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Abstract

In differential geometry, surfaces of revolution form a large class of illuminating examples.
These surfaces are also useful in applications, where the assumption of rotational symmetry
can simplify a modeling problem substantially. Particularly for some problems in biology,
one might want to simulate the deformation of such surfaces. One discretized model based
on interpolation by linear segments has been presented previously in [Che+20]. We present
a new model based on interpolation by arcs of parabolas in a way that properly generalizes
the previous approach; a third model which is useful as a benchmark is obtained as a special
case. We present the results of the simulation and discuss the models’ performance and error
properties.
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1 Introduction

Among smooth surfaces embedded in R3, surfaces of revolution are some of the easiest to characterize and
provide a large selection of examples for various geometric properties. In addition to their uses in abstract
differential geometry, however, surfaces of revolution find wide usage in applications. One such example is
in mathematical biology, where surfaces of revolution can be used as models for thin membranes on the
cellular level. In the case of plant or other walled cells, the structure of the cell outline is dominated by the
mechanics of the cell wall and the internal turgor pressure, so a simplified model of the cell outline based
on a surface of revolution is suitable. For animal cells, however, the cellular structure results primarily from



the internal cytoskeleton and therefore such a model is not suitable for accurately describing the structure
of the cell.

Another wonderful application of thin-surface modeling is to cell nucleus force sensing. It has been shown
[EA+17] that exerting force on cell nuclei causes nuclear pore complexes to open, encouraging transport
across the nuclear membrane. However, it is not known whether the force sensing scheme is more dependent
on tension or curvature; one could simulate the nuclear deformation under external force and use empirical
data from the lab to infer the sensitivity of nuclear transport to each of these factors.

The mechanics – namely tensions and pressures – of surfaces of revolution are generally well-understood
in the theoretical sense but an accurate, high-performance computer simulation is difficult to achieve. It is
natural to take advantage of the symmetry of such axiosymmetric surfaces and translate questions about
the surface embedded in three-dimensional space to questions about its generating curve embedded in two
dimensions. With high-resolution small-scale imaging one can see membrane outlines which are thought of as
the generating curves of the membrane surface, then choose a set of marker points living on this generating
curve, and hence approximate the geometry of the surface. In this setup, the process of reconstructing the
geometry from this set of marker points is highly dependent on how one interpolates the generating curve
between consecutive marker points. In this document we review a model based on interpolation by linear
segments and we construct a new higher-order model based on interpolation by arcs of parabolas. The
parabolic arcs model degenerates into linear segments as a special case, yielding a third model which retains
the geometry of the linear model but the force computation of the parabolic model. In all three of these
models, the surface geometry is reconstructed from a set of marker points on the membrane outline and the
resultant force is defined in terms of this geometry. Furthermore, we show evidence to suggest that the new
parabolic arcs model suitably generalizes the linear model.

The model based on parabolic arcs is not the only way to generalize the standard linear segments ap-
proach. We refer the reader to [Poz92] for a discussion of another higher-order scheme based on interpolation
by circular arcs and a sketch of an interpolation method based on cubic splines. Also important to note is the
fact that our model relies heavily on the symmetry of axiosymmetric surfaces. For a full three-dimensional
model, the situation is significantly more complicated. We refer the reader to [Xu+18] for an example of
how one might reconstruct three-dimensional geometry from general point cloud data.

As a final note, there is also interest in modelling the growth of walled cells. At the current time, the
models we present do not allow for growth or atrophy, i.e. the amount of membrane material is presumed
to be constant, but the models can be extended to simulate this phenomenon as well.

2 Background

While our models are essentially agnostic in their application, we will frequently remember the biological
analogy and think of the surface of revolution as a membrane on the cellular level, for example, the cell wall
in a plant or fungal cell. In this case we assume the internal mechanics of the cell due to its cytoskeleton to
be negligible and focus only on the elastic mechanics of the cell boundary instead.

The problem of simulating such an axiosymmetric membrane in this way has been approached before in
the literature. However, the question of tip behavior for the surface of revolution is delicate. It is natural
to use polar coordinates to parametrize the surface of revolution, and map the origin to the tip, curves of
constant r to the circumferences, and curves of constant θ to the meridians of the surface. But in polar
coordinates, the origin is a singular point in the sense that many coordinate curves converge there. Because
of this, the material quantities such as strain must be isotropic at the tip (viz. at the origin in the polar
coordinate system) in order to make physical sense. And in order to define a force at the tip, either the tip
must be smooth or some boundary condition must be imposed there, because otherwise force computation
may not be well-defined. Earlier works deal with the question of tip behavior in a variety of ways; two of
the most compelling models are due to Yanagisawa et al., and Goriely and Tabor.

In [Yan+15], Yanagisawa et al. use the FEM software Abaqus and designate an isotropic zone near
the tip. This is geometrically and mechanically sensible at the tip point for the reasons described above.
However, this approach causes numerical problems at the interface between the tip isotropic zone and the



rest of the membrane; it is apparent from Figures 2j and 2k of that article that the tensions are not smooth
over the surface, contradicting Laplace’s Law (Equation 2).

[GT03b] models growth at the tip of a walled cell where the growth is observed to be self-similar, in
other words preserving the tip geometry as the cell grows. To do this, the authors assume the growth to
be pressure-driven and define an effective pressure quantity given as a ratio of turgor pressure and local
elastic modulus. By setting up a system of coupled ODEs in the geometric quantities r(s(σ)) and α(s(σ))
of the generating curve with prescribed distributions of mechanical parameters along the profile curve, one
can solve for the cell outline. Reparametrizing the arclength to be the new material coordinate and iterating
allows one to simulate deformation over time. While this does produce compelling results, one can show
that the coupled ODE system that Goriely and Tabor give violates the Lipschitz condition at the tip point,
so the Picard-Lindelöf theorem cannot be applied and the problem might not even be well-posed in the first
place.

In this paper we will focus on a discretized vertex model based on interpolation by parabolic arcs which
generalizes the ideas in a previous model based on interpolation by linear segments [Che+20]. In that
system, linear segments cannot ensure smoothness of the approximated surface outline at the tip, so a
boundary condition is imposed for that point (see Section 3.2).

By switching to a higher-order discretization and interpolation system, we hope to achieve better accuracy
and convergence in the simulation compared to our previous approach based on linear segments. This does not
change the fact that the tip must be treated specially, remembering that the surface is assumed rotationally
symmetric. For the linear segments model, we must specify the force balance equation for the tip point.
In our parabolic arcs model, we compute the force on the tip point exactly as it is computed for the other
points, but the construction of tip-adjacent patches is different from the others – in other words, we don’t
specify the tip force but instead we specify the tip geometry. It is clear that no matter the model used, the
tip requires special treatment.

3 Models

3.1 The overarching force-balance equation

In this section we describe three models for the mechanics of axiosymmetric surfaces. Each model is based
on the local force-balance equation given in terms of the surface’s generating curve:

d(σst̂)

ds︸ ︷︷ ︸
(1)

+
σs − σθ
r(s)

r̂︸ ︷︷ ︸
(2)

− σs sinα(s)

r(s)
n̂(s)︸ ︷︷ ︸

(3)

+Pn̂(s)︸ ︷︷ ︸
(4)

= 0. (1)

This force-balance equation has been used in other articles, for example [Che+20]. Here,

• σs and σθ are tensions on the surface in the meridional and circumferential directions respectively,

• r(s) is the r-coordinate of the point on the generating curve,

• t̂(s) is the unit tangent vector pointing in the direction of increasing arclength,

• n̂(s) is the outward unit normal vector to the generating curve,

• r̂ is the unit basis vector pointing in the positive r-direction,

• α(s) is the signed angle between t̂(s) and r̂ at the point (z(s), r(s)) on the curve,

• P is turgor pressure, a constant.



This expression is obtained by computing the surface divergence of the Cauchy stress tensor, plus a pressure
term:

∇s · σ + Pn̂, where ∇s = t̂
∂

∂s
+
θ̂

r

∂

∂θ
and σ = σst̂⊗ t̂+ σθ θ̂ ⊗ θ̂.

There is a particularly nice interpretation of the force in terms of the curve’s moving Frenet frame. Along
the n̂-direction, it expresses Laplace’s Law

κsσs + κθσθ = P. (2)

Along t̂, it gives the relation
κθσs = P/2. (3)

In the discretized system, each of our models compute the force on the i-th marker point by integrating the
left-hand side of Equation 1 in a neighborhood corresponding to the arclength interval [si−1/2, si+1/2]. The
details of this integration depend on the model in question. The difference between the three models is the
geometry of the patches between points. The most simple approach models the patches as linear segments,
while a more sophisticated version models the patches as arcs of parabolas. This differing geometry affects
the computed force on each marker point when we integrate the left-hand side of Equation 1. Our third
approach uses the force computation from the parabolic arcs model but forces each parabola to degenerate
into a line segment.

Note that it is vital for the profile curve to be smooth at the tip in order to ensure that quantity (3)
doesn’t have a singularity there. Quantity (2) may still have a singularity at the tip, but it is odd about the
tip point, so one may discard it when computing the tip force.

3.1.1 Tension computation

In order to make mechanical sense of the interpolated surface in each of the three models, we must first
decide how to measure the material strains. We will approximate the local meridional strain λs = ds/ds0

by l
l0

where l is the current arclength of the patch and l0 is its intrinsic arclength; these arclengths should
be computed according to whatever geometry is assumed by the model between marker points. We also
approximate the meridional strain λθ by r/r0 where r is the current r̂-coordinate of the midpoint of the
patch, and r0 is the intrinsic r̂-coordinate of the midpoint of the patch. It would be more accurate to
instead define r to be the average r̂-coordinate over the patch (and similarly for r0), but the midpoint-based
computation will likely be a sufficient approximation.

Each model assumes that σs and σθ, which are the tensions in the meridional and circumferential direc-
tions respectively, are constant on each patch. With the strain computation in hand, we define these tensions
on each patch as nonlinear functions of the strains:

σs = 1
2µh

((
1
λθ

)2
−
(

1
λs

)2)
+Kh (λsλθ − 1) ,

σθ = 1
2µh

((
1
λs

)2
−
(

1
λθ

)2)
+Kh (λsλθ − 1) .

(4)

This is the Evans law [Dim12]. Since we are modeling the membrane as a thin surface, a two-dimensional
tension law such as the Evans law is suitable. If the membrane thickness were non-negligible, a more
sophisticated approach such as a neo-Hookean model would be necessary.

The use of nonlinear elastic stress-strain laws is somewhat common for cellular-level biological applications
(for examples, see [WBA15; GTT09; GT03a; GT03b]), and the choice of which law to use is not of great
importance. The difference between the various laws deals mostly with how the area dilation and shear
deformations are combined to produce the overall tensions [Dim12]. As long as a sensible tension law is
used, we are confident our models will be compatible.



3.1.2 A remark on notation

Throughout this section we need to consider quantities defined at a marker point or on patches in the
discretized system. To index these quantities, we use the following convention. Quantities defined at the
i-th marker point receive a subscript i, such as ti. Quantities defined on the patch immediately preceding

the i-th marker point receive a superscript i − 1/2, as in σ
i−1/2
s . Similarly, a superscript i + 1/2 indicates

that the quantity is defined on the patch immediately following the i-th marker point.
With this convention, given a (piecewise smooth) parametrization for a part of the profile curve, we will

use si and ti to denote the arclength and time, respectively, corresponding to the i-th marker point. Similarly,
si−1/2 and ti−1/2 denote the arclength and time, respectively, at the midpoint of the patch preceding the
i-th marker point. (We define the midpoint as the point dividing the patch into two equal arclengths.) A
similar meaning is given to si+1/2 and ti+1/2.

3.2 The linear segments model

In the linear segments model, the patch between adjacent marker points is taken to be the line segment
connecting them. This is perhaps the most simple model possible and it has been utilized before, for
example in [Che+20]. Because of the simplicity of this model, r is an affine function of z, and α(s) is
constant on each patch, so integrating Equation 1 over the neighborhood [si−1/2, si+1/2] of the i-th marker
point is especially easy. This gives the approximate force-balance equation

(σst̂)
i+1/2 − (σst̂)

i−1/2 (5)

+ ln

(
r(si)

r(si−1/2)

)(
(σs − σθ)r̂ − (σs sinα)n̂)

cosα

)i−1/2
+ ln

(
r(si+1/2)

r(si)

)(
(σs − σθ)r̂ − (σs sinα)n̂)

cosα

)i+1/2

+
P

2
((si − si−1/2)n̂i−1/2 + (si+1/2 − si)n̂i+1/2) = 0

for the non-tip points. For the tip point, which has index N+1, we have r = 0 and thus Equation 5 does not
make sense. Therefore, at the tip, we implement Equation 3 and hence impose the force boundary condition〈

−(σs sinα)N+1/2 +
Pr(sN+1/2)

2
, 0

〉
= 〈0, 0〉 . (6)

3.3 The parabolic arcs model

Motivated by the unexciting performance of the linear segments model (overall roughly linear order of
accuracy; see Sections 4, 5, 6), we wish to devise a new model which generalizes and improves upon the
previous model. The most obvious way to improve is by changing the way we interpolate between marker
points. With this in mind, the parabolic arcs model interpolates between consecutive marker points using
an arc of a parabola. Because three points are needed to uniquely define a parabola, there is no canonical
way to construct this parabola, but we base our method on the following observation. Suppose that the two
marker points p1 and p2 bordering the patch lie on a horizontal line. We can construct a parabola passing
through q1, the marker point preceding p1, and a parabola passing through q2, the marker point following p2.

Each of these parabolas is of the form (x−a)
λ2 +b; let λ1 be the λ associated with the fitting of the point q1 and

similarly for λ2. The quantities 1/λ1, 1/λ2 are closely related to the curvature properties of the parabolas.
Thus, finding the “average geometry” of the two fittings corresponds to taking 1/λ as the arithmetic mean
of 1/λ1 and 1/λ2. This notion is explained further in the following discussion.



3.3.1 Geometric preliminaries

In constructing the parabolic patches, we consider general parabolas in the plane (without restriction on
orientation with respect to standard coordinates). There are four parameters characterizing such a parabola:

• Stretch factor λ: This parameter describes how stretched the parabola is along the direction orthogonal
to its axis of symmetry. For generality, we define λ ∈ R̂, the projectively extended reals, i.e. the set R
together with the single extra element ∞ which neighbors both ‘ends’ of the real line. By convention
we set 1

∞ = 0, 1
0 = ∞. If the parabola is written in the form r = f(z) with vertex at the origin (up

to a rigid motion in the plane), then λ stretches the parabola horizontally: r = z2

sgn(λ)λ2 . The factor

of sgn(λ) causes the parabola to open up or down depending on the sign (incorporating the signed

curvature rather than unsigned curvature). However, setting λ = 0 is problematic even inside R̂,
because it means that f(z) =∞ almost everywhere. We disregard this case here and in the following
discussion.

• Rotation angle θ: This parameter describes the angle by which one must rotate counterclockwise a
parabola of the form r = f(z) in order to obtain the desired parabola.

• z and r translations Tz and Tr: These parameters are the coordinates of the vertex of the parabola;
if we translate a parabola of the form r = f(z) whose vertex is the origin by (Tz, Tr), we obtain a
parabola whose vertex is the desired point.

The parametric expression for such a parabola can be written as follows:

f(t) = (z(t), r(t)) =

(
cos θ − sin θ
sin θ cos θ

)(
t

− t2

sgn(λ)λ2

)
+

(
Tz
Tr

)
=

(
t cos θ − −t2

sgn(λ)λ2 sin θ + Tz

t sin θ + −t2
sgn(λ)λ2 cos θ + Tr

)
. (7)

3.3.2 Construction of the parabola in a rotated coordinate system

We will determine the parameters λ, θ, Tz, Tr as illustrated in Figure 1. Construct the perpedicular bisector
of the line segment p1p2 and label the midpoint of p1p2 as b. Let ` be the length of the segment p1b.
Transform the plane by a rigid motion such that b is the origin, p1p2 lies in the x-axis, p1 has coordinates
(−`, 0), and p2 has coordinates (`, 0). From here we must assume that q1, p1, p2, q2 are arranged in order
horizontally in the rotated coordinate system; this can be guaranteed with a fine enough discretization. Our

patch between marker points will come from a parabola of the form f(x) = V − x2

sgn(λ)λ2 which passes through

p1 and p2. In order for this to be the case, we must have V = `2

sgn(λ)λ2 . By varying the parameter λ, we

obtain a 1-dimensional family of parabolas which pass through p1 and p2.1 The degenerate case occurs when
λ→∞, in which case the parabola becomes a line passing through p1 and p2 (see Section 3.4).

1We could have chosen to instead express λ in terms of V and control V as a parameter. Why didn’t we do so? This is
because λ has a stronger geometric meaning as the stretching factor of the parabola. Indeed, the curvature of the parabola at
its vertex is −2/λ2.



q1

p1 b

p2

q2

`

V =
(
`
λ

)2

Figure 1: Fitting the parabolic arc to the points p1, p2, q1, q2 in the rotated coordinate system. The points
and connecting segments are shown in black and a candidate approximating parabola is shown in blue.

Our construction compromises between exactly fitting the point q1 and exactly fitting the point q2. To
do this, we compute the λ1, λ2 which fit the curve f(t) to the points q1, q2 respectively. (Such λ1, λ2 are
unique as a consequence of the fact that three points determine a parabola.) To compute these, let x1, y1 be
the coordinates of q1 in this rotated coordinate system. Then we have

y1 = V − x21
λ21

y1 =
`2 − x21
λ21

λ21 =
`2 − x21
y1

λ1 =

√
`2 − x21
y1

,

where for negative a, we set
√
a = −

√
|a|. Similarly, we compute λ2 =

√
`2−x2

2

y2
to fit q2. We then set λ to

be the harmonic mean of λ1 and λ2, that is,

λ =
2λ1λ2
λ1 + λ2

. (8)

We choose to use the harmonic mean rather than the arithmetic mean because this acts as a sort of “average”
of the geometries of the two curves associated with λ1 and λ2; alternatively, one could say that 1

λ more
naturally measures the geometry of the curve. For example, as λ approaches ∞, the parabola degenerates
into a line; this is the ‘average behavior’ when q1 and q2 are rotationally symmetric with respect to b (that
is, when b is the midpoint of q1q2).

Recall that we disregarded the case λ = 0 earlier. Clearly, from Equation 8, λ = 0 iff λ1 = 0 or λ2 = 0;
in order for this to be the case, two of the three points (p1 and p2, and one of q1 and q2) would need to have
equal x-coordinates in this rotated coordinate system. This is the only scenario in which there is no unique
parabola passing through three points. Indeed, in this case there is no sensible way to define an interpolating
parabola because the parabola would need to have infinite derivative between two of the points; this is not
possible for any polynomial.

Overall, we set

f(x) =
1

sgn(λ)λ2
(`2 − x2), (9)



where sgn(λ) is the sign function, equal to 0 if λ = 0 and λ/|λ| otherwise. The purpose of the sgn(λ) in
the denominator is to ensure that if both q1 and q2 are on the same side of the line p1p2, then the parabola
opens toward those points rather than away from them.

If λ1 = −λ2, Equation 8 gives λ = ∞ because λ is considered to be in the projectively extended reals.
Geometrically, in this case, the signed curvatures associated with fitting either q1 or q2 are equally opposite.
Thus the ‘curvature average’ of fitting q1 or q2 would be zero; that is, the interpolating arc is just a linear
segment.

3.3.3 Translating back to the original (z, r) coordinate system

From here we want to translate back to the parameters λ, θ, Tz, Tr originally described. λ remains the same;
as a geometric quantity it has no dependence on the coordinates chosen, so it is the same in the rotated
coordinate system and the original (z, r) coordinate system. For the other parameters we refer to Figure 2.
We denote by β the signed angle formed by rotating counterclockwise from the coordinate vector ẑ to the
outward-facing normal of the linear segment p1p2. We also denote by α the signed angle from t̂ to r̂, as in
[Che+20]. The relationship between α and β is β = π − α.

ẑ

r̂

t̂

n̂

β
α

Figure 2: Tangent and normal vectors to the linear segments between marker points in the original (z, r)
coordinate system.

The vertex of the parabola in (z, r) coordinates is

(Tz, Tr) = b+ V (cosβ, sinβ) = b+
`2

sgn(λ)λ2
(cosβ, sinβ). (10)

For the parameter θ, notice that in the rotated coordinate system, the normal vector of the segment p1p2
points upward. Thus we find that θ = β − π

2 , and so sin θ = sin(β − π
2 ) = − cosβ and cos θ = cos(β − π

2 ) =



sinβ. To mimic the notation used in other articles ([Che+20]), note that since β = π−α, sinβ = sin(π−α) =
sinα and cosβ = cos(π − α) = − cosα. We also denote the components of b in the (z, r) coordinate system
by by (bz, br). Using Equation 7, the expression of the parabola in (z, r) coordinates is

f(t) =

(
t cos θ − −t2

sgn(λ)λ2 sin θ + Tz

t sin θ + −t2
sgn(λ)λ2 cos θ + Tr

)
=

(
t sinβ + −t2+`2

sgn(λ)λ2 cosβ + bz

−t cosβ + −t2+`2
sgn(λ)λ2 sinβ + br

)
=

(
t sinα− −t2+`2

sgn(λ)λ2 cosα+ bz

t cosα+ −t2+`2
sgn(λ)λ2 sinα+ br

)
.

(11)
From now on we will prefer the expression in terms of α to match the literature.

3.3.4 Special treatment at the tip

For the force-balance equation (Equation 1) to be well-defined at the tip, the tip of the surface must be
smooth. However, if we construct the patches neighboring the tip point in the way described above, this
assumption may be violated because there is no guarantee that the outward unit normal approaches the
basis vector ẑ as r(s)→ 0. In order to address this issue, we construct the parabola passing through the tip
marker point p and the preceding and following marker points q1 and q2. This is equivalent to setting α = π,

` = (q1)r, b = q1+q2
2 , and λ = (q1)r√

pz−(q1)z
in Equation 11, and it produces a parabola which opens along the

ẑ-axis. Then we take the upper and lower halves of this parabola, respectively, to be the upper and lower
patches neighboring the tip point. It is clear to see that n̂→ ẑ as r(s)→ 0 because this is the vertex of the
parabola; therefore the tip smoothness condition is satisfied.

3.3.5 Force computation in the parabolic arcs model

In order to integrate Equation 1 in the neighborhood of a marker point, we need to know the arclength
element ds of each patch. For the parabolic arcs, we could compute ds in (r, z) coordinates but it is easier to

compute it in the rotated coordinate system of Section 3.3.2. In the rotated coordinates, f(t) = V − t2

sgn(λ)λ2

and f ′(t) = − 2t
sgn(λ)λ2 . Thus, at the point f(t) on the parabola,

ds =
√

1 + f ′(t)2dt =

√
1 +

4t2

λ4
dt. (12)

We note that while the tensions σs, σθ are assumed constant on each patch, the quantities α(s), r(s), t̂(s), n̂(s)
are more complicated than in the linear segments model and must be derived from Equation 11. By inte-
grating Equation 1 between si−1/2 and si+1/2, we find that the force on the i-th marker point is

S1 + S2 + S3 + S4, (13)

where

S1 =

∫ si+1/2

si−1/2

d(σst̂)

ds
ds =

[
σst̂(s)

]si+1/2

s=si−1/2 = (σst̂(s
i+1/2))i+1/2 − (σst̂(s

i−1/2))i−1/2, (14)

S2 =

∫ si+1/2

si−1/2

σs − σθ
r(s)

r̂ ds =

∫ si

si−1/2

(σs − σθ)i−1/2

ri−1/2(s)
r̂ ds+

∫ si+1/2

si

(σs − σθ)i+1/2

ri+1/2(s)
r̂ ds (15)

=

∫ ti

ti−1/2

(σs − σθ)i−1/2r̂
t cos(αi−1/2) + −t2+(`i−1/2)2

(sgn(λ)λ2)i−1/2 sin(αi−1/2) + b
i−1/2
r

√
1 +

4t2

(λi−1/2)4
dt

+

∫ ti+1/2

ti

(σs − σθ)i+1/2r̂

t cos(αi+1/2) + −t2+(`i+1/2)2

(sgn(λ)λ2)i+1/2 sin(αi+1/2) + b
i+1/2
r

√
1 +

4t2

(λi+1/2)4
dt,



S3 =

∫ si+1/2

si−1/2

−σs sinα(s)

r(s)
n̂ ds (16)

=

∫ si

si−1/2

−(σs)
i−1/2 sin(αi−1/2(s))

ri−1/2(s)
n̂i−1/2(s) ds+

∫ si

si−1/2

−(σs)
i+1/2 sin(αi+1/2(s))

ri+1/2(s)
n̂i+1/2(s) ds

=

∫ ti

ti−1/2

−(σs)
i−1/2

(
sin(αi−1/2) + 2t cos(αi−1/2)

(sgn(λ)λ2)i−1/2

)
t cos(αi−1/2) + −t2+(`i−1/2)2

(sgn(λ)λ2)i−1/2 sin(αi−1/2) + b
i−1/2
r

n̂i−1/2(t) dt

+

∫ ti+1/2

ti

−(σs)
i+1/2

(
sin(αi+1/2) + 2t cos(αi+1/2)

(sgn(λ)λ2)i+1/2

)
t cos(αi+1/2) + −t2+(`i+1/2)2

(sgn(λ)λ2)i+1/2 sin(αi+1/2) + b
i+1/2
r

n̂i+1/2(t) dt,

S4 =

∫ si+1/2

si−1/2

Pn̂ ds = P

∫ ti

ti−1/2

n̂i−1/2(t)

√
1 +

4t2

(λi−1/2)4
dt+ P

∫ ti+1/2

ti

n̂i+1/2(t)

√
1 +

4t2

(λi+1/2)4
dt. (17)

3.4 The degenerate parabolic arcs model

This model is mostly identical to the parabolic arcs model, except on each patch we set λ = ∞. Recalling
that 1/λ is related to the curvature of the parabola, we observe that this causes the parabola to degenerate
into a line segment. Furthermore, the integrals in Equations 14, 15, 16, 17 simplify and thus recover the
force balance equation from Section 3.2. This is encouraging evidence to suggest that the parabolic arcs
model properly generalizes the linear segments model. However, for the degenerate parabolic arcs model we
will compute the marker point force by numerically integrating Equations 14, 15, 16, 17 with λ =∞.

Because the degenerate parabolic arcs model retains error due to the inaccurate geometry of the linear
segments model and also error due to numerical integration, we expect it to perform worse than either of the
other two models. This model is not tremendously useful for practical purposes, but it serves as a benchmark
for the performance of the other two models.

3.5 Simulation process

The purpose of each of the three models above is to approximate the geometry of the generating curve of a
surface of revolution given a set of marker points, and provide a means by which to compute the force on
each marker point. Knowing how to reconstruct the geometry and compute the force allows us to simulate
the deformation of the surface over time. Because the force is a nonlinear function of the marker point
positions and material data, iterative methods may be used to find the equilibrium state where the force is
zero. Our simulation uses the following steps.

1. Generate some initial configuration of marker points and patches. Compute the intrinsic material data
for each patch.

2. Simulate the deformation under tension and pressure:

(a) Run an ODE solver to move the points according to the computed force, until within a certain
tolerance.

(b) Use the output of the ODE solver as the initial guess for a nonlinear solver in order to find the
solution.

3. Starting with the final state of the membrane from the previous step, add external force and simulate
the movement again using the same procedure.

4. Output images or videos, measure mechanical or geometric data, etc.



3.6 Qualitative remarks

Our software implementation of the simulation is capable of producing videos showing the movement of the
surface over time. From these videos, we can make a few qualitative remarks about the models. The linear
and parabolic models produce visually similar movements, and the dynamics of strains and tension over time
appear similar between the two models.

In both models, strains and tension appear to vary smoothly with respect to both time and position on
the generating curve. We also observe that at the tip, the meridional strain equals the circumferential strain,
and similarly for the tensions, showing that the tip is isotropic. This evidence all suggests that our models
achieve the tip isotropy of the Yanagisawa et al. finite-element model [Yan+15] while avoiding the numerical
issues encountered in that paper.

The parabolic arcs model is also more robust to external force. Although both models are capable of
handling some external force, the parabolic arcs model can converge to an equilibrium state when a large
force is concentrated over a small neighborhood of the tip, while the linear segments model fails. This
characteristic alone may make the parabolic arcs model more useful than the linear segments model in cases
where large external forces are in play.

4 Force residue analysis on a sphere

4.1 The spherical steady state

In general, it is difficult to find exact solutions to the local force-balance equation (1) from some given initial
configuration. However, in the special case where the surface is initially a sphere, such an exact solution can
be obtained. Assume that pressure and bulk and shear moduli are all 1, i.e. P = Kh = µh = 1. If the initial
configuration of the membrane without turgor pressure is a sphere of radius 1, then after turgor pressure is
added we expect the membrane to expand uniformly to another sphere of some radius R. Therefore, finding
the steady state in this case boils down to finding the right value of R.

In order to make sense of Equation 1 on the deformed sphere, we need to compute σs and σθ. By a
geometric argument, the meridional strain ratio λs = ds/ds0 is exactly R; the expansion from a sphere of
radius 1 to one of radius R increases the arclength everywhere by a factor of R. For the circumferential
strain ratio λθ = r/r0, note that the point (cos θ, sin θ) in the initial configuration moves to coordinates
(R sin θ,R cos θ), so λθ = R cos θ/ cos θ = R. In brief terms, the expansion is isotropic. Recalling that
µh = Kh = 1, we get

σs =
1

2
µh

((
1

λθ

)2

−
(

1

λs

)2
)

+Kh (λsλθ − 1) = R2 − 1,

σθ =
1

2
µh

((
1

λs

)2

−
(

1

λθ

)2
)

+Kh (λsλθ − 1) = R2 − 1.

In other words, σs = σθ = R2 − 1 everywhere on the patch. We also need to know the tangent and normal
vectors to each point (R cos θ,R sin θ) on the curve; by simple geometric reasoning these are

t̂ = 〈sin θ,− cos θ〉,

n̂ = 〈cos θ, sin θ〉.

Parametrize the expanded sphere by the angle θ which is formed by the ẑ-axis and the vector (R cos θ,R sin θ)
corresponding to a point on the sphere. In this setup the arclength element ds transforms as ds = Rdθ.
Now, fix θ ∈ [0, π2 ] and let γ be arbitrarily small. We will integrate the left-hand side of Equation 1 over
the arc of the circle whose boundaries correspond to angles of θ − γ and θ + γ with the ẑ-axis. Working



term-by-term,

S1 =

∫ θ=θ+γ

θ=θ−γ

d(σst̂)

ds
ds (18)

= (σs 〈sin θ,− cos θ〉)|θ+γθ−γ

= (R2 − 1)〈sin(θ − γ)− sin(θ + γ), cos(θ − γ) + cos(θ + γ)〉,

S2 =

∫ θ=θ+γ

θ=θ−γ

(σs − σθ)r̂
r(s)

ds (19)

=

∫ θ=θ+γ

θ=θ−γ
0r̂ ds

= 〈0, 0〉,

S3 =

∫ θ=θ+γ

θ=θ−γ

−σs sinα

r(s)
ds (α is the angle from r̂ to t̂) (20)

=

∫ θ+γ

θ−γ

−σs sin θ

R sin θ
〈cos θ, sin θ〉R dθ

= (R2 − 1)〈sin(θ − γ)− sin(θ + γ), cos(θ − γ) + cos(θ + γ)〉,

S4 =

∫ θ=θ+γ

θ=θ−γ
Pn̂(s) ds (21)

=

∫ θ+γ

θ−γ
〈cos θ, sin θ〉R dθ

= −R〈sin(θ − γ)− sin(θ + γ), cos(θ − γ) + cos(θ + γ)〉

So overall, integrating the force balance equation over the small arc from θ − γ to θ + γ yields

S1 + S2 + S3 + S4 = (2(R2 − 1)−R)〈sin(θ − γ)− sin(θ + γ), cos(θ − γ) + cos(θ + γ)〉 = 〈0, 0〉. (22)

This means that the steady-state radius R must satisfy 2R2−R−2 = 0. This equation has only one positive
solution, R = 1

4 (1 +
√

17) ≈ 1.2808. In other words, we have found that when turgor pressure is added to to

the sphere of radius 1, the membrane expands to a sphere of radius 1
4 (1 +

√
17).

4.2 Steady state force residue under each model

Here we present the computed force in the exact steady state under each of the three models. If the models
were perfect, the computed force would be zero; this is not the case, however, and the norm of the computed
force at each marker point measures the model’s error at that location. For the purposes of this analysis,
we use a system with N = 16 patches bordered by 17 marker points, distributed evenly on a quarter-circle
of radius R = 1

4 (1 +
√

17). We expect to see evidence supporting the following hypotheses:

• The parabolic arcs model should have the smallest error, followed by the linear segments model, and
the degenerate parabolic arcs model should have the largest error.

• The computed forces under each method should be sensitive to Kh but not µh.

Figures 3b, 3a, and 3c show the force residue under each model with material parameters Kh = 1 and
µh = 1. Note that the color scale is not consistent among each figure.



(a) Linear segments model (b) Parabolic arcs model

(c) Degenerate parabolic arcs
model

Figure 3: Force residue on the steady sphere with Kh = 1, µh = 1.

Here we see that the relationships of the errors under the three force computation methods do indeed fit
our expectations: the parabolic arcs model slightly beats the linear one, while the model based on degenerate
parabolic arcs has error on the order of 1000 times the other methods at its worst point.

By comparing Figures 3b, 3a, and 3c with Figures 4b, 4a, and 4c, we observe that the computed forces
on the sphere are not sensitive to µh.

(a) Linear segments model (b) Parabolic arcs model

(c) Degenerate parabolic arcs
model

Figure 4: Force residue on the steady sphere with Kh = 1, µh = 2.

However, comparing Figures 3b, 3a, and 3c with Figures 5b, 5a, and 5c suggests that the computed forces
are sensitive to Kh.

(a) Linear segments model (b) Parabolic arcs model

(c) Degenerate parabolic arcs
model

Figure 5: Force residue on the steady sphere with Kh = 2, µh = 1.



Even with increased Kh, the parabolic model still appears to slightly outperform the linear model in some
respects, and the degenerate parabolic arcs model still has worse error than the other two. Overall, we find
that the force computations provide evidence for our hypotheses and strongly suggest that the simulation
based on parabolic arcs will be more accurate than that based on linear segments.

4.3 Orders of accuracy for force residue in the steady state

By increasing the number of patches in the simulation, we can analyze how the error in the computed force
responds to finer discretization. To generate the following plots we set Kh = 1 and µh = 1, and compute
the force residue in the exact steady state for 16, 32, 64, and 128 patches. For the order of accuracy of the
overall force, we construct the overall force vector by assembling the two force components on each of the
N + 1 points into a vector (where N is the number of patches), and discard the ẑ-component at the rear
point and the r̂-component at the tip point. This produces a 2N -component vector, and we quantify the
overall error in the computed force by the 2-norm or ∞-norm of this vector.

(a) 2-norm (b) ∞-norm

Figure 6: Plot of the error in the overall force computation for the three models under 2-norm and ∞-norm.
The x-axis is the number of patches (log scale) and the y-axis is the norm of the overall force vector.

Figures 6a and 6b show that for the overall force on all marker points, the order of accuracy of the
parabolic arcs model is roughly 3. This is an improvement compared to the linear segments model, which
has order of accuracy about 1.



Figure 7: Plot of the error in the tip force computation for the three methods. The x-axis is the number of
patches (log scale) and the y-axis is the norm of the force at the tip.

Figure 7 shows the force at the tip for each of the the methods. The norm is not specified because the
force at the tip has only one nonzero component. The figure shows that tip force in the parabolic arcs model
and linear segments model are both about 3rd-order accurate.

In Figures 6 and 7 we also observe that the degenerate parabolic arcs model shows order of accuracy
approximately 1 for both tip force residue and overall force residue. This indicates that this model should
perform worse overall than the other two models, and this claim is supported by evidence from the simu-
lations. We will refrain from discussing the the degenerate parabolic arcs model until Section 6, where the
degenerate parabolic model will serve as a useful comparison for the other models.

4.3.1 Explanation for similar tip behavior in the linear and parabolic models

The similar order of accuracy for tip force in the linear and parabolic models is somewhat surprising because
the geometry around the tip is assumed to be different. For the model based on linear segments the tip is
assumed conical, while in the parabolic arcs model the tip is assumed to be a paraboloid. However, we will
show that (up to a couple of reasonable approximations) the tip force relations are essentially the same for
both models.

Assume that σs = σθ are constant in a neighborhood of the tip. Firstly, in the linear segments case, we
specify the force at the tip as follows using the tip boundary condition (Equation 6):{

Fz = −σs sin(γN+1/2) + Pr(sN+1/2)/2,

Fr = 0,
(23)

where γN+1/2 is the angle formed by the r̂ basis vector and the tangent vector of the linear segment which
precedes the tip point. (In other contexts this is called α; we diverge from the convention here to avoid
confusion with what follows.)

Now consider the parabolic model. Let sN+1/2, tN+1/2 (sN+3/2, tN+3/2) be the arclength and time
corresponding to the midpoint by arclength of the patch immediately preceding (following) the tip point.



Importantly, we note that tN+1/2 < 0 < tN+3/2. We will integrate the local force

d(σst̂)

ds︸ ︷︷ ︸
(1)

+
σs − σθ

r
r̂︸ ︷︷ ︸

(2)

− σs sinα(s)

r
n̂︸ ︷︷ ︸

(3)

+ Pn̂︸︷︷︸
(4)

from sN+1/2 to sN+3/2, taking advantage of the symmetry of the patches preceding and following the tip
point, and also keeping in mind the construction of these patches from a parabola opening along the ẑ-axis
(see Section 3.3.4). We note that

cos(α(t)) =
cos(αN+1/2) + 2t sin(αN+1/2)/sgn(λ)λ2√

1 + 4t2

λ4

.

Since αN+1/2 = π by construction, this simplifies to

cos(α(t)) =
−1√

1 + 4t2

λ4

.

By a similar computation,

sin(α(t)) =
−2t/sgn(λ)λ2√

1 + 4t2

λ4

.

We will integrate each term of the local force separately, assuming for convenience that the parabolic
stretch factor λ for the tip patch is positive.

S1 =

∫ sN+3/2

sN+1/2

d(σst̂)

ds
ds = σs(t̂(s

N+3/2)− t̂(sN+1/2)) (24)

=
〈

2σs sin(α(sN+1/2)), 0
〉

=

〈
2σs

tN+1/2√
λ4

4 + (tN+1/2)2
, 0

〉
,

S2 =

∫ sN+3/2

sN+1/2

σs − σθ
r(s)

r̂ ds = 〈0, 0〉 (by symmetry), (25)

S3 =

∫ sN+3/2

sN+1/2

−σs sinα(s)

r(s)
ˆn(s) ds =

∫ tN+3/2

tN+1/2

−σs · −2t/λ2

−t
〈− cos(α(t)), sin(α(t))〉 dt (26)

=

〈
−4σs
λ2

∫ tN+1

tN+1/2

(
1 +

4t2

λ4

)−1/2
dt, 0

〉
=

〈
−2σs

∫ 0

tN+1/2

(
λ4

4
+ t2

)−1/2
dt, 0

〉

=

〈
2σsarctanh

 tN+1/2√
λ4

4 + (tN+1/2)2

 , 0

〉
,

S4 =

∫ sN+3/2

sN+1/2

Pn̂ ds = P

∫ tN+3/2

tN+1/2

n̂(t)

√
1 +

4t2

(λi−1/2)4
dt (27)

= P

∫ tN+3/2

tN+1/2

√
1 +

4t2

(λi−1/2)4
〈− cos(α(t)), sin(α(t))〉 dt

=

〈
2P

∫ tN+1

tN+1/2

− cos(α(t))

√
4t2

(λi−1/2)4
dt, 0

〉
=

〈
2P

∫ 0

tN+1/2

1 dt, 0

〉
=
〈

2P |tN+1/2|, 0
〉
.



Therefore, the total force at the tip is

F =

〈
2σs

 tN+1/2√
λ4

4 + (tN+1/2)2
+ arctanh

 tN+1/2√
λ4

4 + (tN+1/2)2

+ 2P |tN+1/2|, 0

〉
.

Here we make our first approximation. For a fine enough discretization, tN+1/2√
λ4

4 +(tN+1/2)2
will be small, so

arctanh

 tN+1/2√
λ4

4 + (tN+1/2)2

 ≈ tN+1/2√
λ4

4 + (tN+1/2)2
.

Therefore

F ≈

〈
4σs

tN+1/2√
λ4

4 + (tN+1/2)2
+ 2P |tN+1/2|, 0

〉
.

To further handle this quantity, we need to make sense of λ. On the tip patch, if p denotes the tip point and
q the preceding marker point, we defined

λ =
qr√

pz − qz
.

If we denote by (∆z,∆r) the vector which forms the linear segment preceding the tip point, then

λ =
∆r√
∆z

.

For a fine enough discretization, we will have ∆r ≈ 2|tN+1/2|, because |tN+1/2| corresponds to the midpoint
of the parabolic arc by its arclength. Therefore,

λ4

4(tN+1/2)2
=

∆r4

∆z2 · 4(tN+1/2)2
≈ ∆r4

∆z2∆r2
=

∆r2

∆z2
=

cos2(γ)

sin2(γ)
.

Recalling that tN+1/2 < 0, this gives

tN+1/2√
λ4

4 + (tN+1/2)2
=

−1√
λ4

4(tN+1/2)2
+ 1
≈ −1√

cos2(γN+1/2)
sin2(γN+1/2)

+ 1
= − sin(γN+1/2),

and thus we obtain

F ≈
〈
−4σs sin(γN+1/2) + 2P |tN+1/2|, 0

〉
=
〈
−4σs sin(γN+1/2) + 2Pr(sN+1/2), 0

〉
. (28)

The right-hand side is equal to 0 exactly when F = 0 in the linear case. This explains the similar orders of
accuracy at the tip for the linear and parabolic models.

5 Convergence analyses

In this section we demonstrate the convergence of the linear segments model and the parabolic arcs model
and we show the order of accuracy for each. Throughout this section, we set the physical parameters
P = Kh = µh = 1.



5.1 Convergence analysis for spheres

For an initial spherical configuration, the exact steady state is known (see Section 4.1). Therefore, we can
compute the error in the simulated steady state by comparing with the marker point positions and the
tensions in the exact steady state discretized in the corresponding manner. For a system with N patches,
we take the positional error to be the norm of the difference in marker points position vectors (a 2N -vector,
disregarding the rear ẑ-component and the tip r̂-component), and the meridional (circumferential) tension
error to be the norm of the difference in meridional (circumferential) tension vectors (an N -vector).

(a) 2-norm (b) ∞-norm

Figure 8: Plot of the error in the positions of marker points for the two methods under 2-norm and∞-norm.
The x-axis is the number of patches (log scale) and the y-axis is the norm of the overall positional error
vector.

Figure 8 shows that the order of accuracy for marker points in the linear model is roughly 0.7−1.2, while
under the parabolic model the order of accuracy is roughly 3.2 − 3.6, depending on the norm used. Hence
the parabolic model shows significantly better convergence.



(a) 2-norm
(b) ∞-norm

Figure 9: Plot of the error in the meridional tension for the two methods under 2-norm and ∞-norm. The
x-axis is the number of patches (log scale) and the y-axis is the norm of the overall meridional tension error
vector.

(a) 2-norm
(b) ∞-norm

Figure 10: Plot of the error in the circumferential tension for the two methods under 2-norm and ∞-norm.
The x-axis is the number of patches (log scale) and the y-axis is the norm of the overall circumferential
tension error vector.

Figure 9 shows that the order of accuracy for meridional tension in the linear segments model is roughly
0.9 − 1.2, while in the parabolic arcs model the order of accuracy is roughly 3.5 − 3.8. Similarly, for
circumferential tension, we see in Figure 10 that the linear model has order of accuracy roughly 1.4 − 1.7,
while the parabolic model has order of accuracy roughly 3.5 − 3.7. So again the parabolic arcs model has
better convergence than the linear model for spherical initial configuration.



5.2 Convergence analysis for ellipses

In this section, we discuss the convergence properties of the linear and parabolic models when the initial
configuration is an ellipse. Suppose that the ellipse’s half-width in the ẑ-direction is a and its half-width in
the r̂-direction is b. In contrast with the spherical case, the exact steady state in this case is not known. We
will perform the same analysis as in the spherical case, but to measure the error we compute the numerical
solutions for 2n, 2n+1, . . . , 2n+k patches (we require k ≥ 2). Then we measure error as the norm of the
computed solution for 2n+i patches minus the computed configuration for 2n+k patches, that is, we take
the highest-resolution simulation as the true steady state. This will introduce a bias toward convergence for
each model, but we can still use these figures to compare the performance of the models against each other

To deal with the fact that the highest-resolution solution has more points and patches than the other
computed solutions, we trim the set of marker points coming from the highest-resolution solution in the
following way. Suppose we want to compute the error for a simulation on 2n+i patches. Recalling that the
high-resolution solution involved 2n+k marker points, we select its first element and every 2k−i-th element
thereafter. For example, if i = 1, the list of points

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)

corresponding to k = 3 is trimmed to
(1, 1), (5, 5), (9, 9).

For tensions, we employ an averaging method. In this case, we take the list of 2n+k tensions (one for
each patch) and to produce the averaged tension list of length 2n+i, we average groups of 2k−i consecutive
values. So, again taking i = 1 as the example, the tension list

1, 2, 3, 4, 5, 6, 7, 8

corresponding to k = 3 is averaged to
2.5, 6.5.

Note that our tension averaging scheme doesn’t take into account the size of the patches. From a physical
point of view, it may make sense to average the tensions using a weighting scheme which gives higher weight
to the larger patches; we disregard this consideration in our analysis.

Figures 11 and 12 show the estimated order of accuracy for marker point positions on some ellipses in
the linear and parabolic schemes. These figures show higher order of accuracy for the linear segments model
than in the spherical case; this is because the selection of a computed high-resolution steady state as the
true steady state might induce a bias toward apparent convergence. In the case where the ellipse is a circle,
we recover the high order of accuracy as before. However, when the ellipse has nonzero eccentricity, the
orders of accuracy for both methods deteriorate sharply. The parabolic arcs model still seems to outperform
the linear segments model by an appreciable margin when the initial ellipse is very wide in the r̂-direction
compared to the ẑ-direction. However, in the opposite scenario, i.e. when the initial ellipse is wide in the
ẑ-direction, the improvement of the parabolic arcs model is very minor.



(a) a = b = 1 (b) a = 2, b = 1 (c) a = 4, b = 1

(d) a = 1, b = 2 (e) a = b = 2 (f) a = 4, b = 2

(g) a = 1, b = 4 (h) a = b = 4 (i) a = 4, b = 4

Figure 11: Order of accuracy for marker points on ellipses under 2-norm. Note that the cases a = b = 1,
a = b = 2, and a = b = 4 correspond to spheres.



(a) a = b = 1 (b) a = 2, b = 1 (c) a = 4, b = 1

(d) a = 1, b = 2 (e) a = b = 2 (f) a = 4, b = 2

(g) a = 1, b = 4 (h) a = b = 4 (i) a = 4, b = 4

Figure 12: Order of accuracy for marker points on ellipses under ∞-norm. Note that the cases a = b = 1,
a = b = 2, and a = b = 4 correspond to spheres.

Figures 13, 14, 15, and 16 show the estimated orders of accuracy for meridional and circumferential
tensions on some ellipses in the linear and parabolic schemes. Here we again see that in the case where
a = b, the high order of accuracy we have already observed for tensions on spheres is recovered. However,
when the ellipse is non-circular, the convergence in the parabolic model again deteriorates and is not much
better (sometimes even slightly worse) than the linear scheme.



(a) a = b = 1 (b) a = 2, b = 1 (c) a = 4, b = 1

(d) a = 1, b = 2 (e) a = b = 2 (f) a = 4, b = 2

(g) a = 1, b = 4 (h) a = 2, b = 4 (i) a = b = 4

Figure 13: Order of accuracy for meridional tension σs on ellipses under 2-norm. Note that the cases
a = b = 1, a = b = 2, and a = b = 4 correspond to spheres.



(a) a = b = 1 (b) a = 2, b = 1 (c) a = 4, b = 1

(d) a = 1, b = 2 (e) a = b = 2 (f) a = 4, b = 2

(g) a = 1, b = 4 (h) a = 2, b = 4 (i) a = b = 4

Figure 14: Order of accuracy for meridional tension σs on ellipses under ∞-norm. Note that the cases
a = b = 1, a = b = 2, and a = b = 4 correspond to spheres.



(a) a = b = 1 (b) a = 2, b = 1 (c) a = 4, b = 1

(d) a = 1, b = 2 (e) a = b = 2 (f) a = 4, b = 2

(g) a = 1, b = 4 (h) a = 2, b = 4 (i) a = b = 4

Figure 15: Order of accuracy for circumferential tension σθ on ellipses under 2-norm. Note that the cases
a = b = 1, a = b = 2 and a = b = 4 correspond to spheres.



(a) a = b = 1 (b) a = 2, b = 1 (c) a = 4, b = 1

(d) a = 1, b = 2 (e) a = b = 2 (f) a = 4, b = 2

(g) a = 1, b = 4 (h) a = 2, b = 4 (i) a = b = 4

Figure 16: Order of accuracy for circumferential tension σθ on ellipses under ∞-norm. Note that the cases
a = b = 1, a = b = 2 and a = b = 4 correspond to spheres.

5.3 Remarks on displacement under the parabolic arcs model

Let us return to the example of the initial spherical configuration. Because the points in the initial config-
uration are evenly distributed with respect to arclength, and the steady solution is a uniformly expanded
sphere, we expect the displacement vectors from marker points in the known steady state to marker points
in the computed solution to be approximately radial. However, this is not the case; in Figure 17 we show
the displacement from the known steady state to the computed solution for each marker point in a system
of N = 8 patches under the parabolic arcs model. Note that the scale is not uniform among all of the
subfigures.



(a) 1st (rear) marker point (b) 2nd marker point (c) 3rd marker point

(d) 4th marker point (e) 5th marker point (f) 6th marker point

(g) 7th marker point (h) 8th marker point (i) 9th (tip) marker point

Figure 17: Displacements from marker points on the known steady state to marker points on the computed
steady state in a system of N = 8 patches. Note that the displacements are not radial.

We see that, except for the rear and tip points, each marker point gets translated toward the tip under
the parabolic ars model. In other words, there is a slight arclength expansion near the rear of the surface
and a slight contraction near the tip. Some investigation has shown that this effect is coming from the
integration of term (3) in Equation 1 but it is unclear exactly why. The likely answer has to do with the
quantity sin(α(s))/r(s), which is exactly the circumferential curvature κθ. When the surface is a sphere, κθ is
constant, but the computed parabolic arcs are unable to produce constant κθ. From a cursory exploration on
spheres it seems that the parabolic patches have accurate κθ at their midpoints but this accuracy deteriorates
as we consider points on the patch closer to the endpoints.

6 Error analysis

Each model exhibits three types of error:

• Strain error: error arising from approximating the strains and propagating through computation;

• Integration error: error arising from the integration technique;

• Path error: error arising from the choice of interpolating curve on each patch.



Of these, the path error is the hardest to quantify because for a fixed set of marker points, one can give an
arbitrarily wild curve passing through those marker points. With this in mind, we aim to quantify the other
two types of error.

6.1 Error quantification in the abstract sense

For the strain error, the key observation is that we approximate the reciprocal of meridional strain ds0
ds by

l0
l , i.e. the quotient of the patch’s intrinsic length by its deformed length. For the i-th patch, we have

si+1
0 − si0 =

∫ si+1

si

ds0
ds

ds =
ds0
ds

(c)(si+1 − si) =⇒ ds0
ds

(c) =
si+1
0 − si0
si+1 − si

=
l
i+1/2
0

li+1/2

for some c ∈ [si, si+1] by the mean value theorem for integrals. But then for any ξ ∈ [si, si+1],

ds0
ds

(ξ) =
ds0
ds

(c) +

∫ ξ

c

d2s0
ds2

ds.

Therefore, if M is an upper bound on
∣∣∣d2s0ds2

∣∣∣ over [si, si+1], then the error is bounded above by Mli+1/2. In

other words, there is error O(li+1/2) in the meridional strain and O(li+1/2) +O(l
i+1/2
0 ) in the tensions. This

error decreases to 0 with finer discretization.
For the integration error, we use a similar argument. Suppose we want to approximate

∫ b
a
f(x) dx. Again

by the MVT, there exists some c ∈ [a, b] such that∫ b

a

f(x) dx = f(c)(b− a).

But then for any ξ ∈ [a, b], we have∫ b

a

f(x) dx =

(
f(ξ) +

∫ c

ξ

f(x) dx

)
(b− a) = f(ξ)(b− a) +

(∫ c

ξ

f(x) dx

)
(b− a),

which is to say that we can approximate
∫ b
a
f(x) dx by f(ξ)(b− a) with error of∣∣∣∣(∫ c

ξ

f(x) dx

)
(b− a)

∣∣∣∣ ≤
(∫ b

a

|f(x)| dx

)
(b− a) ≤

(∫ b

a

M dx

)
(b− a) = M(b− a)(b− a) = M(b− a)2,

where M is an upper bound for |f ′(x)| over the interval [a, b]. In other words, using endpoint rule to
numerically evaluate the integral will yield error of O(M(b− a)2).

6.2 Error analysis in the linear and degenerate parabolic models

In our error analysis, we will quantify the error associated with integrating each force term over the right-
hand half-patch [si, s

i+1/2] of the i-th marker point. The error on the left half-patch is similar. For the term

associated with d(σs t̂)
ds , it suffices to look at the error in σst̂ at s = si+1/2.

For the error in the linear model, we consider the stress error and the integration error associated with a
numerical Riemann-Stieltjes integral with respect to d ln(r(s)). Thus the force terms S1, S2, S3, S4 have the



following errors EL1, EL2, EL3, EL4:

S1 : σst̂ = t̂

(
µ

2

(
r20
r2
− l20
l2

)
+K

(
r

r0

l

l0
− 1

)
+O(l) +O(l0)

)
=⇒ EL1 = O(l + l0), (29)

S2 :

∫ si+1/2

si

σs − σθ
r

r̂ ds =

∫ si+1/2

si

(
µ

(
r20
r2
− l20
l2

)
+O(l) +O(l0)

)
r̂

r
ds (30)

= r̂

∫ si+1/2

si

(
µ

(
r20
r2
− l20
l2

)
+O(l) +O(l0)

)
d ln(r(s))

= r̂

[
µ

(
r20
r2
− l20
l2

)]
si+1/2

ln

(
ri+1/2

ri

)
+O

(
ln

(
ri+1/2

ri

)2

(1 + l + l0)

)

=⇒ EL2 = O

(
ln

(
ri+1/2

ri

)2
)
,

S3 :

∫ si+1/2

si

σs sinα

r
n̂ ds = n̂ sinα

∫ si+1/2

si

1

r

(
µ

2

(
r20
r2
− l20
l2

)
+K

(
r

r0

l

l0
− 1

)
+O(l) +O(l0)

)
ds (31)

= n̂ sinα

∫ si+1/2

si

µ

2

(
r20
r2
− l20
l2

)
+K

(
r

r0

l

l0
− 1

)
+O(l) +O(l0) d ln(r(s))

= n̂ sinα

[
µ

2

(
r20
r2
− l20
l2

)
+K

(
r

r0

l

l0
− 1

)]
si+1/2

ln

(
ri+1/2
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)
+O

(
ln

(
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)2

(1 + l + l0)

)

=⇒ EL3 = O

(
ln

(
ri+1/2

ri

)2
)
,

S4 : no stress error or integration error =⇒ EL4 = 0. (32)

In the computation for S2, we applied the fact that the derivative of the integrand is

d(r20/r
2)

d(ln(r))

y=ln(r)
=

d(r0(ey)2/(ey)2)

dy
= 2r′0(ey)

r0(ey)

ey
− 2

r0(ey)2

(ey)2
= 2r′0

r0
r
− 2

r20
r2

which is bounded in absolute value as r0, r → 0 by some constant c provided that we assume the strain
r/r0 ≈ 1. For S3 we omit a similar computation showing d(r0/r)/d ln(r) is bounded. In presenting the final
estimates E2 and E3 we have discarded the factor 1+l+l0 because for a fine enough discretization this quantity

is always bounded. Overall this shows that the error in the linear segments model is O

(
ln
(
ri+1/2

ri

)2)
.

For the degenerate parabolic model, the analysis is similar, except naive endpoint rule with respect to ds
is used instead of a numerical Riemann-Stieltjes integral with respect to d ln(r(s)). In this model the force



terms S1, S2, S3, S4 have the following errors EPD1, EPD2, EPD3, EPD4:

S1 : σst̂ = t̂

(
µ

2

(
r20
r2
− l20
l2

)
+K

(
r

r0

l

l0
− 1

)
+O(l) +O(l0)

)
=⇒ EPD1 = O(l + l0), (33)

S2 :

∫ si+1/2

si

σs − σθ
r

r̂ ds =

∫ si+1/2

si

(
µ

(
r20
r2
− l20
l2

)
+O(l) +O(l0)

)
r̂

r
ds (34)

= r̂

∫ si+1/2

si

µ
r20
r3

ds+ r̂

∫ si+1/2

si

1

r

(
O(l) +O(l0)− µl

2
0

l2

)
ds

= r̂

[
µ
r20
r3

]
si+1/2

+O((ri+1/2)−2(si+1/2 − si)2) + r̂

[
1

r

(
O(l) +O(l0)− µl

2
0

l2

)]
si+1/2

+O((l + l0)(ri+1/2)−2(si+1/2 − si)2) =⇒ EPD2 = O((ri+1/2)−2(∆s)2)

S3 :

∫ si+1/2

si

σs sinα

r
n̂ ds = n̂ sinα

∫ si+1/2

si

1

r

(
µ

2

(
r20
r2
− l20
l2

)
+K

(
r

r0

l

l0
− 1

)
+O(l) +O(l0)

)
ds (35)

= n̂ sinα

∫ si+1/2

si

µ

2

r20
r3

ds+ n̂ sinα

∫ si+1/2

si

1

r

(
O(l) +O(l0)−K − µ

2

l20
l2

)
ds+ n̂ sinα

∫ si+1/2

si

K

r0
ds

= n̂ sinα

[
µ

2

r20
r3

]
si+1/2

+O((ri+1/2)−2(si+1/2 − si)2) + n̂ sinα

[
1

r

(
O(l) +O(l0)−K − µ

2

l20
l2

)]
si+1/2

+O((l + l0)(ri+1/2)−2(si+1/2 − si)2) + n̂ sinα

[
K

r0

]
si+1/2

+O((r
i+1/2
0 )−2(si+1/2 − si)2)

=⇒ EPD3 = O((ri+1/2)−2(∆s)2)

S4 : no stress error or integration error =⇒ EPD4 = 0. (36)

In the computations for S2 and S3, we used the fact that d(1/r)/dr = r−2, d(r20/r
3)/dr = r−2(2r′0r0/r −

3r20/r
2), and d(1/r0)/dr = r′0r

−2
0 , and noted that the second factor in d(r20/r

3)/dr is bounded when r, r0 → 0
assuming the strain r/r0 ≈ 1. This shows that the overall error in the degenerate parabolic model is
O((ri+1/2)−2(∆s)2).

To compare the error of these two models, we note that for a fixed discretization, ∆s is bounded, so
we can discard it to obtain the error estimation O((ri+1/2)−2) in the degenerate parabolic case, and for
the linear segments case, we can overestimate the error as O(ln(ri+1/2)2). Even with this overestimate, the
degenerate parabolic error still dominates in the sense that as ri+1/2 → 0,

(ri+1/2)−2

ln(ri+1/2)2

is unbounded. This means that the degenerate parabolic model should perform much worse than the linear
segments model near the tip and this claim is supported by evidence from our simulations.

A similar analysis for the parabolic arcs model would be insightful but has not been completed.

7 Linear stability analysis

Up until now, we have failed to mention an important consideration of our models: stability. Our model,
considered on a system of N patches, is essentially a 2N -dimensional dynamical system on base manifold
M = R2N in which a point on the manifold M represents the coordinates of the N + 1 marker points in our
model (dropping the two coordinates which are always fixed to be zero). Each model’s force computation
defines a flow on R2N and we want to investigate the stability of these flows near the steady state. To do
this, we compute the Jacobian of our force function at the steady state and examine its eigenvalues: if all
eigenvalues have negative real part then the dynamical system is stable; if some eigenvalue has positive real
part then the dynamical system is nonstable [Hun11].



The stability of this dynamical system near the steady state also has implications for the positional error.
Denote by F : R2N → R2N the force function and JF : R2N → R2N×2N its Jacobian. Let ~x ∈ R2N be the
equilibrium point of the force, i.e. ~x satisfies F (~x) = ~0. Near ~x we can linearize F by

F (~x+ δ~x) = F (~x) + Jf(~x)δ~x = Jf(~x)δ~x, (37)

where δ~x is a small perturbation in position. Denoting by δ~b the force residue at this point ~x+ δ~x, we find
that

δ~b = Jf(~x)δ~x =⇒ δ~x = (Jf(~x))−1δ~b. (38)

Because a matrix and its inverse have reciprocal eigenvalues, this shows that the stability of the force to
small perturbations in marker point position also means stability of marker point positions against small
perturbations in force. However, if any eigenvalue of Jf(~x) has absolute value less than 1, then (Jf(~x))−1

may magnify error coming from the force residue, causing more positional error.

7.1 Exact stability analysis for small N

Even for small discretized systems, computing the Jacobian of the force function is a very complicated process.
We worked out one example. For the linear segments model applied to a system of N = 2 patches initially in
spherical configuration, we were able to compute the Jacobian of the force function using computer algebra,
finding that the largest eigenvalue was approximately −0.66. This indicates stability. The corresponding
work for the parabolic arcs and degenerate parabolic arcs models is left for the future.

7.2 Numerical stability analysis on spheres and ellipses for the ODE solver

For systems with many patches or nonspherical initial configuration, the stability analysis becomes unfeasible
to by hand or computer algebra. Instead, we performed a numerical version of the stability analysis using
the following procedure:

1. Fix half-widths a, b of an ellipse. Set up the initial membrane configuration so that the marker points
are on this ellipse.

2. Run the simulation in each of the three models (linear, parabolic, and degenerate parabolic), and save
the coordinates of the marker points in the computed steady state.

3. Numerically compute the Jacobian matrix for the force function under each of the three models at the
corresponding steady states, and discard the first and last row and column (as these correspond to
fixed coordinates).

4. Compute the eigenvalues of each Jacobian and check if they all have negative real part.

We used N = 16 patches, and the numerical Jacobian computation was performed using the DERIVESTsuite
by John D’Errico [D’E20]. We performed this process for a, b ∈ {1, 2, 4} and in each case we found that
the maximum eigenvalue real part λ1 for all three models (linear, parabolic, and degenerate parabolic) were
approximately equal. These approximate eigenvalues, valid for all three of our models, are given in Figure
18.

λ1 a = 1 a = 2 a = 4

b = 1 -0.19 -0.13 -0.08
b = 2 -0.15 -0.13 -0.11
b = 4 -0.11 -0.11 -0.11

Figure 18: The maximum real parts of the eigenvalues of the Jacobian in the steady state for initial ellipses
of half-widths a and b in the ẑ and r̂-directions, respectively. These eigenvalues are approximately accurate
for all three models (linear, parabolic, and degenerate parabolic).



In each case, the eigenvalues all have negative real parts. This suggests that in general each of the three
models will be stable, at least for N = 16 patches and presumably larger N . Furthermore, we observe a
rough inverse correlation between |λ1| and a

b , which together with Equation 38 may partially explain the
dependence of the parabolic model’s success on the initial marker point configuration.

8 Conclusion and future work

We have presented three discretized models for simulating the deformation of surfaces of revolution. While
the basic linear segments model is rather standard and is comparatively easy to set up, the parabolic arcs
model is more intricate. The degenerate parabolic arcs model serves little purpose in real usage, but does
act as a benchmark to which the other two models can be compared.

Although the parabolic arcs model shows improved order of accuracy compared to the linear segments
model, we have observed that the magnitude of this improvement is dependent on the intrinsic shape of the
surface. Despite some weak correlation between order of accuracy and eigenvalues of the Jacobian in the
steady state, the precise details of the relationship between convergence and initial geometry are not yet clear
and should be pursued in the future. The parabolic arcs model is also more robust to external force, which
may be useful in applications. As part of understanding the details of the parabolic arcs model’s successes
and drawbacks, we plan to analyze its error as described in Section 6. Because this model is significantly
more complicated than the other two, this analysis will be more difficult. Furthermore, the error analysis
will not tell the whole story, because it only takes into account the strain and integration errors, not the path
error, which is where the parabolic arcs model shines. As we observed in the comparison between the linear
and degenerate parabolic models in Section 6.2, naive numerical integration introduces significant error, so
the fact that the parabolic arcs model still manages to improve on the linear segments model shows that the
parabolic arcs must significantly reduce the path error.

On the topic of path error, we mentioned in Section 6 that the path error can likely be arbitrarily large.
Despite this, we may be able to bound the path error subject to some geometric constraint on the true
generating curve. This would reveal the full details of the error associated with each model.

Also yet to be understood is the convergence properties of each model with respect to curvature. In the
future we should investigate the behavior in this respect. With this in hand, we can consider the sensitivity
of each interpolation method to small perturbations in marker point positions. The sensitivity of the linear
segments model to such perturbations has been analyzed before in [Che+20], and we plan to do the same
for the parabolic and degenerate parabolic models. Stability analysis for these two models should also be
done in order to obtain a full picture of the dynamics of each.

Our models are currently able to simulate the deformation of surfaces without any growth or atrophy.
In this state, the models could already be used for some applications; for example, in simulating cell nucleus
force sensing one can reasonably expect that little material change will take place on short timescales.
However, in order to model morphogenesis of walled cells, growth will need to be incorporated. Luckily the
highly compartmentalized design of our simulation software will make this implementation smooth.

Although the models we have presented are rather general in terms of their modeling assumptions, we
always have kept in mind the analogy to membranes on the cellular level. Mathematical modeling on this
scale is a rich area with many exciting developments and tremendous power to improve our understanding
of the biological world. We hope that the work we present here represents a useful contribution to this field.
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