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Abstract

In the expanding spectrum marketplace, there has been a long term evolution towards

more market–oriented mechanisms, such as Opportunistic Spectrum Access (OSA), enabled

through Cognitive Radio (CR) technology. However, the potential of CR technologies to

revolutionize wireless communications, also introduces challenges based upon the potentially

non–deterministic CR behaviour in the Electrospace. While establishing and enforcing com-

pliance to spectrum etiquette rules are essential to realization of successful OSA networks

in the future, there has only been recent increased research activity into enforcement.

This dissertation presents novel work on the spectrum monitoring aspect, which is crucial

to effective enforcement of OSA. An overview of the challenges faced by current compliance

monitoring methods is first presented. A framework is then proposed for the use of ran-

dom spectral sampling techniques to reduce data collection complexity in wideband sensing

scenarios. This approach is recommended as an alternative to Compressed Sensing (CS)

techniques for wideband spectral occupancy estimation, which may be difficult to utilize in

many practical congested scenarios where compliance monitoring is required.

Next, a low–cost computational approach to online randomized temporal sensing deploy-

ment is presented for characterization of temporal spectrum occupancy in cognitive radio

scenarios. The random sensing approach is demonstrated and its performance is compared

to CS–based approach for occupancy estimation. A novel frame–based sampling inversion

technique is then presented for cases when it is necessary to track the temporal behaviour of

individual CRs or CR networks. Parameters from randomly sampled Physical Layer Con-

vergence Protocol (PLCP) data frames are used to reconstruct occupancy statistics, taking

account of missed frames due to sampling design, sensor limitations and frame errors.

Finally, investigations into the use of distributed and mobile spectrum sensing to collect

spatial diversity to improve the above techniques are presented, for several common mon-

itoring tasks in spectrum enforcement. Specifically, focus is upon techniques for achieving

consensus in dynamic topologies such as in mobile sensing scenarios.
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Chapter 1

Introduction

1.1 Aim

The aim of this research is to investigate random sampling techniques for extraction

of wideband wireless spectrum occupancy characteristics from measured data across a ge-

ography of interest. The techniques will ultimately be used to statistically quantify the

behaviour of existing signals in time, frequency, and space, in order to facilitate monitoring

for compliance enforcement of emerging wireless technologies.

1.2 Motivation

In a world that is dependent on information, reliable wireless communications is a vital

component of modern civilization. Everyday operations such as financial transactions, pub-

lic safety operations, educational activities, national defense, and social interactions require

some form of wireless communications in order to enable information exchange, which in

turn requires access to Radio Frequency (RF) spectrum. In the last few years there has

consequently been considerable debate into the ability of current spectrum management ap-

proaches to support the growing demand for wireless communications services [1]. Through

recent measurement campaigns such as [2–12], there has been evidence to suggest that

current spectrum allocation and assignment practices have facilitated artificially–induced

spectrum shortage situations in which spectrum has been allocated and assigned but is
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underutilized.

Coupled with the increasing demand for multimedia communications services, the arti-

ficially induced spectrum shortage has led many to investigate Dynamic Spectrum Access

(DSA) techniques, introducing new challenges for spectrum management. DSA encom-

passes mechanisms for real–time adjustment of spectrum utilization based upon changing

circumstances such as changes of the radio’s state (e.g., operational mode, battery life,

location), changes in environmental and external constraints (e.g., RF spectrum, propaga-

tion, operational policies) as well as changing objectives (e.g., efficiency targets, quality of

service, graceful degradation guidelines, maximization of radio lifetime) [13].

In support of emerging wireless technologies such as DSA there have been numerous

technical enablers. Research into wideband radio front ends and antenna systems, Software–

Defined Radio (SDR) systems, as well as the application of theories from diverse fields

including economics, networking, artificial intelligence, and signal processing, among others

have facilitated the development of CR technology. While it’s precursor, SDR, focuses

upon increased ability to reconfigure radio interfaces through the use of software radio

components, CRs add awareness, agency, and intelligent adaptation elements to SDRs

reconfigurability capabilities [14].

CR technology consequently creates numerous opportunities for advanced wireless com-

munications technologies, beyond DSA. In a recent report aimed at quantifying the benefits

of CRs [14], several proposed new applications enabled by CRs were identified, including:

dynamic spectrum access, self-organizing networks, cognitive jamming systems, cognitive

gateways/bridges, real–time spectrum markets, synthetic (cooperative) MIMO, cognitive

spectrum management, and cognitive routing. Additionally, identified performance metrics

improved through CR deployment included: improving spectrum utilization and efficiency,

improving interoperability between legacy and emerging systems, improving link reliabil-

ity, less expensive radios, enhancing SDR techniques, extended battery life and extended

coverage, among others.

However, despite the potential of CR–enabled DSA technologies to revolutionize wire-

less communications, CRs employing DSA techniques possess the ability to sense, learn

and adapt to the RF environment. These characteristics introduce various challenges for
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service providers, regulators, and policy–makers. There is growing consensus that current

spectrum management practices are ill–suited to address the needs of spectrum governance

of emerging wireless network environments (e.g., [15–23]).

Establishing and enforcing compliance to spectrum etiquette rules are essential elements

required for realization of successful DSA networks in the future. While several initiatives

have been underway to establish appropriate operating parameters for DSA networks, ini-

tiatives for addressing the enforcement aspects are not as developed [24]. Perhaps the most

compelling concern is the potentially non–deterministic CR behaviour in the Electrospace.

Such situations can arise in various ways, such as [25]:

• CR learning algorithms can introduce changing responses to a set of inputs which may

be difficult to enumerate or track.

• CRs introduce possibilities for errors through valid software changes or invalid changes

due to malicious code, which both can result in the device violating transmission rules.

• CR frequency and waveform agility can introduce scenarios where there is in–band

conformance but out–of–band interference, which may be difficult to track.

Furthermore, the shift towards more market–oriented paradigms for spectrum access [21–

23, 26–30] has resulted in considerable research into more flexible spectrum access models

and access architectures. Consequently management strategies for spectrum allocation,

assignment and enforcement are increasingly being shifted away from being traditionally

the role of the regulator1. In the current communications ecosystem, spectrum management

responsibility in vertical service structures, (e.g., cellular, paging) is the Service Provider’s.

However, in horizontal structures, (e.g., WiFi, secondary markets), the responsibility for

spectrum management currently falls upon the primary licensee (if applicable), when in–fact

there should also be consideration of the role of the secondary licensee. The introduction of

CRs introduces new problems since each CR is in fact now a (possibly non–deterministic)

secondary licensee.

1Evidence in support of this is the increasing spectrum management decentralization with more respon-
sibility being pushed to Service Providers, Service Users and other stakeholder entities (e.g., Frequency
Coordinators and Guard Band Managers [30] as well as White Space Database Administrators [31–33])
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To address these issues, both technology and policy interventions are required [15–20].

The extensive debates on the policy impact of CR use for DSA is representative of the

complexity of the situation. While the role of spectrum management in this emerging

landscape is currently evolving, two key questions naturally arise [25]:

1. What are the rights of the license holder to prevent unauthorized use by an oppor-

tunistic device?

2. What kind of assurance can be provided that the interference will exist for only a finite

and precise duration, within any protected region?

In answering these questions, the current debate within the community has highlighted

the need for appropriate interference metrics, a suitable interference measurement and anal-

ysis system, a viable system deployment strategy, as well as operational mechanisms for

data access and arbitration. To support these elements, stakeholders recognize the need

for technology–enabling infrastructure to provide secure device operations. Traditional se-

curity includes enforcement of spectrum access policies which has historically been primar-

ily accomplished through equipment authorization, software certification, and monitoring

mechanisms by the regulator [15–23, 25, 34–37].

In current systems, enforcement of secure device operation is already challenging and

resource intensive. Even with more decentralized management models, the envisioned CR–

enabled environments introduce new challenges due to the increasing system dynamics

and potentially render current approaches ill–suited for future scenarios. Therefore, more

flexible security enforcement mechanisms should be contemplated [15–20, 25]. Equipment

authorization and software certification are very challenging areas requiring inputs from

many sectors to converge on a suitable set of mechanisms and is outside of the scope of this

work. This dissertation therefore focuses upon measurement mechanisms for compliance

enforcement in DSA scenarios.

Compliance enforcement at the policy level traditionally entails the specification of ac-

ceptable transmitter operational parameters such as center frequency, signaling bandwidth,

power spectral density, antenna gain, allowable times of operation, and geographic region
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for operation, among others2. Following definition, suitable thresholds must be established

to mitigate effects of harmful operation, (e.g., interference, denial of service). Because of the

flexibility offered by DSA, policy definition in terms of fixed parameters may be insufficient

for several reasons [25]:

1. Operational parameters should be contextually reflective of real–time spectrum usage,

taking account of location and the condition of RF environment.

2. Operational parameters should account for the impact of the transmitter on the sur-

rounding region. Many RF environments typically have complex geometries, possibly

with many users which may be mobile.

3. Even with current improvements in propagation models, current approaches are still

insufficient for extrapolation in interference analysis in envisioned DSA environments.

Therefore, there is increasing consensus that in situ measurements in support of inter-

ference analysis should be facilitated through the deployment of monitoring stations which

provide multiple measurements within the operational area of interest (e.g., [24, 25, 34–39]).

An example scenario involving a heterogeneous multi–agent wireless spectrum sensing net-

work with fixed and mobile monitoring nodes is illustrated in Fig 1.1.

1.3 Current State of the Art

Assessing the current state–of–the–art in spectrum monitoring requires contemplation

of the multi–faceted approach to security enforcement. This involves consideration of ini-

tiatives in DSA system deployment, regulation and policy development, standardization

development, academic research and recent work on spectrum monitoring initiatives by

regulators,service providers and users. The current status of work addressing these aspects

are discussed in this section.

Global DSA system deployment is still mostly in the early stages. A key reason for

this, is the need for enabling regulatory environments for DSA development and operation.

2Technology and service-specific parameters such as transmission delays, bit error rates, and dropped
network availability can also be specified.
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Figure 1.1: An example scenario involving a heterogeneous multi–agent wireless spectrum
sensing network with fixed and mobile monitoring nodes. Different colors indicate different
sensing configurations such as sampling ratios and sub–band measurements in progress.
Some nodes may possess beamforming capabilities which can be used for localization and
other enforcement functions not considered in this dissertation.

Following the initial phase of extensive research into DSA operation, over the last few years

there has been increasing work in various jurisdictions to provide the enabling mechanisms

for DSA. The most advanced jurisdictions at the time of this writing, are the USA and the

UK, where there have been extensive regulatory interventions and investigation into using

Television White Space (TVWS) to satisfy the anticipated spectrum demand, and achieve

greater technical, functional and economic spectrum efficiency [40–43]. In other jurisdictions

such as Europe, Canada, Japan, and Singapore, further investigations are underway relating

to TVWS deployments. Presently, most regulation and policy development has focussed

upon spectrum usage right specification relying upon traditional monitoring mechanisms

for security enforcement, given the currently limited deployment. However, in lieu of future

development, it is recognised that new approaches are needed for management of future

wireless networks [15–20, 24, 25, 35].

Standardization development is also crucial to DSA deployment, as it provides a frame-
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work for technology development, analysis and operation. Several standards have been

introduced in support of DSA operation. The most advanced are ECMA–392 in 2009 [44]

and IEEE Standard 802.22 [45] which provide Medium Access Control (MAC)/PHY–layer

specifications for TVWS home and regional area networks, respectively. Other MAC/PHY–

layer standards currently under development include IEEE 802.11af [46] for Wireless Local

Area Network (WLAN) operation in TVWS, IEEE 802.19 [47] specifying standards for

inter–standard TVWS coexistence and IEEE 1900.7 [48] for dynamic spectrum access radio

systems supporting fixed and mobile operation in white space frequency bands. However,

currently these standards are still in the early stages of development. Additionally, while

the MAC/PHY–layer standards, (i.e., or equivalent specifications), specify protocols and

operating parameters for using the standards, this by no means offer a guarantee of com-

pliance.

Furthermore, with the exception of IEEE 802.19, the current monitoring mechanisms in

standardization initiatives focus upon measurement approaches specifically aimed at white

space detection for usage, as opposed to the requirements for evaluating compliance. IEEE

802.19 is in the early stages of development but monitoring mechanisms are aimed at coexis-

tence for primarily IEEE standards and therefore offers limited scope as well. IEEE has also

been working on the 1900 series standards supporting deployment and analysis of DSA sys-

tems. These focus upon general principles for dynamic spectrum access networks including

Terminology Definition [13], Interference and Coexistence Analysis [49], Distributed Re-

source Optimization Architectures [50], Policy Languages and Architectures [51] and Spec-

trum Sensing Interfaces and Data Structures for DSA [52]. The scope of these standards also

does not currently provide specific guidelines for monitoring for compliance enforcement3.

Standardization work in monitoring mechanisms for DSA compliance has been based

upon related academic research work on spectrum sensing. While the current literature

illustrates various ways to deal with user detection under different sensing performance

requirements (e.g., energy detection, cyclostationary detection, waveform sensing) [54–57],

sensing wide spectrum bands, a key requirement for DSA compliance monitoring [35], is

3The initial proposal for the 1900 series also included a Project Authorization Request (PAR) for 1900.3
with the goal of investigating approaches for assessing the spectrum access behavior of radio systems employ-
ing DSA methods, which was approved, but the responsible Working Group (WG) was later disbanded [53].
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still a difficult task. Many techniques have been proposed for wideband sensing such as

compressed sensing [58, 59], multi–resolution sensing [60, 61], and collaborative sensing [62,

63], as well as combinations of these [64–66]. However, these approaches focus upon primary

and secondary user detection for CR communications, and not on monitoring for compliance

evaluation. In [58, 67, 68] there has been some work in signal estimation, but again, the

focus was upon user detection for CR communication, as opposed to spectrum monitoring

for compliance. Wideband sensing approaches are also still challenged with the detection of

intermittent use, particularly in low–occupancy scenarios. Additionally, current approaches

do not differentiate between primary services and differing/heterogeneous secondary usage.

Finally, in many of the approaches in the literature, spectrum sensing are channel–oriented

and are thus ill–suited4 for modeling the impact of heterogeneous Radio Access Technology

(RAT) on spectrum occupancy in proposed spectrum sharing models in the literature.

Recently, however, there has been increased research into spectrum security issues in

DSA networks. Research into spectrum security has focussed upon the impact of malicious

spectrum users in DSA environments, (e.g., due to primary user emulation attacks [69–71],

denial of service attacks [72–74], spectral honeypot attacks [75, 76]), and has demonstrated

the relatively low barriers required for exploitation if security measures are not in place,

(e.g., [75, 77–79]). Many existing proposals for spectrum sharing and management introduce

security leakages, and consequently potential unfairness, spectrum unavailability, malicious

behaviour in DSA networks. Identification, recording and reporting of such behaviour still

remains an open research issue [75, 77–79]. This is even more challenging for monitoring in

real–time [80]. The literature to–date, however, focuses upon development of mechanisms

for DSA spectrum management for deployment within the network, in a similar manner

to existing standardization activities. While the techniques for identification, recording,

and reporting are related to the needs of compliance monitoring, application to spectrum

management within the network, still does not directly address the issue of compliance

enforcement.

In most jurisdictions, from regulator and service provider perspectives, spectrum mon-

4Currently most channel–oriented approaches in the literature do not account for coexistence scenarios
where secondary networks with different channel specifications operate.
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itoring techniques are principally either of two different approaches [35]: 1) Attempting to

sense every transmission in the band under observation; or 2) Periodic sensing with statis-

tical estimation of occupancy. Service provider monitoring mechanisms have focused upon

restricting access to their networks based upon their assigned access to the Electrospace.

These have naturally been limited in geographical extent, as well as licensed sub–band scope,

based upon the service provider’s infrastructural investments, and are typically specific to

the technology deployed, (e.g., GSM, UMTS, DAB). Consequently, such measurement ap-

proaches tend to be very technology–specific, since radio resource management mechanisms

are based upon measurement of key performance indicators for use in resource optimization

for the specific technology [81].

From the regulator perspective, there has been a historic lack of monitoring technology

innovation which has been primarily attributed to the requirement for policy–makers to

provide the enabling infrastructure for security monitoring, which is not the typical focus of

regulatory agencies [25]. Regulator investment in monitoring networks generally consist of

a mixture of fixed and mobile monitoring nodes, which are deployed based upon traditional

spectrum management approaches [24, 35], which have increasingly been considered to be

inadequate for the dynamic characteristics of DSA networks [15–20, 24, 25, 35]. Recently,

there has however been increased work in development of monitoring infrastructures for

DSA. Proposed approaches are primarily based upon either: 1) Spectrum sensing mecha-

nisms or 2) Geolocation database mechanisms.

Figure 1.2: RFeye Spectrum Monitoring Solution [38, 39].

Perhaps the most advanced work which utilizes spectrum sensing is RFeye [38, 39]. RF-

eye, developed by CFRS [38], was designed for continuous remote spectrum monitoring.

System deployments can potentially provide real–time access to Electrospace usage data in
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addition to direction finding and radio geolocation for pinpointing suspicious or unautho-

rized transmitters. The RFeye node, (Fig 1.2), currently offers flexible system deployment

in various applications including security and surveillance, regulatory enforcement, as well

as military spectrum operations. This currently represents the most advanced work to–

date in development of spectrum monitoring infrastructure. Infrastructure development is

underway in various jurisdictions including the UK, Canada and the Netherlands [24, 38].

Another promising approach for compliance monitoring which leverages regulatory de-

velopments involves the use of geolocation databases storing data to determine the avail-

ability of white space for secondary service usage [31–33, 82–84]. This can be accomplished

through use of the geolocation database contents which are currently being used for spec-

trum management in DSA scenarios. For example, Spectrum Bridge has developed its

Authorized Shared Access (ASA) technology which relies upon geolocation databases for

direct spectrum allocation and managed shared access to spectrum, (Fig 1.3). This approach

represents the state–of–the art in spectrum management deployments aimed at DSA oper-

ation. Secondary Users (SUs) receive only information on a subset of accessible channels

based upon ASA optimization [82].

However, such database approaches focus upon protection of the primary services, and

rely upon mostly slowly–varying Primary User (PU) information coupled with access re-

striction mechanisms achieved by limiting the channel lists provided to SUs for DSA. There

is still a need to account for the impact of the more dynamic and stochastic secondary

services, particularly in such scenarios, for example in interference characterization. The

current FCC approach only requires that SU devices request channel availability for the

SUs current position [40, 41]. There is no requirement for SU registration prior to spectrum

usage, as currently proposed by the OFCOM regulatory regime [40–43]. Also as currently

specified, the databases would be primarily derived from nominal licensing data available

from the regulator (e.g., [85]) as opposed to actually measured and estimated occupancy

statistics, and are currently limited to the Digital Television (DTV) bands. Even with the

OFCOM requirement for SU registration, no guarantee is offered to ensure compliance.

The lack of reliable feedback therefore makes the current database approaches ill–suited to

accounting for secondary spectrum usage.
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Figure 1.3: Geolocation Database Spectrum Management using Spectrum Bridge Autho-
rized Spectrum Access Technology [82].

1.4 Thesis Contributions

Specific novel contributions of this dissertation are as follows:

1. Non–Uniform Spectral Sampling (NUSS) for Non–Contiguous Spectral

Sampling (NCSS) in wideband sensing scenarios: A framework is proposed

for the use of NUSS techniques. The techniques focus upon reducing data collection

complexity for bandwidth occupancy in wideband sensing, which is a key performance

requirement in spectrum monitoring. Performance evaluation of stratified spectral

sampling techniques for use in NCSS is presented. Implementation algorithms for

spectral stratification are presented in support of Random Spectrum Sensing (RSS),

which is a special case of NCSS. Finally a case study is presented which: 1) demon-

strates one possible way to realize RSS/NCSS using polyphase filter banks; and 2)

presents a framework for performance evaluation of RSS/NCSS use in monitoring

DSA scenarios.
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2. PHY–based Random Temporal Sampling approach to temporal modeling

of spectrum occupancy: A PHY-layer–based approach for spectrum occupancy

estimation is proposed, if user discrimination is not required. In this approach, spec-

trum occupancy is modelled as an alternating renewal process. Signal measurements

are then used to estimate the probability density functions of “ON” and “OFF” times

for spectrum occupancy, under various temporal sampling strategies. The scheme

is demonstrated on software radio hardware, the Universal Software Defined Radio

Platform (USRP) for various scenarios. Performance comparison to CS approaches is

then done.

3. Frame–Based Random Temporal Sampling (FBRTS) approach to temporal

modeling of spectrum occupancy: This novel approach uses sampling inversion

techniques for estimating time–based statistical characteristics of the DSA traffic us-

ing knowledge of learned information about CR technologies deployed in an area.

Considering spectrum occupancy modelled as an alternating renewal process, a point

process is constructed using renewals demarcated by frame–based feature semantics

common to most current and emerging wireless MAC–layer and PHY–layer specifica-

tions. The impact of missed frame detection due to sampling design, or frame errors

is then investigated. Finally, the randomly sampled frames from the sampled process

are used to recover spectrum occupancy statistics for the full frame sequence using

sampling inversion techniques. To the best of the author’s knowledge, this aspect of

spectrum occupancy estimation has never been explored in the literature. This con-

tribution is presented to address the need to track individual CR behaviour in DSA

coexistence scenarios, which remains an open research issue to–date.

4. Collaborative/Distributed Random Spectral Sampling (CRSS) and Mobile

Random Spectral Sampling (MRSS) approaches to collection of spatial

spectrum occupancy data: - This work expands upon the previous contributions.

Node collaboration and mobile nodes are incorporated into the previous approaches

for collection of spatial diversity to improve estimation performance. The approach

is investigated for several spectrum monitoring and compliance enforcement tasks.
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Additionally, this contribution adds to the literature on consensus algorithms for low

complexity convergence of distributed sensing nodes, through consideration of more

realistic mobility models than currently used in the literature on consensus conver-

gence. This is accomplished through the use of bi–directionally coupled simulations

for investigation of vehicular networks for spectrum sensing. A distance–based ap-

proach is also proposed for consensus convergence in vehicular settings. This specific

contribution is has been the basis for work done between the Wireless Innovation Lab-

oratory and Toyota ITC for developing Knowledge–Based Vehicular Communications

(KBVC) where sensors randomly sense channels and share estimated transition prob-

abilities to improve channel state prediction in Vehicular Dynamic Spectrum Access

(VDSA) networks.

1.4.1 Publications

In support of the above contributions, the following is a list of publications achieved

over the course of this PhD.

Journals

1. [86] S. Rocke and A. Wyglinski, “Wideband Spectrum Occupancy Estimation us-

ing Random Spectral Sampling in Heterogeneous Radio Access Environments” IEEE

Transactions on Vehicular Technology, Submitted.

2. [87] S. Rocke and A. Wyglinski, “Randomized Temporal Spectrum Sensing us-

ing Periodic Sampling SDR Platforms”, IEEE Transactions on Vehicular Technology,

Submitted.

Conferences

1. [88] S.Rocke, S. Chen, R. Vurruyu, O. Altintas and A. Wyglinski, “Knowledge–

based Dynamic Channel Selection in Vehicular Networks”, IEEE VNC, November,

2012.
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2. [89] S. Rocke and A. Wyglinski, “Estimation of Spectrum Occupancy in Het-

erogeneous Radio Access Environments using Random Spectral Sampling”, IEEE

SARNOFF, January, 2012.

3. [90] S.Rocke and A. Wyglinski, “Geo–Statistical Analysis of Wireless Spectrum

Occupancy using Extreme Value Theory”, IEEE PACRIM, August, 2011.

In Preparation

1. [91] S.Rocke and A. Wyglinski, “Spectrum Monitoring in Dynamic Access Networks:

Challenges and Opportunities”, IEEE Communications Magazine.

2. [92] S.Rocke and A. Wyglinski, “Non-Uniform Wideband Spectrum Sensing for

Spectrum Monitoring in Dynamic Spectrum Access Networks”, Eurasip JWNC.

3. [93] S.Rocke and A.Wyglinski, “Knowledge-based, Non-Contiguous, Multi-Resolution

Wideband Spectrum Sensing in Heterogeneous Radio Access Environments”, IET Sig-

nal Processing.

4. [94] S.Rocke and A. Wyglinski, “Frame-based Sampling Inversion Technique for

Spectrum Occupancy Estimation for DSA Compliance Verification”, IEEE Transac-

tions on Wireless Communications.

5. [95] S.Rocke, S. Chen, R. Vurruyu, O. Altintas and A. Wyglinski, “Knowledge–

based Dynamic Channel Selection for Vehicular Communications”, IEEE Vehicular

Technology Magazine.

6. [96] S.Rocke, S. Chen, R. Vurruyu, O. Altintas and A. Wyglinski, “On Vehicular

Communications in TVWS: Challenges and Opportunities”, IEEE Communications

Magazine.

1.5 Dissertation Outline

The dissertation is structured as follows. Chapter 2 covers spectrum access methods and

the implications for spectrum management, concluding with a review of related work on
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spectrum monitoring for DSA networks. Chapter 3 outlines the random spectral sampling

framework, and presents results on the non–uniform spectral sampling framework for band-

width occupancy estimation in heterogeneous wideband scenarios. Chapter 4 presents the

PHY–layer based random temporal sensing approach for temporal occupancy estimation.

In Chapter 5, details of the frame–based random temporal sampling approach are pre-

sented. In Chapter 6, the distributed, mobile sensing framework for compliance monitoring

is described. Chapter 7 outlines a future outlook is presented followed by the conclusion.
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Chapter 2

Background Knowledge of

Spectrum Monitoring in DSA

Networks

2.1 Introduction

This chapter provides an overview of various issues surrounding spectrum management

for dynamic spectrum access. A brief overview of the challenges of current spectrum man-

agement methods, dynamic spectrum access methods and the implications for spectrum

management is first presented. The spectrum monitoring problem is then briefly discussed,

followed by discussion of several key spectrum monitoring challenges in OSA networks.

Several aspects of this work also appear in [91].

2.2 Challenges of Current Spectrum Management Methods

The following section briefly discusses the challenges of current spectrum management

methods. The importance of spectrum management for wireless communications is ex-

plored, as well as discussion of several shortcomings of the traditional approaches which

has led to more market–oriented paradigms to spectrum access. The impact of the ongoing
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transition on spectrum management by other stakeholders is then discussed.

2.2.1 The Need for Spectrum Management

Spectrum is an enabler for the delivery of vital services, for both public and private

users, such as public safety, national defence, disaster warning, mobile telephony, Internet

access, and air and maritime traffic control. As the range of spectrum–facilitated services

continues to increase, there has been a tremendous growth in demand for wireless–enabled

services in recent years. The most cited example of this phenomenon has been the rapid

growth of mobile telephony, mobile broadband, and Internet services (Fig 2.1). There has

also been increasing popularity of entirely new applications for example commercial appli-

cations using the Global Positioning System (GPS) 1, as well as radio tracking applications

using Radio Frequency Identification (RFID) tags, placing increasing burdens on spectrum

resources [97].

The increasing demand further emphasizes the need for spectrum management in or-

der to mitigate or entirely avoid excessive interference between different spectrum users.

Interference typically arises due to spectrum user transmissions at the same time in close

spectral proximity, within some common defined spatial region, potentially resulting in

unusable systems. Spectrum management tools provide a means of maximizing the value

gained by society through spectrum usage. In fact, a key goal of spectrum management is to

facilitate as many efficient and effective spectrum–enabled services as possible while simul-

taneously minimizing the interference experienced between different spectrum users [35].

Topics highlighting spectrum management and its relevance to society, which have been

discussed in the literature, include the following [24]:

1. Freedom of knowledge and innovation: Spectrum management should remove

constraints to allow new services as well as new company’s resulting from related

innovations.

2. Security - Society expects that wireless communications should be secure (e.g., re-

1GPS was originally developed for defense purposes. A comparable example is the transformation of
the short messaging service (SMS) in mobile cellular systems, from an engineering system management and
trouble–shooting mechanism into its current commercial usage.
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Figure 2.1: Global ICT developments, 2005–2011 [98].

sistant to jamming, eavesdropping and hacking).

3. Quality of Service (QoS): Demands for reliable wireless communications, which

depends upon electromagnetic compatibility (EMC), is very challenging in emerging

wireless environments.

4. Health and safety: The rise in wireless technology usage has also raised society’s

concerns about the safety of electromagnetic waves on the human body.

5. Building construction: The selection of building materials without consideration
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of RF propagation characteristics, impacts network design, for example in newly de-

veloped urban areas.

6. International harmonization: Since RF propagation does not distinguish inter-

national boundaries, and given the relatively long time scales for harmonizing new

applications in spectrum, assessing future spectrum needs in a timely manner is es-

sential.

In addressing these topics, it is imperative that both policy and appropriate technical

platforms be used to support decision support for both current and future spectrum needs.

2.2.2 Shortcomings of Traditional Spectrum Management Approaches

Considering the discussion in Section 2.2.1, spectrum management can be viewed as a

multi–objective optimization problem, requiring contemplation of both technical and non–

technical parameters as bases for optimization, based upon the context of the spectrum

users (e.g., technical, functional and economic efficiencies) [1, 99, 100]. Technical efficiency

principally relates to the above metric as a means of achieving the most intensive spectrum

use within interference constraints. Functional efficiency relates to the reliability, ease of

use, and quality of services provided. Economic efficiency relates to the revenue, profit and

added value achieved through spectrum policies. These efficiencies collectively form the

bases for evaluation of benefits to users, the economy, and to society [99].

However, the regulatory process of ensuring both technical and non–technical efficiency

introduces requirements for responsiveness and flexibility for adaptation to the pace of

technological development and changing market valuations. In the past, there have been

various challenges for achieving this. First, in the spectrum management process the various

efficiencies can be competing. For example, public policy goals for safeguarding the provision

of services such as defence, safety, and public broadcasting may conflict with technical

efficiency objectives. Further, the need for spectrum harmonization for several services

(i.e., globally, regionally, nationally) requires considerable efforts in spectrum coordination

across jurisdictional boundaries which can further constrain efficiency objectives.

The increasing importance of commercial applications has also encouraged numerous in-
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teractions between various regulatory bodies, operators, and manufacturers. This increased

interaction is based upon the growing consensus that operators and equipment manufactur-

ers typically posses more knowledge about their spectrum interests and additionally more

information, than an administrative body would possess, pertaining to technology selection

and deployment as well as consumer preferences.

It is therefore no surprise that spectrum management, even in the simplest of cases, can

be a very complex process requiring a multi–faceted approach. While the regulators have

in general been able to address spectrum demand during the 20th century via incrementally

increasing the spectrum supply, numerous technological advances and telecommunications

liberalization have have challenged the regulator’s abilities to balance spectrum supply and

demand effectively. There is increased pressure on regulators to determine better ways to

ration and balance spectrum demand between the numerous diverse competing uses.

Additionally, the regulatory burden of efficiency optimization was not as pronounced

as currently required in an environment of rapid technological change and unpredictable

markets. This had led to the perception that the predominantly centralized administrations

are not as responsive, efficient as required, and that they are biased towards the status

quo and incumbent interests [22]. The rigidity of the current regulatory framework was

further demonstrated with the onset of telecommunications convergence, which promulgated

blurring of the boundaries between traditional service definitions which previously formed

the basis of spectrum allocations.

Therefore, from a process–oriented perspective it is almost impossible to predict the

value attained through a given service–spectrum allocation. This in turn makes it very dif-

ficult to assess how a predominantly “command–and–control” approach to spectrum man-

agement can maximize value. Several examples provide evidence in support of this [101]:

1. Unused allocated spectrum: Several measurement studies have shown several

instances where allocated spectrum is currently being unused, reducing opportunities

and possible added value if other services could access the spectrum.

2. Widely differing spectrum valuations: The most common example of this is

in auctions (e.g., higher 3G valuation versus 3.4GHz) which suggest an imbalance
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between different uses.

3. Barriers to entry of emerging technologies and applications: Technologies

and applications such as mobile TV or vehicular communications have had difficulty

in securing sufficient spectrum resources. This is symptomatic of regulatory rigidity.

4. Insufficient incentives for technology innovation: Applications such as avia-

tion radar have limited incentives for optimizing their use of spectrum despite the

availability of more spectrally efficient technologies.

Also relatively recent management approaches such as spectrum trading and license–

exempt spectrum2 have made management even more challenging. The consequent higher

request rates for new spectrum, spectrum reconfiguration, ownership changes, spectrum

leasing, and application changes further burden the manager. Dispute resolution also rep-

resents another challenge to current spectrum management approaches. Thus management

of allocations and assignments either by the regulator, or in some cases the user, may not be

achieving the main spectrum management objectives and further are increasingly difficult

to administer centrally.

2.2.3 The Shift Towards a More Market–oriented Paradigm

Based upon the previous overview, recognition of increasingly burdened regulatory re-

sources has highlighted the shortcomings of the traditional, centralized approach to spec-

trum management, spurring research into alternate approaches to spectrum management.

In the expanding spectrum marketplace, spectrum is however being valued as any ba-

sic commodity. Therefore there has been a long term evolution towards more market–

oriented mechanisms [23] ranging from beauty contests to free–market auctions. The intent

of market–oriented spectrum management is to facilitate as much decentralized coordination

of spectrum use as is reasonably practical and possible.

Regulators worldwide are exploring and incrementally adopting tools and procedures

that demonstrate the shift in paradigm. An example of this is the FCC’s revision of rules

2Such approaches have been deployed in a relatively small proportion of usable spectrum. The majority
is still “command–and–control” administered.
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governing use of radio spectrum to first allow Frequency Coordinators, and subsequently

Guard Band Managers to to lease spectrum according to the spectral and geographic needs

of specific classes of private wireless spectrum users [30]. This has provided a means of

coordinating the variety of needs both for bandwidth and geographic coverage, and allowed

for addressing odd–shaped or small spectrum requirements which if assigned via licenses

would typically artificially reduce spectrum opportunities for other spectrum users (i.e.,

inefficient spectrum use).

Such approaches are however currently limited in application to sub–bands such as the

use of Guard Band Managers in the 700MHz band, and most of the spectrum managed by

regulatory authorities still is subject to traditional “command–and–control” mechanisms.

Recent measurements, (e.g., [2, 3, 102–104]), have demonstrated the artificially induced spec-

trum shortage resulting from the traditional approach. The artificially–induced spectrum

shortage has led many to investigate DSA techniques as a possible solution. DSA repre-

sents a more aggressive market–oriented approach to spectrum management which can be

seen as a logical evolution based upon the advantages gained through use of Frequency

Coordinators and Guard Band Managers for selected sub–bands in the past. There is in-

creasing regulatory interest in DSA, as evidenced by regulatory approval3 for deployment

and experimentation with TV whitespace devices which implement DSA.

2.2.4 Different Domains of Spectrum Management

Although much of the previous discussion focused upon spectrum management from

the regulatory perspective, spectrum management in fact exists within various domains.

Fig 2.2 illustrates the traditional spectrum management pyramid4 for basic interactions

between key stakeholders for RF spectrum usage. Due to the shift to more market–oriented

approaches, the traditional spectrum management role of regulators is increasingly shifted

to the service providers and end users. The challenge therefore is to provide mechanisms

for ensuring that spectrum management objectives at the highest level are achieved, given

3For example USA, Canada, UK, Australia, Singapore, Japan, and South Africa.
4This pyramid does not attempt to illustrate the complex interactions between stakeholders. Further,

increasing decentralization has blurred the lines between the domains from an organizational perspective.
For example, service providers are also service users, and both service providers and end users can impact
regulation (e.g., through consultations).
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the increased autonomy being granted to the non–regulator stakeholders. From the domain

perspective, traditional spectrum management roles are as follows:

Electrospace

Spectrum Assignment

Radio Resource
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Service

Usage

Spectrum Allocation

Service

Provision

Regulatory &

Policy

Domain
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Figure 2.2: Traditional Spectrum Management Pyramid.

1. The Regulation & Policy Domain: Traditionally, responsibility for allocating

particular services/technologies to operate within any given sub–band, and assigning

these bands to specific users/service providers has been within the domain of regula-

tion and policy. At this level, spectrum management involves allocation, assignment,

as well as specification of various operating parameters which should be adhered to, in

order to achieve spectrum management objectives. Ensuring regulatory compliance is

another aspect of spectrum management in this domain. At this level, value is derived

from achieving larger policy objectives which typically stem from human, social and

economic considerations.

2. The Service Provision Domain: Spectrum management at this level must min-

imally conform to the requirements of the underlying regulatory regime. Typical

spectrum management activities at this level include standards development, network

deployment, network operation and management as well as device manufacture, to

name a few. Depending upon the network context, (e.g., WLANs, TV Broadcast,

Mobile Cellular), spectrum management in terms of allocation of assigned spectrum

resources varies by protocol specifications. Such protocols facilitate delivery of ser-

vices to the end users in line with regulatory requirements. At this level, value is
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typically economic in nature.

3. The End User Domain: This domain typically has the least spectrum management

responsibilities. However, the end user plays an important role in situations where

the end user has responsibility for network deployment, operation and management.

Examples include home networking, office networking and use of Private Land Mobile

Network (PLMN) services. At this level, value is specified in terms of the derived ben-

efits such as access to information services, the Internet, messaging services, financial

services, or some information infrastructure for supporting strategic operations.

Each of these domains presents different perspectives on spectrum management as well as

value gained through a particular use of the Electrospace. Formally, the Electrospace is de-

fined as a theoretical, k–dimensional hyperspace occupied by radio signals, and is composed

of various dimensions including time, frequency, spatial location, angle–of–arrival, polar-

ization, code, and possibly others [54]. Within the various domains, resource management

principles typically focus upon the sub–space composed of the time, frequency, and spatial

location dimensions. Transmitters and their operating parameters can be represented as

Electrospace Volumes [100]. The problem faced by all spectrum users, independent of do-

main can thus be stated as follows: Given N volumes in Electrospace, in the most general

sense, disjoint, and given M requests for services, how can the M requests ‘best’ fit into the

N volumes?

As stated previously, this can be viewed as an optimization problem. In the literature,

“efficiency” and “utility” frequently provide the bases for optimization [105–107]. However,

there are numerous interpretations of efficiency based upon the context of the users [1,

99]. In many instances, the dimensions used for optimization are based upon spectrum

utilization efficiency in which efficiency is viewed as the output to input ratio of the amount

of information transferred, (i.e., output), to the spectrum utilization (i.e., input). The input

parameter usually involves some representation of the spectrum space required, specified as

a function of the product of bandwidth, space and time [100], while the output is dependent

on the user/stakeholder perspective. Utility similarly has many interpretations depending
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upon the definition of the end user, including both technical and non–technical components,

(e.g., economic efficiency and functional efficiency) [99].

Given the implications of opportunistic spectrum usage in the wider community, there

needs to be further consideration of the non–technical consumers of spectrum data that

may function in roles such as regulators and policy–makers. A suitable metric [100] for this

community would provide a tool that can be used to incorporate other non–technical con-

siderations in spectrum management functions at all levels. Spectral occupancy modeling

provides a technical basis for the evaluation of spectrum usage, and as a consequence other

parameters of interest to the data user [108, 109].

2.3 Harnessing the Electrospace

Achieving higher spectrum utility through opportunistic spectrum access requires new

ways of accessing the Electrospace. In this section proposed mechanisms and architectures

for accessing the Electrospace are briefly described. This section also briefly discusses the

cognitive radio concept, and discusses how this approach can be used to realize the access

models and architectures.

2.3.1 Spectrum Access Models

In the traditional “command–and–control” approach, the Electrospace is statically as-

signed to a spectrum licensee, which as previously discussed, generally results in inefficient

utilization of spectrum. This approach limits the flexibility of usage of spectrum according

to the time–varying demands of the user [28]. Limitations of this approach include:

• Static assignment to licensees in general cannot be easily changed. In cases where

the assigned spectrum is under–utilized, the spectrum cannot be allocated to another

user/service provider who can accommodate new potentially more efficient use of the

spectrum.

• Even in technology–neutral licensing schemes, the type of wireless service in the li-

censed spectrum cannot be changed. An example of this is the previous analog TV
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allocations which could not be used for other services such as increasing network ca-

pacity for mobile cellular communications, even though TV bands were largely unused.

• Spectrum licenses are usually location–invariant. Thus as in the previous point, at

various locations the spectrum can remain unused. This was confirmed in several

recent spectrum measurement studies. An example of this is the gap between urban

and rural service usage.

• Spectrum usage granularity is not dynamic. This limits the ability to allocate the

Electrospace in smaller volumes to service demands in scenarios such as in a hotspot

scenario.

• In most cases, licensed users are protected from significant interference by unlicensed

use. However, if the licensed user is not using the resource (e.g., historic analog TV

use) then spectrum utilization can be improved through opportunistic access to the

spectrum opportunities provided that unlicensed transmissions do not significantly

interfere with or disrupt licensed user operation.

The above reasons summarize many of the compelling arguments which spurred the

genesis of open spectrum [27]. Open spectrum encompasses various models and techniques

with a more market–oriented shift to spectrum management to facilitate dynamic spectrum

management for wireless communications systems. Under this paradigm new spectrum

access and licensing models for improving spectrum access efficiency and flexibility are

illustrated in Fig. 2.3. These models are now briefly described.

Exclusive Use Model

In the exclusive use model spectrum is licensed for exclusive use, subject to various

operating parameters (e.g., maximum transmit power, transmit power mask, operating fre-

quencies, allowable geographic operating range). Thus spectrum is allocated (e.g., perhaps

by the regulator) to the licensee with restrictions on geographic and temporal validity. The

licensee in turn can grant access rights to unlicensed users, also subject to operating pa-

rameters which must in aggregate also satisfy those imposed by the overall assigning body
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Figure 2.3: Spectrum Access Models.

(e.g., regulator). The exclusive use model can be further classified into long–term exclusive

use and dynamic exclusive use. The main difference between the two approaches is the

timescale over which spectrum allocation occurs.

Shared Use Model

In the shared use access model, spectrum can be simultaneously shared between licensed

and unlicensed users. Unlicensed users opportunistically use spectrum provided that the

spectrum is not currently utilized by licensed users. The operating principle is that unli-

censed usage is allowed as long as it does not interfere with licensed usage. Shared use can

be further sub–divided into spectrum overlay and spectrum underlay access methods.

In spectrum overlay operation, while the licensed user maintains the right to exclusive

operation within a given band, the unlicensed user opportunistically accesses spectrum

at particular times and frequencies with no licensed usage, (i.e., referred to as spectrum

holes). Typically this method would be used in FDMA, TDMA, and OFDM systems. In

contrast, in spectrum underlay operation, the unlicensed user transmits concurrently with
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the licensed user, but does so at a transmit power level that limits the interference levels to

the licensed user. Typically this method would be used with CDMA and UWB systems.

Spectrum Commons Model

In the spectrum commons approach, all spectrum users possess the same rights to access

the Electrospace, subject to overarching operating parameters typically set through regu-

lations. This access model can be divided into uncontrolled commons, managed commons

and private commons sub–models.

In uncontrolled commons access, spectrum is not owned by any user. This is the simplest

approach and is already in use in several sub–bands. The most popular examples are the ISM

(2.4 GHz) and U–NII (5 GHz) unlicensed bands. While there is no spectrum ownership in

this model, there is usually a maximum transmit power constraint. Since there is no control

on spectrum access, spectrum users typically suffer from both uncontrolled interference5 or

controlled interference6 which can reduce spectrum usability. This has been referred to in

the literature as the tragedy of the commons [110].

In managed commons access, several of the problems of uncontrolled commons are ad-

dressed through mechanisms which allow jointly–controlled spectrum access. Users adhere

to the prescribed spectrum etiquette rules for gaining access to the spectrum [26]. This

access method requires a management protocol which incorporates reliable and scalable

mechanisms for ensuring spectrum etiquette rules are adhered to. This also implies the

need for mechanisms to enforce spectrum etiquette rules.

In private commons access, there is an entity who owns rights to the spectrum. The

spectrum owner, subject to regulatory operating parameters, is able to specify technologies,

protocols, and operating parameters for users to access the owned spectrum. The key

features of this model are: 1) Users must receive approval from the spectrum owner prior

to opportunistic access of the spectrum 2) Users can access spectrum owned by any user

operating under this regime 3) Sensing and coordination protocols must be approved by the

spectrum owner, as long as they do not violate overarching regulatory–determined spectrum

5From devices outside the network.
6From devices within the network.
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etiquette rules.

2.3.2 Access Architectures

In addition to the various access models, there are also various access architectures under

which these access models can be realized. Each architecture requires different approaches

to management. Therefore access architectures for OSA must be contemplated in spectrum

management and monitoring approaches. Access architectures can be classified in several

ways. For example, [111] presents a very useful approach (Fig. 2.4). [111] classifies access

architectures as follows:

• Infrastructure–based versus Infrastructureless Networks

• Centralized versus Distributed Networks

• Single–hop versus Multi–hop Networks

Dynamic Spectrum

Access

Infrastructure-based Infrastructureless

Single-hop Multi-hop Single-hop Multi-hop

Distributed DSA

Centralized DSA

Figure 2.4: Spectrum Access Architectures [111].

2.3.3 Cognitive Radio

Cognitive radio technology, first coined by Mitola and Maguire [112], provides a funda-

mental enabler for flexible and efficient usage of spectrum through dynamic spectrum access.

In the literature, several CR definitions have used based upon the applications and research

focus. In some instances emphasis is placed upon “spectrum agility” (e.g., [113, 114]) while
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in others the ability to learn and reason is the primary attribute (e.g., [112]). However

to–date while there have been many attempts to define cognitive radios, there has not been

any globally–adopted formal definition. Examples of the more prevalent definitions include

the following:

“A really smart radio that would be self-, RF- and user aware, and that would
include language technology and machine vision along with a lot of high–fidelity
knowledge of the RF environment.” Mitola [112]

“Cognitive radio is an intelligent wireless communication system that is aware
of its surrounding environment (i.e., outside world), and uses the methodol-
ogy of understanding–by–building to learn from the environment and adapt its
internal states to statistical variations in the incoming RF stimuli by making
corresponding changes in certain operating parameters (e.g., transmit–power,
carrier frequency, and modulation strategy) in real–time, with two primary ob-
jectives in mind: highly reliable communication whenever and wherever needed;
efficient utilization of the radio spectrum.” Haykin [115]

“a) A type of radio in which communications systems are aware of their en-
vironment and internal state can make decisions about their radio operating
behaviour based on that information and predefined objectives.

b) Cognitive radio...that uses software–defined radio, adaptive radio and other
technologies to automatically adjust its behavior or operations to achieve desired
objectives.” IEEE 1900 [13]

“A radio system employing technology that allows the system to obtain knowl-
edge of its operational and geographical environment, established policies and its
internal state; to dynamically and autonomously adjust its operational parame-
ters and protocols according to its obtained knowledge in order to achieve prede-
fined objectives; and to learn from the results obtained.” ITU, ETSI [116, 117]

Of interest for spectrum management is the ability to track both the spectrum agility

and learning–based responses of cognitive radios. Regulatory definitions emphasize spec-

trum agility and awareness aspects of cognitive radios for spectrum monitoring. For example

the FCC has specified several features which they believe should be incorporated by cogni-

tive radios including: frequency agility, dynamic frequency selection, adaptive modulation,

transmit power control, location awareness, negotiated spectrum use [41].

However, while spectrum agility tracking represents a considerable challenge, the ques-

tion of how to provide guarantees for cognitive radio behaviour due to the ability to learn
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still remains an open issue. The role of learning in cognitive radio adaptation of transmis-

sion parameters in changing RF environments according to the changing environment, can

be examined with reference to the “cognitive cycle” [112, 118]. Fig 2.5 illustrates the mental

processes of a cognitive radio based upon the “cognitive cycle”.

Figure 2.5: Cognitive Cycle based upon Mitola [112].

Drawing on artificial intelligence and machine learning theory [119], cognitive radios

learning involves the modification of cognitive radio components to bring the components

into closer agreement with available feedback from the operating environment in order

to improve the overall cognitive radio performance. This ability to learn implies non–

deterministic behaviour in the operating environment, even in response to static inputs

to the cognitive radio [25]. This becomes increasingly unwieldy when one considers the

multitude of possible optimization objectives as well as the functionality offered cognitive

radios through SDR platforms.

2.4 Spectrum Monitoring

While recent technology developments bring OSA closer to realization, it is imperative

that spectrum management mechanisms be appropriately developed in support of OSA.

Spectrum monitoring, in conjunction with spectrum planning, spectrum engineering and

spectrum authorization, represents four essential functions of spectrum management. Mon-

itoring is typically used for planning frequency use, avoidance of incompatible usage, iden-
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tification of harmful interference sources and for resolution of spectrum scarcity issues. To

support these processes, it is essential that data be collected for study and analysis of spec-

trum occupancy, Electromagnetic Compatibility (EMC) verification as well as for ensuring

user compliance with licence conditions, technical standards and operational standards.

Monitoring provides essential data for understanding and planning channel/band usage,

in addition to providing feedback on the effectiveness of current planning and authorization

activities. Additionally, through appropriate monitoring processes, statistical information

on the technical and operational nature of spectrum occupancy is provided. Essential to

promoting spectrum efficiency, objective spectrum management decisions require a means

to quantify spectrum usage and to evaluate candidate radio technologies and spectrum

access techniques. Furthermore, in highly congested regions, data facilitates essential spec-

trum engineering activities such as validation of tolerance levels, determining interference

probabilities as well as development of band-sharing strategies.

Further, spectrum monitoring facilitates compliance with licence conditions and regula-

tions using processes to determine deviations from authorized parameters, identify interfer-

ence sources, and locate legal and illegal transmitters. The absence of effective regulations

and enforcement procedures, potentially compromises the integrity of the spectrum man-

agement process. Consequently, an appropriate framework and process for response and

management of complaints, and dispute resolution are crucial.

Further details of spectrum monitoring mechanisms for spectrum management are pro-

vided in [35, 120].

2.4.1 Spectrum Monitoring for Cognitive Radio Networks

Given the essential role of spectrum monitoring in spectrum management processes,

the increasingly complex mobility and spectrum agility of emerging wireless technologies

such as dynamic spectrum access and cognitive radios introduce several challenges to the

development of monitoring mechanisms to support spectrum management functions. These

include the following:

1. Generation of large amounts of data: Even across a limited spectral, tempo-
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ral and geographical extent data collection and storage can occur at enormous speeds

(e.g., GB/hour) and this is expected to dramatically increase with monitoring require-

ments for effective management of future DSA deployments. The challenge exists in

transforming low–level data (which can usually be extremely voluminous and thus

difficult to understand and utilize) into other forms which could be more compact,

abstract, and useful in decision–making.

2. Monitoring for multi–domain decision support: Effective decision support de-

mands the integration of highly–dimensional, heterogeneous, distributed data as well

as a framework for further analysis. There is therefore an urgent need for the ap-

plication of computational theories and tools to assist Service Providers, Regulators,

and Policy–makers in extracting useful knowledge from the rapidly growing volumes

of data in spectrum management systems. Additionally, information requirements

for spectrum management decision–making varies across the different domains (i.e.,

Regulatory, Service Provision, Policy, User). This provides further context for deci-

sion support, based upon the roles and responsibilities of entities within each of these

interacting domains.

3. Physical node limitations for wideband data collection: Current wireless emis-

sion monitoring and localization techniques employ a mixture of stationary and mobile

sensors tuned to a specific narrowband frequency range in order to monitor and pos-

sibly triangulate intercepted signals [34–37]. Even using current vector signal analysis

techniques to scan larger bands than traditional swept–tuned sensors, such spectrum

sensors possess several significant physical limitations that need to be accounted for

in any wireless emission monitoring network, namely:

• The sweep time of a spectrum sensor is a finite quantity. Thus, when the

sensor is obtaining measurements for one frequency sub–band sample over a

finite period of time, it usually cannot sense another spectrally–distant sub–band

simultaneously using the same radio frequency (RF) front-end equipment.

• The frequency accuracy of any given spectrum sensing sweep is in part dic-

tated by the frequency resolution of the spectrum sensor which in general in-
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creases with monitoring duration. Consequently, a higher resolution spectrum

sweep will obtain more accurate results at the expense of a longer sweep time.

The converse also holds true (i.e., faster sweep time at the expense of lower

resolution) [121].

• The amplitude accuracy depends on the frequency resolution as well as the

amplitude variance of the spectral estimation technique employed. Variance

improves with power spectral density estimation, which requires longer monitor-

ing times or for a fixed monitoring time, reduced spectral resolution [121].

• The impact of mobility arises when mobile nodes are used for data collection.

Mobility introduces several challenges depending upon the monitoring model

adopted. At higher mobility rates there can be more stringent timing require-

ments for measurement and data processing in monitoring networks [35].

Therefore, the technical challenge that exists with these wireless emission monitoring

and localization networks is to devise an approach that can accurately intercept most signals

of interest within a geographical region of interest, taking account of the physical limitations

of current sensor devices. This becomes especially difficult when attempting to sweep a very

large frequency range (e.g., ∼ 3 GHz) and several of the possible signals that could reside

within a specific region possess intermittent transmission behavior (i.e., the signal duty

cycle is on the order of a few percent).

2.4.2 Use Cases of Spectrum Monitoring for Cognitive Radio Networks

As previously discussed, the purpose of spectrum monitoring is to support spectrum

management processes as well as to resolve interference problems. While the introduction

of CRs does not change the basic uses for measurement data, it creates several new scenarios

for consideration. Several examples are now discussed.

Assessing Spectrum Occupancy

Assessing spectrum occupancy is important to effective spectrum management. From

the CR perspective, it provides data for use in frequency selection for DSA operation. From
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the management, planning and policy perspectives, it provides essential data to assess the

effectiveness of particular policies, as well as to inform on changing trends in spectrum

demands. Typically an assigned band may appear to be crowded, but unless occupancy

is measured, there is no way to confirm this. Additionally, knowledge of changing trends

provides warning which can be used to prevent the inability to issue new assignments or to

prevent quality of service deteriorating below acceptable levels.

Methods for presenting such data varies based upon the purpose. Examples include

channel occupancy plots, busy hour plots, occupancy groupings (e.g., by different user

classes, services, modulation type or technology, among others), and spatial occupancy

variation. The list is as varied as the purposes for the different purposes for the data. In

addition to temporal occupancy, which focuses upon the proportion of time for which a

spectral resource is occupied, bandwidth occupancy is also used to assess the proportion of

a sub–band which may be occupied.

While these approaches to presentation have been traditionally used, the challenges of

wideband measurements under possibly more dynamic, stochastic spectrum use presents

challenges for collecting the requisite measurements. Further, the spectrum agility and

learning ability of cognitive radios also creates the possibility of changing operating pa-

rameters including frequencies, power, modulation, and even medium access mechanisms.

Emerging vehicular networks, which can potentially transform geographic occupancy be-

haviour through VDSA, introduce another dimension of complexity. Techniques for accu-

rately measuring wideband occupancy and specifying the measurement accuracy in such

DSA environments still remains an open issue.

Verification of Technical and Operational Parameters

Spectrum licenses are generally used as an interference management mechanism, through

specification of various transmitter operational parameters. In recent times spectrum

masks, such as illustrated in Fig 2.6, have increasingly been used as a means for providing

technology–neutral licensing, including use in DSA. The main idea has been to place limits

on the co–channel and adjacent–channel power which can be transmitted. This approach

has several advantages including increased flexibility in spectrum access and usage, inde-
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pendent of technology and applications being used. Furthermore, this approach provides a

means for specifying the interference levels to which neighbouring devices may be exposed.

While this approach is the current state–of–the–art in specifying spectrum usage, the

non–deterministic behaviour of DSA devices introduces many challenges both on establish-

ing suitable limits as well as evaluating compliance. One approach to address this issue is

the introduction of a probabilistic paradigm to licensing, similar to those used in network

performance management (e.g., using parameters such as bit/frame error rates, call block-

ing probability, call drop rate and channel switching probability, to name a few). To–date,

while current licensing approaches do not currently deploy such a probabilistic approach to

specification of spectrum usage rights, there is increasing realization of the benefits of such

a shift in paradigm [25].

For such an approach to be feasible, there needs to be a way to accurately estimate

policy compliance and to further indicate the confidence in any measurements made. This

is essential for successful DSA deployment. Examples of use cases for such an approach

include measuring compliance for providing service level agreements, facilitating public

safety guarantees and for providing data for arbitration and dispute resolution.

To the best of the author’s knowledge, at the time of writing, there is limited work in

the use of a probabilistic approach to technical and operational parameter specification in

this manner, for DSA operation. However, based upon related use of such approaches in

telecommunications management and network management7, probabilistic specification of

parameters are being contemplated. One example is the use of interference temperature

metrics [25]. For this task, the challenges introduced in DSA scenarios again include the

requirement for fast accurate wideband measurement. Challenges due to the adaptability

and agility of CR’s and additionally, high mobility in VDSA scenarios, also increase the

difficulty of this task.

7Such probabilistic approaches are in mainstream use by service providers and in many private networks,
primarily through quality of service and service level agreements.
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Figure 2.6: Example of a spectrum mask and time–averaged PSD measurement for a channel
of interest. Alternatively the Maximum PSD can be used.

Detection, Identification, and Localization of Unauthorized/Misbehaving Trans-

missions and Interference Sources

This task relates to the previous task of monitoring technical and operational param-

eters. However, in contrast to assessing the likelihood of non–compliance with specified

parameters, in this case misbehaving devices need to be identified and located. Currently

there is increasing literature on detection, (e.g., primary user emulation, spectral honeypot,

denial of service attacks), which has been seen to be a challenge. Given the time–varying,

mobile, possibly intermittent, non–deterministic behaviour of devices in DSA environments

envisioned, it would be extremely difficult to detect such behaviour.

Furthermore, location and identification can be even more challenging than detection.

Mechanisms for location and identification of authorized but misbehaving transmissions can

potentially involve use of the authorizing infrastructure such as the geolocation databases or

spectrum brookers which may be used for spectrum access in DSA scenarios. Geolocation

databases do not guarantee knowledge of SUs, as database operation depends upon the
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regulatory specifications for usage. Spectrum brookers or equivalent devices, may contain

details of both SU and PU operations, but mechanisms need to be contemplated for ac-

cessing the data in a scalable manner, for compliance monitoring activities. Furthermore,

typically use of more data is required for detection, particularly for unauthorized trans-

missions. Thus location and identification is expected to be equally or more challenging

than the case of detection, in general. Again the time–varying, mobile, stochastic charac-

teristics of DSA environments needs to be contemplated in the development of techniques

for detection, identification, and location of unauthorized/misbehaving transmissions and

interference sources. These are further impacted by the need to clearly articulate spectrum

monitoring objectives.

2.4.3 Spectrum Monitoring Infrastructure

Achievement of spectrum monitoring objectives requires the strategic deployment and

operation of appropriate measurement infrastructures. Such infrastructure typically can be

a network of fixed and mobile monitoring nodes with various capabilities, depending upon

management objectives. Consequently many trade–offs exist in development and operation

of monitoring infrastructures, such as data accuracy, data currency, accountability, com-

plexity, enforcement requirements, industry needs, infrastructure deployment and operating

costs, as well as technology capabilities. An example scenario involving a typical hetero-

geneous multi–agent wireless spectrum sensing network with fixed and mobile monitoring

nodes was illustrated in Fig 1.1. Such a network would provide the required data to facilitate

occupancy measurement, spectrum planning, and verification and enforcement of licensing

compliance. Traditionally, on the national and regional level, such an infrastructure can be

very expensive and complex. Technology innovation has also facilitated increasing use of

remote unmanned monitoring approaches taking account of distributed measurements.

In parallel to technological developments, there are also transformations in spectrum

monitoring approaches. For example, as opposed to continuous monitoring across all utilized

spectrum, there is increasing strategic focus upon monitoring in regions where there is some

knowledge of problems and congestion. Another example is the possible outsourcing of

some monitoring functionality to government agencies or non–governmental organizations
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(NGOs). In such instances the responsibility is shifted to the contracted agency which

then shares the monitoring data. Another commonplace arrangement occurs when industry

groups assume responsibility for monitoring and spectrum conflict resolution for specific

services such as in fixed–link microwave services. Such arrangements allow the regulator to

focus upon a smaller subset of public priority bands and services to ensure essential services8

remain unaffected. This shifting focus to increased third party monitoring is in line with the

decentralization of spectrum management functions to facilitate DSA operation. Therefore

this shifting trend is expected to continue in years to come.

2.4.4 Performance Metrics for Spectrum Monitoring

In selecting techniques for development of monitoring strategies, both technical and non–

technical parameters must be considered. Such deliberation requires considerable context

and is therefore not easily addressed at the level of development of monitoring techniques.

Therefore, while many possibilities exist for sensing metrics, based upon the literature a

few technical evaluation metrics which can be used in assessing the technical performance

of monitoring techniques are briefly highlighted as follows:

• Spectral sweep time: The spectral sweep time is dependent upon the algorithm

used for scanning. For the swept analyzer case, to sweep j disjoint sub–bands the

spectral sweep time is given by Tsweep =
∑j

i=1
Tdwelli

× FSPANi

RBWi
+ Tproci , where Tdwelli

is the dwell time at a given center frequency within sub-band i, FSPANi is the

bandwidth of sub–band i, RBWi is the resolution bandwidth used in scanning sub–

band i, and Tproci is the processing for that sub-band. This expression becomes

more complicated when collaborative sensing is considered, as other factors including

information exchange protocols, transmission times and propagation delays must now

be considered [122].

• Measured bandwidth: Measured bandwidth, or spectral coverage, represents the

total bandwidth scanned and in its simplest form is given by BW =
∑j

i=1 FSPANi.

8Examples of essential services are safety, fire, police, ambulances, and air navigational aids as well as
private land mobile networks (PLMNs) for commercial activities.
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For probabilistic scanning, such as the random sampling methods proposed in this

dissertation, bands are not scanned sequentially as in the swept–tuned analyzer. Thus

a probability–weighted summation can be used: BW =
∑j

i=1 pi × FSPANi, where

pi is the probability of scanning the ith sub–band.

• Revisit time: For the swept analyzer the revisit time, Trevisit, is equivalent to the

spectral sweep time. However, for the proposed probabilistic scanning methods, an

alternative metric is defined, the expected revisit time: T̄revisit := E[Ti,j |Ti,j−1], where

Ti,j and Ti,j−1 are the jth and (j − 1)th times that sub–band i is scanned.

• Spatial coverage: The spatial area covered depends upon various parameters such

as effective isotropically radiated power (EIRP), path loss, and minimum detectable

signal. DSA scenarios in the literature typically assume randomly located emitters,

transmitting with different powers. Given the challenges of a deterministic approach

to this problem, a probabilistic approach can be used. The total path loss from

emitter to sensor, separated by distance, r, is given by, L(r) = L50(r) + Ls, where

Ls ∼ N(0, σ2L) is the shadowing loss in dB [123], and L50(r) is the median path loss

which can be calculated using various existing propagation models, depending upon

the specific RF band and environment under consideration [123–125]. σL represents

the location variability, which is a measure of the shadowing within Ψ [124].

For a sensor with minimum detectable signal, PMDS , the conditional probability of de-

tecting the emitter given EIRP, PT ,is given by ProbD|PT
(r) = 1−Q

(

PT−PMDS−L50(r)
σL

)

,

where Q(x) is the complementary cumulative normal distribution. PMDS , represents

the device sensitivity which is dependent upon the sensing technique used. It can be

shown that for a disc–shaped sensing cell of radius R, the conditional sensing coverage

is then given by ProbCell|PT
(R) = 1

2+
1
R2

∫ R

r=0 r × erf
(

PT−PMDS−L50(r)

σL

√
2

)

dr. This pro-

vides a figure of merit which indicates the ability of the sensor node to detect wireless

emissions above a given value within a region.

• K–coverage: The sensing network is defined as providing k–coverage, if every point

in the region being sensed is within the monitoring range of at least k different

sensors [126]. For monitoring performance in DSA scenarios, a modified form of
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k–coverage, the conditional k–coverage can be used. It is defined by Ck (PT ) =

1−
∏k

i=1 ProbCelli|PT
(R), which is further conditioned on the transmitter EIRP. This

can be used to also provide a measure of confidence in the reported measurement

results.

While both centralized and decentralized coverage optimization have been studied

in the context of dense sensor networks, for example the best and worst coverage

problems [127] and the minimum exposure problem [128], monitoring networks can

be sparse and coverage is not used as an optimization objective, but rather a means of

qualifying the confidence in the sensing results. The rationale for this, is that it is not

assumed that the sensor location is deterministic at any given time, (i.e., excluding

fixed nodes).

• Interception probability: Probability of interception considers temporal, spatial

and spectral coverage, and thus combines the coverage metrics. Spatial coverage de-

pends upon the acceptable propagation loss, transmitted power, minimum detectable

signal, and location variability which are strictly functions of frequency [124]. There-

fore, the cell coverage within a given subband, denoted by ProbCell|PT
(R,FSPANi),

can be obtained using the following:
[

1
2 + 1

R2

∫ R

r=0 r × erf
(

PT (FSPANi)−PMDS(FSPANi)−L50(r,FSPANi)

σL(FSPANi)
√
2

)

dr
]

× τ̄on
τ̄on+τ̄off

,

where τ̄on and τ̄off represent the average ‘on’ and ‘off’ times for a transmitter oper-

ating within the ith sub–band.

Hence the overall conditional probability of interception for a given power level by a

sensor is, ProbCell|PT
(R) =

∑

Γn
ProbCell|PT

(R,FSPANi), where Γn ⊂ Γ is the set

of sub–bands to be monitored within Ψ. From this, k–coverage follows as previously

defined.

• Number of samples collected in a given time: This is dependent upon the sam-

ple rate in space and frequency, as well as the scanning algorithms used, and is given

by:

N = Nssweep × Tssweep ×Nfsweep × Tfsweep × πs × πf ,

where πs and πf are the average spatial and spectral sample rates, while Nssweep and
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Nfsweep are the number of spatial and spectral sweeps, respectively and Tssweep and

Tfsweep are the spatial and spectral sweep times, respectively.

• Energy consumption: If focus is placed upon those aspects of node operation

that relate to sensing, this objective depends upon computational complexity of the

employed sensing techniques. For collaborative sensing, communications functions

also consume energy to achieve the sensing objective and must be considered. It must

be noted, however, that evaluation of this metric is very implementation dependent.

• Computational complexity: The computational complexity is dependent on the

computational complexity of the scanning algorithm used, as well as any required data

processing. It represents the cost in terms of memory and time resources required for

executing a given sensing algorithm.

In most instances the above metrics are more suited to system–level evaluations of moni-

toring strategies, and are very implementation dependent. Therefore, given the probabilistic

nature of the estimation tasks as well as the use of the data for spectrum management and

compliance enforcement tasks, in this dissertation primary focus is upon accuracy, with

other parameters considered based upon the context. Therefore, for this dissertation, the

bias and mean–squared error (MSE) are primarily used to assess the estimation perfor-

mance for the proposed techniques.

2.5 Conclusion

In this chapter, several aspects of spectrum monitoring in dynamic spectrum access

networks were presented. First, the challenges of current spectrum management approaches

were examined and used to motivate the need for management approaches which embrace

the shifting paradigm of market–oriented spectrum access methods. Next, an overview

of spectrum access models and architectures was presented as well as a discussion of how

the cognitive radio functionality facilitates implementation of these models. The main

challenges of cognitive radio operation in wireless networks were seen to be the increased
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spectrum agility gained through the use of software defined radio platforms, as well as the

non–deterministic behaviour that can result from learning algorithms.

Spectrum monitoring was then discussed, motivating its importance in effective spec-

trum management processes. Key monitoring goals include the collection of strategic col-

lection of data for use in frequency planning, spectrum engineering, EMC validation and for

ensuring user compliance with licence conditions, technical standards and operational stan-

dards. Representative monitoring use cases for monitoring in DSA scenarios were briefly

discussed as well as the need for appropriate monitoring infrastructure for achieving spec-

trum monitoring objectives. Probabilistic performance metrics were proposed to provide a

quantitative technical basis for use in evaluation, designing, and operating infrastructure

for spectrum monitoring in future wireless networks, such as DSA scenarios.

The spectrum agility and learning ability of cognitive radios presents various chal-

lenges for monitoring for occupancy estimation and compliance verification. Given the

non–deterministic behaviour of DSA networks, there is a need for probabilistic approaches

to specification of technical and operational parameters for DSA networks. Further, tech-

niques for measurement and specification of accuracy need to be developed which take

account of the stochastic specifications. Additional challenges in monitoring networks for

DSA operation include wideband monitoring of possibly quicker time–varying, adaptive

spectrum usage trends. Such trends include possibly changing operating parameters in-

cluding frequencies, power, modulation, and even medium access mechanisms. Emerging

vehicular networks introduce further complexity in modelling spatial trends in spectrum

usage.

To–date, there is limited work in this aspect of monitoring for occupancy measurement

and compliance verification in DSA scenarios. Approaches for accurate measurement of

wideband spectrum behaviour and specifying the measurement accuracy in such DSA en-

vironments still remains an open issue. However the need for such approaches has been

viewed as crucial to successful DSA deployment. This motivates the following chapters in

this thesis which focus upon temporal and spectral occupancy estimation in DSA scenarios.
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Chapter 3

Non–Contiguous Sampling for

Spectrum Occupancy Estimation

3.1 Introduction

Measurement of bandwidth occupancy is important for frequency planning, spectrum en-

gineering, interference management and compliance enforcement processes. Through DSA,

cognitive radios are currently allowed to dynamically operate over non–contiguous sub–

bands within TVWS. Monitoring networks therefore should be capable of monitoring these

bands, as well as future spectrum bands allocated for DSA. Such bands may not necessar-

ily be contiguous, may have wide spans, and may be composed of sub–bands with different

monitoring requirements. Current swept approaches to monitoring do not allow for simulta-

neous observation of these bands and typically monitor heterogeneous sub–bands as if they

were homogeneous1. For example, a licensed TV station operating within a given band may

not need to be monitored as often as a band within which a CR network operates. However,

current approaches do not allow the flexibility required. Therefore a Non–Contiguous Spec-

trum Sensing (NCSS) approach to spectrum sensing is proposed, and a probabilistic subset,

Random Spectrum Sensing (RSS), is examined as a special case of NCSS. This chapter

covers the proposed random spectral sampling approach. Several aspects of this work also

1Individual sub–bands may have different monitoring requirements, and are thus not necessarily homo-
geneous in terms of monitoring requirements.
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appear in publications developed for this dissertation: [86, 89, 92, 93].

3.2 Motivation

Opportunistic spectrum access (OSA) networks place new challenges upon existing spec-

trum monitoring paradigms. A key spectrum monitoring task involves frequency band

observations and spectrum occupancy measurements [34, 35]. Currently, limited infrastruc-

ture exists for spatio–temporal characterisation of spectrum occupancy across a wide region.

Furthermore, although spectrum occupancy modeling forms an important component of ef-

fective radio resource management [129–131], there are many obstacles to complete statistics

collection even across a limited extent [132]. This is further complicated by emerging OSA

networks, where heterogeneous RAT can facilitate either overlay or underlay networks [54].

Additionally, in envisioned OSA environments the Electrospace would be defined by the

possibly non–deterministic contributions of various devices using different available RAT.

Another key challenge is wideband characterisation of the Electrospace. Current spec-

trum monitoring techniques are principally either of two different approaches: 1) Attempt-

ing to sense every transmission in the band under observation; or 2) Periodic sensing with

statistical estimation of occupancy. Under these two approaches, while the literature il-

lustrates various ways to deal with user detection under different sensing performance re-

quirements, (e.g., energy detection, cyclostationary detection, waveform sensing) [54–57],

sensing wide spectrum bands is still a difficult task.

Many techniques have been proposed for wideband sensing such as compressed sens-

ing [58, 59], multi–resolution sensing [60, 61], and collaborative sensing [62, 63], as well as

combinations of these [64–66]. However, wideband sensing is still challenged with the in-

terception of intermittent use, particularly in low–occupancy scenarios, and in medium

to high–occupancy cases the benefits of using currently proposed techniques can dimin-

ish [133]2. Additionally, current approaches do not account for envisioned intermittent

secondary spectrum usage. Furthermore, in many of the approaches, spectrum sensing is

2Generally, revisit times must be small enough to scan bands of interest at an acceptable speed to detect
individual short transmissions. If, alternatively a statistical approach is used with longer revisit times, then
the accuracy of the statistical approach depends on the value of occupancy [134].
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channel–oriented and thus ill–suited for modeling the impact of heterogeneous RAT on

spectrum occupancy.

One commonality in all proposed sensing techniques is the need for some sort of spec-

tral analysis. In the literature, many spectral estimation methods have been proposed,

including classical non–parametric periodogram spectral estimators, as well as parametric

methods [121]. In comparison to parametric methods, the nonparametric methods are rel-

atively simpler, well understood, and can be easily computed using existing fast fourier

transform algorithms. It is therefore no surprise that non–parametric methods have been

a popularly proposed approach for spectrum sensing. However such methods rely upon

finite data lengths via windowing, which introduce spectral leakage. In selecting an appro-

priate windowing function to reduce spectral leakage, a design tradeoff is faced between

frequency resolution and spectral dynamic range. The different spectral characteristics of

possible signals in a heterogeneous environment introduces further challenges in selecting

an appropriate window function for spectral estimation.

To address these challenges a non–contiguous approach to spectrum sensing is proposed.

A filter bank approach to implement NCSS for characterisation of wideband spectrum

occupancy for spectrum monitoring networks is also presented. While the use of filter banks

in spectral estimation is not new, the polyphase formulation naturally fits the proposed

multiband, multilevel filter proposed for NCSS techniques. Filter banks also potentially

offer various advantages for spectral analysis, for example in multicarrier communications,

where spectrum sensing comes at no additional computational cost [135]. For spectrum

sensing, filter banks also offer lower complexity alternatives to the near-optimum Thomsons

multitaper method [136] achieving almost identical performance [137], and have also been

used in estimation of low probability of intercept adaptive frequency hopping signals [138].

In this chapter, a channel–agnostic stratified random spectral sensing approach to statis-

tical characterisation of wideband spectrum occupancy for spectrum monitoring networks is

primarily examined. Specifically, a spectral stratification technique is proposed which uses

similarity measures for implementation in online RSS. Experimental results obtained during

the course of this dissertation suggested that RSS mean–squared error performance depends

upon the stratification technique used [89], justifying the proposed stratification technique.
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RSS is presented as an alternative to compressed sensing, which in recent literature has

been the most frequently investigated alternative for wideband sensing [58, 66, 67].

The significance of the proposed approach partially originates from the fact that the

effectiveness of compressed sensing depends upon the choice of a suitable basis matrix and

the assumption of sparsity, making it more suited to low–occupancy scenarios. In fact it

is under such low–occupancy scenarios that compressed sensing has been motivated as a

mechanism for OSA devices. However, from the perspective of spectrum management, there

are many instances of interest (e.g., cases of spectral congestion), which negate the sparsity

assumption3. Also compressed sensing methods are typically used in cases where spectrum

reconstruction is a requirement. The spectrum occupancy estimation application does not

require spectrum reconstruction, which provides additional motive for the presented RSS

approach, since the extra complexity of spectral reconstruction is avoided in RSS.

The rest of this chapter is organised as follows: In Section 3.3 the problem is discussed

further, followed by an overview of occupancy modeling, and the proposed NCSS frame-

work in Section 3.4. This is followed by a description of the similarity–based stratification

approach and the filter bank implementation description in Section 3.5. Validation of the

proposed stratification approach is presented in Section 3.6, followed by results with its use

with RSS in Section 3.7. Finally there are concluding remarks in Section 3.8.

3.3 Spectrum Sensing Problem

Consider a heterogeneous radio access scenario without definitions of channels according

to specific radio access technologies. Each spectrum sensor is capable of energy detection

sensing, and has time and frequency sensing resolutions specified by ∆t and ∆f respectively.

For a single sensor the sensing objective is to statistically model the spectrum occupancy

for spectrum F = [f0, f0 +Nf∆f ] for time T = [t0, t0 +mNt∆t], where m is the number of

time samples per sensing period, ∆f ≪ F and ∆t ≪ T . In order to model spectrum occu-

pancy, spectral estimation is essential. This can be accomplished using filter bank spectral

estimators (FBSEs). FBSEs have been widely used for spectrum analysis applications, with

3If a suitable orthonormal basis or alternative transformation can be identified for which there is signal
sparsity. However, in general this can be difficult to guarantee using current approaches.



48

recent application to cognitive radio systems [135].

In the literature, FBSE techniques facilitate signal power measurement at the filter bank

outputs. However such methods rely upon finite data lengths via windowing, which intro-

duces challenges. Each sub–band filter determines the frequency resolution of the spectrum

analyzer, through the main lobe width of the filter. Resolution is an important parame-

ter in resolving closely spaced signals, even if they have similar energy levels. However,

generally higher frequency resolution is associated with more spectral leakage. Side lobe

magnitudes introduce spectral leakage from other parts of the spectrum, which introduces

bias in spectrum estimates. This reduces the ability of the spectrum sensor to discern sig-

nals of dissimilar frequencies and energy levels. This ability is quantified by the dynamic

range which is defined as the ratio of the maximum and minimum spectral power levels

which can be distinguished by a particular spectral estimation technique.

Several approaches have been proposed to design suitable filter banks which trade off

between frequency resolution and dynamic range. To accomplish this, filter parameters such

as passband, stopband, ripple, and order can be adjusted. Finite impulse response (FIR)

filters are a common choice, particularly when linear phase characteristics are required, even

though they typically require higher filter orders to achieve comparable performance to their

infinite impulse response (IIR) counterparts. However, increased performance usually comes

at the cost of increased implementation complexity.

We consider the above problem, and propose the use of NCSS. The main idea behind

NCSS is to separate filters so that at any given time only non–adjacent bands are simul-

taneously sensed. By sub–band separation, we reduce the constraints imposed by spectral

leakage in spectrum sensing applications. The NCSS concept is illustrated in Fig 3.1.

3.4 Non–Contiguous Spectrum Sensing Framework

3.4.1 Bandwidth Occupancy Modeling

In the typical case, the spectrum data set measured by a sensor would consist of power

measurements taken across the time and frequency domains at a given location (indexed,

n, where n can be a tuple denoting location coordinates), which can be represented by,
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Figure 3.1: Illustration of NCSS. Spacings of Fj separate sensed sub–bands at any instant
in time.

Pn = [Pn (t, f)]t∈T,f∈F,n∈[1,··· ,Nn]
. Typically Pn (t, f) is obtained from a function of discrete–

time samples qn [k] , k = Nm + 1, · · · , (N + 1)m. In most cases Pn (t, f) represents the

discrete fourier transform of the time samples. However, other transforms (e.g., Wavelet)

are possible [121].

Since ∆f ≪ F , each channel would span l∆f , where l is not necessarily an integer

(l ∈ R), and may vary for each RAT for heterogeneous access. For channel–agnostic char-

acterisation using energy detection, the occupancy at a given time instant, ti ∈ T , will be

defined as the proportion of spectrum of interest for which the signal exceeds a specified

threshold τ :

pf (ti) =
1

Nf

∑

f∈F
I{Pn(ti,f)>τ} (f), (3.1)

where I{A} (a) is the indicator function:

I{A} (a) =











0, a /∈ A

1, a ∈ A.

(3.2)

Generally τ can be a function of space, time and frequency. At a given time instant, ti,

denote the measured power for the jth interval [f0 + (j)∆f , f0 + (j + 1)∆f ] by the random
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process, Xfj (ti) = Pn (ti, fj). The corresponding amplitude power distribution cumulative

density function is given by Pr(Pn (ti, fj) ≤ x). For notational brevity Xfj (ti) and Xfj

are used interchangeably in this chapter, and the time of the measurement is implied.

Statistically modeling pf (ti) across F , strictly requires consideration of the joint density

function Pr
(

{(Xf0 , Xf1 , · · · , XfNf

)

. This poses several problems.

In addition to the high dimensionality of this problem, spectral and temporal correla-

tion must be considered. The challenges associated with dependent, heterogeneous random

variables are well known [139–141]. When the band under consideration exceeds the co-

herence bandwidth, for small enough ∆f there may be dependence between adjacent mea-

surement intervals within the same channel. Also for non–adjacent intervals, such as in

non–contiguous orthogonal frequency division multiplexing techniques, there may be some

dependence between non–contiguous intervals, even if individual channels were independent.

However, through random sampling of the partial sum of dependent random sequences, an

asymptotic distribution for pf (ti) can be determined [140]. This forms the basis for the

methods proposed in this chapter.

3.4.2 Systematic Spectral Sensing

The simplest form of NCSS is based upon periodic temporal sampling (i.e., time interval

between sampling instants, L∆t, L ∈ N, is approximately constant). Consider F is divided

into s non–overlapping intervals {Fj}: F =
⋃s

j=1 Fj and Fj

⋂

Fk = ∅, j 6= k; j, k ∈ N

(Fig 3.3). Each of the intervals is of width Nj × ∆f . For systematic sampling assume

that Nj is constant and without loss of generality, that ith sub–band of each interval is

sensed4. Fj represents the separation between the jth and j + 1th sensed sub–bands, which

would be fixed for systematic spectral sampling, but not necessarily fixed for other sampling

strategies. Let zj (ti) ∈ {0, 1}
nj×1 be the sampling vector for sub–band Fj at time, ti. Sub–

entries of zj (ti) are 1 if the corresponding interval is sampled, and 0 otherwise.

4For systematic sampling the value of i is randomly selected from 1, . . . , Nj . Note that multiple intervals
can be selected in a given sub–band, such that there is a constant spectral separation between consecutively
sampled intervals.
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3.4.3 Random Spectral Sensing

We will adopt the same notation used for systematic spectral sensing, noting that in

this case Nj can vary for each interval. RSS [89] is a special class of NCSS. In RSS the

sensed sub–intervals are randomly selected (i.e., zj (ti) is randomly generated according to

some probability distribution). By virtue of this definition, sub–bands will not necessarily

be sensed periodically in time or frequency. Based upon this, several sensing schemes exist.

Fig 3.2 illustrates three possibilities:

1. In static random spectral sensing (SRSS), randomisation is performed at the start

of sensing, and remains fixed for the entire duration (or blocks of sufficiently large

duration).

2. In block–static random spectral sensing (BRSS), randomisation is performed at the

start of contiguous time blocks of length Bi∆t and remains fixed only for each block

duration.

3. Dynamic random spectral sensing (DRSS), facilitates frequency randomisation for

every sensing interval.

BRSS can be considered to be the most generalised form, with SRSS and DRSS being

specific cases with block sizes Bi → ∞ (i.e., Bi∆t ≥ measurement time span of interest)

and Bi = 1 respectively. There would be tradeoffs in each of these schemes when measures

of performance such as computational complexity, precision, and sample minimisation are

considered. With the exception of SRSS, for each of the above random approaches, sensing

coverage of all sub–bands within a bounded interval (i.e., finite revisit time), can be ensured,

provided that P [zj [q] = 1] > 0 [89], where P [A] denotes the probability of event A

occurring, and zj [q] is the q
th element of the vector zj .

3.4.4 Spectral Sampling

The analysis in this section applies to the previously discussed forms of NCSS: Systematic

and Random Spectral Sensing. For this chapter, we simplify our analysis by considering

periodic temporal sampling, with randomisation of spectral sampling. Consider F is divided
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(a) Static random spectral sensing (SRSS)

(b) Block-static random spectral sensing (BRSS)

(c) Dynamic random spectral sensing (DRSS)

Figure 3.2: Illustration of random spectral sensing schemes. Bi represent time blocks. Fi

represent sub-band groups

into s non–overlapping sub–bands {Fj}: F =
⋃s

j=1 Fj and Fj

⋂

Fk = ∅, j 6= k; j, k ∈ N

(Fig 3.3). Each of the sub–bands is of width Nj ×∆f and a random sample Sj of size nj

is selected from each. For this study, within each sub–band, each interval is equally likely

to be selected5. Thus each interval has probability, πj =
nj

Nj
of being selected [142]. Let

zj (ti) ∈ {0, 1}
nj×1 be the sampling vector for sub–band Fj at time ti. Sub–entries of zj (ti)

5For Systematic Spectral Sensing, the sampling vector is fixed and the analysis proceeds similarly.
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Figure 3.3: Spectrum divided into s sub-bands for random sampling at time ti.

are 1 if the corresponding interval is sampled, and 0 otherwise. Using (3.2) define Fj (ti) as

the jth sub-band occupancy vector at time ti:

Fj (ti) =
[

I{Pn(ti,f)>τ}
]

f∈Fj ,n∈[1,··· ,Nn]
. (3.3)

For a sample Sj (ti) the bandwidth occupancy of the jth sub–band is then estimated us-

ing [142]:

p̂j,ti = p̂j (ti) =
1

nj

∑

k∈Sj(ti)

Fj,k (ti)

=
1

nj
zTj (ti)Fj (ti) . (3.4)

Using (3.4) the overall bandwidth occupancy can then be estimated as [142]:

p̂f (ti) =
s
∑

j=1

Nj
∑s

k=1Nk
p̂j,ti

=
s
∑

j=1

Nj

nj
∑s

k=1Nk
zTj (ti)Fj (ti)

=
s
∑

j=1

1

πjNf
zTj (ti)Fj (ti) . (3.5)

This represents a stratified sampling approach to occupancy estimation. Alternatives

exist, such as cluster–based and complex hybrid sampling approaches [142]. In the heteroge-

neous RAT scenario, cluster–based and stratified sampling capitalise upon the dependence

of adjacent intervals. However, given the larger bound on variance in the cluster–based

sampling case [142], in this paper stratified sampling will be the focus. For the stratified



54

approach it can be shown that an estimate of the occupancy variance is given by [142]:

v̂f (ti) =

s
∑

j=1

(

1−
nj
Nj

)(

Nj

Nf

)2 p̂j,ti (1− p̂j,ti)

nj − 1

=

s
∑

j=1

(1− πj)

(

Nj

Nf

)2 Aj (ti)

n3j − n
2
j

(3.6)

where

Aj (ti) = zTj (ti)Fj (ti)
(

nj − zTj (ti)Fj (ti)
)

(3.7)

In the heterogeneous RAT context, through random sampling (3.3)-(3.7) provide the

basis for interval estimates of sub–band and overall occupancy in terms that do not de-

pend upon specific definitions of channels according to RAT. For this study, proportional

allocation will be considered, in which the sampling ratio
nj

Nj
is the same for all sub–bands

(i.e., πj = π, ∀j). In spectrum monitoring, a key performance metric is the revisit time. To

accommodate the random sampling, the definition is a slightly modified form to that ac-

cording to [134]. It can be shown that for proportional allocation, the expected revisit time

for sensing any given interval is directly proportional to 1
π
. It is noted, however, that other

allocation schemes exist that take account of strata variances and sampling costs in variance

reduction of the estimator (e.g., such as optimal allocation and Neyman allocation) [142],

with tradeoffs on the revisit time. For proportional allocation (3.6) becomes:

v̂fprop (ti) =
(1− π)

π2

s
∑

j=1

(

1

Nf

)2 Aj (ti)

nj − 1

≈

(

1

π
− 1

) s
∑

j=1

(

Nj

Nf
2

)

p̂j,ti (1− p̂j,ti) ,

(3.8)

where the approximation is valid for πNj ≫ 1. Using (3.5) and (3.8) and assuming normality

the 100(1 − α)% confidence interval for the proportional allocation occupancy estimate is

therefore given by:

p̂f (ti)± zα
2

√

v̂fprop(ti), (3.9)

where zα
2
is the (1− α

2 )
th percentile of the standard normal distribution. For smaller values

of π, tα
2
, the (1 − α

2 )
th percentile of the t–distribution with πNf − s degrees of freedom is

used instead of zα
2
.
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3.5 RSS Implementation

3.5.1 Spectral Stratification

The effectiveness of stratified sampling, measured by the variance estimator of the occu-

pancy given in (3.6), depends upon the ability to determine appropriate strata for grouping

similar sub-bands together [142]. As typically done in stratified sampling, this can be accom-

plished by first collecting preliminary data for coarse characterisation of similar sub–bands.

In [89] RSS was investigated experimentally for two simple stratification schemes: stratifi-

cation according to available licensing information and equal spectral width stratification.

In the former approach, it was assumed that stratification according to available licens-

ing information would group the spectrum into bands with sufficiently similar occupancy

characteristics. This assumption appears reasonable when current static primary user licens-

ing strategies are considered. Further, although over the wider spectrum covering multiple

strata the technologies are heterogeneous, within each individual stratum the RAT are gen-

erally similar. Based upon this premise, the case where licensing information is available for

a given area was then considered. This information can be obtained for example through

coarse knowledge of licensing information for the spectrum band of interest or national al-

location plans. The spectral boundaries are then used for determining suitable strata (e.g.,

stratification into cellular, paging or WCS sub–bands).

However, this approach assumes that sensors can be programmed or have access to

licensing data for online adaptation of sensing as necessary. Problems with this approach

are:

1. The assumption of intra–stratum homogeneity may not be valid for all sub–bands,

2. Considerable configuration of devices may be required during measurement, and

3. This approach lacks the flexibility required for envisioned dynamic and stochastic

OSA environments, compared to current static spectral assignments.

As opposed to the above licensing approach to stratification and monitoring, it is still

possible to use equal stratification in which the spectrum is divided into equally–sized sub–

bands without consideration of which services or technologies exist in each case. For this
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scheme, sub–bands are of equal width (i.e., Nj = N, ∀j). While this approach is relatively

simple, the assumption of intra–stratum homogeneity may not be met depending on the

size of stratum chosen. Additionally, experimental results show that for this method of

stratification the variance of occupancy estimates generally exceeds that of the licensing

approach, resulting in less precise estimates for spectrum occupancy because of correlation

between sampled intervals decreasing the effective sample size [89].

From the experiments, for both approaches, within some sub–bands there can still be

considerable heterogeneity if a stratum included several channels and if the channels ex-

hibited different occupancy characteristics. An example was when cellular band occupancy

was divided into smaller bands. The mean–squared error (MSE) performance was worse

compared to overall wide band occupancy estimation, if the sampled intervals were not

representative of the entire cellular band being sensed [89]. In practice, both spectral corre-

lation and intra–stratum heterogeneity adversely impact RSS performance using the above

stratification approaches, and therefore the use of similarity metrics is proposed to aid in

spectrum stratification.

3.5.2 Spectral Similarity

The proposed approach is based upon the similarity between intervals decreasing with

their separation. Similarity is assessed through the use of distance–based metrics. A larger

distance between intervals means less similarity between the intervals. Initially the entire

band is monitored for duration N0∆t time units. Each column of the resulting Pn represents

a time series of measurements for a single interval of width ∆f . The k
th interval represents

the time series, Pn (t, fk), where fk, n are frequency and location indices, respectively.

Because of possibly different characteristics at different measurement locations, at each

location, Pn can be converted to Gn using the gray–scale (i.e., scaled to the interval [0,1])

linear transformation:

Gn =
Pn −minPn

maxPn −minPn
, (3.10)

where maxPn and minPn are the maximum and minimum values of Pn, respectively. This

approach is not necessary in online implementation, but facilitates a simple way to define
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ǫ–similarity for multiple locations. Intervals are considered similar if the gray–scale distance

between them does not exceed ǫ ∈ [0, 1]. This allows a fixed gray–scale similarity threshold

to be used at different locations. However this value would be scaled depending upon the

signal strength parameters at a given location.

Alternatively Pn can be converted into an occupancy matrix, On, which contains binary

elements. Each matrix element in On is 1 if a signal is present, and 0 if no signal is present.

If energy detection is used to convert Pn to On at each site, a threshold, τn(ti, fj), can

be determined for each element in Pn. This formulation of the threshold as a function of

time, frequency, and space allows for possible scenarios in which OSA occurs within bands

using different technologies. The formulation also allows for use of global thresholds, or

band–specific thresholds.

In practice, thresholds can be set across the entire spectrum of interest, based upon

equipment sensitivity and specified regulatory limits. For example, for initial TV White

Space applications, the FCC set incumbent sensing level requirements at −114 dBm for

protection of wireless microphones [143]. Other approaches have also been suggested in the

literature such as automatic thresholding (e.g., automatic thresholding using Otsu’s thresh-

old selection method for gray–level histograms [144]). For a given threshold Pn(ti, fj) ≤

τn(ti, fj) are classified as noise, while all others are classified as signals. A classification

matrix, On, can then be constructed where:

On(ti, fj) =











0, Pn(ti, fj) ≤ τn(ti, fj)

1, Pn(ti, fj) > τn(ti, fj)

. (3.11)

For the initial measurement duration, processes are assumed to be stationary, which can

be realised in practice by appropriate choice of the duration. Pairwise distances between

measured spectral intervals are calculated. Although several distance metrics are possible,

in general the Minkowski distance metrics have the lowest complexity, and includes the

Hamming, Manhattan, Euclidean, and Chebyshev distances as special cases [145]. It is also

noted that in addition to those metrics indicated, measures of statistical correlation, such

as Pearson’s Correlation coefficient can also be used. While each distance metric has its

advantages for different data types, for non–binary data the Manhattan distance has the
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lowest complexity [145]. For binary data, such as the occupancy matrix, On, the Hamming

distance is a more appropriate metric.

Using the selected distance metric, the distance matrix can be calculated using the

following procedure, for i ∈ [1, N0], j ∈ [1, Nf ], n ∈ [1, · · · , Nn]:

1: function DistMat(ǫ, [Pn (ti, fj)])

2: D := 0; ⊲ Nf ×Nf matrix of zeros

3: I := 1; ⊲ Nf ×Nf matrix of ones

4: for k ← 2, Nf do

5: vk = [Pn(t1, fk), . . . , Pn(tN0
, fk)]

T ;

6: for l← 1, k − 1 do

7: vl = [Pn(t1, fl), . . . , Pn(tN0
, fl)]

T ;

8: D[k, l],D[l, k]← dist(vk,vl);

9: if D[k, l] > ǫ then

10: I[k, l], I[k, l]← 0;

11: end if

12: end for

13: end for

14: end function

The notation A[i, j] is used to denote the entry in the ith row and jth column of the

matrix A. For vectors the notation a[i] denotes the ith entry in the array or vector a. D

represents the Nf × Nf distance matrix and I is a similar dimensioned matrix where if

the ith and jth sub–bands are ǫ–similar, then the I[i, j] and I[j, i] matrix entries are set

to 1. Non–similar pairs are conversely set to 0. Pn can be substituted by its gray–scale

equivalent, Gn, or by the occupancy matrix, On, in the above procedure.

Figs 3.5–3.8 illustrate examples of calculated distance matrices for captured spectrum

data. Time series of correlated interval pairs exhibit smaller distances than dis–similar

interval pairs. In Figs 3.5–3.8 these manifest as ǫ–squares, which are sub–matrices in which

all the terms are less than ǫ. Thus ǫ–squares would produce a block diagonal matrix. Even in

cases where disjoint bands have distances less than ǫ, in this study, focus is on stratification

of contiguous intervals. Therefore this becomes a search along the diagonal for ǫ–squares:
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1: function MatSearch(I)

2: s← 0; ⊲ s : number of strata identified

3: starts[1], ends[1]← 1;

4: k, l← 1;

5: repeat

6: repeat

7: l← l + 1;

8: until I[k, l] = 0 or l > Nf

9: if l ≤ Nf then

10: s← s+ 1;

11: starts[s]← k;

12: ends[s]← l − 1;

13: k ← l;

14: end if

15: until k = Nf

16: end function

Therefore, using the distance matrix, contiguous intervals with similar characteristics

can be identified and treated as separate strata. However, it is noted that stratification

of non–contiguous intervals are an extension of the search routine. The tradeoff would be

increased complexity, in also keeping track of non–contiguous spectral intervals in a given

stratum. At this time non–contiguous intervals are not considered, and thus it is assumed

that intervals which would be classed as similar are close together. For low occupancy as

well as high occupancy bands this prevents the stratification approach from grouping bands

together which may not be correlated (e.g., non–contiguous broadcasting TV channels or

non–contiguous unoccupied bands).

3.5.3 Randomised Time-Frequency Sampling Algorithm

In sub–section 3.4.3 the RSS schemes were presented. As previously stated, DRSS

and SRSS are special cases of BRSS. Therefore in this sub–section the BRSS algorithm

is presented, from which the other algorithms can be derived by setting the block size
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accordingly. A key output of the procedures in sub–section 3.5.2 is the identification of

strata for RSS. starts[j] and ends[j], j = 1, . . . , s respectively provide start and end points

for each stratum. Using identified strata, BRSS then follows:

1: function BRSS(Bi, numBlks,N0, π, ǫ)

2: Pn ← Scan(F, 1̂, N0); ⊲ 1̂ : Nf × 1 vector of ones

3: DistMat(ǫ,Pn);

4: MatSearch(I);

5: for l1 ← 1, numBlks do

6: z← 0̂; ⊲ 0̂ : Nf × 1 vector of zeros

7: for j ← 1, s do

8: Nj ← ends[j]− starts[j] + 1;

9: nj ← π ×Nj ;

10: ind[]← RndChoose(nj , starts[j], ends[j]);

11: for k ← 1, nj do

12: z [ind[k]]← 1;

13: end for

14: end for

15: for l2 ← 1, Bi do

16: Pn ← Scan(F, z, 1);

17: p̂f [l1 ×Bi + l2]← OccEstimate(Pn)

18: end for

19: end for

20: end function

Thus the overall process consists of an initial period N0∆t in which the entire band of

interest is sensed, followed by stratification, followed by BRSS for some amount of time.

The stratification process does not need to be performed after every single BRSS period due

to the sensing overhead. However, in dynamic situations it should be performed frequently

enough so that the strata can be adapted based upon the changing sub–band groupings

across the sensed wide band. This behaviour is controlled via lines 2–4, and the outermost

for loop in line 5. There is thus a tradeoff between stratification adaptability and the sensing
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overhead, which can be tuned using numBlks to determine how many blocks should be

scanned before another stratification is performed.

Line 2 scans the entire band of interest, F , for N0 sweeps. The function Scan(a,b, c)

scans band a for c sweeps. b is the binary sampling vector which determines which sub–

intervals are to be sampled in the function call. Lines 3–4 perform spectral stratification,

as described in sub–section 3.5.2. The outer for loop starting in line 5 controls how many

blocks are scanned using the stratification obtained. Line 6 initialises the sampling vector to

all zeros at the start of each block. The dimensionality of the sampling vector is determined

by the width of the band being scanned simultaneously, and the resolution bandwidth.

Lines 7–14 create the sampling vector for the entire band of interest. In line 10 the

function RndChoose is used to randomly select nj sub–intervals within the jth stratum.

The function RndChoose(a, b, c) randomly selects a numbers within the interval [b, c]. The

for loop in lines 11–13 sets the corresponding locations in the sampling vector to 1 to indicate

that these randomly selected intervals will be sampled within the stratum. Finally, lines

15–18 implement RSS for Bi sweeps and for each sweep uses the OccEstimate routine to

implement the occupancy estimation discussed in sub–section 3.4.4.

3.5.4 Filter Bank Implementation

The previous sub–sections illustrate procedures for stratification and BRSS implemen-

tation. However, an important issue to be resolved is the provision of a means of actually

performing the RSS in the spectrum sensor. Typical FFT spectrum sensors based on sens-

ing contiguous intervals in general would not be able to perform RSS without dropping

some sensed sub–bands, which is inefficient. Swept–tuned sensors can be used with some

mechanism for randomly selecting intervals to visit. However, in general the sweep time is

much longer than the more recent FFT–based counterparts, and swept–tuned sensors do

not facilitate simultaneous sensing of wide bands as do the FFT–based counterparts.

In this sub–section a discussion is now presented on how RSS can be accomplished using

filter–banks, which is relatively more suited to RSS implementation than the other options

listed above. FBSEs have been widely used for spectrum analysis applications, with recent

application to cognitive radio systems [135]. To implement RSS the framework of adjustable
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multilevel filters [146] is employed. Consider the multilevel filter, G(z), which has M sub–

bands each of equal width, ∆f = 2π
M
. Clearly M =

∑s
j=1Nj . G(z) can be formulated in

terms of a prototype filter, H(z), which is a low–pass filter, for the zeroth band. H(z) is

given by:

H(z) =
N−1
∑

n=0

h[n]z−n, (3.12)

where h[k] is the filter impulse response for H(z). H(z) can be expressed in the M–

component polyphase form:

H(z) =
M−1
∑

l=0

z−lEl(z
M ), (3.13)

where we let N =MK, and the polyphase components are given by:

El(z) =
K
∑

n=0

h[l + nM ]z−n. (3.14)

The kth band is centered at 2kπ
M

, and the corresponding filter is given by:

Hk(z) = H(zW k
M ) =

M−1
∑

l=0

(z−1W−k
M )lEl(z

M ), (3.15)

where WM = e−i 2π
M . The multilevel filter G(z) can then be obtained using:

G(z) =
M−1
∑

k=0

Gk(z) =
M−1
∑

k=0

βkHk(z). (3.16)

This means that the multilevel filter can be implemented via the polyphase structure

shown in Fig 3.4. In designing the multilevel filter it is sufficient that the unsampled sub–

bands are attenuated below τ used for occupancy determination. In practice, the sub–band

levels can therefore be adjusted depending on the value of τ for a given sub–band (e.g., using

adaptive thresholding). However, for simplicity such variable thresholding is not considered

here. Therefore only 2 gains, γ0 and γ1, are considered in this study. The former is the

gain for an unsampled sub–band and the latter is the gain for a sampled sub–band. Ideally,

these are set to 0 and 1 respectively, but in filter design this is not necessary. Using the

above multilevel filter framework, the implementation of the Scan function in the RSS

implementation naturally follows: the set of gains, βi, are determined from the sampling

vector, z.



63

Figure 3.4: Polyphase implementation of an M–band multilevel filter.

3.6 Validation of Stratification Technique for RSS

Before using the proposed stratification technique with the RSS algorithm to provide

occupancy estimates, the similarity–based stratification was validated experimentally. Val-

idation involved assessment of:

1. Whether the correct number of strata can be identified

2. If the edges of the sub–bands could be correctly identified

3.6.1 Experimental Setup

In order to address the above validation criteria, several USRPs were configured to

transmit signals within the 2.44–2.48 GHz band. The objective was to produce a hetero-

geneous RAT scenario for which another USRP could be used to sense the spectrum and

execute the stratification technique. The use of USRPs was further justified in validation

since this approach was also used to simulate dynamic spectrum environments which may

not be realised in current static allocation approaches, but may be encountered in future

OSA networking scenarios.

Details of the scenario are shown in Table 3.1. Ten different sub–bands (i.e., strata)
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Table 3.1: Spectrum Scenario. Details for channels within each sub–band.

Parameter Band 1 Band 2 Band 3 Band 4 Band 5

Sub–band Bandwidths 2 MHz 2 MHz 4 MHz 2 MHz 6 MHz

Channel Bandwidths 200 kHz 400 kHz 400 kHz 200 kHz 300 kHz

Channel in Sub–band 10 5 10 10 20
λOFF

λON
0.25 0.43 1 0.33 1.22

Average Channel Occupancy, u 0.2 0.3 0.5 0.25 0.55

Parameter Band 6 Band 7 Band 8 Band 9 Band 10

Sub–band Bandwidths 4 MHz 4 MHz 6 MHz 2 MHz 4 MHz

Channel Bandwidths 200 kHz 400 kHz 200 kHz 100 kHz 400 kHz

Channel in Sub–band 20 10 30 20 10
λOFF

λON
1.5 3 9 0.11 0.25

Average Channel Occupancy, u 0.6 0.75 0.9 0.1 0.2

of different bandwidths were created. Guard bands of width 200 kHz were allocated be-

tween adjacent strata, to accommodate leakage between the adjacent bands, due to USRP

transmissions. Each sub–band contained several channels, which had different temporal

characteristics. For simplicity in each channel the spectral occupancy was modeled using a

Poisson process [147] with parameter λ as shown in Table 3.1.

The receiving USRP was configured with resolution bandwidth, ∆f = 5 kHz, to scan

the spectrum of interest, F ∈ [2.44, 2.48] GHz. The measurement duration, N0, was varied

from 1 minute to 20 minutes. The sensed data was stored to compare our proposed approach

to existing techniques. These comparisons were done offline so that the approaches would

use the same data set.

3.6.2 Spectral Stratification Validation

In each case, to evaluate out proposed approach spectral similarity was determined using

distance matrices calculated from the measurement data, using various distance metrics.

Figs 3.5–3.8 illustrate several examples using the hamming metric with the occupancy

matrix (i.e.,On), and Pearson’s correlation metric with the measurement matrix (i.e.,Pn),

for N0 = 5 minutes. In each figure, darker areas represent higher similarity spectral

regions.

Results show that excluding the guard bands, 10 spectral regions were found correspond-

ing to the strata allocations in Table 3.1. These were the darker regions in the figures.
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Figure 3.5: Occupancy matrix, On, with Hamming metric. USRP Transmissions.
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Figure 3.6: Occupancy matrix, On, with Hamming metric. No USRP Transmissions.

Between the darker regions were lighter regions roughly corresponding to the guard band

regions. Lighter colors indicated areas with less similarity. However, the number of strata

identified, depended upon the ǫ value chosen for the similarity threshold (Fig 3.9).

In determining strata, distances in the range [0, ǫ) are considered similar. Therefore,

lower values of ǫ cause the stratification procedure to divide the band into more strata.

Conversely, higher ǫ values would aggregate contiguous regions together as being similar,
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Figure 3.7: Measurement matrix, Pn, with Pearson’s metric. USRP Transmissions.
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Figure 3.8: Measurement matrix, Pn, with Pearson’s metric. No USRP Transmissions.

thus resulting in fewer strata. However in this case there would be more intra–stratum

homogeneity, as increasingly dis–similar regions can be grouped together. Entropy was

used to measure strata homogeneity (Fig 3.10). Lower values for entropy indicate increased

strata homogeneity. The results of Fig 3.9 and Fig 3.10 illustrate that as the number of

clusters identified by the technique increased the strata homogeneity also increased.

Figs 3.5–3.8 also illustrate comparison calculations within unoccupied bands, when the
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Figure 3.9: Comparison of average number of strata found for different initialisation values
for proposed stratification technique using different distance metrics.
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Figure 3.10: Comparison of strata homogeneity for proposed stratification technique using
different distance metrics.

USRPs did not transmit. In scenarios where no USRP signals were transmitted, the number

of strata identified was approximately, Nf (i.e., the number of non–overlapping intervals

in the entire scanned bandwidth, |F | = 40 MHz). This supported the lack of significant

correlation between contiguous scanned intervals. The diagonal lines in the example plots

with no USRP transmissions in Fig 3.6 and Fig 3.8 illustrate that in general, intervals were

significantly similar to themselves, but not to other intervals. Similar results were obtained
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using the Manhattan and Euclidean distances.

Because there was spectral leakage in the guard bands, the similarity was higher in guard

bands than in a sub–band in which no USRP was transmitting. These were the gray areas

of the figures. However the similarity was not as high as within each identified sub–band,

but was higher than between dis–similar sub–bands. Depending on the ǫ value, guard bands

thus aggregated with adjacent sub–bands allocated for USRP transmissions.

3.6.3 Comparison to K–means Clustering

The proposed stratification technique aims to group together bands with similar tempo-

ral occupancy chacteristics. It was therefore compared to existing techniques used to group

similar objects together. Initially, k–means, expectation maximisation and agglomerative

hierarchical clustering techniques were selected as they are popular approaches used in the

literature [145]. However it was quickly realised that the latter 2 were more suited for offline

analysis and did not scale as well as k–means did to larger data sets. Since our focus is on

adapting techniques for online use, in this study only k–means is presented for comparison.

The basic k–means algorithm requires user specification of the number of clusters, k, for

grouping of data. It then iterates through assigning objects to the closest centroids and then

recomputing cluster centroids. The algorithm loops until cluster centroids do not change

significantly in subsequent iterations. Adaptations such as agglomerating nearby clusters,

random initialisation, and bisecting k–means improve on the basic algorithm. With these

adaptations, k–means attempts to minimise an objective function based upon the selected

distance metric. For example, the Euclidean metric used the sum of squares errors, while

the Manhattan metric used the sum of absolute errors. This objective function therefore

provides one means of assessing cluster quality.

Because the data was high–dimensional (i.e., N0–dimensional) and it was expected that

there should be 10 natural clusters excluding the guard–bands, in our experiments, k was

varied between 10 and 40 and the k–means algorithm was executed using the same distance

metrics which were used for the proposed stratification technique. Since the basic k–means

technique did not allow for variation of ǫ, the k variations provided a way to assess cluster

quality for comparison to our technique: determine k–values that minimise the expected
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value of the objective function.
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Figure 3.11: Comparison of average number of strata found for different initialisation values
for k–means clustering using different distance metrics.

For each value of k, the clustering technique was repeated 50 times with random ini-

tialisation of centroids, and the iteration which produced the minimum objective function

was chosen as the best. The performance was also statistically evaluated based upon the

expected value of the objective function as well as its variance. Experiments showed that

even with increasing k the average number of clusters obtained did not exceed 15 (Fig 3.11).

This was interesting to note because it was expected that there should be 21 natural clusters

based upon the experimental setup (i.e., 10 sub–bands plus 11 guard bands). The two main

reasons for the smaller number of clusters were:

1. Some unoccupied guard bands or guard bands with leakage were grouped into similar

clusters in some instances

2. Some guard bands and also actual sub–bands with transmissions were sufficiently

similar to be grouped together

Small values of k (i.e., k < 10), capped the number of strata which could be found,

thus limiting the k–means algorithm performance, in terms of strata homogeneity. Also,

based upon the objective function, k ∈ [15, 21] produced the best performance on average.
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Fig 3.12 illustrates results for various values of k using different distance metrics for the

objective function.

Comparison of the proposed technique to the k–means algorithm highlighted one im-

portant issue: While the proposed technique always produced the same strata for every run,

for a specific run of the k–means algorithm the number of clusters obtained was dependent

upon initial cluster centroids selected. The initialisation also affected which of the guard

bands would be aggregated with the 10 sub–bands.
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Figure 3.12: Comparison of strata homogeneity for k–means clustering using different dis-
tance metrics.

To further validate the method, it was necessary to determine correct identification of

the sub–bands allocated to the USRPs. This is essentially a clustering evaluation problem

where the true spectral groupings are known. In the cluster validation literature, entropy is

commonly used for cluster validation [145]. Therefore this was used to assess the purity of

the identified strata through comparison of the proportions of misclassified intervals within

a given sub–band.

Fig 3.10 and Fig 3.12 illustrate that better performance were obtained for decreasing

ǫ and increasing k, respectively. Specifically, for the proposed technique the number of

strata identified was dependent upon ǫ: as ǫ was increased more dissimilar bands were

aggregated, and there were less strata identified. Lower values of ǫ increase the number of
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strata identified, and the strata were also more homogeneous as required.

A key requirement of the stratification approach is to limit complexity so that it can be

used in online occupancy measurement and estimation. It is noted that performance of the

algorithms in terms of complexity is highly dependent upon specific implementations, and

which enhancements are used. However, several qualitative statements can be made with

respect to online use in spectrum occupancy estimation using RSS.

First, for online use since k–means requires an initial guess of the number of clusters, it

requires iterations to determine a suitable clustering (i.e., unless a large value for k is used

at initialisation). However, the proposed technique requires a single iteration for identifying

spectral strata. Second, k–means identifies strata even with non–contiguous bands, while

theMatSearch algorithm assumes contiguous bands. However theMatSearch algorithm

can be enhanced for non–contiguous bands, but as previously stated, for this paper the focus

is on contiguous cases.

3.7 Evaluation of RSS with Stratification Technique

Following validation of the proposed technique, the next step was to estimate spectrum

occupancy for spectrum measurements.

3.7.1 Measurement Data

To evaluate RSS usage for spectrum occupancy estimation, data used in this paper were

from spectrum measurements taken at the Wireless Innovation Laboratory, at Worcester

Polytechnic Institute. Measurements were made using in–house developed software, SQUIR-

REL (Spectrum Query Utility Interface for Real-time Radio Electromagnetics), to control

an Agilent CSA series N1996a Spectrum analyzer in order to collect the data. Table 3.2

describes the measurement parameters used for collecting spectrum data.

A global threshold, τ , was determined using Otsu’s threshold selection method for gray–

level histograms [144]. Otsu’s algorithm is a nonparametric, unsupervised threshold selec-

tion method which can utilise the zeroth–order and first–order cumulative moments of the

gray–level histogram for Pn to maximise the separability between the signal and noise
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classes. This provided the occupancy “ground truth” which was used for comparison to the

sampling schemes presented in this paper.

A random group method using stratified sampling was then used to estimate the sam-

pling distributions for each of the sampling schemes considered. The random group method

is commonly used in estimating sampling distributions by creating independent samples

for which parameters of interest can be estimated [142]. For each case investigated, the

random group approach was used to obtain 1000 independent sample realisations, which

were then used to evaluate the occupancy in each case. These were then used to statistically

characterise the sample distributions of interest.

Table 3.2: Spectrum Measurement Setup.

Parameter Value

Measurement Start Time, t0 16:52 April 4, 2011

Measurement Stop Time, tNt 20:44 April 5, 2011

Fstart, f0 800 MHz

Fstop, fNf
1 GHz

∆t 2 seconds

∆f 20 kHz

Nt 50,184

Nf 11,000

For the licensing approach, the spectrum range considered was divided into 15 strata

according to US spectrum allocation information [85]. Table 3.3 summarises the strata allo-

cation scheme used along with the main services of interest within. Although the allocation

served as the basis for spectral division, as seen in Table 3.3 the boundaries may not be

exactly aligned with specific service boundaries.

3.7.2 Sub–band Occupancy

To investigate the behavior of the stratification techniques with RSS occupancy estima-

tion, several of the 15 sub–bands were selected based upon observed service and occupancy

characteristics. For example, the Cellular down and Unlicensed sub–bands were chosen

based upon the observed relatively dynamic nature of the services, while SMR up/SMR

down and Paging were chosen because there was the possibility of heterogeneous RAT

within these bands. In contrast, the Aviation sub–band was selected as there was not ex-
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Table 3.3: Service–based Spectrum Allocations.

Range (MHz) General Service Description

800-806 Low Power (LP) TV / LP Aux. / Pub. Safety

806-824 SMR Up / Pub. Safety

824-849 Cellular Up

849-851 Commercial Air-Ground (CAGR)

851-869 SMR Down / Pub. Safety

869-894 Cellular Down

894-901 CAGR / SMR

901-902 Narrowband PCS (N-PCS)

902-928 ISM / Amateur Radio / LMS

928-935 Paging / N-PCS / Multiple Address Service

935-941 SMS / Narrowband PCS

941-944 Fixed Microwave Service (FMS)

944-952 Broadcast Aux. / FMS / LP Aux.

952-960 FMS

960-1000 Aviation

pected to be any occupancy within the measurement area based upon the service allocation.

Bandwidth occupancy within the sub–bands investigated ranged from low to medium oc-

cupancy (i.e., ∼ 0%–50%). Figs 3.13– 3.16 provide a comparison of the proposed distance–

based stratification technique to equal stratification using the time–averaged MSE for these

sub–bands.
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Figure 3.13: Time-averaged MSE for equal stratification, across several service bands. N0

= 5 minutes, BRSS Block size = 10 mins.
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Figure 3.14: Time-averaged MSE for equal stratification, across Cellular sub–bands. N0 =
5 minutes, BRSS Block size = 10 mins.
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Figure 3.15: Time-averaged MSE for distance–based stratification technique, across several
service bands. N0 = 5 minutes, BRSS Block size = 10 mins.

For each sub–band, the MSE decreases with increasing sampling ratio as expected, based

upon (3.8). No significant signals were observed in the Aviation sub–band so adjacent

samples did not form channels. Thus there was no channel–related correlation between

closely spaced spectral samples (i.e. assuming independent noise), hence the lower MSE.

This was further supported in other sub–bands which contained occupied channels and

had increased correlation resulting in increased MSE under the assumption of inter–strata
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Figure 3.16: Time-averaged MSE for distance–based stratification technique, across Cellular
sub–band. N0 = 5 minutes, BRSS Block size = 10 mins.

homogeneity for random sampling. Additionally, although the SMR up and SMR down

sub–bands were separate, the MSE of the estimate under random sampling was similar

for both cases. This may be due to the symmetry of the assignments for the uplink and

downlink bands, given the nature of the service. For a given sample ratio, the MSE for

bands which contained multiple service allocations were higher.

Fig 3.14 and Fig 3.16 illustrate time–averaged MSE for bands A”, A, B, A’, and B’ in

the cellular 850 MHz downlink sub–band. Only results for equal–sized stratification and the

proposed stratification technique are shown for brevity. However, k–means performance was

slightly worse than the latter approach, while license–based stratification was between the

performance of equal–sized stratification and the proposed technique. The results clearly

illustrate the improved performance using the proposed technique. Although A and B bands

contained GSM and CDMA signals, (and hence different channel specifications), the MSE

was improved using proposed technique compared to just use of equal–sized or license–based

techniques.

Table 3.4 provides further example results for the SMR up/SMR down bands. The

results demonstrate that while similar performance is obtained for both assignment–based

and equal–sized stratification of sub-bands, the proposed stratification technique was better
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Table 3.4: Comparison of time-averaged MSE for different stratification approaches for the
SMR up/ SMR down sub–bands. N0 = 20 minutes, BRSS Block size = 20 minutes. Each
value must be multiplied by 0.001 to get actual MSE value.

Stratification
Sampling Ratio, π

0.1 0.3 0.5 0.7 0.9

No Stratification 1.82377 0.45827 0.19554 0.08336 0.02162

10 Equal–sized Strata 1.76713 0.45347 0.20077 0.08411 0.02180

Assignment–based Strata 1.70715 0.41368 0.19064 0.08317 0.02134

Proposed Stratification Technique 0.81672 0.16290 0.04972 0.02687 0.005922

K–means 0.92456 0.17833 0.053917 0.02409 0.005176

in terms of the time–averaged MSE. Performance using k–means and the proposed tech-

nique was similar. This was also observed for the other sub–bands investigated, where the

proposed stratification technique gave the best performance in terms of sampling bias and

MSE.

3.8 Conclusion

In this chapter, the NCSS concept was introduced as an alternative way of simultane-

ously sensing non–contiguous sub–bands. Such scenarios may result from the need to mon-

itor channels which may not be contiguous. Using NCSS, a framework for bandwidth oc-

cupancy estimation using stratified sampling techniques and random spectral sampling was

proposed. Further, one means of implementing NCSS/RCSS using a multiband polyphase

filterbank approach was presented. Experimental results suggested that bandwidth occu-

pancy estimation using RSS techniques was dependent upon appropriate stratification of

similar sub–bands.

To achieve online stratification, a distance–based approach to automatic stratification

was proposed for use with random spectral sampling for characterisation of bandwidth

occupancy in spectrum monitoring networks. The proposed approach was validated via

simulations and through use of spectrum measurements taken at WPI for about 24 hours,

spanning 800 MHz – 1 GHz. The results illustrated that the technique improved on the

previous non–adaptive stratification techniques proposed for random spectral sampling.

Results further suggest that random spectral sampling can be used in wideband occupancy

characterisation, with increasing accuracy as the sampling ratio increases to 1.
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Based on the above results, without specific details of operator frequency planning,

assignment–based stratification was seen to introduce higher sampling bias and MSE when

used for bandwidth estimation via RSS compared to the proposed stratification approach.

Also, it may not be practical to use such an approach at a very granular level. While

equal–sized stratification can be used in cases where simplicity is warranted, it does not

take account of strata heterogeneity for stratification. Consequently, it does not perform as

well as well as when automatic stratification is used. In contrast, k–means provides one way

to automatically stratify the sensed spectrum. However, the proposed technique provides a

relatively simpler way to achieve similar performance in an online setting. Both k–means

and the proposed approaches give similar performance in the heterogeneous RAT case, for

comparable sampling ratios.

Furthermore, unlike typical compressed sensing schemes for low signal occupancy sce-

narios, in the proposed RSS approach the spectrum reconstruction objective is relaxed to

improve performance in medium to high occupancy settings. This method thus facilitates

statistical occupancy characterisation for various occupancy levels, which is a key spectrum

monitoring objective, without requiring the sparsity assumptions of compressed sensing.
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Chapter 4

PHY–based Temporal Occupancy

Estimation

4.1 Introduction

In the previous chapter, several aspects of estimating bandwidth occupancy were con-

templated, and a random sampling approach for wideband spectrum sensing and occupancy

estimation was proposed. Another common spectrum monitoring output for spectrum man-

agement is the estimation of temporal occupancy statistics for channels. In emerging DSA

networks, this is even more crucial for spectrum management as well as for compliance

enforcement, since operational parameters for DSA additionally can include temporal va-

lidity constraints. In this chapter and the next chapter, two aspects of temporal occupancy

estimation are examined.

Specifically, this chapter deals with temporal occupancy estimation of selected spectrum

bands when there is no need to discriminate between specific users. This is particularly

useful for frequency planning and spectrum engineering activities [35, 120]. Traditionally, to

support such spectrum management activities, current approaches for temporal occupancy

estimation typically determine the proportion of time during the measurement interval, for

which spectrum is occupied (e.g., [5, 35, 134]). In envisioned OSA scenarios, this estimation

task may be more difficult, given the dynamics of proposed OSA techniques.
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In this chapter, random temporal sampling is explored, for sampling of signal charac-

teristics for estimation of overall channel occupancy. A PHY–based approach for spectrum

occupancy estimation is proposed, if user discrimination is not required. In this approach,

signal measurements are used to estimate temporal characteristics for spectrum occupancy,

under various temporal sampling strategies.

Several aspects of this work also appear in publications developed for this disserta-

tion: [87, 148].

4.2 Motivation

Opportunistic spectrum access (OSA) networks [149] place new challenges upon exist-

ing spectrum monitoring paradigms [54, 56]. In response to increasing demand for radio-

communications services, regulatory developments in many jurisdictions have created new

opportunities for more flexible allocation and assignment of, as well as operation within

previously unavailable spectrum bands (e.g., [41, 42]). However, measurement and mod-

elling of spectrum usage trends by primary and secondary users is an essential element

for effective spectrum management within the various increasingly market–based spectrum

allocation and access models in future OSA–based deployments [54, 56, 134]. Such models

provide invaluable data for use in various spectrum management processes such as spectrum

planning, spectrum engineering, channel blocking complaint verification and evaluation of

spectrum usage efficiency.

However, hardware limitations and energy constraints restrict complete knowledge of

spectrum opportunities which would be gained through continuous sensing of the entire

spectrum of interest. Thus sampling has been investigated for estimation and temporal

characterisation of spectrum occupancy. In the literature to–date, several approaches have

been presented (e.g., [16, 150–155]), with the majority of research to–date focussed upon

periodic sampling approaches. In many of the proposed approaches, dense sampling is

generally assumed, which is typically expensive in terms of computational costs and energy

consumption, which may make it impractical for deployment scenarios involving wireless

devices with limited power. This has promoted investigation of sparse sampling approaches
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such as compressed sensing (CS) [156–158]. As shown in [159], randomisation of sensing

intervals can outperform periodic sensing, in sparse sampling scenarios.

However, while CS offers advantages for scenarios requiring signal reconstruction from

sparse samples, related recent work using CS techniques in OSA [160] highlight crucial CS

challenges [58, 159, 160]:

1. Effective use of CS requires the determination of suitable basis matrices to introduce

the required signal sparsity

2. CS effectiveness is also based upon adequate incoherence of the sparse signal with the

measurement matrix

3. CS trades sample size for the computational cost of signal reconstruction. Maintaining

sufficiently low computational cost is crucial to real–time performance.

In particular, for occupancy estimation there may be instances where signal sparsity may

not be guaranteed, (e.g., in congested areas such as in urban scenarios [5]). In such instances,

unless some sparse representation can be devised, the sparsity assumption required for CS

would not be satisfied. Also, in such cases the sampling must be at least at the Landau rate

to prevent aliasing effects from occurring (i.e., which would negate the benefit of sparse

sampling in the first place). Determination of suitable sparse bases is still an open area of

research.

One promising approach involved extraction of cyclostationary features of wideband

signals, in which signals were shown to be sparse, and therefore CS was applied [161].

However, through the signal transformation, the signal dimensionality was increased to

obtain the required sparsity. In effect, the signals of interest would require a similar sample

size for reconstruction in a higher dimensional space. [162] proposed an improvement to

reduce the complexity of the approach by only reconstructing signals of interest. However,

the assumption in this approach was that the technique would be used by SUs for OSA, and

therefore the bands of interest would be sufficiently sparse for OSA to be feasible. Similarly

to bandwidth occupancy estimation, the computational cost of signal reconstruction for

temporal occupancy estimation is not necessary [35, 120, 134]. Therefore, alternate (sparse)
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random sampling approaches to estimate the temporal spectrum occupancy are suggested

for accomplishing the required monitoring tasks.

In this chapter, models for randomised temporal sensing deployment on periodic sensing

platforms in OSA networks and their performance in spectral occupancy estimation are ex-

amined. To the best of the author’s knowledge, little work has been done on the proposed

randomised temporal sensing approach. Unlike typical compressed sensing schemes for low

signal occupancy scenarios, in the proposed approach the spectrum reconstruction objective

is relaxed to improve performance in medium to high occupancy settings. This method thus

facilitates statistical occupancy characterisation for various occupancy levels. Furthermore,

the approach also facilitates inclusion of periodic sensing scenarios. The performance of var-

ious sampling designs in estimating channel occupancy for channels modelled as alternating

renewal processes is investigated. Specific contributions are as follows:

1. A framework is presented for performance analysis of various temporal sampling

strategies, and a lower bound is derived for random temporal sensing variance

2. A low–computational–cost model for online randomised temporal sensing deployment

on periodic sensing platforms for characterisation of spectrum occupancy is proposed

3. The randomised sensing approach is demonstrated using USRPs, for which several

performance studies are carried out

4. The approach is compared to several CS–based techniques for occupancy estimation.

The proposed method is proposed for cases where there is more spectrum agility than

deployed non–OSA technologies currently allow, in particular where there may be intelli-

gently changing transmission parameters in response to the sensed state of the spectrum,

such as enabled by cognitive radio devices. The resulting occupancy models can then be

used to make appropriate decisions for spectrum management or for spectrum accounting.

The rest of this chapter is organised as follows: In Section 4.3 the spectrum occupancy

model is presented, followed by an overview of temporal occupancy estimation using various

temporal sensing strategies in Section 4.4. This is followed by an overview of performance

analysis of sensing strategies in Section 4.5 and the online randomisation algorithm in
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Section 4.6. Experimental results are presented in Section 4.7. Finally there are concluding

remarks in Section 4.8.

4.3 Spectral Occupancy Model

Current wireless networks support a multitude of voice and data services with different

characteristics, making multi–service traffic modelling very challenging. The literature il-

lustrates many approaches based upon analytical and empirically–fitted representations for

various single–service and multi–service scenarios, (e.g., [163, 164].) For this dissertation,

temporal spectral occupancy is modelled using a continuous–time alternating renewal pro-

cess [165]. This model has been frequently used in the literature particularly due to its

simplicity.

Spectrum occupancy is modelled as a binary random variable, X (t), alternating between

occupied (i.e., X (t) = 1) and free (i.e., X (t) = 0) states (Fig. 4.1). The jth occupied event

occurs between αj and ωj , and is of duration τocc,j = ωj−αj . Similarly, the jth white–space

event occurs between ωj and αj+1, and is of duration τfree,j = αj+1 − ωj . At t = 0 the

channel is assumed to be occupied (i.e., X (0) = 1). By definition of an alternating renewal

process, τocc,j and τfree,j are defined by probability density functions g (t) and h (t) (where

t > 0), respectively. Although in general τocc,j and τfree,j can be dependent within the

jth cycle, for this dissertation it is assumed that occupied and free interval durations are

independent. Further, the sequences {τocc,j} and {τfree,j} are independent and identically

distributed.

Figure 4.1: Spectrum occupancy model (top figure) and spectrum sampling model (bottom
figure).
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4.4 Estimating Temporal Occupancy using Random Tempo-

ral Sampling

Assume that each spectrum sensor has physical layer temporal sensing resolution spec-

ified by ∆t. For a sensor network, the sensing objective is typically to statistically model

the channel occupancy for time T = [t0, t0 +Ntη∆t], where t0 is the start of the sensing

interval of interest, Nt is the number of sampling opportunities in T, η indicates the av-

erage number of ∆t increments for a single detection processing cycle within any sensing

period, and ∆t ≪ T . For the interval duration η∆t, any detection technique such as energy

detection or cyclostationary detection can be used.

Each temporal sampling strategy would have its own sensing interval and sensing du-

ration based upon the physical–layer sensing parameters identified above. Sensing can be

placed into one of four types of sensing schemes (Fig. 4.2). T and Ti (i = 1, 2,· · · , n) are

respectively the fixed and random time intervals between the starts of successive scans. β

and βi represent the fixed and random sensing durations respectively. In periodic sens-

ing, the sensing intervals, T , and the sensing durations, β, are approximately constant1

(Tmin < β < T ). In contrast, in random sensing as illustrated in Fig. 4.2 it is possible to

randomise either βi, or Ti, or both (Tmin < βi < Ti).

Sensors are either in the sensing or idle states, depending on whether a sensing event

is occurring or not. It is additionally assumed that the temporal sampling parameters are

integer multiples of the PHY–layer resolution, ∆t, (i.e., with consideration of the previously–

mentioned jitter). Therefore, the sensing process also can be modelled as a discrete–time

binary variable, Y [k] alternating between sensing, (i.e., Y [k] = 1), and idle, (i.e., Y [k] =

0), states. Note that while for periodic sensing Y [k] would be approximately deterministic,

this may not be the case for the random sampling schemes. Other activities not related

to sensing are ignored during the idle state. As a consequence of the temporal sensing

parameter assumption, denote γi and ǫi as the discrete start and end times of the ith sensing

event, where 0 ≤ γi < ǫi (Fig. 4.1). Thus βi = ǫi − γi = mi∆t and Ti = γi+1 − γi = li∆t,

1There is expected to be some jitter for signal processing, but this is assumed to be negligible, compared
to the average durations of T and β.
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(mi, li) ∈ N
+.

Figure 4.2: Taxonomy of temporal sampling schemes. (a) Periodic sampling. (b)-(d) Ran-
dom sampling. Subscripted variables denote randomised sensing parameters. All other
variables are non–random. Blocks represent sensing event.

4.4.1 Temporal Sensing Framework

While there exist many sampling approaches, in this section the following approaches are

examined: systematic sampling, simple random sampling, stratified sampling and cluster

sampling [142]. Each approach is briefly discussed below. However, it is noted that other

more complex approaches exist, which may combine these simpler approaches.

Systematic Sampling

Systematic sampling is equivalent to periodic sampling in which the increments between

successive sampling points are approximately constant [166]. However, systematic sampling

involves selecting some random starting point to sample, after which the time between

successive samples is constant. By definition, including the initial randomly selected and

subsequent sampling points, the sequence of consecutive sampling points {tk} ∈ T are

spaced l∆t apart, where l ∈ N
+. Let z ∈ {0, 1}Nt×1 be the sampling vector for interval T .
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Entries of z are 1 if the corresponding sampling opportunity is selected, and 0 otherwise.

Also define X(t){t∈T} as vector XT. XT ∈ {0, 1}
Nt×1 represents the Nt × 1 occupancy

vector with entries of 0 or 1 representing free or occupied instants, respectively. Detection

can be done using any of the techniques presented in the literature, such as energy detection

or cyclostationary detection. For a sample SP of size nP the occupancy of T is estimated

using:

µ̂P =
1

nP

∑

tk∈SP

Xtk =
1

nP
z ·XT (4.1)

where ‘·’ is the vector scalar product operator.

Simple Random Sampling

In simple random sampling (SRS) a sample SSRS of size nSRS is randomly selected from

the Nt possible sampling opportunities. Each opportunity is equally–likely to be selected.

Thus sensing is a Bernoulli process [147], where each possible sampling instant tk ∈ T has

probability, π = nSRS

Nt
of being selected [142]. The vectors z ∈ {0, 1}Nt×1 and XT are

defined similarly as for systematic sampling. The occupancy of T is estimated using:

µ̂SRS =
1

nSRS

∑

tk∈SSRS

Xtk =
1

nSRS
z ·XT =

1

πNt
z ·XT (4.2)

Stratified Sampling

In stratified sampling, T is divided into s non–overlapping sub–intervals {Tj} ∈ {0, 1}Nj×1:

T =
⋃s

j=1 Tj and Tj
⋂

Tk = ∅, j 6= k; j, k ∈ N. SRS is done for each sub–interval Tj . Each

Tj is of duration Nj × η∆t and a random sample Sj of size nj is selected from each. Within

each Tj each sampling opportunity is equally–likely to be selected. Thus within Tj , each

possible sampling instant tj ∈ Tj has probability, πj =
nj

Nj
of being selected [142]. Let

zj ∈ {0, 1}
Nj×1 be the sampling vector for sub–interval Tj . Sub–entries of zj are 1 if the

corresponding sampling opportunity is selected, and 0 otherwise. Also, define X{t∈Tj} as

vector XTj
∈ {0, 1}Nj×1. For a sample Sj the occupancy of Tj is estimated using:
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µ̂j =
1

nj

∑

t∈Sj

Xt =
1

nj
zj ·XTj

(4.3)

From (4.3) the overall occupancy can then be estimated as [142]:

µ̂St =
s
∑

j=1

Nj
∑s

k=1Nk

ûj =
s
∑

j=1

Nj

nj
∑s

k=1Nk

zj ·XTj

=
s
∑

j=1

1

πjNt
zj ·XTj

, (4.4)

Cluster Sampling

In cluster sampling, T is divided into Mc non–overlapping sub–intervals {Tj} in a sim-

ilar manner to that for stratified sampling. In one–stage cluster sampling a subset of

sub–intervals from {Tj} are randomly selected. Only this subset is sampled (usually peri-

odically), ignoring the rest. In multi–stage sampling, the sampled clusters can themselves

be sampled using another scheme, resulting in more complex sampling designs. In this

chapter, focus will be upon one–stage sampling.

A random sample Sc of size mc sub–intervals is randomly selected, each with equal

probability, πc = mc

Mc
of being chosen. Each Tj is of duration Nj × η∆t and is sampled at

every sampling opportunity within. There are thus Nj opportunities to be sampled in each

cluster. Vector XTj
is defined as in previous cases, while 1 defines a Nj × 1 vector with

all elements = 1. For a sampled sub–interval, the occupancy of Tj can be estimated using

(4.3), while the overall occupancy is estimated using similar procedures to those used for

the previous sampling approaches:

µ̂C =
∑

j∈Sc

Mc

mc

∑Mc

k=1Nk

1 ·XTj

=
∑

j∈Sc

1

πcNt
1 ·XTj

, (4.5)

4.5 Performance of Random Temporal Sampling Strategies

The theoretical performance of the temporal sampling strategies and resulting estimators

can be evaluated in terms of the bias and variance introduced. Theoretical expressions for
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these performance metrics are now derived for the sampling strategies presented in the

previous section.

Denote the Laplace transforms of the probability density functions by L{g (t)} = ĝ (s)

and L{h (t)} = ĥ (s). Under the assumption of equilibrium, define the transition probabil-

ities for X (t), πqr (k∆t), as the probabilities of observing state r at time, t + k∆t, given

that state q was observed at time, t, i.e., q, r ∈ {0, 1} [166]:

π00 (k∆t) =
µ0

(µ0 + µ1)
+
ψ (k∆t)

µ0
,

π01 (k∆t) =
µ1

(µ0 + µ1)
−
ψ (k∆t)

µ0
,

π10 (k∆t) =
µ0

(µ0 + µ1)
−
ψ (k∆t)

µ1
,

π11 (k∆t) =
µ1

(µ0 + µ1)
+
ψ (k∆t)

µ1
. (4.6)

where µ0 = E [τfree,j ] and µ1 = E [τocc,j ] are the mean off–time and on–time and ψ (k∆t) =

(µ0 + µ1)cov (X (t) , X (t+ k∆t)). It can be shown that [166]:

ψ̂ (s) =
µ0µ1

(µ0 + µ1) s
−
{1− ĝ (s)}{1− ĥ (s)}

s2{1− ĝ (s) ĥ (s)}
. (4.7)

Based upon Eqn (4.6), it can be seen that the equilibrium probabilities can be further

expressed as:

π00 (k∆t) = (1− µ) +
cov (X (t) , X (t+ k∆t))

(1− µ)
,

π01 (k∆t) = µ−
cov (X (t) , X (t+ k∆t))

(1− µ)
,

π10 (k∆t) = (1− µ)−
cov (X (t) , X (t+ k∆t))

µ
,

π11 (k∆t) = µ+
cov (X (t) , X (t+ k∆t))

µ
, (4.8)

where µ = µ1

(µ0+µ1)
is the true temporal occupancy. Now assuming equilibrium and consid-

ering the ith and (i+ 1)th sampling instants spaced k∆t apart, let yi be 1 if the channel is
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occupied at the ith sampling instant and 0 if it is not. It is easily shown that [147, 166]:

E[yi] =
µ1

(µ0 + µ1)
= µ,

var (yi) =
µ0µ1

(µ0 + µ1)
2 = µ(1− µ),

cov (yi, yi+k) =
ψ (k∆t)

(µ0 + µ1)
. (4.9)

4.5.1 Bias

The bias for an estimator based upon a selected temporal sampling approach, µ̂, is given

by Bias(µ̂) = E[µ̂]− µ, where µ is the true value for the temporal occupancy.

For periodic sampling, assuming equilibrium the bias is 0 since,

E[µ̂P ] = E





1

nP

∑

tk∈SP

ytk



 =
1

nP

∑

tk∈SP

E[ytk ] = µ. (4.10)

For simple random sampling,

E[µ̂SRS ] = E





1

nSRS

∑

tk∈SSRS

ytk



 =
1

nSRS

∑

tk∈SSRS

E[ytk ]. (4.11)

Now,

E[ytk ] = P [{z[tk] = 1} ∩ {X(tk) = 1}]

= P [{z[tk] = 1}]P [{X(tk) = 1}]

= πµ, (4.12)

where the second line follows from the fact that sampling instants are independent of X(t)

for simple random sampling. Combining Eqns (4.11)–(4.12), it therefore follows that:

E[µ̂SRS ] = πµ. (4.13)

Hence the bias for simple random sampling is given by:

Bias(µ̂SRS) = µ− πµ = (1− π)µ. (4.14)
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Stratified sampling uses simple random sampling for each strata. Therefore the results

from Eqn (4.14) can be used for each strata. Therefore for the jth stratum:

E[µ̂j ] = πjµ. (4.15)

The expected value of the estimator for stratified sampling is therefore given by:

E[µ̂St] = E





S
∑

j=1

1

Ntπj

∑

tk∈Sj

ytk



 ,

=

S
∑

j=1

1

Ntπj

∑

tk∈Sj

E[ytk ],

=
S
∑

j=1

1

Ntπj

∑

tk∈Sj

πjµ,

=
S
∑

j=1

πjNj

Nt
µ,

= πµ
S
∑

j=1

Nj

Nt
= πµ. (4.16)

Hence, Bias(µ̂SRS) = Bias(µ̂St) = (1− π)µ.

Cluster sampling uses periodic sampling for each strata selected, where strata are se-

lected using simple random sampling. Therefore it can be easily seen that for the jth selected

cluster, E[µ̂j ] = E[µ̂P ] = µ. Now it can therefore be seen that the estimator from cluster

sampling is unbiased:

E[µ̂C ] =
∑

j∈Sc

Mc

mcNt
Njµ =

∑

j∈Sc

µ

mc
= µ. (4.17)

The relative error can then be used to normalise the performance based upon the tem-

poral occupancy. Since the bias is a random variable due to the random sampling design,

the expected relative error will be used. The expected value of the relative error can be

derived from the bias using, ǫµ̂ = |Bias(µ̂)|
µ

. Thus, from Eqns (4.10)–(4.17):

ǫµ̂P
= ǫµ̂C

= 0. (4.18)

ǫµ̂SRS
= ǫµ̂St

= (1− π). (4.19)
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4.5.2 Precision

For each sampling design, the precision can be evaluated by the variance of the estimator.

This can be derived using Eqns (4.6)–(4.9). Using these equations, it is easily shown for

systematic sampling that the variance of the estimator is given by [147, 166]:

var (µ̂P ) =
µ(1− µ)

nP
+

2

n2P (µ0 + µ1)

nP
∑

j=1

(nP − j)ψ (jη∆t) . (4.20)

As opposed to systematic sampling, for random sampling the increments between suc-

cessive samples becomes a random variable, ηj , and from (4.20) the conditional variance,

given sampling vector z, is therefore:

var (û|m) =
µ(1− µ)

n
+

2

n2 (µ0 + µ1)

n
∑

j=1

n
∑

l>j

ψ ((ml −mj)η∆t) , (4.21)

where m = [m1,m2, · · · ,mn], and {m1, . . . ,mn} is the ordered sequence representing the n

sampling instants within the sampling vector. Therefore, the variance is given by:

var (µ̂) =
∑

M
var (û|m)P (m),

=
∑

M

1

|M|
var (û|m) ,

=
µ(1− µ)

n
+

2

n2 (µ0 + µ1) |M|

∑

M

n
∑

j=1

n
∑

l>j

ψ ((ml −mj)η∆t) , (4.22)

whereM is the set of all possible sampling vectors of sample size n, for the given sampling

design. Note that this is typically a subset of all possible vectors of size n, since the

sampling design defines the possible realisations of m. |M| denotes the size of the set. For

the sampling designs presented, it can be easily shown that P (m) = 1
|M| , as each realisation

of m is equally–likely from the subset based upon the sampling designs [142]. For example,

for simple random sampling, the probability of choosing any n sampling instants from the

possible Nt is given by P (m) = 1

(Nt
n )

[142]. The final line of Eqn (4.22) is obtained through

substitution of Eqn (4.21) into the expression on the second line of of Eqn (4.22).

For large sample sizes, n, or for quickly decaying functions, ψ (k∆t), the summation

term in Eqn (4.22) approximates to zero. In fact, under the assumption of independence
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between sampled values, cov (X (t) , X (t+ k∆t)) = 0, and therefore the summation term

vanishes. This gives the lower bound for the variance achievable by random sampling as:

var (û) ≥
µ(1− µ)

n
=
µ(1− µ)

πNt
(4.23)

Eqn (4.22) also gives several key insights into the performance of the sampling designs,

which can be used in practical scenarios. First, the independence assumption may not hold

for short measurement intervals. In such instances there is likely to be some correlation

between X(t) at sampling instants. Alternatively, for arbitrary h(t) and g(t), ψ (k∆t)

may not decay rapidly. Clearly, denser sampling increases |M| which in the limit as n →

∞, approximates to continuous sampling, which can decrease the variance under certain

conditions.

However, for DSA scenarios, sparse sampling is of particular interest. In such scenarios

performance depends upon the rate of decay of ψ (k∆t). For example, for Poisson and

Erlang processes, ψ (k∆t) decays exponentially, and increasing η∆t brings the variance

closer to the lower bound in Eqn (4.23) [166]. For arbitrary functions, g(t), h(t), it may not

be numerically tractable to evaluate ψ (k∆t), and thus analysis in such cases would require

use of computer-aided techniques.

4.5.3 Temporal Occupancy Model

In addition to the temporal occupancy, the channel can be further characterised in

terms of several other parameters which may be of interest in spectrum management and

compliance enforcement. Examples include:

1. Time to the rth occupancy event: For some fixed value of r, the random variable

defining the time at which the rth occupancy interval occurs may be required.

2. Number of occupied intervals occurring in time interval, NT : For some fixed

measurement time, T , the number of occupied events, NT occurring may be required.

3. The renewal function, H(T ): Based upon the last parameter, this is the mean

value of NT . The renewal function is defined as H(T ) = E[NT ].
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4. Renewal density, h(t): This defines the mean number of occupancy events ex-

pected to occur in a narrow interval near the time of interest. It is defined as

h(t) = lim∆t→0+
E[Nt+∆t−Nt]

∆t
.

5. Hgher moments of NT : Higher moments of NT may be required for temporal

occupancy characterisation.

6. Backward recurrence time, Ut: This gives the random variable for the length of

time measured backwards from a time, t, to the last renewal at or before t. This

therefore can be used to estimate how long a transmitter has been transmitting.

7. Forward recurrence time, Vt: This gives the random variable for the length of time

measured forwards from time, t, to the next occupancy event. This can be similarly

used to estimate how long the current “ON” or ”OFF’ period will last for.

8. Survivor function, F(τ): This defines the probability that a given “ON” or “OFF”

period will exceed some value, τ . It can be used in a similar manner to Ut and Vt for

estimating the duration of an “OFF” or “ON” interval.

Estimators for these parameters can be derived using standard renewal theory. How-

ever, the performance of such estimators depends upon the occupancy model used (i.e. the

functions h(t) and g(t)). However these PDF’s have unknown parameters. The estimation

problem is thus the parameter estimation using samples, {Sj}, and random sampling vec-

tors, {zj}. In the literature while there has been work in estimation of these parameters

from a theoretical perspective, there has been limited work in the extension to estimation

of temporal spectrum occupancy. Since in general, many of the parameters are functions of

µ̂ [159, 166], in this chapter focus will be on the temporal occupancy estimation of µ̂, where

µ̂ denotes any of the previous estimators of occupancy. Several of the above parameters

will be considered in the next chapter.

4.6 Random Temporal Sampling Implementation

Each of the above sampling approaches depends upon the selection of a subset n of

the N sampling opportunities. In typical applications, the sample design is carried out in
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advance to select the sampling opportunities. However, this is not suited for online sampling

of spectrum occupancy. Thus a windowing approach is proposed to obtain windows of

duration T within which sequential sampling is carried out using the algorithm presented

in Fig 4.3. Sampling is done on the primary sampled unit, (i.e., cluster or time instant),

according to the previous sampling designs. skip is periodic or randomly generated (based

upon the sampling design) as a function of n and N so that skip ∈ [0, N − 1].

start Init. N & n
1: Generate skip

2: s = skip
s = s-1s = 0?

1: Take sample

2: N = N-skip-1

3: n = n-1

n > 0?

n < N?N = n?
Take n

samples

Y

N

Y
Y N

Y

N

N

Figure 4.3: Algorithm for online random sampling.

4.7 Experimental Results

This section summarises results obtained from investigating the various sampling tech-

niques, using the proposed online random temporal sampling algorithm. First, bias and

precision of the sampling designs were compared. Following this, the impact of sampling

interval duration and sampling sparsity was investigated. Next, the impact of detector

performance on occupancy estimation was studied. Finally, the performance of the ap-

proach to CS–based occupancy estimation was done. Because computational performance

is very implementation–specific, qualitative comparisons of randomised sensing to CS are

presented.

4.7.1 Experiment 1: Comparison of Bias and Precision for Sampling De-

signs

Experiments were conducted using the Universal Software-Defined Radio Peripheral 2

(USRP2) platform. The performance of the sampling design implementations was investi-

gated by generating known artificial spectrum occupancy profiles, (i.e., modelled as alter-
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nating processes) representing different occupancy levels. Poisson processes2 of minimum

duration 5000 time units were generated with various occupancy levels µ̂. The sampling

ratio was varied for a window size, T = 1000η∆t, while the minimum sensor resolution,

η∆t = 10k : k ∈ {−3,−2,−1, 0} s.

For each artificially generated process, a random group method [142] was then used

to create 1000 independent sample realisations of each sampling design. Random group

methods are very useful in situations where it is numerically intractable to compare perfor-

mance of sampling techniques [142]. Sampling designs investigated were systematic, simple

random sampling, stratified sampling and simple cluster–based sampling. More complex

techniques, (e.g., hybrid approaches) were not investigated.

For each realisation of a sampling design, the occupancy was calculated using the re-

spective equation from Eqns (4.1)–(4.5). These were used to estimate the relative error

and variance for the realisations. For the experiments, designs were then compared based

upon the estimated average relative error and variance introduced through the sampling

techniques used.

Relative Error: Fig 4.4 illustrates the expected relative error introduced using each sam-

ple design implemented using the online randomisation algorithm presented in Fig 4.3.

The results demonstrated that 1–stage cluster sampling and systematic sampling designs

had lower relative errors compared to simple random sampling and stratified sampling ap-

proaches. Relative error performance improved as the sampling ratio was increased. The

results further demonstrate that as sampling density increased, sampling tended to contin-

uous sampling, and the errors decreased for all sampling approaches. Stratified sampling

and simple random sampling had similar performances. As discussed in Chapter 3, this

would be due to the use of equal–sized strata without taking account of strata homogeneity.

Also, as expected, cluster sampling and systematic sampling performance appeared to be

independent of the sampling ratio used. The relative errors, however, were not constant,

and in fact were slightly biased. This was due in part to the effect of misclassification of

2Other PDF’s for the “ON” and “OFF” time could be used, but this model is popularly used in the
literature to represent OSA behaviour, (e.g., [109, 167–170]), particularly due to its simplicity [159].
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the renewal process at selected sampling instants, for the transmitter SNR. This effect was

investigated further in Experiment 3.
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Figure 4.4: Comparison of relative errors for sampling designs.

Variance: Figs 4.5–4.9 compare the theoretical lower bound to the variance introduced

using each sampling design, based upon Fig. 4.3. The results demonstrate that the experi-

mental variances obtained were higher than the theoretical case. This indicated that there

was some correlation between samples. Variance may also have been introduced through

other experimental factors such as the detector used for occupancy classification. In all

cases, the general trend indicated that variance peaked for 50% occupancy. Further, for

a given occupancy level, the variance increased as the sampling ratio decreased to 0. The

order of increasing performance of in terms of variance was: periodic, SRS, 1–stage cluster,

stratified. However for low sample ratios stratified sampling performed the worst despite

having the lowest variance values for all other occupancy levels investigated.

4.7.2 Experiment 2: Impact of Sampling Duration and Sparsity

Spectrum occupancy profiles were artificially generated using the USRP2 platform.

Other USRP2 devices were configured to perform periodic and random sensing in inte-

ger multiples of the sensor resolution. To investigate the impact the measurement duration

on performance, the window size was varied between T = [100, 10000]η∆t, for η∆t = 0.01

s. To investigate the impact of the sampling sparsity on performance, for the same sample
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Figure 4.5: Theoretical bound on the variance for sampling designs.
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Figure 4.6: Estimator variance for a Poisson Process using periodic (systematic) sampling.
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Figure 4.7: Estimator variance for a Poisson Process using SRS sampling.

size, η∆t was varied between (0.001, 1) s. The collected data was then used to determine

occupancy levels using energy detection with a threshold determined through noise level

measurements before the actual USRP2 transmissions occurred. The random group method
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Figure 4.8: Estimator variance for a Poisson Process using stratified sampling.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

10
−5

10
−4

10
−3

10
−2

Average Spectrum UtilizationSample Ratio

V
a

ri
a

n
c
e

Figure 4.9: Estimator variance for a Poisson Process using 1-stage cluster sampling.

was then used to determine the relative error and variance of the estimators, based upon

the known traffic profiles generated. Examples of this are presented in Figs 4.10–Fig 4.12,

for a Poisson process.

The figures demonstrate that randomised sensing can outperform periodic sensing.

Fig 4.10 demonstrated that the bias was independent of the duration of measurement for the

sampling designs investigated. However, as shown in Fig 4.11, the precision increased as the

measurement duration increased. Fig 4.12 illustrated the effect of sparser sampling. As the

sensor resolution was increased the correlation between samples was reduced. This could

be explained by the fact that the correlation for samples from a Poisson process has expo-

nential decay [166]. Therefore, by increasing the sampling sparsity, for the same number of

samples, the estimators produced samples that tended to be approximately independent.
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Figure 4.10: Comparison of estimator relative error versus measurement duration for a
Poisson Process using different temporal sampling strategies, (µ = 0.5, π = 0.5).
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Figure 4.11: Comparison of estimator variance versus measurement duration for a Poisson
Process using different temporal sampling strategies, (µ = 0.5, π = 0.5).

As the sample dependence decreased, the variance tended to the theoretical bound for inde-

pendent samples. The slightly higher variance observed could be explained by considering

practical factors such as mis–classification errors due to false alarm and missed detection

events, for example.
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Figure 4.12: Comparison of estimator variance versus sensor resolution for a Poisson Process
using different temporal sampling strategies, (µ = 0.5, π = 0.5, sample size = 500).

4.7.3 Experiment 3: Impact of Detector Performance

The SNR for the experiments was also observed to impact performance. Experiment

2 was repeated for different SNRs. The SNR was varied by varying the USRP trans-

mit power. The use of high transmit power levels for a high SNR, separated the signal

strengths for occupied and unoccupied signals, allowing for a threshold which clearly de-

marcated the two states. However the impact of low SNRs, as observed through reduced

signal and noise separation leading to increased false–alarm and missed–detection events

was also studied. The impact of detector performance on the estimation was examined by

comparison of two detectors, energy detection and cyclostationary detection, for different

SNR levels. Figs 4.13–4.14 illustrate the results of the experiments. The results suggest

that occupancy misclassification impacts performance. Higher SNR, due to higher transmit

powers, decreases the misclassification errors and improves performance. A similar effect

is observed when cyclostationary detection is used at low SNRs. This can be explained by

noting that cyclostationary detection typically exhibits better classification performance at

lower SNRs.
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Figure 4.13: Effect of SNR on estimator variance, (µ = 0.5, π = 0.5, sample size = 500).
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Figure 4.14: Comparison of estimator variance for Energy detection (ED) and Cyclosta-
tionary detection (CD) at low SNR, for a Poisson Process using different temporal sampling
strategies, (µ = 0.5, π = 0.5, sample size = 500).

4.7.4 Experiment 4: Comparison to CS–based Occupancy Estimation

The data collected from the previous experiments were then used to compare the random

approaches to a CS–based approach. Specifically, signal reconstruction was done on sparse,

randomly selected samples of the collected data, then Eqn (4.1) was used to estimate the

occupancy. Prior to reconstruction, signal measurements, Y, were converted using the
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gray–scale (i.e., scaled to the interval [0,1]) linear transformation:

G =
Y −minY

maxY −minY
, (4.24)

where maxY and minY are the maximum and minimum values of Y, respectively. The

reconstructed data was then classified into occupied or unoccupied based upon a fixed

threshold, ǫ, and then used to determine occupancy levels.

The CS–based technique was used on 1000 random realisations of the sampling process,

from which the variance of the occupancy estimate was determined. Since the CS–based

technique used Eqn (4.1) for estimating the occupancy, the bias was not determined as

it was expected to be unbiased for the reconstructed signal. Figs 4.15–4.16 illustrate the

comparison to the previous random sampling approaches. At low sampling ratios, the

signal was not perfectly reconstructed using the CS–based approach. However, at higher

sampling ratios reconstruction was accomplished in most cases, and the occupancy estimates

had lower variance. However, as seen in Fig 4.16, as the utilisation increased, perfect

reconstruction could only be accomplished for higher sampling ratios, which further limits

the effectiveness of the CS technique for higher occupancy scenarios. This could be explained

by noting that CS requires that sufficient signal samples be provided to account for signal

sparsity.
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Figure 4.15: Comparison of estimator variance for CS–based approach, at low utilisation,
for a Poisson Process, (µ = 0.1).
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Figure 4.16: Comparison of estimator variance for CS–based approach, at medium utilisa-
tion, for a Poisson Process, (µ = 0.25).

4.8 Conclusion

In this chapter, the use of randomised temporal sensing was investigated for temporal

occupancy characterisation. A framework for performance analysis of random temporal

sensing was presented, and a lower bound on sensing performance in terms of estimator

precision was derived for spectrum occupancy modelled as an alternating renewal process.

The lower bound was seen to be independent of the probability density functions which

define the alternating renewal process model for temporal spectrum occupancy. An im-

plementation of randomised sensing on periodic sensing platforms was presented using an

online randomisation algorithm, and this was used to carry out several experiments relating

to the performance of random temporal sensing using USRP hardware.

The results show that randomised temporal sensing can outperform periodic sensing

using the algorithm presented in this chapter. Performance of random sampling in terms

of precision was seen to approach the theoretical lower bound using larger sample sizes, or

through sparser sampling, for processes with decaying autocorrelation functions. The latter

approach introduced more independence between samples.

The results also demonstrated the impact of detector performance on the estimator vari-

ance. For low SNR scenarios, the use of cyclostationary detection, which gives better signal
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detection than energy detection, exhibited better performance for temporal occupancy es-

timation. While user discrimination was not considered in this chapter, cyclostationary

feature detection additionally presented one way of coarse discrimination between users

with different cyclostationary features, (e.g., modulation type, transmission bandwidth).

Finally, comparison was made between the proposed random sampling approach and

a CS–based approach. For low occupancy scenarios, the CS–based approach performed

better than the proposed random approach, at lower sampling ratios due to signal re-

construction. However, in medium and high utilisation scenarios, the CS–based approach

performed worse, and required higher sampling ratios to achieve comparable performance

to the random sampling approach proposed. Therefore, the CS–based approach was seen

to be less suited for use in temporal occupancy estimation in scenarios where spectrum

congestion may occur. Further, the CS–based approach first reconstructs the signal prior

to occupancy estimation. The reconstruction stage is avoided entirely in the random sam-

pling approaches presented. Therefore, although specific comparisons of computational cost

would be implementation specific, it can be said that the random approaches would be lower

cost compared to CS–based techniques, all things being equal, since they do not have to

reconstruct the signal for temporal occupancy estimation.

While the investigations focussed upon estimation of temporal utilisation, extending

the approach to estimation of other temporal occupancy parameters was also discussed.

The random sampling approach was therefore seen to offer a low complexity alternative

to existing techniques for characterisation of temporal spectrum occupancy. Furthermore,

unlike typical compressed sensing schemes for low signal occupancy scenarios, in the pro-

posed random temporal sensing approach the reconstruction objective is relaxed to improve

performance in medium to high occupancy settings. This method thus facilitates statistical

occupancy characterisation for various occupancy levels, which is a key spectrum monitoring

objective, without requiring the sparsity assumptions of compressed sensing.
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Chapter 5

Frame–based Temporal Occupancy

Estimation in OSA Networks

5.1 Introduction

Cognitive radios are currently allowed to opportunistically operate within specified sub–

bands, (i.e., TVWS bands at the time of this writing). Monitoring networks therefore

should be capable of monitoring across these bands. In the previous chapter, temporal

occupancy estimation within spectrum bands was examined, when there is no requirement

to track individual user or network behaviours. This followed from current approaches for

temporal occupancy estimation which typically are used to determine the proportion of

time during the measurement interval, for which a spectrum band of interest is occupied

(e.g., [5, 35, 134]). This approach was in line with the predominantly licensed–based access

models where individual users/networks did not need to be tracked.

However, depending upon the specific measurement objectives, discrimination between

different users/networks may be required. Typically, this involves emitter localization and

direction–finding and can be done using characteristics such as call signs or particular signal

characteristics, (e.g., signal strength) [35, 134]. In envisioned OSA scenarios, such track-

ing may be more difficult, given the dynamics of proposed OSA techniques. An example

scenario involving multi–channel access and spectrum agility, (e.g., dynamic frequency se-
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lection (DFS)), across several bands is illustrated in Fig 5.1. Multi–channel access and

spectrum agility represent significant challenges to temporal occupancy modelling for indi-

vidual users/networks in OSA scenarios.

Figure 5.1: N–channel OSA scenario for user/network tracking. Each colored rectangle rep-
resents a sequence of consecutive frame transmissions, resulting in spectrum occupancy by
a given user/network on the channel of interest. Simultaneous transmission across channels
by a single user represents multi–channel operation, while changing channels at different
times represents the dynamic frequency selection aspect of spectrum agility.

In this chapter, the random temporal sampling approach for estimation of temporal spec-

trum occupancy parameters is expanded. A frame–based sampling inversion technique for

spectrum occupancy estimation is proposed, which can be used for estimating temporal pa-

rameters for a given user/network of interest. In this approach, parameters from randomly

sampled PLCP frames are used to characterise temporal occupancy, using statistics such as

the probability density functions of “ON” and “OFF” times for spectrum occupancy. The

performance of the proposed approach is examined for temporal occupancy characterization

in circumstances where the monitoring node misses frames due to the sampling design, sen-

sor limitations or through error conditions on a given channel. This approach is investigated

for use in OSA coexistence scenarios which involve multiple standards operating in TVWS.

Several aspects of this work also appear in publications developed for this thesis: [87, 94].
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5.2 Motivation

Spectrum monitoring for user discrimination in heterogeneous OSA scenarios, (e.g., TV

whitespace (TVWS) coexistence scenarios) remains a widely under–studied issue. In tra-

ditional spectrum management approaches, this is accomplished using a combination of

location/direction–finding techniques and use of signal strength to isolate a particular user

signal [35, 134]. However this approach may not be well suited to the dynamic behaviour of

OSA devices, particularly those with quickly–varying behaviours. While there has been re-

cent work on coexistence scenarios in TVWS [171–173], with the exception of IEEE 802.191,

in most proposed monitoring approaches the emphasis is on networks involving a single tech-

nology, (e.g., IEEE 802.22 networks [16, 150, 153]). Such approaches are therefore limited

in scope.

Other approaches focus upon discrimination between primary and secondary users (i.e.,

user detection. For example, [69–71].) but not on discrimination of users for compliance

verification. In the literature, there is related work which can facilitate discrimination

both between and within groups of primary and secondary users. Examples include source

separation techniques, automatic modulation classification techniques and waveform and

feature–based detection techniques. However to–date, while such techniques have been

used for classification of user groups based on specific traits, these techniques have not

been used for more detailed user accounting, (e.g., in temporal occupancy classification

of individual users). As discussed in the previous chapter, user discrimination using such

features is based upon the assumption that individual users/networks of interest can be

uniquely identified by their features, which may not always hold in practice.

An alternative approach found in the literature uses active monitoring techniques, which

employ enabling service infrastructure, such as geolocation databases, network management

entities, access points or even ad hoc cluster formations, to also collect useful data which

may be sufficiently detailed for user accounting. However, access to such data requires data

exchange mechanisms for acquisition and conversion of heterogeneous data to a suitable

1IEEE 802.19 is still at the early stages of development at the time of writing.
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format2. Furthermore, the accuracy and currency of such data3 as well as the scalability

(i.e., when there are many network deployments) are issues with such active approaches.

The accuracy of such approaches is also based upon the assumption that data on all users

is accessible. This may not be the case particularly when spectrum usage does not conform

to specified operational parameters for spectrum access (e.g., unauthorised spectrum access

and operation, such as primary user emulation). Through direct measurements, passive

monitoring networks can aid in addressing various aspects of these issues.

Using the passive monitoring paradigm, in this chapter a novel frame–based sampling

inversion technique is proposed for temporal occupancy characterization in OSA networks.

Specific contributions are as follows:

1. Considering spectrum occupancy modelled as an alternating renewal process, marked

point processes are constructed using renewals demarcated by frame–based feature

semantics common to most current and emerging wireless MAC and PHY layer spec-

ifications;

2. Each marked point process can be associated with a given user or frame–based char-

acteristic such as source–destination address pairs, facilitating specific monitoring of

wireless emissions for each user/network of interest;

3. A frame sampling strategy used to construct sampled marked finite point processes,

and recover spectrum occupancy statistics for the full frame sequence using sampling

inversion techniques;

4. The analysis presented expands upon the literature on sampling inversion by consid-

ering the effect of missed detection of renewals in the sampling inversion process. This

accounts for missed frames due to practical considerations in DSA networks;

5. A probabilistic model for variable data transmission rates due to MAC/PHY layer

protocol mechanisms is also proposed to relate nominal frame lengths and data rates,

2Successfully merging data from possibly heterogeneous sources is dependent upon the data format as
well as on the technical/environmental conditions during data collection.

3As an example, FCC–mandated geolocation databases focus upon primary users and therefore do not
account for secondary users.
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obtained from frame headers, to actual frame reception time for spectrum occupancy

estimation;

The proposed method facilitates probabilistic characterisation of individual users, and is

proposed for cases where there is more spectrum agility than deployed non–OSA technolo-

gies currently allow, in particular where there may be intelligently changing transmission

parameters in response to the sensed state of the spectrum, such as enabled by cognitive ra-

dio devices. The resulting occupancy models can then be used to make appropriate decisions

for spectrum management or for spectrum accounting.

The rest of this chapter is organised as follows: In Section 5.3 an overview of frame–

based random temporal sensing concepts is presented, followed by a review of related work

to which this chapter contributes. Next, Section 5.5 describes the proposed approach and

demonstrates the application to characterisation of various temporal occupancy parameters.

Experimental results are presented in Section 5.6. Finally there are concluding remarks in

Section 5.7.

5.3 Frame–based Random Temporal Sensing Overview

In the previous chapter, the PHY–based random temporal sensing results indicated that

while random sensing can outperform periodic sensing, the question of per user/network

tracking in multi–channel OSA scenarios still remained. Given the real–time operation

requirements for DSA monitoring approach, frame–based temporal sensing is proposed.

The approach is partly based upon [174, 175] for sample inversion of packets and flows.

However, several differences must be noted:

1. In the literature on protocol data unit (PDU) arrival point process definitions, typi-

cally PDU arrivals are specified as the instants at which each entire PDU is received by

the layer of interest (i.e., where the duration of PDU reception is implicitly assumed

negligible). In contrast, the frame arrival event (i.e., which corresponds to the start

of spectrum occupancy) is defined as the instant that the frame preamble is being

received.
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2. The duration of actual frame reception is used to estimate the spectrum occupancy.

3. Unless there are multi–channel interfaces, and based upon the traditional point process

definition, multiple packets are typically not received at the same time. However due

to interference, there may be possible overlap in frame receptions. this work considers

such situations.

4. Missed detection of PDUs have not been considered in the literature on sampling

inversion. In the proposed frame–based approach, the missed detection events are

considered.

Another characteristic of frame–based sampling is the use of a shared wireless medium

allowing for distributed sensing and estimation approaches. To the best of the author’s

knowledge, distributed estimation has not been explored in the sampling inversion literature.

However, in this chapter, focus is on single sensor application of the proposed techniques,

and distributed sensing is treated in Chapter 6.

5.3.1 Assumptions

This approach applies to PLCP formats, in which start–of–frame and end–of–frame

delimiters are used for framing. Most wireless protocols in operation use this approach.

However, there are other framing formats which would not work for this sensing scheme.

In such instances, the PHY–based technique in the previous chapter is suggested, assum-

ing that uniquely identifiable features can be determined. For the frame–based approach,

several assumptions are made:

1. Sensing devices are able to detect frames and identify specific PLCP standards through

their characteristic frame delimiters.

2. Sensing devices know the PLCP frame format, and are able to decode it.

3. The frame length and data rate do not change during individual frame transmis-

sion/reception, and can be determined from frame data.
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4. Frames contain information (e.g., source and destination addresses or upper layer

protocol field) which can be used to associate sampled frames which are related.

5. Although multiple PLCPs exist, only one is being used during each individual frame

reception.

6. The temporal characteristics are stationary for the measurement and estimation in-

terval, and the measurement interval is sufficiently long to obtain sufficient samples

of the process of interest.

A consequence of these assumptions is that the model relating the frame length to the

transmission time is relatively simple and requires minimal processing time for decoding

the relevant parts of the frame header. This is advantageous for real time implementa-

tions. More complex models can potentially increase estimation accuracy but this requires

a tradeoff with increased processing time. The assumption of prior knowledge of the frame

format follows from the fact that standards for OSA operation must be certified and thus

would be known in advance. Further, all currently proposed and approved standards for

the MAC/PHY layer (e.g., IEEE 802.11af, IEEE 802.22, ECMA-392) also satisfy the as-

sumptions on the frame containing length and association information.

5.3.2 Frame Reception

Intervals of spectrum occupancy occur as a result of one or more PHY–layer frame

transmissions being received by the spectrum sensing device. At the PHY layer, protocol

data units (PDUs) may be fragmented and/or directly encapsulated for wireless transmis-

sion (and consequent reception). Whether transmissions are point–to–point, multicast or

broadcast in nature, the wireless medium is occupied for any detected frame transmission,

whether or not it is intended for the sensing device.

Of interest in this chapter are PLCP (or equivalent) frames (e.g., Fig 5.2) as opposed

to other PDUs, since the PLCP lengths are in general more directly related to spectrum

occupancy, compared to higher layer PDUs. Higher–layer PDUs incorporate more complex

protocol mechanisms (e.g., flow/error control, fragmentation and reassembly) which can

obscure the relationship between spectrum occupancy and PDU length. An example of this



111

Figure 5.2: Example of PLCP Frame Structure Semantics for ECMA-392 [44].

is given in Figs 5.3–5.6. Data were collected both at WPI and UWI for approximately 8

hours, and appropriately sanitised for anonymity using available software tools. As seen in

the figures, although some of the variance may be accounted for due to the measurement

procedure as well as various delays, the correlation between PDU length and spectrum

occupancy duration is more evident for the lower layers. There is an observable linear

relationship between the PDU lengths and reception times. Further, the sum of all random

components can be approximated by uniform distributions in many instances or is Gaussian

distributed in some instances (i.e., particularly for TCP PDUs)4. In general, the span

increases for higher layer PDUs.

While it is possible to develop models relating spectrum occupancy to PDU length

for higher layer protocols, in general these are more complex, have higher computational

costs to decode PDUs and develop models, may not be applicable for spectrum access

network semantics 5. Further, higher–layer PDUs can be encrypted thus restricting access

to required PDU header information for occupancy modelling. Therefore the concept of

PDU sample inversion is demonstrated using PLCP where the least information is required,

(i.e., compared to higher layers), and possibly more precise, simpler models can be used to

relate frame reception to spectrum occupancy.

As seen in Fig 5.2, it is possible to determine both the nominal data rate and the nominal

4In reality the PDF of the total delay will be the m–fold convolution of the PDFs of the m delays [147].
However, assuming that a few delays are dominant, then the total delay can be suitably approximated
based upon the dominant delays. The limit for the summation of several terms is approximately Gaussian
distributed by the Central Limit Theorem [147].

5For example, transport layer protocols focus on end–to–end semantics which would obscure lower–layer
network semantics, such as the use of spectrum access at the PHY layer.
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Figure 5.3: Scatter plot of frame size to frame reception time for UWI data.

Figure 5.4: Scatter plot of IP packet size to packet reception time for UWI data.

frame length from the PLCP header provided that the standard definition is known. For

authorised transmissions, this can be reasonably assumed. In cases where such information

is unavailable, occupancy time durations can still be determined by detection of frame starts

and ends, using any of the available techniques in the literature, such as energy detection,

cyclostationary detection or waveform detection techniques [54]. This was the approach

used in the previous chapter. Fig 4.10 and Fig 4.11 illustrate examples of occupancy esti-
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Figure 5.5: Scatter plot of UDP packet size to packet reception time for UWI data.

Figure 5.6: Scatter plot of TCP segment size to segment reception time for UWI data.

mation performance for various sampling strategies6. In such instances, it is still possible to

temporally characterise occupancy for given users/networks. However, in general it would

be extremely difficult to isolate and track users without some knowledge of the user. The

frame–based random temporal sampling architecture is illustrated in Fig. 5.7.

6A 50% occupancy Poisson Process was used to generate wireless data on USRPs, in WILab, which was
then collected using another USRP to assess the impact of different sampling strategies. Energy detection
was used to determine the start and end of frames.
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Figure 5.7: Frame–based random temporal sampler architecture, for a DSA scenario in
which N possible frame formats can be used. Prior knowledge of frame formats is assumed.
A detector/classifier is used to quickly determine which of the pre–defined MAC frames is
being used. Based upon classification, frames are then decoded and sampled for estimation
of temporal characteristics.

5.3.3 Frame Sampling

For the measurement interval of interest, T < ∞, consider the frame arrival point

process, X(t),where arrivals are defined as the start of frame reception within the wireless

medium. This is based upon the assumption that frames are used for exchanging higher

layer protocol data units (PDUs), which are finite in length. Frame arrivals within T can

be modelled as a finite point process7, where there are No frames (i.e., renewals) with frame

lengths, Lj , j ∈ [1, No], and inter–renewal times, τi, i ∈ [1, No − 1]. No is random. Further,

the nominal frame lengths, Li, and the nominal data transmission rates, Di, are assumed to

be positive independent, identically distributed random variables, which are independent of

the total number of renewals. A similar assumption is made for the inter–renewal times, τi.

Sets of frames are considered to be related based upon common properties of interest(e.g.,

source/destination addresses, protocols, connection ID). Based upon this concept, frame

transmissions can be further defined as marked point processes, if discrimination is required

for monitoring. Additionally, due to MAC protocol operation, it is assumed that frame

transmissions from different processes are generally interleaved within the measurement

interval.

7This requires careful consideration of special addresses (e.g., broadcast/multi–cast) and frame types
(e.g., management/control frames).
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In packet/flow sampling, the time instant at which each packet arrives at routers or

other network devices triggers the sampling decision–making process. In contrast, for frame

sampling, monitoring nodes need to detect the start of each frame. However, this would

typically require dense sampling of each channel, which consumes resources and also limits

the number of channels which can be monitored simultaneously. A time–slotted random

channel sampling approach is thus used to define the start of the sampling instant, t0, on

any given channel. Sampling then proceeds for the measurement duration, T <∞. Should

a frame continue past the interval, the entire frame is received for the extra time, te
8, in

order to ensure that the header is not in error and can be decoded. Therefore, sampling

occurs during the interval, T = [t0, t0+T + te], during which stationarity is assumed. In an

N–channel scenario, randomly switching between channels using a simple random channel

sampling approach such as described in Chapter 3, can allow for independent sampling of

each channel, for approximate duration, T + te. Consider that channels are each sampled

an average of J times for the total measurement interval.

An illustration of frame–based sampling for a single channel is given in Fig 5.8. During

the measurement interval, T, frames may not be detected, with probability of missed detec-

tion, pm. This may be due to several factors such as fading, interference, low SNR or due to

sampling design9, among others. For simplicity, it is assumed that this probability is fixed,

based upon aggregation of all factors, and missed frames are defined as events in which

only a portion of a frame is received. By definition, this implies that the start–of–frame

delimiter was missed, but some portion of the frame transmission was still detected. Let

Nm ∈ {0, . . . , No} denote the number of missed frames in the measurement interval, T.

This gives rise to a modified point process, Xm(t), where missed frames are ignored. For,

X(t), if an errored frame is detected but which cannot be corrected, the reception duration

is recorded10 and used for estimation of the missed–detection probability.

For detected frames in Xm(t), the frame sampling decision-making process opts whether

8te is therefore of random duration.
9For example, sampling on one channel may not allow sampling simultaneously on all remaining channels

of interest.
10Error events can occur, for example, because of intermittently low SNR or due to interference from

multiple simultaneous transmissions. At this stage, differentiating between them is not studied based upon
the aggregation of effects in the missed detection probability.
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Figure 5.8: Frame–based random temporal sampling, with missed frames. Circles repre-
sent frame arrival events. Unfilled circles represent detected frame arrival events where
the frames were not sampled. Filled circles represent detected and sampled frame events.
Dashed outline, dotted circles represent undetected/missed frame arrival events.

or not to sample the frame being currently received, with sampling probability, ps. This gives

rise to the sampled process, Xs(t). Frame sampling and the use of sampling inversion can

then be used to recover statistics about the original process. A single process is considered

for simplicity, but it is noted that the approach can be extended to more complex process

models of interest. The randomly sampled frames form a sampled finite point process, where

there are Ns ∈ {0, . . . , No − Nm} sampled frames (i.e., renewals) with nominal lengths,

Lp,j , j ∈ [1, Ns], nominal data rates, Dp,j , and sampled inter–renewal times11 τp,i, i ∈

[1, Ns − 1]. The nominal frame lengths and data rates are obtained from the relevant

PLCP fields12. Additionally, for each received frame the frame reception time, TRxj
, is

measured. Note that No and Ns are not pre–determined for any measurement interval, T.

The subscript ‘p’ is used to refer to sampled data to distinguish from the original data it

was taken from.

For temporal occupancy estimation for a given user/network, the estimation problem is

then, based upon the Ns sampled frames obtained in each of J independent sampling inter-

vals of approximate duration, T , according to the above frame–based sampling approach,

to temporally characterise the process of interest. Chapter 4 presented several examples of

characteristics can be investigated depending upon monitoring objectives.

11For sampled inter–renewal times it is understood that Ns > 0.
12It is assumed that frame headers are accessible. This is reasonably assumed in practice as encryption is

typically done higher up the protocol stack.
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5.4 Related Work

Frame–based spectrum sensing is based upon work being done in estimation of network

flow13 characteristics (e.g., flow size - number of packets in a flow.). Network flow estimation

forms an important aspect of network traffic measurement which is essential for traffic

engineering and accounting. However, given that the generation of statistics does not scale

well with link speeds, the network measurement community has increasingly researched

traffic sampling techniques, (e.g., [174–181]).

While many routers currently support packet sampling approaches such as ‘1–in–N’ or

Bernoulli sampling, these approaches are well known to have severe limitations such as flow

length bias. Flow length bias dramatically obscures the details of small flows, which may

make up a lot of the flows in a given router. Several enhancements have been proposed in the

literature, such as flow sampling, in which all packets belonging to several randomly selected

flows are sampled. The problem with this approach is that look–ups must be performed

on every packet, which can be resource–intensive. Other enhancements, such as the use of

TCP sequence numbers, have been used to improve estimation of TCP flows [176]. In that

technique, the presence of unsampled packets can be inferred through the byte count given

in sequence number fields of sampled packets.

In this chapter, a similar approach is proposed for estimation of temporal spectrum

occupancy parameters, through use of PLCP frame semantics with random sampling tech-

niques for temporal occupancy characterization of users/networks of interest. To the best

of the author’s knowledge, there has been little work in this area, for spectrum occupancy

characterization of targeted users/wireless networks in a DSA setting. Additionally, the

proposed approach has several advantages over work done in current network measurement

techniques:

• There is less correlation between the spectrum occupancy and the protocol data unit

(PDU) length, the higher up the one goes in the network stack [122]. There is a more

direct relationship between the PLCP frame size and the frame transmission time,

than that for higher layer PDUs [122].

13A flow is generally defined as a set of packets with the same 5–tuple (IP protocol, source address,
destination address, source port, destination port), with a fixed maximum inter–packet time,T0.
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• At the PLCP level, less processing is required for decoding PDUs compared to higher

layers. This is critical in high speed links.

• Relationships between PDU length are very complex and dependent upon the higher

layer protocol mechanisms such as fragmentation. This increases the processing re-

quired for modelling the relationship between the two parameters. Further, there may

be multiple protocols at a given layer, and all models would need to be estimated.

While there may be several protocols which utilise OSA, the overall number of models

to consider would be less, reducing the complexity of the problem.

5.4.1 Estimating Inter–renewal Times and Flow Lengths

The problem of estimating inter–renewal times and the number of frames in the original

point process based upon the randomly sampled subset of frames as formulated in the

previous section, is closely related to the problem of sampling inversion [174, 175]. As noted,

the proposed frame–based sampling inversion approach further involves several aspects not

present in previous work on sampling inversion. However, several elements of the work done

in this area can be applied to this problem. Therefore related work in sampling inversion

is presented in the following.

Sampling inversion problems have been motivated through data traffic analysis study

of communication networks, where information is conveyed through packets which can be

grouped into flows. In the literature, information from packet headers are assumed acces-

sible, which can be used to reconstruct flow statistics. Knowledge of flow characteristics is

important for network operations and research, as it allows better understanding of data

traffic characteristics. However, large data rate links and limited storage and processing

resources limit the ability to capture and decode all packets for characterization, there-

fore leading to the use of packet and flow sampling techniques. Using the probabilistically

sampled packets, the inversion problem of flow reconstruction, follows from networking

literature.

In the literature most of the work has focussed upon estimating the original flow size

distribution (e.g., [174, 177, 181]). A decompounding framework has been investigated where
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inference of the distribution of inter–arrival times between packets, based upon sampled

data, is determined as a function of known probability density function for the number of

original renewals between the ith and (i+1)th sampled renewals conditioned on the number

of sampled renewals [182–186]. Antunes and Pipiras [175] further investigated inference of

inter–arrival times between packets from sampled data where the probability distribution

of the number of original renewals conditioned on the number of sampled renewals must

also be estimated. In addition to statistical estimation of flow characteristics, there has also

been work on sampling techniques. These include the sample–and–hold approach [179, 180]

and dual sampling [178]. A framework for random sampling of alternating renewal processes

has also been investigated in [166].

5.4.2 Estimating PDU Length Distribution

Current wireless networks support a multitude of voice and data services with different

characteristics, making multi–service traffic modelling very challenging. The literature illus-

trates many approaches based upon analytical and empirically–fitted representations for var-

ious single–service and multi–service scenarios, (e.g., [163, 164]). Frost [187] and [188] pro-

vide excellent overviews of several popular parametric models, such as Renewal Traffic mod-

els (e.g., Poisson Processes, Bernoulli Processes, Phase–type Renewal Processes), Markov

and Markov–Renewal Models, Markov–Modulated models (e.g., Markov–Modulated Pois-

son Processes, Transition–Modulated Processes), Fluid Traffic models, Autoregressive Traf-

fic models and Long–range Dependent Traffic Models. In the literature such parametric

models are used to fit collected data.

While such models can be useful for network traffic, inclusive of PDU lengths, as shown

in [189], distribution of Data Link PDU lengths may not fit these models. [189] presented

analysis of enterprise network traffic and provided a comparison of changes in traffic com-

position over a decade. It was noted that traffic composition was not only non–parametric

but had shifted from trimodal to bi–modal distributed frame lengths, based upon traffic

composition. Data Link PDU length histograms of the captured network data from UWI

and WPI were compared to those in [189]. The histograms of the collected data from this

study, seen in Figs 5.9 and 5.10, were also bi–modal further supporting the results obtained
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in [189]. A key implication of these measurements was that the use of simple parametric

estimation techniques may not be suitable, and in fact use of empirical distributions of the

data may provide simple estimates of the frame length distribution.
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Figure 5.9: Histogram of Data–Link Layer PDU lengths for data collected at WPI from
8:00AM–4:10PM on 9th December, 2013.
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Figure 5.10: Histogram of Data–Link Layer PDU lengths for data collected at UWI from
9:00AM–5:05PM on 24th January, 2013.
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5.4.3 Estimating Frame Reception Model

A frame reception model is important, because it provides a probabilistic characteriza-

tion of the impact of the channel on nominal transmission parameters. Therefore the actual

time a user spends transmitting can be adjusted for channel effects, in estimating temporal

occupancy characteristics. To the best of the author’s knowledge, there is not much direct

work into frame reception models, nor is there work on its use in temporal occupancy char-

acterization. However, related work into estimating the reception model includes studies

of the relationship between the PHY–layer frame length, data transmission rate and trans-

mission time. Simple affine models can be used which assume constant bit rates in relating

to frame lengths, (e.g., [122]). Other RF propagation mechanisms such as multipath can

also be incorporated into a suitable frame reception model [125]. These models also incor-

porate random effects, for example due to queueing and processing delays. In contrast to

the assumption of a constant bit rate during the measurement interval, piece–wise constant

bit–rate approximations such as the Markov–Modulated Fluid Traffic models [188], can be

used. While such models are useful in variable bit–rate scenarios, such as expected in CR

scenarios, in such studies the models focus upon the transition between data rates but do

not specify relationships between the data rates, transmission times and frame lengths.

5.5 Frame–based Characterization of Temporal Occupancy

This section provides an overview of how frame sampling and sampling inversion tech-

niques can be used for temporal characterization of occupancy for a given user. Specifically,

frame sampling and sampling inversion, including the impact of missed start–of–frame de-

limiter detection is analysed. In demonstrating the concept of frame–based sampling, in this

chapter several characteristics are investigated for temporal occupancy characterization:

1. The original distribution of the number of frames for the original frame arrival process

(i.e., associated with a given user/network);

2. The original distribution of the inter–renewal times, Fτi = P (τi ≤ ti);
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3. The frame reception model, which defines the relationship, f(Lj , Dj), between nomi-

nal frame lengths, Lj , nominal data rates, Dj , and frame reception time, TRxj
.

The above characteristics facilitate estimation of the probability of the total “ON” time

associated with a given user/network. Specifically, the frame length distribution, the frame

reception model, and the distribution of the number of frames in the original frame arrival

process can be used to estimate the distribution of the “ON” time of the transmitting de-

vice(s). The distribution of the difference between the inter–renewal time and the “ON”

time can be used to estimate the “OFF” time of the transmitting device(s). It is noted,

though, that some parameters can be alternatively obtained. For example, the duration be-

tween an end–of–frame delimiter and the next sampled start–of–frame delimiter can be used

to estimate “OFF” times, or “ON” times could be estimated directly from the distribution

of TRXj
. However, use of the frame reception model provides a probabilistic characteriza-

tion of the impact of the channel on frame reception, which can be used in assessing the

confidence of the monitored device’s behaviour based upon the the channel.

5.5.1 Original Number of Frames in T

The approach to estimation is adapted from [174, 175]. However, several adaptations are

made to account for the missed detection of frames. First, consider the relationship between

X(t), Xm(t), and Xs(t). Assuming stationarity, if X(t) has rate λ, then if each frame can

be independently missed with probability, pm, Xm(t) has rate λm = λ(1 − pm) [190, 191].

This is because the probability of retaining packets is given by 1 − pm. This implies that

the rate of X(t) can be recovered from Xm(t) using:

λ =
λm

1− pm
. (5.1)

The spectral densities of X(t) and Xm(t) are also related. If it is assumed that X(t) is

a simple and locally finite second order stationary point process, then:

ΓXm(ω) = (1− pm)2ΓX(ω) + pm(1− pm)λ, (5.2)

where ΓX(ω) and ΓXm(ω) are the spectral densities of X(t) and Xm(t), respectively. There-
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fore, using Eqn (5.1) and (5.2):

ΓX(ω) =
1

(1− pm)2
(ΓXm(ω)− pmλm) . (5.3)

Using Eqn (5.3) it is therefore possible to recover the original process from the process

which contains missed frames, assuming stationarity, and that frames are independently

missed. Similarly, if the sampled process, Xs(t), is now considered, then for simple random

sampling:

λm =
λs
ps
, (5.4)

where λs is the rate of the sampled process. Further, if Xm(t) is a locally finite second

order stationary process, then the spectral densities of Xm(t) and Xs(t) are related as

follows:

ΓXm(ω) =
1

(ps)2
(ΓXs(ω)− (1− ps)λs) , (5.5)

where ΓXs(ω) is the spectral density of Xs(t). Therefore, through Eqns (5.3)–(5.5), the

original process can be recovered from the sampled process, and:

ΓX(ω) =
1

(1− pm)2(ps)2
(ΓXs(ω)− (1− ps)λs + pmpsλs) . (5.6)

This result demonstrates that useful information about the original arrival process can

be obtained without any specific assumptions on the detailed structure of the original pro-

cess, beyond the process being simple, locally finite, and second order stationary. Such

assumptions can hold approximately for sufficiently short measurement intervals, T.

5.5.2 Inter–arrival Time Estimation

The goal is to infer the distribution of the inter–renewal times from the sampled inter–

renewal times. Since it is assumed that X(t) is an inter–renewal process with interval distri-

bution, Fτ (t), then it follows that Xm(t) is also a renewal process with interval distribution,

Fτm(t) being a random convolution of Fτ (t). The number of terms in the convolution is one

more than the number of consecutively missed points, n. Clearly, n ∼ Geometric0(pm),

(i.e., P (n = q) = pm(1− pm)q, q = (0, 1, . . .)). Therefore, Fτm(t) is given by:

Fτm(t) = E
[

F (q+1)∗
τ (t)

]

(5.7)
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where ‘q∗’ specifies the q–fold convolution. The above result can be extended to the case

of sampling by noting that a frame would not be used in estimation if the start–of–frame

delimiter is either missed, or detected but the frame was not sampled. In this case the

probability of these events is given by, p = pm+(1−pm)(1−ps). Thus, substitution of p for

pm in Eqn (5.7) gives the distribution of the inter–renewal times for both missed detection

of start–of–frame delimiters and frame sampling. This result then allows for inversion of

the observed inter–renewal times to determine the original distribution. First, taking the

Laplace transform of Eqn (5.7) gives:

F̃τm(v) =
∞
∑

q=1

pm(1− pm)q−1F̃ q
τ (v),

=
pmF̃τ (v)

1− (1− pm)F̃τ (v)
, (5.8)

where F̃τ (v) denotes the Laplace transform of Fτm(t). Therefore, inversion of Eqn (5.8)

provides an estimate of the original inter–renewal time distribution with consideration of

missed detection:

F̃τ (v) =
F̃τm(v)

pm + (1− pm)F̃τm(v)
. (5.9)

Also, as before, substitution of p for pm in Eqn (5.9) gives the distribution of the orig-

inal inter–renewal times for both missed detection of start–of–frame delimiters and frame

sampling. From Eqn (5.9), as well as the extensions for frame sampling, the relationships

between the sampled and missed frames with the original frames are provided under the as-

sumption of an infinite power series. In practice, the summation in Eqn (5.8) is not infinite,

since T <∞. Therefore the finite series summation for a geometric series can be used:

F̃τm(v) =

Q
∑

q=1

pm(1− pm)q−1F̃ q
τ (v),

=
pmF̃τ (v)

(

1− (1− pm)QF̃Q
τ (v)

)

1− (1− pm)F̃τ (v)
. (5.10)

For high frame detection rates or small sample rates the geometric series decays very

quickly, and the finite approximation also holds. Such finite series approximations can be

reverted to obtain expressions for the original frame statistics in term of the missed and
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sampled frame statistics, for more complex process structures. In practice, series reversion

algorithms can be used to obtain the series reversions of truncated forms of Eqns (5.8) and

(5.10). An example is [192] which provides fast algorithms for power series reversion.

5.5.3 Frame Reception Model

Define the spectrum “ON” time, TRx, in terms of frame reception as a function of the

frame length and frame transmission rate, L and D respectively:

TRx = f(L,D). (5.11)

In the simplest case TRx can be defined in terms of the transmission time, TTx. For

constant data rate, D bps, the time to transmit a frame of length L bits is given by:

TTx = L
D
s. At the receiver, propagation effects such as multipath can cause signal spreading

at the receiver [125]. Additionally, random frame processing times adds another delay to

the frame reception time. Such effects are random in nature and add non–deterministic

delays to the transmission time [122, 125]. Figs 5.3–5.6 presented examples of this, based

upon collected data, for different levels in the network architecture. Denote this random

delay for the jth frame by Vj . Therefore, for the j
th frame, the frame reception time can be

defined as follows:

TRxj
= TTxj

+ Vj =
Lj

Dj
+ Vj . (5.12)

Considering data rate adaption mechanisms a piecewise formulation may be more ap-

propriate for No > 1 frames, transmitted at different data rates to determine an average:

TRxavg =
1

No

No
∑

i=1

{TTxi
+ Vi} =

1

No

No
∑

i=1

{
Li

Di
+ Vi}, (5.13)

where Li and Di are the nominal length and data transmission rate for the ith frame

and Vi is the associated delay during propagation and processing. The length and rate

information are typically found in protocol headers, and thus once decoded are known for

a sampled frame. An estimate of the distribution of the nominal frame transmission time

can be empirically derived from the sampled frames. Alternately, the empirically–derived

joint distribution of the data rates and lengths could be used.
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Given the 2–tuples, (Lp,i, Dp,i), obtained from the ith of Ns randomly sampled frames,

it is possible to estimate the prior PDF for the frame transmission time:

fTTx

(

Lp,i

Dp,i

)

= P

(

TTx =
Lp,i

Dp,i

)

. (5.14)

Using Eqn (5.13), it is easily seen that:

P (TRx = t) = P

(

TRx −
Lp,i

Dp,i
= t−

Lp,i

Dp,i

)

= P

(

Vi = t−
Lp,i

Dp,i

)

= fV

(

t−
Lp,i

Dp,i

)

.

(5.15)

Therefore the problem reduces to estimation of the PDF for V [i], fV (v). As discussed

previously in Section 5.3, fV (v) can be approximated by uniform or normal distributions,

among others.

In such cases, the distribution is defined using several parameters, and parametric es-

timation techniques such as maximum likelihood or Bayesian estimation can be used. If

the form of the distributions are not known, then non–parametric techniques such as ker-

nel density estimation or k–nearest neighbour estimation can be used. The performance

of these techniques typically improves as observations increase. Since each sampled frame

gives an observation of V , independently of which user is transmitting, it is reasonably

assumed that the sample size would be sufficient for estimating fV (v).

Following determination of the frame reception model, probabilities of interest can be

determined through the model. For example, based upon Eqn (5.13), for large No, by the

Central Limit Theorem, the distribution of the total frame reception time for a finite renewal

process is approximately normally–distributed (i.e., FTON
∼ N(µRx, σ

2
Rx) [147]). µRx =

∑No

j=1{E[TTxj
]+E[Vj ]} and σ

2
Rx =

∑No

j=1{var[TTxj
]+var[Vj ]}, where the sequences, {TTxj

}

and {Vj} are independent and identically distributed14. Other temporal characteristics, such

as those defined in Chapter 4, can be similarly determined. This data can be advantageous

for spectrum management and compliance monitoring of non–deterministic CR networks.

14The Central Limit Theorem also specifies results similar to the i.i.d. case, but for non–identically
distributed variables, and even further for dependent variables.
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5.6 Experimental Results

This section summarises results obtained from investigating the proposed frame–based

sampling inversion technique. The investigations were carried out via simulation using the

previously measured data from WPI and UWI fit to an assumed Poisson Process model.

5.6.1 Effect of Sampling Ratio and Rate of Missed Detection on Process

Rate Estimation

To investigate the effect of sampling ratio and the probability of missed detection on

the simulated processes, X(t), missed detection events were first simulated with varying

probabilities, pm, to create realizations of Xm(t). The resulting realizations were then

sampled with probability, ps, to create Xs(t). Using a group–based method, 1000 random

samples were created from which the process rate was estimated for varying measurement

durations, T. The rate parameter was estimated based upon the observed average rate of

packets, using Eqns (5.1)–(5.4). The variance of the estimates of the process rate was then

determined. Fig 5.11 and Fig 5.12 illustrate the effect of the probability of missed detection

and the sampling ratio, on the variance of the estimates obtained, when it was assumed that

pm was known15. The results suggest that performance in terms of the variance decreases

for increasing rates of missed detection, pm, and increases for increasing sampling ratios,

ps.

5.6.2 Effect of Sampling Ratio and Rate of Missed Detection on Distri-

bution of Inter–renewal Times

The distribution of inter–renewal times was fit from the measured data. Following a

similar approach to the previous set of experiments, the impact of missed frames and the

sampling ratio were investigated. Figs 5.13–5.16 illustrate the comparisons for the UWI

and WPI data, respectively. The graphs illustrated that the performance was comparable

for estimating shorter inter–renewal probabilities, but that the tails of the distributions

appeared to diverge from the actual value, for smaller effective sampling ratios. Given the

15ps is known since it is the rate of sampling.
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Figure 5.11: Effect of missed detection rate on estimation of the simulated Poisson process
rate parameter for WPI, λ = 45.215 packets/sec, simulation time = 60 minutes, |T| = 2
minutes. pm is assumed known.
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Figure 5.12: Effect of sampling ratio on estimation of the simulated Poisson process rate
parameter for WPI, λ = 45.215 packets/sec, simulation time = 60 minutes, |T| = 2 minutes.
pm is assumed known.

low probabilities for such events, these probabilities can reasonably be ignored.

5.6.3 Frame Reception Model

The frame reception model was estimated for the captured data for different effective

sampling ratios. Fig 5.17 illustrates one realization at each effective sampling ratio, peff

using 10 minutes of the UWI data, assuming a Gaussian distribution for the delays. As seen

from the illustration, the variance decreased as the number of sampled frames increased.
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Figure 5.13: Effect of sampling ratio and missed detection on estimated inter–arrival time
PDF for UWI data, effective sampling rate, peff = ps(1−pm), simulation time = 60 minutes,
|T| = 2 minutes, binwidth = 12.3ms.
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Figure 5.14: Effect of sampling ratio and missed detection on estimated inter–arrival time
PDF for WPI data, effective sampling rate, peff = ps(1−pm), simulation time = 60 minutes,
|T| = 2 minutes, binwidth = 40ms.

This suggests increased precision in the estimated frame reception model as the sample size

increases, which is in line with sampling theory. Even for low effective sampling ratios,

after about 100 frames, the variance decreased significantly. This demonstrates that after

sufficiently sampled frames, the model approximation holds across the range of peff . Similar

trends were observed for the WPI data.
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Figure 5.15: Relative error of estimated inter–arrival time PDF for UWI data, effective
sampling rate, peff = ps(1− pm), simulation time = 60 minutes, |T| = 2 minutes, binwidth
= 12.3ms.
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Figure 5.16: Relative error of estimated inter–arrival time PDF for WPI data, effective
sampling rate, peff = ps(1− pm), simulation time = 60 minutes, |T| = 2 minutes, binwidth
= 40ms.

5.7 Conclusion

In this chapter, the frame–based random temporal sensing approach was introduced as

a means of statistically modelling the temporal behaviour of users/networks of interest,

identified through PLCP frame semantics. The approach was proposed as an alternative to

existing techniques which have been proposed for spectrum security, such as primary user

emulation, because of the need to probabilistically characterise the temporal behaviour in
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Figure 5.17: Convergence of frame reception model for different effective sampling ratios,
peff , using UWI data, |T| = 10 minutes.

coexistence DSA scenarios. This aspect of DSA coexistence is only now being explored

by the DSA community, and thus there is limited work which focuses upon the aspects

presented in this chapter.

In particular, the approach was investigated for estimating various temporal character-

istics using simulations. Simulation parameters were derived from empirical measurements

conducted at WPI and at UWI. The results illustrated the impact of missed detection and

sampling ratios on the performance for estimation of various temporal parameters, under the

assumption of Poisson process models. The results suggest that performance improved for

higher sampling ratios. Further even for low sampling ratios, provided there were sufficient

observations, the estimation of the models were very close.

Finally, a frame reception model was proposed for relating actual transmission times to

frame reception times, to account for random channel effects in temporal characterisation.

Results illustrated that with sufficient observations, the random temporal sensing approach

performance improves as time elapses. Further, the estimator variances converges for all

sample rates, if there are sufficient frame samples. This is therefore recommended for use

in probabilistic characterisation of temporal occupancy, which is a key requirement for

compliance monitoring in DSA networks.

Investigations utilised simulations for analysis. However, further work on this technique

will demonstrate the application of this technique in actual DSA deployments, as DSA
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technologies evolve and are deployed. The performance of the technique will also be inves-

tigated for other temporal occupancy models to provide a more diverse set of results on the

performance in envisioned DSA scenarios.
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Chapter 6

Distributed and Mobile

Electrospace Sampling

6.1 Introduction

Cognitive radios are currently allowed to opportunistically operate within specified sub–

bands, within geographically–specified regions. Monitoring networks therefore should be

capable of monitoring across time, frequency, and spaces of interest. In the previous chap-

ters in this dissertation, the investigated scenarios implicitly assumed sensor nodes: 1) did

not cooperate; and 2) were stationary. In this chapter, those assumptions are removed,

and random sensing approaches are expanded to include scenarios which involve both dis-

tributed and mobile spectrum sensing nodes. Further, scenarios are considered, in which

the cognitive radios being sensed are also mobile. Specifically, random sensing in vehicular

dynamic spectrum access (VDSA) networks is investigated.

Investigations in this chapter build upon research into convergence of distributed con-

sensus algorithms, which aims to provide distributed mechanisms for distributed systems

to arrive at similar estimates of a given parameter, as time elapses. The intent of such ap-

proaches is to provide a mechanism through which the techniques of the previous chapters

can be improved through collection of spatial diversity. In this chapter, the approach is

demonstrated through application to random spectral sensing. However, the approach can
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be similarly applied to the other techniques studied for temporal characterization. While

there has been much research into consensus algorithms, there has been limited investiga-

tion of realistic mobility models, and analysis has been focussed upon less realistic mobility

models which are analytically tractable.

Work presented in this chapter, therefore contributes to the literature on distributed con-

sensus algorithms through investigation of more realistic mobility models enabled through

the use of bi–directionally–coupled simulators [193]. Additionally, current work into con-

sensus algorithms is based upon consensus under conditions which may not hold within

vehicular networks, particularly for where nodes travelling at typical vehicular speeds 1.

Therefore a distance–based approach is proposed, under which consensus is investigated.

Several aspects of this chapter also appear in publications developed for this disserta-

tion: [88, 90, 95, 96].

6.2 Motivation

Distributed sensing techniques have been proposed in the spectrum sensing literature for

several years, particularly to introduce spatial diversity. Spatial diversity is typically recom-

mended for improving detection and estimation performance, by mitigating RF propagation

effects such as fading. Additionally, through collaborative mechanisms, load sharing can be

realised, in addition to reduced energy consumption per node, faster spectrum scanning,

and increased accuracy. Much of the literature on collaborative spectrum sensing currently

focuses upon one–hop collaboration, which typically implies high node density networks for

distributed sensing across regions of interest. In [58], distributed fusion techniques were

developed for multi–hop large networks, which used consensus–based techniques to derive

distributed mechanisms to converge to globally–optimal solutions using one–hop communi-

cations.

In contrast, mobile sensing has not been as extensively researched, even though it has

been used in spectrum management strategies for some time. The use of distributed, but

fixed, monitoring nodes has been regarded as insufficient for the spectrum management re-

1Also mobile nodes can be either sensed or sensing nodes.
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quirements of emerging wireless technologies, including OSA–based technologies for several

reasons [24, 194]:

• Many modern communication services are deployed in higher frequency bands, up

to 6 GHz, which have shorter propagation ranges, thus requiring denser fixed node

deployment.

• For duplex communications such as GSM, UMTS and WiMAX, it is typically very

difficult to monitor the uplink frequencies.

• It is difficult to detect directional transmissions, as well as technologies which use

techniques such as sectorization and beam–forming.

• Cellular technology and frequency reuse techniques imply lower transmit powers and

smaller cell sizes, which further decrease the ease of transmission detection.

• Local communications such as wireless LANs and UWB are currently unable to be

detected with the current network.

A fixed network would need to be very dense in areas of interest in order to detect

transmissions such as those listed above. The non–deterministic behaviour of CR networks

presents another challenge for detection. However, strategic deployment of mobile networks

offers an opportunity to achieve monitoring objectives for cases including those above [24,

35, 36, 194]. Even with deployment of mobile and fixed monitoring nodes, one emerging area

of importance, which would represent a challenge to current monitoring paradigms is that

of intelligent transportation systems (ITS). ITS are currently being developed and deployed

with increasing functionality, and demand for wireless spectrum for service delivery.

Consequently, ITS have recently attracted considerable interest from both academia

and industry. Research conducted by the wireless networking and transportation commu-

nities has highlighted the potential of vehicular networks to revolutionise transportation

systems through the provision of a communications infrastructure that can facilitate the

future deployment of applications for accident avoidance/mitigation, traffic efficiency, and

infotainment. In response to the increasing ubiquity envisioned in vehicular communica-

tions, wireless spectrum has also been allocated in support of ITS. For example, roughly 75
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MHz and 30 MHz of spectrum have been allocated at around 5.9 GHz in the United States

and Europe, while 10 MHz of spectrum at around 700MHz has been allocated in Japan for

ITS applications.

However, the range of potential vehicular applications [195] and recent investigations

(e.g., [196]) suggest the inability of the current allocations to support the significant increase

in the bandwidth requirements from prospective ubiquitous vehicular communications ap-

plications in the envisioned ITS infrastructure [197]. ITS applications will most likely use a

complement of two or more of the following vehicular communications categories: Vehicle-

to-Vehicle (V2V), Vehicle-to-Roadside (V2R) and Vehicle-to-Infrastructure (V2I). Of the

three, V2V is the most challenging, and is generally supported via wireless spectrum allo-

cated for DSRC. While it is still too early to determine if DSRC would provide sufficient

spectrum for the growing demand for V2V applications, it is envisioned that it would be

relatively difficult to obtain additional wireless spectrum allocations dedicated to vehicle

communications.

Consequently, vehicular dynamic spectrum access (VDSA) [198, 199] was proposed as a

possible approach to identify wireless spectrum opportunities for offloading some of the non–

safety–related bandwidth demands from dedicated channels for vehicle communications.

VDSA is based upon a DSA paradigm for dynamically obtaining additional spectrum to

be used in vehicular communications. VDSA represents perhaps one of the more complex

use cases for CR operation. Considering the dynamic topologies in combination with the

non–deterministic radio operation, traditional monitoring systems may not offer the level

of flexibility and adaptability required for such highly dynamic and stochastic vehicular

environments [198–200].

In this chapter focus is thus upon the use of both distributed and mobile spectrum

sensing for monitoring such CR networks. Specific contributions are as follows:

1. A framework for distributed random spectral sensing is presented for analysis of spec-

trum occupancy estimation in heterogeneous wireless access networks, such as in en-

visioned DSA scenarios.

2. A theoretical performance bound on spectrum occupancy estimation is derived for
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random spectral sensing, and extended to distributed random spectral sensing.

3. Average consensus algorithms are presented for use in distributed and mobile ran-

dom spectrum sensing, and a distance–based approach is proposed for use in average

consensus in vehicular networks.

4. Experimental results are presented for several compliance monitoring scenarios for

DSA networks, including extension of work into mobile consensus analysis using bi–

directionally coupled simulations. To the best of the author’s knowledge, there has

been limited work using models representing realistic scenarios for investigation of

average consensus.

The rest of this chapter is organised as follows: In Section 6.3 an overview of the sensing

signal model for distributed monitoring for compliance monitoring is provided, followed by

a performance analysis of distributed spectrum sensing based upon misclassification errors

in Section 6.4. Next, Section 6.5 presents mobile spectrum sensing and introduces the

distance–based approach for consensus in vehicular networking. Experimental results are

presented in Section 6.6, for use of the distributed and mobile sensing in several envisioned

compliance monitoring tasks for DSA networks. Finally there are concluding remarks in

Section 6.7.

6.3 Sensing Signal Model

Consider a wide frequency band heterogeneous radio access scenario in which there are

both primary and secondary users potentially operating. There are also L spatially dis-

tributed spectrum sensors which constitute the spectrum monitoring network. Each spec-

trum sensor has time and frequency sensing resolutions specified by ∆t and ∆f respectively.

For a single sensor, the sensing objective is to statistically model the spectrum occupancy

for spectrum F = [f0, f0 +Nf∆f ] for time T = [t0, t0 +MNt∆t], where time is slotted into

Nt frames with m time samples per time slot, ∆f ≪ F and ∆t ≪ T . Consider a slotted

frequency segmentation structure, where F is divided into Nf non–overlapping narrowband

subchannels, with center frequencies {fi}
Nf−1
i=1 .
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Now assume that there areKp active primary users andKs active secondary users during

the measurement interval, with transmitted signals given by sk(t), k ∈ {1, . . . ,Kp +Ks}.

The signal from the kth transmitter propagates to the lth sensor through a wireless fading

channel with channel impulse, hk,l(t), l ∈ {1, . . . , L}. hk,l(t) may be frequency selective over

F . However, it is assumed that the channel slowly varies over the measurement interval

and can thus be treated as time–invariant during the measurement time. The discretised

signal received by the lth sensor can therefore be expressed as an M × 1 vector, rl =

[rl[1], . . . , rl[M ]]T , such that:

rl[m] =

Kp+Ks
∑

k=1

hk,l[m] ∗ sk[m] + wl[m] (6.1)

where ‘∗’ indicates convolution, m ∈ {1, . . . ,M}, and wl(t) ∼ N (0, σ2). The received

signal can be represented in the spectral domain using the Discrete Fourier Transform

(DFT) matrix, WNf
[121]:

r̃l = WNf
rl =

Kp+Ks
∑

k=1

h̃k,l ◦ s̃k + w̃l (6.2)

where the ‘tilde’ operator denotes the DFT transformed equivalents of the time signals

in Eqn (6.1) and ‘◦’ represents the Hadamard product. In general, for the DFT, although

M 6= Nf , the vector lengths can be appropriately adjusted using zero–padding or truncation

of the time signals [121]. The general received signal model can therefore be written as:

r̃l = H̃l˜̄sl + w̃l (6.3)

Two cases of the general signal model in Eqn (6.3) can be considered: 1) Known chan-

nel state information (CSI) and 2) Unknown CSI. Generally the channel information is

unknown, so signals are lumped together:

H̃l = INf
(6.4)

˜̄sl =

Kp+Ks
∑

k=1

h̃k,l ◦ s̃k (6.5)
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where INf
is the Nf ×Nf identity matrix. If the channel information is known then:

H̃l =
[

diag(h̃1,l), . . . , diag(h̃Kp+Ks,l)
]

(6.6)

˜̄sl = [s̃1, . . . , s̃1] (6.7)

Therefore each sensor is tasked with estimating ˜̄sl given r̃l as shown in Eqn (6.3). This

signal model forms the basis for the work presented in this chapter. Estimation of ˜̄sl

provides the basis for spectrum characterization. Earlier chapters described investigations

of several characterization tasks based upon the above signal model, from the perspective

of individual sensor operation. The following sections describe the use of spatial diversity

in accomplishing characterization, particularly for use in monitoring DSA operation.

6.4 Collaborative/Distributed RSS

Under the random spectral sampling framework from Chapter 3, in order to benefit from

spatial diversity, first assume that no CSI is available, (i.e., Eqns (6.4)–(6.5) are applicable).

Each of the L spectrum monitoring devices locally estimates the spectrum occupancy using

RSS:

ûl = u+ ǫl, l ∈ {1, . . . , L}, (6.8)

where ǫl represents the mis–classification error (i.e., bias), primarily due to sampling and

detection errors, while u and û are the true and estimated bandwidth occupancies. The

bias can be estimated by considering the probability of classification errors for the DFT

of the received signal vector, r̃l. Denote the classification vector as cl ∈ {0, 1}
Nf×1. Each

element in the classification vector is 1 if the sub–channel is occupied, and 0 if it is not.

Detection approaches in the literature, such as Neyman Pearson detection, or use of fixed

thresholding, can be used to obtain cl from r̃l.

The performance of each detection approach can be compared through the false alarm

and missed detection probabilities, pfa and pmd, respectively. For a given spectrum occu-
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pancy, µ, the number of unoccupied sub–channels mis–classified as occupied:

N− ∼ Binomial(Nf (1− µ), pfa). (6.9)

Similarly, the number of occupied sub–channels mis–classified as unoccupied:

N+ ∼ Binomial(Nfµ, pmd). (6.10)

Thus, using Eqn (3.1), the bias resulting from mis–classification errors is given by,

ǫl =
N

−
−N+

Nf
. For sufficiently large Nf , the distribution of the mis–classification errors is

approximately Normal [147]. Based upon this, it therefore follows that ǫl ∼ N (µǫ, σ
2
ǫ ),

where:

µǫl = E [ǫl] = E

[

N− −N+

Nf

]

= (1− µ)pfa − µpmd, (6.11)

and

σ2ǫl = var (ǫl) = var

(

N− −N+

Nf

)

=
(1− µ)(1− pfa)pfa − µpmd(1− pmd)

Nf
. (6.12)

Taking the global average gives:

ûGlobal =
L
∑

l=1

ûl = u+
L
∑

l=1

ǫl = u+ ǫGlobal. (6.13)

If there is correlation between the sensors, then averaging over L sensors implies that [147]:

ǫGlobal ∼ N

(

1

L

L
∑

l=1

µǫl ,

∑L
l=1 σ

2
ǫl

L2
+

1

L2

L
∑

l=1

L
∑

k>l

cov(ǫl, ǫk)

)

. (6.14)

If independence is assumed, then cov(ǫl, ǫk) = 0 and averaging over L sensors gives a lower

bound on the variance under independent sampling. The resulting global mis–classification

error is thus:

ǫGlobal ∼ N

(

1

L

L
∑

l=1

µǫl ,

∑L
l=1 σ

2
ǫl

L2

)

. (6.15)

Therefore through spatial diversity, the global average can reduce the variance and bias

components due to mis–classification. Generalizations to the above formulation can be
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used for analysis of more complex scenarios. For example, it was assumed that the false

alarm and missed detection probabilities are independent and identically distributed over

the classification vector. In practice, these probabilities may not be identically distributed

across the sub–channels. Also, for wideband channels, sub–channels may be dependent. For

non–identical distribution of pfa and pmd in each interval, the Poisson Binomial distribution

may be alternatively used [201]. This defines the probability distribution for the sum of

independent, non–identically distributed Bernoulli trials. Similarly, bounds such as the

Chernoff bound can be used for dependent and non–identically distributed probabilities. In

each case, through spatial diversity, global averaging improves the estimates.

One way to achieve the global averaging function is via a centralised approach, whereby

a designated sensing unit collects local estimates and then computes the global value. How-

ever, such a topology is sensitive to node failure and may further incur heavy communication

costs in transmitting to the central node. If the network is a multihop sensing network,

extra routing information may also be required, which makes the situation even worse.

An alternative approach proposed in the literature, involves the use of the average–

consensus technique [202], which is useful for distributed coordination of mobile autonomous

agents. This technique was used in [58] for collaborative compressed wideband sensing.

Similarly, average consensus techniques can be used for random sensing. The goal is to

design a distributed and decentralised occupancy estimation approach which is scalable to

the monitoring network size, L, and where multi–hop routing is avoided through one–hop

broadcasting among neighbouring sensor nodes.

Adopting notation from [202], the average consensus problem can be used to describe

the problem as follows. Let G = (V , E) be an undirected connected graph, with node set

V = {1, . . . , L} and edge set E , where each edge {k, l} ∈ E is an unordered pair of distinct

nodes which are within one–hop communications range of each other. Now, let ûl(0) be

the occupancy estimate associated with the lth sensor node at time, t = 0. Then the

(distributed) average consensus problem is to compute the average, 1
L

∑L
l=1 ûl(0) at every

node, through local communication and computation on the graph, G. Each sensor node

broadcasts ûl(t) to its neighbours, Nl := {k : (k, l) ∈ E}, and further updates itself each

time step by addition of a weighted sum of local discrepancies [202]:
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ûl(t+ 1) = ûl(t) +
∑

k∈Nl

wkl(ûk(t)− ûl(t)), (6.16)

where wkl is a weight associated with the edge (k, l). Since G represents an undirected

graph, wkl = wlk. In [202] design rules are discussed which can provide values for the

weights. Properly chosen weights guarantee that:

lim
t→∞

ûl(t) =
1

L

L
∑

k=1

ûk(0), ∀l ∈ {1, . . . , L}. (6.17)

Eqn (6.17) implies that local one–hop communications can guarantee that each sensor

node obtains the averaged bandwidth occupancy of the multi–hop network represented by

G. The above approach can further be extended to the stratification technique proposed for

RSS. To accomplish this, consider the distance matrix, D, calculated in Section 3.5.1 using

the DistMat algorithm. Due to symmetry, and noting that the distance along the main

diagonal is always 0, the lower triangular portion of D, (i.e., excluding the main diagonal)

uniquely defines the distance matrix. Therefore consider the distance vector formed by

stacking columns from the lower triangular portion:

d = [D(2, 1), . . . , D(Nf , 1), D(3, 2), . . . , D(Nf , 2), . . . , D(Nf , Nf − 1)]T . (6.18)

Clearly, d ∈ R
0.5(Nf−1)2×1. Using the average consensus technique described previously,

each node can obtain the averaged distance matrix for the multi–hop network represented

by G. Each node can then locally compute spectral strata using the MatSearch algorithm

described in Section 3.5.1. Following this, each node can then compute bandwidth occu-

pancy using RSS and use average consensus, to obtain the global average. However, this

approach increases the communication overhead, and thus a cost–benefit analysis would be

necessary to evaluate if the gain achieved justifies the extra overhead.

6.5 Mobile RSS

Mobile sensing builds on the work in the previous section. In mobile sensing, con-

sensus can be investigated in the context of a dynamic topology. Mobile RSS builds on
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work presented in [203], as well as more recent work presented in [204]. Average consen-

sus was investigated in a network with dynamically changing topology, where it was shown

that use of suitably–defined weights guarantees convergence of time–varying communication

graphs which are jointly connected [203]. In general, for mobile networks such as vehicular

networks, this condition may not hold and there would therefore be no guarantee of con-

vergence. Further, in much of the research into average consensus, it is assumed that the

initial measurements used for average consensus do not change. This may not be the case

for monitoring a dynamic CR network, particularly when the sensor network is multi–hop

in nature. In such cases, convergence is also not guaranteed.

In [204] theoretical analysis of the convergence speed of gossip algorithms for random

mobility models, was investigated using Markov chain analysis. It was seen that different

mobility patterns can have different effects on the convergence behaviour of the network.

However, mobility models for more realistic node motions such as in vehicular networks, need

to be considered. In particular, vehicle motion is usually constrained to roadways within

a geography, which can impact the manner in which messages are propagated through

the network. To address vehicular scenarios, a distance–based approach is investigated for

constraining the network size for convergence. In such realistic cases, analytical investigation

may not be tractable. Therefore, analysis is performed using a bi–directionally coupled

vehicular simulator to analyze convergence along a portion of the I–90 in Massachusetts.

The simulation draws upon previously collected spectrum occupancy data.

The problem is similarly described as in the distributed case, but with consideration of

time–varying aspects. In this case, consider the representation of the time–varying commu-

nication monitoring network. Let G(t) = (V , E(t)) be an undirected connected graph, with

monitoring nodes V = {1, . . . , L} and edge set E(t), where each edge {k, l} ∈ E(t) is an

unordered pair of distinct nodes which are within one–hop communications range of each

other at time t. Let Nl(t) = {k ∈ V|{k, l} ∈ E(t)} denote the set of neighbours of the lth

node at time t. Define dl(t) = |Nl(t)| be defined as the degree of the lth measurement node

at time t. Gi = (V , Ei), i ∈ {1, . . . , r} defines a finite collection of graphs with common vertex

set, V . If the union G =
⋃r

i=1 Gi = (
⋃r

i=1 Ei,V), is a connected graph2, then {Gi}i∈{1,...,r} is

2A graph, G = (V, E), is connected if for any pair of vertices, k and l, there exists a sequence of edges
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defined as jointly connected [203].

At t = 0, the lth measurement node has state, xl(0). After each step, nodes update their

state according to the distributed linear iterative combination of its own state with those

of its instantaneous neighbour set:

xl(t+ 1) =Wll(t)xl(t) +
∑

k∈Nl(t)

Wkl(t)xk(t), l ∈ {1, . . . , L}, (6.19)

whereWkl(t) is the linear weight on xk(t) at the l
th node. If we setWkl(t) = 0 for k /∈ Nl(t),

then the iterative procedure can be expressed in vector form as follows:

x(t+ 1) = W(t)x(t), (6.20)

where x(0) = [x1(0), . . . , xL(0)]
T is the initial condition, x(t) = [x1(t), . . . , xL(t)]

T , and

W(t) ∈ R
L×L. The t–step transition matrix is then defined as Φ(t) =

∏t−1
τ=0W(τ). There-

fore, x(t) = Φ(t)x(0). [203] discusses the use of maximum–degree weights or Metropolis

weights to guarantee convergence, provided that the time–varying communication graphs

are jointly connected. For a general mobile network this may not be the case, given the

possibly infinite possible set of graphs. A distance–based approach is suggested to establish

joint connectivity within a bounded region, for convergence.

The distance–based approach is part of a distance–based knowledge management ap-

proach proposed in [88] for vehicular dynamic spectrum access. The main principle behind

this approach is that RF propagation at frequencies of interest, (e.g., UHF/VHF), implies

similar occupancy across a bounded geographical extent. Within this bounded region, there

may be both mobile and fixed monitoring nodes, which form a bounded–size network. In

this network, mobile nodes are constrained to move along various routes, (i.e., representative

of road networks). Fig 6.1 illustrates the distance–based concept.

Along these routes, the paths are discretised in space, such that each location on any

road is one of a finite amount number of locations that mobiles can be located at. While

a vehicle transits within the bounded region, the occupancy is assumed to be stationary.

Under these constraints, it can reasonably be assumed that networks inclusive of mobile

(i.e., a path) {(k, k1), (k1, k2), . . . , (ks−1, ks), (ks, l)} ∈ E .
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nodes are jointly connected. It is also assumed that the rate at which mobile nodes enter and

exit the region is, on average, constant. A consequence of this is that the set of fixed nodes

{βj} plus possible locations of mobile nodes, {θj}, represent a finite set, V of measurement

nodes.

Figure 6.1: Distance–based bounding of sensing network for distributed mobile spectrum
sensing. Nodes are assumed to be possibly connected only to other nodes within the bounded
region. {θi}, the centroids of the road segments, represent the possible locations of mobile
nodes within the bounded region. {βj} are the fixed node locations.

Hence, there are only a total of r possible communications graphs, {Gi}i∈{1,...,r}. If it is

assumed that they are jointly connected within the bounded region, then as shown in [203],

convergence is guaranteed for use of maximum–degree weights:

Wkl =



























1
L
, if {k, l} ∈ E(t),

1− dl(t)
L
, if k = l,

0, otherwise,

(6.21)
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or use of Metropolis weights:

Wkl =



























1
1+max{dk(t),dl(t)} , if {k, l} ∈ E(t),

1−
∑

{l,m}∈Wlm
, if k = l,

0, otherwise.

(6.22)

6.6 Experimental Results

In this section, results are presented for CRSS and mobile RSS. First CRSS, is examined

via simulations and evaluated in terms of the mis–classification error random variable, which

provides an estimate of RSS performance. Next, CRSS was used for estimating the tail

distribution of the amplitude power distribution (APD) for use in compliance monitoring

for DSA. Finally, results on the use of mobile RSS are presented, based upon a study of

VDSA.

6.6.1 CRSS Mis–classification Performance

CRSS was examined for Kp = 32 and Ks = 32 primary and secondary users respectively,

across 32 equal–bandwidth channels. The users were randomly located within a 1kmkm

grid. Frequency–selective fading was modelled using time-delayed taps with independent

Rayleigh fading gains on the taps. Additionally, a path loss exponent of 4 was assumed

under a free space path loss model. Different occupancy profiles were randomly assigned to

the users to create different RF environment scenarios for testing RSS. L ∈ {1, 2, . . . , 10}

sensors were randomly deployed in the grid for sensing. Each sensor used RSS individually to

estimate the bandwidth occupancy in the presence of white Gaussian noise. The estimated

occupancies were then compared to the true occupancy for each scenario. Mis–classification

errors were investigated by varying the decision thresholds for determining the classification

vectors, cl, for each sensor. This was repeated 1000 times for each scenario, and the resulting

data was used to compare the performance of CRSS. Figs 6.2–6.7 illustrate results of the

investigations.

In Figs 6.2–6.3 the average mis–classification error, µǫl , was compared for different band-
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width occupancy scenarios, for various false alarm and missed detection probabilities. The

results demonstrated that µǫl was fairly constant across different occupancy scenarios. How-

ever, performance improved as either false alarm or missed detection probabilities decreased.

A similar trend was observed for the variance of the mis–classification error, as shown in

Figs 6.4–6.5.
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Figure 6.2: Average mis–classification error for RSS sensor, pmd = 0.0005.
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Figure 6.3: Average mis–classification error for RSS sensor, pfa = 0.0005.

Figs 6.6–6.7 illustrated the impact of using the average consensus algorithm on the RSS

estimates. The results suggest that use of average consensus reduces the variance of the
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Figure 6.4: Variance of mis–classification error for RSS sensor, pmd = 0.0005, Nf = 4096.
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Figure 6.5: Variance of mis–classification error for RSS sensor, pfa = 0.0005, Nf = 4096.

mis–classification error, which in turn improves the precision of the bandwidth occupancy

estimate achieved via RSS. the results further support the analysis which shows that the

precision increases with more sensors. However, increasing L would also increase the network

size, consequently increasing the convergence time for the algorithm. The results also show

that the variance is greater than the theoretical bound attainable through independent

sampling. The additional variance is due to covariance between the occupancy estimates

for the sensors.
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Figure 6.6: Impact of average consensus on mis–classification error for RSS, pfa =
0.0005, pmd = 0.0005, Nf = 4096.
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Figure 6.7: Impact of average consensus on mis–classification error for RSS, pfa =
0.0005, pmd = 0.01, Nf = 4096.

6.6.2 CRSS in a Practical Scenario: Estimating APD tail distribution for

Compliance Monitoring

In this set of experiments, the use CRSS was investigated for use in estimating the tail

distribution for the APD. The APD is very useful in compliance monitoring since it gives an

estimate of the probability that a signal transmission exceeds a given power level, given that

it is over a particular threshold. It provides a way of estimating the probability that a given

transmitter exceeds its spectral mask power, either in some subset or across the entire
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channel. In this experiment, the use of CRSS was investigated via realistic simulations

based upon spectrum measurements which were obtained from a measurement campaign

to characterise spectrum occupancy across four mid-sized US cities. The measurements

spanned frequencies between 88MHz−2686MHz at twenty geographically separated sites,

with five sites per city. Further details of the measurements can be obtained in [2]. Figs 6.8–

6.10 present summary characteristics of the measurement data, used in the investigation.
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Figure 6.8: First–order statistic summary for measurement sites, illustrating the mean, me-
dian, maximum and minimum values of the measured power for the measurement interval.
The threshold was the Otsu threshold obtained for the overall set of measurements at the
site.

The illustrations additionally present further insights into the distribution of occupancy

parameters across space and frequency. As seen in Fig 6.8 and Fig 6.9, at most sites the

span of spectral occupancy variations at each site is similar, even though the percentile

distributions are different. This can be explained by noting the different histograms at each

site. When aggregated by city, the distributions exhibit less variation. This is notable since

the measurements were all taken within mid–sized US cities. When compared by bands,

(i.e., Fig 6.10), the variation across sites is considerable. This can be explained by the

geographic variation of spectrum usage for each sub–band.

RSS was used on the measurement data to investigate the impact of random sampling

upon the estimation of the tail distribution via average consensus. Sensors were randomly

placed within the grid representing the region within the measurements were taken. The
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Figure 6.9: Overall occupancy for measurement sites, based upon the use of Otsu thresh-
olding method for separating signal and noise signals.
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Figure 6.10: Overall occupancy by service bands, based upon the use of Otsu thresholding
method for separating signal and noise signals.

measurement data was stratified according to service band. At each site, RSS was used to

randomly select sub–intervals from which power measurements were obtained. To account

for fading and path loss effects, the signals at each randomly placed sensor was based upon

use of a path loss model which took into account the distance between the sensor and the

actual measurement locations of the measurement data. Sensors were assumed to have the

same resolution bandwidth, and amplitude errors due to calibration or other such effects

were not considered.

For each sensor, the power measurements collected, were used to determine the overall



152

APD across all bands measured. L–moments were estimated for each sensor using the

approach presented in [90]. Figs 6.11–6.14 illustrate the L–moment ratio diagrams of sample

L–Skewness, τ3, and L–Kurtosis, τ4, for the simulated sensors at the 4 cities investigated

in the measurement study. L–moment ratio curves of various distributions, as well as the

overall lower bound of τ4 as a function of τ3, were overlaid on the diagram. The distributions

selected were those typically used in the analysis of points over threshold and maxima. As

seen, in each case the distribution of the extreme values was best approximated by the

General Pareto distribution (GPD) curve.
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Figure 6.11: L–moment ratio diagram showing sample L–skewness (τ3) and L–Kurtosis (τ4)
for 20 sites in Buffalo using RSS. Key to curves: general pareto (GPA), generalised extreme
value (GEV), pearson type III (PE3), generalised logistic (GLO), log normal (LN3) and
overall lower bound (OLB).

Finally, the average consensus was used to produce site–averaged L–moment ratios,

which were then used to estimate the GPD parameters for the tail distribution. The method

for estimating the GPD parameters from τ3 and τ4 were described in [90]. Figs 6.15–

6.18 illustrate the results for the 4 cities based upon average consensus, using the GDP

approximation. These were compared to the actual empirical data at each measurement site,

in each city. The results suggest that CRSS can be used to further characterise the APD,

which can then be used in probabilistic characterization of the probability of a transmitter

violating its spectral mask, or some subset of it.
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Figure 6.12: L–moment ratio diagram showing sample L–skewness (τ3) and L–Kurtosis
(τ4) for 20 sites in Pittsburgh using RSS. Key to curves: general pareto (GPA), generalised
extreme value (GEV), pearson type III (PE3), generalised logistic (GLO), log normal (LN3)
and overall lower bound (OLB).
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Figure 6.13: L–moment ratio diagram showing sample L–skewness (τ3) and L–Kurtosis
(τ4) for 20 sites in Rochester using RSS. Key to curves: general pareto (GPA), generalised
extreme value (GEV), pearson type III (PE3), generalised logistic (GLO), log normal (LN3)
and overall lower bound (OLB).

6.6.3 Mobile CRSS

The work presented in this section is derived from work done as part of a research project

with Toyota ITC. Further details of the system implementation used for this study can be

found in [88]. A highway communications scenario is considered for investigation of Mobile

RSS, to determine the impact of the proposed distance technique for average consensus on
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Figure 6.14: L–moment ratio diagram showing sample L–skewness (τ3) and L–Kurtosis
(τ4) for 20 sites in Worcester using RSS. Key to curves: general pareto (GPA), generalised
extreme value (GEV), pearson type III (PE3), generalised logistic (GLO), log normal (LN3)
and overall lower bound (OLB).
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Figure 6.15: Comparison of APD tails for measurement data with GPD estimate in Buffalo
using CRSS.

vehicles knowledge of sensed spectrum. This represents a spectrum monitoring approach

in which vehicles need to better understand spectrum usage for use in channel selection for

VDSA. Further details of this requirement and the application of the knowledge in VDSA

can be found in [88, 198, 199].

Data collected via vehicle measurements along I–90 in Massachusetts [205] was used to

create a realistic simulation environment for investigation. Artificial secondary TV whites-

pace device signals were superimposed on signals generated based upon measurement statis-
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Figure 6.16: Comparison of APD tails for measurement data with GPD estimate in Pitts-
burgh using CRSS.
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Figure 6.17: Comparison of APD tails for measurement data with GPD estimate in
Rochester using CRSS.

tics for digital TV signals. For the simulation, there were 10 TV channels from channel 36

to channel 45. Artificial primary user signals are generated based upon the model in [199].

The Okumura–Hata model was used to calculate the actual received signal strength at a

vehicle. Using road data for the study area, (Fig. 6.19), several routes were created offer-

ing vehicles alternate paths to transit between the given origin–destination pair. Alternate

routes were all within 5 km of the primary I–90 route. Signal sources consisting of both

fixed base–stations and mobile devices were randomly distributed within the region under

consideration. Vehicles were assumed to have a random speed not exceeding 40m/s on the
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Figure 6.18: Comparison of APD tails for measurement data with GPD estimate in Worces-
ter using CRSS.

I–90 and 25m/s on the alternate routes.

Figure 6.19: Map of study area.

Fig 6.20 illustrates the impact of MRSS on channel switching availability in VDSA.

The results suggest that use of MRSS reduces the effective false alarm rate for occupancy

detection. This therefore reduces the likelihood that a vehicle would switch channels un-

necessarily. For this scenario, MRSS used dr = 2500m. Fig. 6.21 illustrates the effect of

varying dr on the channel switching likelihood. The results suggest that increasing the

range for consensus adversely affects averaging consensus performance. As the range is in-

creased, the chances of a vehicle reporting an unoccupied channel as occupied is increased.

An interesting result is that the channel switching would also be expected to increase with

vehicular density as there are expected to be more attempts of using vacant channels for
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Figure 6.20: Impact of MRSS on channel switching probability. MRSS reduces the misclas-
sification of occupied channels, reducing the effective false alarm rate for a given detector.
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Figure 6.21: Impact of dr on channel switching probability for MRSS, pfa = 0.01. Increasing
the dr increases the chance of falsely detecting a channel as occupied.

VDSA. However, in the scenarios examined the occupancy profiles used for VDSA were low

occupancy, to reduce the effect of this demand. However, the key results observed were that

MRSS reduced the effective false alarm probability, and increasing the mobile network size

for MRSS reduced MRSS performance.
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6.7 Conclusion

In this chapter, the use of distributed and mobile randomised spectral sensing was inves-

tigated for occupancy estimation in several different scenarios. A framework for performance

analysis of distributed sensing using the mis–classification error was presented for the task

of bandwidth occupancy estimation using RSS. A lower bound on sensing performance in

terms of mis–classification errors was derived. The lower bound was seen to be approxi-

mately normally–distributed, with decreasing variance as the number of sensors increased.

The impact of incorporating spatial diversity was further considered in performance.

The use of average consensus algorithms was then investigated for two important com-

pliance monitoring tasks in DSA: bandwidth occupancy classification and estimation of the

APD for use in compliance monitoring. Both applications were observed to benefit from

the use of CRSS, which improved the accuracy in estimating spectrum occupancy charac-

teristics in various scenarios. Results demonstrated that performance was bounded across

different occupancy levels: a) in terms of the mis–classification error performance and b) us-

ing actual measurements across several service bands from 4 mid–sized US cities to estimate

the tail distributions of the APD at the measurement locations. This method is therefore

recommended for statistical occupancy characterisation for various occupancy levels.

Mobile RSS was then considered and a distance–based approach was proposed for use

in average consensus algorithms in vehicular networks, where convergence may be difficult

at vehicular speeds. An implementation mobile random sensing using bi–directionally cou-

pled simulation tools was then used for exploring average consensus performance in VDSA

scenarios. The simulation platform was used to investigate the impact of MRSS on channel

switching probabilities in VDSA networks. Channel switching was reduced through the use

of MRSS. Further results for the proposed distance–based technique for bounding network

size in mobile networks, was demonstrated to improve performance for VDSA.

While user discrimination was not considered in this chapter, the use of CRSS and

MRSS for characterisation provides another opportunity for further work in incorporating

spatial diversity for improvement of spectrum characterisation in DSA networks.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

This dissertation presented various perspectives on the use of random sampling tech-

niques for probabilistic characterisation of wireless spectrum occupancy across time, fre-

quency, and space. Probabilistic characterisation was motivated by the potentially non–

deterministic behaviour of cognitive radios in typical market–based spectrum access mod-

els, both those implemented and those currently being contemplated through regulatory

interventions.

The state–of–the–art for spectrum monitoring was presented in this problem space, and

several challenges were examined for spectrum management and compliance enforcement

functions in emerging DSA networks. Probabilistic characterisation was seen as essential for

occupancy estimation and compliance verification in DSA deployment scenarios, given the

increased spectrum agility and learning abilities of cognitive radios. Therefore in this disser-

tation, a thesis is presented for the use of random sampling techniques in characterisation

of probabilistic spectrum etiquette. This is in line with probabilistic approaches currently

used in network management, for specification of technical and operational parameters and

subsequently these specifications are met.

Four aspects of random sampling were examined in this dissertation: random spectral

sampling for bandwidth occupancy classification, PHY–based random temporal sampling
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and frame–based random temporal sampling for temporal occupancy characterisation, and

distributed and mobile random spectral sampling. Random spectral sampling and PHY–

based random temporal sampling techniques were implemented using the USRP2 hardware

and experimented with, to explore different envisioned DSA scenarios. The benefits of the

approaches were demonstrated for these cases. Frame–based random temporal sampling

as well as distributed and mobile random spectrum sampling were also investigated in a

simulation environment which was developed for this dissertation. This was used to provide

a proof of concept and to further explore these methods using DSA technologies which are

still under development. The parameters for the simulation environment were derived from

various spectrum measurements taken within Massachusetts as well as in Trinidad and

Tobago, during the course of this dissertation.

In support of wideband spectrum occupancy characterisation in heterogeneous radio

access scenarios, such as those envisioned for future DSA networks, the NCSS concept was

introduced as an alternative way of simultaneously sensing noncontiguous subbands. Based

upon the presented framework bandwidth occupancy estimation using stratified sampling

techniques and random spectral sampling was proposed and investigated using hardware

and techniques developed as part of this dissertation. Experimental results demonstrate the

effectiveness of this proposed technique for occupancy estimation, emphasizing the need for

appropriate stratification techniques.

To achieve online stratification, a distancebased approach to automatic stratification

was proposed for use with random spectral sampling for characterisation of bandwidth

occupancy in spectrum monitoring networks. The proposed approach was validated via

simulations, USRP hardware and through use of spectrum measurements. The results

illustrated that the technique provides an automatic stratification approach and additionally

exhibits similar performance in spectrum occupancy estimation, compared to established

clustering approaches which are ill–suited for online use. The suitability of the technique for

various occupancy levels was also demonstrated, motivating its use as a compressed sensing

alternative for use in congested scenarios (i.e., where the spectrum sparsity assumption

which leads compressed sensing does not hold). The results support the thesis that random

spectral sampling can be used in online wideband occupancy characterisation.
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In support of temporal occupancy characterisation in heterogeneous access scenarios

where there is no need to isolate specific users, PHY–based random temporal sensing tech-

niques were proposed. In addition to the derivation of theoretical performance bounds

for temporal occupancy estimation using the proposed techniques, a proof of concept was

developed using USRP2 hardware upon which investigations were carried out. Results

demonstrated that randomised temporal sensing can outperform periodic sensing, and in-

dicated that random sampling performance approaches the theoretical lower bound using

larger sample sizes, or through sparser sampling, for processes with decaying autocorrela-

tion functions. Results further showed that cyclostationary detection techniques improved

estimation performance over energy detection in low SNR scenarios. An added benefit of

cyclostationary feature detection was for use in coarse discrimination between users with

different cyclostationary features.

Random temporal sampling techniques were also demonstrated to perform better than

compressed sensing techniques in medium to high occupancy scenarios. Therefore, com-

pressed sensing approaches were seen to be less suited for use in temporal occupancy esti-

mation in scenarios where spectrum congestion may occur. Further, the CSbased approach

first reconstructs the signal prior to occupancy estimation. The reconstruction stage is

avoided entirely in the random sampling approaches presented. Therefore, although spe-

cific comparisons of computational cost would be implementation specific, it can be said

that the random approaches would be lower cost compared to CSbased techniques, all things

being equal, since they do not have to reconstruct the signal for temporal occupancy es-

timation. The random sampling approach was therefore seen to offer a lower complexity

alternative to existing techniques for characterisation of temporal spectrum occupancy.

Framebased random temporal sensing was then introduced as a means of statistically

modelling the temporal behaviour of users/networks of interest, identified through PLCP

frame semantics. The technique was explored for estimating the probabilistic distribution of

several temporal occupancy parameters. Further, the impact of missed frame detection was

examined for the proposed technique. Simulations using measured data were used to provide

proof of concept for the presented technique. Results demonstrated the performance of the

technique in estimating various occupancy parameters was dependent upon the sampling
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ratios used. The technique was able to recover the approximate distribution of the number

of frames as well as their inter–arrival times using the sampling inversion techniques, with

better performance for higher sampling ratios.

Results further demonstrated that a probabilistic model relating nominal transmission

times to frame reception times could also be estimated. This model provided essential

information for determining the probability of particular transmission times, accounting

for random channel effects in temporal occupancy characterisation, which is an important

aspect of assessing temporal compliance in DSA networks. Through simulations, the model

was determined to converge to bounded performance for all sampling ratios as the number

of sampled frames increases.

Finally, distributed and mobile spectrum sensing were explored within the random sam-

pling framework. A theoretical lower bound on random spectral sampling performance

was derived for distributed sampling, which demonstrated that performance improved with

increased spatial diversity, assuming average consensus algorithms were used. The use of

average consensus algorithms was then investigated for two important compliance moni-

toring tasks in DSA: bandwidth occupancy classification and estimation of the APD for

use in compliance monitoring. Investigations involved the use of bi–directionally–coupled

vehicular network simulation tools for generation of more realistic mobility scenarios.

Results demonstrated that both applications benefit from the use of distributed ran-

dom spectral sampling, which improved the accuracy in estimating spectrum occupancy

characteristics in various scenarios. Results demonstrated that performance was bounded

across different occupancy levels: a) in terms of the mis–classification error performance

and b) using actual measurements across several service bands from 4 mid–sized US cities

to estimate the tail distributions of the amplitude power distributions at the measurement

locations. However, it was observed that in mobile sensing scenarios performance declined

when average consensus approaches were used at typical vehicular speeds. Distance–based

stratification was used to bound the size of the network used for convergence, which was

observed to improve performance. This method is therefore recommended for statistical

occupancy characterisation for various occupancy levels.
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7.2 Future Work

In advancing the theory of random sampling approaches for compliance monitoring in

DSA networks several challenges must still be addressed.

First, the techniques presented in this dissertation were for the purpose of demonstrating

proof of concept for random sampling in statistical occupancy characterisation in emerging

DSA networks. In some cases, it was possible to build hardware implementations, while in

others it was reasonably practical to resort to simulations for analysis. Given the need for

such techniques for compliance monitoring and verification in emerging DSA deployments,

the contributions of this dissertation are only the beginning. Extended investigations should

be carried out as DSA deployments and regulatory practices evolve to address the needs of

spectrum management.

Also, further work would involve the use of the random techniques in more realistic

scenarios, involving various occupancy models not examined in this dissertation. Also,

theoretical performance bounds were established under certain scenarios. Tighter perfor-

mance bounds can be established through relaxation of several assumptions made in this

dissertation. In such cases, techniques such as Chernoff bounds can be used for establishing

distributions of probabilistic characteristics with stronger guarantees of compliance to oper-

ational and technical specifications. Such tighter bounds would of particular use in dispute

resolution and compliance enforcement processes.

Additionally, using the presented framework for analysis, investigation of higher order

characteristics (i.e., for time frequency, and space), as well as those not investigated in this

dissertation should be carried out. The theory can additionally be advanced through inves-

tigation of improving sampling performance through use of alternative allocation techniques

that are more sensitive to the variance and measurement ‘cost’ of the sampling technique

(e.g., cost–based, Neyman, optimal allocation).
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