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1 Abstract 

Out of the 25% of preventable mortalities, most happen before ambulances are able to get 

to the hospital [1]. Currently, pre-hospital care is “an area of limited organizational expertise” [1] 

and as such is in want of a technology that will take the guess work out of ambulance 

transportation. We endeavor to design a program that will consider the patient’s needs and the 

distance of the ambulance from the available hospitals and use this information to choose field 

hospitals that best meet these requirements. A program is developed that utilizes weighted sums 

for the importance of the need, combined with whether the given hospital meets that 

specification. Optimizations are then developed, formulating the Ambulance Problem in terms of 

binary linear programming.  
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2 Related Work 

 In 2011, a study was performed by Poulymenopoulou, Malamateniou, and 

Vassilacopoulos on how data could be used by cloud services to automate emergency medical 

processes [2]. Stemming from an increase in emergency cases requesting ambulance 

transportation to Emergency Departments, a need was determined for patient and supply 

information sharing between the Emergency Department and the EMS workers. The 

responsibility of the technology developed is to take data from patient records, EMS records, and 

hospital medical records, determine the EMS protocol to take, triage the case, and decide on the 

most appropriate hospital for the case. The data details the supplies that hospitals provide such as 

the number of beds available, “available service coverage,”  and “the operational status of 

medical facilities” [2]. The technology comes in the form of both a web and mobile application. 

In order to assess the trauma level of the patient, the Netherlands Triage System was used, and 

the emergency medical protocols are the EMS pre-hospital treatment protocols published by the 

Massachusetts Department of Public Health, Office of Emergency Medical Services. The 

patient’s case information and the “emergency care ontology” [2] are provided as input to a 

REST service to assign the urgency level. Once this triaging is done, the hospital selection 

service (HOS) is ran with input of present and previously established patient data, urgency level, 

and the emergency care ontology in order to determine which hospital has the best services and 

resources for the patient. The HOS may also consider load balancing when figuring out which 

hospital is closest to the patient. The updates on data needed for knowing what beds or tools a 

hospital has available are maintained by relevant hospital employees. The choice of the hospital 

is made known to both the EMS and the chosen hospital’s personnel, along with the patient’s 

case data. So far this study has been limited to applications on a small group of participants 
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because of the risks associated with evaluating performance of the service. How the team 

implemented load-balancing is not specified either.  

 Another body of research on hospital selection algorithms is concerned with combining 

the most effective baseline policies into what the authors call the 3C policy [3]. The Closest 

policy, which is the first of the four baseline policies, chooses the closest hospital to the patient. 

The Diversion policy looks at how many beds are available and how many patients are waiting. 

Then the policy makes a list of the hospitals that do not have any beds and those ones are on 

diversion. Out of the remaining hospitals the closest one is chosen, or the closest one on 

diversion if all are on diversion. Next the Join the Shortest Queue (JSQ) policy looks at how 

many people are waiting at each hospital and chooses the one with the shortest queue of people. 

Finally, the Shortest Transfer Time (STT) policy focuses on keeping the number of available 

ambulances up by determining the hospital with the shortest transfer time, or the time for 

transportation and turnaround time for the ambulance to get going again. The study found that 

the STT policy was the most effective, with the diversion policy coming in second, the JSQ 

policy occasionally being a prime candidate, and the closest policy was the worst in many of the 

cases. The issue with the closest policy is that when hospitals get crowded they are in want of 

load balancing and ambulances get stuck waiting there. The JSQ policy sends ambulances to less 

crowded hospitals but this increases the transfer time if that hospital is far away. The diversion 

policy has the potential to choose a hospital that has long transfer times. The STT policy could 

be viewed as greedy since it goes for the lowest transfer time and does not pay attention to how 

this impacts the long-term transfer time. One more surprising finding was that although it was 

posed that lower transport times would lead to lower response times, some of the results were to 

the contrary. These four baseline policies were then boiled down to having two factors: 
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“closeness (minimizing transport time) and congestion (minimizing turnaround time)” [3]. Due 

to discovering that transport time is not directly correlated to response time, the concept of 

centrality came into play. If pursuing a lower transport time brings an ambulance away from an 

area with a high concentration of patients who are waiting, then the next response time is often 

increased. With this third policy in place, the three policies of Closeness, Congestion, and 

Centrality can be combined into what is called the 3C policy. The first step in the 3C policy is 

when an ambulance decides to transfer patient to an ED, identify all hospitals that have an 

eligible emergency department (ED). Next, estimate the expected transport time to reach each 

hospital, and acquire the queue length of ED waiting room from each hospital. Then, compute 

fitness of each hospital based on expected transport time and queue length, which are weighted. 

Finally, transport patient to the hospital that minimizes fitness. The 3C policy outperformed all 

of the other policies by being one of the best in 98% of cases and being the absolute best in 26% 

of cases [3]. Additionally, the 3C policy reduces response time by 99% over the closest policy, 

90% over the diversion policy, 68% over the JSQ policy, and 67% over the STT policy [3]. 

Leo, Lodi, Tubertini, and Di Martino formulated a mixed-integer programming model 

that decides on an ideal hospital which prioritizes minimizing travel and wait times and using 

penalties on improper load-balancing of work for the hospitals [4]. The conditions that the 

solutions must satisfy are: “(a) each request…is assigned to exactly one emergency 

department…; (b)” the chosen hospital provides fitting medical treatment for the patient’s needs; 

“(c) the expected duration of the trip from [the site of request to the hospital] does not exceed the 

maximum estimated time for avoiding life-threatening” developments [4]. Constraints are 

assigned, and it can be noted that the first one ensures that each request must be assigned to a 

hospital that is capable of providing the needed medical care. The second constraint enforces the 
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time limit of condition (c). The cost is composed of the amount of time that it takes to get from 

the request location to the hospital and the other part of it is a function of the number of patients 

awaiting medical care. This second component is where the load-balancing is accounted for by 

“[estimating] the needed waiting time for processing all…requests assigned to [the hospital] with 

the aim of penalizing emergency department overload situations” [4]. The waiting functions that 

the researchers use were created by doing statistical analysis on the datasets from the Department 

of Epidemiology of the Regional Health Service of Lazio, Italy, which is their ED system. A 

real-time first aid requests assignment algorithm is proposed as a combination of the MIP model, 

a relaxation of the MIP model with respect to workload, and “the availability of a quick 

combinatorial solution of it” [4]. This will serve as a starting point for any continuations of the 

study and will be an online ambulance request allocation that does triage in a centralized manner.  
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3 The Ambulance Problem 

The purpose of the hospital matching algorithm is to optimize the way that patients are 

distributed to hospitals based on a variety of factors like distance to the location and what level 

of care the hospital will need to provide. 

The hospital matching algorithm has 3 subcomponents that allow it to perform its 

operation: the distance calculator, the weighted sum calculator, and the top three field hospitals 

calculator.  

1. There are two distance calculators that are available for use, but currently the algorithm is 

finding Euclidean distance between the patient location and the hospital locations. 

2. The weighted sum calculator takes in the factors that the EMS worker enters and the 

importance of each for a given hospital and returns the weighted sum.  

3. The top 3 field hospitals calculator takes in a list of field hospitals, a list of factors given 

by the EMS worker, and the importance of each factor and gets the weighted sum for 

how well each hospital meets the needs. The best three field hospitals are those with the 

lowest weighted sums, and are returned to the user in order of ranking with the first 

hospital having the best services for the patient.  



 10 

 
Figure 1: Flow of information for Ambulance program 

An EMS worker can be responsible for inputting the patient’s preferences information, 

such as what their state of health or injuries suggest for what level of care or what tools should 

be available at an ideal hospital. The location of the patient should also be provided in any case. 

The variables of distance and level of care should also be rated by importance, or provided as 0 if 

not applicable. The program will then take the variables, their levels of importance, and hospital 

information related to the variables and calculate three hospitals in order of suitability that it 

would recommend the patient go to. The way this information is sent through the program is 

displayed in Figure 1 above. 
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4 Current State 

 After getting the program itself to work, I began designing the problem optimization. I 

started off with modelling the problem in Gurobi with a binary linear programming style. Below 

is Table 1, which displays the organization of the problem with some sample values. 

Hospital Patient Need #1 Patient Need #2 Distance 

1 3 0 20 

2 0 5 10 

3 3 5 31 

4 0 0 11 

5 3 5 12 

Table 1: Ambulance problem formulation 

When you formulate a Linear Program (LP) in Gurobi, there are four components to 

specifying the problem: decision variables, the objective function, structural constraints, and 

nonnegativity constraints. The decision variables are what we will control in order to solve our 

need, in this case we are choosing certain amounts (xj) of each food type (j). The objective 

function is the way we calculate what we want to minimize or maximize for the problem, in this 

case we want to calculate the minimum cost for our choices of amounts of each food. The 

structural constraints are the requirements that we need to fulfill, in this case the minimum 

amount of each nutrient (#1 and #2) we need to get from the foods. The nonnegativity constraints 

are a statement of whether we can have negative amounts of our decision variables, and in our 

case we cannot so we must have at least 0 units of each food type. If there a hospital does not 

meet a certain need then that variable will be omitted from the structural constraints. Below in 

Table 2 are my specifications for the four components to the problem: 
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Decision 

Variables 

Objective Function Structural 

Contraints 

Nonnegativity 

Constraints 

xj = 0, 1 minimize 3x1+3x3+3x5≥3 Not applicable in 

case of boolean 

j = 1, 2,…, 5 20x1+10x2+31x3+11x4+12x5 5x2+5x3+5x5≥5 j=1, 2,…, 5 

Table 2: Ambulance Linear Program components 

Above is the result of running my optimization, with the results behaving as I had 

expected, and those being a minimum distance of 12 units and hospital 5. After this Gurobi 

optimization had been squared away, I shifted my focus onto modelling the problem in Gecode, 

which is a C++ optimizer to match the language the program is written in. I used MiniZinc as an 

interpreter to write the optimization in, and although the syntax is less readable than Gecode, on 

the second try I got the proper results, which agreed with those of Gecode. The full write-up for 

the optimizations I made in Gurobi and Gecode can be found in Appendix A. 

I also began researching load balancing and different optimization techniques in order to 

sort the parts of our problem into which ones can be done through optimization and which should 

be done iteratively. The issue of recommending a hospital based on the distance and the patient’s 

needs is a mixed integer linear programming problem, with the distance being an integer and 

whether the hospital meets the needs of the patient being a binary value. If we have the potential 

to distribute our patients across the hospitals more evenly we could use binary linear 

programming to say whether the patient should go to that hospital and maximize the remaining 

supplies for a hospital. That is to say that if we know the amounts of supplies for each hospital, 

then we should favor hospitals that have more supplies available. Now, if the project is able to 

accommodate the idea of taking multiple patients in an ambulance, I believe that discrete 
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optimization programming would be a potential way to optimize this. Table 3 below displays 

how this might be organized, as gathered from Appendix B. 

 Patient 1 Patient 2 

Time of injury t0 t0+∈ 

Procedure needed p0 p0 

Transport time τ0 τ0 

Delay permissible d0 d0 

Table 3: Discrete Optimization program formulation for multiple patients in ambulance 

The budget which the time to transport would have to be constrained to stay below is the 

delay that is permissible for the patient before their health begins to decline. Finally, triaging 

would be a binary linear programming problem where it would simply be a matter of assessing 

which category of trauma center or level of urgency the patient would fall into and saying 

whether or not the patient falls into each triage level or not. 
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5 Future Work 

The future of my work would be composed of extending the program to have the data of 

whether the hospital has the supplies to provide for the need the EMS worker specified for the 

patient and continuing research on load balancing and other optimization techniques. Since the 

hospital would either have or not have the resources required to meet the patient’s need, this 

would just be a value of 0 or 1. As mentioned previously, this would then be a mixed integer 

linear programming problem. Then an optimizer like the ones I wrote in Gecode and Gurobi 

could be used to find the maximum weighted sum value while minimizing the distance between 

the patient and the hospital. 

If we have data on the resources that a hospital has, then we might consider not just what 

is best for the patient’s immediate needs, but also the needs of future patients by load-balancing 

the patients that we send to hospitals. This would need to consider not just the amount of beds 

that a hospital has, but the actual capacity that hospitals go by when accepting patients, which 

tends to be around 85% of the total number of beds [5]. If we were able to do this, my thought 

would be that the staff would have a better workload, overcrowding would be reduced, and like 

in a processor, the buffer would be less likely to be blocked. Task-stealing in computing would 

not be instantaneous in a real-world case like this, so it would be better to think more about the 

distribution of patients to hospitals beforehand. This might result in longer distances, but 

according to the delay permissible for the patient, we could do this only for those patients who 

can afford it and save a reallocation of patients who cannot. 

The eCDR for my team’s study will be available in WPI’s Gordon Library’s database and 

has been submitted for publication [6].  
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Appendix A: Ambulance Problem Optimization Writeup 

Regarding the diet problem that I did in Gurobi, I followed the video tutorials that can be 

found here and here for part 2. It is written in Python because that is the most supported language 

that Gurobi uses, and is good for learning how to use Gurobi since it is readable. The diet 

problem is basically like if you were to go to the grocery store and want to get the minimum 

amount of nutrients that you need from a selection of foods while minimizing the cost. Each food 

has a certain amount of nutrients that it offers, different nutrients, and a cost. When you 

formulate a Linear Program (LP) for this problem in Gurobi, there are four components to 

specifying the problem: decision variables, the objective function, structural constraints, and 

nonnegativity constraints.  

https://www.youtube.com/watch?v=oBTJNRXyUu0&t=466s&ab_channel=GurobiOptimization
https://youtu.be/O0_ZPT2pd-M
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The decision variables are what we will control in order to solve our need, in this case we 

are choosing certain amounts (xj) of each food type (j). The objective function is the way we 

calculate what we want to minimize or maximize for the problem, in this case we want to 

calculate the minimum cost for our choices of amounts of each food. The structural constraints 

are the requirements that we need to fulfill, in this case the minimum amount of each nutrient (#1 

and #2) we need to get from the foods. The nonnegativity constraints are a statement of whether 

we can have negative amounts of our decision variables, and in our case we cannot so we must 

have at least 0 units of each food type. 
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 Above is where I made the model object (m), and added a variable for each of the foods. 

By the nonnegativity constraint, the lower bound (lb) must be 0, and the upper bound is not 

defined so we can set it to infinity. The objective function is about the cost, so for the obj 

variable we set the cost of each food. The vtype is specified as continuous or integer, which is 

continuous in our case since our decision variables can be any real number not less than 0. 

Finally, the name variable is where you can set a name for when you write this out to a file (xj 

names are just for the terminal session). We do not need to write out all of these variables for 

each food, just the variables that change, which are the costs and the food names. After making 

the variables you must perform ‘m.update()’ to actually write to the model. 

 

 Next, we can make the structural constraints and add them to our model. You will use xj 

names for your food variables here and multiply them by their amounts of nutrients. For foods 

that do not have a certain nutrient, you do not have to write ‘0*xj’, just omit. I went straight into 

optimizing the problem because the model will be updated automatically with the optimize 

function. 
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 Here is the solution of the problem, with the minimum cost being $131 and the foods that 

were chosen were 1 unit of food 4 and 10 units of food 5. 

 

The Ambulance Problem in Gurobi 

Firstly, what is the problem I want to model? 
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Well, there is a patient who needs to get to a hospital, preferably the one that suits their needs the 

best. A patient has needs, or constraints, which the hospital must satisfy. If the EMT/EMS 

operating the app determines that the patient needs a certain level of care, the recommended 

hospital should meet this demand, especially if the EMT/EMS ranks this demand as having high 

importance. 

 

Following suit as I did for the diet problem, we can represent the Ambulance Problem as such: 

 

The Ambulance Problem Formulation 

 

Field Hospital (FH) #1* #2* Distance 

1 3 0 20 

2 0 5 10 

3 3 5 31 

4 0 0 11 

5 3 5 12 

 

*ranking num if meets demand, 0 if not 

 

Demand Requirements: 

#1 ultrasound machine (ranked 3) #2: level 4 trauma center (ranked 5) 
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Decision Variables: 

xj = to go to FH or not  

j = 1, 2,…, 5 *for each FH option 

 

Objective Function: 

minimize 

20x1 || 10x2 || 31x3 || 11x4 || 12x5 

 

Structural Constraints: 

3x1 + 0x2 + 3x3 + 0x4 + 3x5 >= 3 *should offer at least one FH that meets requirement 

0x1 + 5x2 + 5x3 + 0x4 + 5x5 >= 5 

 

Nonnegativity Constraints: 

xj = 0,1 

j = 1, 2,..., 5 

 

The decision variables are what we will control in order to solve our need, in this case we 

are choosing whether or not to go to (xj) each field hospital option (j). The objective function is 

the way we calculate what we want to minimize or maximize for the problem, in this case we 

want to calculate the minimum distance from patient to FH for our choices of which field 

hospitals to recommend. The structural constraints are the requirements that we need to fulfill, in 

this case the minimum ranking we need to achieve to say we satisfied each demand (#1 and #2) 
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the patient makes of the FH. The nonnegativity constraints are a statement of whether we can 

have our decision variables being boolean values, and in our case we cannot only half satisfy a 

demand, it either is or it is not. 

 

 

 

Above is where I made the model object (m), and added a variable for each of the FH’s. 

By the nonnegativity constraint, the lower bound (lb) must be 0, and the upper bound is 1 since 

we either go to an FH or we do not. The objective function is about the cost, so for the obj 

variable we set the distance to each FH, as this could impact the state of the patient by the time 

they arrive. The vtype is specified as binary in our case since our decision variables can either be 

0 or 1. Finally, the name variable is where you can set a name for when you write this out to a 

file (xj names are just for the terminal session). We need to write out all of these variables for 

each FH, because the variables we use are not the defaults. After making the variables you must 

perform ‘m.update()’ to actually write to the model. If you mess up on adding a variable like I 

did with x4, you can use the Model.remove(var) method to remove it.  
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Next, we can make the structural constraints and add them to our model. You will use xj 

names for your FH variables here and multiply them by the rankings of the demands the FH’s 

meet. For FH’s that do not meet a certain demand, you do not have to write ‘0*xj’, just omit. I 

went straight into optimizing the problem because the model will be updated automatically with 

the optimize function. 

 

 

 

Here is the solution of the problem, with the minimum distance being 12 and the FH that 

was chosen was FH 5. 
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The Ambulance Problem in Gecode 

 

Here I have modeled the Ambulance Problem with the MiniZinc IDE. My variables are 

booleans, which removes the need for a constraint of 0 or 1 for each of the field hospitals. I tell 

the program to minimize the distance for the field hospital it chooses, as seen in the final line. 

However, I have gotten unexpected results from this model, so I will need to alter this model to 

get the same results as I did with Gurobi.  

For documentation’s sake, below is a screenshot of my results. By looking at both the 

rankings and the distance for these chosen field hospitals, it does not seem to be minimizing 

distance or maximizing rankings.  
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Here, depicted below is the new version of the Gecode code made with MiniZinc that provides 

the two best solutions to the problem. This resolves the issue of the last code that was providing 

answers that did not match the choices I expected.  
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1 Technical Content  

1.1 Executive Summary  

There is substantial overlap between the scheduling and dispatching of medi cal resources (e.g., transport, field 

hospitals, personnel, supplies) in multi- and mass-casualty situations and the scheduling and dispatching of 

computational tasks onto computer resources. Scheduling and dispatching based upon time utility functions[149] 

is already used by the military, but not, to our knowledge, in pre-hospital care. While this technology has already 

shown its usefulness in other domains, applying this technology to triage is innovative. The proposed applied 

research is to transfer this advanced technology to, and demonstrate its use for, pre-hospital medical care in a 

prototype. In a triage situation, medi cal care is rationed and patient outcomes are achieved. In deploying computer 

resources for efficiently generating value with multiple resources from among a multiplicity of tasks, these ideas 

occur as amount of resources applied and amount of utility obtained. Migrating to a rationing methodology where 

pa tient care is scheduled and dispatched according to principle of “most utility expected to be obtained” could be 

disruptive to the scenario of provision of care. Yet this technique is expected to deliver more value in terms of 

patient outcomes while using the same resources. The intended result is to improve Army operational capability in 

the domain of human performance of medical care personnel. This work aims to provide “effective augmentation 

of Soldiers in areas of cognition, perception, and physical performance”, for medical person nel. Those Soldiers 

involved in choosing the particular application of medical resources (including personnel) that can be expected to 

yield the most value in terms of patient outcome, can be aided by decision support. The decision sup port system 

proposed herein will be informed by individual patient vitals signs, and also by machine learning training over 

databases of related information.  
Medical personnel in field hospitals save up to 98% of patients who arrive alive (Mabry 2015). The keyword 

is alive. Approximately 87.3% (n = 4,596) of injury related deaths occur before the patient arrives at a field hospital 

and, of those deaths, up to 25% (n = 3,040) are preventable (Eastridge 2012). For improvement, we look to support 

pre-hospital care. In a mass-casualty situation, pre-hospital care, including transport, is subject to relative scarcity. 

In such situations, triage is applied. Within the categories created during triage, further optimization is sought. 

Inspired by a proven technology from the scheduling and dispatching of computational tasks to computer resources, 

we aim to schedule and dispatch medical resources over a collection of patients, in order to deliver a larger 

percentage of casualties, yet living, in time for field hospitals to provide care. AVEMS uses a patient’s vital signs 

collected from sensors, including the time course of vital signs, to estimate the time available for transport, such 

that the time for the field hospital’s medical procedures, corresponding to the estimate of the injuries, will be 

available while that patient is alive. Thus a patient whose care is more urgent can precede a patient whose care is 

less urgent. A patient who is closer to a field hospital might wait longer for transport than  
a patient who is farther away, but more in need of transport from a standpoint of urgency.  

With sensor data from wearable sensors, and communications technology, we can pool data from casualties. 

This data can inform caregivers performing triage in multi- and mass-casualty situations. An indicator associated 

with this electronics can be used to signal to the emergency medical personnel which patient has been chosen by 

the medical care team to be next for treatment.  
By working with this data, applying some algorithms from dynamic schedul ing and dispatching of 

computational tasks onto computer resources, attempting to quantify the amount of patient well-being that is 

obtained through the ap plication of medical resources, we intend to provide a decision-support tool’s initial 

recommendations for assigning, in the pre-hospital time-frame, patients to transportation resources (which may 

carry resources such as blood to the patient), and destination field hospitals.  
We also intend to program the decision support tool so that it will recalculate its recommendations in 

response to editing of the plan by the users.  

1.2 Discussion  

1.2.1 Scientific Research Objective  

The objective is to save more lives, and improve medical outcomes for casualties in scenarios where triage is 

performed. The medical resources available (numbers and locations of beds, field hospitals, personnel, supplies, 

etc.) are the same before and after the sought improvement.  
By definition, relative to the medical needs, there is a scarcity of care, and thus assignment of patient care tasks 

to patient care resources must be done. The improvement is obtained by a different scheduling and dispatching of 
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care to the patient population. This assignment must be done in a dynamic and complicated environment; personnel 

carrying out this assignment can be aided by decision support. The decision support provides an intial 

recommendation, and the personnel can override a recommendation, and see a revised recommen dation.  
Our aim is that the care is deployed to the greatest effect, in terms of the most restoring of Soldier welfare.  

1.2.2 Approach  

The approach makes use of data from wearable sensors for the specific patient. There are also a small number of 

indicator LEDs on this equipment pack. It is true of the present system of triage that patient data is provided, and 

choices about the sequencing of patients for care are made. At this level of detail our approach is the same. It is 

the method by which the choices about sequencing of patients for are made that may differ. An example exhibits 

the difference. The principle is described next.  
An example scenario demonstrates the difference that principles for choosing the next patient can make. 

In this example there are two patients, and one medical resource. A timeline is shown in Figure 1. Scenario, first 

method of triage  
The first patient is injured at time t0. Medical staff decide that this patient should receive procedure p0, which 

implies transport. The expected time for transport plus treatment is τ0. (Transport includes dispatching a vehicle to 

the site of injury, bringing the Soldier to the hospital and transferring to hospital care.) It is the case that this patient 

can be expected to survive with the same outcome if treatment were to be delayed by d0. The delay d0 is greater 

than the time to transport and administer the treatment, τ0. Transport to hospital commences. The second patient is 

injured at time t0 +  , where   is chosen to be long enough for the treatment of the first patient to have commenced. 

Medical staff decide that this patient should receive procedure p0. Unlike the first patient, this patient cannot be 

expected to survive with the same outcome, if treatment were to be delayed. When the treatment sequence treats 

the first patient first, the second patient’s outcome is not as good as it might have been. Additional transport 

commences.  
Scenario, second method of triage  

The first patient is injured at time t0. Medical staff decide that this patient should receive procedure p0, which implies 

transport. The expected time for transport plus treatment is τ0. (Transport includes dispatching a vehicle to the site 

of injury, bringing the Soldier to the hospital and transferring to hospital care.) It is the case that this patient can be 

expected to survive with the same outcome if treatment were to be delayed by d0. The delay d0 is greater than the 

time to transport and administer the treatment, τ0. Transport to hospital commences. The second patient is injured 

at time t0 +  , where   is chosen to be long enough for the treatment of the first patient to have commenced. Med ical 

staff decide that this patient should receive procedure p0. Unlike the first patient, this patient cannot be expected to 

survive with the same outcome, if treatment were to be delayed. Either additional transport commences if avail 

able, or the first transport is redirected to the second patient, based upon the following considerations: Redirection 

results in a reduction of transport time for the second patient that can be expected to be significant in terms of 

outcome for second patient.  
Redirection results in an increase of transport time for the first patient that can be expected to be insignificant in 

terms of outcome for the first patient.  

As Figures 1 and 2 show, there can be situations where more lives are saved, or more patient welfare is saved, 

when one patient may be safely delayed so that another may be safely expedited. Thus the ability to perform the 

scheduling and dispatching with knowledge of which patients require to be expedited and which patients may 

safely wait is needed. When the ability to make these diagnoses is extended by data transmission, and supported 

by a fuller dataset (not only instantaneous vitals but also their history), the opportunity to save Soldier welfare is 

increased.  
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 Figure 1: Timelines for approach one.  

 

Figure 2: Timelines for approach two.  
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Figure 3: Sensor data from the patient is used in preparing, within a mo bile phone geographical information system 

(GIS) software, the 9-line form, for transmission into the Blue Forces application.  

Figure 4: Sensor data is input to the convex function parameter estimation process. This process is to be trained on 

vital signs and other data, and labeled with associated medical treatment, especially the length of time to stabilize 

the patient.  

Moreover, situational awareness is increased, because people supplying trans port will receive information 

about whether or not patients in their care are next in sequence, and also because more data from patients can be 

delivered to hos pitals. We aim to provide a force multiplier by transmitting the judgement of the medical personnel, 

such that those personnel, with the support of the sys tem, control the indicator LEDs allowing less skilled personnel 

to identify the patient next in sequence for care. One force multiplier arises because those pa tients who seem able 

to sustain a delay can be differentiated from those patients who cannot, and the attending personnel can devote 

their attention in the most effective way.  
The approach also uses a collection of historical data from many casualties.  

@Alex: Consider placing the one-pager here, and then consider describing the places that the data reside, and 

where the computations are carried out.  

There is an artificial intelligence (AI) component that uses the data from the individual patient to predict 

certain parameters (see below). The ability to predict results from training on the collection of data from many 

casualties.  

The parameters whose values are estimated by AI are then used to represent the situation as a time/utility 

function.  
The time/utility function for each patient in a multi-casualty situation is input to the scheduling and dispatching 

computation, along with that of all the other casualties in a geographic area served by a (dynamic) set of field 

hospitals (and transport vehicles and other resources).  



 32 

The result is a (continually updating) recommendation for scheduling and 

 

Figure 5: A simple convex function with three parameters: initial height, time at height, angle of descent. The time 

at height will be divided into two parts: al lowed transport time, estimated time needed for treatment at hospital. 

Allowed transport time = time at height - estimated time needed for treatment.  

dispatching medical resources to each individual patient. This is a decision support system for triage.  

Time/Utility Function The convex curve described above is an example of a time/utility function. The vertical 

axis shows the value, in our case, patient welfare. The horizontal axis is time. An interval of time devoted to restor 

ing patient welfare can successfully aid the patient, if the interval begins soon enough. If the interval begins too 

late, the patient is lost, or the amount of patient welfare that can be restored is diminished.  
With sensor data from wearable sensors, and communications technology, we can pool data from casualties. 

This data can inform caregivers performing triage in multi- and mass-casualty situations.  
By working with this data, applying some algorithms from dynamic schedul ing and dispatching of 

computational tasks onto computer resources, attempting to quantify the amount of patient well-being that is 

obtained through the ap plication of medical resources, we intend to provide a decision-support tool’s initial 

recommendations for assigning, in the pre-hospital time-frame, patients to transportation resources (which may 

carry resources such as blood to the patient), and destination field hospitals.  
We also intend to program the decision support tool so that it will recalculate its recommendations in 

response to editing of the plan by the users.  

Obtaining the Convex Value vs. Time Characterization One use of the sensor data (including its time course 

for the patient) is to obtain three quantities.  

 
Figure 6: Notional presentation to... Are there multiple different?  
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For finding out how long it might take to treat a patient, from the vitals, we divide the problem. Part 1: get from 

vitals to treatment protocol, Part 2: get from treatment protocol to time. The estimates may inbdeed have variances 

that are large.  
(Hi team, Concerning the notion of estimated time needed for treatment, this is not supposed to include long-

term recovery, this is intended to mean the care needed to bring the patient to a state from which longer term care 

may commence. I’m thinking “while in the emergency room”. I’m vague about this. Someone who knows this 

environment better will, I hope, clean up the language. Maybe there is the idea of the immediate critical care team, 

and the idea of a handoff to a different team. )  
Looking at this figure we can see what the algorithm is dealing with. The time at which the decline in the ability 

to restore the patient occurs is made equal to the time by which the patient’s initial treatment needs to be completed. 

This might be quite significant. Compare this with an emergency operation that concludes with a patient going into 

long term recovery. There might not be a lot of attention paid to by how much time that patient escaped a worse 

outcome. By noticing that time interval, and adjusting it to be small, we might be using a resource that people are 

not paying a lot of attention to. The benefit is, that time becomes available for the “transport time allowance”. The 

risk is, we estimate the treatment time to be smaller than it actually is, and lose the patient’s welfare. So we need 

to be somewhat conservative in our estimate of treatment time. Moreover, we can expect that medical personnel 

performing this treatment might be subject to more stress than before.  
The values for initial height, time at height and angle of descent could be estimated by using machine learning. 

We could use annotated patient data to train machine learning algorithms to classify patient data, such that the 

trained device would estimate these three values from newly input patient data.  

Human-Computer Interfaces for Medical Personnel The several human computer interfaces provide 

functionality...  

1.2.3 Relation to similar research  

Obtaining vital signs and related health metrics Hi team, There are lots of publications in this area.  

Mobile phone supported open source GIS for describing location and launching 9-line form Hi Brandon, 

thinking of you here.  

Local storage  

 
Transmission  

Presentation to Health Professionals Hi Alex, you’ve been thinking about this for years  

Carrying out Triage  

Carrying out Triage based upon Situational Awareness 

Carrying out Triage based upon vital signs  

Utility-based Dynamic Scheduling/Dispatch Hi Patrick, you’ve been reading Jensen’s work Hi Yang Chen, 

you’ve been thinking about AI and ML and training an algorithm to predict time-remaining-for-treatment, and 

descent rate for ability to save patient  

Optimization Applied to Transporting Patients I began optimizing the problem of recommending field hospitals 

according to patients’ demands using the Python-based modeling software, Gurobi. I modeled it as such: the 
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decision variables for the problem are the field hospitals which the program has to choose between, the objective 

is to minimize the distance that it takes to reach the field hospital based on the patient’s location, and the structural 

constraints account for the rating of importance that the EMS worker designates for the patient’s needs. The values 

for the field hospital variables can either be 0 or 1 since the patient should either be recommended to go to a given 

hospital or they should not. Modelling this in Gurobi has provided the solution that I expected, and so I have moved 

on to modeling the problem in Gecode using the MiniZinc IDE, since this is based on C++ which fits with the rest 

of our codebase for this problem. I have replicated my model in MiniZinc, however Gecode is not giving the answer 

I would expect based on the results in Gurobi, so I will continue to work to right this.  

Decision Support for Health Professionals Scheduling and dispatching of tasks characterized by time/utility 

functions has been applied, perhaps mainly in classified military systems.  
Across the world there are multiple standards for how triage is performed. That dissertation from spring 2021 

about whether or not a MEDEVAC is dispatched.  
How is the next patient to be treated determined?  
(Hi Alex, When your dad is feeling better, perhaps you can ask him how we can get the benefit, in terms of 

convincing program managers about this technology, of military experience that we do not share. One part is, Doug 

Jensen has said he would work on this with us, and he’s one who has been doing the work we don’t know much 

about.)  

 
1.2.4 Facilities and Infrastructure  

PI’s Current Computing Facilities and Resources  

WPI’s High Performance Research Cluster  
WPI runs a high performance research cluster with 20 high end servers and 48- GPU cluster. This cluster was 

specifically created to support big data research such as the one described in this proposal. This cluster is managed 

using cutting edge virtualization technology and has an impressive collection of data analytics and machine 

learning software including MATLAB, Weka and Nvidia GPGPU computing compile IDE.  
WPI Computer Science Departmental Computer Facilities  

The WPI CS department has eight labs dedicated to CS education and re search. The department’s compute 

servers consist of 4 Opteron nodes with 24 processors and 56GB RAM total. Four dual Xeon servers with 12 

GBRAM, several Pentium 4 servers, and one UltraSparc are dedicated to different re search groups. Additionally, 

one 1.2Ghz AMD Athlon XP with 1GB RAM is available for compatibility testing. All departmental machines use 

SuSE Linux or FreeBSD as their operating system, but FreeBSD, Solaris, and several other versions of GNU/Linux 

are used by research groups. There are approximately 200 PC’s and a few Macs in the CS department, about 115 

of which are used as personal or lab desktop computers. An additional server and 34 GNU/Linux workstations 

comprise our OS programming “Fossil” lab.  
Access to Staff and Meeting Rooms  

The PI has access to Computer Science Department system administrators and technical support staff who work to 

ensure that all departmental computing resources run smoothly. These technical staff will also provide support for 

any hardware, software, smartphones and technical resources acquired for this pro posed project. The PI also has 

access to support staff in the Computer Science office, assisting with arranging meetings and planning events, 

departmental sec retaries and department work study students. They also have access to office spaces and meeting 

rooms.  
Campus Center and Meeting Rooms  

The WPI Community has access to the Campus Center that provides a ”physi cal, social and philosophical link 

between academic (and residential) portions of the campus.” Completed in Spring 2001, the WPI 2 Campus Center, 

serves as a place for community, collegiality, socialization, and learning. The program for the Center includes work 

and meeting space for faculty, staff and student organi zations, conference rooms, mail facilities, dining food court, 

game room, college bookstore, large multipurpose facilities, visitor reception for campus guests, and lounges. The 

Events Office and Campus Center administrative office work as a team in scheduling facilities in the Campus 

Center. All of the meeting rooms have state of the art instructional media equipment installed in the rooms, and are 

sufficient to house any planned user studies, experiments or meetings planned to either gather data or evaluate 

preliminary versions of our prototype.  
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Campus Wide Computing Facilities and Services  
Additional computational resources are available through the campus computer center, which maintains multiple 

high-performance clusters, more than a dozen file and web servers, and many hundred PCs for both general and 

course-specific use. As part of the Information Technology Division, the Computing and Com munications Center 

(CCC) provides the communications, computing, and stor age infrastructure, as well as the software utilities and 

applications to support the academic, research and administrative activities at WPI. The CCC contin ues to expand 

and adapt, incorporating new systems and technologies to ensure that WPI remains a leader in the use of technology 

in higher education. The computational resources available to the PIs maintained by CCC include mul tiple high-

performance clusters, more than a dozen file and web servers, and several hundred PCs for both general and course-

specific use. Numerous com puter labs, containing different kinds of computers, printers, and peripherals, are 

scattered around campus.The CCC maintains servers which are accessible from anywhere on campus. These 

servers provide a wide range of software and services such as e-mail, newsgroups, web pages, and network printing 

to members of the WPI community. The CCC is committed to the continuous maintenance, availability, and 

backups of all official computing equipment on campus. The CCC servers are located in WPI’s primary server 

room, which is equipped with primary and backup power, environmental, and communica tion systems. Physical 

access to this room is strictly limited to current WPI systems administrators by means of electronic locks. 

Additionally, an alarm system that is constantly monitored by campus police has been placed to con trol access to 

the room and eliminate theft. The CCC also offers technology support services to WPI students, faculty and staff 

on a wide variety of systems and platforms. These support services include access and installation of the latest 

versions of software packages on all of the machines on campus, ranging from Microsoft Office Professional Plus 

2010, Microsoft Office for Mac Standard 2011, Windows 7 (32 and 64 bit), to McAfee virus protection software. 

It also includes regular automated backups and continuous archival services. Last but not least, a 24 by 7 help desk 

provides technical support as well as instruc tions on many of the latest technologies to all members of the WPI 

community (http://www.wpi.edu/Academics/CCC/Help/).  
WPI Library  

The George C. Gordon Library is a state-of-the art facility http://www.wpi. edu/Academics/Library/About/ that 

contains a vast collection of physical and digital books and journals. It subscribes to numerous electronic journals 

in areas closely related to the proposed research work. It also houses collaboration and study spaces that this project 

can use for some meetings, if reserved ahead of time. The Tech Suites are work areas with cutting-edge 

technologies and are available by reservation to all WPI faculty, staff, and students. The Anderson Instruction Labs 

are computer training labs available for staff, but on evenings and weekends Lab A can be scheduled by groups. 

These resources are available to the entire WPI community.  

 
1.2.5 Level of Effort  

PI co-PI (General (ret.) Miera) 5 undergraduate students 1 graduate student (PhD) 1 consultant E. Doug Jensen, 

PhD. 1 consultant 1 consultant  

1.3 Manner Contribute to Army’s mission, how demon strated  

We aim to show that the same amount of medical care can be deployed dif ferently, with the result that more patient 

welfare is retrieved. This can be in terms of a combination of better outcome per patient, or more patients saved.  
The disruptive idea includes that the patient to be treated next is recom mended by the decision support system, 

with a different approach. Because the patient data is part of the situation, and the situational awareness can be 

more broadly distributed, the order in which patients are treated can be different that it would otherwise be.  
In the case of scheduling and dispatching computer tasks, there are multi ple possible objectives. One possible 

objective is tasks per time, which would correspond to patients stabilized per time. A different objective is meet 

the most deadlines among the competing tasks. This objective corresponds to the most lives saved, because the 

result of treatment not being sufficiently timely is associated with non-survival of the patient.  
We intend to demonstrate, over multiple scenarios with patients numbers, injuries, geographical distributions, 

the choices triage systems would make, as a function of the objective in use, and the set of patients included in the 

triage decisions.  
We hope to show that by increasing the membership of the set of patients included in triage decisions (by 

including those whose data is being forwarded) , and the set of information about these patients, and varying the 

objective is use, that time utility based scheduling and dispatching will recommend a different order in which 

patients would be treated, and that the revised order will result in more patient welfare being retrieved by care.  
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1.3.1 Contribution to Army’s mission  

Our team includes personnel with experience as Army medics... They will rec ommend HCI functionality and 

interfaces ...  

1.3.2 Demonstration  

Methods To demonstrate the benefit of the scheduling and dispatching, sim ulations are run. The simulation 

generates randomized mass-casualty scenarios, with injuries sustained over a time interval and spatial extent. The 

simulation is parameterized by the resources available: number, stocking and location of field hospitals, numbers 

of transport vehicles of various capabilities.  

 
Metrics The simulation estimates the number of patients who are able to be brought, alive, to a field hospital with 

resources allowing them to be saved. Two such estimates are made: one for present approach to triage, and the 

other using time/utility-based scheduling and dispatching.  
For usability of the decision support software, this will be demonstrated by providing a (are there more than 

one?) prototype human interface.  

Results  

1.4 Research Facility  

1.4.1 Local Storage of Data  

1.4.2 Transmission of Data  

1.4.3 Data Repository  

1.5 Support  

2 Schedule and Cost  

Table containing phases, deliverables, milestones.  

3 Addendum  

E. Douglas Jensen, Ph. D  
E. Douglas Jensen is internationally recognized as one of the original pioneers, leading visionaries, and 

accomplished engineers of distributed real-time systems– especially application-specific (notably dynamic) ones 

for the defense and space domains.  
His seminal research led to the world’s first deployed commercial product for distributed real-time computer 

control systems – the highly successful Honeywell H930 weapons control system for littoral combat ships. He 

subsequently made important contributions to the first commercial distributed computing product for industrial 

process control, the Honeywell TDC-2000. In 1977 he was the recipient of Honeywell’s highest technical award 

for his contributions to the principles and practices of distributed real-time systems.  
For the next eight years he was on the faculty of the Computer Science Department, and the Electrical and 

Computer Engineering Department, at Carnegie Mellon University. There he created and directed the largest 

academic real-time research group of its time. He lectured and consulted extensively for corporations, government 

agencies, and universities in 55 countries on every continent except Antarctica.  
Subsequently he joined a startup and then held senior technology leader ship positions in several major 

companies. There, he advanced the theory and practice of application-specific hardware (e.g., GPU, FPGA, ASIC) 

augmented dynamic distributed real-time systems (which are important in the defense do main).  
After he retired (from being a corporate employee) he is in high demand for lectures and consulting for industry, 

academia, and governments throughout the world. See his consulting practice time-critical-technologies.com. He 

limits his consulting primarily to classified combat platform (air, ground, ocean) manage ment and battle 
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management (e.g., missile defense) for U.S. DoD contractors. During the Corona virus pandemic, much of his 

consulting is virtual and thus unclassified.  
He has been an author of over 150 unclassified published scholarly papers thus far, They have been cited over 

4133 times as of 1 January 2021 (Google Scholar). A list is at https://dblp.org/pers/hd/j/Jensen:E=_Douglas. (His 

classified work is not publically available.)  
Specialties: Dynamic real-time systems, application-specific RTOSs and CPUs, cyber-physical systems, 

combat and sensor platform management, BMC2, net work centric warfare, ballistic and cruise missile defense. 

Active DoD security clearance.  
James Ryan, Ph. D  

 
We will find relevant work, including from our annotated bibliographies.  
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being able to replace a tourniquet with a hemostatic or pressure dressing  
Every effort should be made to convert tourniquets in less than 2 hours if bleeding can be 

controlled with other means  
under an approved command or theater blood product admin istration protocol – Is theater a 
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Transfusion should occur as soon as possible after life threatening hemorrhage in order to keep 

the patient alive. – sounds like preHospital, but how are supplies of cool, screened O blood 

available? Is this a case for drone delivery?  
absent breath sounds, and hemoglobin oxygen saturation ¡ 90% support this diagnosis–to be 
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refers to on evacuation platform  
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drone delivery?  
For all casualties given opioids, ketamine or benzodiazepines – monitor airway, breathing, and 

circulation closely.– sensors? Monitor for respiratory depression – sensing  
determine if the casualty is decompensating. – sensing  
If that fails, provide ventilatory support with a bag-valve-mask or mouth-to-mask ventilations – 

used  
Hypothermia – monitor closely as exposed abdominal contents will result in more rapid heat 

loss – sensing  
Aggressively monitor airway status and oxygen saturation in such patients – sensing  
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by the U.S. Army Spectrum Management Office.  
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telemonitoring.  
reduce the burden on medics and to alert and prepare a hospital for en-route patients through 

telemonitoring  
Field hospitals lack situational awareness of incoming patients’ injuries and treatments because 

of limited communication networks between ambulances and hospitals. The effects are felt at the 

hospital when the medic must provide a short verbal report in a noisy, high-stress environment at 

time of arrival. These short verbal reports may not be comprehensive and are not available for 

further reference by the attending physician.  
Medical Hands-Free Unified Broadcast (MEDHUB)  
MEDHUB is an automated electronic medical documentation and communication system 
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medic. Effective: We must deliver what warfighters need, when they need it, in a timely and 
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through iteration and prototyping. Agile: We must be willing to fail early and responsibly, and 

learn from our failures and successes. We must be creative and not become victim to a ”that is 

not how we do it here” mentality. Unified: We must become ”one team” with a laser focus on 

creating speed through shared goals and understanding, disciplined initiative, enabled decision-

making at the lowest level, and delivering valued outcomes for the Army.  
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The Telemedicine and Advanced Technology Research Center’s (TATRC’s) Health Information 
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past year. The time is ripe for the Defense Health Agency (DHA), Defense Healthcare 
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po tentially postponing lifesaving care. A team of researchers at Madigan Army Medical Center 

(MAMC) sought to determine if night optical device (NOD) technology could enable surgical 

capabilities in blackout conditions.  
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osseous devices, to advanced maneuvers such as exploratory laparotomy, splenectomy and 

placement of a resuscitative en dovascular balloon occlusion of the aorta (REBOA) device.  
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assesses the reliability of the vital signs in real time, making sure that only those deemed to be 

reliable are used. Essentially, what AP PRAISE does is to automate what experienced clinicians 

do: look at vital-sign patterns and identify those associated with life-threatening hemorrhage 
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