledge gained here, it is recommended that other cell responses, such as differentiation and 

signaling, be studied on nonlinear materials, both in fibroblasts and additional cell types.  In addition, it is 

recommended that the finite element model and the definition of effective stiffness be refined to allow 

better prediction cell area response to varying substrate thickness so that other biological materials can be 

simulated. 

The range over which fibroblasts have shown sensing of substrate stiffness extends well into the 

100-200 µm range.  Designs of implants or systems that would have components in this thickness range 

due to space or material limitations could be impacted by this cell spreading behavior, and thus should 

incorporate this knowledge into the design process. 
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APPENDIX 

A brief introduction to Finite Element Analysis 

 Finite element analysis is a numerical method of solving complex problems by a divide-and-

conquer technique.  To define the model, geometry of a representative model is created, boundary 

conditions are assigned, and loads are applied.  To solve the model, the geometry is broken into small 

pieces, or elements, that are connected in a network of nodes, and equations are solved for each element 

and combined for the final solution.   

 For the simplest model, a one-dimensional, one-element model, a force-displacement problem 

can be solved by hand. 

 

The problem becomes more complex by adding a second in-line element… 

 

 

…and quickly becomes more complex by adding a second dimension. 

 

 Software such as ABAQUS (Providence, RI) and ANSYS (Canonsburg, PA) solve a wide range of 

problems, such as stress, acoustic, or piezoelectric analyses, for a variety of materials, such as rubbers, 

composites, and foams.  Depending on computing power, extremely complex simulations can converge 
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on a solution in just hours.  However reasonable the solution looks, it is critical to ensure the model has 

been defined properly and the simulation results best match real results. 

Details on the development of the Finite Element Model 

Geometry 

 The initial model geometry was based on that by Sen et al. [7]; an axisymmetric cell-on-gel 

model, with the base of the gel fully constrained and contact defined between the cell and gel.  Though 

simulations completed, determining substrate response was difficult due to the unnecessary cell geometry.  

To simplify the model, the cell geometry was removed from the model, allowing the simulation to focus 

on substrate response.  Two methods of modeling a focal adhesion were tested; point load, and shear 

traction.  The point load leads to severe element distortions, so the shear traction loading condition was 

chosen for all simulations. 

 The model geometry is based on two sources; the various substrate thicknesses are based on those 

used by Sen et al. [7], and the cell-gel interaction dimensions are based on Mehrotra et al. [23].  The 

acceptable range of tractions, as interpreted from Munevar et al. [20], is 92Pa-36kPa.  Modest values for 

traction, 50-600Pa, were used in these simulations to remain within this range, minimize element 

distortions, and produce substrate displacements similar to those of Sen et al. [7].   

 Sen et al. [7] quantify substrate response by determining the average interfacial (cell-gel) 

displacement.  In an effort to obtain data more efficiently from the simulations, substrate displacements 

determined by this averaging method were compared to the maximum substrate displacements.  With an 

average variation of 12% of the maximum method from the average method, the maximum method is 

considered an acceptable method of determining substrate response. 

Strain-stiffening material parameters 

 Modified strain-stiffening material data from Winer et al. [9] was fit to several models with the 

material evaluation tool in ABAQUS, and the model parameters were used in simulations increasing in 

complexity (axisymmetric simulations of a single-element model, followed by those with multiple 
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elements).  To further tune the parameters, simulations with a model in pure shear were performed with 

test data modified from the original linear shear-axial relationship.   

Incremental steps 

A series of uniaxial simulations were performed with incremental changes from the linearly elastic 

model to ensure validity of the developing model.  The strain-stiffening material behavior was defined 

using the incompressible linear elastic stress-strain relationship and the reduced polynomial model, while 

the geometry was defined first with a single element, and then multiple elements.  Once the single and 

multiple-element simulations were in agreement, the geometry was modified to model a substrate under 

pure shear stress.  Nonlinear materials can be defined in ABAQUS; however, shear data is not an 

acceptable form of input.  Therefore, the original data were adjusted such that the results of the pure shear 

stress simulations would agree with the original rheometry data, as shown in Figure A 1. 

 

Figure A 1.  The results of the simple shear simulations are compared with the original rheometry data to ensure that the 
fibrin gel material responds as intended. 

To define the fibrin gel material property, a series of iterations were performed to verify and validate the 

input.  As a first approximation, the incompressible linear elastic stress-strain relationship was used: 

  
 

      
      (A1) 

where G is the shear modulus, E is elastic modulus, and ν is the Poisson ratio.  The stress data from Winer 

et al. [9] were multiplied by a factor of 3 and the modified data curve was fit to several different models 
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using the ABAQUS material evaluation tool.  The third-order reduced polynomial model was chosen and 

simulations were performed with this material definition.  The simulations involved a simple model to 

recreate a gel sample undergoing testing in a rheometer.  Shear traction was applied to the top surface of 

the rectangular geometry, while boundary conditions defined at the sides and bottom prevented vertical 

and any movement, respectively.  The resulting shear stress and strain from these simulations were 

plotted and compared to the original data, and were found to have higher strains than the original data.  

The material data were tuned by multiplying by a factor of 4 to stiffen the material, and the simulations 

were run again.  This material property definition better defined the material behavior when a shear stress 

is applied and was used for the remaining simulations. 

Model variations 

More “nonlinear” 

 In an effort do see the effect of the nonlinearity of the material on substrate displacement, the 

modified (4x) Winer et al. [9] (labeled as Janmey) data was made “more nonlinear” – the strain-stiffening 

behavior appears at a higher strain, as shown in Figure A 2(a).  This material behaves much more like a 

softer linearly elastic material as the cell-applied traction is increased, as the material is still within the 

low-stress regime, as shown in Figure A 2(b).   However, as the thickness is increased, the model 

becomes unstable, so while these simulations are not used in data analysis, it is interesting to see how the 

material responds to a change in definition. 

Verification of the odd shape 

 Strain plots of the strain-stiffening material contain a “pinching” material response at the inner 

edge of the applied traction.  To verify that this effect was not an artifact of the model, the mesh shape 

was changed from triangle to quadrilateral elements.  As shown in Figure A 3, the pinching is apparent 

with both shapes.  Quadrilateral elements are in the upper image; triangular elements in the lower. 
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(a) 

 

(b) 

Figure A 2.  (a) The nonlinear material is modified to show stiffening at higher strains.  (b) The “more nonlinear” 

material responds much like a 1kPa gel, but the simulations begin breaking down around 10µm. 

 

 

Figure A 3.  The apparent pinching of the stress distribution in the nonlinear material is seen with both four-sided (above) 
and three-sided (below) elements. 
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Umax vs Uavg 

Finite element analysis software provides a multitude of calculation output options, depending on the 

analysis type; Mises stress, displacements, temperature, electrical flux vector, just to name a few. The 

finite element model developed by Sen et al. [7] includes gel, cell, and nucleus structure, as well as 

interstructure interactions.  To investigate prestress-driven matrix sensing by cells, the group obtains 

stress and strain distributions through the model as the prestress of the cell moves the cell-gel interface.  

The group also looks at the deformation of the cell-gel interface; this deformation is a representation of 

the work done by the cell on the matrix.  The mean interfacial logarithmic strain and the mean interfacial 

displacement are determined for each simulation for comparison across the experiments.  Similarly to this 

group’s method, the simulations we have performed request displacement of the area modeling the cell-

gel interface.  However, there is no statistical difference (p>0.05) between maximum displacement of the 

model in the radial direction and average interfacial displacement, so for this project, the more time-

efficient method of determining interfacial displacement - maximum displacement of the model - was 

used. 

 

Data for Umax, average U comparison 

The following is sample displacement data collected at nodes along the top of the substrate where traction 

is applied.  This was done for the following thicknesses: 0.3, 1, 2.5, 5, 10, 12, 15, 20, and 50µm, as well 

as for the following substrate stiffnesses: 1, 5, 12, and 40kPa 

Table A 1.  Displacement data of a 1kPa linear gel, 20µ, thick, with 0.5kPa traction applied to the top surface. 

20um; 1kPa stiff; 0.5kPa load 
        

X _temp_1 _temp_2 _temp_3 _temp_4 _temp_5 _temp_6 _temp_7 _temp_8 _temp_9 _temp_10 

0 0 0 0 0 0 0 0 0 0 0 

1.00E-01 -3.68E-07 -4.38E-07 -4.72E-07 -4.90E-07 -4.97E-07 -4.94E-07 -4.80E-07 -4.56E-07 -4.16E-07 -3.43E-07 

2.00E-01 -7.37E-07 -8.75E-07 -9.45E-07 -9.81E-07 -9.94E-07 -9.87E-07 -9.60E-07 -9.12E-07 -8.32E-07 -6.86E-07 

3.50E-01 -1.29E-06 -1.53E-06 -1.65E-06 -1.72E-06 -1.74E-06 -1.73E-06 -1.68E-06 -1.60E-06 -1.46E-06 -1.20E-06 

5.75E-01 -2.12E-06 -2.52E-06 -2.72E-06 -2.82E-06 -2.86E-06 -2.84E-06 -2.76E-06 -2.62E-06 -2.39E-06 -1.97E-06 

9.13E-01 -3.36E-06 -3.99E-06 -4.31E-06 -4.47E-06 -4.54E-06 -4.50E-06 -4.38E-06 -4.16E-06 -3.79E-06 -3.13E-06 

1 -3.68E-06 -4.38E-06 -4.72E-06 -4.90E-06 -4.97E-06 -4.94E-06 -4.80E-06 -4.56E-06 -4.16E-06 -3.43E-06 
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average final U: max: min: 

      

 
-4.45E-06   -3.43E-06 -4.97E-06 

      

           Comparison of Umax to Average U 

Table A 2.  Comparison of two methods (maximum displacement, average interaction surface displacement) for 
quantifying substrate surface displacement with this model. 

 

Gel Stiffness Gel Thickness (µm) Umax (µm) Average U (μm)  Umax/Average U 
  

1 kPa 

0.3 0.43 0.415 1.05 
  1.0 1.41 1.19 1.18 
  2.5 2.74 2.37 1.15 
  5.0 3.79 3.36 1.13 
  10 4.53 4.04 1.12 
  12 4.65 4.15 1.12 
  15 4.79 4.28 1.12 
  20 4.97 4.45 1.12 
  50 5.42 4.89 1.11 
  

5 kPa 

0.3 0.09 0.083 1.05 
  1.0 0.28 0.238 1.19 
  2.5 0.55 0.474 1.16 
  5.0 0.76 0.672 1.13 
  10 0.91 0.808 1.12 
  12 0.93 0.831 1.12 
  15 0.96 0.856 1.12 
  20 0.99 0.891 1.12 
  50 1.08 0.979 1.11 
  

12 kPa 

0.3 0.04 0.035 1.05 
  1.0 0.12 0.099 1.18 
  2.5 0.23 0.198 1.16 
  5.0 0.32 0.280 1.13 
  10 0.38 0.337 1.12 
  12 0.39 0.346 1.12 
  15 0.40 0.357 1.12 
  20 0.41 0.371 1.12 
  50 0.45 0.408 1.11 
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40 kPa 

0.3 0.01 0.010 1.05 
  1.0 0.04 0.030 1.19 
  2.5 0.07 0.059 1.16 
  5.0 0.09 0.084 1.13 
  10 0.11 0.101 1.12 
  12 0.12 0.104 1.12 
  15 0.12 0.107 1.12 
  20 0.12 0.111 1.12 
  50 0.14 0.122 1.11 
  

Umax/Average U 
  

1.05 MIN   

1.19 MAX   

1.12 MEAN   

0.035 standard deviation 

0.731 t-test   
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Stress and strain distributions 

Comparison of von Mises stress and strain distribution in linear and nonlinear gels.  Thicknesses: 1, 10, 

50µm; traction applied at top surface: 600Pa.  All distributions are plotted on undeformed geometry. 

Stress distributions 

 Linear (1kPa) stress distributions 
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 Nonlinear (fibrin) stress distributions 

1
µ

m
 

 

1
0
µ

m
 

 

  
  
  

  
  
  

  
  
  

  
  

  
  
  
 5

0
µ

m
 

 

 

  



Mathilda S. Rudnicki 

 

 
48 

 

Strain distributions 

 Linear (1kPa) strain distributions 
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 Nonlinear (fibrin) strain distributions 
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Quantitative Comparison of Stress and Strain Distributions 

 From the above images of stress and strain contour plots of cell-applied traction on linear and 

nonlinear materials, we see that the stress in the nonlinear material does not travel as far as that in the 

linear material.  In contrast, strains are transmitted further through the nonlinear than in the linear 

material. 

 For a quantitative comparison, two distances on the undeformed contour plots were measured for 

materials of “infinite” thickness (50µm).  The lateral distance from the outer point of the cell-applied 

traction to the farthest contour line was measured for strain and Von Mises stress for both materials.  

These variables were also quantified by measuring the vertical distance from the top surface to the 

farthest contour line along the axis of symmetry.  This farthest contour line is the region where the 

variable is roughly 8% of the local maximum, representing stress or strain that has attenuated to that of 

the bulk material.  The distances are shown in Table A 3.  Note the larger distance to the farthest strain 

contour and the shorter distance to the farthest stress contour of the nonlinear material compared to the 

linear material. 

Table A 3.  Comparison of distances between outer edge of cell-applied traction (lateral) or centermost region of the top 
surface and the farthest contour line.   

  Distance to farthest contour (µm) 

  Linear (1kPa) Nonlinear 

Strain 
Lateral 8.96 16.4 

Vertical 8.21 37.5 

von Mises stress 
Lateral 8.21 6.94 

Vertical 8.21 6.88 
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Area prediction from FE results 

In Figure 27(a), the effective stiffness-gel thickness relationship from the FE models (1kPa linear, 

nonlinear) are fit with a two-parameter rational equation 

 
dtc

KKeff eff



1

0
     (A2) 

where Keff0 is the effective stiffness, t is the gel thickness, and c and d are parameters with the following 

values: 

 1kPa linear Nonlinear 

Keff0 0.9405 1.353 

c -0.02800 -0.006700 

d 0.4079 0.1963 

The effective stiffness of the linear material when it is “infinitely” thick is 1.7kPa, while the 

Young’s modulus of this material is defined as 1kPa.  To relate the effective stiffness and actual stiffness, 

E, a factor of 1.7 is applied to the linear effective stiffness values, and for consistency, is applied to the 

nonlinear effective stiffness values. 

 EKeff 7.1       (A3) 

 Our goal is to predict cell area from the effective stiffness results of the FE models.  The 

spreading of hMSCs as PA gel stiffness increases is reported by Engler et al. [13].  For the prediction, 

these data are fit to a three-parameter power equation 

 
bEaAA  *0

     (A4) 

with the following parameters: 

A0 449.9 

A 276.5 

b 0.5632 
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 The above equations are combined to predict cell area from FE effective stiffness and thickness 

values 

 









 b

eff
dtc

KaAA )
1

(
7.1

1
00

   (A5) 

 



Mathilda S. Rudnicki 

 

 
53 

 

Experimental details 

Glass surface treatments 

Table A 4.  Comparison of various glass surface treatments for adhesion, non-adhesion of collagen gel. 

 

 

Creating PA gels and culturing cells 

To produce these PA gels, acrylamide, bis-acrylamide are crosslinked with tetramethylethylenediamine 

(TEMED) and ammonium persulfate.  By varying the amount of acrylamide and bis-acrylamide, various 

stiffnesses can be obtained.  The thickness of the gel, when used for cell culture, is generally controlled 

by applying a silanized coverslip to the gel solution: the shape of the gel is produced by forming the gel 

between a glass slide and coverslip.  Cells do not bind to PA gel, so the surface must be conjugated with 

collagen by the application of Sulfo-SANPAH ((sulfosuccinimidyl 6 (4-azido-2-nitrophe- nyl-amino) 

hexanoate)) (Dembo and Wang [29]).  

Treatment Sample 

 

Falls off with rotation? (deg) Falls off with tapping? 

(pressure) 

Bhatia et al. [28] 1 No Medium 

2 15 --- 

Pelham and 
Wang [21] 

1 No Hard 

2 No Hard 

Sodium 
Hyrdoxide + 

Collagen 

1 15 --- 

2 No Medium 

Untreated 1 45 --- 

2 80 --- 

Rain-X 

(per instructions) 

1 15 --- 

2 15 --- 

Sigmacote 

(per SL-2 

product 

information 

sheet) 

1 5 --- 

2 10 --- 
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Solidworks drawing of acrylic holder for No 1.5 coverslips 
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Confocal/micrometer measurement discrepancy 

The thickness measurements of No 1.5 and No 1 coverslips, as physically measured with a micrometer, 

do not align with the confocal software measurements of these same coverslips.  To account for this 

difference in refractive indices, the confocal software measurements of gel are multiplied by a factor of 

1.5 for all reported thicknesses. 

 
Figure A 4.  The software measurements, in white, are consistently smaller than the physical measurements of the 
coverslips, in yellow and purple, by a factor of 1.5. 
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Protocols  

General protocol for sample construction 

1. Activate No 1.5 coverslips 

2. On underside of No 1.5 coverslip, mark the ID number (thick side) and draw a mark 1cm 

from the opposite edge (thin side). 

3. Glue No 1 coverslips to No 1.5 coverslips with silicone surgical glue, ensuring edges align.  

This will be the thick side of the sample. 

4. Make protein gel and pipette ~0.5mL onto No 1.5 coverslip. 

5. Align the edge of the top glass slide with the mark from step 2, and carefully lower onto the 

gel solution.  Once in place, gently lower a 50g mass onto the top glass slide. 

6. Allow gel to polymerize for appropriate time. 

7. In the culture hood, prepare the 100m m dishes by placing 2 No 1 coverslips per sample on 

one side (two samples per dish). 

8. Gently remove the sample from the top slide and place in dish with the thin side atop the No 

1 coverslips. 

9. Place down hockey walls, cover samples with prewarmed media until you are ready for cell 

seeding. 

10. Aspirate media from sample, seed cells, and incubate overnight. 

11. Fix with 4% paraformaldehyde, stain with phalloidin, and stain with Hoechst.  

12. Using a normal tip transfer pipette, draw a bead of rubber cement around each opening of the 

acrylic holders. 

13. Remove the hockey walls from the samples, and gently place samples on acrylic holders, gel 

facing down. 

14. Protect samples from light, and allow rubber cement to dry (5-10minutes). 

15. Overturn samples and cover gel with mineral oil.   

16. Check for leaks before mounting on confocal microscope. 
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Glass Activation Protocol 5.0 

Source: (Modified from) Yu-li Wang Laboratory   August 8, 2011 

Materials: 

 Ethanol burner with ethanol 

 Glass slides to activate 

 Cell scrapers   

 NaOH, 0.1N, 100 ml – mix in fume hood – bases cabinet 

 3-aminopropyltrimethoxy silane - Acros, 31325100 – flammables cabinet 

 1x PBS 

 Glutaraldehyde, 0.5% (prepared) in PBS (stock glutaraldehyde, Electron Microscopy Sciences, 

70% solution, EM grade cat#16360) – mix in fume hood 

 Dishes for rinsing  

Glass Activation: 

Make sure you keep track of which side is being activated!! (tip: keep activated side up) 

1. Pass one side of a slide over inner flame of ethanol burner, place flamed side up on benchtop. 

2. Once cool, transfer to a glass dish lined with absorbent liner. (The NaOH will react with an 

Aluminum rack.) 

3. Using a plastic pipet in the chemical hood, cover the flamed side of the slides with 0.1N NaOH 

and spread with the NaOH cell scraper.  Let sit under fume hood until dry (2-4 hrs). 

4. Using a glass pipet in the chemical hood, add 6-8 drops of 3-aminopropyltrimethoxy silane on the 

NaOH sides of the slides, and spread with the silane cell scraper.   

5. Incubate for 5 minutes at room temp 

6. Place slides in dish with distilled water, treated side up.  Shake for 20-60 minutes, changing the 

water 3x (minimum) at room temp or until the slides are clear (NaOH waste container). There 

will be a clear thick substance on glass – this should be rinsed off completely before continuing!!! 
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(It is important to rinse well at this step, otherwise the slips will have a reddish tint after 

application of gluteraldehyde).   

7. Under the fume hood, add 6-8 drops of 0.5% gluteraldehyde, and spread with glut. cell scraper. 

Incubate for 30 minutes at room temp.  

8. Place slides in rinsing dishes, add distilled water, and shake for 20-60 minutes, changing the 

water 3x (minimum) at room temp or until the slides are clear.  

9. Dry slides vertically on plastic test tubes racks to prevent water marks. Remember which side is 

activated! 

10. Store at room temp. 

 

Collagen gel protocol 

Materials (for ~1mL): 

 40mL NaOH (0.1N) 

 200mL 5x DMEM 

 800mL collagen of desired concentration 

Collagen gel preparation: 

1. Add NaOH, DMEM to eppendorf tube with pipet. 

2. Add collagen with 1mL syringe, triturate slowly until homogeneous. 

3. With 1mL syringe, drop collagen solution slowly into/on surface. 

4. Allow to polymerize ~1hr at room temperature. 

5. To store, cover in PBS and store at 4°C.  Gels will keep 1-2 days. 
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Fibrin gel protocol 

Materials (for ~5mL): 

 3.75mL HBSS 

 ½ aliquot fibrinogen (0.75mL) 

 1mL 1X DMEM 

 3.75µL 2N Ca
2+

 

 50µL thrombin 

Fibrin gel preparation: 

1. Label two 15mL conical tubes, one F, one T. 

2. In tube F, add HBSS and fibrinogen 

3. In tube T, add DMEM, 2N Ca
2+

, and thrombin 

4. Pipette contents of T into F and triturate slowly. 

 

Hockey wall dimensions 

 

These small rectangular frames cut from a silicone sheet are placed on top of the gel samples just prior to 

cell seeding and minimize cell suspension migration off the gel. 

 
Figure A 5.  Dimensions for the silicone frames used to contain the cell suspension on the sloped gels. 
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Image analysis 

 

ImageJ thresholding steps 

 In ImageJ, set the scale for the objective used, as in Table A 5: 

 
Table A 5.  Image scales for different objectives and resolutions. 

Leica Confocal Leica Upright 

Mag, resolution µm/pix Mag, resolution µm/pix 

10X, 1024x1024 1.52 10X, 1024x1024 0.505 

10X, 512x512 3.03   

20X, 1024x1024 0.758   

20X, 512x512 1.52   

 Adjust the threshold (Image: AdjustThreshold) with the top slider for brightness so that the 

thresholded cells (Figure A 6(a)) match the original image (Figure A 6(b)). 

 

(a) 

 

(b) 

Figure A 6.  The thresholded image (a) is visually compared to the original image (b) to ensure that ImageJ will 
appropriately calculate the area of the phalloidin-stained fibroblasts. 

 Analyze the image (Analyze: Analyze Particles).  Set the size to 200-infinity, deselect 

Exclude on Edges, and select Include Holes. 
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 Remove measurements for cells for the following reasons: 

a. Less than 50µm to the nearest cell 

b. Multiple nuclei 

c. Thresholded cell does not match original image well 

 Save the results in a text file for the MATLAB code. 

 
MATLAB code 

 This code is used on the results from the particle analysis in ImageJ.  The code will write the cell 

areas of the desired measurement files to a file, and report the mean and cell count. 

% This code is used to calculate average cell area from manual tracing in 

% ImageJ.  The filenames are of the syntax "area_manual_trace_imageID," 

% where imageID refers to the sample number, area number, thickness, 

% objective, stain, and trial (ie 26t40p1 is the 2nd sample, 6th area, 
% thin, 40x, phalloidin, 1st in the group)  

 

%% Initialize 
 

clear; clc; close all; 

cellCount=0; 
 

%% Import data 

 

writeName=input('Filename to write cell area?     ', 's'); 
%writeNo=input('Filename to write cell number?     ', 's'); 

numImage=input('How many images at this magnification?    '); 

 
for i=1:numImage 

    getName=input('What is the image name?   ','s'); 

    fileName=strcat('area_trace_', getName, '.txt'); 
    data=dlmread(fileName,'\t',1,0 );  

    cellNo=size(data,1);  %Number of cells averaged 

    area=data(:,2);  %Area data from cell tracing 

    dlmwrite(writeName,area,'-append'); 
    cellCount=cellCount+cellNo; 

end 

 
cellArea=dlmread(writeName);  %read area data, written in for loop 

avgArea=mean(cellArea);  %calculate average area 

dlmwrite(writeName, cellCount, '-append');  %append cell count to file 

dlmwrite(writeName, avgArea, '-append');  %append average area to file 
 

disp(['The number of cells counted is: ', num2str(cellCount)]); 

disp(['The average cell area is: ', num2str(avgArea), 'um^2']); 


