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Abstract

Encryption is used to protect data against eavesdroppers who would otherwise intercept

private communication. One party encrypts a message and sends the corresponding cipher-

text to a second party, who then decrypts the ciphertext to recover the message. To prevent

an untrusted third party from eavesdropping, the problem of recovering any information

about the message from the ciphertext should be reasonably hard; in addition, the cipher-

text should itself reveal no information about the message. Increasingly, data storage and

computation is outsourced to these untrusted parties, which gives rise to the need for an

encryption scheme that allows computation on the ciphertexts.

The homomorphic properties of various encryption schemes have been a fascination of the

cryptographic community for decades. With the rise of cloud computing and decentralized

processing, the need for security in such applications is increasing. Only recently, however,

has the construction of a fully homomorphic encryption scheme been realized. I present

a mathematical approach to Craig Gentry’s proposed fully homomorphic scheme. I start

with an overview of other homomorphic encryption schemes, followed by an examination

of polynomial rings and their relation to lattices. Finally, I explore the scheme itself and

provide a foundation from which to understand the challenges faced when constructing a

fully homomorphic encryption scheme.
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1 Introduction

Imagine a prospective employer has an algorithm that calculates your suitability for a job using

only your bank account information. For example,

Xsuitability = min{C +D,E}

where C may be your credit score, D may be the amount of debt you owe, and E may be your

total annual expenses.

You would like to know your chances of landing that corporate office, but you don’t feel

comfortable giving your prospective employer access to your sensitive financial data. It’s not that

you don’t trust him, you simply can’t afford to risk anyone seeing some of the more embarrassing

bits of your financial history!

Now imagine that you could somehow distort the data so that your prospective employer could

work with it without being able to read it. This is the idea behind fully homomorphic encryption.

In this context, we would call your employer honest, but curious. You don’t expect them to

actively try to undermine you, but you might expect them to peek at the data every once in a

while. With fully homomorphic encryption, you can give them access to an encrypted version of

your information to work with. The magic happens when they give you an encrypted version of

your empirically determined suitability—and you can decrypt it!

Say you have the above algorithm to work with. Then a compatible encryption scheme might

look like:

Encrypt(x) = 7 · x

Decrypt(y) =
1

7
· y

That way, when your employer sits down to calculate your suitability, and you give him your

encrypted information, what he really calculates is the following.

Ysuitability = min{Encrypt(C) + Encrypt(D), Encrypt(E)} = min{7C + 7D, 7E}

But we can factor the 7 out of our sum 7C + 7D = 7(C +D), and so the above is also equivalent

to taking min{7(C + D), 7E}. Also notice that multiplying two numbers by 7 will never change

which one is larger. That is, if A > B, then 7A > 7B. So the above is also equivalent to taking

7 ·min{C +D,E}.
Now Ysuitability may look like garbage to the one computing this function, but you can easily

glean the useful data from the ciphertext. Say for instance that C +D < E. Then

Xsuitability = Decrypt(Ysuitability) =
1

7
· Ysuitability =

1

7
(7C + 7D) = C +D

You then return this value to your prospective employer, and both of you can see your suitability

for the job.
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Furthermore, you can even allow them to encrypt their own input to the function by giving

them the encryption key, 7. Say for instance they wanted to compute

Xsuitability = min{C +D,E, F}

where F is a constant. The encrypted version Encrypt(F ) = 7F can then be included to calculate

Ysuitability = min{Encrypt(C) + Encrypt(D), Encrypt(E), Encrypt(F )} = min{7C + 7D, 7E, 7F}

But as long as you retain the decryption key 1
7
, the data will remain encrypted.

This works because our encryption scheme is additively homomorphic, which means that we

can work with encrypted data and decrypt the result to obtain a sum of the data. (It is also

homomorphic with respect to the min and max operators.) With this technique, we can ask

other people to compute sums of our data, without ever letting them see the true numbers! The

applications are endless — from voting all the way to cloud computing.

According to cryptographers van Dijk and Juels,

Clients’ lack of direct resource control in the cloud prompts concern about the potential

for data privacy violations, particularly abuse or leakage of sensitive information by

service providers.[vDJ10]

And corporate entities aren’t the only ones looking to benefit. One can also imagine a census of

hospital patients. Medical data is subject to many levels of legal protection, making it extremely

difficult to gain access to. But to give scientists and medical professionals access to it could

make possible experiments and analysis that would further our understanding of medicine. For

example, with broad access to patient information one could analyze the correlation between

possible symptoms of a disease.

Unfortunately, it’s not as simple as it sounds. In fact, cryptographers have been working for

decades to solve the problem.

The Challenge

Figure 1: Rivest and Adleman[Cal12], and

Dertouzos[Cal09]

The homomorphic properties of various encryp-

tion schemes were recognized in 1978 by Rivest,

Adleman, and Dertouzos in [RAD78]. They

published a paper proposing the use of ‘privacy

homomorphisms’ to not only secure data, but

allow it to be used by untrusted parties. Rivest

and Adleman, two of the three cryptographers

behind the popular RSA encryption scheme,

would later go on to found the RSA security

firm in 1982.
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Consider a small loan company which uses a commercial time-sharing service to store

its records. The loan company’s ‘data bank’ obviously contains sensitive information

which should be kept private. On the other hand, suppose that the information pro-

tection techniques employed by the time sharing service are not considered adequate

by the loan company. In particular, the systems programmers would presumably have

access to the sensitive information. The loan company therefore decides to encrypt all

of its data kept in the data bank and to maintain a policy of only decrypting data at

the home office—data will never be decrypted by the time-shared computer.[RAD78]

However, they also realized the limitations placed on the untrusted party. The nature of

encryption inherently obscures some features of the plaintext, making certain operations difficult,

or downright impossible. But they left their readers with a final challenge:

In addition, it remains to be seen whether it is possible to have a privacy homomor-

phism with a large set of operations which is highly secure.

In other words, they proposed the creation of an encryption scheme with nearly unlimited

usability of the ciphertext. Such a scheme would be called fully homomorphic, and it would be

decades before anyone successfully answered the call to arms.

The Response

Over the years, many schemes were proposed that allowed for a combination of addition and

multiplication of ciphertexts. These schemes, however, usually only allowed a very limited number,

if any, of one of these two operations. To be fully homomorphic, a scheme should allow an unlimited

number of both. While some schemes inherently allowed an unlimited number of a single operation

type, it was difficult to see a scheme whose structure would inherit the correct properties for both

operations to be valid.

Any computer algorithm — whether it sorts your mail or figures out whether you

qualify for a tax deduction — boils down to a series of arithmetic steps. If an encryption

scheme allowed any number of additions or multiplications, any computing application

would be possible without decrypting data.[Gre09]

“It’s like one of those boxes with the gloves that are used to handle toxic chemicals,”

says Gentry. “All the manipulation happens inside the box, and the chemicals are

never exposed to the outside world.”[Gre09]

3



Figure 2: Craig Gentry[Gre09]

In the summer of 2008, a Ph.D. candidate at

Stanford University studying under Dan Boneh

(of the Boneh-Goh-Nissim encryption scheme)

was sitting in a cafe in New York City. His

name was Craig Gentry, and his revelation that

day sparked an alternative approach to fully

homomorphic encryption. Rather than relying

on the structure of the encryption scheme, why

not simply refresh the ciphertext periodically?

That way, a scheme that allows for a limited

number of operations can be promoted to one

that allows an unlimited number.

Gentry’s insight was to double-encrypt the data in such a way that the errors could

be removed, so to speak, in the dark. By periodically unlocking the inner layer of

encryption underneath an outer layer of scrambling, the cloud computer would clean up

its messes as it went along, without ever seeing the secret data. It took Gentry another

15 minutes to realize that he’d just solved an epic cryptographic problem.[Gre09]

The result was not so simple, in fact, and Gentry’s proposed scheme requires the use of a

key that grows substantially in length as the number of operations increases. Even with an

appropriate key, re-encrypting the data periodically introduces a time delay in an otherwise routine

computation. To encrypt and search for a single Google query, for example, would take 1 trillion

times longer under this scheme. But despite its shortcomings, the cryptography community is

buzzing with excitement.

“There’s a lot of engineering work to be done,” [Rivest] says. “But until now we’ve

thought this might not be possible. Now we know it is.”[Gre09]

Similar to his advisor Boneh’s scheme, Gentry’s proposed method first makes use of a scheme

that allows a large number of additions and a single multiplication of ciphertexts. His scheme

makes use of lattices, similar to those found in nature, but much more complex.

The Aftermath

In the three years following Gentry’s breakthrough, others have tried to fix the various caveats

of the first fully homomorphic scheme. In 2011, researchers at MIT funded by two internet

powerhouses, Google and Citigroup, have come up with a similar system called CryptDB.

[CryptDB] allows users to send queries to an encrypted set of data and get almost any

answer they need from it without ever decrypting the stored information...taking a
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fraction of a second to produce an answer where other systems that perform the same

encrypted functions would require thousands of years.[Gre11]

In fact, CryptDB promises an added computation time between 15% and 26% of the original.

They achieved this, not by constructing a new scheme, but by piecing together old ones. The data

is encrypted under many levels of varying encryption schemes. Sometimes the data is decrypted,

but the last level of encryption is never removed. It has its drawbacks, however. CryptDB

cannot perform square roots, and depending on how many levels the data is decrypted, it can leak

information about the original information. Despite these, it is a promising alternative. Butler

Lampson, a Microsoft Research fellow, remains optimistic.

“I dont think well see anyone using Gentry’s solution in our lifetimes,” [Lampson] says.

“But its very likely well actually see [CryptDB] applied in practice. I dont see any real

barrier.”[Gre11]
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2 A Brief History of Homomorphic Encryption

2.1 Definitions

To understand homomorphic encryption, it is essential to understand the algebraic meaning of

the phrase. We get the term homomorphic from the algebraic term homomorphism, which refers

to a mapping ϕ between two groups (G, �) and (H, ∗) such that

ϕ(x � y) = ϕ(x) ∗ ϕ(y)

for x, y ∈ G and ϕ(x), ϕ(y) ∈ H. This notion can then be extended to rings or similar algebraic

objects in the same category with multiple operations. In the context of cryptography, we consider

our mapping to be

Encrypt : P → C

where (P ,+, ·) is the ring of plaintexts and (C,⊕,⊗) is the ring of ciphertexts. We call Encrypt a

function, but this is meant in the programming sense of the word: a procedure that takes in inputs

and returns a value. More precisely, Encrypt is a randomized function. We will see later that

Encrypt samples randomly from a lattice according to some probability density function. This

randomized input determines which of the many possible ciphertexts a plaintext may be mapped

to. So we may say that Encrypt : P × K → C, where K is our space of randomized inputs.

Intuitively, we have

Encrypt−1 = Decrypt : C → P

keeping in mind that Decrypt will be many-to-one.

Definition 1. We say an encryption scheme is homomorphic with respect to an operation � on

P if we have

Decrypt(Encrypt(m1) ∗ Encrypt(m2)) = Decrypt(Encrypt(m1 �m2)) = m1 �m2

for some operation ∗ on C.

A scheme is considered somewhat homomorphic if it can properly perform only a limited

number of these operations due to an inability to properly decrypt after a certain threshold

of noise introduced by the operations. When we refer to a scheme as additively homomorphic

then, what we really mean is that we are able to perform an unlimited number of operations

with ciphertexts that correspond exactly to an unlimited number of additions with plaintexts.

As another example, a multiplicatively homomorphic scheme should allow unlimited operations

(corresponding to multiplications of plaintexts) before proper decryption of the ciphertext result.

We call a scheme fully homomorphic if it can perform an unlimited number of both types of

operations.
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2.2 Known Additively Homomorphic Schemes

Earlier we described the difference between a fully homomorphic scheme and a somewhat homo-

morphic scheme. There are many somewhat homomorphic schemes already in existence. They are

distinguished by the operation which they can evaluate homomorphically, particularly addition or

multiplication. An additively homomorphic scheme is one with a ciphertext operation that results

in the sum of the plaintexts. That is,

Encrypt(m1) � Encrypt(m2) = Encrypt(m1 +m2)

where the decryption of both sides yields the sum of the plaintexts.

There are many known additive schemes. Below we cover the additive variant of ElGamal

encryption, but others include the Goldwasser-Micali, Benaloh, and Paillier schemes, which com-

pute addition modulo some number q. The Boneh-Goh-Nissim scheme also allows for unlimited

additions, and a single multiplication.[bgn]

2.2.1 ElGamal

One example of an additively homomorphic scheme is the additive variant of the ElGamal public

key encryption scheme. The scheme described below from [PP10] allows the encrypter to send only

one message (as opposed to the naive Diffie-Hellman protocol, which has her send two.) Also note

that while this scheme is illustrative for our purposes, efficient decryption requires a nontrivial

explanation and is therefore omitted.

To begin, Bob chooses a random group element β, and sends it to Alice along with the order

p and generator α of the group. He keeps secret the parameter a, where β = αa. Using the public

parameters, Alice computes both the ephemeral key x = αk mod p and the masking key βk mod p.

She uses the masking key to encrypt y = αm · βk mod p, and sends along the ephemeral key for

Bob to have an advantage when trying to decrypt her message. Her ciphertext is then c = (x, y).

Bob then computes x−a · y = αm mod p. He then must perform a brute force search to recover

the message m.

Regarding decryption, it may be helpful to note that correctness is achieved by the below

expansion, where recovering m from αm is assumed to be efficiently implementable.

x−a · y mod p = (αk)−a · (αm · βk) = (αk)−a · (αm · αak) = α−ak+m+ak = αm

Homomorphism Given two plaintexts m1 and m2 and two corresponding ciphertexts c1 =

Encrypt(m1) = (x1, y1) and c2 = Encrypt(m1) = (x2, y2) we can compute

(x1 · x2, y1 · y2) = (αk1 · αk2 mod p, αm1 · βk1 · αm2 · βk2 mod p)

= (αk1+k2 mod p, αm1+m2 · βk1+k2 mod p)

= Encrypt(m1 +m2)

7



Thus, we can obtain an encryption of the sum of the plaintexts by computing the piecewise product

of the ciphertexts.

A formal algorithm is given in Section 2.4, along with an example that makes use of the

homomorphic properties of the scheme.

2.3 Known Multiplicatively Homomorphic Schemes

History lends us many homomorphic schemes, and we revisit them to gain a better understanding

of the mathematical structure needed to construct a fully homomorphic scheme. Continuing our

description of somewhat homomorphic schemes, we move on from additive to multiplicatively

homomorphic schemes. A multiplicatively homomorphic scheme is one that has an operation on

two ciphertexts that results in the product of the plaintexts. That is,

Encrypt(m1) � Encrypt(m2) = Encrypt(m1 ·m2)

where the decryption of both sides yields the product of the plaintexts.

The most famous multiplicatively homomorphic scheme is RSA encryption. The original El-

Gamal scheme is also multiplicatively homomorphic.

2.3.1 RSA

In 1978, Ron Rivest, Adi Shamir and Leonard Adleman created a public key encryption scheme

called RSA. In the preliminary phase, Bob chooses two large primes p and q and computes n = p·q.
For the next step, he needs to compute Euler’s totient function φ(n), which counts the number

of positive integers less than n that are relatively prime to n. For instance, if n = 6, the integers

found by φ(6) are {1, 5}. If n is prime, φ(n) = n − 1. In addition, if n is composed of relatively

prime factors, as in our case, φ(n) = φ(p) · φ(q) = (p− 1) · (q − 1).

To select his public and private key, Bob chooses two integers a and b such that b = a−1 mod

φ(n). (The fact that xφ(n) ≡ 1 mod n will come in handy for decryption.) The smaller of these

two becomes the public key kpub = a, and the other becomes the private key kpr = b. He publishes

n and kpub, but keeps p,q, and kpr hidden.

Alice can then encrypt a message m by computing c = ma mod n. To decrypt, Bob calculates

cb mod n. We can see that decryption works, because

cb = (ma)b mod n = ma·a−1

mod n = m mod n

Homomorphism Furthermore, given two plaintexts m1 and m2 and two corresponding cipher-

texts c1 = Encrypt(m1) and c2 = Encrypt(m1) we can compute

c1 · c2 = ma
1 · ma

2 mod n = (m1 · m2)
a mod n = Encrypt(m1 · m2)

8



This yields an encryption of the product of our original plaintexts. Thus, the RSA scheme is

multiplicatively homomorphic.

This scheme is also outlined in Section 2.4. The homomorphic property is showcased in an

example at the end of the section.

2.4 Algorithms and Examples

This section is comprised of algorithms and examples intended to supplement Sections 2.2.1 and

2.3.1. Below are algorithms detailing key generation, encryption, and decryption for the additive

ElGamal encryption scheme as well as the unpadded RSA encryption scheme.

We conclude with two examples: First, a spaceman tells a computer to count the votes de-

ciding its own demise using our additively homomorphic scheme. Second, a client outsources his

computation to a remote server using our multiplicatively homomorphic scheme.

9



ElGamal Encryption Scheme

Algorithm 1 Additive ElGamal Encryption

Output: public key kpub and private key kpr

1: function KeyGen

2: Choose a large prime p

3: Choose a primitive element α ∈ Z∗p
4: Choose an integer a ∈ {0, . . . , p− 2}
5: β = αa

6: return kpub = (p, α, β), kpr = a

7: end function

Input: public key kpub = (p, α, β) and message m

Output: ciphertext c

1: function Encrypt(m)

2: Choose k ∈ {2, . . . , p− 2}
3: x = αk mod p

4: y = αm · βk mod p

5: return c = (x, y)

6: end function

Input: private key kpr = a and ciphertext c = (x, y)

Output: message m

1: function Decrypt(c)

2: m∗ = x−a · y mod p

3: Recover m from m∗ = αm

4: return m

5: end function

10



RSA Encryption Scheme

Algorithm 2 Multiplicative RSA Encryption

Output: public key kpub and private key kpr

1: function KeyGen

2: Choose two large primes p and q

3: n = p · q
4: φ(n) = (p− 1) · (q − 1) . Found using Euler’s totient function

5: Choose an integer a ∈ {2, . . . , φ(n)− 1}
6: Find b = a−1 (mod φ(n))

7: return kpub = (n, a), kpr = b

8: end function

Input: public key kpub = (n, a) and message m

Output: ciphertext c

1: function Encrypt(m)

2: c = ma mod n

3: return c

4: end function

Input: private key kpr = b and ciphertext c

Output: message m

1: function Decrypt(c)

2: m = cb mod n

3: return m

4: end function

11



ElGamal Example: Dave and HAL

Example 1. To see this in action, we turn to Arthur C. Clarke’s 2001, a Space Odyssey. Dave

is collecting votes from his crew, and would like HAL to tally the computationally expensive sum.

The result of the vote will determine whether or not to ram their ship into the nearest gravitational

body, destroying HAL in the process. Dave, therefore, doesn’t want HAL to know the true outcome

of the vote. He sends her encrypted versions of two sub-tallies for HAL to add.

Dave HAL

Selects a large prime p = 13

Chooses the primitive element α = 2

in Z∗13
Chooses a = 4 from {0,. . . ,11}
Computes β = 24 mod 13 = 3 mod

13

Gather the votes as plaintexts m1 =

5 and m2 = 7

Choose corresponding random inte-

gers k1 = 6 and k2 = 8

Compute x1 = 26 mod 13

= 12 mod 13

Compute y1 = 25 · 36 mod 13

= 6 mod 13

Compute x2 = 28 mod 13

= 9 mod 13

Compute y2 = 27 · 38 mod 13

= 8 mod 13

Send c1 = (12, 6), c2 = (9, 8) −−−−→
Compute x3 = x1 · x2
= 12 · 9 mod 13 = 4 mod 13

Compute y3 = y1 · y2
= 9 · 8 mod 13 = 9 mod 13

←−−−− Send c3 = (4, 9)

Decrypt partially x−a3 · y3
= 4−4· 9 mod 13 = (44)−1· 9 mod 13

12



= 9−1 · 9 mod 13 = 1 mod 13

Solve αm = 1 mod 13 for m

While this last step requires an efficient implementation, we can verify that αm1+m2 = 1

(mod 13) by

25+7 mod 13 = 212 mod 13 = (24)3 mod 13

= 33 mod 13 = 27 mod 13

≡ 1 (mod 13)

Once Dave can recover m from the above partial decryption, he will have the desired plaintext tally

of votes. Note that while most of the above computation seems to fall to Dave, the encryption of

data is merely an overhead cost of the scheme. It may be performed once to allow for endless large

sums to be computed by HAL.

RSA Example: Clyde and Sergei

Example 2. To illustrate the utility of RSA’s multiplicative property, we construct a more generic

scenario than in Example 1. Instead, consider a client, Clyde, who wishes to pay a Computational

Service Provider, Sergei, to compute the product of his data.

Clyde Sergei

Selects two large primes p = 3 and

q = 7

Computes n = p · q = 21

Computes φ(n) = (p− 1) · (q− 1) =

2 · 6 = 12

Chooses a = 3 from {2, . . . , 7}
Compute b = a−1 mod φ(n)

= 3−1 mod 12 = 8 mod 12

Gather the data m1 = 4 and m2 = 6

Encrypt c1 = ma
1 mod n

= 43 mod 21 = 1 mod 21

Encrypt c2 = ma
2 mod n

= 63 mod 21 = 6 mod 21
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Send c1 = 1, c2 = 6 −−−−→
Compute c3 = c1 · c2
= 1 · 6 mod 21 = 6 (mod 15)

←−−−− Send c3 = 6

Decrypt cb3 mod n = 68 mod 21

= 15 mod 21

Clyde recovers the plaintext answer to his query by the standard decryption algorithm.

14



3 Basic Ring Theory

Our ultimate goal is to understand how and why the encryption scheme outlined in Section 6

is indeed fully homomorphic. We will show that one can go between logic and ring operations

in order to describe certain functions. To identify the specific homomorphic properties of the

encryption scheme, we then examine the structure of polynomial rings. Our goal is to provide

a framework to understand the properties and boundaries of encryption and decryption. Once

we have a standard language with which to describe our operations, we can take a closer look at

the scheme itself. For the following definitions, theorems, and examples, we assume our ring R

is commutative, nontrivial and has unity 1. Furthermore, for our formulations below we assume

that our ring R is of characteristic greater than 2.

3.1 From Circuits to Rings

To understand our scheme, we first must decide what language to use to describe it. In Section 6

our scheme is described in terms of algebraic operations. If one prefers to work strictly in Boolean

logic, a conversion to the standard logical operators may be used. However, as our functions

grow in complexity, some may find it simpler to work with plaintexts and ciphertexts as ring

elements. We show below that one may work with ring operations without loss of functionality.

The translation from logic to ring algebra is given for the basic logic gates. We then show that

the universality of the NAND gate is preserved in the algebraic translation.

To get full functionality of a digital circuit, we first need to verify that binary operations can

be expressed in terms of basic ring operations + and ·.
We start with some well-known Boolean logic. First, the NOT operation on only one variable

X ∈ {0, 1}. For these values of X, we can compute NOT X with 1−X.

X NOT X 1−X
0 1 1

1 0 0

Given two inputs X, Y ∈ {0, 1}, the operation X AND Y can be calculated with the product

X · Y .

X Y X AND Y X · Y
0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1

We can similarly compute X OR Y using X + Y −X · Y This subtraction in the ring can be

alternately stated as (−1)X · Y , where −1 is the additive inverse guaranteed in R.
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X Y X OR Y X + Y −X · Y
0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 1

It is also helpful to verify that the XOR and NAND operations can be expressed. For X XOR Y ,

often abbreviated X ⊕ Y , we compute X + Y − 2X · Y or rather X + Y −X · Y −X · Y . Lastly,

X NAND Y is simply 1−X · Y .

X Y X XOR Y X + Y − 2X · Y
0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

X Y X NAND Y 1−X · Y
0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

Using certain subsets of these binary operations (for example, AND, OR, and NOT) we can express

any computation on our binary inputs. This universal computation can also be achieved with a

subset containing a single operation, NAND. This is useful to note because it allows one to consider

a simpler analysis in terms of logical quantities.

In particular, any of the above operations can be constructed using varying combinations of

NAND operations. Given a single input X ∈ {0, 1}, we can compute NOT X using only NANDs as

X NAND X. Using the above translations to ring operations, this amounts to 1−X ·X = 1−X2,

which since X ∈ {0, 1} is equivalent to 1−X.

Similarly, we can construct the equivalent of an AND operation using only NANDs as

X AND Y = (X NAND Y ) NAND (X NAND Y )

Again we verify the ring operative equivalent.

X AND Y = 1− (1−XY )(1−XY ) = 1− (1− 2XY +X2Y 2) = −2XY +XY = XY

The equivalent of the OR operator can be made with

X OR Y = (X NAND X) NAND (X NAND X)

Using our expressions in terms of the ring operations, we have

1− (1−X2)(1− Y 2) = 1− (1−X2 − Y 2 +X2Y 2) = X2 + Y 2 −X2Y 2 = X + Y −XY

Finally, we construct the equivalent of an XOR operation using only NAND operations by

X XOR Y = ((X NAND X) NAND Y ) NAND (X NAND (Y NAND Y ))

We verify this algebraically with
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1− (1− (1−X2)(Y ))(1− (X)(1− Y 2))

= 1− [1−X(1− Y 2)− Y (1−X2) +XY (1− Y 2)(1−X2)]

= 1− [1−X +XY 2 − Y +X2Y +XY (1−X2 − Y 2 +X2Y 2)]

= 1− [1−X +XY 2 − Y +X2Y +XY −X3Y −XY 3 +X3Y 3]

= 1− [1−X +XY − Y +XY +XY −XY −XY +XY ]

= 1− [1−X − Y + 4XY − 2XY ]

= 1− [1−X − Y + 2XY ]

= X + Y − 2XY

In our proceeding analysis, we will mainly consider the algebraic operations + and · with

regards to polynomials. One could translate these to their logical equivalents if they do not wish

to continue in algebraic notation.

3.2 Definitions

In Section 3.1 we showed that one may use ring operations to describe logical functions. Continuing

this notion, [Gal10] provides some algebraic definitions that we will later make use of.

By using ideals, we obtain not only an additive, but multiplicative structure for our ciphertexts.

In short, there are two properties that we wish to obtain. For a subring I ⊆ R, and two elements

a, b ∈ R,

(a+ I) + (b+ I) = a+ b+ I

(a+ I) · (b+ I) = a · b+ I

A two-sided ideal suits these needs. We proceed with the formal definition followed by a small

example.

Definition 2. A subring I of a ring R is ideal (or two-sided ideal) in R if for all r ∈ R and for

all i ∈ I, ir ∈ I and ri ∈ I.

Example 3. A simple example of this is the subring I = 7Z = {. . . ,−14,−7, 0, 7, 14, . . . } of the

integers R = Z. Note that for any element i ∈ 7Z, we know that i = 7j for some j ∈ Z. So for

any r ∈ Z, ir = 7jr ∈ 7Z. Similarly because Z is commutative under multiplication, ri ∈ 7Z.

Thus, 7Z is an ideal subring of Z (or I is an ideal subring of R.)

Definition 3. Two ideals I and J of a ring R are comaximal if I + J = R. That is, for any

element r ∈ R, r = i + j, for some i ∈ I and j ∈ J . If R contains a multiplicative identity 1R,

then this definition is equivalent to saying that 1R = i+ j for some i ∈ I and j ∈ J .

Example 4. Using the ideal subring from above, note that J = 5Z is comaximal to I = 7Z in

R = Z because 15− 14 = 1, where 15 ∈ 5Z and −14 ∈ 7Z.
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3.3 Necessary Theorems

In Section 3.1 we explored the motivation for using algebraic structures to represent logical quan-

tities. Now that we have a basic idea of what these algebraic structures look like, we can continue

to modify the form of these ideals to suit our needs. We will need a few theorems from [Gal10] to

help our construction along.

Our goal will be to take ideals from Z[x] and restrict the elements to a manageable size. This

is done by using a principle ideal (f(x)) generated by a single polynomial f(x).

Theorem 1 (First Isomorphism Theorem for Rings). If ϕ : R → S is a ring homomorphism,

then the kernel (denoted kerϕ) is an ideal of R, the image (denoted ϕ(R)) is a subring of S, and

R/ kerϕ is isomorphic to ϕ(R).

Theorem 2 (Third Isomorphism Theorem for Rings). Let I and J be ideals of R with I ⊆ J .

Then J/I is an ideal of R/I and (R/I)/(J/I) is isomorphic to R/J .

Theorem 3 (Fourth Isomorphism Theorem for Rings). Let I be an ideal of R. The correspondence

given by

A←→ A/I

is an inclusion preserving bijection between the set of subrings A of R that contain I and the set

of subrings of R/I. Furthermore, A (a subring containing I) is an ideal of R if and only if A/I

is an ideal of R/I.

As a result of these, we can take ideals I and J from Z[x] and restrict them to their corre-

sponding ideals in Z[x]/(f(x)). The ring Z[x]/(f(x)) is often referred to as a truncated polynomial

ring (typically with f(x) = xn − 1).

3.4 Examples

We consider examples below of a very specific kind. We begin with ideals that are generated by

a pair (p, g(x)), where p ∈ Z and g(x) ∈ Z[x]. Using Theorem 3, we then find the corresponding

ideals in Z[x]/(f(x)) for a polynomial f(x) in both ideals.

We first want to find two comaximal ideals of R, I and J , such that I +J = R. If R has unity,

we can verify this property by finding x ∈ I, y ∈ J such that x+ y = 1 ∈ R. We can then restrict

these ideals by a shared element. The procedure is as follows:

1. Pick the ideals I and J .

• Choose the generators p1, g1(x); p2, g2(x).

• Describe I and J in terms of restrictors.
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2. Choose f(x) ∈ I + J , such that

• f(x) = h1(x) · p1 + l1(x) · g1(x) + h2(x) · p2 + l2(x) · g2(x)

3. Transform I and J into Î = I/(f(x)) and Ĵ = J/(f(x)).

4. Check for comaximality.

• Solve for x ∈ Î , y ∈ Ĵ such that x+ y = 1.

From now on we consider the following convention, where I = (p, g(x)) and J = (q, h(x)) are

ideals of the ring R = Z[x], which we note is commutative and contains the multiplicative identity

1R = 1. We first proceed with examples using only steps 1 and 4 by construct comaximal ideals

in R. Next, we use steps 2 and 3 in addition to steps 1 and 4 as outlined above.

Example 5. Let I = (p, x − a), that is, the ideal formed with generators p and g(x) = x − a,

where p, a ∈ Z. Then

I = {c(x) = cmxm + cm−1x
m−1 + · · ·+ c1x+ c0 | c(x) = ir; i ∈ I, r ∈ R}

So for any element c(x) ∈ I, c(x) = s(x) · p+ t(x) · (x− a). Note then that

c(a) = s(x) · p+ t(x) · (a− a) = s(x) · p+ 0 = s(x) · p

so c(a) ≡ 0 (mod p). Thus, every element c(x) ∈ I has the property that c(a) ≡ 0 (mod p)).

Now instead take any element of the form c(x) = cmxm + cm−1x
m−1 + · · · + c1x + c0 with the

property that c(a) ≡ 0 (mod p) for some p ∈ Z. By the Chinese Remainder Theorem, c(a) = k · p
for k ∈ Z. So then c(a)− k · p = 0 (Note: if this contained another factor of p, simply increase k

to k + 1.) Then we know that either p | c(a) or c(a) = 0. Thus, these elements are exactly those

from I as described originally.

To examine comaximality, we begin with some simple constructions. It is convenient to note

that given I = (p, g(x)), the following ideals are comaximal to I:

1. J = (p± 1, h(x))

2. J = (q, g(x)± 1)

3. J = (r, h(x)), where gcd(p, r) = 1

Case 1 (q = p±1). Without loss of generality, assume q = p+1. Then, assuming I and J proper

ideals of R, we can take x = p ∈ I and y = −q ∈ J such that

x+ y = p− q = q + 1− q = 1

making I and J comaximal.
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Case 2 (h(x) = g(x)± 1). Similarly, if h(x) = g(x)± 1, we use the same construction as in Case

1 to show that I and J are comaximal. That is,

h(x)∓ g(x) = 1

Case 3 (gcd p, q = 1). Assume p and q are relatively prime. Then gcd(p, q) = 1, so by the

Extended Euclidean Algorithm there exist s, t ∈ Z such that s · p+ t · q = 1. We define R = Z[x],

so s, t ∈ R. Recall that I and J , being ideals of R, absorb external multiplication from R. So

s · p ∈ I and t · q ∈ J . Thus, I and J are comaximal.

We do not extend Case 3 to g(x) and h(x) relatively prime, because the greatest common

divisor of polynomials with integer coefficients is made more difficult with 1 being the only unit

of R.

Example 6. Let I = (5, x − 1) and J = (4, x + 3). That is, based on our previous example, we

know that we can express I and J as follows:

I = {c(x) | c(1) ≡ 0 (mod 5)}

J = {c(x) | c(−3) ≡ 0 (mod 4)}

Then we construct

f(x) = (x− 1) · (x+ 3) = x2 + 2x− 3

We take Î = I/(f(x)) and Ĵ = J/(f(x)).

Î = {ax+ b | x2 = −2x+ 3; a ≡ 4b (mod 5)}

Ĵ = {ax+ b | x2 = −2x+ 3; a ≡ 3b (mod 4)}

To check comaximality, we can simply take −5 = (−1)5+(0)(x−1) ∈ Î and 6 = (1)6+(0)(x+3) ∈
Ĵ . It is clear that −5 + 6 = 1, so that Î and Ĵ are comaximal.

Example 7. Let I = (5, x− 1) and J = (5, 2x+ 4). Then

I = {c(x) | c(1) ≡ 0 (mod 5)}

J = {c(x) | c(−2) ≡ 0 (mod 5)}

We use the simple construction of

f(x) = g(x) · h(x) = 2x2 + 2x− 4

giving us our reduction rule: x2 = −x+ 2.

Î = {ax+ b | a ≡ 4b (mod 5)}

Ĵ = {ax+ b | 3a ≡ 4b (mod 5)}

Finally, comaximality is verified by (−4x+ 9) + (4x+ 8) = 1, where −4x+ 9 ∈ Î and 4x+ 8 ∈ Ĵ .
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Example 8. Consider the case where g1(x) = g2(x) = g(x). For now, let I = (2, x + 1) and

J = (5, x+ 1). Then

I = {c(x) | c(−1) ≡ 0 (mod 2)}

J = {c(x) | c(−1) ≡ 0 (mod 5)}

We construct f(x) similarly as before.

f(x) = g1(x) · g2(x) = (g(x)) =2 x2 + 2x+ 1

Thus, our reduction rule is x2 = −2x− 1.

Î = {ax+ b | a ≡ b (mod 2)}

Ĵ = {ax+ b | a ≡ b (mod 5)}

Comaximality is checked by −4 + 5 = 1, where −4 ∈ Î and 5 ∈ Ĵ .
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4 Lattices

We saw in Section 3 that we can think of our encrypted objects as polynomials. As we continue, it

becomes necessary to introduce the concept of length. The length of a polynomial can be thought

of simply as the norm of the coefficient vector. For a given polynomial p(x) = pnx
n+ · · ·+p1x+p0,

we first form the coefficient vector p = [p0, p1, . . . , pn]. We then compute the Euclidean norm of

p. The result is both the length of the coefficient vector p and the polynomial p(x). We denote

this as follows:

‖p(x)‖ = ‖p‖ =

√√√√ n∑
i=0

p2i

This notation is presented for the reader’s convenience in Appendix A along with other conventions

used throughout this paper.

Graphically, these vectors allow us to take a more geometric approach when considering bounds.

More specifically, we will consider polynomial rings of limited degree. This is done by restricting

the elements of our ideal to smaller order polynomials, which we saw how to do in Section 3.4.

Once our polynomials have a maximum of n coefficients, we can think of them as vectors in an

n-dimensional space. When these vector components belong to a subring of S ⊆ R = Z[x]/(f(x)),

as they do in our case, we may consider them as elements of a lattice.

It should also be noted that from here on we refer to the lattice corresponding to the ideal

I/(f(x)) as simply I, and similarly the lattice corresponding to J/(f(x)) as J .

Formally, a lattice is defined as a discrete additive subgroup of Rn. For our purposes it is

useful to include the basis of the lattice in the definition.

Definition 4. A lattice is the set of all integer linear combinations of a set of linearly independent

vectors B = {b1, . . . ,bn} ⊂ Rm,

L =

{
n∑
i=1

cibi

∣∣∣∣∣ ci ∈ Z, ∀i

}
The collection of vectors B is called the basis of L. When we take B to be a matrix whose

columns are the basis vectors from B, we can also denote

L = {Bc | c ∈ Zn}

.

Definition 5. A set of vectors {b1, . . . ,bn} are linearly independent if
∑n

i=1 cibi = 0 implies

ci = 0 for all i.

We note that a basis is by definition linearly independent, but question whether a lattice must

be thought of as being generated by a set of linearly independent vectors. That is, can a lattice

L be generated from a set of linearly dependent vectors?
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Lemma 1. Let bn+1 =
∑n

i=1 dibi, where di ∈ Z ∀i and at least one di /=0. The lattice generated

by {b1, . . . ,bn} is equivalent to the lattice generated by {b1, . . . ,bn,bn+1}.

Proof. Let L1 be the lattice generated by B1 = [b1 · · ·bn], and L2 be the lattice generated by

B2 = [b1 · · ·bnbn+1]. We will show that for any lattice point x, x ∈ L1 if and only if x ∈ L2.

⇒ First consider x ∈ L1. We know x =
∑n

i=1 cibi, where ci ∈ Z ∀i. So

x =
n∑
i=1

cibi + 0 · bn+1 =
n+1∑
i=1

cibi where ci ∈ Z ∀i

Thus, x ∈ L2.

⇐ Now consider y ∈ L2. We know

x =
n+1∑
i=1

cibi =
n∑
i=1

cibi + cn+1bn+1 where ci ∈ Z ∀i

We also know that bn+1 =
∑n

i=1 dibi, where di ∈ Z ∀i. Let ai = ci + cn+idi and note that

because ci, di ∈ Z, ai is also in Z. Then

x =
n∑
i=1

cibi + cn+1

n∑
i=1

dibi =
n∑
i=1

aibi where ai ∈ Z ∀i

Thus, x ∈ L1.

Definition 6. We say that a basis matrix B = [b1 · · ·bn] ∈ Rm×n has full rank if the rank equals

the dimension, m = n. A lattice is similarly said to be of full rank if its basis vectors form a full

rank matrix.

4.1 Multiple Bases

A lattice of dimension 2 or more can have many different possible bases. What decides whether

a given basis is good comes down to several criteria concerning the basis vectors. As we will see

later in Section 6, proper decryption in Gentry’s scheme relies on our ciphertext vectors staying

relatively small. For this reason, our criteria for a good basis are centered around this idea as well.

• Length The sum or product of short vectors is generally smaller in length than the sum or

product of long vectors. Keeping the basis vectors short results in shorter computed vectors

at each step of computation.

• Orthogonality Operations concerning orthogonal, or nearly orthogonal, vectors result in

vectors that lie closer to the origin when compared to operations on similar-length vectors

whose inclination from the origin is very close (i.e. not very orthogonal.)
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Figure 3: Good (left) and bad (right) bases for the same lattice

We see in Figure 3 an example of both a good and bad basis for the same lattice based on

this criteria. Simply put, the best bases will be easy to perform computations with, because

the vectors will be relatively small. A bad basis should be considerably harder to work with.

Encryption will make use of two bases for a lattice J — one will be kept secret, while the other

is made public. Specifically, we keep the good basis secret to prevent attackers from gaining any

additional advantages.

4.2 Basis Reduction Algorithms

Given a basis for a lattice, we can sometimes construct a better basis with respect to the criteria

in Section 4.1. We call the procedures used to construct these bases basis reduction algorithms.

One such algorithm is the Lenstra-Lenstra-Lovász (LLL) algorithm. A detailed description can

be found in Chapter 2.6 of [Coh93]. Given an m× n basis B, it produces a new set of orthogonal

(but not orthonormal) basis vectors b∗1, . . . ,b
∗
m such that

‖b∗i + µi,i−1b
∗
i−1‖2 ≥

3

4
‖b∗i−1‖2 for 1 < i ≤ n

|µi,j| ≤
1

2
for 1 ≤ j < i < n

in polynomial time, specifically O(m5n log3(max ‖bi‖)).
However, given a basis B it is considered NP-hard to find a vector of shortest nonzero length

in the lattice it spans. That is, the element of the lattice closest to the origin. This is known as

the Shortest Vector Problem. More can be found on this topic in [Mic01b]. Although the LLL

algorithm will yield a better basis, the shortest member b∗i of this basis is not guaranteed to be a

shortest vector.

A related problem is the Closest Vector Problem. With a basis B and a vector c, it is considered

NP-hard to find the closest lattice point. Given B and v ∈ Rm, find c ∈ Zn which will minimize
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‖v−Bc‖ over all c ∈ Zn. A simple proof of the hardness of this problem can be found in [Mic01a],

which also includes an account of hardness even when preprocessing is allowed. In [Gen09a] and

[Gen09b], Gentry another problem as the Ideal Coset Problem. It is solved by the Closest Vector

Problem.

Sometimes these algorithms produce a basis that is worse than the original. This can be useful

to ensure that the public basis is indeed worse than the private basis, and does not provide a

potential attacker with any additional information. In particular, the Hermite normal form of

a matrix, when computed from a given basis matrix B, operates as a generic basis for which

the corresponding lattice is typically useless for problems such as this. We will now present two

algorithms that efficiently compute the Hermite normal form of a matrix.

4.2.1 Hermite Normal Form

Similar to the reduced echelon form of a matrix with entries in R, a matrix A with integer entries

in Hermite normal form is upper triangular (aij = 0 for i > j) and has positive, weighty diagonal

entries (aij > 0 for i = j and 0 ≤ aij < aii for i < j.)

There are two main ways to compute the Hermite normal form (HNF) of a matrix. The first

is similar to the Gram-Schmidt orthogonalization process, whereas the second makes use of the

greatest common divisor to reduce computation time. The resulting matrix of this reduction has

somewhat large, non-orthogonal columns. If we give an adversary only a basis, even a particularly

bad one, they may compute the HNF in polynomial time. Because it is efficiently computable, we

waste nothing in making the HNF of our basis public. Furthermore, it tends to yield a particularly

useless lattice as a result, which benefits us as well. For this reason, these algorithms may be helpful

in producing a basis matrix for the lattice J which is sufficiently bad according to the criteria in

Section 4.1.

The algorithms below are taken from [Coh93] and reformulated for readability. In each case, a

formal presentation is given. Code written in Sage for each algorithm can be found in Appendix

B.

Hermite Normal Form Without GCD

To initialize the algorithm let i = m be the number of rows of A, and let k = n be the number

of columns of A. We will count down from k = n to k = 1. If A is wide, that is if m ≤ n, set

l = 1. Otherwise, if A is tall, set l = m− n + 1. We proceed by referring to the columns of A as

ai denoting the ith column of A.

Pick a row starting from the last row i = m and, moving up, and count down the entries along

the columns from the left to right starting with column k = n.

Check if all the elements in this (the ith) row to the left of aik are 0. If there are any nonzero
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Algorithm 3 Algorithm 2.4.4 [Coh93]

Input: nonsingular square matrix A with entries aij ∈ Z
Output: Hermite normal form of A

1: function HNF(A)

2: while i 6= 1 do

3: if aij = 0 for all j < k then

4: if aik < 0 then

5: ak = −ak

6: end if

7: if aik = 0 then

8: k + +

9: else for j < k

10: aj = aj − b(aij/aik)cak
11: end if

12: i−−
13: k −−
14: else

15: if aik < 0 then

16: ak = −ak

17: amin = min aij for j < k

18: jmin = j

19: swap ajmin
and ak

20: if aik < 0 then

21: ak = −ak

22: end if

23: aj = aj − baij/aikcak
24: end if

25: end if

26: end while

27: end function
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elements, find the minimum nonzero element in the row, say in the jth column, and exchange

columns j and k. If the entry aik < 0, replace ak with −ak.

For all the columns j to the left of k, set q = baij/aikc, and redefine column aj = aj− qak. So,

for each column j to the left of k, subtract a multiple of the kth column to make aij = 0 for all

elements in the ith row to the left of column k.

Now check again if all the elements in the ith row to the left of the kth column are 0. If they

are not, repeat the above steps.

Once all of the elements to the left of the kth column are 0, set i = i− 1 and k = k − 1, until

i = l = 1 or m−n+ 1, and k = n−m+ 1 or 1 respectively. Stop when either the rows or columns

of A run out. Do the above for the entries along the diagonal, beginning with the last entry in A,

amn.

If A is not square, simply construct a new matrix W to be the transformed nonzero columns

of A.

Hermite Normal Form With GCD

Using an efficient implementation of the extended Euclidean algorithm may improve this proce-

dure. This leads to our next algorithm, which uses this notion to eliminate unnecessary iterations.
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Algorithm 4 Algorithm 2.4.5

Input: nonsingular square matrix A with entries aij ∈ Z
Output: Hermite normal form of A

1: function HNF(A)

2: k = n

3: j = m

4: for i ∈ {n, . . . , 1} do

5: d = gcd(aik, aij)

6: Find minimal (s, t) such that saik + taij = d . Use the Extended Euclidean Algorithm

7: for j ∈ {m, . . . , 1} do

8: if aij /=0 then

9: b = s · ak + t · aj

10: aj = (aik/d)aj − (aij/d)ak

11: ak = b

12: end if

13: end for

14: end for

15: for i ∈ {n, . . . , 1} do

16: if aik < 0 then

17: ak = −ak

18: end if

19: for j ∈ {k + 1, . . . , n} do

20: q = baij/aikc
21: aj = aj − qak

22: end for

23: end for

24: end function

28



This second algorithm works similarly to the first, with the difference of using an efficiently

implemented extended Euclidean algorithm to reduce each row (although we refer only to column

vectors within the algorithm.) Rather than step through the reduction at each row and column, it

efficiently reduces the entries by the maximum amount the first time using the gcd of its entries.

4.3 Fundamental Region

Now that we are familiar with the bases of a lattice, we can examine another crucial piece of its

structure. Associated with a given basis B for a lattice L is the fundamental region formed by the

basis vectors. We will make use of this concept when describing the encryption scheme in Section

6.

Definition 7. Given a basis B for a lattice L, the fundamental region associated with B

consists of all the points within the box formed by the basis vectors {b1, . . . ,bn}.

FB =

{
Bc

∣∣∣∣ − 1

2
≤ ci <

1

2
∀i
}

Notice that FB /⊂L. That is, the fundamental region is not made up of lattice points. In

fact, the only point they have in common will the the one at the origin. Also note that although

the length of the basis vectors may vary, the volume of the fundamental region will be the same

regardless of which basis for a given lattice is used. This volume is referred to as the determinant

of the lattice and is equal to | det(B)| for any basis B of the lattice. If a lattice L is spanned by

a basis B, we may refer to FL to mean FB if the basis B is easily inferred from the text. In fact,

we refer to F skJ as the fundamental region formed by the secret basis for lattice J and FpkJ as the

fundamental region formed by the public basis for J .

Figure 4: Fundamental regions formed by different bases

We will consider bases with fundamental regions centered at the origin. In addition, we will

often refer to the operation c mod B to refer to finding the equivalent point c′ within FB. A
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problem arises when one cannot differentiate between two equivalent points c′ ≡ c (mod B),

where c′ ∈ FB and c /∈ FB.
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5 Sampling from a Lattice

Recall that encryption is meant to be a randomized function. Given an input π, we will therefore

need to provide random input by means of sampling from the coset π+I according to a distribution

D. This involves choosing an element i ∈ I, but we will see that D must satisfy the following

condition in order for decryption to work:

• The element π+ i chosen from π+ I must be unique inside π+ J with respect to the secret

basis Bsk
J .

More simply, we prefer to take our random element i such that π + i ∈ F skJ . We refer to [GPV07]

to see just how to sample from a lattice. First we define the continuous Gaussian function over

Rn with center c ∈ Rn and deviation s ∈ R as

ρs,c(x) = exp(−π‖x - c‖2/s2)

for all x ∈ R. We then define the corresponding discrete Gaussian function over a lattice L as

DL,s,c(x) =
ρs,c(x)

ρs,c(L)

for all x ∈ L. The denominator is defined as ρs,c(L) =
∑

x∈L ρs,c(x), and acts as a normalizing

factor on the probability of the elements of L, similar to the implied denominator in the continuous

function, ρs,c(Rn) =
∫∞
−∞ ρs,c(x)dnx = 1.

To sample randomly from a lattice, we first sample randomly from the integers, and incorporate

this into our procedure. This method is outlined in [GPV07] and reproduced in part here.

We allow the use of a subroutine to choose a random element from a 1-dimensional integer

lattice (i.e. Z.) One common method of sampling according to a probability distribution function

uses a pseudorandom number generator (PRNG) to produce a number ξ ∈ [0, 1). The sample is

then the value η that solves the cumulative density function ξ =
∫ η
−∞ ρs,c(x)dnx. In the discrete

case it is often easier to implement rejection sampling, whereby a value η is chosen uniformly at

random from the set Z ∩ [c− s · t(n), c + s · t(n)] and accepted with probability ρs,c(η) ∈ (0, 1].

Our function will efficiently sample a lattice according to a given distribution D. It does this by

recursively sampling from the integers over the given distribution and computing the orthogonal

components of its original input basis vectors. It is helpful to note that each time the recursive

step is taken, one basis vector is deleted from the matrix B to form B′. The recursion will be

allowed to unravel once m = 0, or the last basis vector has been deleted from B (or by that time

B′.) The steps are then revisited as the recursion unravels. The output will be a vector sampled

from the lattice I spanned by B, centered at c, with spread parameter s.
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Algorithm 5 SampleD

Input: basis B ∈ Zn×m, spread parameter s, center c

Output: a randomly chosen vector i ∈ I
1: function SampleD(B, s, c)

2: if m=0 then

3: return 0

4: end if

5: b̃k = bk −
∑m−1

i=1 bi
〈bi,bk〉
〈bk,bk〉

6: t =
∑m

i=1 t 〈t,bi〉
〈bi,bi〉

7: t = 〈t,b̃k〉
〈b̃k,b̃k〉

8: Choose z ∈ Z from distribution DZ,s/‖b̃k‖,t . Subroutine mentioned above

9: B′ = [b1, . . . ,bk−1]

10: d = SampleD(B′, s, t− zbk) . Recursive step

11: return zbk + d

12: end function
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6 Encryption and Decryption

For encryption, we combine the topics from all previous sections. Our plaintexts and ciphertexts

are now viewed in terms of lattice elements. We will make heavy use of the fundamental regions

associated with the different bases for our lattices, and continue to do so when assessing the growth

of ciphertext vector length in Section 7.

We begin encryption with a plaintext π ∈ FI . To encrypt π, we make use of the property

that the coset representative π + i+ J is distinguished with respect to the secret basis Bsk
J when

choosing i ∈ I. That is, we do not choose i ∈ I that has a corresponding i′ ∈ I such that

π + i ≡ π + i′ (mod Bsk
J ). In other words, we require π + i ∈ F skJ . This is taken care of by our

sampling distribution D.

Also recall that encryption will use the public basis for the lattice J , denoted Bpk
J . Similarly,

decryption will use the secret basis for J , denoted Bsk
J . Both encryption and decryption use the

basis for I, denoted BI , and in fact it is expected that this basis is commonly known for the

purpose of computation by third parties.

6.1 Encryption with Bpk
J

We begin the examination of our scheme by considering encryption. A valid plaintext must first

be taken from the region of valid plaintexts, π ∈ P . To encrypt, first choose an element i of the

lattice I according to a probability distribution D such that π + i ∈ F skJ . Label our intermediate

ciphertext as σ = π+ i. Our ciphertext ψ will then be the reduction of σ by Bpk
J , ψ = σ mod Bpk

J .

This operation amounts to adding an element j of J that brings the ciphertext back within the

fundamental region Fpk.

Encrypt(π) = π + i mod Bpk
J = π + i+ j i ∈ I, j ∈ J

A graphical representation in 2 dimensions of this procedure can be seen in Figure 6, where π

is referred to as p for convenience. The bases for the lattices I and J are seen first in Figure 5. In

addition, the formal statement of Encrypt is given.
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Algorithm 6 Encryption

Input: public basis Bpk
J and plaintext π

Output: ciphertext ψ

1: function Encrypt(π)

2: Choose a random i from I . According to distribution D
3: ψ = π + i mod Bpk

J

4: return ψ

5: end function

Figure 5: Basis for I (red), Secret (blue) and public (green) bases for J
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Figure 6: Encrypt: Locate the plaintext p and shift by a random element i ∈ I
Then compute p+ i mod Bpk

J = p+ i+ j
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6.2 Decryption with Bsk
J

Now that we have seen how to encrypt a plaintext π, we must see how to recover it. We are given

a ciphertext ψ, and now make active use of the secret basis. To decrypt, first reduce the ciphertext

by the secret basis of J . We write this as φ = ψ mod Bpk
J , but recall that this action results from

finding the equivalent element within φ ∈ F skJ . Furthermore, to find φ we are subtracting an

element from J . So we may say that φ = ψ− j′ for some j′ ∈ J . What remains is, by definition, a

distinguished representative of π + i+ J , from which the message is easily recovered by reducing

modulo BI . This gives us a final element φ− i′ = ψ − j′ − i′, where i′ ∈ I. Note that correctness

of decryption is nontrivial and that a proof is provided below.

Decrypt(ψ) = (ψ mod Bsk
J ) mod BI

= ((π + i mod Bpk
J ) mod Bsk

J ) mod BI

= (π + i+ j mod Bsk
J ) mod BI

= π + i mod BI = π.

Algorithm 7 Decryption

Input: private basis Bsk
J and ciphertext ψ

Output: plaintext π

1: function Decrypt(π)

2: φ = ψ mod Bsk
J

3: π = φ mod BI

4: return π

5: end function

Again, we see these steps graphically in Figure 7, where ψ is referred to as c for convenience.

We also present the formal statement of Decrypt.

6.2.1 Correctness

We claim that decryption of a valid ciphertext correctly yields the original plaintext. Recall that

to encrypt, we first take our message from the region of valid plaintexts, π ∈ P ⊆ FI . We choose

an element i from the lattice I according to probability distribution D, which has the property

that π+ i is distinguished in π+ i+ J . Therefore we have that π+ i ∈ F skJ , by our hypothesis on

D.

We write σ = π+ i, and set our ciphertext ψ to be the reduction by Bpk
J , ψ = σ mod Bpk

J . We

express this as ψ = π + i+ j for some j ∈ J that forces ψ to be inside FpkJ .
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Figure 7: Decrypt: Locate c and compute compute c mod Bsk
J = p+ i+ j − j′

Then compute (c mod Bsk
J ) mod BI = p+ i+ j − j′ − i′

Now decryption gives π′ = (ψ mod Bsk
J ) mod BI . We then introduce j′ ∈ J and the transitional

ciphertext φ such that φ = ψ mod Bsk
J = ψ − j′, where φ ∈ F skJ . We also introduce i′ ∈ I such

that π′ = φ mod BI = φ− i′ = ψ − j′ − i′. So π′ ∈ FI . We must now show that π′ = π.

Consider for a moment a more abstract scenario. Given a basisB for a lattice L, we can consider

the cosets formed by k+L, where k /∈ L. Now note that each coset mimics the fundamental region

FB in a way. That is, it contains a copy of each vector within the fundamental region that is then

shifted by the same element. Furthermore, we see that k + `1 and k + `2 in the same coset k + L
will be equivalent modulo B. Thus, two distinct elements in the fundamental region FB that we

know to correspond to two elements of the coset modulo B must correspond to two distinct such

elements. So if the elements within FB are equivalent, the coset elements must be as well.

Recall then that φ ∈ F skJ , and by our hypothesis on D, σ ∈ F skJ as well. We then have that

φ = σ + (j − j′), since both are contained in the same coset modulo J , and both φ and σ belong

to F skJ . Thus, φ = σ. So j − j′ = 0, and j = j′. This tells us a little more about π′, namely that

π′ = σ mod BI .

Now we have that π and π′ are both contained in FI , and π′ = π+ (i− i′). Similarly as above,

π′ = π, and i′ = i.
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7 Error Growth

Now given a set of ciphertexts ψ1, . . . , ψn ∈ FpkJ , we must determine just how much computation

we can perform before we are no longer able to decrypt. We refer to a set of these operations as a

circuit. We also use ther terms noise or error to refer to the growth of the length of the ciphertext

vector. Although we would like it to include a bit of this noise in order to be semantically secure,

recall from Section 6.2.1 that a correct decryption is possible when the ciphertext lies within FI .
That is, we must determine the maximum depth of an arbitrary arithmetic circuit C such that

ψ = C(ψ1, . . . , ψn) still lies within FI . If at each level of computation in a circuit, the length of

the ciphertext grows with noise, we can establish a maximum depth d for a computable circuit

that will produce a decryptable ciphertext.

We define positive real numbers renc and rdec with the following properties:

• Every encryption ψi has length at most renc.

• Any vector of length at most rdec may be properly decrypted.

For example, we may take renc to be the smallest radius of a ball centered at the origin that

contains FpkJ . Likewise, rdec may be taken as the largest radius of a ball centered at the origin and

contained in FI .

7.1 Addition

We are given bounds on the lengths of our ciphertext vectors to begin with. This places a limitation

on the arithmetic circuits we can evaluate. We will examine this more closely by considering

individual gates within the circuit using linear algebra to describe the growth of the noise in

the ciphertext ψ. For now, consider two arbitrary euclidean vectors u and v, each of length at

most renc. Notice that the domain of u and v is not specified. If, in our case, we consider the

polynomials u(x) and v(x) in Z[x], then u and v will consist of the coefficients of u(x) and v(x).

Furthermore, the vector u+v represents the vector made up of the coefficients of the sum of these

polynomials, and has length ‖u + v‖ ≤ ‖u‖+ ‖v‖ ≤ 2renc by the triangle inequality.

In fact, we can use this to bound the length of an arbitrary summation of such vectors. Let

γ > 0, and consider the summation of u1, . . . ,uγ. We see that

‖u1 + · · ·+ uγ‖ ≤ ‖u1‖+ · · ·+ ‖uγ‖ ≤ γ · renc

In the context of a circuit, we can quantify the fan-in of a single gate; that is, the number

of operands. For example, a single addition gate as above would have a fan-in of γ, and could

therefore sum up to γ operands.

Now that we’ve established a bound on the growth of noise as a result of addition, however,

we will see that controlling the length of the output of a multiplication gate is not as trivial.
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Consider again the euclidean vectors u and v that correspond to the polynomials u(x) and v(x)

in the quotient ring R = Z/(f(x)). We let r be the vector whose components correspond to the

coefficients of r(x) = u(x) · v(x) in the quotient ring R. We will show that there exists γ > 0 that

depends only on the quotient ring R such that the length of ‖r‖ ≤ γ · ‖u‖ · ‖v‖. Once we obtain

this bound, we will be able to estimate the growth of vector lengths for arbitrary circuits, and

thereby obtain our depth bound, d.

7.2 Multiplication

Again, we consider ciphertext inputs of a bounded length and attempt to classify the growth of

the product of these vectors. We can first consider the fan-in of a single multiplication gate to be

2. That is, we consider the growth of the noise or error when computing the product of two ring

elements u(x) and v(x) in R. As before, we can then use this bound to quantify the growth of

noise when computing the product of many ring elements.

Lemma 2. Let f(x) be a monic integer polynomial of degree n. Let F (x) = xn · f(x−1) and

g(x) = F (x)−1 mod xn−1. If u(x), v(x) ∈ Z[x], then the product of u(x) and v(x) in Z[x]/(f(x))

has length at most γ · ‖u‖ · ‖v‖, for some

γ ≤
√

2n · (1 + 2n · ‖g‖ · ‖f‖).

Proof. Let t(x) be the product u(x) · v(x) in Z[x], and r(x) be the product u(x) · v(x) in the ring

R = Z[x]/(f(x)). We will make use of the reciprocal of t(x), and so it behooves us to investigate in

general the properties of xn−k ·h(x−1) for an arbitrary polynomial h(x) ∈ R. We will see that this

process shifts the coefficients of h(x), so that ‖xn−k · h(x−1)‖ = ‖h(x)‖ while k < deg h(x). When

convenient, we will refer to the length of the vector h, which we write as ‖h‖. This is equivalent to

the length of the polynomial h(x), which we write similarly as ‖h(x)‖. After a few examples, we

will return to this proof and investigate other properties of these reciprocals to obtain our bound.

Lemma 3. Let h(x) ∈ Z[x], and deg h(x) = `. Let H(x) = xn−k · h(x−1), where k < `. If h and

H are the coefficient vectors of h(x) and H(x) respectively, then ‖h‖ = ‖H‖.

Proof. To see this, we simply apply the multiplication as follows:

H(x) = xn−k · h(x−1)

= xn−k · (h`x−` + h`−1x
−(`−1) + · · ·+ h1x

−1 + h0)

= h`x
n−k−` + h`−1x

n−k−(`−1) + · · ·+ h1x
n−k−1 + h0x

n−k

= h0x
n−k + h1x

n−k−1 + · · ·+ h`−1x
n−k−(`−1) + h`x

n−k−`
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So if h(x) has the coefficient vector

h =
[
h0 h1 · · · h`−1 h` 0 · · · 0

]
then H(x) has coefficient vector

H =
[
0 · · · 0 h` · · · h0 0 · · · 0

]
where xn−k ·hix−i = hix

n−k−i = Hn−k−ix
n−k−i. Thus, hi = Hn−k−i for 0 ≤ i ≤ `. Since H contains

the same values as h, simply permuted, it follows that ‖H‖ = ‖h‖.

Example 9. To see a short example of this, consider h(x) = 6x4+3x3+x+1, so deg h(x) = ` = 4.

Let n = 6 and k = 2. Then H(x) = xn−k ·h(x−1) = x4 · (6x−4 + 3x−3 +x−1 + 1) = 6 + 3x+x3 +x4.

Constructing h and H, we then have

h =
[
1 1 0 3 6 0 0

]
H =

[
6 3 0 1 1 0 0

]
Notice that if n− k = `, the entries h0 through h` are reversed in place in H.

Example 10. Let h(x) = 3x3 + 2x2 + x+ 5. Then deg h(x) = ` = 3. Let n = 7, and k = 2. Then

H(x) = xn−k · h(x−1) = x5 · (3x−3 + 2x−2 + x−1 + 5) = 3x2 + 2x3 + x4 + 5x5. So then

h =
[
5 0 2 3 0 0 0 0

]
H =

[
0 0 3 2 1 5 0 0

]
For n− k > ` it is possible to shift the coefficients to the right within the coefficient vector. Notice

that although the entries of h are both reversed and shifted in H, they are not shifted so greatly

as to incur wraparound (as h(x) is an element of Z/(f(x))). This satisfies the conditions of the

lemma, as k < deg h(x).

Now we return to the proof of Lemma 2. Recall that deg u(x), deg v(x) < n. So deg t(x) =

deg u(x) + deg v(x) ≤ 2n− 2. Now let T (x) = x2n−2 · t(x−1), or rather,

T (x) = x2n−2 · t(x−1)

= x2n−2 · (t0 + t1x
−1 + . . . t2n−3x

−(2n−3) + t2n−2x
−(2n−2))

= t0x
2n−2 + t1x

2n−3 + . . . t2n−3x+ t2n−2

To find the degree of T (x), we must instead consider the lowest-order term of t(x), since ti =

T2n−2−i. Suffice it to say, however, that deg T (x) ≤ 2n− 2, where equality is possible only if both

u(x) and v(x) have nonzero constant terms u0 and v0. We extend this notion to the unreduced

representation of t(x) = q(x) · f(x) + r(x), and introduce a small lemma to help our proof along.

The proof of Lemma 2 continues after Example 11.
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Lemma 4. Consider t(x) = q(x) · f(x) + r(x). Let T (x) and F (x) be as above. Let Q(x) =

xn−2 ·q(x−1) and R(x) = x2n−2 ·r(x−1). If t(x) = q(x)·f(x)+r(x), then T (x) = Q(x)·F (x)+R(x).

Proof. First we note that t(x) = q(x) · f(x) + r(x) in Z[x], which is contained in Q[x]. We know

then from [Gal10] that if this equation holds true in Z[x], then it will hold true for in Q[x].

Consider then the quotient field Q(x) of Q[x]. We know our equation still holds in Q(x), and

furthermore that the rational function t(x−1) is an element of Q(x). So the following operations

are valid in Q(x).

T (x) = x2n−2 · t(x−1)

= x2n−2 · (q(x−1) · f(x−1) + r(x−1))

= xn−2 · q(x−1) · xn · f(x−1) + x2n−2 · r(x−1)

T (x) = Q(x) · F (x) +R(x).

Since both the left-hand side and right-hand side belong to Z[x], the above holds true in Z[x].

Example 11. Let n = 3, and t(x) = 2x4+x2+2x+2 = (2x)·(x3+1)+(x2+2) = q(x)·f(x)+r(x).

Then we compute the following:

T (x) = x2n−2 · t(x−1)

= x4 · (2x−4 + x−2 + 2x−1 + 2)

= 2x4 + 2x3 + x2 + 2x

Q(x) = xn−2 · q(x−1)

= x · (2x−1)

= 2

F (x) = xn · f(x−1)

= x3 · (x−3 + 1)

= x3 + 1

R(x) = x2n−2 · r(x−1)

= x4 · (x−2 + 2)

= 2x4 + x2
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And to verify, we check the following:

Q(x) · F (x) +R(x) = (2) · (x3 + 1) + (2x4 + x2)

= 2x4 + 2x3 + x2 + 2x

= T (x)

Returning to our original proof, recall that by our division algorithm deg r(x) ≤ n−1, and thus

the lowest-order term of R(x) is of the form Rix
i, where i ≥ 2n−2− (n−1) = n−1. So R(x) ≡ 0

(mod xn−1), and T (x) ≡ Q(x)·F (x) (mod xn−1). Furthermore, we can see that F (x) is guaranteed

to have a nonzero constant term, since deg f(x) = n and fi = Fn−k−i, and thus fn = F0. So F (x)

is also guaranteed a multiplicative inverse in Q(x). Let g(x) = F (x)−1 mod xn−1, or rather the

multiplicative inverse of F (x) in Z[x]/(xn−1). Then T (x) · g(x) ≡ Q(x) (mod xn−1).

Finally, to complete our proof we will make use of the Cauchy-Schwarz Inequality.

Lemma 5 (Cauchy-Schwarz Inequality). Let u,v ∈ Rn. Then |u · v| ≤ ‖u‖ · ‖v‖.[Rud79]

A proof of this can also be found in [Rud79]. Continuing to look at the bound on the noise as

a result of multiplication, we examine the length of the unreduced product t(x) = u(x) · v(x) in

Z[x]. Since t(x) = u(x) · v(x), each ti is the dot product of some subset of coefficients from u(x)

and v(x).

ti =
i∑

`=0

uivi−` =
[
u0 u1 . . . ui

]
·
[
vi vi−1 . . . v0

]
If we let

u̇ =
[
u0 u1 . . . ui

]

v̇ =
[
vi vi−1 . . . v0

]
then ‖ti‖ ≤ ‖u̇‖ · ‖v̇‖ ≤ ‖u‖ · ‖v‖. This allows us to bound the length of t as follows.

‖t‖ =

√√√√2n−2∑
i=0

t2i

≤

√√√√2n−2∑
i=0

(‖u‖ · ‖v‖)2

=
√

(2n− 2) · (‖u‖ · ‖v‖)2

=
√

2n− 2 · ‖u‖ · ‖v‖

≤
√

2n · ‖u‖ · ‖v‖
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Note that the bound on the individual ti, while simple in appearance, can be rather poor for

particular ti. Take, for example, t0 = u0v0, whose absolute value is (according to our above

result) bounded by ‖u‖ · ‖v‖. This estimate is therefore quite generous. Similarly we can apply

this to Q(x) to obtain ‖Q‖ ≤
√

2n · ‖T‖ · ‖g‖. Then we have that the length of the product

u(x) · v(x) ∈ Z[x]/(f(x)) is

‖r‖ = ‖R‖ Lemma 3

≤ ‖T‖+ ‖Q(x) · F (x)‖ Triangle Inequality

since R(x) = T (x)−Q(x) · F (x). Furthermore,

‖r‖ ≤ ‖T‖+
√

2n · ‖Q‖ · ‖F‖ Cauchy-Schwarz Inequality

= ‖T‖+
√

2n · (‖T (x) · g(x)‖) · ‖F‖

≤ ‖T‖+
√

2n · (
√

2n · ‖T‖ · ‖g‖) · ‖F‖ Cauchy-Schwarz Inequality

= ‖T‖+ 2n · ‖T‖ · ‖g‖ · ‖F‖

= ‖T‖ · (1 + 2n · ‖g‖ · ‖F‖)

= ‖t‖ · (1 + 2n · ‖g‖ · ‖f‖) Lemma 3

≤
√

2n · ‖u‖ · ‖v‖ · (1 + 2n · ‖g‖ · ‖f‖) Cauchy-Schwarz Inequality

Letting γ ≤
√

2n·(1+2n·‖g‖·‖f‖), we then have that the product r(x) = u(x)·v(x) in Z[x]/(f(x))

has length

‖r‖ ≤ γ‖u‖ · ‖v‖ ≤
√

2n · ‖u‖ · ‖v‖ · (1 + 2n · ‖g‖ · ‖f‖)

Now that we have an idea of how much ciphertext will grow with each type of operation, we

can quantify the depth of a valid circuit. In other words, we can find a bound on the maximum

depth of a circuit so that the ciphertext output of that circuit does not grow beyond rdec.

7.2.1 Maximum Circuit Depth

Recall that in general for valid encryption, we need the ciphertext to lie within the ball of radius

rdec. For this to occur, the length of the ciphertext ψ can be no larger than rdec. Note that

although we refer to ψ in neither vector, nor polynomial notation, it is an element of the ring

R = Z/(f(x)), and as such has a coefficient vector ψ. It is the length of this coefficient vector,

denoted ‖ψ‖, that we are bounding by rdec, and not the number of bits in the ciphertext ψ. We

will continue the use of arbitrary vectors u and v in place of these to avoid confusion.

We will proceed by considering the ciphertext at each level of the circuit. By using rdec as a

bound on the length of the vector ψ, we can work backwards to obtain a depth d for which the

length of ψ does not exceed this bound.
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Theorem 4. Let renc ≥ 1. For a circuit C, let the additive fan-in of C be γ, the multiplicative

fan-in of C be 2, and the depth of C be at most

loglog(rdec)− loglog(γ · renc).

Then w = C(u1, . . . ,un) has length at most rdec, for ‖ui‖ ≤ renc.

Proof. We begin by considering an upper bound on the size of the vectors at level i. Call this

bound ri. The input ciphertexts to our circuit will therefore have length at most r0, and the final

output ciphertext will have length at most rd. Our claim is then that rd ≤ rdec for a circuit of

depth d. We have already seen that the output u of an addition operation with fan-in γ has length

‖u‖ ≤ γ · ri, and the output v of a multiplication operation has length ‖v‖ ≤ γ · r2i , for operands

of length at most ri.

As the length of the ciphertext produced by a multiplication operation has a larger bound than

that of an addition operation, we can bound the length of the ciphertext produced by an addition

operation by γ ·r2i as well. Intuitively this amounts to thinking of each operation as a multiplication

operation, whether or not it actually is. In that sense, the length of its output is bounded by

ri+1 ≤ γ ·r2i . Subsequently at level i+2 the length is bounded by ri+2 ≤ γ ·r2i+1 ≤ γ ·(γ ·r2i )2 = γ3 ·r4i .
Starting at level 0, the input to the the circuit, we then see that the length of the vectors

at level 2 are bounded by r2 ≤ γ3 · r40, and the length of the vectors at level 3 are bounded by

r3 ≤ γ7 · r80, and so on. So at level i, we have

ri ≤ γr2i−1 ≤ γ3r4i−2 ≤ · · · ≤ γ2
i−1 · r2i0

We can extend this to the end of our circuit at level d to obtain rd ≤ γ2
d−1 · r2d0 .

Furthermore, if we can assume that our input ciphertexts are freshly encrypted, they will have

length r0 ≤ renc. So rd ≤ γ2
d−1 · r2denc.

Our goal then becomes to solve the inequality rdec ≤ γ2
d−1 · r2denc for d. We proceed in the

following way:

rdec ≤ γ2
d−1 · r2denc

log(rdec) ≤ log(γ2
d−1 · r2denc) = 2d · log(γ · renc)

log(log(rdec)) ≤ log(2d · log(γ · renc)) = d · log(2) + log(log(γ · renc))

log(log(rdec))− log(log(γ · renc)) ≤ d

This gives us the desired bound on d.

This bound dictates the number of levels a computable circuit can have. If two operations can

be performed in parallel, then we need only count them both as a single level.
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8 Bootstrapping

By the limitations outlined above, our scheme is still only somewhat homomorphic (i.e. it can only

perform a certain number of operations before it can no longer properly decrypt the ciphertext.)

But we will see that periodically refreshing the ciphertext allows us to perform an unlimited

number of operations. The method we use is called bootstrapping.

Definition 8. We call a scheme bootstrappable if it can homomorphically evaluate its own

decryption circuit.

It is important to keep in mind two key concepts:

1. Operations The scheme must be homomorphic with respect to any gates that appear in the

decryption circuit. Our scheme is homomorphic (although limited depth-wise) with respect

to ring addition and multiplication, which together allow for universal computation.

2. Noise The scheme must be able to evaluate the entire decryption circuit without creating

too much noise. We saw in Section 7 how operations will introduce noise into our ciphertexts

by causing them to grow in length.

8.1 Recrypt

For our calculations in Section 7, we assumed that a freshly encrypted ciphertext has length at

most renc. At this point our goal is then to take a long ciphertext ψ1 (the result of computation),

and create another ciphertext ψ2 that is shorter in length.

To do this, the encrypter (below, Clyde) first chooses another pair of public and secret bases

for the lattice J . We call these Bpk2
J and Bsk2

J respectively, with the original pair of bases denoted

Bpk1
J and Bsk1

J . The encrypter then sets βsk1J to be the encryption of the first secret basis Bsk1
J

under the second public basis Bpk2
J .

βsk1J = Encrypt
B

pk2
J

(Bsk1
J )

He then sends the newly encrypted secret key βsk1J and the new public key Bpk2
J to the compu-

tational service provider (below, Sergei), who then homomorphically re-encrypts the ciphertext

before continuing his computations.

More concretely, this re-encryption is encapsulated in the function Recrypt, which first com-

putes the encryption of ψ1 with respect to the second public basis Bpk2
J

σ = Encrypt
B

pk2
J

(ψ1)

and then the decryption of this with respect to the encrypted secret basis βsk1J .

ψ2 = Decrypt
β
sk1
J

(σ)

45



Since both σ and βsk1J are encrypted under the same public basis, the decryption circuit can be

homomorphically evaluated using both as input. The result of Recrypt is a new ciphertext ψ2 of

shorter length than ψ1, whose proper decryption yields the same plaintext. That is,

Decrypt
B

sk2
J

(ψ2) = Decrypt
B

sk1
J

(ψ1)

The re-encryption algorithm Recrypt is provided below, with stages of encryption and decryption

specified.

Algorithm 8 Re-encryption

Input: encrypted private basis βsk1J , public basis Bpk2
J , and ciphertext ψ1

Output: ciphertext ψ2

1: function Recrypt(ψ1)

2: Encryption

3: Choose a random i from I . According to distribution D
4: σ = ψ1 + i mod Bpk2

J

5: Decryption

6: φ = σ mod βsk1J

7: ψ2 = φ mod BI

8: return ψ2

9: end function

Although there are some applications where it may be beneficial for the client to provide his

keys at an earlier or later date than specified, we assume that the number of keys necessary is

computed beforehand. This way, the client sends his keys along with his data and computation

instructions.

Below we see how Clyde prepares to send his data to Sergei. Clyde must first generate his public

and private bases for J . He may then use the first public basis to encrypt his plaintexts. Next

he must successively encrypt each private basis (except Bsk`
J ) with the next pair’s public basis.

Clyde may then send all of his encrypted data to Sergei, and Sergei may begin computation.

Once Sergei’s ciphertexts reach a threshold of length close to rdec, he must re-encrypt them

using the Recrypt algorithm. After he re-encrypts his data, however, he is free to proceed with

computation. When his computations are complete, Sergei sends the encrypted result back to

Clyde (also specifying which public basis it is encrypted under if Clyde does not already know.)

Clyde may then decrypt the ciphertext to obtain the desired result.

Clyde Sergei
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Generate keys

{Bpk1
J , . . . , Bpk`

J } and {Bsk1
J , . . . , Bsk`

J }

Encrypt plaintext arguments under a

single key

ψj = Encrypt
B

pk1
J

(πj)

Encrypt secret keys successively

βskiJ = Encrypt
B

pki+1
J

(Bski
J )

Send ciphertext and keys to Sergei

{ψ1, . . . , ψn}{
βsk1J , . . . , β

sk`−1

J

}
,
{
Bpk1
J , . . . , Bpk`

J

}
−−−−→ Begin computation

...

Re-encrypts the ciphertext

ψj+1 = Recrypt(ψj)

Repeat as necessary
...

Return ciphertext ψm,

Decrypt ciphertext ←−−−− encrypted under Bpkm
J

πm = DecryptBpkm
J

(ψm)

Clyde must know which public basis the ciphertext is encrypted under so that he can decrypt

it with the proper secret basis. It might seem that Sergei could attempt to decrypt one of the

encrypted secret bases, but in order to do this he will need to decrypt all of the secret bases. In

fact, he will need the unencrypted secret basis Bsk`
J , which Clyde does not send him.

8.2 Usability

To ensure that the noise stays at a manageable level, we re-encrypt the data before the noise reaches

the threshold that prevents proper decryption. A valid circuit is one that produces a ciphertext

that can be properly decrypted. If in addition we can evaluate this circuit and re-encrypt the

data without going over the threshold of noise, we call this pair an augmented circuit.

If we do not reuse keys, a new (Bpk
J , B

sk
J ) pair will be needed for each augmented circuit. In the

worst case, a new key pair will be needed for every level of the circuit. In Section 3.1, however, we

showed that it is sufficient if we can evaluate a single NAND gate before re-encrypting. Through the
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use of only NAND gates, we can evaluate any arithmetic function. Recall that X NAND Y translates

to 1−X · Y , which uses a single multiplication and a subtraction.

The above assumes that the decryption circuit can be evaluated without creating a ciphertext

whose length exceeds that of rdec. To achieve this, however, some modifications needs to be made

to the scheme to make the decryption circuit sufficiently shallow. The modifications proposed in

[Gen09a] are twofold. First, the size of the secret basis is decreased by using fractional ideals.

Second, the size of renc is decreased, mainly outlined in Chapter 9 of [Gen09a]. This change

restricts our set of vectors closer the origin within F skJ , allowing us to use fewer bits of precision

in our computation of the decryption circuit.
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9 Appendix A: Notation

The following notation is used throughout the text when discussing or describing algebraic quan-

tities:

• u(x) A polynomial in either Z[x] or R = Z[x]/f(x) with the coefficients u0, . . . , un.

• u The vector whose components are the coefficients of u(x) in order from least to most

significant power.

• ‖u‖ The Euclidean norm (2-norm) of the vector u, evaluated by ‖u‖ =
√∑n

i=1 u
2
i .

• ‖u(x)‖ The length of the polynomial u(x), quantified by the Euclidean norm of the vector u.

• ui The ith coefficient of u(x) corresponding to the term uix
i; also the ith component

of u.

• u(x) · v(x) The polynomial corresponding to the product (unx
n + · · · + u1x + u0) · (vnxn +

· · ·+ v1x+ v0).

• u · v The inner (dot) product of the two vectors u and v, unvn + · · ·+ u1v1 + u0v0.

51



10 Appendix B: Sage Code

10.1 Basis Reduction Functions

de f MakeNonNegative (A, i , k ) :

i f A[ i ] [ k ] < 0 :

f o r i in range (0 ,m) :

A[ i ] [ k ] = (−1)∗A[ i ] [ k ]

r e turn A

def Swap(A, j0 , k ) :

f o r i in range (0 ,m) :

x = A[ i ] [ j 0 ]

A[ i ] [ j 0 ] = A[ i ] [ k ]

A[ i ] [ k ] = x

return A

def RowFinished (A, i , k ) :

f i n i s h e d = 1

f o r j in range (0 , k−1):

i f A[ i ] [ j ] != 0 :

f i n i s h e d = 0

return f i n i s h e d

de f Reduce (A, i , k ) :

b = A[ i ] [ k ]

f o r j in range (0 , k ) :

q = A[ i ] [ j ]∗ ( 1 / b)

f o r x in range (0 ,m) :

A[ x ] [ j ] = A[ x ] [ j ] − q∗A[ x ] [ k ]

r e turn A

def FinalReduce (A, i , k ) :

b = A[ i ] [ k ]

f o r j in range ( k+1,n ) :

q = A[ i ] [ j ]∗ ( 1 / b)

f o r x in range (0 ,m) :

A[ x ] [ j ] = A[ x ] [ j ] − q∗A[ x ] [ k ]

r e turn A

def gcd reduce (A, i , j , k ) :

e u c l i d = I n t e g e r . xgcd (A[ i ] [ k ] ,A[ i ] [ j ] )
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f o r row in range (0 ,m+1):

B[ row ] = e u c l i d [ 1 ] ∗A[ row ] [ k ] + e u c l i d [ 2 ] ∗A[ row ] [ j ]

f o r row in range (0 ,m+1):

A[ row ] [ j ] = f l o a t (A[ i ] [ k ] / e u c l i d [ 0 ] ) ∗A[ row ] [ j ] − f l o a t (A[ i ] [ j ] / e u c l i d [ 0 ] ) ∗A[ row ] [ k ]

f o r row in range (0 ,m+1):

A[ row ] [ k ] = B[ row ]

re turn A

10.2 Hermite Normal Form Without GCD

whi le i != l :

i f RowFinished (A, i , k ) :

A = MakeNonNegative (A, i , k )

i f A[ i ] [ k ] == 0 :

k = k + 1

e l s e :

A = FinalReduce (A, i , k )

i = i − 1

k = k − 1

e l s e :

A = MakeNonNegative (A, i , k )

min a = A[ i ] [ k ]

min j = k

f o r j in range (0 , k−1):

i f A[ i ] [ j ] < min a and A[ i ] [ j ] != 0 :

min a = A[ i ] [ j ]

min j = j

A = Swap(A, min j , k )

A = MakeNonNegative (A, i , k )

A = Reduce (A, i , k )

10.3 Hermite Normal Form with GCD

whi le i != l :

whi l e j != 0 :

j = j−1

i f A[ i ] [ j ] == 0 :

A = gcd reduce (A, i , j , k )

b = A[ i ] [ k ]
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i f b > 0 :

A = MakeNonNegative (A, i , k )

b = −1∗b
i f b == 0 :

k = k+1

e l s e :

f o r c o l in range (0 , k+1):

q = f l o o r (A[ i ] [ c o l ] / b)

f o r i in range (0 ,m+1):

A[ i ] [ c o l ] = A[ i ] [ c o l ] − q∗A[ i ] [ k ]

i = i−1

k = k−1

j = k

W = [ ]

f o r j in range (0 , n−k ) :

f o r i in range (0 ,m+1):

W[ i ] [ j ] = A[ i ] [ j+k−1]
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