SIMULATING HIV-1 PROTEASE
MUTATIONS FOR CONFERRED DRUG
RESISTANCE

A MAJOR QUALIFYING PROJECT

Submitted to the Faculty of
Worcester Polytechnic Institute
in partial fulfillment of the requirements for the
Degree in Bachelor of Science
in
Biomedical Engineering

By

Edward Caputo

Sydney Tucker

Paige Waechter

Date: April 28, 2016
Sponsoring Organization: University of Massachusetts Medical School

Project Advisors:

Professor Celia Schiffer, Advisor Professor Anjana Jain, Co-Advisor

Abstract

A major challenge in the long-term management of HIV is drug resistance caused from high rate
and error prone viral replication. To examine mechanisms of drug resistance within HIV-1 protease
complexed with Darunavir, specific point mutations were placed in the protease amino acid sequence and
molecular dynamic simulations were run. Darunavir was chosen as the modeled ligand as it is the most
potent protease inhibitor commercially available. MATLAB and python scripts were developed to
efficiently and consistently analyze simulation data. The team hypothesized that there would be a
difference in inhibitor interactions and protein dynamic behavior in mutant variants compared to wild
type. Although some aspects of increased resistance were seen with compounded mutations, overall this

trend was not observed across every facet of our analysis.

ii

Acknowledgment

The team would like to thank Celia Schiffer PhD, Nese Kurt Yilmaz, PhD, the rest of the Schiffer
Laboratory at the University of Massachusetts Medical School, and Professor Anjana Jain for their help in

completing this project.

iii

Authorship

Edward Caputo, Sydney Tucker and Paige Waechter contributed equally in the completion of this

project and report.

v

Table of Contents

ABSTRACT .oeititiriitintntinissiietsssisstsssisstessesssisstssstssessssssesssssssssstsssssstssssssessssssesssssstsssssssssssssesssssssssssssssssesnes II
ACKNOWLEDGMENTuuiiiiiiiiitiniininrisensisesssesesssisssssissssssissssssssssssssssssssssssesssssssssssssssssssssssssssssssessss I
AUTHORSHIP........cooiitiiiitiiiinieiisisstississsissesssisesssessessstssssssesssssstsssssssssssssssssessssssesssssssssssssssssssssssssssssssessses v
TABLE OF CONTENTScuuitiiititintiniintnniinensissnnssisssisstsssistsssessesssessssssesssssssssssssssssissssssessssssessssssessssssesss A%
TABLE OF FIGUREScouitiititintiniineinientnntsnisesssistsssisstsssissssssessssssessssssessssssesssssssssssssssssssssssses VIII
TABLE OF TABLESutoiitiintittntinntneinenaistsssisesssistsssissssssesssssstssssssessssssessssssesssssssssssssssssssssssses X
EXECUTIVE SUMMARY ...coiiiiiiiiiiniisinsiinissnisisssississessisntssssstssssstssssstsssissns XI
1.0 INTRODUCTION.....coiiiriisrineisinsunsisssissesssessesssessesssessssssessssssesssssssssssssssssesssssssssassssssssssssssssssssses .1
2.0 LITERATURE REVIEW ...uiiiiiniinintininsuisesssisesssisssssisssssisses 4
2.1 HUMAN IMMUNODEFICIENCY VIRUSciiiiiiurrrrrrererereeeeeeeeeeesesesesesesssssssssssssssssssssssssessessssessesesesssssssssssens 4
2.1.1 CHRICAI REIEVANCEc..oooeveiiieieeiiesiiesiie ettt s ittt sie st site st site et e st et e sitesbaesasesnseenans 4
2.1.2 Viral Structure and Life CYcle.....................ccooueiemiiiiiiiiiaiiieeeiiie ettt esiee st siree s 5

2.2 CURRENT THERAPIESocciiiiiitiiiiiiiiiiiiiiciie ettt a e sa s sa e sasea s sas s 9
2.2.1 FUSION THRIDTLOTS ...ttt ettt ettt st sttt st esite et e saseenbeenans 9
2.2.2 INLEQraASE INMIDILOFSc.ooovveiiiiieeiii sttt ettt sttt sttt st e st e taesateentaesaseenbeens 11
2.2.3 Nucleoside Reverse Transcriptase INRIDILOFS.....................cccevcuievvesiieeiieeniiienieesiiieniveniieenisenireenieens 11
2.2.4 Non-Nucleoside Reverse Transcriptase INRIDILOFScccceeeveeieniiieenniiiinsiiieniiieenieeneen 12
2.2.5 Protease INRIDILOTScccooovvieieesiiiiiiesiieeitesie ettt st site sttt st e s e staesaaesbee s 12
2.2.6 COMBINALION THEFAPY............coovoiveeieesiiiiiiesiiesitesie et esite et sie st e site st e st ebee st entaesasesbaesasesseens 14
2.2.7 TRErapy LIMTLALIONScccovevvieieesiiiiiiesiiesitesite et esiteesttesite st esitesteesiaesbeesaseesbaesasesntaesanesseens 15

2.3 HIV-TPROTEASE ..ottt ettt ettt et s a bbb st n s nnen 16
2301 STFUCIUFE ...ttt ettt st ettt et ettt st e s ate st e s bt sabe e sttt ebeesabeentaesanesnbeens 16
2.3.2 HIV Virion MATUFALIONcccuvesieiaiieniiesiieesiteeieesiseenitesisesteesisesieesisesnseesisesnseesasesnteesssesnseens 18

2.4 MECHANISMS OF DRUG RESISTANCEccocciiuiiiiiiiiiiiiiiiicieietetetet e 19
2.4.1 Mutation Based Drug RESISIANCEccccvevvueeiieeniviisiveniiesniieniessieessesnieesiseesisesisesnisessesnieens 19
2.4.2 Substrate Shape Dependent ReSISIANCE....................cccuevcvierivesiiiiniieniieeiiesiieenieesieesieesiseenisesiesniees 21

2.5 DRUG RESISTANCE SIMULATION AND MOLECULAR DYNAMICSccccocteruirienienienienrenreerenieeeeneeeeenne 21
2.5.1 HomOIoZY MOAEIINGccovveeeesiiiiiiesiieeiiesiieeie sttt sie st site sttt st site et e satestaesatesieens 21
2.5.2 Molecular DyRamic PrEPATALIONS.................c.c.cccveriueeiueeniiianieenieanieesiessieesisesnseesiseenisessessisessesnseens 22

2.5. Molecular Dynamic SiMUIATION......................cccocveriveeiiisiiiisiiesiiiesieesie ettt steesieesteesiee e sniee s 23

2.5. Molecular DyRAmMIC ARGLYSISccccuevvuveniiiiiiiesiiieiiiesiitesitesiie et ste sttt e st siaestestaesaaesieens 24

2.5. Molecular DyRamic SOftWAFecccccueemieeiiiiieiesiiieniiee sttt ettt eit e saee e siee e st e saeees 25

3.0 PROJECT STRATEGY ..cooirvuiiiiruiiinsuicinsuisisssisesssessenssessssssessssssessssssesssns 27
3.1 INITIAL CLIENT STATEMENT ...cc.ttotittetenttetenteetenieetesieetesseetesseessesseesseeseesseeseesseessessesssesseesesseessesuensens 27
3.2 TECHNICAL REQUIREMENTSooctitietetietenteeterieetesieessesseesesseesesseensteseessesseesseensesseensesseesesseessessnensens 28
3.2.1 ReSEATCR ODBJECHIVEScuveveeesiiiiieesiii sttt ettt site st sttt e st et e sateenbaesaseenbeens 28
3.2.2 DESIGN ODBJECHIVEScoeveeeeeieesiieeieee ettt ettt st e s e st e s bt e beesat e e baesateentaesateebeens 31
3.2.3 PrOJECt CORSIFAINLSc...oovuveeveeiieeieesiie st esiie st ettt st esite et esite st esatesabeesbaeenbeesisesteesasesntaesasesnseens 33

3.3 INDUSTRY STANDARDS........couiiiiiiiiiiiiiiieietetet ettt s sb et s ettt ea e b e b sa b e b s et eae s ennen 34
3.4 REVISED CLIENT STATEMENTcccuttiitiiiiiitiitenteeiteeite et esne et esinesseesinesneesneesaneessnesaneesanesneensnesnnesnees 35

3.5 PROJECT APPROACH........cociiiiittriieeeeiiteeeeeeeeitteeeeeeesitareeeeeesisreseesesissaseseesasssseseseesssssesseessssseseeeeessssseseesensssens 35

3.5.1 TeChRICAl APPFOACHc..ooouvveiiieieesiiiiiiesieeit ettt sttt sttt et esateetaesaaesbee s 35
3.5.2 Management APPIOACHcccvevuieiieeniesiiiesieeiieesiieesitesite st sitesiee st st e st esbaesitestaesasesieens 36
3.5.3 FiRARCIAL APPFOACHoooevveiiieieeiiiiiiesiie ettt ettt sttt satt et esiteetaesatesnbee s 36
4.0 DESIGN PROCESSoccotierttereeereteieeeseeeseeesseessesesssssssessssssssessssessssssssssssssssssssssssssessssssssssssssssassssessassssasssns 38
4.1 NEEDS ANALYSIS...ciuttiitiitteitenteesttestesteesteesteesstessseesstessstesssessseesssessseesstessseesseessessssesnsessssesssessseesssesssees 38
4.2 CONCEPTUAL DESIGNSoiiiiiiiiiiiienieiitesteesttesite st este s bt estesbeesatesseesstessseesseesabaesstesasessssesssessssesssesnses 39
4.3 ALTERNATIVE DESIGNSoiiiiiiiiiiiieiieiiteeteesttestesitesitessttestesbeesatesseesstessseesseesssaesssesaseesssesssessseesssesnsees 40
4.4 FINAL DESIGN ...ouiiiiiiiiiiiiiieiteete et ste st e st e it esate s bt estte s baesabesabaesabeessaesatessseenseesabaesstesasaesssesseenseesseensees 42
5.0 DESIGN VERIFICATION......cciortiireiereieneeeseeesseessseesseeessessssessssssssesssssssssssssssssssssssssssssssssasessassssssssassssasssaes 45
S50 PROTEIN RIMISD ...ooiiiiiiiiiiiititeeit ettt s vttt st et e sa e s bt e sate s bt e sabesabaesutesnsa e stesssaeseesabaesssesaseesssesseens 45
S52PROTEIN RMSF ..ottt ettt ettt sttt s et s bt e st e s b e e st e s be e sa b e esba e s st e sbaesaeesabaesssesabeesasesaseens 48
B3LIGAND RMSF ...ttt ettt et ete et e e be e teestve e baeetae e beesaseenbaesaseensaessseessaeasssensaessseenseesssaenseans 55
5.4 ALPHA CARBON DISTANCES......ccccttiitterittiitteriteenttesteesieesteesstestessseessesssessssessseesssesssessseessseesssessseesssessseens 58
5.5 VANDER WAALS ..cuutiiitiiteeiteniteeteesitesteesteesseesstesateesseesssesssaesssessseesssesseesusesssessssessseesseesnseesseessseessesssesns 64
5.6 HYDROGEN BONDS.......coiiiiiiiiitenitinteeteesite st esttesteesttesatessbtesstessbeesabesabeesusesssaesstessaenseesseesssesseesssesnseens 71
6.0 FINAL DESIGN AND VALIDATION ...iiiteitiereeeseeeseeeseeesssessssesssesssssssessssesssssssssssssessssssssssssssssasssaes 73
6.1 EXPERIMENTAL PROCESS......ccotttitiitieitiiiteeiteeite st esiee sttt esttestesbeesatesbeesasessseesstessaesseesasaesssesaseesssessseens 73
O. 1.1 PPEPAFALION ...ttt ettt ettt et s e et a bt et e st et esateeabeesateenteesateeseenanes 73

6. 1.2 MURIMUIZALION..............c..vveeveeeeieeeeeeeeee et e et e et e et e e ettt e e ata e e eataeeeats e e eaasaseaasaaesatseaaassesenasaeessseaans 74

O. 1.3 STHUUIALEoooevveeeeeeeeeee et e et e ettt e et e e ettt e et e e sttt e ettt e e ate e e aataeesatseeeaasaeenasaeesnreaans 76
6.2 DATA ANALYSIS PROCESSoouutiiitiitenieiiiteeieeite st et e sttt esteesatesbeesatesbaesatesssaesstessaesseesnseesssesnseesssesnseens 77
6.2.1 Protein-Ligand RMSDccooouviemiiiemiiieeieiesiiee ettt sttt ettt ettt s it esaneeenieeeeas 78
6.2.2 PrOtein RMSTFoooeeeeeeeeeeeeee ettt e ettt e ettt e ettt e et e e et e e et e e e ata e e aataeeaatseaeassaeenasaeessreaans 79

6. 2.3 LiGANA RMSTc..ooveeeeeeeeeee ettt e e sttt et e s st e e st e e s st e e e stent e asteseensenstansenneensennes 81
6.2.4 Van der Waals INEETACTIONScceeovieeeeeiiecieeceeecieeccveestee et eteeeveestvesreestessveeeressvesessesreens 87
6.2.5 HYdrogen BONS ...t 90
6.2.6 AIDRA-CATDON DISLANCESc..ooiveeeveeieisiiiesiiesitesitese et e st eiee sttt site e sttesateeteesatesnbeesaneenseenanes 91
6.2.7 Modification 0f PDB File...................ccccooocuiiiuiemiiniiianiiesiieesiiesiieenieesseesieesiseenisesisesnisessesieesineenseenans 93
6.3 RELEVANT INDUSTRY STANDARDS IMET......ccceoitiiiiiniteniiiniteniesieestessteessessseesssesssessseessseesssessseesssesssesns 96
6.4 DESIGN CONSIDERATIONSocoutiiiiiuterteenttesiseesteesteesseesseesssaesssesssesssesssessssesssessssessseessessseesssessseesssessseens 97
6.4.1 ECOROMUCS..............oeccevveeeeeesieeeete ettt e et e ettt e et e e et e e ettt e e asa e e eataeeaatteeeasaeeaasaaesatseaansseeenasaeesnsreaans 97
6.4.2 Environmental IMPACEcoccueeevueeemiiiieeiiiesiieeeiee ettt ettt sire e enaneeenieeeens 97
6.4.3 SOCIELAL INFTUEHCEcc..o oottt ettt ettt ettt et e sat e st e satesnteesateenbeenanes 97
6.4.4 POlIticAl FAMIFICATIONScc.ooovuveeieiiiiiiiiesiiesit ettt sttt ettt et site e teesatesteesateeseenanes 98
6.4.5 ELNICAL CONCOIN................ovveeveeeeiee e eeeeete ettt e e e ettt e et e e et e e ettt e e aataeesastee s tseeaansasenasseessseaans 98
6.4.6 HeAlth QRd SASEL)coo.vvovieeeiieiiisieeiee ittt sttt ettt ettt et e site st esatesnbeesateenseenanas 98
6.4.7 MaNUFACIUFADILILYc...oooiveviieiiesiieeee ittt ettt ettt ettt st esatesbeesateenbeenanes 99
6.4.8 SUSIATNADILILYc..oooeeiiiiiieeeeieee ettt ettt ettt et sat e et esatesnbeesateenbeenanas 99
7.0 DISCUSSIONueieveiereteneeereeesseeesseessesesssessesessassssesssassssssssssssssssssssssssssssssssssans 100
7.1 INHIBITOR MOVEMENT ANALYSISttiittiiiteniteeiteenitesiteestesteestessseesseessseesseessseessessseessesssessssesssaessaesne 100
7. 1.1 Protein-Liand RMSDccccoovueviuieniisieesiieiieesiee st esisesitesivesteeniaessteeniaesateenisesaseenisesseenieens 100
Tod.2 PPOTCIN RMSToooeeeveeeeee ettt ettt e et e e ettt e et e e e atae e et e e e tb e e esasaaesnttaeenseeenares 100

T L3 LIZANA RMST ...ttt ettt e te st e et es e st e st e ast et e st e st e nte st entessteneesneansenneen 102

vi

7. 1.4 AIPRG CArDON DISTANCESc..ovoeveviiiesiiisieesiiiiieesiie sttt st sttt st e siae st e niaesteenivesseenieees 102

7.2 INHIBITOR INTERACTIONS ANALYSISuutttiiiieiitreeeeeeeiirereeeeeeisreeseeesisreeseeesessssssessesssssessssssssssessssssesees 103

T 2T VAR Al WAALSccoooooeeieiiieiieieee ettt et e e e e e e e e e e e ee s e s s s s ss e s aaasreeeeees 103

7.2.2 HYAPOGEN BONAS ..ottt ettt ettt ettt ettt st e nasesteentaesntaeniee s 105

8.0 CONCLUSIONS AND RECOMMENDATIONS.ottiereeecrteecssrreseseeesssseesssssssssssssssssesssssasssssasesses 107
8.1 SIGNIFICANT FINDINGS......tttiieieiiireeeeeeeireeeeeeeeitteeeeeeesitareeeeesstareaeeeestssesseeesassssseseasssasseseensssseesesesnseneees 107
8.2 FUTURE DIRECTIONooiiiiiiitirieeeeiiureeeeeesitreeeeeesesseeseeesssaseesesssssssssesssissssssesssssssssessessssssessessssssesesessssesees 107
REFERENCESoooeeeeeeeeeereeeecrereessssesessseesssssesssssessssssssssssssssssssssssssssssassssssssssssssssssssssssassssssssssssesssssssssssasesses 109
APPENDIX Aeeeeeeeceeeereeeecsereessssessssssesssssessssssssssssssssssssssssssssssssssssassssssssssssssssssassssssssssssssssssesssssssssssasesses 112
AT A TERM GANTT CHART ...coooottivieeeieieeeeeeeeitreeeeeesitreeeeeeeestaseeeesessssseeseessssseseesssssssseesessssssseessesssssseseessnnnes 112
A2 B TERM GANTT CHARToovtvviieeeeiieeeeeeeeitreeeeeesitreeeeeeeestaseseesessssseeseessssssssesesssseseeseessssseeessessssseseenssnnes 112
A CTERM GANTT CHARTcoottiiieieieiteeeeeeeeitreeeeeesitreeeeeeeestaseeeesesssssseseessssssssesssssssssesesssssssseesesssssseseesssnnes 113
A4 D TERM GANTT CHARTcooottvvieieietieeeeeeeeitreeeeeesitreeeeeeeestaseseesesssseeseessssssssesssssesseseesssssesessesssssseseessnnes 113
APPENDIX Bi....eeeeeiireeceeeeneeeecseressssesesssessssssessssssssssssssssssssssssssssssssssssassssssssssssssssssasssssassssssssssssesssssssssssasssses 114
B.1 PROTEIN-LIGAND RIMSDD SCRIPTccoiitttiiiieiiireeeeeeeitieeeeeeeitreeeeeeesareeeeeeeesseeeseeeessssseseessssessesesnseseeas 114
B.2 PROTEIN RIVESE SCRIPTcutvtiiiiiiiieieeeeeeiireeeeeestteeeeeeeeitaeeeeesestsseeeeeesssssesseesssssessesessssssseeesessssseseesssnnes 129
B.3 LIGAND RIMESE SCRIPTcccoiitttiiiiieiiiieeeeeeiiteeeeeeeitreeeeeeeestaeeeeeeestssseeeeesissseseeeesssssseesessssssesessessssseseesssnnes 144
B.4 VAN DER WAALS INTERACTIONS SCRIPTccccooiitiieieeieieeeeeeiesirreeeeeesisreeseessssseseesesssssessesessssssessessnnes 156
B.5S HYDROGEN BONDS SCRIPTooooiiiiiiiiiieeeiiireeeeeeiireeeeeeeeieeeeeeeesisseeeseesisssssesssssssseesessssseesessssssssessessnnes 194
B.6 ALPHA-CARBON DISTANCES SCRIPTcccotuvttiieeitrieeeeeeeieeeeeeeesisreeeeeesisresseesssssessesesssssessesessssssesesssnnes 206

vii

Table of Figures

FIGURE 2. 1: ATTACHMENT/ENTRY AND FUSION OF HIV TO THE HOST CELL (CHAN, 1998).......ccccccuvreneen. 6
FIGURE 2. 2: GAG POLYPROTEIN DOMAIN STRUCTURE. SHOWS THE MA, CA, NC, AND P6 PROTEIN
SECTIONS (CLEVER ET AL, 2002)....utiieiiieitiieeiiieeieesteeereeeteeestreeseseessseessseesssesassesessssessssesssessssesssessnses 8
FIGURE 2. 3: DARUNAVIR STRUCTURE (PUBCHEM, 2016).......cccutiiiiiiiiieiieeiieeieeesveeereesveeseveeeveessene e 13
FIGURE 2. 4: EFFECT OF HAART THERAPY ON PLASMA HIV-1 RNA AND CD4 CELL COUNTS (FINZI ET
F N T L TSROSO PRRRRR 15
FIGURE 3. 1: RESEARCH OBJECTIVES TREEcceiiuiiiiiitiiieeiiieeeeciiee e et e eeetteeeeetteeeeetaeseeateeeeeavaesesaveseeenrens 28
FIGURE 3. 2: DESIGN OBJECTIVES TREEcuutiiiiiuiiieiitiiieeeiieeeeeitee e et e eeetveeeeeateseeetaeseaateeeeeaseeaeesreseennsens 31
FIGURE 3. 3: PROJECT MANAGEMENT PLAN BY TERMooooiiiiiiiiiiiiiiiiieee e 36
FIGURE 4. 1: CONCEPTUAL PROJECT DESIGN.......uutiiiiitiiieiiiiie ettt e eetteeeette e ettt e etae e e eaveeeeetaeaeeeveeeeeareas 39
FIGURE 5. 1: PROTEIN RMSD REPLICATES 1-3 OF WT, 184V, V82F+I184V, AND M46I+V82F+I84V 46
FIGURE 5. 2: AVERAGE PROTEIN RMSD OF WT, 184V, V82F+I84V, AND M46I+V82F+I84V 47
FIGURE 5. 3: PROTEIN RMSF COMPILATION OF WT, 184V, VB2F+I84V, AND M46I+V&2F+I84V........... 48
FIGURE 5. 4: AVERAGE PROTEIN RMSF VALUES FOR WT, 184V, V82F+I184V, AND M461+V82F+I84V..49
FIGURE 5. 5: DIFFERENCES COMPARED TO WT PROTEIN RMSFo 51
FIGURE 5. 6: SIGNIFICANT DIFFERENCES COMPARED TO WT PROTEINRMSF ... 52
FIGURE 5. 7: PROTEIN RMSF HEAT MAPS FOR 184V (TOP LEFT), V82F+184V (TOP RIGHT), AND
MA6I+HVE2FFIEAV (BOTTOM) ...oieiuvieeerieeitieeitieesiteestveeereesseeassesessseessseessseesssessssesessssessseessseesssessssessnses 53
FIGURE 5. 8: FIGURE 5.7. PROTEIN RMSF DIFFERENCES COMPARED TO WT HEAT MAPS FOR 184V (TOP
LEFT), V82F+I84V (TOP RIGHT), AND M46I+V82F+I84V (BOTTOM)cveevierieniecereeereeereere e eens 54
FIGURE 5. 9: LIGAND RMSF COMPILATION OF WT, 184V, V82F+I184V, AND M461+V&82F+I84V 55
FIGURE 5. 10: LIGAND RMSF COMPILATION OF WT, 184V, V82F+I84V, AND M461+V82F+I84V 56
FIGURE 5. 11: LIGAND RMSF DIFFERENCES COMPARED TO WT FOR 184V, V82F+184V, AND
MUAOIFVE2EHIBAYV ... et e e e ettt e e e et e e e et e e e e tte e e e etae e e etreeeeeareeeenareas 57
FIGURE 5. 12: SIGNIFICANT LIGAND RMSF DIFFERENCES COMPARED TO WT FOR 184V, V82F+I84V,
AND MAGOIHVE2FAIBAV ..ot e e e et e e e et e e e et e e e eeatee e eeaaeas 58
FIGURE 5. 13: ALPHA CARBON HIV-1 PROTEASE WILD TYPE DISTANCESccoovvuviiieeeeeeieeeeeeeeeeenreeess 59
FIGURE 5. 14: WILD TYPE ALPHA CARBON DISTANCESoitiiiiiiiiiiieiieeeee et aaanaees 59
FIGURE 5. 15: 184V ALPHA CARBON DISTANCEScoiuuiiiiiiuiieeeitieeeeeteeeeeitteeeeetteeeeetaeseeateeeeersesesnsreseeensens 60
FIGURE 5. 16: V82F+184V ALPHA CARBON DISTANCEScooiiiiiiiiiiieeeeeeee et aaavavavavaaannees 60
FIGURE 5. 17: M461+V82F+I84V ALPHA CARBON DISTANCEScceeiiiiiiiiiiieieeeeeeeeeeeeeeesesaaerererenaneees 61
FIGURE 5. 18: AVERAGE ALPHA CARBON DISTANCESoooiiiiiiiiiiiieiieeeeeeee ettt avavaaanaees 61
FIGURE 5. 19: 184V C-ALPHA DISTANCES COMPARED TO WT ... 62
FIGURE 5. 20: V82F+184V C-ALPHA DISTANCES COMPARED TO WT ..o 63
FIGURE 5. 21: M46I+V82F+184V C-ALPHA DISTANCES COMPARED TO WT.....ccooiiiiiiiiiiievevveenes 64
FIGURE 5. 22: CHAIN A VAN DER WAALS ENERGIES FOR WT, 184V, V82F+I84V, AND M46I+V82F+184V
... 65
FIGURE 5. 23: CHAIN B VAN DER WAALS ENERGIES FOR WT, I184V, V82F+I84V, AND M461+V82F+I84V
... 66
FIGURE 5. 24: SIGNIFICANT AVERAGE VAN DER WAAL ENERGIES FOR WT, 184V, V82F, AND
MUAOIFVE2EHIBAYV ... et e e e ettt e e e et e e e et e e e e tte e e e etae e e etreeeeeareeeenareas 68
FIGURE 5. 25: SIGNIFICANT VAN DER WAALS DIFFERENCE TO WToocoiiiiiiiiiiiiicee e 70
FIGURE 6. 1: STEPS OF MOLECULAR DYNAMICS SIMULATIONcccoiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeaaassaveveresenaneees 73
FIGURE 6. 2: PORTION OF RMSD SCRIPTcutiiiiiiiiiietiiie ettt ettt et et e ettt e e etae e e eateeeeeataeaeeaveseaenreas 78
FIGURE 6. 3: PORTION OF PROTEIN RIMSF .. .ooiiiii ettt e 80
FIGURE 6. 4: SIGNIFICANT PROTEIN RMSF DIFFERENCES.........ccceiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeassvavesarersnaneees 81
FIGURE 6. 5: MIS ORDERED (LEFT) AND PROPERLY ORDERED (RIGHT) LIGAND.......coceeriiniiniinienieee 82

viii

FIGURE 6. 6: LIGAND RMSF DATA IMPORT, SORT, AND PLOTccooiiiiiiiiiiiiiiiiieeeeeeeeeeeevveanees 83

FIGURE 6. 7: LIGAND RMSF REPLICATE SUBPLOT AND AVERAGE PLOT CODEcoooiveiiiiiiiiiiiiieeeeeeeees 84
FIGURE 6. 8: LIGAND RMSF DIFFERENCES TO WT CALCULATION AND BAR PLOTcoooiiiiiiiiiiiiieeeeeees 85
FIGURE 6. 9: DETERMINING SIGNIFICANT LIGAND RMSF ..o 86
FIGURE 6. 10: REMOVING ZEROS FROM SIGNIFICANT DIFFERENCESccooouvtiiiiiiiiiieeeeeeeeeniieeeeeeesennneneess 87
FIGURE 6. 11: VAN DER WAALS SCRIPT LOADING .VDWEN FILES AND EXTRACTING DATAuvvueverrrereeennens 88
FIGURE 6. 12: SEPARATING VAN DER WAALS ENERGIES INTO CHAIN A AND B DATA SETS AND AVERAGING

D o2 0N) 2 PRSP 89
FIGURE 6. 13: PORTION OF HYDROGEN BONDING PERCENTAGEccceoetiiiiiiiiieieeeeeeeeeeeeessssasevsrereneneens 91
FIGURE 6. 14: 184V C-ALPHA DISTANCESuttttttteeeerereiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessesssesssssssssssssessrersrnreees 92
FIGURE 6. 15: C-ALPHA HISTOGRAMS.......ooiiiiiiitiieeeeeeeeeeieeeeeeeeeeieeeeeeeeeeetaeeeeeeseesaaaeeeeeeseenaaereeeessennnreneees 92
FIGURE 6. 16: HISTOGRAM AVERAGESccciitiiiiietieeeeeeeieeeeeeeeeeeeeeeeeeeseeaaeeeeeeseesssaaeeeesessessaereesesssnsnreneess 93
FIGURE 6. 17: C-ALPHA DISTANCES PLOTS COMPILATIONccoeiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeaasvaveseaerenaneees 93
FIGURE 6. 18: BETA FACTOR MODIFICATIONcotvitiiiiiiiiiiiieiiieeeeeeeeeeeeeeeee e et ee et eeeeeeeeeeees e ssssssssssessserssaneees 94
FIGURE 6. 19: PROTEIN RMSF TEXT FILE IMPORTcooviiiiiiiiiiiieieeeeceeeeeeee ettt 95
FIGURE 6. 20: DATA ARRAY CORRESPONDING TO PDB FILEuvvviiiiiiiiiiieeieee et 95
FIGURE 6. 21: OUTPUTS PROTEIN RMSF FOR EACH ATOM OF PDBooviiiiiiiiiiiiee e 96
FIGURE A.1: A TERM GANTT CHART ..oovvviiiieiietiiieeee e eeeeeee e e e eeetaee e e e e eeeaaeeeeeeessensaaaseeeesssnsaaaneeeessennnerees 112
FIGURE A.2: B TERM GANTT CHART ...ovvvviiieiiiiieeeee e e e eeeeeee e e e eeeaaaeeeeeeeeesaaeeeeesessanssaasesessssnssaeeeeessennnnnnees 112
FIGURE A.3: C TERM GANTT CHART ...ovvviiiieiiiiieeeee e e e eeieee e e e e eeeaaaeeeeeeeeeaaaeeeesessanaaaaseeessssnssaeeesesssnnsnrees 113
FIGURE A.4: D TERM GANTT CHART ...ovvviiiieiieiieieee e eeeeee e e e eeeaaaee e e e e eeeaaaeeeesessenansaneeessesnssaaeseesssennnnerees 113

iX

Table of Tables

TABLE 3. 1: RESEARCH OBJECTIVES PAIRWISE COMPARISON CHART ...ouuuuiiiiiiiiiiiiiiiieeeeeeeeeeeeviie e eeeeees 30
TABLE 3. 2: RANKED RESEARCH OBJIECTIVESovvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees e e e ssssssasassreresannees 31
TABLE 3. 3: DESIGN OBJECTIVES PAIRWISE COMPARISON CHARTccooeiiiiiiiiiiiiieeeeeeeeeeeinnnensnerererennnenes 32
TABLE 3. 4: RANKED DESIGN OBJECTIVESuuiuiiiiiiiiiiiieeeeeeeeeeiieeeeeeeeeeetaereeeeseessaseseesssssnssesessssssnsseneess 33
TABLE 4. 1: PROJECT NEEDS CLASSIFICATIONcvvvttiiiiiiiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesassssssssssssssrsrssereees 38
TABLE 4. 2: COMPARISON OF COMPUTATIONAL AND WET LAB ANALYSIS . ..iiiiiiiiiieeeeeeeeeeeeviee e e 41
TABLE 4. 3: COMPARISON OF PROGRAMMING LANGUAGESccoiiiiiiiiiiiiieeee e aaaevavavaaanaees 42
TABLE 5. 1: AVERAGE HYDROGEN BOND PERCENTAGES OF WT, 184V, V82F+I84V, AND

Y Y RV A S L SRR 71

Executive Summary

Human immunodeficiency virus (HIV) is a global epidemic, negatively affecting the quality of
human life since it’s peak of public awareness during the 1980’s [3]. HIV is a retrovirus that has evolved to
target and destroy the cells that make up the human immune system, specifically CD4 T-cells. After HIV
has destroyed the majority of the body's immune system, the disease is reclassified as acquired
immunodeficiency syndrome (AIDS), where the risk of co-infection with other viruses is high and often
fatal.

Currently, HIV-1 remains a non-curable disease that requires a strict regimen of antiviral drugs to
prevent disease progression. With nearly 37 million infected and 2 million new cases annually world wide,
the need for more potent treatment or a cure is escalating [4]. Further there is an estimated 1.2 million
Americans living with HIV-1, the viral serotype found in the Western world [5]. The FDA has approved
25 different antiviral drugs, with 7 classes that each target different stages of HIV-1’s life cycle [6].
Protease inhibitors are a class of potent antivirals normally used in late stage, severe cases of HIV-1
infection. These are competitive inhibitors that prevent HIV-1 protease from cleaving viral polyproteins,
inhibiting virion maturation. However, HIV-1’s high rate of replication, lack of error-proof mechanisms,
and selective pressures in response to drug presence promotes drug resistance [7, 8]. Drug resistance is a
result of amino acid mutations that alter the shape of the proteins binding pocket such that a drug cannot
bind properly and maintain functionality. Normally, mutations causing drug resistance are located within
the active site, as well as non-active site regions of the protease. Active site mutations directly impact
inhibitor binding and non-active site mutations affect the tertiary structure [7]. The team hypothesized that
active mutations involved in drug resistance follow an additive trend.

Through discussion with the client, the team chose three active site mutations for the team to
analyze. These mutations are resistant variants of HIV-1 protease found in HIV-1 infected mouse models.
The first resistant variant was a single amino acid mutation of residue 84 from an isoleucine (I) to a valine

(V), notated 184V. The second resistant variant was a double amino acid mutation of 184V and the amino

xi

acid mutation of the residue 82 from a valine (V) to a phenylalanine (F), notated V82F. The third resistant
variant was the triple amino acid mutation involving mutations 184V, V82F, and an amino acid mutation of
the residue 46 from methionine (M) to isoleucine (I), notated M46I.

Computational analysis, specifically molecular dynamics (MD), was selected to simulate the
protein’s dynamic behavior. The data from MD simulations can be used to analyze the effects of these
mutations on the ability of the inhibitor to bind to the active site. First, the team modified crystal
structures of the protein using molecular modeling software (Schrodinger’s Maestro) to generate point
mutations. A water system (TIP3) and force field system (OPLS 2005) were added, and the protein
system was minimized to the lowest energy state ("native" folded conformation). The modified model is
then imported into molecular dynamic software (Desmond) to simulate the protein system for 100 ns,
which gives enough time for the protein system to equilibrate to 300K and provide an accurate analysis of
its dynamic behavior. A Wild Type crystal structure without an altered protein sequence was also
generated and simulated under the same conditions to serve as a control.

Three 100- nanosecond simulations were conducted for each mutation and Wild Type models.
The simulations provide atom-coordinates and energies of the protein system over the 100 nanoseconds.
The data from the simulations is further analyzed by other programs, such as scripts for VMD and
Schrodinger’s Maestro, to gather the protein’s C-alpha root-mean square deviations (RMSD), protein
residues’ and ligand atoms’ root-mean square fluctuations (RMSF), van der Waal energies and hydrogen
bonds between the ligand and protein.

The process of compiling and comparing these analyses across mutations was inefficient and
difficult. Therefore, the team developed scripts in MATLAB and Python to increase the efficiency and
effectiveness of analysis. The scripts standardized the data across mutations, generated visualizations of
the data and allowed the adaptability for future analyses.

Average Protein RMSF was compared to the Wild Type average and the absolute difference was
summed. V82F+I184V had the greatest absolute difference, followed by 182V and M461+VE82F+184V.

Additionally heat maps were generated showing differences compared to Wild Type with a color gradient

xii

ranging from red as a maximum and blue as a minimum. Similar to Protein RMSF, Ligand RMSF was
compared to the Wild Type average and the absolute difference was summed. In the case of Ligand
RMSF, an additive trend was observed with resistance increasing from the single mutant variant to the
double mutant variant with an increase in fluctuation of 0.07 Angstroms. Additionally the triple mutant
showed greater resistance compared to the double mutant with a fluctuation increases of 0.23 Angstroms.
Hydrogen Bond percentages of each mutation were subtracted from the Wild Type percentages and
summed. Hydrogen Bond percentages followed a different trend than the previous analyses with
M461+V82F+184V retaining the most bonds. In the case of double mutation variant, the Wild Type had a
significantly greater bond character. As expected, the mutated variants had less van der Waals
interactions with the inhibitor. I84V had the fewest attractions with a summed difference of -3.63
kcal/mol compared to WT. V82F+I84V and M461+V82F+184V had similar van der Waal interactions
with summed changes of -2.031 and -2.032 kcal/mol, respectively.

Ligand RMSF data supports our hypothesis; however, further analysis displayed inconsistent
trends with drug resistance. M461+V82F+I84V showed the most inhibitor fluctuation, followed by
V82F+184V, and 184V demonstrated the least amount of inhibitor movement. However, in the case of
Protein RMSF, van der Waal interactions and hydrogen bond percentages, additive behavior is not
supported. Van der Waal interactions provided inconclusive data, with 184V and V82F+I84V having a
similar amount of interactions. With respect to Protein RMSF, V82F+184V had the greatest fluctuation
compared to Wild Type, followed by M461+V82F+184V, then 184V. Similar to Protein RMSF,
V82F+184V demonstrated the highest percentage of hydrogen bonds, followed by M461+V82F+I184V,
then 184V. This however, partially supports the hypothesis, as V82F+184V and M461+V82F+I184V appear
to be additive.

To further support the conclusions of this project, the team suggests MD analysis of additional
compounded mutations within the active site. Also, examining different environmental backgrounds can

strengthen future correlations. Finally, the data generated from this project can be used in the

xiii

development of protease inhibitors that are designed to retain potency across compounded mutations that

may confer additive resistance.

Xiv

1.0 Introduction

Human immunodeficiency virus (HIV) has been a major epidemic affecting roughly 34 million
people worldwide [4]. Out of the 34 million, there are approximately 1.2 million people in the United
States currently living with HIV [5]. Up to $19.1 billion dollars has been spent annually to support HIV
treatments in underdeveloped countries, where HIV infections are most prevalent [9]. Developed
countries, such as the United States, have been able to limit the spread of HIV-1, the most common
serotype, through education, awareness and readily available antiretroviral therapies.

HIV is categorized as a retrovirus, which has the ability of integrating its viral genome into the
genome of the host cell [10]. Once the viral genome is incorporated into the host cell's genome, the virus
uses the host cell’s internal components to replicate, propagating the viral genome. A common method to
treat retroviruses is inhibiting certain steps of the HIV viral life cycle, such as inhibiting HIV-1 protease
for HIV. HIV-1 protease is a protein that cleaves synthesized polyproteins essential to the maturation of
HIV [11]. Protease inhibitors are small molecules that can bind themselves in the active site of protease
and cause protease to lose its functionality. Currently there are six different classes of drugs to treat HIV
and the course of treatment normally consists of a “cocktail” of two or more drugs [9].

The major challenge in effectively treating HIV is the rate at which the virus mutates [7]. The two
factors that cause high mutation rates throughout HIV replication are the short life cycles of the virus and
the use of RNA as the genetic makeup. When mutations occur within the 198 amino acids that protease is
composed of, the protein's three-dimensional structure will be altered. Current protease inhibitors are
designed to inhibit HIV protease that do not have an altered structure. This results in resistance to the
protease inhibitor over the course of HIV replication cycles.

To combat this issue of drug resistance, antiretrovirals are currently administered in combination
known as highly active antiretroviral therapy (HAART) [12]. HAART therapy is the current gold

standard for HIV management. However, there may be systemic side effects such as hepatotoxicity,

kidney stones, and increased cholesterol levels [10]. When a patient is on HAART therapy, they reach a
level of clinical latency. Over time therapy can become less effective, HIV levels in the blood stream will
rise and CD4 cell counts will begin to fall.

Decreases in therapy effectiveness can potentially be improved by better understanding the
mechanisms of drug resistance. This project aims to analyze drug resistance variants of the HIV-1
protease and develop patterns of drug resistance based on mutations. These mutations will be established
from studying simulations of protease mutations and wild type HIV-1. Specifically, comparing mutated
variants to the wild type using molecular dynamic principles are within the scope of this project. The
potency of inhibitor therapies of each mutation will be quantified by analyzing mutated variants and wild
type interactions with the inhibitor.

This project developed analysis software to effectively and consistently analyze the effect of
mutations within HIV-1 protease on inhibitor interactions. Scripts were developed to determine the
fluctuation within the protein and ligand, the alpha-carbon distance to track movement and changes in the
active site. Additionally, hydrogen bonds and van der Waals interactions in the presence of Darunavir, the
most potent protease inhibitor commercially available, were examined. By considering all of the above
aspects of drug resistance, conclusions on the effect of each mutation on inhibitor effectiveness were
drawn.

Future implications of the conclusions drawn through this project allow for the reverse
engineering of novel protease inhibitors. Improved inhibitors can be developed through protein
engineering, which is the design of a new protein or enzyme that has novel or desirable functions [13].
Protein engineering will be applied to this project by computationally developing new mutated HIV-1
protease structures by homology modeling. The mutated HIV-1 protease will have one amino acid
replacement compared to the wild type. Mutations will be modeled using molecular dynamic software,
and movement of the protein will be compared to the wild type.

By focusing on future mutations, drug designs should have a higher efficacy than existing market

therapies and multiple inhibitors are no longer needed. From the potency data gained comparing the

effectiveness of existing therapies, the type and rate of release required will be considered. Simulating
HIV-1 protease mutations and applying molecular dynamic principles will provide an understanding of
the functionality of the protease, as well as allow future mutations to be predicted. An adaptive analysis
model may provide further drug resistance correlations leading to an improved approach to protease

inhibitors.

2.0 Literature Review

2.1 Human Immunodeficiency Virus

HIV, which stands for human immunodeficiency virus, is a virus that infects the host’s immune
cells [3]. These immune cells are typically T cells that have CD4 receptors, of which HIV binds to, on
their surfaces. HIV can eventually lead to AIDS, Auto Immune Deficiency Syndrome, and eventually
death from co-infection. The world is currently experiencing an HIV/AIDS epidemic with about 37
million people infected, 2 million newly infected, and a mortality rate of 1.2 million in the year 2014 [4].
With a large population infected with HIV and continuous new cases of infection, the need for more
potent treatment or a cure is escalating.

HIV is a retrovirus and there is no cure to eradicate the virus permanently. Instead, there are
several antiretroviral drugs that repress the virus by slowing down its replication and infection rate into
the target cells, which are the immune cells for HIV. Currently, there are 28 FDA-approved antiretroviral
drugs available to patients for the repression of HIV [6]. Unfortunately, there are two main problems
associated with these drugs, resistance and administration. There is a need to further understand these
resistance mechanisms and develop a new drug or method to make the current antiretroviral drugs
effective towards the resistant variants. The second problem is that the delivery of this drug to the body is
not ideal. This includes the lack of convenience and adherence to taking the drugs, the toxic side effects,

and the limited entry options of the drug to the body [10].

2.1.1 Clinical Relevance

There have been large financial investments made in treatment research. The therapy is required
to be taken for the entirety of a patient's life and several people, especially in under developed countries,
are unable to afford or obtain it [6]. Research so far has developed the 28 FDA-approved antiretroviral

drugs and has increased the knowledge about the virus and its mechanisms. However, research still needs

to continue to better understand the interactions between the virus and the host, in order to provide
alternative drug delivery methods.

Recognizing these needs, our project involves researching drug resistance patterns to achieve a
better understanding of the virus and its mechanism to resist current drug therapies. From this research, a

predictive model of mutations is to be designed that can be used in alternative drug design.

2.1.2 Viral Structure and Life Cycle

HIV is an enveloped virus with several types of proteins embedded on the surface [14]. Two
glycoproteins, gp120 and gp41 exist connected on the cell surface and are vital to viral entry [15]. Viral
gp120 binds to the host protein receptor CD4, found on leukocytes, namely T lymphocytes. In addition to
binding to the CD4, the virus must also bind to a chemokine co-receptor, CCRS. Binding to the CD4 and
CCRS receptor and co-receptor triggers fusion of the viral and host membranes through gp41. Gp41
consists of three primary domains: the intra-envelope domain, trans-envelop anchor and the extra-envelop
domain. The extra-envelop domain is directly involved in the fusion process and is made of two
hydrophobic heptad repeats, HR1 and HR2, and a hinge region. Upon binding and inserting fusion
peptides into the host membrane, gp41 dissociates from gp120, causing gp41 to fold into a hairpin
structure. The heptad repeats lie anti-parallel forming a 6-helix bundle, promoting the fusion and entry of
HIV. The figure below displays the mechanism of how HIV attaches to the host cell and fuses together

for the delivery of its RNA (Fig. 2.1).

Pre-Hairpin Post-

Native . irpi i :

ool mabians Intermediate Halrpin Fusion Fusion

% —] |
CcD4
R co-receptor
99120-’&{ \ \' ——p
)

Inhibited

Intermediate

g)lﬂ-’ii l/)
viral membrane
soluble CD4
chemokines
small molecules . .y
(/ \)
\ ¥ 7

neutralizing Abs

Figure 2. 1: Attachment/Entry and Fusion of HIV to the host cell [14]

Two proteins, gp41 and gp120, from the surface of the HIV virus stretch and bind to the host
cell’s membrane (pre-hairpin Intermediate) [14]. The connection then brings the membranes closer
together (hairpin) to allow for fusion and entry of the HIV’s RNA into the inside of the host cell (post-
fusion). There are possible interactions at the pre-hairpin intermediate to inhibit the cell membranes to
draw closer together (hairpin). These would stop the fusion of HIV and the host cell, thus a possible
therapeutic treatment of HIV.

The next step of the cycle is reverse transcription that entails HIV RNA converting to DNA [16].
The enzyme reverse transcriptase (RT) is a heterodimer with a pS1 and p66 subunit. The p66 subunit has
catalytically active DNA polymerase and RNase H domains that both are responsible for converting the
single-stranded RNA into double-stranded DNA. The first process involves using the viral RNA genome
as a template for the host-cell transfer RNA to make a minus-strand DNA. This results to a RNA/DNA
hybrid that the RNAse H domain cuts into several short RNA segments. Two of these RNA segments are
polypurine tracts (PPTs) that start the synthesis of plus-strand DNA, which comes together with the

minus-strand DNA to form a double-stranded DNA viral genome. The RNase H removes the PPTs from

the DNA and exposes the integration sequence, which will be used for the integration step of HIV’s life
cycle. These processes of RT have to be followed precisely or integration will be prevented.

For HIV DNA integration, the DNA needs to integrate itself into a chromosome of the host cell
[17, 18]. The enzyme integrase (IN) catalyzes the process of the viral DNA to inserting itself into the host
chromosome. The first step of the process is IN trimming two nucleosides from the DNA. Next the IN
stays bound onto the DNA and other viral proteins come together with IN to form a complex known as
pre-integration complex (PIC). These viral proteins are reverse transcriptase (RT), MA, CA, and other
accessory proteins. The PIC connects both ends of the DNA and travels through the cytoplasm to the
nuclear membrane. It easily goes through the nuclear membrane because of its karyophilic properties due
to the protein importin 7 and TNPO3. Another protein NUP153, which regulates nucleocytoplasmic
trafficking, is a cellular protein that also helps the PIC to cross through the nucleus. Once the complex is
in the nucleus, the integration of the DNA into the host's DNA starts. A large number of proteins are
involved in this process that include HMGAT1, BAF, Ku, LEDGF, HAT P300, HAT GCNS5, LAP2-alpha,
Emerin, JNK/Pinl, RADS51, and KAP1. After integration, there are some post-integration steps that allow
gene expression and virion production. The proteins involved in those processes are INI1, VBPI,
Daxx,transcription regulators/chromatin binding factors, and Huwel. Any of these proteins are possible
targets for therapeutic inhibition, but mechanisms of some proteins are better understood than others and
thus are more likely a target for inhibition.

After integration, the host cell goes into a resting period known as resting peripheral blood
lymphocytes (PBL) [19]. PBL is a state at which HIV-infected host cells have the HIV genome in the
DNA but is not expressed yet. The PBL state is also known as the state of latency for HIV-infected
patients. PBL state continues until a set of cellular factors interacts with amino acid sequences at the HIV
long terminal repeat (LTR). The main cellular factor that initiates transcription is NF-xB, which is a
protein with p50 and p65 subunits. P65 leads the transcriptional activity of the HIV genome in the

immune cells’ nuclei.

Transcription involves splicing the produced RNA into 46 sections. The spliced RNAs include
the fully spliced mRNAs, which include Tat, Rev, and Nef, and the single spliced mRNAS, which include
Vpu, Vpr, Vif, and Env [20]. Tat enhances the expression of the HIV genome via elongation of viral
transcriptions with TAR, SP1, NF-kB, and other cellular factors [19]. Tat works with other proteins,
cyclin T1 and PCAF, to increase HIV transcription and its quality [21]. Additionally, an enzyme human
sirtuin 1 (SIRT1) recycles Tat in order for transcription to continue. The other mRNAs are responsible for
other functions later in the HIV life cycle.

Another step of the HIV-life cycle is the assembly of the retrovirus particles, which is also known
as packaging or encapsidation. In charge of this step are two strands of genomic RNA. These strands of
RNA interact with the polyprotein Gag, which is the main structural polyprotein of HIV-1 capsids, and
the v (packing signal) portion of the RNA [22]. Gag is 55 kDa and consists of four major subdomains.
These subdomains include matrix (MA), capsid (CA), nucleocapsid (NC), and p6. The Gag protein is
illustrated in Figure 2. The NC region of Gag bridges together the individual Gag monomers by gRNA
(genomic RNA). The NC portion of Gag specifically binds to the y portion of the RNA to facilitate RNA
packaging into virus particles [1, 20]. Further, the y portion of the RNA has four stem-loops (SL1-SL4).
SL1 mediates RNA dimerization, SL2 and SL3 bind to the NC, and SL3 directs packing of heterologous

RNAs [1].

(b) SP1 SP2
S” SF
MA CAnNTD CAcro | NC I p6

N-term A AA A A C-term
Figure 2. 2: Gag Polyprotein Domain Structure. Shows the MA, CA, NC, and p6 protein sections [1]
Once these RNAs, glycoproteins of the virion envelope (Env), viral structure enzymes (Gag), and
viral enzymatic proteins (Pol) all assemble, the budding of the HIV viral particle is initiated [23]. The

Gag proteins organize these proteins and protect them in an inner viral membrane. MA is the matrix layer

of the inner viral membrane, the NC provides a nucleocapsid layer around the viral RNA genome, and

CA is the conical capsid surrounding the nucleocapsid, RT, and IN. P6 gathers the cellular components
and Vpu support virus release needed for viral budding.

After budding, CA proteins reassemble to form a mature virus [24]. The capsid adopts a cone
shape with the help of the envelope proteins. Also the NV/RNA complex condenses to the center of the
core and genomic RNA dimer becomes more stable. A 5% ribosome shift of the C-terminal of gag results
to a Gag-Pol protein when translated. The Gag-Pol protein encodes the information for producing a viral
protease (PR). The PR slices the CA proteins so they can assemble into a mature virus. Once the virus is

mature, the virus is able to infect other immune host cells and create more viruses.

2.2 Current Therapies

HIV antiviral medication targets the specific stages of the viral life cycle: fusion into the host,
integration of viral genome into the host, translation of viral RNA and maturation of the virus following
budding. Each inhibitor works in an independent fashion by various mechanisms to achieve the common

goal of rendering the HIV virus nonfunctional and prevent CD4 cell destruction.

2.2.1 Fusion Inhibitors

The first class of HIV antiviral medication is fusion inhibitors, which prevent the entry of the
virus into the host cell. There are five classes that block various stages of the fusion process: binding
peptides to the heptad repeats 1 (HR1), binding peptides to the heptad repeats 2 (HR2), peptide-mimetic
inhibitors, non-peptide inhibitors and CCRS5 antagonists [15, 25]. Fusion inhibitors are infrequently
prescribed, especially in early stage antiviral therapy. Among the fusion inhibitor classes, the most
commonly prescribed and most effective are the peptide sequences that bind to HR1 and HR2. This
review of available fusion inhibitors focuses primarily on the successful HR1 and HR2 binding
inhibitors.

The first class is made of inhibitors that are successful by binding peptides to the HR1 [15].

However, only one fusion inhibitor, T20, is FDA approved and available on the market, while the

remaining are still under development. T20 or Enfuvirtide, is a peptide sequence that is derived from the
HR2 amino acids that binds to the HR 1. This binding prevents interactions with the HR2 that are
necessary to create the 6-helix bundle. T20 has a half maximal inhibitory concentration (IC,)) of 1.0 nM.
Second generation peptide sequences that bind to HR1 have been explored. One example, C34, utilizes
the same mechanism as T20 but only uses non-overlapping targets, where T20 targets may overlap.
Further, the C34 sequence has a higher potency than T20, with an IC,, = 3.0 nM. An additional second
generation HR1 targeted peptide that provides promising inhibition is T1249. This peptide offers high
potential as it has been proven to be effective in both HIV-1 and HIV-2 types. Additionally, T1249 is
more potent than T20, likely due to the fact that it binds to more targets, and has shown to be effective
against HIV strains that are resistant to T20. Resistance often arises to this class of fusion inhibitors, as
T20 and C34 only target 8-10 amino acids, and any mutations to the HR1 often render the inhibitors
ineffective.

The second class of fusion inhibitors works in a similar fashion and is composed of peptide
sequences that instead bind to the HR2 [15]. T21 is a synthetic 38 sequence N-peptide that is derived
from HR2 amino acids. The first 25 amino acids in the peptide bind to the HR2 and is more potent than
HR1 targeting peptides, with IC,, = 2.7 uM. Another HR2 targeted peptide is N36, which is a 36 amino
acid sequence that is derived from HR1 amino acids. N36 has an IC,, = 308 nM, but also has two
derivatives with 9 amino acid substitutions. These derivatives have been proven to be more effective than
the parent N36 with IC,, = 16 uM.

Peptide-mimetic fusion inhibitors are large hydrophobic protein-like chains that have exhibited
anti-HIV potential with an IC,,= 10.4 uM [15]. However, due to the hydrophobicity of peptide-mimetic
molecules, their binding capacity is enhanced with trapping agents. Additional development with bind
mechanisms and trapper agents are needed to promote the use of peptide-mimetic inhibitors. Non-peptide
fusion inhibitors are another class of fusion inhibitors that have been developed, yet are not widely used.
These inhibitors are a non-binding approach target at the heptad repeats to block the 6-helix bundle

formation. Lastly, CCRS5 antagonists bind to the CCRS5 co-receptor to block CCRS signaling.

10

2.2.2 Integrase Inhibitors

Integrase inhibitors are a smaller class of inhibitors that prevent the insertion of viral DNA into
the host cell's regular genome [26, 27]. Host cells do not contain an integrase equivalent, therefore there is
an increase in targeting efficiency and no interference with normal cellular function. Integrase inhibitors
work to prevent the insertion of viral DNA through a two-step process. First, the 3' endonucleolytic
processing of viral DNA is blocked. The second portion of integrase inhibition is preventing strand
transfer, which is the joining of host and viral DNA. Divalent metals, such as magnesium ions, are
required for both 3' processing and strand transfer, and is often the mechanism of integrase inhibitors.

The primary class and first true class of integrase inhibitors with no entry inhibitor mechanism is
4-Aryl-2,4-diketobutanoic acids (DKA) [27]. DKAs interact with the divalent metals in the active site,
resulting in chelation of critical metals, rendering viral integrase nonfunctional. The most competitive and
first FDA approved integrase inhibitor on the market is Raltegravir, which resulted from optimizing
original DKA formulations. Raltegravir improved the metabolic stability, drug release profile and potency
drawbacks of original DKAs with an IC,,of more than 50 uM, making it a more potent therapy than entry

inhibitors.

2.2.3 Nucleoside Reverse Transcriptase Inhibitors

Nucleoside reverse transcriptase inhibitors (NRTIs) are the third class of inhibitors that work to
prevent transcription and replication of the viral genome [28]. NRTIs competitively incorporate into
nascent viral DNA through substrate binding. Lacking a 3' OH group, NRTIs successfully bind in place of
viral reverse transcriptase and terminate the chain. However, the major challenge with NRTIs is the
competition with natural dNTPs for recognition and catalysis in order to prevent DNA synthesis.

One example of a NRTI is Zidovudine, marketed under the brand name Retrovir. It was the first
HIV antiviral to be approved by the FDA in 1987 [29]. However, Retrovir is primarily used in the

treatment of maternal to infant transmission of HIV or in combination treatments.

11

2.2.4 Non-Nucleoside Reverse Transcriptase Inhibitors

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are similar to NRTIs, however, they
are noncompetitive and target HIV-1 reverse transcriptase at a non-substrate binding site [12]. They are
highly active against HIV-1, but cannot target HIV-2 or other retroviruses. Additionally, the major
drawback of NNRTIs is they are notorious for triggering drug resistant variants.

There are two main classes of NNRTIs, which target either an allosteric or TIBO binding site
[12]. 1-(2-Hydroxyethoxymethyl)-6-(phenylthio)thymine (HEPT) targets the allosteric site to disrupt
enzyme activity and is functionally related to the binding site of HIV reverse transcriptase. The primary
disadvantage of HEPT analogue NNRTIs is there is enhanced likelihood of resistance mutations. The
second class, 4,5,6,7-Tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-one or TIBO, targets the

TIBO binding site.

2.2.5 Protease Inhibitors

The final class of HIV inhibitors is protease inhibitors. They prevent the cleavage of the viral
polyprotein chain, which blocks the maturation of the virus following budding from the host cell. There
are a total of eight protease inhibitors on the market, however the two newest and most frequently used in
combination therapy are atazanavir and darunavir.

Original protease inhibitors became FDA approved in the 1990s, including saquinavir, ritonavir,
nelfinavir and indinavir [30]. These first generation were successful but had major limitations. These
included low potency, several severe side effects and complications.

Approved in 2003, atazanavir was one of the first second generation protease inhibitors [11]. In a
study conducted by Molina et al., atazanavir was proven to be a potent inhibitor, especially when boosted
with ritonavir. The study utilized patients who had not yet received atazanavir or ritonavir antiviral
treatment. 82% treated with a combination of atazanavir and ritonavir responded to treatment and had

plasma counts less than 50 HIV RNA copies/ml.

12

Darunavir is one of the recommended antivirals by the NIH Office of AIDS Research (OAR) for
the treatment of HIV-1 [31]. It was originally patented in 2001 and approved by the FDA in 2006 as a
second generation protease inhibitor, improving the potency and adverse side effects of first generation
inhibitors [32]. Darunavir, [(1R,5S,6R)-2,8-dioxabicyclo[3.3.0]oct-6-yl] N-[(2S,3R)-4- [(4-
aminophenyl)sulfonyl- (2-methylpropyl)amino]-3-hydroxy-1-phenyl- butan-2-yl] carbamate), is an
effective, highly potent nonpeptidic inhibitor that embeds itself into the protease active site via hydrogen
bonds (Fig. 2.3). The structure allows more hydrogen bonds within the active site to be formed compared

to other protease inhibitors [31].

H
N
Pan
Vd 0
_“N,/ 0
H)
0." ’
/,/,\Nl(
» \
/ I“».
/0
o 2
o— | ™o
H

Figure 2. 3: Darunavir Structure [2]

Darunavir binds through hydrogen bonds to Asp 29 and Asp 30, successfully inhibiting HIV gag
and gag-pol polyprotein cleavage. Binding at these sites attributes to its high potency [33]. In laboratory-
synthesized strains, darunavir had 50% effective concentration of 1-5 nmol/L. The addition of o,-acid
glycoprotein (AAG) and human serum more accurately mimics in vivo and increased the 1C,, 20-fold.

Darunavir is often administered with a boosting dose of ritonavir to increase drug effectiveness. Single

13

600 mg doses of darunavir have a bioavailability of about 37%, compared to 82% when administered

with a 100 mg ritonavir.

2.2.6 Combination Therapy

HIV antiviral therapies are most commonly prescribed in combination in a highly active
antiretroviral therapy (HAART) approach, referred to as the "Anti-HIV Cocktail" [12, 34].
Conceptualized in 1996, HAART has since significantly improved the prognosis and quality of life of
HIV-infected patients. Modeled after tuberculosis treatment, three or more therapies are taken at once in
order to produce a synergistic effect between different molecular targets, to lower the dose of each
individual drug and decrease the probability of drug resistance. Tenofovir is the most commonly used
antiviral in the United States, prescribed to 65% of patients on an antiviral regimen. The World Health
Organization (WHO) launched the "3 by 5 Program", which was an initiative to get 3 million HIV
infected patients on antiviral therapy by 2005, in response the effectiveness of HAART.

In a study conducted by Finzi ef al., 22 patients treated with HAART were successfully treated
over the course of 30 months [34]. The patients involved in this study had T cell counts ranging from 0.2
to 16 per 10° cells at the time combination therapy began. HIV-1 RNA levels were approximately
undetectable 2 months after the HAART regimen was implemented (Fig. 2.4). In the same time frame,

the majority of patients exhibited a significant increase in CD4 cell counts.

14

Plasma HIV-1 RNA (copies per milliliter)

a -

——

3

—— 4

= 5

—*— 8

- 7 {

* 3 = ~ o T

—A— g \: |'. I

—*10 ® [\

—— 11 < \ X

—*—12 5

LT 8 e

—— 14 2 e 3, .

—&— 15 o G £~

®- 1§ 400 e

47 [mf .

% 18 X

.- 13 200 ___.-—_‘._)(T ,’lb-"'f':x_ —_

+2‘: _ = -t -'::.‘:‘/‘/

21 —

SR . o 22 o iy]

02 —_— —_— - 12-10 -8 6 -4 -2 0 2 4 6 8 10 12 1416 18 20 22 24 26 28 30
12 -10 8 -6 4 -2 0 2 4 & 8 1012 14 16 18 20 22 24 26 28 X0 Time on HAART (months)

Time on HAART {months)

Figure 2. 4: Effect of HAART Therapy on Plasma HIV-1 RNA and CD4 Cell Counts [34]

Administered HAART therapies usually consist of three of four NRTIs and/or NNRTIs, one or
more of three major drug classes, or a single PI with a boosting inhibitor [30]. Since HAART therapy is
the future to HIV management, there are several drugs available on the market that are combinations of
different inhibitors as one medication. One combination of three NRTIs is Trizivir, composed of abacavir,
lamivudine and zidovudine. Approved in 2011, Complera is composed of 2 NRTIs and 1 NNRTTI:
emtricitabine, tenofovir disproxyl fumarate and rilpirivirine. The two newest FDA approved combination
capsules are Evotaz and Prezcobiz, approved in January 2015 as protease inhibitors with a boosting
inhibitor. Both use cobicistat to enhance the effectiveness of the inhibitor. Evotaz contains atazanavir and

Prezcobiz is made with darunavir.

2.2.7 Therapy Limitations

The primary limitation to HIV antiviral treatment is the many systemic and adverse side effects
[35]. Since HAART therapy is widely used, common effects of several frequent high doses of medication
is kidney stones and hepatotoxicity. The high doses of toxic drugs can often damage the liver and excess
drug accumulates in the kidneys. Another side effect is a gastrointestinal reaction, such as nausea,

vomiting and diarrhea, which is consistent with several medications. High levels of triglycerides,

15

TRLIEIAL

cholesterol and blood glucose levels is another common systemic effect that can lead to fat redistribution,
decreased bone density and bone marrow suppression.

Medical adherence is another drawback to current HIV antiviral cocktails [36]. Patients fail to
take their medication as prescribed for a variety of reasons. Cost of medication is one of the most
common reasons, as HAART therapy can cost $2000-$5000 monthly, and amount to over $500,000 in a
lifetime. Because of cost and/or availability, lower doses of medication are sometimes taken in attempt to
stretch supplies or are shared amongst families.

Another factor that significantly affects therapy effectiveness is the resource availability and
socioeconomic status of patients. A study conducted by Dabis ef al. found that patients in low-income
settings had lower CD4 cell counts and a higher instance of mortality when using HAART therapy than
higher income countries [37]. One of the primary factors concluded to contributing to the higher mortality
rate is the lack of follow up throughout the progression of treatment. Additionally, co-infections with
other infectious pathogens, specifically mycobacteria, can have a significant impact on therapy
effectiveness in poorer countries. Lastly, another main factor in therapy success in low-incomes is the free
access to drugs and use of generic brands. Several countries in south and east Africa, including Botswana,

Malawi and Uganda have restricted access to therapies.

2.3 HIV-1 Protease

HIV-1 protease is vital for the maturation of HIV after the virus buds from the host cell. This is
one component of the life cycle that can be targeted and inhibiting therapies to limit the propagation of

the virus throughout the body.

2.3.1 Structure
HIV-1 viral protease is a relatively small protein that accounts for a pivotal role in the life cycle
of HIV-1 [7]. In nature there are many forms of protease that utilize several types of catalytic mechanisms

to cleave specific peptide bonds within a protein structure. Retroviral HIV-1 protease is a considered to be

16

a symmetrical homodimer that is composed of two identical dimers. Each of these small protease dimer
subunits are made up of 99 amino acids. Modeling of HIV-1 protease mutants is much simpler than larger
complex proteins since these dimers only consist of 99 amino acids. Each dimer has 18 B-strands and 2 o-
helixes that are oriented to create a structurally stable and highly functional enzyme.

HIV-1 protease has six major regions that play roles in the structural stability and catalytic
properties of the enzyme [38]. The first region of importance for HIV-1 protease is known as the flap
domains located on the most superior region of the enzyme. The flap domains for each dimer are formed
by two anti-parallel B-strands composed of viral amino acids 44 through 57 [38]. The flap domains are
highly mobile domains within HIV-1 protease that interact with viral gag-pol polyproteins to assist in
peptide bond cleavage. These flap domains are able to move easily due to the elbow regions consisting of
viral amino acids 49-52 that directly allow for the anti-parallel flaps to move about the elbow axis. The
reason for the high amounts of mobility of the viral protease flap domains is the glycine rich regions with
the elbow region. HIV-1 protease flap domains and elbow regions work together to ensure proper binding
of the gag-pol substrate to the enzymatic active site. Scott et al. found that the relative static charges of
the viral flaps and active site domains to the charge of the gag-pol substrate cause conformational changes
in HIV-1 protease for proper substrate binding [39]. The active site within this enzyme is highly
hydrophilic as a result of the catalytic properties present within this region. The flap domains of the
enzyme have a hydrophobic surface that remains in a closed conformation when in contact with its
external environment to maintain a neutral charge. However, the gag-pol polyprotein has a net positive
charge, which wants to repel the positively charged flap domains of the viral protease causing the flaps to
pivot about their glycine rich elbow regions. While the flap domains undergo the conformational change
the net negative charge of the active site attracts the positively charged gag-pol substrate for proper
binding. Through the use of molecular dynamic simulations of wild type and mutant variants of HIV-1
protease it was discovered that glycine-51 in the elbow region found of the flap domain significantly
affects viral protease activity. A mutation to glycine-51 can cause the flap domains to remain in a closed

conformation when the gag-pol substrate tries to interact with the enzyme.

17

The next two major domains of HIV-1 protease are the highly hydrophobic regions. These
domains are located in the medial and inferior regions of viral proteases [40]. The first of these
hydrophobic domains is the medial region composed of antiparallel B-strands, which play an important
role in the stability of the homodimer. The inferior region of protease is composed of both B-strands and
a-helixes that also contribute to the overall stability of the enzyme. These two hydrophobic regions are
differentiated by what are known as the 10’s and 60°s loops. The 10’s loop is specific to the medial
hydrophobic domain that consists of viral amino acids 15 through 18. Similarly, the 60’s loop is specific
to the inferior hydrophobic domain, which consists of viral amino acids 66 through 69. Until recently it
was thought that the hydrophobic domains of HIV-1 protease had little to no effect on the proper binding
of the gag-pol substrate to the enzymatic active site. Hydrophobic sliding was observed when HIV-1
protease wild type and hydrophobic mutants were simulated using molecular dynamics [41]. The Schiffer
lab was able to determine that protease undergoes conformational changes within the hydrophobic
domains of the protease through the “sliding” movement of the loop regions.

The final domains of HIV-1 proteases molecular structure responsible for functionality are the
dimerization and active site regions [42, 43]. HIV-1 protease is an enzyme that is formed when the two
identical dimer subunits fold into the proper form. The most important site of interaction between the two
dimers during the protein folding process is the dimerization region. The dimerization region is where the
four amino acid long N and C termini of both dimers orient themselves tightly together to form a
functional enzyme. Arguably the most important region within HIV-1 protease is the active site. The
active site is where HIV-1 protease performs the catalytic properties that the enzyme is known for. HIV-1
proteases catalytic activity is due to two aspartic acid residues (Asp-25 and Asp-25’) which cleaves

specific peptide bonds while creating by products typically seen in hydrolysis.

2.3.2 HIV Virion Maturation

As described earlier, the HIV-1 viral maturation process occurs after virions have budded out of

the host cell. The immature virion consists of gag and gag-pol polyproteins that are inactive proteins.

18

These viral proteins become functional when the gag and gag-pol polyprotein complexes are cleaved at
ten specific peptide bonds [44]. HIV-1 protease is also initially in an inactive form during virion budding
since it is associated with the gag-pro-pol polyprotein. Once virion budding occurs, HIV-1 protease
undergoes self-maturation where it cleaves itself from the gag-pro-pol polyprotein. The mechanism that
HIV-1 protease performs to undergo self-maturation is still not understood.

However, the functional form of the viral protease cleaves the polyproteins found within the
virion to produce proteins required for HIV-1 survival known as MA, CA, NC, RT, and IN. The matrix
(MA) protein plays a major role in pre-budding since it is responsible for aligning the gag and gag-pol
polyproteins to the plasma membrane of the host cell [44, 45]. Once matured, MA proteins orient
themselves directly under the virion plasma membrane. Capsid (CA) proteins are responsible for forming
a stable shell within the virion to protect essential viral proteins for viral replication including NC, PR,
RT, and IN. The capsid protein is thought to be another important protein associated with the HIV-1 life
cycle since this particular protein has been observed to have the lowest amount mutations [45]. The
nucleocapsid (NC) proteins are known to bind to viral RNA in order to successfully bring the viral RNA
towards the center of the capsid during maturation. Reverse transcriptase (RT) protein is the protein that
gives retroviruses the capability of converting viral RNA into viral DNA. Finally, integrase (IN) protein is

an enzyme that HIV-1 used to integrate the viral DNA produced by RT into the host’s genome.

2.4 Mechanisms of Drug Resistance

One of the most important factors leading to antiviral therapy failure is viral resistance [46]. The
key to improving viral inhibitors is understanding the mechanisms and factors that lead to drug resistant

variants of HIV-1.

2.4.1 Mutation Based Drug Resistance
Of the roughly 25 different drugs used to suppress HIV-1 approved by the FDA, protease

inhibitors are the most effective choice of inhibitors [7]. The efficiency of HIV-1 protease inhibitors is

19

partly due to the fact that the inhibition of the viral protease causes the essential proteins for viral
replication to remain inactive. HIV-1 has been able form drug resistant variants for each type of inhibitor,
however, protease inhibitors have the most mutants.

HIV-1 drug resistance is not a static process, conversely, many factors contribute to viral drug
resistance [8]. One important factor that contributes to HIV-1 drug resistance is the short life cycle of the
retrovirus. Since the virus is short lived it has an extremely high rate of replication such that virions are
produced daily. Also, HIV-1 does not have a proofreading mechanism for the RT protein so there is a
high amount of random genetic variation between successive replications of the virus. The combination of
high replication rates and error-prone transcription results in the evolution of HIV-1 strains in vivo. HIV-1
can make random mutations that are useful for survival in the presence of an inhibiting drug and this
particular strain will be selected for. Drug resistance can also be reached by means that are not related to
the nature of HIV-1 [7]. The most common means of drug resistance if the failure to consistently take the
anti-viral treatments prescribed.

Successful drug resistant variants of HIV-1 protease are capable of exhibiting the catalytic
functions of the enzyme through mechanisms slightly different from the wild type [7]. The tertiary
structure of HIV-1 protease is directly dependent on the 99 amino acids found in each dimer and the way
in which they fold. The inhibition of protease through protease inhibitors depends on the
hydrophilic/hydrophobic interactions between the substrate and active site as well as the three
dimensional orientation of both entities. Protease inhibitors are small molecules that mimic the three
dimensional orientation of the substrate region that binds to the active site [47]. These protease inhibitors
alter the functionality of HIV-1 protease by competing with the substrate for binding in the active site.
The advantage of protease inhibitors is that they have a much higher affinity for the active site since they
were designed to mimic the transitional state of the substrate. Drug resistant strains of HIV-1 protease can
be developed through mutations within the active site. Functional active site variants can reduce the

affinity of an inhibitor towards the active site and give the substrate a better chance at binding.

20

2.4.2 Substrate Shape Dependent Resistance

Protease inhibitors are peptidomimetics, relying on structure based design targeting, opposed to
site specific protein binding within the active site [46]. HIV protease is a resilient and adaptable
homodimer that can bind to its substrate even without having properly oriented ligands. Prabu-Jeyabalan
et al. identified crystal structures for six complexes that correspond to six of the ten gag and pol cleavage
sites. It was concluded that viral protease recognizes the asymmetric shape of the substrate peptides
instead of the specific amino acid sequence or set of hydrogen bonds. Protease inhibitors are successfully
structured based designs. However, HIV mutates frequently and is error-prone to frameshift mutations,
altering the active site. Therefore, marginal crystal structure changes of the protease substrate may confer

drug resistance.

2.5 Drug Resistance Simulation and Molecular Dynamics

Drug resistance often occurs in sites of HIV-1 protease that experience the most movement, such
as the flap regions [39]. Crystallization and sometimes NMR are unable to provide enough details on the
role of individual atoms. These atomic details are often necessary to understand the substrate recognition
process and why mutations on and around high movement regions lead to drug resistance.

Hypotheses of atomic level movement of HIV-1 protease are often based on molecular dynamic
simulations [39]. Simulations provide a dynamic viewpoint of several biomolecules and interactions
between biomolecules [48] These simulations have become a standard tool for analyzing biomolecules
and have been developed to use more realistic boundary conditions and longer simulation times.
Molecular dynamics bring the dynamic movement data for biomolecules in solution, time-average
molecular properties that are comparable to the experimental properties, and thermally accessible
conformations. With that information, scientists can gather the movement of the biomolecule, free energy

differences (ligand binding), and ligand-docking applications.

2.5.1 Homology Modeling

21

Homology modeling is essential for creating structurally accurate models for proteins [49]. The
model uses a protein structure prediction process via a computer program that includes template
identification, alignment, and model building [50]. Template identification is finding a PDB (Protein Data
Bank) file of a biomolecule from an amino acid sequence that the user created or edited. This edit could
refer to a mutation of one of the amino acids of the sequence. The computer program provides several
possible template identifications and the user chooses which PDB or structure best represents the desired
biomolecule. The alignment stage pertains to aligning the entered amino acid sequence of the user to the
amino acid sequence of the chosen template. Next, the 3-dimensional model of the user’s amino acid is
built based off of the 3-D structure from the template [49]. Creating these models use the computer
programs' structure prediction workflow, called a run, which uses particular templates, paths, and settings.
The built structure can be manually modified if the prediction software did not provide the user’s desired
structure. These “mistakes” are essential to get fixed because the misrepresentations can greatly affect the

chemical/physical properties and therefore the movement of the protein.

2.5.2 Molecular Dynamic Preparations

After the model of the protein is developed, the protein must be refined, which is part of the
preparation process for experimentally resolved protein structures used in calculations [49]. Refinement
includes loop refinement, side-chain prediction, minimization, rigid-body minimization, hybrid Monte
Carlo conformational searching, binding site refinement, and energy analysis based off of the structure’s
geometry [50]. The refinement stage double-checks if the physical and chemical properties of certain
aspects of the biomolecule are realistic. Specifically, the refinement tools can fix many structural
problems, such as formal charges, bond orders, and disparities between the sequence and the structure.
This type of correction was mentioned before in the homology modeling, but the software checks in case
the user did not notice every structure problem.

Many computer programs also provide solvation models for the biomolecule. Solvation models

provide an environment for the biomolecule [50]. There are three common options for the solvation

22

model. The first is VSGB that provides an aqueous model/ water environment. The vacuum option turns
off the solvation model (no water) chloroform that uses the SGB method. The model also has boundary
sizes to determine how large the user would like the environment for the biomolecule to be. Standard size
for HIV-1 protease is a boundary size of 10 x 10 x 10 angstroms [39]. The refining loops capability
checks the loop structure using different algorithms for various loop lengths [5S0]. The prediction of side
chains capability estimates the conformation of the biomolecules’ side chains by sampling multiple
orientations to obtain the one with the smallest energy (minimized energy). The side chains that are
chosen for the sidechain minimization step are the mutated amino acids/residues.

Minimization involves sampling different orientations of the biomolecule or parts of the
biomolecule to find the lowest energy orientation [50]. There is an option to treat part of the system as a
rigid body with freely moving atoms and freezing the rest of the system, which is known as rigid-body
minimization. Rigid-body minimization is sometimes preferred because it is less time-consuming than
minimization. The hybrid Monte Carlo process simulates the molecular dynamics of the biomolecule
using high-temperature. This explores the conformational space of the biomolecule to obtain the lowest
energy structure/orientation. The protein-ligand complexes can be used to refine the interactions between
the protein and ligand by sampling positions and conformations of the ligand. This process is also known
as binding site refinement. The last step of refinement is analyzing the molecular mechanics energy. The
program uses an all-atom force field to predict the energies. These energies can be broken down to
covalent, Coulombic, van der Waals, and solvation energy contributions. The energies can be broken

down to certain sections of the biomolecule, such as residues, and visualized on the structure.

2.5.3 Molecular Dynamic Simulation

Once the preparation of the model is complete, it can run through a molecular dynamic simulation
[39]. This simulation is run through a separate computer program with the necessary calculations to
provide accurate movements of the protein. Specifically, the program takes in all the parameters, which

include several constraints on how the atoms move, and the original atom coordinates. A time is selected

23

on how long the simulation of the protein is ran, which 100 nanoseconds is a common choice. The atom
coordinates, based off of the constraints, are recorded after each time frame of the simulation.

After the simulation is done, the computer program gives the information on the atom coordinates
and their energy levels for each time frame, which is commonly 10,000 [51]. This information can be
further analyzed to summarize the movement of the protein and/or to predict the interactive forces

between or within the protein and inhibitor.

2.5.4 Molecular Dynamic Analysis

One of these analyses is known as RMSF, or root-mean squared fluctuation. The equation for

RMSF is shown below [52]:

T 1/2
1 2
RMSF; = [Z Iri(t;) =171

tj=1

The RMSF is the deviation between the position of atom I and some reference position [52]. The
time point for the molecular dynamic simulation is denoted as j, the T is the total period of the molecular
dynamic simulation, r(t) is the position of the atom in that trajectory time point, and r~ is the position of
the atom from the reference time point, which is usually time zero. RMSF values represent the average
movement of the atom over the entire simulation time. When comparing the RMSF values of certain
atoms or sections of the biomolecule, the values can show which sections are more flexible or experience
movement more than others.

There are several other analysis tools that VMD can calculate. For this project, the protein-ligand
RMSD, protein RMSF, ligand RMSF, hydrogen bonding, and van der Waals values between the ligand

and biomolecule. The equation for the RMSD is shown below [52]:

N 1/2
1 2
RMSD(t) = MZ my|r () — ri’"ef|]
i=1

24

M is the sum of masses of the molecules being investigated; N is the number of atoms, m and the mass of
the atom that is being investigated. The RMSD values for a biomolecule or usually calculated for the C-
alpha atoms because they are the most stable /backbone of the biomolecule [52]. The values of RMSD are
compared among the C-alpha atoms (one pertaining to each residue of HIV-1 protease) and represent the
total movement of the pertaining atom.

Hydrogen bonding is whether the ligand and protein have potential to make hydrogen bonds
during their interaction. This type of bonding gives an idea on whether the ligand will successfully attach
and/or stay in the active site. The hydrogen bonding is defined by a certain distance between the two
atoms, which is usually around 3 angstroms [52]. The van der Waals values are the attractive forces that

keep the ligand attached to the active site.

2.5.5 Molecular Dynamic Software

Maestro:

Maestro is a molecular visualization interactive computer program produced by the company
Schrodinger [53]. When coupled with Prime, another Schrodinger program, the program can build a
computer-generated model of a biomolecule with realistic environmental properties. Prime includes
refinement, solvation models, and minimization. This model will later be ran through a molecular
dynamic simulation to provide information on the atomic-level movements of the biomolecule. The
program is user friendly and used mainly for building, visualizing, and sharing 3-dimensional chemical
models. For more detail of the homology modeling and refinement criteria, see the Prime User Manual

provided by Schrodinger [50].

Desmond:

Desmond is the computer program that carries out molecular dynamic simulation [51]. This
computer program is highly used among researchers because of its high accuracy and its effective
computational abilities. Desmond is often considered the most accurate molecular dynamic simulation

compared to other similar programs.

25

VMD:

VMD is an interactive 3-dimensional molecular graphics program that is commonly used to
analyze a biomolecule and its molecular dynamics simulation information, such as trajectories [54]. The
program is able to take atomic coordinates, chemical and physical properties, and other information given
by a PDB to provide an accurate graphical view of the biomolecule. The user can directly interact with
the biomolecule by rotation, zooming in and out, and selecting certain atoms or sections of the
biomolecule. Several features are included in VMD, such as coloring options, selecting options, graphical
view options, and the ability to run additional analysis via external programming scripts. The ability to
use external programming scripts allows the user to achieve further information about the biomolecule.
For example, the trajectories of the atomic coordinates and their properties at several time points across
the span of the molecular dynamic simulation can be used to display a 3-D graphical view of the
movements of the proteins. The atomic coordinates of the different time points of the molecular dynamic
simulation also gives the VMD to analyze the movements and interactions of sections of the biomolecule.
These movements and interactions include RMSF (biomolecule and ligand), RMSD (biomolecule and

ligand), hydrogen bonding, and van der Waals.

26

3.0 Project Strategy

The client Celia Schiffer, PhD, has an interest in "understanding the molecular basis of
drug resistance and the ways the natural substrate specificity is maintained by the resistance viral variants
[of HIV-1 protease]" [55]. However, HIV has been proven to be a highly error-prone virus that also has a
high replication rate, leading to drug resistant variants. This project aims to understand the molecular
basis of drug resistance common among affected patients. Further, the team will develop software

programs to efficiently analyze aspects of drug resistance.

3.1 Initial Client Statement

Initially, the client provided a statement for our team:

Using Molecular Dynamic principles to analyze the effectiveness of the inhibitor on
mutated variants of HIV-1 protease. Project goals are to include prediction of

potential mutations of amino acid residues.

After receiving the client statement, the team researched the current benchmarks of HIV-1
protease therapeutics to gain a better understanding of the project. Through research, it was found that
protease inhibitors are used as final stage antiretroviral therapy, where drug resistance has limited the
effectiveness of initial therapies. Instead of focusing solely on protease inhibition, the team considered
alternative mechanisms to prevent viral propagation within the body. These alternate considerations led to

the development the following need statement:

Develop a process to understand the mechanisms of drug resistance in HIV-1 protease, as it has a high
degree of error-prone replication, in order to design more potent therapies to render the virus non

functional regardless of present mutations.

27

The need statement entails the project's main goal and also allows the design space to be
broadened. The engineering design processes can establish the best mechanism on how to address the

need statement.

3.2 Technical Requirements

Lists of research and design objectives were developed based on the client need and after gaining
a better understanding of the project. From ranked objectives, project constraints and functional needs

were identified.

3.2.1 Research Objectives

These research objectives outline the necessary characteristics of an effective process to
determine HIV-1 drug resistance mechanisms. Primary objectives include this research to be accurate,
measurable, repeatable and reproducible. Research objectives were compiled into an objectives tree, and

are described in further detail below (Fig. 3.1).

Objectives

Accuracy Repeatable Reproducible Measurable

.
.

Conserved/
Bonded Environment Movement
Waters

Bond
Distances

Protein
Folding

Energy

Figure 3. 1: Research Objectives Tree

28

The first objective identified is accuracy. It is critical that models accurately reflect the actual
molecular structure and behavior. If the viral models are not indicative of actual behaviors, data is invalid,
as it would not properly depict the real time virus mechanisms. Protein folding, conserved/bonded waters
and environmental factors further characterize accuracy. Protein folding is dependent upon the
consistency of the amino acid sequences. Different sequences will result in different folding patterns that
can lead to various quaternary structures. When modeling mutations, the folded protein structure must
mimic in vivo conditions. Conserved/bonded waters play a role in inhibitor binding and must be
accurately portrayed to simulate in vivo settings. Lastly, environmental factors including temperature,
pressure and pH can affect inhibitor binding and functionality.

Another objective stipulated is measurability. Various data must be measured from the research in
order to analyze inhibitor effectiveness. Dynamic protein behavior, including movement, bond distances
and energies must be able to be measured. Movement is an important factor in determining whether the
substrate is available for binding. This movement must be able to be detected in order to quantify binding
and inhibitor uptake abilities. Bond distances are directly related to the presence of hydrogen bonds. This
is an important measurement to determine if the inhibitor is experiencing hydrogen bonding with the
protease. Energy levels are directly reflective of the interactions between the inhibitor and the substrate.
These interactions, van der Waals forces, are determined by measuring the change in energy of the system
when an inhibitor is bound and unbound. Bond distances and energy levels contribute to the overall
strength of inhibitor to protein binding.

Repeatability is another important objective that must be satisfied through this process. When
conducting research to develop conclusions and correlations, multiple trials must be executed. Therefore,
the process must be able to be repeated multiple times, garnering consistent results across replicates.

The final primary objective identified is reproducibility. This entire experiment must be able to be
conducted again, even in a different laboratory setting. Results obtained through additional experiments

following this process should still conclude consistent results.

29

In order to rank objectives in order of importance, the team created a pairwise comparison chart
(Table 3.1). Objectives were ranked against each other using a number system of 0, 0.5 and 1. Objectives
that are determined to be of greater importance was given a 1 and the other objective received a 0. Each

objective received a 0.5 if they were determined to be of equal importance.

Table 3. 1: Research Objectives Pairwise Comparison Chart

Objective Accuracy | Measurable Repeatability Reproducibility Score
Accuracy — 0.5 1 0.5 2
Measurable 0.5 — 1 1 2.5
Repeatability 0 0 — 0.5 0.5
Reproducibility 0.5 0.5 0.5 1.5

Accuracy and measurable were deemed as equally important since accurate measurements a vital
to this project. The measurements obtained will be used to quantify inhibitor effectiveness, and this must
accurately portray in vivo conditions. Comparing accuracy and repeatability, accuracy was deemed more
important as there will always be variation among replicates because of the dynamic protein behavior.
The team determined accuracy and reproducibility are of equal importance, since both are required to
draw correlations of the effect of mutations on inhibitor effectiveness. Measurability is considered more
significant than repeatability since conclusions will be based off of measured data. Measurability is of
greater importance than reproducibility since measurements over multiple experiments determine validity.
Repeatability and reproducibility are considered equally important, as both are required in developing a
valid process.

Using the pairwise comparison results, the team ranked objectives from most significant to least

significant (Table 3.2).

30

Table 3. 2: Ranked Research Objectives

Ranking Primary Objectives
1 Measurable
2 Accuracy
3 Reproducibility
4 Repeatability

3.2.2 Design Objectives
In order to properly analyze research simulation results, a software program is to be designed
primary and secondary objectives were defined. Primary design objectives include, accuracy, adaptability,

and efficiency. Design objectives were compiled into an objectives tree, and are described in further detail

below (Fig. 3.2).

Objectives

Accuracy Adaptability Efficiency

Different
number of

Proper
residue
ordering

Various data

Various data
file types

Proper ligand

Script run Concise data

file sizes time visuals

orderin; -
g mutations

Figure 3. 2: Design Objectives Tree

31

The first objective defined is accuracy, as it is crucial the program accurately analyzes the
simulation data. Included in accuracy is proper atom ordering during analysis, as raw data is exported
with a non-ordered ligand sequence and the first residue of chain B is at the end of the data set.

The second design objective is adaptability. The modification of the programs to account for
different mutations and data files is critical. Analysis of several point mutations and replicates are
required to understand the mechanisms of the drug resistance. Further, the program should be used for
additional experiments to maintain consistent analysis and must be able to be adapted accordingly.
Therefore, the program needs to account for multiple data files and expected to provide consistent results.

The last design objective of the software programs is efficiency. Efficiency is vital to the analysis
of the research outcomes and the ability to draw conclusions from the analysis. Efficiency is further
characterized by the time for the programs to run and the capability of presenting the data representation
in a clear and concise fashion.

To rank objectives in order of importance, the team created a pairwise comparison chart (Table

3.3). Objectives were ranked against each other in the same fashion as research objectives.

Table 3. 3: Design Objectives Pairwise Comparison Chart

Objective | Accuracy | Adaptability | Efficiency | Score

Accuracy — 1 1 2
| |

Adaptability 0 — 0 0
| |

Efficiency 0 1 — 1

Accuracy was ranked above adaptability, as the program must accurately account for

discrepancies among data files. For similar reasons, efficiency was determined to be less importance than

32

accuracy. In the context of our project, efficiency is more important than adaptability, as data must be
presented in a comprehensive manner with minimal script processing time.

Using the pairwise comparison results, the team ranked objectives from most significant to least
significant (Table 3.4).

Table 3. 4: Ranked Design Objectives

Ranking Primary Objectives

1 Accuracy

T |
2 Efficiency

| |
3 Adaptability

3.2.3 Project Constraints
The team had to take into account multiple constraints based upon our client statement and
design meetings with our project advisor, Celia Schiffer, PhD. The most important constraints that the
team must take into account during the course of the project are:
* In vivo environment
e Minimum replicates
* Time
The first constraint of this project is the design must mimic the in vivo environment, including
pH, temperature and pressure. The pH must be regulated, such that it remains near body pH, 7.4. In order
to account for fluctuations within the modeling, the pH range is set to be 4.0 to 10.0 but is monitored
throughout experimentation. Temperature is also an important factor in determining inhibitor
effectiveness, since increased temperature increases molecular movement. In order to ensure accurate
results, temperature must be 37°C and remain consistent throughout. Pressure must also remain consistent

throughout experimentation, being conducted at one atmospheric pressure.

33

The second constraint of this project is the minimum number of replicates for each mutation. This
project encompasses analysis from three protease mutations. Drug resistant patterns would be insufficient
based off less than three replicates of each variant.

Our final constraint is the timeline in place of the completion of the project. The project

must be completed before Project Presentation Day during the 2016 school year.

3.3 Industry Standards

Industry standards for Molecular Dynamic (MD) simulations are fairly new and still developing.
So far, there are requirements for the equilibration, boundary conditions, and the need for several MD
runs [56]. For each MD simulation performed, equilibration must be reached. Equilibration can be
detected by several factors, including root-mean squared displacement, or deviation, and steady
temperature. The steady behavior of the root-mean square displacement of the protein and the steady
temperature throughout the simulation will be observed. If neither are obtained in the particular
simulation, the simulation is no longer valid for analysis. Boundary conditions are essential to an accurate
simulation, as too large or too small directly impact the results. The boundaries are set to values of
previous literature pertaining to our project, as they have tested different boundary sizes and found the
optimal size. Lastly, the number of MD simulations for the same conditions are vital to an accurate
analysis. MD runs are not quite accurate, but they are precise. Thus, several runs will give us enough
values (mean value) to obtain accurate results.

Another industry standard this project must adhere to are the standards and guidelines
surrounding computer programming. MATLAB is one language with a published guide that specifies
variable naming convention, the proper formulation and development of functions, organization of files,
statements, and formatting [57]. This guideline will be considered when writing code for this project, as
the team is designing a program that can be adapted for further analysis and potentially other proteins.
Therefore, the code must be logical, well documented and commented, and formatted clearly for future

edits to be made quickly.

34

The final industry standard considered throughout the course of this project is ISO 18458:2015,
regulating biomimetics [58]. This standard specifies regulations and definitions for computational
analysis or systems that mimic a biochemical process. Recently developed, it provides a framework for

biomimetic technologies and applications including scripting languages and programming resources.

3.4 Revised Client Statement

After the team gained a better understanding of the background and the broader need of
the project, the team proposed a revised client statement. Discussions with the client further modified the
team's revised client statement. Thus, the final revision was developed that both the team and client

contributed to.

Using molecular dynamic principles to analyze the effectiveness of the inhibitor on mutated HIV-1
protease variants. Goals are to include finding potential resistance patterns to specific mutations, and
discovering attributes for a drug that would be most effective to several mutations and possibly different

classes of HIV.

The revised statement added additional desired goals of the project. From literature and
discussion, the team discovered that the most effective way to assess the need statement is to continue

with the initial proposal but with further analysis.

3.5 Project Approach

In order to ensure project objectives are met within the given constraints, the team developed a

project strategy broken down into a technical, management and financial approach.

3.5.1 Technical Approach
The team is considering using molecular dynamics to analyze inhibitor interactions, however will

also develop alternative designs presented in chapter 4 using traditional “wet lab” analysis. After

35

determining the best form of analysis, mutations will be decided and data collected. From the data gained
through experimentation, a software program will be written to effectively analyze and display results.

Conclusions will be drawn to reach the project goal.

3.5.2 Management Approach

In order to complete the project within the specified time constraint, the team developed a Gantt
chart to direct a course of action over the project timeline (refer to Appendix A). This chart breaks down
each major project component into smaller tasks, to ensure milestones and deliverables are met. Task
times were generously estimated to ensure the team adheres to the proposed timeline. Additionally, tasks
and project work were front loaded to provide flexibility, should a research obstacle arise. To use time
most effectively, certain team members were allocated and assigned to complete specific tasks. Tasks
were assigned based upon the individual strengths each member added to the project group. In addition to

the Gantt chart, the team created a project plan summary for each term (Fig. 3.2).

*Project research
*Develop technical project strategy

*Finalize Primary and alternative designs
*Work with sponsor to determine mutations
*Model and simulate mutations

* Analyze muations
*Draw Conclusions and Design Predictive Model
*Present Findings to Sponsor

*Investigate additional findings
*Propose future research

Figure 3. 3: Project Management Plan by Term

3.5.3 Financial Approach

As with any design project, financial constraints must be taken into consideration. This

will not be a limiting factor in our project, as the team will be conducting research and theoretical

36

design. Should the project require any financial support, the team will mostly rely on resources

available in the Schiffer Laboratory at the University of Massachusetts Medical School.

37

4.0 Design Process

The preliminary developments of the project design are presented in this chapter. This includes a
summary of design needs, functions and specifications. Additionally, the conceptual and alternative

designs are explored and evaluated.

4.1 Needs Analysis

As the project evolved through meetings with the team and project sponsors, needs were
identified and evaluated. We classified objectives to distinguish between functional needs that are
required for the project and desirable needs that are not crucial to the design (Table 4.1).

Table 4. 1: Project Needs Classification

Functional Needs Desirable Needs
Accuracy of simulation Repeatability of simulation replicates
Adaptable analysis for multiple mutations Measurable Alpha Carbon Distances
Measurable RMSF, van der Waals Comparison of different background
interactions, and hydrogen bonding environments

The three most important objectives determined by the team are accuracy, adaptability, and
measurability. Based off these objectives, the functional needs deemed necessary to the project design are
that the simulation is an accurate portrayal of in vivo behavior, the software analysis program is adaptable
for various mutations, and that Root-Mean-Squared Fluctuation (RMSF), van der Waal interactions and
hydrogen bonds can be measured.

The first functional requirement of the project design is the simulation must accurately depict in
vivo conditions, including environmental parameters, protein conformation, and conserved and bonded
waters. Accuracy of the simulation is imperative in analyzing the inhibitor effectiveness. Secondly, the
analysis program must be designed to be adapted to various mutations beyond the three mutations the
team is evaluating. Variants the program can analyze must range from single point mutations to a
combination of n-point mutations and must be accurate and consistent across all scenarios. The final

functional requirement requires the analysis program to be designed to include accurate measures of

38

protein movement and energy. This can specifically be defined as RMSD, RMSF for the protein and
ligand, van der Waals interactions and hydrogen bond percentages.

Repeatability, C-Alpha distance measurements, as well as comparing different background
environments were categorized as desirable needs. Due to the dynamic nature of HIV-1 protease and flap
movement, slight variations in replicate data, especially in protein and ligand RMSF data, are to be
expected. However, accurate simulation setup can mitigate any large discrepancies between replicates
making our design more consistent.

Secondly, C-Alpha Distance measurements provide additional information about the protein and
ligand behavior, although are not essential for the scope of our analysis. More pertinent information can
be gained through examining RMSF, van der Waals and hydrogen bonds, which are of interest to our
sponsor. Similar to C-Alpha Distance data, comparing mutation data across different backgrounds would

be beneficial to observe any different inhibitor interactions.

4.2 Conceptual Designs

To meet the project’s functional and desirable needs, the team will follow a set of steps to achieve

the analysis of the HIV-1 protease mutations’ affect on the binding of the inhibitor. These steps are shown

Figure 4. 1: Conceptual Project Design

in Figure 4.1.

39

Firstly, the team will choose at least three different mutations to analyze and compare to wild
type. To test the hypothesis of whether there is increased resistance conferred with increased mutations,
we wanted to choose mutations that are compounded (following the pattern x, x+y, and x+y+z). Once the
mutations are chosen, the team will determine a process to effectively gather large amounts of data. These
data include time-dependent protein dynamic behavior and inhibitor interactions. An important
consideration in developing this process is the number of replicates to achieve accurate and sufficient
data. Lastly, the team will team will develop analysis programs to process the information collected. This
is comprised of calculating certain measurements, including RMSD, RMSF, van der Waals, hydrogen
bonds, and alpha carbon distances across the active site, and comparing those measurements to wild type
and other mutation variants. These scripts will make this process more efficient and effective, and provide

visual representations.

4.3 Alternative Designs

Since there are a variety of techniques to analyze protein functionality and interactions, there are
several approaches the team is considering to approach our project problem. Conventional methods of
protein analysis are facilitated through “wet” lab practices that give either direct or indirect information
about the protein of interest. In vitro analyses that can detect protein functionality include protein
purification and protein detecting. However, these practices are not specific enough to determine the
finest details involved in drug resistance development since they are limited to detecting only the highest
level of protein complexity (tertiary and quaternary structures).

The recent growth of technology allowed for the use of computational analysis in protein
analysis. Information can span from the quaternary structure down to individual atoms. Currently,
computational analysis methods include protein structure prediction, protein sequence/structural
alignment, and molecular dynamics. Each of these techniques provides valuable information about protein
functionality, but molecular dynamics is the only method that provides real-time analysis of protein-

ligand interactions.

40

The team brainstormed a list of attributes that are necessary to our project and determined which
method, computational or wet lab analysis would suit the project needs. These attributes are listed in

Table 4.2 and the methods more suitable to meet each attribute are marked with an x.

Table 4. 2: Comparison of Computational and Wet Lab Analysis
Computational “Wet” Lab

Attributes Analysis Analysis
Subtle Specificity X
Ideal Environmental Assumptions X
Cost-Effectiveness X
Amount of Data X

There are many open-source and private molecular dynamic analysis software available for use.
However, private software is normally the recommended since this analysis requires super-computers to
conduct the massive amounts of computational analysis. Although, the team had accessibility to the
Desmond molecular dynamic software additional software were researched such as Abalone, ADUN,
Amber, COSMOS, CP2K, and Culgi.

Within Schroedinger’s Maestro software are many selection parameters that need to be properly
accounted for to obtain accurate data for our protein analysis. Firstly, the proper force field must be
selected in order to subject our protein-ligand complex to mimic in vivo environments. These force fields
can be broken up into classical, polarizable, reactive, and coarsed-grained. For the contexts of this
analysis, the classical family of force fields was best suited due to its specific effects related to proteins.
This family is further broken down into MMFF, CHARMM, Amber, and OPLS, which are all force fields
specific to proteins and protein compositions. OPLS is only force field that incorporates the proper
environment that accounts for proteins, small molecules, nucleic acid, and lipids. Another important
parameter to consider is the time span of simulation. Typically molecular dynamic simulations are
conducted in the nanosecond range. A simulation that is too short can result in incomplete data collection
while a simulation that is too long can provide a less accurate representation of events occurring during
the simulation. The Schiffer Lab has found through trial and error, that 100 nanosecond simulation

provides an adequate amount of time to provide accurate data. Additionally, the team had to decide on

41

whether to focus on active vs. non-active site mutations. It is well documented that mutations made
within the protein's binding pocket have a higher probability of affecting inhibitor binding dynamics.
However, mutations found outside of the active side can alter the overall tertiary structure of the protein
during protein folding. Finally, these simulations can be run on either a CPU or a GPU. The major
difference between the two is that simulations run on a GPU are 30-80% faster than a CPU. The use of a
GPU for simulations is the most logical choice since time was a major constraint for this project's
completion.

In order to analyze the data from the molecular dynamic simulations, the team will write software
scripts. Common languages utilized for biological analysis are python and C. Additionally, the team
considered the use of MATLAB for the analysis process. A list of strengths and weakness for each

programing language is shown below in table 4.3.

Table 4. 3: Comparison of Programming Languages

Programming Pros Cons
Language
Python * Easy to to Use * Modules are separate downloads
* Modular (Biopython) * Difficulty handling large files
* Able to Read PDBs
C e C Library * No namespace
* Built in functions * No run time checking

* Team Unfamiliarity
Matlab * Easy to to Use * Difficulty importing PBD’s
* Nice Visuals

* Statistical Built-In Models
* Visual Workspace

4.4 Final Design

After evaluating design alternatives and comparing the benefits and limitations of each option, the
team decided on the final design. The first design decision was to use molecular dynamics simulation
software to observe inhibitor behavior and conferred drug resistance. Molecular dynamics (MD) was

chosen, as it is the industry standard to compute time dependent behavior of molecular systems, and is

42

frequently used in the Schiffer laboratory. The key benefit of MD is it allows for the modeling of complex
dynamic processes including protein stability and conformational changes. This will ensure the functional
need of accuracy is met. From molecular dynamics, a study on drug interactions can be completed,
meeting the project client statement of determining DRV effectiveness in the presence of various
mutations.

To conduct the MD simulations, the team chose to utilize Desmond. Desmond software analyzes
models created by Maestro, an all-purpose molecular modeling environment manufactured by
Schroedinger. In addition to having access to the Maestro software through the Schiffer laboratory,
Schroedinger is a leading MD software providing advanced algorithms and customizable features. This
allows for the protease amino acid residues to be replaced with the mutation of interest.

When determining mutations to analyze, the team considered both active and non-active site
mutations. Although shown to affect drug resistance, the mechanism by which non-active site mutations
confer drug resistance is unknown. For this reason, the team chose to analyze active site mutations, which
affects the conformation of the enzymatic binding pocket and impacts inhibitor binding. The chosen point
mutations are: 184V, where residue 84, isoleucine, is replaced with valine for both chains, V82F+I84V,
where valine is replaced with phenylalanine, and M461+V82F+184V, with methionine replaced with
isoleucine. These mutations were found through previous in vitro viral passaging conducted by
laboratories in collaboration with the Schiffer Lab.

The final design decision the team made was the coding language used for the analysis program.
For the majority of scripts, MATLAB was chosen because of its superior visual and graphing capabilities
as well as its ability to import large data files. The resulting data files range in size from hundreds to
thousands of data points, and the team decided MATLAB was the most capable and versatile program.
The versatility of MATLAB would lend well to importing and reading various file types and sizes, while
running at a fast speed. Further, the lab has MATLAB access and our design can be incorporated and

supplement existing scripts that are across several coding languages. However, the team recognized the

43

limitation with MATLAB and decided to use python for one script to modify beta values in a PDB file in
order to generate heat maps for visual analysis.

Once all design decisions were made, the team conducted a preliminary test of a single mutant variant
that had previously been analyzed by the lab. The molecular dynamic simulation provided data consistent
with past data, so the team continued with simulations and analysis of the 184V, V82F+184V, and

M461+V82F+184V variants.

44

5.0 Design Verification

This chapter presents the results of each experiment performed modeling the HIV-1 protease wild
type, mutant variants 184V, V82F+I184V, and M461+ V82F+I84V. The results include protein RMSD,

protein RMSF, ligand RMSF, alpha carbon distances, van der Waals interactions, and hydrogen bonds.

5.1 Protein RMSD

The protein root-mean-squared deviation (RMSD) was calculated for the 100 nanosecond
simulation that was conducted for each replicate of each variant. RMSD analysis determines the extent of
protein equilibration through molecular dynamic simulation. This information is used to verify proper
protein behavior during the simulation. Additionally, the moving average of the RMSD was calculated for
each variant. Figure 5.1 shows the protein RMSD and their moving average for each replicate of each

variant. The replicate data is shown in blue and the moving average in red.

45

WT Rep1 Protein-Ligand RMSD

WT Rep2 Protein-Ligand RMSD

RMSD

1

0.5

0 50 100 150 200 250 300 350 400 450 50C
Frames

184V Rep1 Protein-Ligand RMSD

RMSD

0.5

0 50 100 150 200 250 300 350 400 450 50(
Frames

184V Rep2 Protein-Ligand RMSD

RMSD

0.5

WT Rep3 Protein-Ligand RMSD

o

50

100 150 200 250 300 350 400 450 500
Frames

184V Rep3 Protein-Ligand RMSD

2 2 2
15 15
[=)
2 2 2
1 [("4
0.5 0.5 0.5
0 " " . . 0 0
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 50 0 50 100 150 200 250 300 350 400 450 500
Frames Frames Frames
V82F+184V Rep1 Protein-Ligand RMSD V82F+184V Rep2 Protein-Ligand RMSD V82F+184V Rep3 Protein-Ligand RMSD
2 2 2

RMSD

RMSD

RMSD

05 05 0.5
0 0 0

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 50 0 50 100 150 200 250 300 350 400 450 500

Frames Frames Frames
M461+V82F+184V Rep1 Protein-Ligand RMSD M461+VB2F+184V Rep2 Protein-Ligand RMSD M461+V82F+184V Rep3 Protein-Ligand RMSD

2 2 2f
151
C g
0.5 05 05
0 (1] 0

0 50 100 150 200 250 300 350 400 450 50C
Frames

0O 50 100 150 200 250 300 350 400 450 50(
Frames

0

50

100 150 200 250 300 350 400 450 500
Frames

Figure S. 1: Protein RMSD replicates 1-3 of WT, 184V, V82F+I84V, and M461+V82F+I84V

46

RMSD

RMSD

The average RMSD of the three replicates were calculated for each variant. The averages of the

RMSD were then compared to wild type to observe any possible differences from the wild type

simulations (Fig. 5.2). The replicate RMSD data is shown in blue and the moving average in red.

Average WT Protein-Ligand RMSD

1571

it

05

-

0 50 100 150 200 250 300 350 400 450 5(
Frames

Average V82F+184V Protein-Ligand RMSD

05

0 50 100 150 200 250 300 350 400 450 5(
Frames

RMSD

RMSD

1.5

-h

05

1.5

P

05F

Average 184V Protein-Ligand RMSD

| | f ‘l | | '1._
w\ Wi q\ ¢‘M“ I WWWW\\WW J&MWMW LM\(

0 50 100 150 200 250 300 350 400 450 500

Frames

Average M461+V82F+184V Protein-Ligand RMSD

wwwwvwwww

0 50 100 150 200 250 300 350 400 450 500
Frames

Figure 5. 2: Average protein RMSD of WT, 184V, V82F+I84V, and M461+V82F+I84V

A constant RMSD suggests an equilibrated (temperature, pressure, etc.) model of the protein. The

jump to the constant position represents the equilibration process to the required temperature and

environmental conditions. Overall, the average protein-ligand RMSD plots showed proper equilibration to

47

RMSF

RMSF

25 o
— WT-Rep1
———— WT-Rep2
—— WT-Rep3
ot Ay
1.5
1H
|
05¢ ¢
0 ; . ; ; ; : ; " ;
0 20 40 60 80 100 120 140 160 180
Residue Number
V82F+184V Protein RMSF Compilation
25 T T . . : - "

1.5

051

roughly 1.25 angstroms. Further protein analysis could be conducted since the protein's behavior

appropriate.

5.2 Protein RMSF

The protein root-mean-squared fluctuation (RMSF) of each residue was calculated for each

variant during their 100 nanosecond simulations. Protein RMSF describes the amount of fluctuation, or

movement, of protein residues. Three replicates were conducted for each variant and the protein RMSF

was calculated.

The following plots show the protein RMSF for each mutation and wild type simulations (Fig

5.3). The line graphs contain the replicate data with the red, green, and blue lines corresponding to

WT Protein RMSF Compilation

V82F +184V Rept
V82F +184V Rep3

80 100 120 140 160 180
Residue Number

0 20 40 60

RMSF

RMSF

25

184V Protein RMSF Compilation

15

05|

184V Rep1
184V Rep2
184V Rep3

80 100 120 140 160 180
Residue Number

20 40 60

M461+V82F+184V Protein RMSF Complilation

25

M461+V82F+184V Rept
M461+V82F+184V Rep2
M461+V82F+184V Rep3

! 1 L L ! L 1 L '

20 40 60 80 100 120
Residue Number

Figure 5. 3: Protein RMSF Compilation of WT, 184V, V82F+I84V, and M461+V82F+I184V

replicates 1, 2, and 3, respectively.

The average RMSF values of the three replicates were calculated and graphed on a single graph.
This was done to highlight any differences from the average mutant RMSF’s to wild type. HIV-1 wild
type protease is depicted by the solid black line (Fig 5.4). Average protease variants 184V, V82F+I184V,

and M461+V82F+I84V are identified by red, blue, and green, respectively.

Average Protein RMSF

25 T T T .
— WT Avg
184V Avg
i V82F +184V Avg)
2 —— M461+V82F+184V Avg

it

h
|

RMSF

0 20 40 60 80 100 120 140 160 180
Residue Number
Figure 5. 4: Average Protein RMSF values for WT, 184V, V82F+I84V, and M461+V82F+I84V

The average protein RMSF compilation of each mutant and wild type showed notable differences.
Firstly, the there were notable differences in fluctuation across each variant around residues 1, 99, and
199. This is to be expected since this is the protein's dimerization region which is extremely motile.
Overall RMSF values remained similar except for key regions such as the active site, flaps, and elbow
regions. This line graph representation of protein RMSF makes it difficult to detect subtle changes

between variants.

49

The average protein RMSF values of each mutation were subtracted from the wild type averages
to observe fluctuations caused by each mutation. This data was displayed in a bar plot format to improve
visualization of the data fluctuation. Additionally, the average protein RMSF differences were split into
separate plots for chain A and B to increase the visual size allowing for easier detection of significant
changes. Protease variant differences of 184V, V82F+184V, and M461+V82F+184V are identified by red,

blue, and green, respectively (Fig. 5.5).

50

Chain A 184V Protein RMSF Differences

0.6 T T
I 154V Rep1 Difference
051 I 154V Rep2 Difference | |
[184V Rep3 Difference
04r 1
03 1
©
2
g 0.2]
5 04 1
L
2 o
= !
01 1
021 1
031 1
04 . " R i . R i . "
10 20 30 40 50 60 70 80 90 100
Atom Number
Chain A V82F+I84V Protein RMSF Differences
1.2 T T T T T T v r r
I /52F +184V Rep1 Difference

1 [V82F +184V Rep2 Difference | [

0.8 1
o 06 1
[&]
5

0.4 1
=
(=]
w I
% 0.2
z | [

° e
02 1
04 1
06 p g 3 3 : g * 3 :

0 10 20 30 40 50 60 70 80 90 100
Atom Number
; Chain A M461+V82F+I84V Protein RMSF Differences
I 11461 +V82F +184V Rept Difference
I 11461+V/82F +184V Rep2 Difference
0.8 [M461+V82F+184V Rep3 Difference |
0.6 —
8 04
c
g
E o2
w
n
=
x o
02
04
b A ; : ; : . : i ;
10 20 30 40 50 60 70 80 20 100

Atom Number

RMSF Difference

Chain B 184V Protein RMSF Differences
T T T T T

0.4

0.2

&
)

o
»

T T

I 154V Rep1 Difference
I 54V Rep2 Difference
[184V Rep3 Difference

1 1 1 1 1 1

RMSF Difference

10 20 30 40 50 60 70 80 90 100
Atom Number
- Chain B V82F+I84V Protein RMSF Differences
- I \/52F +184V Rep1 Difference
1r [v82F +184V Rep?2 Difference | |
08 1
061 1
041 1
021 1
0 IIJ, -
02
04
06 1
0.8 : L : 2 : : : g :
0 10 20 30 40 50 60 70 80 90 100

Chain B M461+V82F+184V Protein RMSF Difference:

Atom Number

0.8

0.6

I 11461 +V/82F+184V Rep1 Difference
I 11461 +V82F +184V Rep2 Difference
I M461+VE2F+184V Rep3 Difference

0.4

0.2

RMSF Difference
o

02

04

1 s L L

L 1 s L 1

10 20 30 40

50 70 80 100

Atom Number

60

Figure 5. 5: Differences Compared to WT protein RMSF

51

RMSF Difference (Angstroms)

In the case of protein RMSF differences, several residues exhibit subtle differences to the wild
type that can be considered negligible. To account for this, an additional plot showing the significant
differences was created. Significant differences are shown below, defined as the difference from the wild

type value at each residue is larger than the standard deviation of three wild type values at that residue

200

(Fig. 5.6).
Significant Protein RMSF Differences
0.6 T T T T T T T T T
I 134V Difference
I \/52+184V Difference
04 [M461+V82F+184V Difference | -
02 ‘
° P 1|"
02} }
047 =
06 2
-0 8 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Atom Number

Figure 5. 6: Significant Differences Compared to WT Protein RMSF
The most significant fluctuations for each variant occurred around the dimerization region
(residue 99). V82F+I84V also displayed significant differences around residues 19, 40, 55,118,142,and
175. This variant had the greatest amount of variation when compared to wild type.
Additionally, protein RMSF differences to wild type were also displayed in the form of heat
maps, generated using PyMol. These heat maps display the protein structure as a cartoon ribbon. Dark
blue shading displays residues with the least fluctuation, greatest stability, and span to red representing

residues of highest fluctuations, least stability. Figure 5.7 depicts the protease protein colored by RMSF

52

values ranging from -0.3643 to 0.7060 compared to Figure 5.8, which shows the RMSF difference to wild

type with difference values ranging from 0.2506 to 2.1776.

Figure 5. 7: Protein RMSF Heat Maps for 184V (top left), V82F+I84V (top right), and M46I+V82F+I84V (bottom)

Protein RMSF heat maps in figure 5.7 displays the information shown in Figure 5.4 with respect
to the protein's structure. RMSF values of each residue were visually displayed in their correct protein
primary structure. Additionally, a color scale was correlated to these RMSF values to display fluctuation
in terms of a color. This display allows for a 3-D representation of the protein capable of visualizing
regions of fluctuation.

Key structural and functional regions of the protease were colored blue, indicating the most stable
(Fig. 5.7). Specifically the alpha helices and the active site for each variant exhibited the highest stability.

Regions of moderate to high fluctuation throughout the simulation included the flaps and 60’s loop

53

regions. 184V and M461+V82F+184V variants displayed small amounts of green and a significant amount

of yellow and red. However, V82F+I84V just showed moderate fluctuation in the 60’s loop being strictly

green. 184V and V82F+184V variants displayed moderate fluctuation within the elbow regions, shown as

A M AT XYTAAT . YA AT T

Figure 5. 8: Protein RMSF Differences Compared to WT Heat Maps for I84V (top left), VS2F+I84V (top right), and
M461+V82F+I84V (bottom)

Similarly, Figure 5.8 displays protein RMSF differences compared to wild type on the protein
structure. These representations allow for easier differentiation of fluctuation significance between
variants to be observed. Regions in green represent the most conserved areas with fluctuation consistent
with wild type. 184V and V82F+I84V variants had very similar color gradients with the V82F+I184V
variant having slightly more yellow identifying slight increases in fluctuation compared to wild type.

However, the M461+V82F+184V variant displayed a great amount of fluctuation compared to wild type.

54

The active site showed moderate (yellow) fluctuation compared to both 184V and V82F+I84V (green).
Also, the M461+V82F+184V variant displayed less fluctuation (light blue) compared to both 184V and
V82F+I84V (green) in the 60’s loop region. Finally, the most significant fluctuation occurred in the tip of

the flaps (red) compared to both 184V and V82F+I84V (green/yellow).

5.3 Ligand RMSF

The ligand root-mean-squared fluctuation (RMSF) of each residue was calculated for each variant
during 100 nanosecond simulations. Ligand RMSF describes the amount of fluctuation, or movement, of
ligand atoms. Three replicates were executed for each variant and the ligand RMSF was calculated for
each one. The following plots show the ligand RMSF for each mutation and wild type simulations. The
line graphs contain the replicate data with the red, green, and blue lines corresponding to replicates 1, 2,

and 3, respectively (Fig. 9).

WT Ligand RMSF 184V Ligand RMSF
25 25
Rep1 Rept
Rep2 Rep2
Rep3 = Rep3
2 1 2

& w |
= = /AN
o x o
1 1 " ‘ 1
(| 7.
A \ /
0.5 0.5 ¢
0 . " P " i " 3 0 . N N " .
0 5 10 15 20 25 30 35 (] 5 10 15 20 25 30 35
Atom Number Atom Number
V82F+184V Ligand RMSF M461+V82F+184V Ligand RMSF
25 25
Rep1 Rep1
Rep3 Rep2
Rep3
2 2
15} 15¢
z z
1r 1
05 ost
o 0) 5 R s N " i
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Atom Number Atom Number

Figure 5. 9: Ligand RMSF Compilation of WT, 184V, V82F+I84V, and M461+V82F+184V

The average RMSF values of the three replicates were calculated and graphed on a single graph.
This was done to highlight any differences from the average mutant RMSF’s to wild type. The ligand
wild type is depicted by the solid black line (Fig 5.10). Average ligand variants 184V, V82F+I84V, and

M461+V82F+184V are identified by red, blue, and green, respectively.

Average Ligand RMSF

2. 5 v v T T
——— WT Avg
184V Avg
V82F +184V Avg
2r — M46I+V82F+184V Avg |]
A
15
L
%)
=
o
1 -
05F
0 1 L 1 ' L 1 1
0 5 10 15 20 25 30 35

Atom Number
Figure 5. 10: Ligand RMSF Compilation of WT, 184V, V82F+I84V, and M461+V82F+I84V

The average ligand RMSF compilation of each mutant and wild type showed limited differences.
The line graphs for average wild type, 184V, and V82F+184V ligand RMSF were similar. Each of these
graphs followed the same trends with slight variations from wild type near residues 26, 28, and 35.
However, the M461+V82F+I84V variant follows a similar trend with substantially more significant

differences around resides 7, 11, 13, 17, and 31-38.

56

RMSF Difference

The average ligand RMSF values of each mutation were subtracted from the wild type averages

to observe fluctuations caused by each mutation. This data was displayed in a bar plot format to improve

visualization the fluctuation data. Ligand mutant variant differences 184V, V82F+I184V, and

M461+V82F+184V are identified by red, blue, and green, respectively (Fig. 5.11).

087

06T

04r

02rf

184V Ligand RMSF Differences to Average WT RMSF

[Rep 1 Difference
I Rep? Difference
Rep3 Difference |]

5 10 15 20 25 30 35
Atom Number

In the case of ligand RMSF differences,

several residues exhibit subtle differences to the

wild type that can be considered negligible. To

account for this, an additional plot showing the

significant differences was created. Significant

differences are shown below, where the difference

from the wild type value at each residue is larger

than the standard deviation of three wild type

values at that residue (Fig. 5.12).

V82F+184V Ligand RMSF Differences to Average WT RMSF

I Rep1 Difference
I Rep3 Difference
08 1
06
©
(&)
{ =
5
E 04 r
o
w
%)
= 02}
@
0
027
0 5 10 15 20 25 30 35
Atom Number
M461+V82F+I84V Ligand RMSF Differences to Average WT RMSF
- Rep1 Difference
I Rep? Difference
0.8 [| (I Rep3 Difference
06
©
[&]
=
$
= 0.4
o
TR
17}
= 02}
@
0
0271
0 5 10 15 20 25 30 35

Atom Number

Figure 5. 11: Ligand RMSF Differences Compared to WT for
184V, V82F+184V, and M461+V82F+I84V

57

Significant Ligand RMSF Differences
T T

0.6 T T T T T
I |54V Difference
I /5 2F +184V Difference
o [m461+V82F +184V Difference J
04 1
[}
o
<
o
=
803 -]
L
(2]
=
o
02 I
01 i | ‘ =
0 | { i 1 1 1 | !
0 5 10 15 20 25 30 35 40

Atom Number

Figure 5. 12: Significant Ligand RMSF Differences Compared to WT for 184V, V82F+I84V, and M461+V82F+I84V

The significant ligand RMSF differences to wild type bar plot provided a better visualization of
this analysis. Similar to Figure 5.11, the M461+V82F+184V variant clearly displays the most fluctuation.
This is observed mostly in atoms 32 through 38, corresponding to the benzene ring. There was minimal
fluctuation observed in the cyclopentadiene region, with the only significant change in RMSF occurring

in atoms 25 and 26 when complexed to V82F+I84V.

5.4 Alpha Carbon Distances

Distances between the alpha-carbons (C-Alpha) of residues across the active site were recorded
during the 100 nanosecond simulation for each HIV-1 protease variant. These distances determine the
relative size of the active site and give insight on the dynamic movement of the protease. The residues of
interest were 25-25°, 84-84°, 25-50, 25-50°, 25°-50, and 25°-50°, shown as red lines in the Figure 5.13
below. The apostrophe following residue values signifies chain B residues and the red lines indicate the

initial position of these alpha carbon pairings.

58

The C-alpha distances of WT for each replicate are shown in Figure 5.14. The distances of the

— > ~ -
Figure 5. 13: Alpha Carbon HIV-1 Protease Wild Type Distances
- -

first row are between 25-25°, 84-84°, 25-50 (left to right) and the second row are between 25-50°, 25°-50°,

and 25°-50 (left to right). Replicate 1 is shown in blue, Replicate 2 is shown in red, and Replicate 3 is

shown in yellow.

3 é:-alpha Dis of 25-25 for V82F +184V

- (?-alpm Dis of 84-84 for V82F+184V

18

60 60
£ B
& °
20 20
0 0
55 6 65 Y 75 14 15 16 17
Distance (Angstroms) Distance (Angstroms)
g:&alpha Dis of 25A-50B for V82F +184V gaalpha Dis of 25B-50B for V82F +184V
60 60
',g 40 E 40
2 *
20 20
0 0
1n 12 13 14 15 13 14 15

Distance (Angstroms)

Distance (Angstroms)

16

gaalpm Dis of 25A-50A for V82F +184V

0
135 14 145 15
Distance (Angstroms)

155

g&"""‘ Dis of 25B-50A for V82F+184V

12 13 14
Distance (Angstroms)

Figure 5. 14: Wild Type Alpha Carbon Distances

15

59

The C-alpha distances for 184V, V82F+184V, and M461+V82F+184V were also calculated for each

replicate (Fig. 5.15, Fig. 5.16, and Fig 5.17).

@ C-alpha Dis of 25-25 for 184V % C-alpha Dis of 84-84 for 184V d C-alpha Dis of 25A-50A for 184V
60 60 60
E 40 E 40 i § 40
53 ;,~°. ;5.' o \
20 20 ra 20 / \\
] 0 ~"/ 0 :
55 6 65 7 145 15 155 16 165 13 14 15 16
Distance (Angstroms) Distance (Angstroms) Distance (Angstroms)
- C-alpha Dis of 25A-50B for 184V o C-alpha Dis of 25B-50B for 184V 5 C-alpha Dis of 25B-50A for 184V
60 60 60
'g 40 g 40 - = 40
2 P 2
20 20 20 \
N
0 0 0
1 12 13 14 13 14 15 16 125 13 135 14 145
Distance (Angstroms) Distance (Angstroms) Distance (Angstroms)
Figure 5. 15: 184V Alpha Carbon Distances
aco-alpha Dis of 25-25 for V82F+184V Bg-alpln Dis of 84-84 for V82F+184V Ca-gnlpha Dis of 25A-50A for V82F+184V
60 60 60
-§ 40 E 40 E 40 \
20 20 20
74
0 0 L 0
55 6 65 7 75 14 15 16 17 135 14 145 15 155
Distance (Angstroms) Distance (Angstroms) Distance (Angstroms)
%-Oalpha Dis of 25A-50B for V82F +184V %-Oalpha Dis of 25B-50B for V82F +184V %-oalphn Dis of 25B-50A for V82F +184V
60 60 60
E 40 E 40 //\ E 40
20 20 / 20
0 0 — 0
1 12 13 14 135 14 145 15 155 12 13 14 15

Distance (Angstroms)

Distance (Angstroms)

Distance (Angstroms)

Figure 5. 16: V82F+I84V Alpha Carbon Distances

60

80C-alpha Dis of 25-25 for Trip Mut aOC-alpha Dis of 84-84 for Trip Mut gdalpha Dis of 25A-50A for Trip Mut

60 60 60
-E 40 E 40 E 40
20 20 / 20 \
1] 0 - 0
55 6 65 7 75 14 15 16 17 13 14 15 16
Distance (Angstroms) Distance (Angstroms) Distance (Angstroms)
l%-alpha Dis of 25A-50B for Trip Mut &-alpha Dis of 25B-50B for Trip Mut nglpm Dis of 25B-50A for V82F+184V
60 60 60
E 40 g 40 E 40
2 - &
20 / \ 20 20
0 — 0 0
1 12 13 14 13 14 15 16 10 12 14 16
Distance (Angstroms) Distance (Angstroms) Distance (Angstroms)

Figure 5.17: M461+V82F+184V Alpha Carbon Distances

For each variant, the C-alpha distances were consistent between each of the replicates. The
average of each variant was calculated and put compared to Wild Type to see any differences in patterns.
The averages of each variant are shown in Figure 5.18. Wild Type is shown in blue, 184V is shown in red,

V82F+I84V is shown in yellow, and M461+V82F+184V is shown in purple.

o0 C-alpha Dis of 25-25 2 C-alpha Dis of 84-84 20 C-alpha Dis of 25A-50A
. W
/\ — 184V
60 60 DubMut 60
: ; : —renl)
= 40 = 40 = 40 /
20 \ 20 20 //
= < 4
- N <
0 0 0
55 6 65 7 75 14 15 16 17 18 135 14 145 15 155
Distance (Angstroms) Distance (Angstroms) Distance (Angstroms)
20 C-alpha Dis of 25A-508 2 C-alpha Dis of 258-508 %0 C-alpha Dis of 25B-50A
60 60 60
g 40 E 40 / & E 40
20 20 / \\ 20
W S / N
0 0 0 - -
n 12 13 14 15 13 14 15 16 12 13 14 15
Distance (Angstroms) Distance (Angstroms) Distance (Angstroms)

Figure 5. 18: Average Alpha Carbon Distances
61

The 184V variant alpha-carbon distances showed the most deviance from the wild type’s
distances. The distance was smaller from wild type in all residues except for 25-50, which was a similar
distance, and 25°-50, which was a larger distance. V82F+184V had similar alpha carbon differences to
wild type for residues 25-25°, 25-50, 25-50°, and 25°-50. Smaller distances were seen between 84-84” and
25°-50°. The M461+V82F+184V variant has alpha carbon distances similar to wild type for residues 25-
25°, 84-84°, 25-50, and 25°-50°. Distances between residues 25°-50 and 25-50" for the M46I+V82F+184V
variant were smaller than wild type. Overall, there were no significant differences or patterns seen
between the C-alpha Distances of the mutation variants compared to the wild type variants.

Another way to visualize the alpha-carbon distances of the mutated variants were color coding the
lines between the residues, of which the distances were measured. The colors corresponded to the average
distance being larger, the same, or smaller than wild type. A red line represents a higher average C-alpha
distance, a green line represents the same average C-alpha distance, and a blue line represents a lower
average C-alpha distance to wild type. The C-alpha distances of the 184V variant is shown in the figure

below (Fig. 5.19).

Figure 5. 19: 184V C-alpha Distances Compared to WT

62

The C-alpha distances between residues 25-25°, 84-84°, 25-50’, and 25°-50’ are represented by a
blue line, 25-50 by a green line, and 25°-50 by a red line. The C-alpha distances of the 184V variant are
mostly smaller than wild type. Only one distance is similar to wild type and another distance larger than

wild type.

Figure 5. 20: V82F+I184V C-Alpha Distances Compared to WT

V82F+184V C-alpha results were also compared to the wild type. The C-alpha distances between
residues 84-84° and 25°-50’ are represented by a blue line, while 25-25°, 25-50, 25-50°, and 25°-50 are
represented by a green line. Generally, the average C-alpha distances of V82F+I84V variant were similar

to wild type. Only two C-alpha distances had a lower average than wild type.

63

Figure 5. 21: M461+V82F+I84V C-alpha Distances Compared to WT

M461+V82F+184V C-alpha distance between residues 25-50 is represented by a blue line, 25-25°,
84-84°, 25-50, and 25°-50°by a green line, and 25°-50 by a red line. Most of the C-alpha distances of the
M461+V82F+184V variant were similar to wild type. There was one C-alpha distances for both a larger
distance than wild type and smaller distance than wild type.

All the mutated variants experienced a smaller active site compared to Wild Type. The larger
averages were seen between residues 25°-50. The C-alpha distances of the M461+V82F+184V variant and
the V82F+I184V variant are similar to wild type, while the 184V C-alpha distances were smaller compared

to wild type.

5.5 Van der Waals

The van der Waals interactions between the ligand and the protein were calculated for each
variant of HIV-1 protease. The following figures show the van der Waal interactions for each replicate of
each variant. The interactions are divided into chain A and chain B residues for visual purposes (Fig. 5.22

and Fig. 5.23, respectively).

64

keal/mol

WT Chain A Van der Waals Energy

0 T L I b1 La T T LU T
05 =
ak -
A5 =
3
)
2
i
2F 4
25k 4
3
35 1 1 1 1 1 L 1 L
0 10 20 30 40 50 60 70 80
Residue Number
184V Chain A Van der Waals Energy
0 T Ll 1' T k4 1 T T v Tln '
05 " -
Al -
5[-
Q
£
El
£
2 -
25 -
A . Rept ||
I Rep2
N Rep3
35 L 1 L I 1 L 1 L
0 10 20 30 40 50 60 70 80 90 100
Residue Number
V82F+184V Chain A Van der Waals Energy
o L T |l i "' T | T T L ""' T
05 |‘ =
A =
A5 —
2 —
25 =
3 =
5 1 I I | | | I | |
0 10 20 30 40 50 60 70 80 20 100
Residue Number
M461+V82F+184V Chain A Van der Waals Energy
o T T T " T ' T T T “1 i I T
05 b
A .
_ 5 5
[=]
£
El
3
2
2 B
25 u
3+
35 1 1 L 1 1 1 L L
10 20 30 40 50 60 70 80

Residue Number

Figure 5. 22: Chain A van der Waals Energies for WT, 184V, V82F+184V, and M461+V82F+184V

65

WT Chain B Van der Waals Energy
A T

0 T L T] l T
05 =
Ak -
S5F —
S
L2
2+ -
25 ol
3 1 1 1 1 1 I I I 1
0 10 20 30 40 50 60 70 80 90 100
Residue Number
I84V Chaln B Van der Waals Energy
0 T T T L
05 B
Ak i
2
£
w
2
A5 B
2k N
25 L 1 I L I L L 1
10 20 30 40 50 60 70 80 100
Residue Number
VBZF#IBAV Chaln B Van dar Waals Energy
0 T T
05— —
Ak i
°
£
=R —
S
£
2k N
25 B
3 1 1 1 L I 1 I 1
0 10 20 30 40 50 60 70 80 100
Residue Number
M46|0V82F0184V Chain B Van der Wauls Energy
o T T ¥ w T >
02 =
04 =
06 =
08 B
Kl
E L i
=
L
12 B
4 -
A8 -
18
2 1 1 L 1 1 | 1
0 10 20 30 40 50 60 70 80

Figure S. 23: Chain B van der Waals Energies for WT, 184V, V82F+I84V, and M46I+V82F+I84V

Residue Number

66

Each variant follows a similar trend across all replicates. Residues 25-31 generally had the
greatest interactions with the inhibitor, with the exception of 184V chain B and V82F+I184V chain B.
Although following a similar trend, residues 28 and 29 in chain A of wild type, 184V, V82F+I84V have
energies of approximately -3.25 kcal/mol, compared to M461+V82F+184V with -2.75 kcal/mol.
M461+V82F+184V chain A also had a lower energy at residue 60 with approximately -2.75 kcal/mol,
compared to -2.25 to -2.5 kcal/mol seen in the other variants. With respect to chain B, wild type and
V82F+I84V had the lowest energy at residue 60, approximately -1.75 and -1.8, respectively. Further, in
the chain B variants there is a visible van der Waals interaction at residue 9 ranging from about -0.75 to -
1.25 kcal/mol.

The average of the van der Waals energies of each variant were calculated. Similar to RMSF data,
several residues had negligible Van der Waals interactions differences. The team determined through
discussion with our sponsor that a difference greater than 0.02 kcal/mol was significant and is shown

below for each residue. In these figures, chain A and chain B are both displayed on one graph (Fig. 5.24).

67

keal/mol

WT Significant Average Van der Waals Energy
T

100

0 T l| T T T T T L]]
-05]
A E
=-15 =
[=]
£
=
L
2 =
25 -
3 -
verage Chain A
verage Chain B
35 ! L ! 1 1 1 1 1 L
0 10 20 30 40 50 60 70 80 20 100
Residue Number
184V Significant Average Van der Waals Energy
o T T T II T - L | T T 1 “1 T
05 -
ar .
A5 =
2k _
25 -
Average Chain A
Average Chain B
3 1 | | 1 1 1 L 1 Il
0 10 20 30 40 50 60 70 80 20
Residue Number
VB2F+I84V Significant Average Van der Waals Energy
0 T T T T T T LI | T
051
A
_ a5
g
3
2
2
25
a3
\verage Chain A
werage Chain B
35 1 1 L 1 1 1 1 L 1
0 10 20 30 40 50 60 70 80 20 100
Residue Number
M461+VB2F+184V Significant Average Van der Waals Energy
0 T T] T -I T T T T T I N T
o5k |
Ak i
ask]
5
£
3
£
2 -
25k]
a3 B
Average Chain Al
Average Chain B
35 1 1 L L 1 L L 1 1
10 20 30 40 50 60 70 80 20 100

Residue Number

Figure 5. 24: Significant Average van der Waal Energies for WT, 184V, V82F, and M461+V82F+I84V 63

Comparing the van der Waals interactions less than -0.02 kcal/mol with chain A and chain B
plotted on the same graph, chain A generally had greater interactions than chain B. Especially at residues
28 and 29, the average energy is significantly greater in chain A, and in the case of I84V and

M461+V82F+184V is more than doubled.

Next, the average of the mutated variants’ van der Waals energies were compared to the Wild Type’s
van der Waals energies. To provide a clearer portrayal of the significant difference data, residues with a
difference less than 0.02 kcal/mol were removed and all three residues were plotted in the two figures

below, which one is chain A and the other is chain B (Fig 5.25).

69

Change in kecal/mol

0.6

0.4

1

Average Chain A Differences Compared to WT

T T T T

T

T

T

T T T T T

I 184V Difference
I \/52F +184V Difference

I M461+V82F+184V Difference | |

0.6

| | | | | | |

1

|

|

1

| ! 1 | | |]] | | | | | 1 !] |
25 27 28 29 30 32 47 48 49 50 52 53 76 80 81 82 84
Residue Number
Average Chain B Differences Compared to WT
0.6 T
- I 154V Difference |
: I \/82F +184V Difference
[M461+V82F +184V Difference
0.2
= 0
o
£
g 02
=
)
204
©
£
o

| | | | | 1

23 25 27 28 29 30 3

32

47
Residue Number

48

49

50

54

76

79 80 81 82 83 84

Figure 5. 25: Significant van der Waals Difference to WT

The van der Waals energies of all the residues were added together for each variant, including the

mutated variants and wild type, to compare the total energy between the ligand and the protein. Wild

Type had the largest van der Waals energies -34.2 +/- 2.2 kcal/mol. V82F+184V and M461+V82F+184V

were next with average van der Waals energies of -32.2. +/- 1.2 kcal/mol. Lastly, 184V had an average of

-30.6 +/- 0.9.

70

5.6 Hydrogen Bonds

The hydrogen bonds between the protein and the ligand were calculated for every 10 picoseconds
over the 100 nanosecond simulation. The percentage of time that each hydrogen bond was present
throughout the simulation was determined. The average of the hydrogen bond percentages for each
variant was compared to the wild type. These average hydrogen bond percentages are displayed in Table
5.1 and shaded according to percentage. Additionally, the hydrogen bond percentages were added
together to achieve total amount of hydrogen bonds for each variant during the simulation.

Table 5. 1: Average Hydrogen Bond Percentages of WT, 184V, V82F+184V, and M46I+V82F+I84V

RZ;?(:E::# :;2:::; P:t’(t)':"]" Llﬁz:f WT | 184V | 184V4+V82F | 184V4V82F+M46l
25 A ASP | HD2
27 A GLY 0
29 A ASP H
30 A ASP H
258 ASP | OD2
308 ASP 0
508 ILE H
| SummedPercentage | 426.4 | 3765 | 4236 | 331.3 |
[| e
100% 0%

Significant differences of the hydrogen bonds seen in Table 5.6.1 include the catalytic residue of
chain A, which is residue 25 A to ligand atom number 18. 184V drastically decreases the occurrence of
that hydrogen bonds while V82F+184V and M461+V82F+184V drastically increase the occurrence of that
hydrogen bonds. Another significant difference is the decrease seen between residue 29 in chain A and
ligand number 28 of the M461+V82F+184V variant. The hydrogen bond occurrence of residue 30 of chain
A and ligand number 26 decreases with the addition of mutations. The hydrogen bond percentage for

residue 50 of chain B increases with 184V but decreases with V82F+184V and M46I+V82F+184V.

71

Lastly, the sum of the percentages show that the mutations overall decrease the number of
hydrogen bonds between the ligand and the protein throughout the simulation. They also show that
M461+V82F+184V has the least amount of hydrogen bonds with 184V having a similar decrease in

hydrogen bond percentages. However, V82F+I84V has a similar hydrogen bond character as the wild

type.

72

6.0 Final Design and Validation

6.1 Experimental Process

Molecular dynamic simulations were chosen as the experimental method to compute the
structural dynamics and patterns of resistance to Darunavir (DRV) in mutant HIV-1 variants. The steps
considered when running molecular dynamic (MD) simulations using Schroedinger’s Maestro are

outlined in Figure 6.1.

*Choose relevant mutations
i eInsert Mutations in protein Model
| Software: Schroedinger: Maestro

eInsert simulation parameters (force field, water model)
*Minimize protein to lowest energy state ("natural state")

*Software: Schroedinger: Maestro

Simulation

*Three replicates of each variant
«100 nanosecond simulation
.| eSoftware: Desmond

eCalculate RMSD, RMSF, H-bonds, and C-alpha distances
*Choose best computer program
eDesign code for comparison and further analysis

Figure 6. 1: Steps of Molecular Dynamics Simulation

6.1.1 Preparation

Preparation involves importing the protein’s information into the modeling software, modifying
the model with the desired mutations, and adding virtual experimental conditions to the model. The
modeling software used for the preparation step was Schrodinger’s Maestro. The methodology followed
during the preparation step to build the homology model is as follows:

1. Under the tasks tab, select homology model.

73

9.

Click add files and import the genetic code sequence in the form of a PDB.
Click next followed by blast homology search.

Select and modify amino acid residues of interest in the genome sequence.

Slide chain B residue 1 to the right until it is properly aligned following chain A.
Click next.

Select energy-based and homo-multimer check boxes.

Select the inhibitor from the list, where DRV is denoted by 017.

Click options, and select preserve residue number.

10. Click build model.

Completion of the above steps created a homology model of each desired mutation. However, this

model is missing chain B residue 1, but it will be added and bonded to the protein during minimization. A

PDB file of the HIV-1 protease DRV complex was imported instead of simply typing in a fasta sequence

to provide the program with atom coordinates. The atom coordinates used in the preparation step directly

impact the protein conformation and interactions observed from running the simulation. The PDB used

was obtained from Research Collaboratory for Structural Bioinformatics (RCSB) protein data bank, an

industry standard database, which will ensure the accuracy of the protein crystal structure. A homology

model was created for each of our mutations of interest: 184V, V82F+I84V, and M461+V82F+184. In

addition to modifying the amino acid residues for each mutation, a homology model without any

mutations was generated to serve as the wild type control.

6.1.2 Minimization

After generating the homology model, it is then processed using Maestro’s protein preparation

wizard to change certain residues into their most minimized state, or the position requiring the least

energy. This process also includes adding water molecules that are present in in vivo scenarios. Lastly,

minimization ensures there are no clashing molecules, such as an overlapping water molecules.

Minimization occurs through the following steps:

74

—_

Under the tasks tab, select protein refinement, and click minimize.

N

Change the force field to OPLS 2005.

3. Under atoms, click the plus sign and then select.

4. Under the sequence tab:

a. Click chain A, sequence number and add

b. Click chain B, sequence number and add

c. On the left of the sequence tab, click backbone/side chain
d. Select side chain and click intersect

e. Click run.

93]

Import the original PDB.

o

Delete all but chain B residue 1 by selecting the delete icon, select residue, invert, ok.
7. Click the pencil icon and draw the bond connecting chain B residue 1 to 2.
8. Import WT PDB to add crystallographic waters.
9. Delete all molecules except waters by selecting the delete icon, click molecule, molecular type,
water, invert, ok.
10. Merge the water only model and the protein homology model.
11. Check inhibitor bond orders and stereochemistry.
12. Open the protein preparation wizard.
13. Under the pre-process protein tab, check off:
a. Assign bond orders
b. Remove original hydrogens
c. Convert selenomethionines to methionines
d. Create zero-order bonds to metals
e. Fill in missing side chains using prime.
14. Under the pre-process protein tab, uncheck:

a. Create disulfide bonds

75

b. Delete waters.
15. Click pre-process.
16. Click view problems. If there are overlapping atoms, delete the interfering waters atom(s) and
click update.
17. Under the review and modify tab:
a. Click analyze workspace
b. Click generate states and select the lowest energy state.
18. On the refine tab:
a. Under H-Bond assignment, click sample water orientations, minimize hydrogens of
altered species, click PROPKA and pH of 7.0 and click optimize.
b. Under restrained minimization, select hydrogens only and click minimize
¢. Check problems, reports and plots

d. Check Asp25 and note which chain is protonated.

Completion of the above steps successfully minimized the homology model created during

preparation. The final step in minimization prior to simulation is creating an orthorhombic water box.

This box has dimensions of 10x10x10 angstroms, contains no additional salt buffers and is neutralized.

Prior to simulation, hydrogen atoms are also deleted from the model.

6.1.3 Simulate

After using Maestro’s protein preparation wizard, the system is ready for the simulation process

using Desmond. The system is sent to a computer with the Desmond molecular dynamics script to run the

simulation process. The time of the simulation and the type of computer you run the simulation on is

specified in the submission of the Desmond job. The team chose 100 nanoseconds for the simulation time

and GPU computers to run the simulation on.

To submit the simulation, the team followed these instructions:

76

1. Open a new terminal tab and enter the UMASS cluster.

2. Go into the desired project folder and make a new folder for the specific simulation.

3. Go back to the original terminal tab and go into the folder with the Desmond_setup out file

4. Transfer the Desmond setup out file into the new folder of the UMASS cluster with the
command scp

5. Copy the molecular dynamics protocol into the new folder of the UMASS cluster with the
command cp

6. Submit the job into the cluster with the Schrodinger submit command

After the simulation is submitted, the Desmond script “heats” the system until equilibration at
300 K. Once equilibration is reached, the system continues with the simulation. The simulation process
involves applying an energy force field and environmental parameters to the system and recording the
atoms’ coordinates and energies. These coordinates are the movement of the protein. The energies can be
analyzed further to describe how well DRV was attached in the active site.

The coordinates and energies are recorded for the 100 ns in a file. This file’s information can be
analyzed to determine the RMSF, RMSD, hydrogen bonds, van der Waals, alpha-carbon distances, and
much more of the protein and DRV. The team had three different simulations of each mutation and the
wild type variant.

Once the simulations were finished, the information was analyzed using Schrodinger’s Maestro,
VMD scripts, and GFortran scripts. For Schrodinger’s Maestro, the protein interactions tool was utilized.
This tool gave the protein RMSF, protein RMSD, ligand RMSF, hydrogen Bonds, and alpha-carbon

Distances. VMD and GFortran was used to analyze the van der Waals of the ligand to protein.

6.2 Data Analysis Process

The second component of the final project design is the analysis process and developed software. With
the exception of the one python script to overwrite a PBD file, all scripting was conducted in MATLAB.

This section contains highlights of the code written, and fully published code can be found in appendix B.

77

141
142
143
144
145
1486
147
148
143
150
15
152
153
154
155
156
157
158
159
160
lel
162
163
164

6.2.1 Protein-Ligand RMSD

A script for protein root-mean-squared deviation (RMSD) was written to initialize comma

delimited value files. RMSD indicates the fluctuation of the alpha-carbon atoms (backbone of the protein)

during the simulation. A higher RMSD indicates less protein stability. The program inputs comma

delimited value files with a .csv file extension for each mutation, reads the data, and appends each RMSD

value to an array. Additionally, the moving average for the entire protein RMSD was calculated using

MATLAB’s built-in “tsmovavg” function (Fig. 6.2 line 144-146). The major component of this script is

the graphical representation of protein RMSD (line 148-164). For each mutation replicate a line graph is

generated with each of the three replicate data as well as an average. The moving average was then over

laid on the graph.

plot (x' MAWTAvg, 'xr")
%% Plotting I84V

% Moving Average

MaMutiRepl=tsmovavg (mutl repl,'s',100,1);%simple movi

MaMutlRep2=tsmovavg (mutl_rep2,'s',100,1);%simple
MaMutliRep3=tsmovavg (mutl_ rep3,'s',100,1);%simple

3 T4V Re -

5 1042V KRep 1
figS=figure;
plot (x',mutl_repl)

title('I84V Repl Protein-Ligand RMSD')

vlabel ("RMSD')

xlabel ('Frames')

axis ([0 500 0 2.2])

hold on

plot (x' , MAMutlRepl, 'xr')
I84V Rep 2

figé=figure;

plot (x',mut2_rep2)

title ('I84V Rep2 Protein-Ligand RMSD')

yvlabel ('RMSD')

xlabel ('Frames')

axis ([0 500 0 2.2])
hold on

plot (x',MAMutiRep2, 'xr")

Figure 6. 2: Portion of RMSD Script

78

6.2.2 Protein RMSF

A script for protein root-mean-squared fluctuation (RMSF) was created to analyze the proteins
movement during the simulation. The program utilizes text files generated from the molecular modeling
software by reading the data and appending each RMSF value into an array. This script was created to
help quantify the data collected during simulations into a graphical visual. For each mutation a line graph
is generated with each of the three replicate data. Additionally, a line graph is generated displaying

average RMSF mutation replicates against wild type RMSF replicates.

79

149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

%% V82F+184V Differences to Average WT

Mut2 Repl Diff = Mut2 Repl ordered-WI_Avg;

$Mut2 Rep2 Diff = Mut2 Rep2 ordered-WI_Avg;

Mut2 Rep3 Diff = Mut2 Rep3 ordered-WI_Avg;

Mut2 diffs = horzcat (Mut2 Repl Diff,Mut2 Rep3 Diff):
Mut2 Avg diffs= mean(Mut2 diffs,2):

% Chain A and B differences
Mut2 diffs A = horzcat (Mut2 diffs(1:99,1),Mut2 diffs(1:99,2)):

Mut2 diffs B = horzcat (Mut2 diffs(100:198,1),Mut2 diffs(100:198,2)):

-

% Plotting Chain A I84V Differences to Average WT
figure

X = 1:99;

Mut2 A bar graph = bar(x,Mut2 diffs 1)

Mut2 A bar graph(l).FaceColor= 'r';

¥Mut2 A& bar graph(2).FaceColor='b';

Mut2 A bar graph(2).FaceColor= 'g';

Mut2 A bar graph(l).EdgeColor= 'r';

Mut2 A bar graph(2).EdgeColor= 'g';

title('Chain A V82F+I84V Protein RMSF Differences')
Xlabel ('Atom Number')

yvlabel ('RMSF Difference')

legend ('V82F+I84V Repl Difference', 'V82F+I84V Rep2 Difference')
$ Plotting Chain B I84V Differences to Average WT
figure

x = 1:99;

Mut2 B bar graph = bar(x,Mut2 diffs B):

Mut2 B bar graph(l).FaceColor='xr';

¥Mut2 B bar graph(2).FaceColor='b';

Mut2 B bar graph(2).FaceColor='g';

Mut2 B bar graph(l).EdgeColor="xr';

Mut2 B bar graph(2) .EdgeColor='g';

title('Chain B V82F+I84V Protein RMSF Differences')
xXlabel ('Atom Number')

vlabel ('RMSF Difference')

legend ('V82F+1I84V Repl Difference', 'V82F+1I84V Rep2 Difference')

Figure 6. 3: Portion of Protein RMSF

The RMSF values of each variant were then compared to the wild type. The average data set for

each mutation was subtracted from the average wild type data set and appended into a new array (Fig. 6.3

line 150-154). If the mutant had a larger fluctuation this difference would be positive and in the case there

was less movement in the mutant ligand this value would be negative. This refined RMSF difference data

80

was plotted on a bar plot. Also, bar plots with a numerical threshold were coded to display significant

fluctuations as shown in Figure 6.4.

241 %% Calculating Significant Differences to WT

242 $Preallocate mutation vectors

2 El= Mutl statsig = ones(1,198);

244 — Mut2 statsig = ones(1,198);

245 — Mut3 statsig = ones|(1,198);

246 — WI_stdev = std(WI_Comp'):

247 - for 1 = 1:198

248 - if (-WI_stdev(i)) <= Mutl Avg diffs(i) && Mutl Avg diffs(i) <= WI_stdev (i)
249 - Mutl statsig(i) = 0;

250 — else

R |= Mutl statsig(i) = Mutl Avg diffs(i):

AT 1= end

2531 if (-WI_stdev(i)) <= Mut2 Avg diffs(i) && Mut2 Avg diffs(i) <= WI_stdev (i)
254 — Mut2 statsig(i) = 0O;

AT = else

256 — Mut2 statsig(i) = Mut2 Avg diffs(i):;

2ol end

~li) = if (-WI_stdev(i)) <= Mut3 Avg diffs(i) && Mut3 Avg diffs(i) <= WI_stdev (i)
259 = Mut3 statsig(i) = 0;

260 — else

261 — Mut3 statsig(i) = Mut3 Avg diffs(i);

262 — end

263 — end

264 — statsig = [Mutl_statsig;Mut2_statsig;Mut3_statsig]';

Figure 6. 4: Significant Protein RMSF Differences

6.2.3 Ligand RMSF

A script for ligand root-mean-squared fluctuation (RMSF) was written that initializes the text
files output from the simulation. The program inputs the text file with a .txt file extension for each
mutation, reads the data, and appends each RMSF value to an array. In the cases of mutant variants, the
ligand atom numbers are not in proper order (Fig. 6.5). The correct ligand order was obtained from the

PDB, which states the correct atom number of each element in the inhibitor.

81

36 A
3538, 2|6 ?lo
| 37
= I2aRNgNco
; \3$ 2”3 2|1 34
31
S SR (s D T
297 "257 T20 1|5 GBI
= N
;
C
|
10,3
|
1

29
287 N

Figure 6. 5: Mis Ordered (left) and Properly Ordered (right) Ligand

To correct for this, the script properly orders the RMSF values of the three mutant variants using

the sort function and appends to a new, properly ordered 3 x 38 array with each mutation as a column

(Fig. 6.6). Similar code was written for each mutant variant and wild type. However, in the case of the

wild type, the ligand is properly ordered. Therefore, the wild type portion of the code is similar but omits

lines 20 through 24. As seen below, variable names were kept vague, such as Mutl Repl or y1, to allow

the script to be used for future analysis without requiring major editing.

82

Fas

12 %% I84V Ligand RMSF

13 $Import data in .txt file format

14 — Mutl Repl = importdata ('MQP_Ig84V Ligand RMSF.txt');
1== Mutl Rep2 = importdata ('MOP_I84VRep2 Ligand RMSF.txt'):
16 — Mutl Rep3 = importdata('MOP_I84VRep3 Ligand RMSF.txt'):
17 $Create current data matrix to be sorted into new matrix with proper atom
18 $ordering. Matrix sorted based on first column of pdbOrder.
19 - currentA = [pdbOrder;Mutl Repl;Mutl Rep2;Mutl Rep3]';
20 — sortedA = sortrows (currenthi,l):;

Zal|l= vl = sortedA(:,2):

Zl = y2 = sortedA(:,3):

~EH = yv3 = sortedA(:,4):

24 — Mutl Comp = horzcat(vl,y2,vy3):’

7isi|= Mutl Avg = mean (Mutl Comp,2);

26 %$Generate Ligand RMSF graph

= figure

28 — X = 1:38;

29 — plot(x,vl,'r',x,v2,'b',x,v3,'qg")

30 — title('I84V Ligand RMSF')

2L |= yvlabel ('RMSF')

S xlabel ('Atom Number')

33 axis ([0 38 0 2.5])

34 — legend('Repl', "Rep2', "Rep3"')

Figure 6. 6: Ligand RMSF Data Import, Sort, and Plot

A major component of this script is the graphical representation of ligand RMSF. For each mutation a

line graph is generated with each of the three replicate data as well as an average (Fig. 6.6, lines 27-34).
To provide additional data representation, a subplot of the four line graphs was also generated. A final

line graph is generated displaying average of each mutation and wild type RMSF (Fig. 6.7).

83

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

%% Subplot of WT and Each Variant
X = 1:38;

figure

subplot(2,2,1)
plot(x,vl,'r',x,v2,'b',x,v3,"'q")
title('I84V Ligand RMSF')

yvlabel ('RMSF')

xlabel ('Atom Number')

axis ([0 38 0 2.5])
legend('Repl', 'Rep2', '"Rep3"')
subplot (2,2,2)
plot(x,v4,'r',x,v5,'b',x,v6,'qg")
title('VB82F+I84V Ligand RMSF')
ylabel ('RMSF')

xlabel ('Atom Number')

axis ([0 38 0 2.5])
legend('Repl', 'Rep2', '"Rep3"')
subplot (2,2, 3)
plot(x,vy7,'r',x,v8,'b',Xx,v¥9,'q")
title ('M46I+V82F+I84V Ligand RMSF')
ylabel ('RMSF')

xlabel ('Atom Number')

axis ([0 38 0 2.5])
legend('Repl', 'Rep2', '"Rep3"')
subplot (2,2, 4)

plot (x,WI_Repl,'r',x,WI_Rep2,'b',x,WI_Rep3,'g’")
title('WT Ligand RMSF')

ylabel ('RMSF')

xlabel ('Atom Number')

axis ([0 38 0 2.5])
legend('Repl', 'Rep2', "Rep3"')

%% Compiled Ligand RMSF
$Compile average RMSF values into a matrix dimensioned 38x4.
Avg = horzcat (WI_Avg,Mutl Avg,Mut2 Avg,Mut3_Avg):;

$Generate Average Ligand RMSF graph

figure

x = 1:38;

plot (x,WI_Avg, 'k',x,Mutl Avg,'r',x,Mut2 Avg,'b',x,Mut3_Avg, 'g")
title('Average Ligand RMSF')

yvlabel ("RMSF')

xlabel ('Atom Number')

Figure 6. 7: Ligand RMSF Replicate Subplot and Average Plot Code

The RMSF values of each variant were then compared to the wild type. The average data set for

each mutation was subtracted from the average wild type data set and appended into a new array (Fig.

84

6.8). In this case, the wild type average RMSF data is in the first column of if the matrix “Avg”. If mutant

had a larger fluctuation this difference would be positive and in the case there was less movement in the

mutant ligand this value would be negative. The standard deviations of the mutant variants were also

calculated and appended into a matrix of standard deviation values. Lastly, code was written to generate a

bar plot ligand RMSF differences compared to wild type.

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

Calculate average differences between mutation and WI RMSF wvalues
Mutl Diff = Avg(:,2)-Avg(:,1):
Mut2 Diff Avg(:,3)-Avg(:,1):
Mut3 Diff Avg(:,4)-Avg(:,1):
diff = horzcat (Mutl Diff,Mut2 Diff, Mut3 Diff):

$Calculte standard deviations of RMSF differences
Mutl stdev = std(Mutl diffs,0,2):;
Mut2 stdev std (Mut2_diffs,0,2);
Mut3 stdev std (Mut3_diffs,0,2);
stdev = horzcat (Mutl stdev,Mut2 stdev,Mut3_stdev);

$Generates a bar plot of RMSF difference wvalues

figure

x = 1:38;

bar graph = bar(x,diff);

$errorbar(x,diff,stdev) %$figure out how to add errorbars
bar graph(l).FaceColoxr="x";

bar graph(2).FaceColoxr="b';

bar graph(3) .FaceColor='g"';

title('Ligand RMSF Differences to Average WI RMSF')
xlabel ('Atom Numbexr')

vlabel ('RMSF Difference')

legend ('I84V Difference', 'V82F+I83V Difference', 'M46I+V82F+1I84V Difference'))

Figure 6. 8: Ligand RMSF Differences to WT Calculation and Bar Plot

Through discussion with the sponsor, the team determined some differences in RMSF values to

be insignificant. Significant differences are defined as an absolute difference value that is greater than the

standard deviation of the three wild type replicate data points for each residue. This was determined

through a for loop where pre-allocated vectors of zeros remained a zero value if the RMSF difference was

between the negative and positive wild type standard deviation for each residue (Fig. 6.9). If the

85

difference was outside these bounds, then the zero place holder would be changed to the RMSF

difference.

237 %% Significant differences between mutation and WT

238 $Note: Significant difference is defined by having a

239 $¥difference compared to the wild type RMSF that is greater than the
240 $standard deviation of the 3 WT data points at each specific atom.
241

242 $ Preallocate vectors

243 - Mutl statsig = ones(1,38);

244 — Mut2 statsig = ones(1,38);

245 — Mut3 statsig = ones(1,38);

246 — WI_stdev = std(WI_Comp') "'’

247 - for i = 1:38

248 — if (-WI_stdev(i)) < Mutl Diff(i) && Mut2 Diff(i) > WI_stdev (i)
249 - Mutl statsig(i) = 0;

250 — else

Zisil |= Mutl statsig(i) = Mutl Diff(i):

AT = end

Zsal = if (-WI_stdev(i)) < Mut2 Diff(i) && Mut2 Diff(i) > WTI_stdev(i)
254 — Mut2 statsig(i) = 0;

DT else

256 — Mut2 statsig(i) = Mut2 Diff(i):

257 — end

258 — if (-WI_stdev(i)) < Mut3 Diff(i) && Mut3 Diff(i) > WI_stdev (i)
259 — Mut3_statsig(i) = 0;

260 — else

261 — Mut3 statsig(i) = Mut3 Diff(i):;

262 — end

263 — end

264 — statsig = [Mutl_statsig;Mut2_ statsig;Mut3_statsig]';

Figure 6. 9: Determining Significant Ligand RMSF

Since some values were left as a zero in the “statsig” array, an additional for loop was written to
remove the condition of a zero (Fig. 6.10). This for loop appends to a new array if at least one of the
mutations has a difference that is not equal to zero. If all three mutation RMSF differences are 0 in the
“statsig” array, this for loop moves on to the next atom until reaching 38 atoms. The new data array is
then plotted as a bar graph with the atoms array as the tick label. Lastly, the ligand RMSF script prints the
significant differences as a 2 column matrix with the atom number in the first and the difference value in

the second column.

86

266 %% Plot significant differences

267

268 — atoms = [];

269 — SigDiff data = []:

270 — for i =21\:38

Pl |= if statsig(i,1l) ~= 0 || statsig(i,2) ~= 0 || statsig(i,3) ~= 0
272 — X = statsig(i,l):

ZhEl= y = statsig(i,2):

274 — z = statsig(i,3):

Ziisi = SigDiff data = [SigDiff data; x,v,z];

276 — atoms = [atoms; 1i];

ZHi = end

278 - end

279

280 — figure

281 — bark = bar(5igDiff data):;

282 — set (gca, 'XTick',l:1length(atoms)):

283 — set (gca, 'XTickLabel', atoms):;

284 — baraA (1) .FaceColor = 'x';

285 — barA (1) .EdgeColor = 'xr';

286 — bara (2) .FaceColor = 'b';

287 — barA (2) .EdgeColor = 'b';

288 — bara (3) .FaceColor = 'g';

289 — bara (3) .EdgeColor = 'g';

290 — vlabel ('RMSF Difference')

Al | = xlabel ('Atom Number')

292 — legend ('I84V Difference', 'V82F+I84V Difference', 'M46I+V82F+1I84V Difference'))
293 = title('Significant Ligand Differences Compared to WI')

Figure 6. 10: Removing zeros from significant differences

6.2.4 Van der Waals Interactions

A script for van der Waals interactions was written in MATLAB to process interaction data from
a file generated through the Schiffer Laboratory's GFortran script. The GFortran script imports the data
from the simulation and outputs a file with the extension, vdwen, that has varying columns and rows
depending on the frame. The primary challenge with this file type is accounting for rows that are used as
sub headers for each frame and a varying amount of residues within the frame.

The files were first imported based on their file location and data extracted using textscan.
MATLAB’s string trim function, “strtrim”, was used to remove the white space surrounding the numbers
and characters in the file. Numeric strings were then converted into numbers and non-numeric values,

such as “Frame n of x” and residue names, were removed. Data was then split into proper cell columns

87

and non-numeric cells were overwritten with “NaN” or not a number (Fig. 6.11). Cell columns were then

converted to matrices and temporary variables were cleared to preserve program memory and increase

script speed. The same textscan steps and for loops were conducted to initialize all 12 data files.

92

93

94

95

1

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

fileIDMut3Rep3 = fopen (Mut3Rep3_ filename, "xr'):;
dataArrayMut3Rep3 = textscan(fileIDMut3Rep3, formatSpec, 'Delimitexr', "', "Whits
dataArrayMut3Rep3{1l} = strtrim(dataArrayMut3Rep3{1l}):; Sremoves white space 1
dataArrayMut3Rep3{2} = strtrim(dataArrayMut3Rep3{2}):
dataArrayMut3Rep3{3} = strtrim(dataBArrayMut3Rep3{3}):
%% Open and Format WT Rep 1 Data
$converts columns containing numeric sStrings to numbers
raw = repmat ({''},length (dataArrayWIl{1l}),length(dataArrayWIl)-1):
for col=l1l:1length(dataArrayWT1l)-1
raw(l:length (dataBArrayWTl{col}),col) = dataArrayWIl{col}:
end
numericData = NaN(size (dataArrayWIil{l},1),size (dataArrayWrIil,b2)):
for col=[4,5]
$converts strings to numbers
rawData = dataArrayWTIl{col}:;
for row = l1l:size (rawData,l):
$removes non numeric wvalues
regexstr = ' (?<prefix>.*?) (?<numbers>([-]1*(\d+[\,]1*)+[\.]14{0,1\d*[e}
try
result = regexp (rawData{row}, regexstr, 'names')
numbers = result.numbers;
$detects commas in non-—-thousand place
invalidThousandsSeparator = false;
if any (numbers==',"'"):;
thousandsRegExp = "'“\d+? (\,\d{3})*\.{0,13\d=*s"

NN

if isempty(regexp (thousandsRegExp,',', 'once'))
numbers = NaN;
invalidThousandsSeparator = true;
end
end
fconvert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan(strrep (numbers,',',''),'sf"'):
numericData (row,col) = numbers{l}:;
raw{row,col} = numbers{l}:;
end

Figure 6. 11: van der Waals script loading .vdwen files and extracting data

Data for each mutation was contained in three columns of interest: Chain, ResNum or residue

number and Energy. The data was divided into chain A and B for each mutation through a for loop that

read each line of data for the length of the chain array (Fig. 6.12). First, the for loop determined which

chain the energy value belonged to based on whether there was an “A” or “B” string as the value in the

chain data array. If the number was not equal to 1200, the placeholder for the rows of frame sub headers,

the for loop continued. If the mutation/wild type data matrix was empty, the energy was appended into the

88

matrix. In the figure below, this data matrix is either Mut1ChainA or Mutl1ChainB. If there was a

previous energy in the matrix for that residue, the energies were averaged in place. The data matrix

consisted of four columns: the residue number, averaged replicate 1 energies, averaged replicate 2

energies, and averaged replicate 3 energies. Similar for loops were conducted for each mutation and wild

type.

836
837
838
839
g40
g41
842
843
g44
845
846
g847
g48
2849
850
851
852
853
854
855
856
857
858
859
g60
g6l
862
863
264
865
866
867
868
869
870
871
872
873
874

%% Separate Mut2 Chain A and Chain B into Two Data Sets

res = 1:99;

Mut2ChainA = horzcat (res',6 zeros(99,3)):

Mut2ChainB = horzcat (res',6zeros(99,3)):

$Append energies and average in plance to the second columns of ChainZA and
$ChainB arrays

[l for i=1:1length (Mut2ReplChain)

if strcmp (Mut2ReplChain(i),a) == 1
num = Mut2ReplResNum (i) ;
if num ~= 1200
if Mut2ChainA (num,2) == 0
Mut2ChainA (num,2) = Mut2ReplEnergy(i):
else Mut2Chaini (num,2) = (Mut2ChainA (num,2)+Mut2ReplEnergy(i))/2;
end
end
elseif strcmp (Mut2ReplChain(i),B) = 1
num = Mut2ReplResNum (i) ;
if num ~= 1200
if Mut2ChainB (num,2) == 0
Mut2ChainB (num,2) = Mut2ReplEnergy(i):
else Mut2ChainB(num,2) = (Mut2ChainB (num,2)+Mut2ReplEnergy(i))/2;
end
end
end

~end

$Append energies and average in plance to the third columns of ChainA and
$ChainB arrays

[l for i=l1:1length (Mut2Rep2Chain)

if strcmp (Mut2Rep2Chain(i) ,A) == 1
num = Mut2Rep2ResNum (i) ;
if num ~= 1200
if Mut2Chaini (num,3) == 0
Mut2ChainA (num, 3) = Mut2Rep2Energy(i):
else Mut2ChainA (num,3) = (Mut2Chaini (num,3)+Mut2Rep2Energy(i))/2:
end
end
elseif strcmp (Mut2Rep2Chain(i),B) = 1
num = Mut2Rep2ResNum (i) ;
if num ~= 1200

Figure 6. 12: Separatiﬁg_ van der Waals ener:gies into chain A and B data sets and averaging in place

89

Bar graphs for each mutation were generated and the average van der Waals energies of each

residue across the three replicates was calculated.

6.2.5 Hydrogen Bonds

A script for hydrogen bond percentages was written to accommodate comma separated value
files. The script utilizes .csv files that are directly outputed from the MD simulations in Desmond. These
.csv files contains a list of HIV-1 protease residues that exhibit hydrogen bonding at each time point
during the simulation. The goal of hydrogen bond analysis is to determine any changes between active
site interactions when mutations are present.

In order to achieve this, each mutation replicate was imported into the program. The percentage
of hydrogen bonding was determined by scanning through each file to determine how many times the
similar residues appear during the 500 frames. The amount of times each specific residue appeared was
stored in an array. The total appearances were then divided by the total amount of frames to determine the

hydrogen bond percentage throughout the simulation.

90

126

128
129

131
132

134
135

137
138

140
141

143
144

146
147

149
150

152
153

155
156

158
159

16l
162

164

%% WT_Rep3

WI_Rep3 2=[]:

WI_Rep3 B=[]:

for i=l:length(data_WTI_Rep3{1})
WI _Rep3 A=[WI_Rep3_A data WI_Rep3{1}(i)]:
WI _Rep3 B=[WI_Rep3_B data WI_Rep3{2}(i)]:
C=[WI_Rep3 A;WI_Rep3 B]';

end

Chain A WTI_Rep3=[]:

Chain B_WI_Rep3=[]:

for i=l:length(data_WTI_Rep3{1})

if strcmp(data WI_Rep3{3}(i),'A') = 1
Chain A WI Rep3=[Chain A WI_Rep3 C(i,2)]:
elseif strcmp(data WI_Rep3{3}(i),'B') == 1

Chain B WT Rep3=[Chain B WI Rep3 C(i,2)]:

end
end
uniqueA WI_Rep3 = unique (Chain A WT_Rep3):
uniqueB WI_Rep3 = unique (Chain B WI_Rep3):;
countOfA WI_Rep3 = hist (double(Chain A WI_Rep3),double (uniquelA WT_Rep3)):
countOfB_WI_Rep3 = hist (double(Chain B WI_Rep3),double (uniqueB_WT_Rep3)):
indexToRepeatedValueRh WI_Rep3 = (countOfA WI_Rep3~=1):;
indexToRepeatedValueB WI_Rep3 = (countOfB WI_Rep3~=1):;
repeatedValuesA WI_Rep3 = uniqueA WI_Rep3 (indexToRepeatedValueA WI_Rep3):
repeatedValuesB_WI_Rep3 = uniqueB WI_Rep3 (indexToRepeatedValueB WI_Rep3):
numberOfAppearancesOfRepeatedValuesh WI_Rep3 = countOfA WI_Rep3 (indexToRepeatedValuelA WI_Rep3):
numberOfAppearancesOfRepeatedValuesB WI_Rep3 = countOfB_WI_Rep3 (indexToRepeatedValueB WI_Rep3):
$ Percentage of H-Bonds
H Bonds_ A WT_Rep3=[]:
H Bonds B WT_Rep3=[]:
NumFrames=500;
for i=l:length(uniqueA WI_Rep3)

H Bonds A WI Rep3=[H Bonds_A WI_Rep3 countOfA WI_Rep3(i)/NumFrames];
end
Perc_H Bond A WI_Rep3=[double (H Bonds_A WI_Rep3) ;uniqueA WI_Rep3];%issue wih not displaying decimal
for i=l:length(uniqueB WI_Rep3)

H Bonds B WI Rep3=[H Bonds B WI_Rep3 countOfB_WT_Rep3 (i)/NumFrames];
end
Perc H Bond B WI_Rep3=[double (H Bonds B WI_Rep3) ;uniqueB WI_Rep3];%issue wih not displaying decimal

Figure 6. 13: Portion of hydrogen bonding percentage

6.2.6 Alpha-Carbon Distances

A script for organizing C-alpha distances was developed using MATLAB. The C-alpha distances

data files were .csv files for each mutation. Each comma separated value file had the time steps, which

designated each frame of the 500 frames for a 100 nanosecond simulation, as the first column. The six

following columns were for each type of measurement that included the distances between residues 25 to

257, 84 to 84, 25 to 50, 25” to 50°, 25’ to 50, and 25 to 50°. The residue numbers without the prime

symbol are the residues of chain A and the residue numbers with the prime symbol are residues of chain

B.

91

In the MATLAB script, the data from the comma separated value files for each replicate of each

mutation were imported, which an example is seen in Figure 6.14.

60
61
62
63 -
64
65
66 -
67
68 -
69
70 -
71
=
73
74 -
7
76 -

%% Retrieving I84V Data

%Rep 1

I84V = csvread('MQP-I84VRepl_C-alphaDistances.csv',3,0);

%C-alpha Distances of
I184Vv84_R1 = 1I84V(:,3);
%C-alpha Distances of
I84V25_R1 = 1I84V(:,2);
%C-alpha Distances of
I84V25B50B_R1 = I84V(:
%C-alpha Distances of
I84V25B50A_R1 = I84V(:
%C-alpha Distances of
I84V25A50B_R1 = I84V(:
%C-alpha Distances of
I84V25A50A_R1 = I84V(:

the 84-84' in third column
the 25-25' in second column

the 25B-50B in fourth column
'4);

the 25B-50A in fifth column
»5);

the 25A-50B in sixth column
:6);

the 25A-50A in seventh column
' 7);

Figure 6. 14: 184V C-alpha distances

Once all the data for each replicate and mutation were imported, the histograms of each C-alpha

measurement were developed. The bins for the histograms were made according to the data. For example,

the C-alpha distances between the catalytics residues (25-25°) fell in a range of 5 Angstroms to 7.5

Angstroms.The bins were separated between a value of 0.5 Angstroms. Next, histograms were created for

each replicate of each HIV-1 protease variant using the bins specified. An example for wild type C-alpha

distances between the catalytic residues are shown below.

193
194
195
196
197

S WT

edges25=[5,5.5,6,6.5,7,7.5];

[NWT25]=histcounts(WT25,edges25);

[NWT252]=histcounts(WT25_R2,edges25);

[NWT253]=histcounts(WT25_R3,edges25);
Figure 6. 15: C-alpha Histograms

The average of each of the variant’s histogram was taken, which is seen in Figure 6.16.

92

198 - ALWWT25=[NWT25;NWT252;NWT253];
199 - AvgWT25=mean(ALlWT25);

Figure 6. 16: Histogram averages
The averages of each variant’s C-alpha distances were then compiled together for comparison
between the different variants. Six graphs were created for each type of C-alpha distance. To illustrate,

the script for the graph of the C-alpha distances between the catalytic residues are shown in Figure 6.17.

360 %% Plotting the Averages

361

362 - figl=fiqure;

363 - subplot(2,3,1)

364 - plot(edges25(2:end),AvgWT25/5,edges25(2:end) ,AvgI84V25/5,edges25(2:end) ,AvgDubMut25/5, edges25(2:end) ,AvgTripMut25/5)
365 - hold on

366 - xlabel('Distance (Angstroms)')

367 - ylabel('ss Time')

368 - title('C-alpha Dis of 25-25')

369 - ylim([0,80]);

Figure 6. 17: C-alpha distances plots compilation

The graphs of the C-alpha distances were put into a figure of 6 different graphs, which is shown
C-alpha Distances Results in Chapter 5. The script developed for the C-alpha Distances can be further

modified for different mutations, number of replicates, and different input files.

6.2.7 Modification of PDB File

To display the protein RMSF values visually on the cartoon display of the protein, the PDB files
needed to be modified. The beta-factors of the PDB file can be displayed on a color spectrum in the
computer program PyMol, which is a three-dimensional molecular program. The beta-factors can be
modified to any values desired. However, the PDB file’s structure is unique and therefore cannot be easily
imported and modified using MATLAB. The goal of the Python script was used to read the PDB file and
create an output file of the protein RMSF values that correspond the protein RMSF value for each atom.

Protein RMSF values are designated to each residue, but the PDB file has a beta-factor for each
atom. Therefore, the protein RMSF value needs to be repeated for each atom of the residue, which each

type of residue has a different number of atoms in it. To obtain the number of atoms for each residue, the

93

Python script counts how many atoms are in each residue. The reading of the PDB file and obtaining the

number of atoms for each residue is shown in Figure 6.18.

#0pening pdb file
pdb = open('/Users/Sydney/Documents/MQP/SF2-background/M461+V82F+184V/MQP_M461_V82F_184V.pdb")
#Making empty vector for the RMSF Values
ResiNumChainA=[]
ResiNumChainB=[]
#Reading the lines in python
line pdb:
#Splitting the lines
list=1line.split()
#1d is the first column of the pdb
id=11ist[@]
#1f statement for all the atoms
id == "ATOM":
#Getting the chain letter
chain=1ist[4]
#N1i1l make a list for the residue numbers Chain A
chain == "A":
ResiNumA=int(list[5])
ResiNumChainA.append(ResiNumA)
#N1i1ll make a list for the residue numbers Chain B
chain == 'B":
ResiNumB=int(1list[5])
ResiNumChainB.append(ResiNumB)
Figure 6. 18: Beta Factor Modification

This section of the Python script reads the pdb file using the function “open.” Empty arrays for
chain A and chain B are defined because they will create a list of the residue numbers of each atom. For
example, if residue 12 has eight atoms, then the number 12 will appear eight times in the array. Next,
each line is read in the pdb. There are several column in the PDB file, so the “line.split()” function splits
the line into columns. The script then looks at the first column with the function “list[0]” and checks if it
says ‘ATOM’ with if statement “if id == ‘ATOM.’ There are several other atoms in the PDB file, such as
water molecules, but atoms of the protein are labeled ‘ATOM’. Then the chain letter in column 4 is read
and if it is an ‘A’, then the residue number in column 5 is copied into the chain A array, and respectively
if it is a ‘B.” Along with having the PDB file read and the arrays being filled, the RMSF values need to be

imported into the function also. This section of the script is shown in Figure 6.19.

94

##To get the RMSF values from the text file
#0pening the file
file=open('/Users/Sydney/Documents/MQP/SF2-background/M461+V82F+184V/MQP_TripMutProteinRMSFDiff.txt")
#For loop for the columns in the text file
* line in file:
#Splitting the columns by the space
rmsf = line.split(' ")

Figure-6. 19: Protein RMSF Text File Import
The data of the file were imported with the function “open” and each line of the file, which was
the protein RMSF values, were imported into an array named “rmsf”. The next step of the script was to

create a new array of numbers that put the protein RMSF value with its corresponding atom, which is

shown in Figure 6.20.

##Array for the beta factors
BfacChainA=[]
BfacChainB=[]

countA = 1
countB = 1
countingA = @
countingB = @

e (countA <= 99):
or x in range(@,len(ResiNumChainA)):
ResiNumChainA[x] == countA:
BfacChainA.append(rmsf[countA])
X=X+1

countingA=countingA+1l

countA = countA+l
(countB <=198):
~y in range(@,len(ResiNumChainB)):
" ResiNumChainB[y] == countB:
BfacChainB.append(rmsf[countB])
y=y+1

countingB=countingB+1

countB=countB+1
Figure 6. 20: Data array corresponding to PDB file

Two new arrays for the protein RMSF values that correspond to the order and number of atoms in

the PDB file are labeled as “BfacChainA” for chain A and “BfacChainB” for chain B. The while loop

goes through the list of residue numbers created from pdb file, which repeats the same residue number for

95

the number of atoms in the residue, and matches the correct RMSF value for the residue. The resulting
lists, for each chain, have the respective RMSF value for each atom. The last section of the script outputs

these lists into a text file, which is shown in Figure 6.21.

##Editing the pdb file
outfile=open('/Users/Sydney/Documents/MQP/SF2-background/M461+V82F+184V/M461+V82F+184V_Rep3/M461+V82F+184V_Avg_RMSFValues','w")
OutChainA=[]
OutChainB=[]
OutFileData=[]

line range(@,len(BfacChainA)):

#Putting the B factors to string
ValueChainA=str(BfacChainA[line])+'\n'

#Appending the string values to the matrix
OutChainA.append(ValueChainA)
ValueChainB=str(BfacChainB[line])+ '\n'
OutChainB.append(ValueChainB)

OutFileData = OutChainA + OutChainB

print('Final Step Complete')

outfile.write('RMSF Values of M46I4+V82F+I84V Average\n')
outfile.writelines(OutFileData)
outfile.close()

of

Figure 6. 21: Outputs Protein RMSF for each atom of PDB

An outfile is created with the function write, which is signified by “w.” The protein RMSF values
that will be exported are converted into a column of strings with the for loop and inserted in the new
arrays labeled as “OutChainA” for chain A and “OutChainB” for chain B. Next, the new arrays are put
together in another array labeled as “OutFileData.” The combined array is exported into the outfile with
the command “writelines” and closed to successfully create the text file.

The values in the outfile file are copied into the PDB file in the column of the beta-factors. The
newly modified PDB file can then be uploaded in PyMol and colored according to the protein RMSF

values, which is referenced as the beta-factors in the PyMol software.

6.3 Relevant Industry Standards Met

Our project was research based within a graduate school laboratory. The molecular dynamic
approach to computationally evaluating protein dynamics is utilized in many protein based research labs.
However, there is minimal regulation between different laboratories due to differences in molecular
dynamic software and protocols. Currently, there are no overarching regulations for educational based
research using molecular dynamic simulations. Although, commercial biologics companies are held to an

ISO standard. Industry is limited to regulation from the biomimetics ISO standard 18458:2015 [58]. This

96

ISO standard outlines common programming languages, a terminology framework, and provides a proper
definition of a biomimetics systems. Standards for this type of computational analysis are limited due to

the recent advances in this technology.

6.4 Design Considerations

6.4.1 Economics

Our project is based on the computational analysis of drug resistance patterns within viral HIV-1
protease. The project’s goal was to identify any common patterns that resulted in proper protein function
in the presence of protease inhibitors. The project was strictly theoretical research which could be applied
to protease inhibitor design. However, if protease inhibitors were to be designed based off this research
the drug would be substantially more expensive than the average HIV-1 treatment. HIV-1 treatment for
affected patients can cost upwards of $23,000 annually and can be higher depending on using name
brands [9]. Currently, the most potent protease inhibitor commercially available is Darunavir which
typically costs $1,500 per month [30]. Protease inhibitors based off this research would exhibit potency

greater than Darunavir, which would make this treatment more expensive.

6.4.2 Environmental Impact

Our project is completely computationally based only utilizing computers for analysis. Although
convenient for the data analysis, computers contribute to a greater environmental impact than expected.
Firstly, the manufacturing process consumes high amounts of electricity and consists of processing heavy
metals and toxic chemicals. Secondly, once obtained and in the lab, the computers used to run simulations
use high amounts of electricity and are inefficient due to their age. Lastly, if the computers used to
complete this project are upgraded in the future, there is significant environmental impact involved in

their disposable.

6.4.3 Societal Influence

97

Promising drug resistance related research, including this project, can provide hope within society
as a whole. For many generations of human existence the contraction of a disease, such as HIV, inevitably
resulted in death. Current problems facing modern drug use for disease treatment is resistance, which can
provoke fear across a society. Being able to report findings that show drug resistance can be determined
and accounted for in drug production is very hopeful. This type of research will allow ordinary people

with peace of mind if they contract any type of viral disease.

6.4.4 Political ramifications

Some political ramifications that might concern this project is the funding and which types of
HIV we examine drug resistance for. The lab’s funding might have an obligation to research certain types
of HIV. In our case, it’s HIV-1 that affects the majority of the HIV population within the United States

and western world.

6.4.5 Ethical concern

This project only focuses on one serotype of HIV and is neglecting other forms that are prevalent
throughout third world countries. Although we are focusing on the majority of the population with HIV

(HIV-1), we do not consider the others.

6.4.6 Health and safety

Specifically this project does not pose any health or safety issues. The research and analysis are
all executed on computer programs.

However, there are several health and safety issues with researching drug resistance. Our project
requires a crystal structure of the protein, which is the PDB for the molecular software. This PDB gives
different energy parameters and atom coordinates that dictate the protein’s behavior in the simulations.
The making of the crystal structure poses some health and safety risks from obtaining the protein and
manipulating the protein into growing a crystal, as the operator is in contact with the virus. This crystal is

then examined by Nuclear Magnetic Resonance imaging (NMR) and solved, with molecular software, to

98

determine the atomic structure and energies of the protein. Although there is associated risks with
developing the crystal structure, overall, computational approaches pose significantly reduce health

related risks.

6.4.7 Manufacturability

This project is not manufacturable, rather is intended to be used as a research resource. The
program written in MATLAB with a supplemental python script that could be reproduced and altered
towards specific research aims. Manufacturing could be considered if this research was to be conducted

with collaborative labs to provide consistent experimentation.

6.4.8 Sustainability

The analysis program produced through this project is sustainable, as it can be easily adapted
towards specific needs. Code variables were kept vague intentionally so it can be a sustainable analysis
solution used for a variety of mutations and tests. Another factor that plays a role in sustainability is

software updates, both in terms of molecular modeling programs and scripting languages.

99

7.0 Discussion

In an effort to elucidate potential resistance patterns that specific mutations to HIV-1 protease
create, the team performed molecular dynamic studies. Further analysis was conducted using information
obtained from molecular dynamic simulations separated into two categories: inhibitor movement analysis
and inhibitor interactions analysis. Inhibitor movement analysis quantifies the effectiveness of protein and
ligand binding through molecular movement. Protein-ligand RMSD, protein RMSF, ligand RMSF, and
alpha carbon distances were the dynamic factors investigated that attribute to drug resistance. However,
inhibitor interactions analysis quantifies the effectiveness of protein and ligand binding through atomic
interactions. van der Waals and hydrogen bond percentages were the interactive factors investigated that

attribute to drug resistance.

7.1 Inhibitor Movement Analysis
7.1.1 Protein-Ligand RMSD

Protein-Ligand RMSD was the first analysis that needed to be conducted before progressing to
further stages of analysis. This dynamic attribute between the protein and ligand directly correlates to
protein stability, thus feasibility in vivo. If the RMSD values are either too high or low, information
gathered from the simulation is irrelevant due to the lack of equilibrium. The Schiffer Lab has determined
that relevant information can be obtained from HIV-1 protease RMSD values that equilibrate between
roughly 1-1.5 angstroms over the course of 100 nanosecond simulations. The average protein-ligand
RMSD plots for wild type, 184V, V82F+184V, and M461+V82F+184V variants all met this requirement.

All further analysis was determined to be valid.

7.1.2 Protein RMSF

The protein RMSF was analyzed to determine the average protein mobility across the simulation.
This takes the dynamic nature of the protein into account, allowing residues with the most movement and

fluctuation from their starting position to be easily identified. With the exception of V82F+184V chain B,

100

residues 1 and 2, RMSF values of each replicate were consistent, varying slightly due to natural in vivo
movement. This supports our original choice of computational analysis and molecular dynamics, as the
differences depicted in each RMSF replicate demonstrate the dynamic process is being accurately
simulated.

When comparing average RMSF values, each mutant variant followed a similar trend, with some
difference observed at residues 1-5, 15-18, 50-60, 70-75, 99-104 (chain B, residues 1-5), and 150-160.
The differences seen in residues 1-5 in both chains is to be expected, as that is the dimerization region,
which is highly motile. The fluctuation observed in the 10’s loop, residues 16-18, was present in all three
mutations. 184V and V82F+I84V had more fluctuation through the 10s loop compared to the wild type.
Conversely, M461+V82F+184V exhibited a more rigid 10’s loop with a negative change in angstroms
compared to wild type. Fluctuation in residues in the flap regions, residues 50-60 and 150-160, were
observed in all three variants. M461+V82F+184 had the greatest change in fluctuation compared to wild
type, followed by 184V then V82F+I84V. Interestingly, the change in RMSF in V82F+I84V compared to
wild type was not significant for these residues, although is visible when comparing the heatmaps. This is
most likely caused by the variation among the wild type values for those residues, as significance was
determined through wild type standard deviation. The flap region is expected to be a very dynamic region
of the protein and this may be a source of possible error, as the change in RMSF for V82F+184V may be
greater than shown depending on the variation in wild type replicates. The final residues where a
significant difference in RMSF was observed was in residues 70-75, the back of the beta sheet in chain A.
Although difficult to observe on the heat maps, there is fluctuation through this area, especially in
V82F+I84V. In V82F+I84V, at residue 70, the values are significantly negative, and change to
significantly positive the next residue. This varies from what was observed in 184V and
M461+V82F+184V, which had a negative RMSF difference compared to wild type.

Lastly, RMSF values of each variant and wild type were summed. V82F+I84V had the lowest
total RMSF, however, when comparing to the protein RMSF significant differences bar graph, the

majority of the RMSF values were greater than the wild type RMSF, giving a negative RMSF difference.

101

Although in some instances M461+V82F+184V had the greatest difference from wild type, when
compared to the summed RMSF values, it most closely matched wild type. This suggests rigidity may
play a role in conferring drug resistance, as V82F+184V was the most rigid structure over the 500ns but

had the greatest total difference to wild type.

7.1.3 Ligand RMSF

Ligand RMSF was analyzed to determine the effects of the mutant variants on inhibitor mobility.
Average ligand RMSF follows a general trend with the wild type having the lowest fluctuation, followed
by 184V, then V82F+I84V, and M461+V82F+I84V with the greatest fluctuation. The most significant
differences from wild type occur at atom numbers 9-19, 25 and 26, and 32-38. Atoms 9-19 include two
double bonded oxygen atoms at numbers 9 and 10 to a sulfur atom and an oxygen bound to a carbon atom
at 18. The fluctuation in these atoms was primarily observed in M461+V82+184V. V82F+184V had one
significant difference compared to wild type in this atom range at atom 15, the carbon oxygen is bound to.
However, at atoms 25 and 26, V82F+I84V is the only variant with a significant RMSF difference. The
most fluctuation was observed in atoms 32-38, with M461+V82F+I84V having the greatest fluctuation,
more than double that of 184V and V82F+I84V at atoms 34, 35, 36, and 37.

The RMSF values of each variant were also summed and followed an increasing trend with wild
type having the lowest total RMSF and M461+V82F+184V the greatest. When considering the difference
to wild type bar graph, the same pattern is followed with very few instances of a negative ligand RMSF

difference.

7.1.4 Alpha Carbon Distances

The carbon-alpha distances between several residues across the active site of all variants of HIV-
1 protease were measured and analyzed. These distances were between residues 25-25°, 84-84°, 25-50,
25-50,25°-50, and 25°-50°. The average distances between the residues were calculated for each variant.
The average distances of the mutated variants were then compared to the wild type distances. The

significant findings of this comparison is that the active site decreased in size with the mutated variants.

102

However, C-alpha distances of the M461+V82F+184V variant and the V82F+I84V variant were closer to
the wild type, while the 184V C-alpha distances were smaller compared to wild type. This suggests that
the active site size of the M461+V82F+184V variant and the V82F+I184V variant are closer to wild type,

while the 184V active site size was smaller compared to wild type.

7.2 Inhibitor Interactions Analysis

7.2.1 Van der Waals

Van der Waals interactions are one of the intermolecular forces that keep the ligand attached to
the protein. Thus, the changes in van der Waals energies due to mutations directly impact the interactions
between the ligand and the protein. These energies were calculated between the ligand atoms and the
protein residues for each HIV-1 protease variant. Between the different replicates of each variant of the
protein, the difference in van der Waals energies were small and thus showing a consistent behavior
between replicates.

To compare the mutated variants’ van der Waals energies to the wild type, the average mutated
variant van der Waals were subtracted from the average wild type. Several differences were seen between
the mutated variants’ van der Waals energies. However, many of these differences were insignificant,
which we decided was less than a difference of 0.02 kcal/mol.

The significant differences between the mutated variants and the wild type for chain A were seen
in residues 27-29,47-50, 81, and 84. Residues 27 to 29 are located at the bottom of the active site. The
positive differences in residue 27 for all mutated variants suggest a stronger interaction between the
ligand and the residue. V82F+I184V had the largest increase, with M46I1+V82F+184V following and 184V
with the least increase. However, the negative differences in residue 28 and 29 for all mutated variants
suggest a stronger interaction between the ligand and the residue.

Residues 47 to 50 are located at the top of the active site. For residue 47 and 48, the only variant
that had a significant difference was V82F+184V. V82F+I84V mutation caused a decrease in van der

Waals energies between the ligand and residues 47 and 48. Both V82F+184V and 184V mutations caused

103

a decrease in van der Waals energies between the ligand and residue 49, but V82F+184V had a much
larger decrease. However, all mutated variants had a stronger interaction between the ligand and residue
50, which is the residue at the tip of the flap.

For residue 81, only the 184V mutation showed a significant difference of the van der Waals
energies. The difference was negative and thus suggesting a decreased interaction between the ligand and
the residue. Residue 84 was changed for each mutated variant in the team’s project and each mutated
variant showed a large decrease in van der Waals energies. This suggests that a mutation in residue 84 has
a significant impact on the interaction between the ligand and the protein.

Van der Waals energy changes were also seen in Chain B. Significant differences were seen in
residues 8, 25-28, 49, 50, 81, 82, and 84. Residue 8 is located below the active site, but the isoleucine
amino acid reaches into the active site. Only mutated variant V82F+184V had a significant difference in
van der Waals energies between the ligand and the protein. The difference is negative, which suggests a
stronger interaction between the ligand and the protein. Residues 25 to 28 of chain B also experienced
significant difference in van der Waals energies compared to wild type. Residue 25 is the catalytic residue
of the protein and only mutated variant V82F+I184V had a significant difference in van der Waals energies
for that residue. V82F+184V had a large increase in van der Waals energies, suggesting that the
interaction between the ligand and that residue increased. Van der Waals energies of residue 26 compared
to wild type experienced a large increase for V82F+I184V variant and a significant decrease for the 184V
variant. Residue 28 had a significant decrease for all mutated variants, with 184V having the largest
decrease, followed by M461+V82F+I184V and lastly V82F+I84V.

Residues 49 and 50 also show significant differences in the van der Waals energies of chain B.
All mutated variants experience an increased significant difference in van der Waals energies of residue
49 compared to wild type. This suggests an decrease in the strength of the interaction between the ligand
and residue 49. Yet, only M461+V82F+184V mutated variant had a significant difference in van der
Waals energies compared to wild type for residue 50. The difference was negative, suggesting the

interaction strength between the tip of the flap (residue 50) and the ligand increased.

104

Residues 81, 82, and 84 experienced significant differences in van der Waals energies between
the mutated variants and the wild type. They are all located in the active site. Residue 81 had a significant
difference with only the 184V mutated variant. The difference was negative, which suggests a increased
interaction between the ligand and residue 81. Residue 82 had a significant difference in only V82F+I84V
mutated variant. The difference was also negative, which suggests an increased interaction between the
ligand and residue 82. Residue 84 had large significant differences between all mutated variants.
V82F+184V had the largest negative difference with M461+V82F+184V closely following. 184V had the
least negative difference.

Overall, there were no significant patterns between the different variants of the protein. The only

distinction seen was that the mutation of residue 84 had a large impact on the van der Waals energies.

7.2.2 Hydrogen Bonds

Hydrogen bond percentages were analyzed since they play a major role in inhibitor binding.
Darunavir, the most potent protease inhibitor commercially available, was chosen as the modeling ligand
since it’s mechanism of binding relies heavily on hydrogen bonding. Molecular dynamic analysis
provided the team with 7 active site residues (4 chain A and 3 chain B) that exhibit hydrogen bondage to
the ligand. The residues that displayed the most significant changes across variants compared to wild type
were chain A residues 25, 29, and 30 as well as chain B residue 50. Chain A residue 25 , aspartic acid, is
the catalytic component that facilitates peptide bond cleavage.

The 184V variant displayed notable interaction related drug resistance with a 43.7% decrease in
hydrogen bonds compared to wild type. Although, both 184V+V82F and M461+V82F+184V variants
increase inhibitor binding efficacy with 17.3% and 41.3% bondage increase. The 184V single point
mutation switching isoleucine with valine provided the change necessary to alter the binding domain such
that the aspartic acid residue had a difficult time creating hydrogen bonds with the oxygen atom (18) on

the ligand. I84V+V82F and M461+V82F+184V variants were capable of changing the binding pocket

105

conformation such that the aspartic acid residue was in a closer proximity to the ligands oxygen atom (18)
resulting in a high degree of stability.

Another noteworthy hydrogen bond based interaction was the negative effect of
M461+V82F+184V variant on chain A residue 29 bondage. Wild type, 184V, and 184 V+V82F variants all
displayed a high degree of hydrogen bonding with 96%, 96.5%, and 97.2%, respectively. Yet, the
M461+V82F+184V variant decreased residue 29’s hydrogen binding affinity to the oxygen atom (28) of
the ligand by 30.1%. Residue 29 on chain B is an aspartic acid that is a catalytic component. The M46I
mutation caused a binding pocket change great enough to increase the distance between chain A residue
29 and the oxygen atom (28) of the ligand.

Additionally, the hydrogen bonding affinities for chain B residue 50 to the oxygen atom (9) of the
ligand varied between variants. Reside 50 is isoleucine that plays a minimal role in hydrogen bondage
displaying 16.5% bondage in wild type. The single 184V point mutation increased hydrogen bondage by
6.4% while 184V+V82F and M461+V82F+I84V variants decreased bondage by 6.9% and 14.4%
respectively.

Finally, all of the residues contributing hydrogen bonding in each variant were summed then
analyzed for overall trends. As expected, the wild type had the highest summed percentage of bonding
totaling 426.4%. Similarly, the I84V+V82F variant retained a high degree of hydrogen bondage with a
summed percentage of 423.6%. The 184V variant displayed a significant drop of 47.1% in summed
hydrogen bond affinity compared 184V+V82F. The 184V variant had an overall summed hydrogen bond
percentage of 376.5%. The M461+V82F+184V variant showed the least total amount of hydrogen
bondage with 331.3%, a 95.1% decrease compared to wild type.

Based on the total hydrogen bonding percentages, the M461+V82F+184V variant displayed the

greatest drug resistance.

106

8.0 Conclusions and Recommendations

The team successfully simulated three mutated variants of HIV-1 protease and developed
programs to efficiently interpret the inhibitor interaction data and the protein dynamic behavior. These
programs were used to compare and present the data in a manner where conclusions could be drawn. The

significant findings of this analysis and recommendations for future work are discussed in this chapter.

8.1 Significant Findings

The team hypothesized there would be a difference in inhibitor interactions and protein dynamic
behavior in mutant variants compared to wild type. Specifically, as the number of mutations increased, it
was thought there would be increased drug resistance. Ligand RMSF data may support this; however,
further analysis displayed inconsistent trends with respect to drug resistance. V82F+184V showed the
most inhibitor fluctuation compared to wild type, followed by M461+V82F+I84V, and 184V. However, in
the case of protein RMSF, van der Waals interactions and hydrogen bond percentages, increasing
resistance is not supported. Van der Waals interactions provided inconclusive data, with all variants
having a similar amount of energies. With respect to protein RMSF, V82F+I84V had the greatest
fluctuation compared to wild type, followed by M46I1+V82F+184V, then 184V. Similar to protein RMSF,
V82F+184V demonstrated the highest percentage of hydrogen bonds of the mutant variants, followed by
M461+V82F+184V, then 184V. This however, partially supports the hypothesis, as bond percentages

decreased from V82F+I84V to M46I+V82F+184V.

8.2 Future Direction

Although, this project provided insightful results, there is additional research that can be
conducted to strengthen our conclusions. Due to time constraints and feasibility, the team was limited to
analysis of only three mutated variants. We suggest further MD analysis of different single point

mutations within the active site to investigate whether increased mutations increase drug resistance.

107

Specifically, V82F and M46I single point mutations should be analyzed to determine their roles in
compounded mutation resistance. Additionally, non-active site mutations should be examined to
determine their effect on protein-ligand affinity. Evaluating different simulation parameters can
strengthen future behavior patterns. Finally, the data generated from this project can be used in the
development of protease inhibitors that are designed to retain potency across compounded mutations that

may confer increased resistance.

108

References

(1]

(2]
(3]
(4]
(3]
(6]

[7]
(8]
[9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]
[18]

[19]

[20]

J. L. Clever, M. Daniel, Jr., and T. G. Parslow, "RNA Structure and Packaging Signals in the 5’
Leader Region of the Human Immunodeficiency Virus Type 1 Genome," Journal of Virology,
vol. 76, pp. 12381-12387, 2002.

N. L. 0. Health. Compound Summary for CID 213039 [Online]. Available:
https://pubchem.ncbi.nlm.nih.gov/compound/Darunavir

S. G. Deeks, B. Autran, B. Berkhout, M. Benkirane, S. Cairns, N. Chomont, et al., "Towards an
HIV cure: A global scientific strategy," Nature Reviews Immunology, vol. 12, pp. 607-614, 2012.
a. T. F. f. A. Research. (2015). Statistics: Worldwide. Available:
http://www.amfar.org/worldwide-aids-stats/

C. f. D. C. a. Prevention. (2015). HIV in the United States: At A Glance. Available:
http://www.cdc.gov/hiv/statistics/overview/ataglance.html

R. P. Walensky, J. D. Auerbach, A. R. A. C. Off, A.R. A. C. H. 1. V. A. R. P. R. W. G. Office of,
and A. R. A. C. Office of, "Focusing National Institutes of Health HIV/AIDS Research for
Maximum Population Impact," CLINICAL INFECTIOUS DISEASES, vol. 60, pp. 937-940, 2015.
I[. T. Weber and J. Agniswamy, "HIV-1 Protease: Structural Perspectives on Drug Resistance,"
VIRUSES-BASEL, vol. 1, pp. 1110-1136, 2009.

A. Brik and C.-H. Wong, "HIV-1 protease: Mechanism and drug discovery," Organic and
Biomolecular Chemistry, vol. 1, pp. 5-14, 2003.

C. f. D. C. a. Prevention. (2015). HIV Cost-effectiveness. Available:
http://www.cdc.gov/hiv/programresources/guidance/costeffectiveness/index.html

M. O. Johnson, E. Charlebois, S. F. Morin, S. L. Catz, R. B. Goldstein, R. H. Remien, et al.,
"Perceived Adverse Effects of Antiretroviral Therapy," Journal of Pain and Symptom
Management, vol. 29, pp. 193-205, 2005.

J.-M. Molina, J. Andrade-Villanueva, J. Echevarria, P. Chetchotisakd, J. Corral, N. David, et al.,
"Once-daily atazanavir/ritonavir versus twice-daily lopinavir/ritonavir, each in combination with
tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 48
week efficacy and safety results of the CASTLE study," The Lancet, vol. 372, pp. 646-655, 2008.
E. De Clercq, "Non-nucleoside reverse transcriptase inhibitors (NNRTIs): Past, present, and
future," Chemistry and Biodiversity, vol. 1, pp. 44-64, 2004.

B. Turanli-Yildiz, C. Alkim, and Z. P. Cakar, Protein Engineering Methods and Applications,
Protein Engineering, 2012.

D. C. Chan and P. S. Kim, "HIV Entry and Its Inhibition," vol. 93, ed. CAMBRIDGE: Elsevier
Inc, 1998, pp. 681-684.

M. I. Qadir and S. A. Malik, "HIV fusion inhibitors," Reviews in Medical Virology, vol. 20, pp.
23-33, 2010.

E. A. Abbondanzieri, X. Zhuang, J. W. Rausch, J. X. Zhang, G. Bokinsky, and S. F. J. Le Grice,
"Dynamic binding orientations direct activity of HIV reverse transcriptase," Nature, vol. 453, pp.
184-189, 2008.

R. Di Santo, "Inhibiting the HIV Integration Process: Past, Present, and the Future," JOURNAL
OF MEDICINAL CHEMISTRY, vol. 57, pp. 539-566, 2014.

R. Craigie and F. D. Bushman, "HIV DNA Integration," Cold Spring Harbor Perspectives in
Medicine, vol. 2, p. a006890, 2012.

J. Alcami, T. Lain de Lera, L. Folgueira, M. A. Pedraza, J. M. Jacque, F. Bachelerie, et al.,
"Absolute dependence on kB responsive elements for initiation and tat-mediated amplification of
HIV transcription in blood CD4 T lymphocytes," EMBO Journal, vol. 14, pp. 1552-1560, 1995.
L. Houzet, J. C. Paillart, F. Smagulova, S. Maurel, Z. Morichaud, R. Marquet, et al., "HIV
controls the selective packaging of genomic, spliced viral and cellular RNAs into virions through
different mechanisms," Nucleic Acids Research, vol. 35, pp. 2695-2704, 2007.

109

(21]
[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Pagans, A. Pedal, B. J. North, K. Kaehlcke, B. L. Marshall, A. Dorr, et al., "SIRT1 regulates
HIV transcription via Tat deacetylation," PLoS Biology, vol. 3, pp. 0210-0220, 2005.

B. Meng and A. M. L. Lever, "Wrapping up the bad news - HIV assembly and release,"
RETROVIROLOGY, vol. 10, pp. 5-5, 2013.

U. Schubert, D. E. Ott, E. N. Chertova, R. Welker, U. Tessmer, M. F. Princiotta, et al.,
"Proteasome Inhibition Interferes with Gag Polyprotein Processing, Release, and Maturation of
HIV-1 and HIV-2," Proceedings of the National Academy of Sciences of the United States of
America, vol. 97, pp. 13057-13062, 2000.

B. K. Ganser-Pornillos, M. Yeager, and W. 1. Sundquist, "The structural biology of HIV
assembly," Current Opinion in Structural Biology, vol. 18, pp. 203-217, 2008.

J. A. Esté and A. Telenti, "HIV entry inhibitors," The Lancet, vol. 370, pp. 81-88.

A. A. Johnson, C. Marchand, and Y. Pommier, "Integrase inhibitors to treat HIV/Aids," Nature
Reviews Drug Discovery, vol. 4, pp. 236-248, 2005.

V. Summa, A. Petrocchi, F. Bonelli, B. Crescenzi, M. Donghi, M. Ferrara, ef al., "Discovery of
raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of
HIV-AIDS infection," Journal of Medicinal Chemistry, vol. 51, pp. 5843-5855, 2008.

N. Sluis-Cremer, D. Arion, and M. A. Parniak, "Molecular mechanisms of HIV-1 resistance to
nucleoside reverse transcriptase inhibitors (NRTIs)," Cellular and Molecular Life Sciences, vol.
57, pp. 1408-1422, 2000.

E. M. Connor, R. S. Sperling, R. Gelber, P. Kiselev, G. Scott, M. J. O'Sullivan, ef al., "Reduction
of Maternal-Infant Transmission of Human Immunodeficiency Virus Type 1 with Zidovudine
Treatment," The New England Journal of Medicine, vol. 331, pp. 1173-1180, 1994.

N. L. 0. Health. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and
Adolescents. Available: https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-
arv-guidelines/459/cost-considerations-and-antiretroviral-therapy

K. McKeage, C. M. Perry, and S. J. Keam, "Darunavir: A Review of its Use in the Management
of HIV Infection in Adults," Drugs, vol. 69, pp. 477-503, 2009.

M. L. Vazquez, R. A. Mueller, J. J. Talley, D. P. Getman, G. A. DeCrescenzo, J. N. Freskos, et
al., "a- and f-amino acid hydroxyethylamino sulfonamides useful as retroviral protease
inhibitors," ed: Google Patents, 2001.

I. Dierynck, M. D. Wit, E. Gustin, I. Keuleers, J. Vandersmissen, S. Hallenberger, et al., "Binding
Kinetics of Darunavir to Human Immunodeficiency Virus Type 1 Protease Explain the Potent
Antiviral Activity and High Genetic Barrier," Journal of Virology, vol. 81, pp. 13845-13851,
2007.

D. Finzi, M. Hermankova, T. Pierson, L. M. Carruth, C. Buck, R. E. Chaisson, et al.,
"Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral Therapy,"
Science, vol. 278, pp. 1295-1300, 1997.

Dharmananda. COUNTERACTING

SIDE EFFECTS OF THE HIV-INHIBITING DRUG COCKTAIL [Online].

[36]

[37]

[38]

[39]

J. Aguirre, "Cost Of Treatment Still A Challenge For HIV Patients In U.S.," in All Things
Considered, J. Aguirre, Ed., ed, 2012.

A.T.i. L. L. C. S. Group, "Cohort profile: Antiretroviral Therapy in Lower Income Countries
(ART-LINC): international collaboration of treatment cohorts," International Journal of
Epidemiology, vol. 34, pp. 979-986, 2005.

L. K. Nicholson, T. Yamazaki, D. A. Torchia, S. Grzesiek, A. Bax, S. J. Stahl, ez al., "Flexibility
and function in HIV-1 protease," Nature structural biology, vol. 2, pp. 274-280, 1995.

W. R. P. Scott and C. A. Schiffer, "Curling of Flap Tips in HIV-1 Protease as a Mechanism for
Substrate Entry and Tolerance of Drug Resistance," Structure, vol. 8, pp. 1259-1265, 2000.

110

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]
(48]

[49]
[50]
[51]

[52]
[53]
[54]

[55]
[56]

[57]
[58]

J. C. Clemente, R. E. Moose, R. Hemrajani, L. R. S. Whitford, L. Govindasamy, R. Reutzel, et
al., "Comparing the accumulation of active- and nonactive-site mutations in the HIV-1 protease,"
Biochemistry, vol. 43, pp. 12141-12151, 2004.

J. E. Foulkes-Murzycki, W. R. P. Scott, and C. A. Schiffer, "Hydrophobic sliding: a possible
mechanism for drug resistance in human immunodeficiency virus type 1 protease," Structure, vol.
15, pp. 225-233, 2007.

D. N. Levy, G. M. Aldrovandi, O. Kutsch, and G. M. Shaw, "Dynamics of HIV-1 recombination
in its natural target cells," Proceedings of the National Academy of Sciences, vol. 101, pp. 4204-
4209, 2004.

S. Piana, P. Carloni, and U. Rothlisberger, "Drug resistance in HIV - 1 protease: Flexibility -
assisted mechanism of compensatory mutations," Protein Science, vol. 11, pp. 2393-2402, 2002.
W. 1. Sundquist and H.-G. Kriusslich, "HIV-1 assembly, budding, and maturation," Cold Spring
Harbor Perspectives in Medicine, vol. 2, p. 2006924, 2012.

A. D. Frankel and J. A. Young, "HIV-1: fifteen proteins and an RNA," Annual review of
biochemistry, vol. 67, pp. 1-25, 1998.

M. Prabu-Jeyabalan, E. Nalivaika, and C. A. Schiffer, "Substrate shape determines specificity of
recognition for HIV-1 protease: Analysis of crystal structures of six substrate complexes,"
Structure, vol. 10, pp. 369-381, 2002.

A. M. Silva, R. E. Cachau, H. L. Sham, and J. W. Erickson, "Inhibition and catalytic mechanism
of HIV-1 aspartic protease," Journal of Molecular Biology, vol. 255, pp. 321-340, // 1996.

T. Hansson, C. Oostenbrink, and W. van Gunsteren, "Molecular dynamics simulations," Current
opinion in structural biology, vol. 12, pp. 190-196, 2002.

S. Press, "Protein Preparation Guide," ed. New York, NY: Schrodinger LLC, 2009.

S. Press, "Prime 2.1: User Manual," ed. New York, NY: Schrodinger LLC, 2013.

K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, ef al., "Scalable
Algorithms for Molecular Dynamics Simulations on Commodity Clusters," pp. 43-43.

Julich, "Analysis of MD Simulations," ed: Forschungszentrum.

Schrodinger, "Maestro 9.0," ed: Schrodinger, 2009.

W. Humphrey, A. Dalke, and K. Schulten, "VMD: Visual molecular dynamics," JOURNAL OF
MOLECULAR GRAPHICS & MODELLING, vol. 14, pp. 33-38, 1996.

(2016). Schiffer Laboratory. Available: http://www.umassmed.edu/schifferlab/

A.Y. Kuksin, I. V. Morozov, G. E. Norman, V. V. Stegailov, and 1. A. Valuev, "Standards for
molecular dynamics modelling and simulation of relaxation," Molecular Simulation, vol. 31, pp.
1005-1017, 2005.

R. Johnson, "MATLAB Programming Style Guidelines," ed: MathWorks, 2002.

I. O. f. Standardization, "ISO 18458: Biomimetics — Terminology, concepts and methodology,"
ed: International Organizational for Standardization, 2015.

111

Appendix A

The team created a Gantt chart to make sure the project is completed within time constraints

(Figures A.1 through A.4).

A.1 A Term Gantt Chart

Sep 13,15 Sep 20,15 Sep 27,15 Oct4, 15 Oct11, 15
Task Name v Durativ |Start v |Finish /| W F s T T s M w F s T T s M w F s T T s
Paper 160 days Tue 9/1/1 Sun 4/10/1
Chapter1-Draft 6days Sat9/12/: Fri9/18/1% . AN
Chapter2- 6days Mon Sun =
Outline 9/21/15 9/27/15
Chapter3-Draft Sdays Mon 9/28 Fri10/2/1% [All
Revise Chapter1 Sdays Sat10/10, Thu 10/15/ s ANl
Write Chapter2 11days Thu10/1/ Thu10/15/ [1 Al
Revise Chapter3 5days Sat10/10, Thu 10/15/ =
Chapters 1-3 lday Thu Thu =1 Al
Complete 10/15/15 10/15/15
Learn Simulations Sdays Mon 10/1 Fri 10/23/1
Research 11days Mon Sun
Mutations 10/19/15 11/1/15
Model Mutations 22 days Mon 11/2 Tue 12/1/1
Simulation of 15days Tue Sun
Mutations 12/1/15 12/20/15
Analyzing 15days Fri Thu
Mutations 1/15/16 2/4/16
Draw Conclusions 24days Wed 2/4/ Mon 3/9/1
Design Predictive 35days Mon Fri4/1/16
Model 2/15/16
Predictive Model 1day Wed4/1/ Wed 4/1/1
Figure A.1: A Term Gantt Chart
A.2 B Term Gantt Chart
k18,15 o5, 15 Novi, 15 Novs, 15 Nov1s, 15 Nov22,15 Nov29, 15 Dec, 15 Dect3, 15 Dec20, 15
Task Name v Durativ Stat + Finish M w F s T T M w F H T T H M w F s T T s M w F s T T s M w F s T
Paper 160 days Tue 9/1/1 Sun 4/10/1
Chapter1-Draft 6days Sat9/12/: Fri 9/18/1%
Chapter2- 6days Mon sun
Outline 9/21/15 9/27/15
Chapter3-Draft Sdays Mon 9/28 Fri 10/2/15
Revise Chapter1 Sdays Sat10/10, Thu 10/15/
\Write Chapter 2 11days Thu10/1/ Thu10/15/
Revise Chapter3 Sdays Sat10/10, Thu 10/15/
Chapters 1-3 1day Thu Thu
Complete 10/15/15 10/15/15
Learn Simulations 5days Mon 10/1 Fri 10/23/1) 1 EdPaige
Research 11days Mon Sun ! | Paige,Sydney
Mutations 10/19/15 11/1/15
Model Mutations 22days Mon 11/2 Tue 12/1/1 I 1 Ed.Paige
Simulation of 15days Tue Sun » 1 Paige,Sy
Mutations 12/1/15 12/20/15
Analyzing 15days Fri Thu
Mutations 1/15/16 2/4/16
Draw Conclusions 24 days Wed 2/4/ Mon 3/9/1
Design Predictive 35days Mon Fri 4/1/16

Model
Predictive Model

1day

2/15/16
Wed 4/1/ Wed 4/1/1

Figure A.2: B Term Gantt Chart

112

A.3 C Term Gantt Chart

Jan17, 16 Jan 24,16 Jan31, 16 Feb7,'16 Feb 14,16 Feb21,'16 Feb 28, '16 Mar6, 16
Task Name v |Duratiiw Start v Finish | F s T s M w F B T T s MW F s T T s MW S T s M w F
Paper 160 days Tue 9/1/1 Sun 4/10/1
Chapter1-Draft 6days Sat9/12/: Fri9/18/1%
Chapter2- 6days Mon sun
Outline 9/21/15 9/27/15
Chapter3-Draft Sdays Mon 9/28 Fri10/2/15
Revise Chapter1 5days Sat10/10, Thu 10/15/
Write Chapter2 11days Thu10/1/ Thu 10/15/
Revise Chapter3 Sdays Sat 10/10, Thu 10/15/
Chapters 1-3 1day Thu u
Complete 10/15/15 10/15/15
Learn Simulations 5days Mon 10/1 Fri 10/23/1
Research 11days Mon Sun
Mutations 10/19/15 11/1/15
Model Mutations 22days Mon 11/2 Tue 12/1/1
Simulation of 15days Tue sun
Mutations 12/1/15 12/20/15
Analyzing 15days Fri Thu Ed,Sydney
Mutations 1/15/16 2/4/16
Draw Conclusions 24 days Thu 2/4/1 Tue 3/8/1€ All
Design Predictive 35days Mon Fri4/1/16
Model 2/15/16
Predictive Model 1day Wed4/1/ Wed4/1/1
.
Figure A.3: C Term Gantt Chart
A.4 D Term Gantt Chart
Feb21,'16 Feb 28,16 Mar6, ‘16 Mar13, '16 Mar 20, '16 Mar 27, '16 Apr3,°16 Apr10, ‘1€
Task Name v | Duratiw Start v Finish | s s TOT S MW s TOT s MW H T s M s 1
Paper 160 days Tue 9/1/1 Sun 4/10/1 Al
Chapter1-Draft 6days Sat9/12/: Fri9/18/1%5
Chapter2- 6days Mon Sun
Outline 9/21/15 9/27/15
Chapter3-Draft Sdays Mon 9/28 Fri10/2/15
Revise Chapter1 Sdays Sat10/10, Thu 10/15/
Write Chapter2 11days Thu10/1/ Thu10/15/
Revise Chapter3 S5days Sat10/10, Thu 10/15/
Chapters 1-3 1day Thu Thu
Complete 10/15/15 10/15/15
Learn Simulations Sdays Mon 10/1 Fri 10/23/1
Research 11days Mon Sun
Mutations 10/19/15 11/1/15
Model Mutations 22days Mon 11/2 Tue 12/1/1
Simulation of 15days Tue Sun
Mutations 12/1/15 12/20/15
Analyzing 15days Fri Thu
Mutations 1/15/16 2/4/16
Draw Conclusions 24 days Thu2/4/1 Tue 3/8/1€ All
Design Predictive 35 days All

Model
Predictive Model

1day

Mon Fri4/1/16
2/15/16

Wed 4/1/ Wed 4/1/1

Figure A.4: D Term Gantt Chart

113

Appendix B

B.1 Protein-Ligand RMSD Script

RMSD

Table of Contents

Importing Reps 1-3 WT oo e e 1
Importing Reps 1-3 T84V L i e 1
Importing Reps 1237 VBIFHIBAV: iuunnsusisanwi st s s s g s s 1
Importifig Reps 143/MA6L-VEF-IBAV: v i s e s e Ry 1
PLOMING WWT oottt e e e ettt e e 1
T RO I e e 2
T R 2 i e 2
VD TREP, B ettt b s e T R S T R TR 3
Plotting Average W RIS cuuumemmmmmsssmnss s s s o s e 4
PIGHITE TSV sormmress s s e e S e 5
Plotting VE2ZFHISAV ... i e 9
Plotting MA6I+HVS2FHISAV ..o i e 12

Importing Reps 1-3 WT

WT=csvread ('MQP_WT_RMSD.csv',1);
wt_repl=WT(:,1);
wt_rep2=WT (:,2);
wt_rep3=WT(:,3);

Importing Reps 1-3 184V

Mutl=csvread('MQP_I84V RMSD.csv', 1) ;
mutl_repl=Mutl(:,1);
mutl_rep2=Mutl(:,2);
mutl_rep3=Mutl(:,3);

Importing Reps 1-3 V82F+184V

Mut2=csvread ('MQP_V82F 184V _RMSD.csv', 1) ;
mut2_repl=Mut2(:,1);
mut2_rep2=Mut2(:,2);
mut2_ rep3=Mut2(:,3)};

Importing Reps 1-3 M461-V82F-184V

Mut3=c5vread('MQP_M461_V82F_IS4V_RMSD.CSV’,1);
mut3_repl=Mut3 (:,1);
mut3_rep2=Mut3 (:,2);
mut3_rep3=Mut3 (:,3);

Plotting WT

x=0:499;
% Moving Average

114

RMBD

MAWTRepl=tsmovavyg (wt_repl,'s',h100,1) ;¥simple moving average
MAWTRep2=tsmovavg (wt_rep2,'s',100,1) ;¥simple moving average
MAWTRep2=tsmovavy (wt_rep2,'s',100,1) ;¥simple moving average

WT Rep 1

figl=figure;

plot{x' ,wt_repl)

title('WT Repl Protein-Ligand RMSD')
ylabel {' RMED')

xlabel (' Frames')

axis ([0 500 O 2.2])

hold on

plot{x' MAWTRepl,'r')

WT Rep1 Protein-Ligand RMSD

RMSD

0 ! . L 1 .
0 50 100 150 200 250 300 350 400 450 500

Frames

WT Rep 2

fig2=figure;

plot {x' wt_rep2)

title {('WT Rep2 Protein-Ligand RMSD'}
ylabel {'RMSD'}

xlabel {'Frames')

axis ([0 500 0 2.2])

heold on

115

RMBD

plot (x' MAWTRep2,'xr')

WT Rep2 Protein-Ligand RMSD

151

RMSD

05F

0 L) L
0 50 100 150 200 250 300 350 400 450 500

Frames

WT Rep 3

fig2=figure;

plot{x' wt_rep2)

title ('WT Rep2 Protein-Ligand RMSD')}
ylabel {'RMED'}

xlabel (' Frames')

axis ([0 500 0O 2.2])

hold on

plot (x' MAWTRep2,'x')

116

RMBD

WT Rep3 Protein-Ligand RMSD

RMSD

05F i

0 ! 1 L . ! | . . L
0 50 100 150 200 250 300 350 400 450 500

Frames

Plotting Average WT RMSD

WT_Awverage= (wh_repl+wht_rep2+wt_rep3)/3;
MAWTAvVg=tsmovavy (WT_Average, 's',100,1) ;¥simple moving average

figa=ficure;

plot (x' WT_Aaverage)

title('Average WT Protein-Ligand RMSD')
ylabel {' RMSD')

xlabel {' Frames')

axis ([0 500 0 2.2])

held on

plot{x' MAWTAvg,'r')

117

RMBD

Average WT Protein-Ligand RMSD

151 i

RMSD

0 ! 1 L . ! | . . L
0 50 100 150 200 250 300 350 400 450 500

Frames

Plotting 184V

% Moving Average

MaMutlRepl=tsmovavyg (tmtl_repl,'s',100,1) ;¥simple moving average
MaMutlRep2=tsmovavyg (mutl_rep2,'s' , 100,1) ;¥simple moving average
MaMutlRep2=tsmovavy (tatl_rep2,'s',100,1) ;¥simple wmoving average

% I84V Rep 1

figs=fiqure;

plot(x' matl_repl)

title{' I24V Repl Protein-Ligand RMSD')
ylabel {' RMSD')

xlabel {' Frames')

axis ([0 500 0 2.2])

held on

plot (x' MAMutlRepl, 'x')

% IB4V Rep 2

fige=£figure;

plot {x' mut2_rep2)

title{'I24V Rep2 Protein-Ligand RMSD')
ylabel {'RMED'}

118

RMSD

xlabel (' Frames')

axis ([0 500 0 2.2])
hold on

plot (x',MAMutlRep2, 'r')
$ I84V Rep 3
fig7=figure;

plot (x',mutl_rep3)
title ('I84V Rep3 Protein-Ligand RMSD')
ylabel ('RMSD')
xlabel (' Frames')

axis ([0 500 0 2.2])
hold on

plot (x',MAMutlRep3, 'r')

$Plotting Average I84V RMSD

Mutl_Average= (mutl_repl+mutl_rep2+mutl_rep3) /3;
MAMut lAvg=tsmovavyg (Mutl Average, 's',100,1);%simple moving average

figg8=figure;

plot (x',Mutl_ Average)

title('Average I84V Protein-Ligand RMSD')
ylabel ('RMSD')

xlabel ('Frames')

axis ([0 500 0 2.2])

hold on

plot (x',MAMutlAvg, 'r')

119

RMBD

RMSD

RMSD

1.5

05F

1.5

05f

184V Rep1 Protein-Ligand RMSD

50 100 150 200 250 300 350 400 450 500
Frames
184V Rep2 Protein-Ligand RMSD
50 100 150 200 250 300 350 400 450 500
Frames
7

120

RMBD

RMSD

RMSD

1.5

05F

15

05fF

184V Rep3 Protein-Ligand RMSD

‘ ‘l[.|"n'|i‘l | lw‘“ 1'1 TI ”I“Irw”'r' \ ‘l‘% In .l‘s Tl nL

50 100 150 200 250 300 350 400 450 500
Frames

Average 184V Protein-Ligand RMSD

50 100 150 200 250 300 350 400 450 500
Frames

121

RMSD

Plotting V82F+I84V

% Moving Average

MAMut2Repl=tsmovavg (mut2_repl,'s',100,1);%simple moving average
MAMut2Rep2=tsmovavg (mut2_rep2,'s',100,1);%simple moving average
MAMut2Rep3=tsmovavg (mut2_rep3,'s',100,1);%simple moving average

% VB2F+I84V Rep 1

fig9=figure;

plot (x', mut2_repl)

title ('V82F+I84V Repl Protein-Ligand RMSD')
ylabel ('RMSD')

xlabel ('Frames')

axis ([0 500 0 2.2])

hold on

plot (x',MAMut2Repl, 'r')

% VB2F+I84V Rep 2

figlo=figure;

plot (x', mut2_rep2)

title ('V82F+I84V Rep2 Protein-Ligand RMSD')
ylabel ('RMSD')

xlabel ('Frames')

axis ([0 500 0 2.2])

hold on

plot (x',MAMut2Rep2, 'r')

% VB2F+I84V Rep 3

figll=figure;

plot (x', mut2_rep3)

title ('V82F+I84V Rep3 Protein-Ligand RMSD')
ylabel ('RMSD')

xlabel ('Frames')

axis ([0 500 0 2.2])

hold on

plot (x',MAMut2Rep3, 'r')

$Plotting Average V82F+I84V RMSD

Mut2_ Average= (mut2_ repl+mut2_ rep2+mut2_rep3) /3;
MAMut2Avg=tsmovavg (Mut2_Average, 's',100,1) ;¥simple moving average

figl2=figure;

plot (x',Mut2_Average)

title ('Average V82F+I84V Protein-Ligand RMSD')
ylabel ('RMSD')

xlabel ('Frames')

axis ([0 500 0 2.2])

hold on

122

RMBD

plot (x' MAMutL2Avy, 'x')

V82F+184V Rep1 Protein-Ligand RMSD

2 b]
15f il uw,_l L 1
l lr! \ Jv A | ljl' .Lu.l

) O VN eV

%) i

= |

x 1]
05f 1
0 s 100 10 20 250 00 0 400 450 50

Frames

10

123

RMBD

RMSD

RMSD

V82F+I84V Rep2 Protein-Ligand RMSD

151

05F

1 Il L Il L L L 1

100 150 200 250 300 35 400 450 500
Frames

V82F+184V Rep3 Protein-Ligand RMSD

15

05f

100 150 200 250 300 350 400 450 500
Frames

11

124

RMBD

Average V82F+184V Protein-Ligand RMSD

151 i
) iy
o | Pl
=
o 1 .
05F §
%0 s 100 150 200 25 30 30 400 450 500

Frames

Plotting M461+V/82F+I84V

% Moving Average

MaMut3Repl=tsmovavyg (tmt2_repl,'s',100,1) ;¥simple moving average
MaMut2Rep2=tsmovavyg (mut2_rep2,'s' , 100,1) ;¥simple moving average
MaMut2Rep2=tsmovavy (tat2_rep2,'s',100,1) ;Fsimple wmoving average

% MAGI+VE2F+I84V Rep 1

figla=fiqure;

plot (x' , mat2_repl)

title('M46I+V22F+I24V Repl Protein-Ligand RMSD')
ylabel {' RMSD')

xlabel {' Frames')

axis ([0 500 0 2.2])

held on

plot (x' MAMut2Repl, 'x')

% MAGI+VE2F+184V Rep 2

figld=figure;

plot {x' k3 _rep2)

title('M46I+V22F+I24V Rep2 Protein-Ligand RMSD')
ylabel (' RMSD')

12

125

RMSD

xlabel (' Frames')

axis ([0 500 0 2.2])
hold on

plot (x',MAMut3Rep2, 'r')

% M46I+V82F+I84V Rep 3

figls=figure;

plot (x', mut3_rep3)

title ('M46I+V82F+184V Rep3 Protein-Ligand RMSD')
ylabel ('RMSD')

xlabel (' Frames')

axis ([0 500 0 2.2])

hold on

plot (x',MAMut3Rep3, 'r')

$Plotting Average M46I+V82F+I84V RMSD

Mut3_Average= (mut3_repl+mut3_rep2+mut3_rep3) /3;
MAMut3Avg=tsmovavyg (Mut3_Average, 's',100,1);%simple moving average

figlé=figure;

plot (x',Mut3_Average)

title('Average M46I+V82F+I184V Protein-Ligand RMSD')
ylabel ('RMSD')

xlabel ('Frames')

axis ([0 500 0 2.2])

hold on

plot (x',MAMut3Avg, 'r')

126

RMBD

RMSD

RMSD

1.5

05F

1.5

05f

M461+V82F+184V Rep1 Protein-Ligand RMSD

T—T

50 100 150 200 250 300 35 400 450 500
Frames
M461+V82F+184V Rep2 Protein-Ligand RMSD

I l |A .I i
I Ll | T TN
i/ H Y .1,

50 100 150 200 250 300 350 400 450 500
Frames

14

127

RMBD

RMSD

RMSD

1.5

0.5

05f

M461+V82F+184V Rep3 Protein-Ligand RMSD

w “'“'w

"l"'

“

i

50 100

150 200

250 300
Frames

350

400

450

Average M461+V82F+184V Protein-Ligand RMSD

150 200

250 300
Frames

350

400

450

15

B.2 Protein RMSF Script

Table of Contents

Protein RIMISEot e e e 1
Importing Reps 1-3 WT oo e e 1
Importing Reps 1-3 T84V L i e e 1
Importing Reps 1-3 VB2F-I84AV ... i e e 1
Importing:Reps: 1-3NIA6T-VEDETBAV' s amnscsasmmesmmassssanssnnscsssiess s s s s s s s eatatssss oo 2
Averaging ReplCatelIIata: s om0 2

Plot of 3 Rep Protein RMSFs ..
Plot of Average Protein RMSF

Differencescccocoeeiiiiiiiiiiiiienn .

NR2FHIRAN Differences o AMerage T «uwssrrmmmsnmsssnmmrmsrs e s s e e R e 9
AverageiDifferences COMPArEIOrW: s s s s e s 11
Bar plot of average mutation differences compared to WT ... 13
Calculating Significant Differences t0 WT ... 13
Print SIGNIFICANToiiii it e 15

Protein RMSF

Authors: Paige, Ed, and Sydney

$This script imports the VMD results of Protein RMSF as a .txt file
input

%and calculates the average RMFS, differences to the Wild Type and
$generates various analysis graphs.

Importing Reps 1-3 WT

WT_Repl=importdata ('MQP_WTRepl Protein RMSF.txt')';
WT_Rep2=importdata ('MQP_WTRep2 Protein RMSF.txt')';
WT_Rep3=importdata ('MQP_WTRep3_ Protein RMSF.txt')';

Importing Reps 1-3 184V

Mutl_Repl=importdata ('MQP_I84VRepl Protein RMSF.txt');
Mutl_ Rep2=importdata ('MQP_I84VRep2 Protein RMSF.txt');
Mutl_ Rep3=importdata ('MQP_I84VRep3_ Protein RMSF.txt');
% Correctly order data since Chain B Residue 1 is imported as line 198
Mutl_Repl ordered=[Mutl Repl(1:98),Mutl Repl(198) ,Mutl Repl(99:197)]1"';
Mutl_Rep2 ordered=[Mutl Rep2(1:98) ,Mutl Rep2(198) ,Mutl Rep2(99:197)]1"';
Mutl_Rep3_ordered=[Mutl Rep3 (1:98) ,Mutl Rep3 (198) ,Mutl Rep3(99:197)]1"';

Importing Reps 1-3 V82F-184V

Mut2_ Repl=importdata ('MQP_V82F I84VRepl Protein RMSF.txt');
$V82F_I84V_Rep2=importdata ('.txt');

Mut2_Rep3=importdata ('MQP_V82F I84VRep3 Protein RMSF.txt');
% Correctly order data since Chain B Residue 1 is imported as line 198
Mut2_Repl ordered=[Mut2_Repl(1:98),Mut2 Repl (198) ,Mut2 Repl(99:197)1"';
$Mut2_Rep2 ordered= [Mut2_Rep2(1:98) ,Mut2_Rep2(198) ,Mut2_Rep2(99:197)]"';

129

Mut2_Rep3_ordered=[Mut2_ Rep3 (1:98) ,Mut2 Rep3 (198) ,Mut2 Rep3(99:197)]1"';

Importing Reps 1-3 M461-V82F-184V

Mut3_Repl=importdata ('MQP_M46I_V82F I84VRepl Protein RMSF.txt');
Mut3 Rep2=importdata ('MQP M46I V82F I84VRep2 Protein RMSF.txt');
Mut3 Rep3=importdata ('MQP M46I V82F I84VRep3 Protein RMSF.txt');
% Correctly order data since Chain B Residue 1 is imported as line 198
Mut3_Repl ordered=[Mut3_Repl(1:98),Mut3_Repl (198) ,Mut3_Repl(99:197)1"';
Mut3_Rep2 ordered=[Mut3_Rep2(1:98),Mut3_Rep2(198) ,Mut3_Rep2(99:197)]1"';
Mut3_Rep3_ordered=[Mut3_Rep3 (1:98) ,Mut3_Rep3 (198) ,Mut3_Rep3 (99:197)1"';

Averaging Replicate Data

WT Protein RMSF

WT_Comp = horzcat (WT_Repl,WT_Rep2,WT_Rep3);
WT_Avg = mean (WT_Comp, 2) ;

% 184V Protein RMSF

Mutl Comp =

horzcat (Mutl_Repl ordered,Mutl_Rep2 ordered,Mutl_Rep3_ordered) ;
Mutl_Avg = mean(Mutl_Comp, 2) ;

% V82F-I84V Protein RMSF

$Mut2_Comp =

horzcat (Mut2 Repl ordered,Mut2 Rep2 ordered,V82F_I84V Rep3 ordered) ;
Mut2_Comp = horzcat (Mut2 Repl_ ordered,Mut2_Rep3_ordered); %remove when
all reps are present

Mut2_Avg = mean(Mut2_ Comp, 2) ;

% M46I-VB2F-I84V Protein RMSF

Mut3_Comp =

horzcat (Mut3_Repl_ordered,Mut3_Rep2 ordered,Mut3_Rep3_ordered) ;
Mut3_Avg = mean(Mut3_Comp, 2) ;

Plot of 3 Rep Protein RMSFs

WT

x=1:198;

figure

plot (x,WT_Repl, 'r', x,WT_Rep2, 'g', x, WT_Rep3, 'b')
title ('WT Protein RMSF Complilation')

ylabel ('RMSF')

xlabel ('Residue Number')

axis ([0 198 0 2.5])

legend('WT-Repl', 'WT-Rep2', 'WT-Rep3')

% I84V

figure

plot (x,Mutl Repl ordered, 'r', x,Mutl Rep2 ordered, 'g', X,
Mutl Rep3_ordered, 'b')

130

title('I84V Protein RMSF Complilation')
ylabel ('RMSF')

xlabel ('Residue Number')

axis ([0 198 0 2.5])

legend('I84V Repl', 'I84V Rep2', 'I84V Rep3')

% V82F-I84V

figure

$plot (x,Mut2 Repl, 'r'; x,Mut2 Rep2; '¢'; x,; Mut2 Rep3, 'b')

plot (x,Mut2_Repl ordered, 'r',x, Mut2_ Rep3_ordered, 'b')%remove when
all reps are present

title ('V82F+I84V Protein RMSF Complilation')

ylabel ('RMSF')

xlabel ('Residue Number')

axis ([0 198 0 2.5])

%legend ('V82F+I84V Repl', 'V82F+I84V Rep2', 'VB82F+I84V Rep3')
legend ('V82F+I84V Repl', 'V82F+I84V Rep3') %remove when all reps are
present

% M46I-V82F-I84V
figure
plot (x,Mut3_Repl ordered, 'r',x,Mut3_Rep2 ordered, 'g',x,Mut3_Rep3_ordered, 'b')
title ('M46I+V82F+I84V Protein RMSF Complilation')
ylabel ('RMSF')
xlabel ('Residue Number')
axis ([0 198 0 2.5])
legend ('M46I+V82F+I184V Repl', 'M46I+V82F+I84V Rep2', 'M46I+VB82F+I84V
Rep3 ')

131

RMSF

RMSF

25

15

0.5

25

1.5

0.5

WT Protein RMSF Complilation

— WT-Rep1
——— WT-Rep2
—— WT-Rep3

1 1 1 1 1 1 1 1
20 40 80 100 120 140 160 180
Residue Number
184V Protein RMSF Complilation
T T T T T T T U T
184V Rep1
184V Rep2
184V Rep3
L 1 1 1 1 1 1 L
20 40 80 100 120 140 160 180

Residue Number

132

RMSF

RMSF

25

V82F+184V Protein RMSF Complilation

15

05

VB2F +184V Rep1
VB2F +184V Rep3

40 60 80 100 120 140 160 180
Residue Number

M461+V82F+I84V Protein RMSF Complilation

25

1.5

05

T

M461+VE82F+184V Rep1
M461+V82F+184V Rep2
M461+V82F+184V Rep3

40 60 80 100 120 140 160 180
Residue Number

133

Plot of Average Protein RMSF

figure

X = 1:198;

plot {x WT_Awvg','k' x Matl Awg','r' x, Mat2 Avg','bL' ,x Mut2_2vg', 'g')
title('average Protein RMSF')

ylabel {'RMSF')

xlabkel {'Residue Number')

axis ([0 192 0 2.5])

legend (' WT Rwvg','I24V Avg', 'VO2F+I84V Avyg', 'MA6I+VI2F+I24V Avyg')

Average Protein RMSF

25 T T T T
—— WT Avg
184V Avg
VB2F +184V Avg
2r M461+V82F+184V Avg
15
w
w
=
[
1
05
O 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180
Residue Number

Differences

% I24V Differences to Average WT

Mutl Repl Diff = Mutl Repl ordered-WT_RAvy;

Mutl Rep2 Diff = Mutl Rep2 ordered-WT_Avy;

Mutl Rep2 Diff = Mutl Rep2 ordered-WT_Avy;

Mutl diffs = horzcat(Mutl Repl Diff Mutl Rep2 Diff Mutl Rep2 Diff);
Mutl avg diffs = mean(Mutl_ diffs,2);

% Chain A and B Differences

Mutl diffs a =

horzcat (Mutl_diffs{1:99,1) Mutl diffs{1:99,2) Mutl_ diffs{1:99,2})};
Mutl_diffs B =

horzcat (Mutl_diffs{100:192,61) Mutl_ diffs{100:198,2) Mutl diffs{100:192,3});

134

% Plotting Chain A 184V Differences to Average WT
figure

x = 1:99;

Mutl_A bar_graph = bar (x,Mutl_diffs A);

Mutl_A bar_graph (1) .FaceColor='r"';

Mutl_A_ bar_graph (2) .FaceColor="'b';

Mutl_A bar_graph (3) .FaceColor="'g';

Mutl_A bar_graph (1) .EdgeColor="r"';

Mutl_ A bar_graph (2) .EdgeColor='b';

Mutl_ A bar_graph (3) .EdgeColor='g';

title('Chain A I84V Protein RMSF Differences')

xlabel ('Atom Number')

ylabel ('RMSF Difference')

legend('I84V Repl Difference', 'I84V Rep2 Difference', 'I84V Rep3
Difference')

% Plotting Chain B 184V Differences to Average WT
figure

X = 1:99;

Mutl B_bar_graph = bar (x,Mutl_diffs B);

Mutl B_bar_graph (1) .FaceColor='r"';

Mutl_ B_bar_graph (2) .FaceColor='b';
Mutl_B_bar_graph (3) .FaceColor="'qg"';
Mutl_B_bar_graph (1) .EdgeColor="r";
Mutl_B_bar_graph (2) .EdgeColor="b';
Mutl_B_bar_graph (3) .EdgeColor="'g"';

title('Chain B I84V Protein RMSF Differences')

xlabel ('Atom Number')

ylabel ('RMSF Difference')

legend('I84V Repl Difference', 'I84V Rep2 Difference', 'I84V Rep3
Difference')

135

RMSF Difference

RMSF Difference

0.6

03[

0.2

0.1

021

031

Chain A 184V Protein RMSF Differences

I 184V Rep1 Difference
I 154V Rep?2 Difference
[184V Rep3 Difference

1 Il

04

o

20

30 40 50 60
Atom Number

Chain B 184V Protein RMSF Differences

100

0.4

02

0.2

04

I 154V Rep1 Difference
I 134V Rep2 Difference
[184V Rep3 Difference

30 40 50 60
Atom Number

70

80

100

136

V82F +184V Differences to Average WT

Mut2_Repl Diff = Mut2_Repl_ ordered-WT_Avg;

$Mut2 Rep2 Diff = Mut2 Rep2 ordered-WT_Avg;

Mut2_ Rep3_ Diff = Mut2_Rep3_ ordered-WT_Avg;
Mut2_diffs = horzcat (Mut2 Repl Diff, Mut2 Rep3_ Diff);
Mut2_Avg diffs= mean (Mut2_diffs,2);

% Chain A and B differences

Mut2_diffs_ A = horzcat (Mut2_diffs(1:99,1) Mut2_diffs(1:99,2));
Mut2_diffs B = horzcat (Mut2_diffs(100:198,1) ,Mut2_diffs(100:198,2));

% Plotting Chain A I84V Differences to Average WT
figure

x = 1:99;

Mut2_A bar_graph = bar (x,Mut2 diffs A);

Mut2_A bar_graph (1) .FaceColor= 'r';

$Mut2_A bar_ graph (2) .FaceColor='b';

Mut2_A bar_graph (2) .FaceColor= 'g';

Mut2_A bar_graph (1) .EdgeColor= 'r';

Mut2_A bar_graph (2) .EdgeColor= 'g';

title('Chain A V82F+I84V Protein RMSF Differences')
xlabel ('Atom Number')

ylabel ('RMSF Difference')

legend('V82F+184V Repl Difference', 'V82F+I84V Rep2 Difference')

% Plotting Chain B I84V Differences to Average WT
figure

x = 1:99;

Mut2_B_bar_graph = bar (x,Mut2_diffs B);
Mut2_B_bar_graph (1) .FaceColor="xr";
$Mut2_B_bar_ graph (2) .FaceColor='b';
Mut2_B_bar_graph (2) .FaceColor="g"';
Mut2_B_bar_graph (1) .EdgeColor="xr";

Mut2 B_bar graph(2) .EdgeColor='g"';

title('Chain B V82F+I84V Protein RMSF Differences')
xlabel ('Atom Number')

ylabel ('RMSF Difference')

legend ('V82F+I84V Repl Difference', 'V82F+I84V Rep2 Difference')

137

RMSF Difference

RMSF Difference

Chain A V82F+184V Protein RMSF Differences

12

08

06

02

04r

I \/82F +184V Rep1 Difference
[VB2F +184V Rep?2 Difference | [

-06

10

20

Chain B V82F+184V Protein RMSF Differences

30

40

50 60 70 80 90 100

Atom Number

1.2

T

T

I \/52F +184V Rep1 Difference
[V82F +184V Rep?2 Difference

08
0

10

20

40

50 60 70 80 90 100

Atom Number

10

138

Average Differences Compared to WT

M461+V82F+184V Differences to Average WT

Mut3_Repl Diff = Mut3_Repl ordered-WT_Avg;

Mut3_Rep2 Diff = Mut3_Rep2 ordered-WT_Avg;

Mut3_Rep3_Diff = Mut3_Rep3_ ordered-WT_Avg;

Mut3_diffs = horzcat (Mut3_Repl Diff, Mut3_Rep2 Diff, Mut3_Rep3_ Diff);
Mut3_Avg diffs = mean(Mut3_diffs,2);

% Chain A and B difference

Mut3_diffs A =

horzcat (Mut3_diffs(1:99,1) ,Mut3_diffs(1:99,2) ,Mut3_diffs(1:99,3));
Mut3_diffs B =

horzcat (Mut3 diffs(100:198,1),Mut3 diffs(100:198,2) ,Mut3_diffs(1:99,3));

% Plotting Chain A I84V Differences to Average WT
figure

x = 1:99;

Mut3_A bar_graph = bar (x,Mut3_diffs A);

Mut3_A bar_graph (1) .FaceColor="r"';

Mut3_A bar_graph (2) .FaceColor="'b';

Mut3_A bar_graph (3) .FaceColor="'g"';

Mut3_A bar graph(l) .EdgeColor='r"';

Mut3_A bar_graph (2) .EdgeColor='b';

Mut3_A bar_graph (3) .EdgeColor="'g"';

title('Chain A M46I+V82F+184V Protein RMSF Differences')

xlabel ('Atom Number')

ylabel ('RMSF Difference')

legend ('M46I+V82F+I184V Repl Difference', 'MA6I+VB2F+I84V Rep2
Difference', 'M46I+V82F+I84V Rep3 Difference')

% Plotting Chain B 184V Differences to Average WT
figure

X = 1:99;

Mut3_B_bar_graph = bar (x,Mut3_diffs B);
Mut3_B_bar_graph (1) .FaceColor="'r"';
Mut3_B_bar_graph (2) .FaceColor="'b';
Mut3_B_bar_graph (3) .FaceColor="qg"';
Mut3_B_bar_graph (1) . EdgeColor="xr";
Mut3_B_bar_graph (2) . EdgeColor="b';
Mut3_B_bar_graph (3) .EdgeColor="g";

title('Chain B M46I+V82F+I84V Protein RMSF Differences')

xlabel ('Atom Number')

ylabel ('RMSF Difference')

legend ('M46I+V82F+184V Repl Difference', 'MAG6I+V82F+I84V Rep2
Difference', 'M46I+V82F+184V Rep3 Difference')

139

RMSF Difference

RMSF Difference

Chain A M461+V82F+184V Protein RMSF Differences

1
I 11461 +V/82F+184V Rep1 Difference
0.8l I 1461 +V82F+184V Rep2 Difference |
I M461+VB2F +184V Rep3 Difference
06 .
041 :
0.2 .
: | | ‘
0
02 .
04 4
‘06 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 100
Atom Number
Chain B M461+V82F+184V Protein RMSF Differences
08 T T T T T T T T T
I 11461 +V/82F +184V Rept Difference
06F I 11461 +V82F+184V Rep2 Difference |
[M461+VE2F +184V Rep3 Difference
‘0.8 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 100

Atom Number

12

140

Bar plot of average mutation differences com-
pared to WT

avg_diffs = horzcat (Mutl 2wg diffs Mut2 Avg diffs Mut3_2awvg diffs);

ficure

x=1:198;

bar_graph = bar(x Avg diffs);

bar_graph(l) .FaceCclor="'x"';

bar_graph(l) .EdgeCclor="'1x"';

bar_graph(2) .FaceColor="'b';

bar_graph (2} .EdgeCcloxr="b';

bar_graph(2) .FaceCclor="qg';

bar_graph(2) .EdgeColor="qg';

title{'Protein RMSF Differences Coupared to WT')

xlabel (' 2tom Number')

ylabel {'RMSF Difference')

legend (' I84V Difference', 'V22+I124V Difference',6 'MAGI+V22F+I24V
Difference')

Protein RMSF Differences Compared to WT

0.6 T

I 154V Difference
ok I \/52+184V Difference
; [M461+V82F+184V Difference

021 q

02F

RMSF Difference

_0 .8 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Atom Number

Calculating Significant Differences to WT

#Note: Significant difference is defined by having a
#difference compared to the wild type RMSF that is greater than the
¥standard deviation of the 2 WT data points for each residue.

13

141

$Preallocate mutation vectors
Mutl_statsig = ones(1,198);
Mut2_statsig = ones(1,198);
Mut3_statsig = ones(1,198);
WT_stdev = std (WT_Comp') ;
for i = 1:198
if (-WT_stdev(i)) <= Mutl_Avg diffs(i) && Mutl_Avg diffs(i)
WT_stdev (i)
Mutl statsig(i)
else
Mutl statsig(i) = Mutl_Avg diffs(i);
end
if (-WT_stdev(i)) <= Mut2_Avg diffs(i) && Mut2 Avg diffs(i)
WT_stdev (i)
Mut2_statsig(i) = 0;
else
Mut2_statsig(i) = Mut2_Avg_ diffs(i);
end
if (-WT_stdev(i)) <= Mut3_Avg diffs(i) && Mut3_Avg diffs(i)
WT_stdev (i)

0;

Mut3_statsig(i) = 0;
else
Mut3_statsig(i) = Mut3_Avg diffs(i);
end
end
statsig = [Mutl_statsig;Mut2_statsig;Mut3_statsigl ';

$Bar Plot of Significant RMSF Differences
figure
Xx=1:198;
statsig_bar_graph = bar (x,statsig);
statsig_bar_graph(l) .FaceColor='r';
statsig_bar_graph (1) .EdgeColor="'r"';
statsig_bar_graph (2) .FaceColor="'b';
statsig_bar_graph (2) .EdgeColor="b';
statsig_bar_graph (3) .FaceColor="'g";
statsig_bar_graph (3) .EdgeColor="g";
title('Significant Protein RMSF Differences')
xlabel ('Atom Number')
ylabel ('RMSF Difference (Angstroms)')
legend('I84V Difference', 'V82+I84V Difference', 'MA6I+V82F+184V
Difference')

<=

<=

<=

142

Significant Protein RMSF Differences

0.6 T T
I 134V Difference
ot I \/52+184V Difference |
: [M461+V82F+184V Difference

0.2

02

RMSF Difference (Angstroms)

Il 1 ! 1 1 !

0 20 40 60 80 100 120 140 160 180 200
Atom Number

Print Significant

Mutl_sigdiff = [];
Mut2_sigdiff = [];
Mut?_sigdiff = [];
for i = 1:28;
if Mutl _statsig{i) ~= ©
Mutl _sigdiff = [Mutl_sigdiff; i, Mutl_statsig(il];
if Mut2_statsig{i) ~= ©
Mut2 sigdiff = [Mut2_sigdiff; i Mut2 statsig(il];
if Mut2_statsig{i) ~= ©
Mut3_sigdiff = [Mut3_sigdiff; i, Mut3_statsig(i}];
end
end
end
end

Published with MATLAB® R2015a

15

143

B.3 Ligand RMSF Script

Table of Contents

Reordering Ligand RMSE VAIUES ... 1
TINDOTE BB urcinsunssosssmnascsntenssssssen s ep 8 55 ST A AP R TS 1
184V Ligand RMSF o 1
VB2F 184V Tiisaiid RVISE sussmnress s i s i s i e s ey 2
MAGL VB2E I8AV Lo e 3
WAL TYP oo e e 4
Compiled Ligand RMSF ... e 5

Preallocate vectors
Plot statistically significant differences
PriniteStatistically Sigmbcanti e e e 11

Reordering Ligand RMSF Values

$Takes the unsorted Ligand RMSF data and returns RMSF values in the
$following order:
{w1,c2,c3,c4,C5,06,C7,S8,09,010,N11,C12,C13,C14,C15,Cl6,
$C17,018,C19,N20,C21,022,023,C24,C25,026,C27,028,C29,C30,C31,C32,C33,034,
$035,36 ,C37, €38}

pdbOrder =
[1,2,3,4,5,6,8,9,10,7,11,12,16,13,17,14,15,18,19,20,32,21,22,38,23,33,24,34,25,35

Import PBD

$PDB=importdata ('MQP_I84V.pdb') ;

184V Ligand RMSF

$Import data in .txt file format

Mutl_Repl = importdata ('MQP_I84V_Ligand RMSF.txt');
Mutl Rep2 = importdata ('MQP_I84VRep2 Ligand RMSF.txt');
Mutl Rep3 = importdata ('MQP_I84VRep3_ Ligand RMSF.txt');

$Create current data matrix to be sorted into new matrix with proper
atom

$ordering. Matrix sorted based on first column of pdbOrder.

currentA = [pdbOrder;Mutl_Repl;Mutl_Rep2;Mutl Rep3]';

sortedA = sortrows (currentl,l);

yl = sortedA(:,2);

y2 sortedA(:,3);

y3 = sortedA(:,4);

Mutl_ Comp = horzcat(yl,y2,y3);

Mutl_Avg = mean(Mutl_ Comp, 2) ;

$Generate Ligand RMSF graph
figure

x = 1:38;

plok (x50, M x,¥2, Yot jxyEs, etk

144

title{'I24V Ligand RMSF'}
ylabel {' RMSF')

xlabel {'Atom Number')
axis{[0 28 0 2.5])
legend{'Repl', 'Rep2', 'Rep2')}

184V Ligand RMSF

25 T T T
Rep1
Rep2
——— Rep3
2+ 4
15
w
[2]
=
a4
1F
05
O 1 1] 1 1 1 1
0 5 10 15 20 25 30 35

Atom Number

VV82F_I84V Ligand RMSF

#¥Import data in .txt file format

Mut2_Repl = iwmportdata ('MOP V22F+I24V_Ligand RMSF.txt'};
#Mut2_Rep2 = importdata{''};

Mut2_Rep? = importdata ('MOP V22F+I24VRep2 Ligand RMSF.txt');

%Create current data matrix to be sorted into new matrix with proper
atom

¥ordering. Matrix sorted based on first column of pdbOrder.

currentB = [pdbOrder;Mut2 Repl;Mut2 Rep2]';

sortedB = sortrows {currentB,1l);

v4 sortedB{:,2);

¥5 = sortedB{:,2);

%y6 = sortedr{:, 4);

Mut2_ Comp = horzcat(yd, y5);

Mut2 Avg = wmean(Mut2_Comp, 2) ;

#Generate Ligand RMSF graph
ficure

145

x = 1:38;

plot{x,v4,'x"' ,x,¥5,'k"}
title('V22F+I24V Ligand RMSF')
ylabel {'RMSF')

xlabel (' 2Atom Number')

axis ([0 28 0 2.5])
legend{'Repl', 'Rep2')

V82F+I84V Ligand RMSF

25 T T T T
Rep1
Rep3
2t i
15 i
Ll
[2]
=
o
1F i
05 A
0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Atom Number

M46]_V82F__I84V

#¥Import data in .txt file format

Mut2 Repl = importdata{'MQP M4&6I+V32F+I24V_Ligand RMSF.txt'};
Mut3_Rep2 = importdata ('MOP M46I+V22F+I84VRep2 Ligand RMSF.txt'};
Mut3_Rep3 = importdata ('MOP M46I+V22F+I84VRep2 Ligand RMSF.txt');

%#Create current data matrix to be sorted into new matrix with proper
atom

¥ordering. Matrix sorted based on first column of pdbOrder.

currentC = [pdbOrder;Mut2 Repl;Mut2 Rep2;Mut2 Rep2]';

sortedC = sortrows (currentC,1l) ;

v7 = sortedC({:,2);

v8 = sortedC({:,2);

¥v9 = sortedC({:,4);

Mut2_Comp = horzcat{y7,v2,y9);

Mut2_Avg = mean (Mut2_Coup,2) ;

146

%¥Generate Ligand RMSF graph

figure

X = 1:38;

plotix, ¥? "x* x,y8, 'b' %, v9, "g"}
title ('M46I+V22F+I24V Ligand RMSF')
ylabel {'RMSF')

xlabel {'2tom Numbexr')

axis ([0 28 0 2.5])

legend{'Repl', 'Rep2', 'Rep2')

e M461+V82F+184V Ligand RMSF
Rep1
Rep2
— Rep3
2t 4
15
TR
wn
=
ad
1F
05
0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Atom Number

Wild Type

#Note: WT pdb file correctly orders ligand atoms,the compiled matrix
of

¥reps does not need to be sorted.

¥Import data in .txt file format

WT_Repl = importdata ('MQOP WT_Ligand RMSF.txt');

WT_Rep2 = importdata ('MOP WTRep2 Ligand RMSF.txt');

WT_Rep3 = importdata('MQOP WTRep2 Ligand RMSF.txt'};

%Create current data matrix., Since the WT is correctly ordered the
current

fmatrix is equivalent to compiled ordered matrix.

WT_Coup = [WT_Repl;WT_Rep2;WT_Rep2]':

WT_Avg = mean (WT_Comp, 2) ;

147

%Generate Ligand RMSF graph

figure

X = 1:38;

plot (x,WT_Repl,'r' x WT_Rep2,'b' x WI_Rep2,'qg')
title {'WT Ligand RMSF')

ylabel {'RMEF')

xlabel {'2tom Numbexr')

axis ([0 28 0 2.5])

legend{'Repl', 'Rep2', 'Rep2')

WT Ligand RMSF

25 T T T T
Rep1
Rep2
——— Rep3
2+ 4
15
L
wn
=
a4
1F
05
O 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Atom Number

Compiled Ligand RMSF

%Compile average RMSF values into a matrix dimensioned 38x4.
Avg = horzcat (HT_Avg,Mutl Awvg, Mut2 Awvg, Mutl_2Avyg) ;

%¥Generate Average Ligand RMSF graph

figure

X = 1:38;

plot (X, WT_Awvg, 'k' ,x Mutl 2wy, 'r' x Mubt2 Avg,'b' x Mut2_2Avyg, 'g')
title{'Average Ligand RMSF')

ylabel {'RMSF')

xlabel {'2tom Numbexr')

axis ([0 28 0 2.5])

legend ('WT Zwvg','I24V Avg','VA2F+I84V Avg', 'M4GI+VA2F+I84V Avyg')

%124V Differences to Average WT

148

Mutl_Repl Diff = yl1-WT_Avg;
Mutl_Rep2 Diff = y2-WT_Avg;
Mutl_ Rep3_Diff = y3-WT_Avg;
Mutl_diffs = horzcat (Mutl_Repl Diff, Mutl Rep2 Diff, Mutl Rep3 Diff);

figure

x = 1.:38;

Mutl_bar graph = bar(x,Mutl_diffs);

Mutl_bar_ graph(l).FaceColor='r';

Mutl bar graph(2).FaceColor='b';

Mutl bar graph(3).FaceColor='g';

title('I84V Ligand RMSF Differences to Average WT RMSF')
xlabel ('Atom Number')

ylabel ('RMSF Difference')

axis ([0 38 -0.3 1.1]1)

legend('Repl Difference', 'Rep2 Difference', 'Rep3 Difference')

$V82F+I84V Differences to Average WT

Mut2_Repl Diff = y4-WT_Avg;

Mut2_ Rep2 Diff Y3 -WT_Avyg;

Mut2_Rep3_ Diff = y5-WT_Avg;

Mut2_diffs = horzcat (Mut2 Repl Diff, Mut2 Rep3 Diff);

figure

x = 1:38;

Mut2_bar graph = bar (x,Mut2_diffs);

Mut2_bar_graph(l) .FaceColor="r';
Mut2_bar_ graph(2) .FaceColor='b';

title ('V82F+I84V Ligand RMSF Differences to Average WT RMSF')
xlabel ('Atom Number')

ylabel ('RMSF Difference')

axis ([0 38 -0.3 1.1])

legend('Repl Difference', 'Rep3 Difference')

$M46I+V82F+I84V Differences to Average WT

Mut3_Repl Diff = y7-WT_Avg;

Mut3_Rep2 Diff y8-WT_Avyg;

Mut3_Rep3_Diff = y9-WT_Avg;

Mut3_diffs = horzcat (Mut3_Repl Diff, Mut3_Rep2 Diff, Mut3_Rep3_ Diff);

figure

X = 1:38;

Mut3_bar graph = bar (x,Mut3_diffs);

Mut3_bar graph(l).FaceColor='r';

Mut3_bar_ graph(2) .FaceColor='b';
Mut3_bar_ graph(3) .FaceColor="g';

title ('M46I+V82F+I84V Ligand RMSF Differences to Average WT RMSF')
xlabel ('Atom Number')

ylabel ('RMSF Difference')

axis ([0 38 -0.3 1.1])

legend('Repl Difference', 'Rep2 Difference’', 'Rep3 Difference'’)

$Calculate average differences between mutation and WT RMSF values
Mutl Diff = Avg(:,2)-Avg(:,1);

149

Mut2 Diff = Avg(:,3)-Avg(:,1);
Mut3 _Diff = Avg(:,4)-Avg(:,1);
diff = horzcat (Mutl Diff, Mut2 Diff, 6 Mut3 Diff);

$Calculte standard deviations of RMSF differences
Mutl_stdev = std(Mutl_diffs,0,2);
Mut2_stdev = std(Mut2_diffs,0,2);
Mut3_stdev = std(Mut3_diffs,0,2);
stdev = horzcat (Mutl_stdev, Mut2_stdev,Mut3_stdev) ;

$Generates a bar plot of RMSF difference values

figure

x = 1:38;

bar_graph = bar(x,diff);

$errorbar (x,diff, stdev) %figure out how to add errorbars
bar graph(l).FaceColor="'r"';

bar graph(2).FaceColor='b"';

bar_ graph(3).FaceColor="g";

title('Ligand RMSF Differences to Average WT RMSF')

xlabel ('Atom Number')

ylabel ('RMSF Difference')

legend('I84V Difference', 'V82F+I83V Difference', 'M46I+V82F+I84V
Difference')

$%Statistically Significant differences between mutation and WT
$Note: Statistically significant difference is defined by having a
$difference compared to the wild type RMSF that is greater than the
$standard deviation of the 3 WT data points at each specific atom.

150

Average Ligand RMSF

25

15[

RMSF

T T T T

— WT Avg

184V Avg

VB2F +184V Avg
M461+V82F+184V Avg

1 Il ! ! 1 1 Il

5 10 15 20 25 30 35
Atom Number

184V Ligand RMSF Differences to Average WT RMSF

08

06

041

RMSF Difference

[Rept Difference | -
I Rep? Difference
[Rep3 Difference

1 1 Il 1 1 1 Il

5 10 15 20 25 30 35
Atom Number

151

RMSF Difference

RMSF Difference

V82F+I84V Ligand RMSF Differences to Average WT RMSF

1F I Rep1 Difference
I Reps Difference

o
-
T

o
N
T

1 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Atom Number

M461+V82F+I84V Ligand RMSF Differences to Average WT RMSF

4 —; Rep1 Difference |
I Rep? Difference
Rep3 Difference

©
(=2

<o
'S

o
N

1 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Atom Number

152

Ligand RMSF Differences to Average WT RMSF

0.6
I 154V Difference
L B /52F +183V Difference i
: M4861+V82F+184V Difference
04r .
©
o
&
03[4
£
o
% 02t -
=
1
01 A
_01 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Atom Number
Preallocate vectors
Mutl statsig = ones({l,28);
Mut2_statsig = cnes(l,28);
Mut2?_statsig = ones({l,28);
WT_stdev = std(WT_Comp')';
for i = 1:28
if (-WT_stdew(i}) < Mutl Diff{i} && Mut2 Diff{i} > WT_stdewv (i)
Mutl_statsig(i) = 0;
else
Mutl_statsig{i) = Mutl Diff {i);
end
if (-WT_stdewv({i)}) < Mut2 Diff (i) && Mut2 Diff (i} > WT_stdev (i}
Mut2_statsig({i) = 0;
else
Mut2 statsig({i) = Mut2 Diff (i) ;
end
WT_stdev (i)

if {-WT_stdew (i)} < Mut2 Diff{i} && Mut2 Diff (i} >

Mut2_statsig({i) = 0;
else
Mut2_statsig(i) = Mut3_Diff (i) ;
end
end

statsig = [Mutl_statsig;Mut2_statsig;Mut3_statsigl';

10

153

Plot statistically significant differences

ficure

X = 1:398;

statsig_bkar_graph = bar(x,statsig);

statsig_bkar_graph{l) .FaceColor="x';

statsig_kar_graph(2) .FaceColor="'L';

statsig_bar_graph(3) .FaceColor='g';

title('Statistically Significant Ligand RMSF Differences')

xlabel {'2tom Numbexr')

vlabkel {'RMSF Difference')

legend (' I84V Difference', 'V82F+I24V Difference',6 'MAGI+VI2F+I84V
Difference'}

Statistically Significant Ligand RMSF Differences

0.15
[184V Difference
I /5 2F +184V Difference
[M461+V82F +184V Difference
01 -
@
2
g 0.05 [E
=
a
w
175} 0 1L
= | 1
(4
005F 4
_01 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Atom Number

Print Statistically Significant

Mutl sigdiff = [J;
Mut2 sigdiff = [J;
Mut?_sigdiff 1;
for i = 1:28;
if Mutl_statsig({i) ~= 0
Mutl sigdiff = [Mutl_sigdiff; i ,Mutl_statsig(i)];
if Mut2_statsig{i) ~= 0
Mut2 sigdiff = [Mut2_sigdiff; i ,Mut2_statsig(il];
if Mut2_statsig({i) ~= 0

11

154

Mut3_sigdiff = [Mut3_sigdiff;

end

end

end
end

Published with MATLAB® R2015a

i,Mut3_statsig(i)];

155

B.4 Van der Waals Interactions Script

van der Waals Energies

Table of Contents

IINEIATIZIE Bl s s 00 5 0 P S 305 1
Openand Format WL R LIt e coemmennsusnnmnsssassasmmsnmsss s s o s e s i sen st

©pen andForinat W Rep 2 Datdiesmeomrmm s i s i s i o e ey

Open and Format WT Rep 3 DA ..ot oot

Open and Format Mutl Rep 1 Data
Open and Format Mutl Rep 2 Data
Open and Format Mutl Rep 3 Data
Open and Format Mut2 Rep 1 Data
Open and Format Mut2 Rep 2 Data
Open and Format Mut2 Rep 3 Data
Open and Format Mut3 Rep 1 Data
Open and Format Mut3 Rep 2 Data
Open and Format Mut3 Rep 3 Data

Separate W Chain:A and-Chain B into: Two Data: Sets ..o 16
Separate Mutl Chain A and Chain B into Two Data Setsccoocooiiiiiiiiiiiiiiiiiiiiiiiee 18
Separate Mut2 Chain A and Chain B into Two Data Setsccccooiiiiiiiiiiieiiiiniiiiieiee e 19
Separate Mut3 Chain A and Chain B into Two Data Setscccoooiiiiiiiiiiiiiiiiieiiiiieeeie 21
WT Average and Significant ENeIZIEscooiiiiiiiiiiiiiiiiii e 22
Mutl Average arid S1IoniFICANTTENOTRTICS wuurmcsmssrs s o s e e s 26
Mut2-Average and-Sighificant BNETBIES s s s s s o saaiosss 29
Mut3 Average and:Sighificant ENEISIes s e s s 32
Differences t0 WIld THDPE ...oooiiiiiiii it 36
Average Significant Engery Differences to WT ...t 37

This script loads the VDW energies and generates bar plots.

Initialize files

$Assuming 3 mutations and and WT with 3 replicates each.

WTRepl filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdW Matlab
\MQP_WT_vdWresults residue.vdwen';

WIRep2_ filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdW Matlab
\MQP_WTRep2 vdWresults_residue.vdwen';

WTRep3_filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdWw Matlab
\MQP_WTRep3_vdWresults_residue.vdwen';

MutlRepl filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdw
Matlab\MQP_I84VRepl vdWresults residue.vdwen';

MutlRep2_filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdw
Matlab\MQP_I84VRep2 vdWresults residue.vdwen';

MutlRep3_filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdwWw
Matlab\MQP_I84VRep3_ vdWresults_ residue.vdwen';

Mut2Repl filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdw
Matlab\MQP V82F+I84V vdWresults residue.vdwen';

Mut2Rep2_filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdw
Matlab\MQP_V82F+I84VRep2 vdWresults residue.vdwen';
Mut2Rep3_filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdw
Matlab\MQP_V82F+I84VRep3_ vdWresults_residue.vdwen';

156

van der Waals Energies

Mut3Repl filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdw
Matlab\MQP_M46I+V82F+I84V_vdWresults residue.vdwen';
Mut3Rep2_filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdw
Matlab\MQP TripleMutRep2 vdWresults residue.vdwen';
Mut3Rep3_filename = 'C:\Users\etcaputo\Downloads\MatLab Work\vdw
Matlab\M46I+V82F+I84VRep3 vdWresults residue.vdwen';

startRow = 3;

formatSpec = '%35%3s%13s%4s%s%["\n\zx]';

% Open and textscan WT files

£fileIDWT1l = fopen (WTRepl filename, 'r'};
dataArrayWTl =

textscan(£fileIDWT1, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines', startR
dataArrayWT1{1l} = strtrim(dataArrayWT1{l}); $removes white space that

columns are delimited by
dataArrayWT1{2} = strtrim(dataArrayWT1l{2});
dataArrayWT1{3} = strtrim(dataArrayWT1{3});

fclose (£ileIDWTL) ;

£ileIDWT2 = fopen (WTRep2_ filename, 'r');
dataArrayWT2 =
textscan(£fileIDWT2, formatSpec, 'Delimiter', '', 'WhiteSpace','', 'HeaderLines', startR
dataArrayWT2{1l} = strtrim(dataArrayWT2{1}); %removes white space that
columns are delimited by
dataArrayWT2{2} = strtrim(dataArrayWT2{2});
dataArrayWT2{3} = strtrim(dataArrayWT2{3});

£ileIDWT3 = fopen (WTRep3_filename, 'r');
dataArrayWT3 =
textscan (£fileIDWT3, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',6 startR
dataArrayWT3{1l} = strtrim(dataArrayWT3{1}); %removes white space that
columns are delimited by
dataArrayWT3{2} = strtrim(dataArrayWT3{2});
dataArrayWT3{3} = strtrim(dataArrayWT3{3});
% Open and textscan Mutl files
fileIDMutlRepl = fopen (MutlRepl_filename, 'r');
dataArrayMutlRepl =
textscan(fileIDMut1lRepl, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',s
dataArrayMutlRepl{l} = strtrim(dataArrayMutlRepl{l}); %removes white
space that columns are delimited by
dataArrayMutlRepl{2} = strtrim(dataArrayMutlRepl{2});
dataArrayMutlRepl{3} = strtrim(dataArrayMutlRepl{3});

fileIDMutlRep2 = fopen (MutlRep2 filename, 'r');
dataArrayMutlRep2 =
textscan(fileIDMutlRep2, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',s
dataArrayMutlRep2{1l} = strtrim(dataArrayMutlRep2{1l}); %removes white
space that columns are delimited by
dataArrayMutlRep2{2} = strtrim(dataArrayMutlRep2{2});
dataArrayMutlRep2{3} = strtrim(dataArrayMutlRep2{3})

i

fileIDMutlRep3 = fopen (MutlRep3_ filename, 'r');

157

van der Waals Energies

dataArrayMutlRep3 =
textscan(fileIDMutlRep3, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',s
dataArrayMutlRep3{1l} = strtrim(dataArrayMutlRep3{1l}); %removes white
space that columns are delimited by
dataArrayMutlRep3{2} = strtrim(dataArrayMutlRep3{2});
dataArrayMutlRep3{3} = strtrim(dataArrayMutlRep3{3})

i

% Open and textscan Mut2 files
fileIDMut2Repl = fopen (Mut2Repl_ filename, 'r');
dataArrayMut2Repl =
textscan(fileIDMut2Repl, formatSpec, 'Delimiter','', 'WhiteSpace', '', 'HeaderLines',s
dataArrayMut2Repl{1l} = strtrim(dataArrayMut2Repl{l}); %removes white
space that columns are delimited by
dataArrayMut2Repl{2} = strtrim(dataArrayMut2Repl{2});
dataArrayMut2Repl{3} = strtrim(dataArrayMut2Repl{3})

i

fileIDMut2Rep2 = fopen (Mut2Rep2_filename, 'r');
dataArrayMut2Rep2 =
textscan(fileIDMut2Rep2, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',s
dataArrayMut2Rep2{1l} = strtrim(dataArrayMut2Rep2{1l}); %removes white
space that columns are delimited by
dataArrayMut2Rep2{2} = strtrim(dataArrayMut2Rep2{2});
dataArrayMut2Rep2{3} = strtrim(dataArrayMut2Rep2{3});

fileIDMut2Rep3 = fopen (Mut2Rep3_filename, 'r');
dataArrayMut2Rep3 =
textscan(fileIDMut2Rep3, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',s
dataArrayMut2Rep3{1l} = strtrim(dataArrayMut2Rep3{1l}); %removes white
space that columns are delimited by
dataArrayMut2Rep3 {2} = strtrim(dataArrayMut2Rep3{2});
dataArrayMut2Rep3{3} = strtrim(dataArrayMut2Rep3{3});
% Open and textscan Mut3 files
fileIDMut3Repl = fopen (Mut3Repl filename, 'r');
dataArrayMut3Repl =
textscan(fileIDMut3Repl, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',s
dataArrayMut3Repl{l} = strtrim(dataArrayMut3Repl{l}); %removes white
space that columns are delimited by
dataArrayMut3Repl{2} = strtrim(dataArrayMut3Repl{2});
dataArrayMut3Repl{3} = strtrim(dataArrayMut3Repl{3})

i

fileIDMut3Rep2 = fopen (Mut3Rep2 filename, 'r');
dataArrayMut3Rep2 =
textscan(fileIDMut3Rep2, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',s
dataArrayMut3Rep2{1l} = strtrim(dataArrayMut3Rep2{1l}); %removes white
space that columns are delimited by
dataArrayMut3Rep2{2} = strtrim(dataArrayMut3Rep2{2});
dataArrayMut3Rep2{3} = strtrim(dataArrayMut3Rep2{3})

¥

fileIDMut3Rep3 = fopen (Mut3Rep3_filename, 'r');
dataArrayMut3Rep3 =
textscan(fileIDMut3Rep3, formatSpec, 'Delimiter','', 'WhiteSpace','', 'HeaderLines',s
dataArrayMut3Rep3{1l} = strtrim(dataArrayMut3Rep3{1l}); %removes white
space that columns are delimited by

158

van der Waals Energies

dataArrayMut3Rep3{2} = strtrim(dataArrayMut3Rep3{2});
dataArrayMut3Rep3{3} = strtrim(dataArrayMut3Rep3{3});

Open and Format WT Rep 1 Data

$converts columns containing numeric strings to numbers
raw = repmat({''},length(dataArrayWT1{1}),length(dataArrayWT1l)-1) ;
for col=1:length(dataArrayWT1l)-1
raw(1:length (dataArrayWT1l{col}), col) = dataArrayWT1l{col};
end
numericData = NaN(size(dataArrayWTl{l},1),size(dataArrayWTl,z));
for col=[4,5]
$converts strings to numbers
rawData = dataArrayWTl{col};
for row = 1l:size(rawData,l);
$removes non numeric values
regexstr = ' (?<prefix>.*?) (?<numbers>([-]* (\d+[\,]1*)+[\.]
{o,1}\a* [eEdD] {0,1} [-+1*\a*[il1{o0,1}) | ([-1* (\a@+[\,1*)*[\.1{1,1}\d
+[eEdD] {0, 1} [-+]1*\d*[i]{0,1})) (?<suffix>.*)"';
try
result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;
%$detects commas in non-thousand place
invalidThousandsSeparator = false;
if any(numbers=="',"');
thousandsRegExp = '"\d+? (\,\d{3})*\.{0,1}\d*$";
if isempty (regexp(thousandsRegExp,',',6 'once'));
numbers = NalN;
invalidThousandsSeparator = true;
end
end
$convert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan (strrep (numbers,',',''),'%$f"');
numericData (row,col) = numbers{l};
raw{row,col} = numbers{l};
end
catch me
end
end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
$Replaces non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns); %
Find non-numeric cells
rawNumericColumns (R) = {NaN}; % Replace non-numeric cells
$Import into columns
WTReplChain = rawCellColumns(:,2);
WTReplResidue = rawCellColumns(:,3);

WTReplResNum = cell2mat (rawNumericColumns (:,1)) ;
WTReplEnergy = cell2mat (rawNumericColumns (:,2));
4

159

van der Waals Energies

$Clear temporary variables
clearvars WTRepl_ filename startRow formatSpec fileIDWT1l dataArrayWTl ans raw col n

Open and Format WT Rep 2 Data

$converts columns containing numeric strings to numbers

raw = repmat ({''},length(dataArrayWT2{1}),length(dataArrayWT2)-1) ;

for col=1:length(dataArrayWT2)-1
raw (1:length (dataArrayWT2{col}),col) = dataBArrayWT2{col};

end

numericData = NaN(size(dataArrayWTz{l},1),size(dataArrayWT2,2));

for col=[4,5]

$converts strings to numbers
rawData = dataArrayWT2{col};
for row=1l:size(rawData,l);
$removes non numeric values
regexstr = ' (?<prefix>.*?) (?<numbers>([-]* (\d+[\,]1*)+[\.]
{ 0L} \ax [€EAD] (01} [-#] #\ax[i1d40,1) | €[=1= (Yasl\; 1#) = [T fin, 1)Aa
+[eEdD] {0,1} [-+]1*\d*[1]{0,1})) (P<suffix>.*)"';

try

result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;

%detects commas in non-thousand place
invalidThousandsSeparator = false;

if any(numbers=="',"');

end

thousandsRegExp = '"“\d+? (\,\d{3})*\.{0,1}\a*$";
if isempty (regexp (thousandsRegExp,',',6 'once'));
numbers = NalN;
invalidThousandsSeparator = true;
end

%convert numeric strings to numbers.

if

end

~invalidThousandsSeparator;

numbers = textscan (strrep (numbers,',',''), '%f');
numericData (row, col) = numbers{l};

raw{row,col} = numbers{1l};

catch me

end
end
end
$Split data int

o numeric and cell columns.

rawNumericColumns = raw(:, [4,5]);

rawCellColumns
$Replaces non-n

R = cellfun(@(x
Find non-numer

= raw(:, [1,2,3]);
umeric cells with NaN

) ~isnumeric(x) && ~islogical (x),rawNumericColumns) ;

ic cells

rawNumericColumns (R) = {NaN}; % Replace non-numeric cells
$Import into columns
WTRep2Chain = rawCellColumns(:,2);

WTRep2Residue =
WTRep2ResNum =

rawCellColumns(:,3) ;
cell2mat (rawNumericColumns (:, 1)) ;

160

van der Waals Energies

WTRep2Energy = cell2mat (rawNumericColumns (:,2)) ;

$Clear temporary variables
clearvars WTRep2_ filename startRow formatSpec fileIDWT2 dataArrayWT2 ans raw col n

Open and Format WT Rep 3 Data

$converts columns containing numeric strings to numbers
raw = repmat ({''},length(dataArrayWT3{1}),length(dataArrayWT3)-1) ;
for col=1l:length(dataArrayWT3)-1
raw(1:length (dataArrayWT3{col}), col) = dataArrayWT3{col};
end
numericData = NaN(size(dataArrayWT3{l},1),size(dataArrayWT3,2));
for col=[4,5]
$converts strings to numbers
rawData = dataArrayWT3{col};
for row=1l:size(rawData,l) ;
$removes non numeric values
regexstr = ' (?<prefix>.*?) (?<numbers>([-]* (\d+[\,]1*)+[\.]
{01} \a* [€EAD] {01} [~+] #\@* [11 {01}) [G0-1% (Na#LAs | %) # [N o1 {251)Nd
+[eEdD] {0,1} [-+]1*\d*[1]{0,1})) (P<suffix>.*)"';
try
result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;
%detects commas in non-thousand place
invalidThousandsSeparator = false;
if any(numbers==',"');
thousandsRegExp = '"“\d+? (\,\d{3})*\.{0,1}\a*$";
if isempty (regexp(thousandsRegExp,',',6 'once'));
numbers = NaN;
invalidThousandsSeparator = true;
end
end
%convert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan (strrep (numbers,',',''),"'$f"');
numericData (row, col) = numbers{l};
raw{row,col} = numbers{1l};
end
catch me
end
end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
$Replaces non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns); %
Find non-numeric cells
rawNumericColumns (R) = {NaN}; % Replace non-numeric cells
$Import into columns
WTRep3Chain = rawCellColumns(:,2);
WTRep3Residue = rawCellColumns(:,3);

161

van der Waals Energies

WTRep3ResNum = cell2mat (rawNumericColumns (:,1)) ;
WTRep3Energy = cell2mat (rawNumericColumns (:,2)) ;
$Clear temporary variables

clearvars WTRep3_filename startRow formatSpec fileIDWT3 dataArrayWT3 ans raw col n

Open and Format Mut1 Rep 1 Data

$converts columns containing numeric strings to numbers
raw =
repmat ({''},length (dataArrayMutlRepl{1l}),length(dataArrayMutlRepl)-1) ;
for col=1:length(dataArrayMutlRepl) -1
raw (1:length(dataArrayMutlRepl{col}),col) =
dataArrayMutlRepl{col};
end
numericData =
NaN(size(dataArrayMuthepl{l},l),size(dataArrayMuthepl,2));
for col=[4,5]
$converts strings to numbers
rawData = dataArrayMutlRepl{col};
for row=1l:size(rawData,l);
$removes non numeric values
regexstr = ' (?<prefixs>.*?) (?<numbers>([-]1* (\d+[\,]1*)+[\.]
{o,1}\a* [eEAD] {0,1} [-+] *\a*[i]{0,1}) | ([-1* (\@+[\,1*)*[\.1{1,1}\d
+[eEAD] {0,1} [-+]1*\d*[1] {0,1})) (?<suffix>.*)"';
try
result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;
%$detects commas in non-thousand place
invalidThousandsSeparator = false;
if any (numbers=="',"');
thousandsRegExp = '“\d+? (\,\d{3})*\.{0,1}\d*s";
if isempty (regexp (thousandsRegExp,',',6 'once'));
numbers = NaN;
invalidThousandsSeparator = true;
end
end
$convert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan(strrep (numbers,',','"'),"'%f");
numericData (row,col) = numbers{l};
raw{row,col} = numbers{l};
end
catch me
end
end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
$Replaces non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns); %
Find non-numeric cells

162

van der Waals Energies

rawNumericColumns (R) = {NaN}; % Replace non-numeric cells

$Import into columns

MutlReplChain = rawCellColumns(:,2);
MutlReplResidue = rawCellColumns(:,3);
MutlReplResNum = cell2mat (rawNumericColumns(:,1)) ;
MutlReplEnergy = cell2mat (rawNumericColumns(:,2)) ;

$Clear temporary variables
clearvars MutlRepl filename startRow formatSpec fileIDMutlRepl dataArrayMutlRepl a

Open and Format Mut1 Rep 2 Data

$converts columns containing numeric strings to numbers
raw =
repmat ({''},length (dataArrayMutlRep2{1}),length(dataArrayMutlRep2)-1) ;
for col=1:length(dataArrayMutlRep2) -1
raw (1:length (dataArrayMutlRep2{col}),col) =
dataArrayMutlRep2{col};
end
numericData =
NaN (size (dataArrayMutlRep2{1}, 1), size (dataArrayMutlRep2,2));
for col=[4,5]
$converts strings to numbers
rawData = dataArrayMutlRep2{col};
for row=1l:size(rawData,l);
$removes non numeric values

regexstr = ' (?<prefix>.*?) (?<numbers>([-]* (\d+[\,]*)+[\.]
{o,1}\a* [eEAD] {0, 1} [-+]*\d*[i]{0,1}) | ([-1*(\a+[\,]1*)*[\.]1{1,1}\d
+[eEdD] {0, 1} [-+]1*\d*[i]{0,1})) (?<suffix>.*)"';

try

result = regexp(rawData{row},h regexstr, 'names') ;
numbers = result.numbers;
%detects commas in non-thousand place

invalidThousandsSeparator = false;

if any(numbers=="',"');
thousandsRegExp = '“\d+? (\,\d{3})*\.{0,1}\d*$";
if isempty (regexp (thousandsRegExp, ', ', 'once'));

numbers = NalN;
invalidThousandsSeparator = true;
end
end
$convert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan (strrep (numbers,',',''),'$f");
numericData (row,col) = numbers{l};
raw{row,col} = numbers{l};
end
catch me
end
end
end
%Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);

163

van der Waals Energies

rawCellColumns = raw(:, [1,2,3]);

$Replaces non-numeric cells with NaN

R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns) ;
Find non-numeric cells

rawNumericColumns (R) = {NaN}; % Replace non-numeric cells

$Import into columns

MutlRep2Chain = rawCellColumns(:,2);

MutlRep2Residue = rawCellColumns(:,3);

MutlRep2ResNum = cell2mat (rawNumericColumns (:,1)) ;

MutlRep2Energy = cell2mat (rawNumericColumns (:,2)) ;

$Clear temporary variables

clearvars MutlRep2 filename startRow formatSpec fileIDMutlRep2 dataArrayMutlRep2 a

Open and Format Mut1 Rep 3 Data

$converts columns containing numeric strings to numbers
raw =

repmat ({''}, length(dataArrayMutlRep3{1}),length(dataArrayMutlRep3)-1) ;

for col=1:length(dataArrayMutlRep3) -1
raw(1:length (dataArrayMutlRep3{col}),col) =
dataArrayMutlRep3{col};
end
numericData =
NaN (size (dataArrayMutlRep3{1}, 1), size (dataArrayMutlRep3,2));
for col=[4,5]
$converts strings to numbers
rawData = dataArrayMutlRep3{col};
for row=1l:gsize(rawData,l) ;
$removes non numeric values
regexstr = ' (?<prefix>.*?) (?<numbers>([-]* (\d+[\,]1*)+[\.]
{0,1}\a* [eEAD] (0,1} [-+]1*\@* [11{0,1}) [€[-1#* (Na+I\;1*) *# [\.1{1;1}\d
+[eEAD] {0, 1} [-+]1*\d*[1]{0,1})) (P<suffix>.*)"';
try
result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;
%$detects commas in non-thousand place
invalidThousandsSeparator = false;
if any(numbers==',"');
thousandsRegExp = '"“\d+? (\,\d{3})*\.{0,1}\d*s";
if isempty (regexp (thousandsRegExp,',',6 'once'));
numbers = NaN;
invalidThousandsSeparator = true;
end
end
%convert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan(strrep(numbers,',',''),"'%f');
numericData(row,col) = numbers{l};
raw{row,col} = numbers{1l};
end
catch me
end

164

van der Waals Energies

end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
%Replaces non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns); %
Find non-numeric cells
rawNumericColumns (R) = {NaN}; % Replace non-numeric cells

$Import into columns

MutlRep3Chain = rawCellColumns(:,2);
MutlRep3Resgidue = rawCellColumns(:,3);
MutlRep3ResNum = cell2mat (rawNumericColumns(:,1)) ;
MutlRep3Energy = cell2mat (rawNumericColumns(:,2)) ;

$Clear temporary variables
clearvars MutlRep3_filename startRow formatSpec fileIDMutlRep3 dataArrayMutlRep3 a

Open and Format Mut2 Rep 1 Data

$converts columns containing numeric strings to numbers
raw =
repmat ({ ' '}, length (dataArrayMut2Repl{1l}),length(dataArrayMut2Repl)-1) ;
for col=1:length(dataArrayMut2Repl) -1
raw (1:length (dataArrayMut2Repl{col}),col) =
dataArrayMut2Repl{col} ;
end
numericData =
NaN (size (dataArrayMut2Repl{1l}, 1), size (dataArrayMut2Repl,2));
for col=[4,5]
$converts strings to numbers
rawData = dataArrayMut2Repl{col};
for row=1l:size(rawData,l);
$removes non numeric values

regexstr = ' (?<prefixs>.*?) (?<numbers>([-1* (\d+[\,]1*)+[\.]
{0,1} \a* [€EAD] {0,1] [-+] *¥Nax[4]14:0 /1)) [([=]#* (N[N,] 3> [V] {2, 10\d
+[eEAD] {0, 1} [-+]1*\d* [1] {0, 1})) (P<suffix>.*)"';

try

result = regexp(rawData{row}, regexstr, 'names');
numbers = result.numbers;
%$detects commas in non-thousand place

invalidThousandsSeparator = false;

if any(numbers=="',"');
thousandsRegExp = '"\d+? (\,\d{3})*\.{0,1}\d*$";
if isempty (regexp (thousandsRegExp,',',6 'once'));

numbers = NaN;
invalidThousandsSeparator = true;
end
end
$convert numeric strings to numbers.
if ~invalidThousandsSeparator;

numbers = textscan (strrep (numbers,',',''),'%f');
numericData (row,col) = numbers{l};
10

165

van der Waals Energies

raw{row,col} = numbers{l};
end
catch me
end
end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
$Replaces non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns); %
Find non-numeric cells
rawNumericColumns (R) = {NaN}; % Replace non-numeric cells

$Import into columns

Mut2ReplChain = rawCellColumns(:,2);
Mut2ReplResidue = rawCellColumns(:,3);
Mut2ReplResNum = cell2mat (rawNumericColumns(:,1)) ;
Mut2ReplEnergy = cell2mat (rawNumericColumns (:,2));

$Clear temporary variables
clearvars Mut2Repl filename startRow formatSpec fileIDMut2Repl dataArrayMut2Repl a

Open and Format Mut2 Rep 2 Data

$converts columns containing numeric strings to numbers
raw =
repmat ({''}, length(dataArrayMut2Rep2{1}),length(dataArrayMut2Rep2) -1) ;
for col=1:length(dataArrayMut2Rep2) -1
raw (1:length (dataArrayMut2Rep2{col}),col) =
dataArrayMut2Rep2{col} ;
end
numericData =
NaN (size (dataArrayMut2Rep2{1}, 1), size (dataArrayMut2Rep2,2));
for col=[4,5]
%converts strings to numbers
rawData = dataArrayMut2Rep2{col};
for row=1l:size(rawData,l);
$removes non numeric values
regexstr = ' (?<prefix>.*?) (?<numbers>([-]* (\d+[\,]*)+[\.]
{o,1}\a* [eEdD] {0, 1} [-+1*\a*[i1{0,1}) | ([-1*(\a@+[\,1*)*[\.1{1,1}\d
+[eEAD] {0,1} [-+]1*\d*[1]{0,1})) (?<suffix>.*)"';
try
result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;
$detects commas in non-thousand place
invalidThousandsSeparator = false;
if any(numbers=="',"');
thousandsRegExp = '"“\d+? (\,\d{3})*\.{0,1}\a*$";
if isempty (regexp(thousandsRegExp,', ', 'once'));
numbers = NaN;
invalidThousandsSeparator = true;
end
end

166

van der Waals Energies

$convert numeric strings to numbers.
if ~invalidThousandsSeparator;

numbers = textscan (strrep (numbers,',',''),'%f");

numericData (row,col) = numbers{l};
raw{row,col} = numbers{l};
end
catch me
end
end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
$Replaces non-numeric cells with NaN

R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns) ;

Find non-numeric cells
o

rawNumericColumns (R) = {NaN}; % Replace non-numeric cells

$Import into columns

Mut2Rep2Chain = rawCellColumns(:,2);
Mut2Rep2Residue = rawCellColumns(:,3);
Mut2Rep2ResNum = cell2mat (rawNumericColumns (:,1)) ;
Mut2Rep2Energy = cell2mat (rawNumericColumns(:,2)) ;

$Clear temporary variables

clearvars Mut2Rep2_filename startRow formatSpec fileIDMut2Rep2 dataArrayMut2Rep2 a

Open and Format Mut2 Rep 3 Data

$converts columns containing numeric strings to numbers

raw =

repmat ({''},length (dataArrayMut2Rep3{1}),length(dataArrayMut2Rep3)-1) ;

for col=1:length(dataArrayMut2Rep3) -1
raw(1:length(dataArrayMut2Rep3{col}),col) =

dataArrayMut2Rep3{col} ;

end

numericData =

NaN (size (dataArrayMut2Rep3{1}, 1), size (dataArrayMut2Rep3,2));

for col=[4,5]
$converts strings to numbers
rawData = dataArrayMut2Rep3{col};
for row=1l:size(rawData,l) ;
$removes non numeric values

regexstr = ' (?<prefixs>.*?) (?<numbers>([-]1* (\d+[\,]1*)+[\.]
{051} \@* [€EAD] {051} [~+] *\a* [11{0,;1}) | €[=1%* (Xa&[N; 1 #) * [\ <1 {1, L}

+[eEdD] {0,1} [-+]1*\d*[i]{0,1})) (?<suffix>.*)"';
try

result = regexp(rawData{row},regexstr,'names');

numbers = result.numbers;

%$detects commas in non-thousand place
invalidThousandsSeparator = false;

if any (numbers=="',"');

thousandsRegExp = '"\d+? (\,\d{3})*\.{0,1}\d*s";

if isempty (regexp (thousandsRegExp, ', "',

tonce')) ;

12

167

van der Waals Energies

numbers = NaN;
invalidThousandsSeparator = true;
end
end
%convert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan(strrep (numbers,',',''),"'%f');
numericData(row,col) = numbers{l};
raw{row,col} = numbers{1l};
end
catch me
end
end
end
%Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
$Replaces non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns); %
Find non-numeric cells
rawNumericColumns (R) = {NaN}; % Replace non-numeric cells
$Import into columns
Mut2Rep3Chain = rawCellColumns(:,2);
Mut2Rep3Residue = rawCellColumns(:,3);
Mut2Rep3ResNum = cell2mat (rawNumericColumns (:,1)) ;
Mut2Rep3Energy = cell2mat (rawNumericColumns(:,2)) ;

$Clear temporary variables
clearvars Mut2Rep3_filename startRow formatSpec fileIDMut2Rep3 dataArrayMut2Rep3 a

Open and Format Mut3 Rep 1 Data

$converts columns containing numeric strings to numbers
raw =
repmat ({' '}, length (dataArrayMut3Repl{1l}), length(dataArrayMut3Repl)-1) ;
for col=1:length(dataArrayMut3Repl) -1

raw (1:length (dataArrayMut3Repl{col}),col) =
dataArrayMut3Repl{col};
end
numericData =
NaN (size (dataArrayMut3Repl{1l}, 1), size (dataArrayMut3Repl,2));
for col=[4,5]

$converts strings to numbers

rawData = dataArrayMut3Repl{col};

for row=1l:size(rawData,l);

$removes non numeric values

regexstr = ' (?<prefixs>.*?) (?<numbers>([-1* (\d+[\,]1*)+[\.]
{0,1}\a* [eEAD] {0, 1} [-+]1*\a@*[i]{0,1}) | ([-1* (\@+[\,1*)*[\.1{1,1}\a
+[eEdD] {0, 1} [-+]1*\d*[i]{0,1})) (?<suffix>.*)"';

try

result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;
%$detects commas in non-thousand place

13

168

van der Waals Energies

invalidThousandsSeparator = false;

if any (numbers=="',"');
thousandsRegExp = '“\d+? (\,\d{3})*\.{0,1}\d*s";
if isempty (regexp (thousandsRegExp, ', ', 'once'));

numbers = NaN;

invalidThousandsSeparator = true;

end
end
$convert numeric strings to numbers.
if ~invalidThousandsSeparator;

numbers = textscan (strrep(numbers,',','"'),"’

numericData (row,col) = numbers{l};
raw{row,col} = numbers{l};
end
catch me
end
end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
$Replaces non-numeric cells with NaN

R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns) ;

Find non-numeric cells
°

rawNumericColumns (R) = {NaN}; % Replace non-numeric cells

$Import into columns

Mut3ReplChain = rawCellColumns(:,2);
Mut3ReplResidue = rawCellColumns(:,3);
Mut3ReplResNum = cell2mat (rawNumericColumns (:,1)) ;
Mut3ReplEnergy = cell2mat (rawNumericColumns (:,2));

$Clear temporary variables

clearvars Mut3Repl filename startRow formatSpec fileIDMut3Repl dataArrayMut3Repl a

Open and Format Mut3 Rep 2 Data

$converts columns containing numeric strings to numbers

raw =

repmat ({''}, length(dataArrayMut3Rep2{1}),length(dataArrayMut3Rep2)-1) ;

for col=1:length(dataArrayMut3Rep2) -1
raw (1:length (dataArrayMut3Rep2{col}),col) =
dataArrayMut3Rep2{col} ;
end
numericData =

NaN (size (dataArrayMut3Rep2{1}, 1), size (dataArrayMut3Rep2,2));

for col=[4,5]
$converts strings to numbers
rawData = dataArrayMut3Rep2{col};
for row=1l:size(rawData,l);
$removes non numeric values

regexstr = ' (?<prefix>.*?) (?<numbers>([-1* (\d+[\,]*)+[\.]

{o,1}\a* [eEdD] {0, 1} [-+]*\a*[i1{0,1}) | (I-1#%(\a+I\,1*)*[\.1{1,1}\d

+[eEAD] {0,1} [-+]1*\d*[1]{0,1})) (?<suffix>.*)"';

14

169

van der Waals Energies

try
result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;
%detects commas in non-thousand place
invalidThousandsSeparator = false;
if any(numbers=="',"');
thousandsRegExp = '"“\d+? (\,\d{3})*\.{0,1}\a*$";
if isempty (regexp (thousandsRegExp, ', ', 'once'));
numbers = NalN;
invalidThousandsSeparator = true;
end
end
$convert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan (strrep (numbers,',',''),'$f");
numericData (row,col) = numbers{l};
raw{row,col} = numbers{l};
end
catch me
end
end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:,[1,2,3]);
%Replaces non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns); %
Find non-numeric cells
rawNumericColumns (R) = {NaN}; % Replace non-numeric cells
$Import into columns
Mut3Rep2Chain = rawCellColumns(:,2);
Mut3Rep2Resgidue = rawCellColumns(:,3);
Mut3Rep2ResNum = cell2mat (rawNumericColumns(:,1)) ;
Mut3Rep2Energy = cell2mat (rawNumericColumns(:,2)) ;

$Clear temporary variables
clearvars Mut3Rep2_filename startRow formatSpec fileIDMut3Rep2 dataArrayMut3Rep2 a

Open and Format Mut3 Rep 3 Data

$converts columns containing numeric strings to numbers
raw =
repmat ({''},length (dataArrayMut3Rep3{1}),length(dataArrayMut3Rep3)-1) ;
for col=1:length(dataArrayMut3Rep3) -1
raw(1:length (dataArrayMut3Rep3{col}),col) =
dataArrayMut3Rep3{col};
end
numericData =
NaN(size(dataArrayMut3Rep3{1},l),size(dataArrayMut3Rep3,2));
for col=[4,5]
$converts strings to numbers
rawData = dataArrayMut3Rep3{col};
for row=1l:size(rawData,l);

170

van der Waals Energies

$removes non numeric values
regexstr = ' (?<prefix>.*?) (?<numbers>([-]* (\d+[\,]*)+[\.]
{o,1)\a* [eEAD] {0, 1} [-+]1*\a*[i1{0,1}) | ([-1*(\a+[\,1#*)*[\.1{1,1}\a
+[eEAD] {0,1} [-+]1*\d*[1]{0,1})) (P<suffix>.*)"';
try
result = regexp(rawData{row},regexstr,'names');
numbers = result.numbers;
%$detects commas in non-thousand place
invalidThousandsSeparator = false;
if any (numbers==',"');
thousandsRegExp = '"“\d+? (\,\d{3})*\.{0,1}\d*s";
if isempty (regexp (thousandsRegExp,',',6 'once'));
numbers = NaN;
invalidThousandsSeparator = true;
end
end
$convert numeric strings to numbers.
if ~invalidThousandsSeparator;
numbers = textscan(strrep (numbers,',',''),"'%£');
numericData(row,col) = numbers{l};
raw{row,col} = numbers{l};
end
catch me
end
end
end
$Split data into numeric and cell columns.
rawNumericColumns = raw(:, [4,5]);
rawCellColumns = raw(:, [1,2,3]);
$Replaces non-numeric cells with NaN
R = cellfun(@(x) ~isnumeric(x) && ~islogical (x),rawNumericColumns); %
Find non-numeric cells
rawNumericColumns (R) = {NaN}; % Replace non-numeric cells
$Import into columns
Mut3Rep3Chain = rawCellColumns(:,2);
Mut3Rep3Residue = rawCellColumns(:,3);
Mut3Rep3ResNum = cell2mat (rawNumericColumns (:,1)) ;
Mut3Rep3Energy = cell2mat (rawNumericColumns(:,2)) ;

$Clear temporary variables
clearvars Mut3Rep3 filename startRow formatSpec fileIDMut3Rep3 dataArrayMut3Rep3 a

Separate WT Chain A and Chain B into Two Da-
ta Sets

res = 1:99;

WTChainZA = horzcat(res',6 zeros(99,3));

WTChainB = horzcat(res',6 zeros(99,3));

A=a',

B = 'B';

$Append energies and average in plance to the second columns of ChainA
and

171

van der Waals Energies

%ChainB arrays
for i=1:length (WTReplChain)

if strcmp (WTReplChain (i) ,A) == 1
num = WTReplResNum(i) ;
if num ~= 1200
if WTChainA (num,2) == 0
WTChainA (num,2) = WTReplEnergy (i) ;

else WTChainA (num,2) =
(WTChainA (num, 2) +WTReplEnergy (1)) /2;
end
end
elseif strcmp (WTReplChain(i),B) == 1
num = WTReplResNum (i) ;
if num ~= 1200
if WTChainB (num,2) == 0
WTChainB (num, 2) = WTReplEnergy (i) ;
else WTChainB (num,2) =
(WTChainB (num, 2) +WTReplEnergy (i)) /2;
end
end
end
end
$Append energies and average in plance to the third columns of ChainA
and
%ChainB arrays
for i=1:length (WTRep2Chain)
if strcmp (WTRep2Chain (i) ,A)
num = WTRep2ResNum(i) ;
if num ~= 1200
if WTChainA (num,3) == 0
WTChainA (num,3) = WTRep2Energy (i) ;
else WTChainA (num,3) =
(WTChainA (num, 3) +WTRep2Energy (i)) /2;

I
]
[y

end
end
elseif strcmp (WTRep2Chain(i) ,B) == 1
num = WTRep2ResNum (i) ;
if num ~= 1200
if WTChainB (num,3) == 0

WTChainB (num,3) = WTRep2Energy (i) ;
else WIChainB (num,3) =
(WTChainB (num, 3) +WTRep2Energy (i)) /2;
end
end
end
end
$Append energies and average in plance to the fourth columns of ChainA
and
$ChainB arrays
for i=1:length (WTRep3Chain)
if strcmp (WTRep3Chain(i) ,A) == 1
num = WTRep3ResNum (i) ;
if num ~= 1200
if WTChainZ (num,4) == 0

172

van der Waals Energies

WTChainA (num,4) = WTRep3Energy (i) ;
else WTChainA (num,4) =
(WTChainA (num, 4) +WTRep3Energy (i)) /2;
end
end
elseif strcmp (WTRep3Chain(i) ,B) == 1
num = WTRep3ResNum (i) ;
if num ~= 1200
if WTChainB (num,4) == 0
WTChainB (num, 4) = WTRep3Energy (i) ;
else WIChainB (num,4) =
(WTChainB (num, 4) +WTRep3Energy (i)) /2;
end
end
end
end

Separate Mut1 Chain A and Chain B into Two
Data Sets

res = 1:99;
MutlChainZA = horzcat (res', zeros(99,3));
MutlChainB = horzcat (res', zeros(99,3));
$Append energies and average in plance to the second columns of ChainA
and
$ChainB arrays
for i=1:length (MutlReplChain)
if strcemp (MutlReplChain(i) ,A) == 1
num = MutlReplResNum (i) ;
if num ~= 1200
if MutlChainA (num,2) == 0
MutlChainA (num,2) = MutlReplEnergy (i) ;
else MutlChainZ(num,2) =
(Mut1ChainA (num, 2) +Mut1lReplEnergy (i)) /2;
end
end
elseif stromp (MutlReplChain(i),B) == 1
num = MutlReplResNum (i) ;
if num ~= 1200
if MutlChainB (num,2) == 0
MutlChainB (num,2) = MutlReplEnergy (i) ;
else MutlChainB (num,2) =
(Mut1ChainB (num, 2) +Mut1ReplEnergy (i)) /2;
end
end
end
end
$Append energies and average in plance to the third columns of ChainA
and
$ChainB arrays
for i=1:length (MutlRep2Chain)
if strcmp (MutlRep2Chain(i),A) == 1

173

van der Waals Energies

num = MutlRep2ResNum (i) ;
if num ~= 1200
if MutlChainA (num,3) == 0
MutlChainA (num,3) = MutlRep2Energy (i) ;
else MutlChainZ (num,3) =
(Mut1ChainA (num, 3) +Mut1lRep2Energy (i)) /2;
end
end
elseif stromp (MutlRep2Chain(i),B) == 1
num = MutlRep2ResNum (i) ;
if num ~= 1200
if MutlChainB (num,3) == 0
MutlChainB (num,3) = MutlRep2Energy (i) ;
else MutlChainB(num,3) =
(Mut1ChainB (num, 3) +Mut1lRep2Energy (i)) /2;
end
end
end
end
$Append energies and average in plance to the fourth columns of ChainA
and
$ChainB arrays
for i=1:length (MutlRep3Chain)

if strcmp (MutlRep3Chain(i),A) == 1
num = MutlRep3ResNum (i) ;
if num ~= 1200
if MutlChainA (num,4) == 0
MutlChainA (num,4) = MutlRep3Energy (i) ;

else MutlChainA(num,4) =
(MutlChainA (num, 4) +Mut1lRep3Energy (i)) /2;
end
end
elseif strcmp (MutlRep3Chain(i),B) == 1
num = MutlRep3ResNum (i) ;
if num ~= 1200
if MutlChainB (num,4) == 0
MutlChainB (num,4) = MutlRep3Energy (i) ;
else MutlChainB (num,4) =
(MutlChainB (num, 4) +Mut1lRep3Energy (i)) /2;
end
end
end
end

Separate Mut2 Chain A and Chain B into Two
Data Sets

res = 1:99;

Mut2ChainA = horzcat (res', zeros(99,3));

Mut2ChainB = horzcat (res', zeros(99,3));

$Append energies and average in plance to the second columns of ChainA
and

174

van der Waals Energies

%ChainB arrays
for i=1:length (Mut2ReplChain)

if strcmp (Mut2ReplChain(i),A) == 1
num = Mut2ReplResNum (i) ;
if num ~= 1200
if Mut2ChainA (num,2) == 0
Mut2ChainA (num,2) = Mut2ReplEnergy (i) ;

else Mut2ChainiA (num,2) =
(Mut2ChainA (num, 2) +Mut2ReplEnergy (i)) /2;
end
end
elseif strcmp (Mut2ReplChain(i),B) == 1
num = Mut2ReplResNum (i) ;
if num ~= 1200
if Mut2ChainB (num,2) == 0
Mut2ChainB (num,2) = Mut2ReplEnergy (i) ;
else Mut2ChainB (num,2) =
(Mut2ChainB (num, 2) +Mut2ReplEnergy (i)) /2;
end
end
end
end
$Append energies and average in plance to the third columns of ChainA
and
%ChainB arrays
for i=1:length (Mut2Rep2Chain)
if strcmp (Mut2Rep2Chain(i),A) == 1
num = Mut2Rep2ResNum (i) ;
if num ~= 1200
if Mut2ChainA (num,3) == 0
Mut2ChainA (num,3) = Mut2Rep2Energy (i) ;
else Mut2ChainZ(num,3) =
(Mut2ChainA (num, 3) +Mut2Rep2Enerqgy (i)) /2;
end
end
elseif strcmp (Mut2Rep2Chain(i) ,B) == 1
num = Mut2Rep2ResNum (i) ;
if num ~= 1200
if Mut2ChainB (num,3) == 0
Mut2ChainB (num,3) = Mut2Rep2Energy (i) ;
else Mut2ChainB (num,3) =
(Mut2ChainB (num, 3) +Mut2Rep2Enerqgy (i)) /2;
end
end
end
end
$Append energies and average in plance to the fourth columns of ChainA
and
$ChainB arrays
for i=1:length (Mut2Rep3Chain)
if strcemp (Mut2Rep3Chain(i) ,A) == 1
num = Mut2Rep3ResNum (i) ;
if num ~= 1200
if Mut2ChainA (num,4) == 0

20

175

van der Waals Energies

Mut2ChainA (num,4) = Mut2Rep3Energy (i) ;
else Mut2ChainZ(num,4) =
(Mut2ChainA (num, 4) +Mut2Rep3Energy (i)) /2;
end
end
elseif strcmp (Mut2Rep3Chain(i),B) == 1
num = Mut2Rep3ResNum (i) ;
if num ~= 1200
if Mut2ChainB (num,4) == 0
Mut2ChainB (num,4) = Mut2Rep3Energy (i) ;
else Mut2ChainB (num,4) =
(Mut2ChainB (num, 4) +Mut2Rep3Energy (1)) /2;
end
end
end
end

Separate Mut3 Chain A and Chain B into Two
Data Sets

res = 1:99;
Mut3ChainZA = horzcat (res', zeros(99,3));
Mut3ChainB = horzcat (res', zeros(99,3));
$Append energies and average in plance to the second columns of ChainA
and
$ChainB arrays
for i=1:length (Mut3ReplChain)
if strcmp (Mut3ReplChain(i),A) == 1
num = Mut3ReplResNum (i) ;
if num ~= 1200
if Mut3ChainA (num,2) == 0
Mut3ChainA (num,2) = Mut3ReplEnergy (i) ;
else Mut3ChainZ(num,2) =
(Mut3ChainA (num, 2) +Mut3ReplEnergy (i)) /2;
end
end
elseif stromp (Mut3ReplChain(i),B) == 1
num = Mut3ReplResNum(i) ;
if num ~= 1200
if Mut3ChainB (num,2) == 0
Mut3ChainB (num,2) = Mut3ReplEnergy (i) ;
else Mut3ChainB (num,2) =
(Mut3ChainB (num, 2) +Mut3ReplEnergy (i)) /2;
end
end
end
end
$Append energies and average in plance to the third columns of ChainA
and
$ChainB arrays
for i=1:length (Mut3Rep2Chain)
if strcmp (Mut3Rep2Chain(i),A) == 1

21

176

van der Waals Energies

num = Mut3Rep2ResNum (i) ;
if num ~= 1200
if Mut3ChainA (num,3) == 0
Mut3ChainA (num,3) = Mut3Rep2Energy (i) ;
else Mut3ChainZ(num,3) =
(Mut3ChainA (num, 3) +Mut3Rep2Energy (i)) /2;
end
end
elseif strcmp (Mut3Rep2Chain(i),B) == 1
num = Mut3Rep2ResNum (i) ;
if num ~= 1200
if Mut3ChainB (num,3) == 0
Mut3ChainB (num,3) = Mut3Rep2Energy (i) ;
else Mut3ChainB(num,3) =
(Mut3ChainB (num, 3) +Mut3Rep2Energy (i)) /2;
end
end
end
end
$Append energies and average in plance to the fourth columns of ChainA
and
$ChainB arrays
for i=1:length (Mut3Rep3Chain)

if strcmp (Mut3Rep3Chain(i),A) == 1
num = Mut3Rep3ResNum (i) ;
if num ~= 1200
if Mut3ChainA (num,4) == 0
Mut3ChainA (num,4) = Mut3Rep3Energy (i) ;

else Mut3ChainA(num,4) =
(Mut3ChainA (num, 4) +Mut3Rep3Energy (1)) /2;
end
end
elseif strcmp (Mut3Rep3Chain(i),B) == 1
num = Mut3Rep3ResNum (i) ;
if num ~= 1200
if Mut3ChainB (num,4) == 0
Mut3ChainB (num,4) = Mut3Rep3Energy (i) ;
else Mut3ChainB (num,4) =
(Mut3ChainB (num, 4) +Mut3Rep3Energy (i)) /2;
end
end
end
end

WT Average and Significant Energies

Note: significant is defined as an energy less than -0.02.
$Remove residue numbers
WTChainA(:,1)=[];

WTChainB (:,1)=1I[];

$ChainA and ChainB plots

22

177

van der Waals Energies

figure

X = 1:99;

chainA bar = bar (x,WTChainA) ;
chainA bar (1) .FaceColor = 'r';
chainA bar (1) .EdgeColor = 'r';
chainA bar (2).FaceColor = 'b';
chainA bar (2) .EdgeColor = 'b';
chainA bar (3) .FaceColor = 'g';

chainA bar (3) .EdgeColor = 'g';

title ('WT Chain A van der Waals Energy')
ylabel ('Energy')

xlabel ('Residue Number')

legend('Repl', 'Rep2', 'Rep3 ', 'Location', 'southeast')
figure

chainB_bar = bar (x,WTChainB) ;
chainB_bar (1) .FaceColor = 'r';
chainB_bar (1) .EdgeColor = 'r';
chainB bar (2) .FaceColor = 'b';
chainB bar (2) .EdgeColor = 'b';
chainB bar (3) .FaceColor = 'g';
chainB bar (3) .EdgeColor = 'g';

title ('WT Chain B van der Waals Energy')

ylabel ('kcal/mol"')

xlabel ('Residue Number')
legend('Repl', 'Rep2', 'Rep3 ', 'Location', 'southeast')

$calculate average and remove terms that are greater than -0.02

WTAvg_ChainA = mean (WTChainA,2) ;
WTAvg_ChainB = mean (WTChainB, 2) ;

WTsig_ChainA = zeros(99,1);
WTsig ChainB = zeros(99,1);
for i = 1:99

if WTAvg_ChainA(i) <= -0.02

WTsig_ChainA(i) = WTAvg_ChainA (i) ;
else WTsig_ChainA(i) = 0;
end
if WTAvg_ChainB (i) <= -0.02
WT'sig_ChainB (i) = WTAvg_ChainB (i) ;
else WTsig ChainB(i) = 0;
end

end

averages = horzcat (WTsig_ ChainA,WTsig ChainB) ;
% Average Significant Energy

figure

avg_bar = bar (x,averages) ;
avg_bar (1) .FaceColor = 'r';
avg_bar (1) .EdgeColor = 'r';
avg_bar (2) .FaceColor = 'b';
avg_bar (2) .EdgeColor = 'b';

title ('WT Significant Average van der Waals Energy')
ylabel ('kcal/mol"')

23

178

van der Waals Energes

xlabel {'Residue Numbexr')
legend('Average Chain &', 'Awverage Chain B','Location','Southeast')

5 WT Chain A van der Waals Energy
Ll T ' T 1 |) T T ' T

05F i,

Ak -

3+ I Rept

I Rep2

N Rep3
_3A5 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Residue Number

24

179

van der Waals Energes

kcal/mol

WT Chain B van der Waals Energy

kecal/mol

0 T T T Lo ol | T T ' l L4 T
05 g
b -
A5f .
2F -
25F I Rep1 | -
I Rep2
B Rep3
-3 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Residue Number
WT Significant Average van der Waals Energy
0 T T T T T T 1 T
05F 1
Ak -
A5F 1
2+ .
25 1
3T I Average Chain A ’
I /. verage Chain B
_3.5 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Residue Number

25

180

van der Waals Energies

Mut1 Average and Significant Energies

Note: significant is defined as an energy less than -0.02.
$remove residue numbers

MutlChainA (:,1)=[];

MutlChainB (:,1)=[];

%ChainA and ChainB plots

figure

X = 1:99;

chainA bar = bar (x,MutlChainA) ;
chainA bar (1) .FaceColor = 'r';
chainA bar (1) .EdgeColor = 'r';
chainA bar (2) .FaceColor = 'b';
chainA bar (2) .EdgeColor = 'b';
chainA bar (3).FaceColor = 'g';
chainA bar (3) .EdgeColor = 'g';

title('I84V Chain A van der Waals Energy')
ylabel ('kcal/mol"')
xlabel ('Residue Number')

legend('Repl', 'Rep2', 'Rep3 ', 'Location', 'Southeast')
figure

chainB_bar = bar (x,MutlChainB) ;
chainB_bar (1) .FaceColor = 'r';
chainB bar (1) .EdgeColor = 'r';
chainB_bar (2) .FaceColor = 'b';
chainB bar (2) .EdgeColor = 'b';
chainB_bar (3) .FaceColor = 'g';
chainB_bar (3) .EdgeColor = 'g';

title('I84V Chain B van der Waals Energy')

ylabel ('kcal/mol"')

xlabel ('Residue Number')
legend('Repl', 'Rep2', 'Rep3 ', 'Location’, 'Southeast"')

$calculate average and remove terms that are greater than -0.02
MutlAvg_ChainA = mean(MutlChainA,2);
MutlAvg_ ChainB = mean(MutlChainB,2) ;

Mutlsig ChainA = zeros (99,1);
Mutlsig ChainB = zeros (99,1);
for i = 1:99

if MutlAvg ChainA(i) <= -0.02

Mutlsig ChainA(i) = MutlAvg ChainA(i);
else Mutlsig_ChainA(i) = 0;
end
if MutlAvg ChainB(i) <= -0.02

Mutlsig_ ChainB (i) = MutlAvg_ChainB (i) ;
else Mutlsig_ChainB (i) = 0;
end

end
26

181

van der Waals Energes

Mutlaverages = horzcat (Mutlsig_Chaina Mutlsig Chaing) ;

2

% Average Significant Energy

ficure
avg_bar = bar(x ,Mutlaverages) ;
avg_bar(l) .FaceColor = 'x';

avg_baxr (1) .EdgeColor b <L

avg_kaxr(2) .FaceColor = 'b';

avg_bar(2) .EdgeColor = 'b';

title('I84V Significant Average van der Waals Energy')

ylabel {'kcal/mol')

xlabel {'Residue Numbexr')

legend{'average Chain ', 'Average Chain B', 'Location','Southeast')

184V Chain A van der Waals Energy

0 'l T T " 1' T bl " T T L3 rW! T
051 g
-1 F -
5 15} E
£
w©
o
X 21 -
25 7
e . Rt | |
: N Rep2
B Rep3
35 | | | ! ! ! 1 ! |

0 10 20 30 40 50 60 70 80 90 100
Residue Number

27

182

van der Waals Energes

kcal/mol

kecal/mol

184V Chain B van der Waals Energy

0 T T L | r T T I T
05 7]
aF g
A5F .
2F E
I Rept
I Rep2
B Rep3
_2.5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Residue Number
184V Significant Average van der Waals Energy
0 T T ¥ T T T ‘ T
05 -
AF -
A5F .
2F .
25 7]
I Average Chain A
I /. verage Chain B
_3 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Residue Number

28

183

van der Waals Energies

Mut2 Average and Significant Energies

Note: significant is defined as an energy less than -0.02.
$remove residue numbers

Mut2Chainl (:,1)=[];

Mut2ChainB (:,1)=[];

%ChainA and ChainB plots

figure

X = 1:99;

chainA bar = bar (x,Mut2Chaina) ;
chainA bar (1) .FaceColor = 'r';
chainA bar (1) .EdgeColor = 'r';
chainA bar (2) .FaceColor = 'b';
chainA bar (2) .EdgeColor = 'b';
chainA bar (3).FaceColor = 'g';
chainA bar (3) .EdgeColor = 'g';

title ('V82F+I84V Chain A van der Waals Energy')
ylabel ('kcal/mol"')

xlabel ('Residue Number')
legend('Repl', 'Rep2', 'Rep3 ', 'Location’', 'Southeast"')

figure

chainB_bar = bar (x,Mut2ChainB) ;
chainB_bar (1) .FaceColor = 'r';
chainB bar (1) .EdgeColor = 'r';
chainB_bar (2) .FaceColor = 'b';
chainB bar (2) .EdgeColor = 'b';
chainB_bar (3) .FaceColor = 'g';
chainB_bar (3) .EdgeColor = 'g';

title ('V82F+I84V Chain B van der Waals Energy')
ylabel ('kcal/mol"')

xlabel ('Residue Number')
legend('Repl', 'Rep2', 'Rep3 ', 'Location’, 'Southeast"')

$calculate average and remove terms that are greater than -0.02
Mut2Avg_ChainA = mean(Mut2Chainh,2) ;
Mut2Avg_ChainB = mean(Mut2ChainB,2) ;

Mut2sig ChainA = zeros (99,1);
Mut2sig ChainB = zeros (99,1);
for i = 1:99

if Mut2Avg ChainA(i) <= -0.02

Mut2sig_ChainA (i) = Mut2Avg ChainA(i);
else Mut2sig_ChainA(i) = 0;
end
if Mut2Avg ChainB(i) <= -0.02
Mut2sig_ChainB (i) = Mut2Avg_ChainB (i) ;
else Mut2sig_ChainB (i) = 0;
end
end
29

184

van der Waals Energes

MutZaverages = horzcat (Mut2sig_Chaina Mut2sig Chaing) ;

2

% Average Significant Energy

ficure
avg_bar = bar(x MutZaverages) ;
avg_bar(l) .FaceColor = 'x';

avg_baxr (1) .EdgeColor b <L

avg_kaxr(2) .FaceColor = 'b';

avg_bar(2) .EdgeColor = 'b';

title('V82F+I24V Significant Average van der Waals Energy')

ylabel {'kcal/mcl')

xlabel {'Residue Numbexr')

legend{'average Chain ', 'Average Chain B', 'Location','Southeast')

V82F+I84V Chain A van der Waals Energy

O T T l ’ T T T ¥ "r' T
051 g
-1F -
S -15F -
£
w©
o
X 2F -
25 7
3+ I Rept i
I Rep2
B Rep3
35 | | | ! | I 1 ! 1

0 10 20 30 40 50 60 70 80 90 100
Residue Number

30

185

van der Waals Energes

kcal/mol

kecal/mol

V82F+I84V Chain B van der Waals Energy

0 T LI L T T T l T
05F .
b
151 ¥
2F -
25F I Rep1 | -
I Rep2
B Rep3
_3 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 9 100
Residue Number
V82F+I84V Significant Average van der Waals Energy
0 T T T T T T T T L T
05 g
Ak -
A5F 1
2+ .
25F .
3T I Average Chain A ’
I /. verage Chain B
_3.5 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Residue Number

31

186

van der Waals Energies

Mut3 Average and Significant Energies

Note: significant is defined as an energy less than -0.02.
$remove residue numbers

Mut3Chainl (:,1)=[];

Mut3ChainB (:,1)=[];

%ChainA and ChainB plots

figure

x = 1:99

chainA bar = bar (x,Mut3Chaina) ;
chainA bar (1) .FaceColor = 'r';
chainA bar (1) .EdgeColor = 'r';
chainA bar (2) .FaceColor = 'b';
chainA bar (2) .EdgeColor = 'b';
chainA bar (3).FaceColor = 'g';
chainA bar (3) .EdgeColor = 'g';

title ('M46I+V82F+I84V Chain A van der Waals Energy')
ylabel ('kcal/mol"')

xlabel ('Residue Number')
legend('Repl', 'Rep2', 'Rep3 ', 'Location’', 'Southeast"')

figure

chainB_bar = bar (x,Mut3ChainB) ;
chainB_bar (1) .FaceColor = 'r';
chainB bar (1) .EdgeColor = 'r';
chainB_bar (2) .FaceColor = 'b';
chainB bar (2) .EdgeColor = 'b';
chainB_bar (3) .FaceColor = 'g';
chainB_bar (3) .EdgeColor = 'g';

title ('M46I+V82F+I84V Chain B van der Waals Energy')
ylabel ('kcal/mol"')

xlabel ('Residue Number')
legend('Repl', 'Rep2', 'Rep3 ', 'Location’, 'Southeast"')

$calculate average and remove terms that are greater than -0.02
Mut3Avg_ChainA = mean(Mut3Chainh,2);
Mut3Avg_ChainB = mean(Mut3ChainB,2) ;

Mut3sig ChainA = zeros (99,1);
Mut3sig ChainB = zeros (99,1);
for i = 1:99

if Mut3Avg ChainA(i) <= -0.02

Mut3sig ChainA(i) = Mut3Avg ChainA(i);
else Mut3dsig_ChainA(i) = 0;
end
if Mut3Avg ChainB(i) <= -0.02
Mut3sig_ChainB (i) = Mut3Avg_ChainB(i);
else Mut3sig_ChainB (i) = 0;
end
end
32

187

van der Waals Energies

Mut3averages

[

figure
avg_bar =

avg_bar (2) . FaceColor =
avg_bar (2) . EdgeColor =
title ('M46I+VB2F+I84V Significant Average van der Waals Energy')

= horzcat (Mut3sig_ChainA,Mut3sig ChainB) ;

% Average Significant Energy

bar (x,Mut3averages) ;
avg_bar (1) . FaceColor
avg_bar (1) . EdgeColor

ylabel ('kcal/mol"')
xlabel ('Residue Number')
legend('Average Chain A', 'Average Chain B', 'Location', 'Southeast')

= YAt
= ket
'b';
'b';

Columns 1 through 13

iz 2 3 4 5 6 7 8 9 10 K
12 .3
Columns 14 through 26
14 1.5 16 17 18 19 20 2 22 2.3; 24
25 26
Columns 27 through 39
27 28 2:9 30 3.1 32 33 34 35 36 37
38 3.9
Columns 40 through 52
40 41 42 43 44 45 46 47 48 49 50
51 52
Columns 53 through 65
53 54 55 56 57 58 59 60 61 62 63
64 65
Columns 66 through 78
66 67 68 69 70 74 72 73 74 75 76
7. 78
Columns 79 through 91
%9 80 81 82 83 84 85 86 87 88 89
90 i
Columns 92 through 98
92 93 94 95 96 97 98 99
33

188

van der Waals Energes

kecal/mol

M461+V82F+184V Chain A van der Waals Energy

T bl | T

0 T

3F I Rept
I Rep2
N Rep3
_345 1 1 L 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Residue Number

34

189

van der Waals Energes

kcal/mol

kecal/mol

M46|+V82F+I84V Chaln B van der Waals Energy

0 . ;
02t l
04f
06
08}
Ak
421
14t

I Rept
a8k I Rep2 | _
I Rep3
_2 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 9 100

Residue Number

M46I+V82F+I84V Slgnlflcant Avera'e van der Waals Energy

0 J 1
05}

A
A5F

2+
25

3

I Average Chain A
I /. verage Chain B

35 1 Il 1 Il ! |

0 10 20 30 40 50 60
Residue Number

70

80

90

100

35

190

van der Waals Energies

Differences to Wild Type

$¢Note: significant difference is defined as a difference greater than
$|0.02|

$Calculate average difference from WT average difference

MutlChainA diff = WTAvg ChainA - MutlAvg_cChainA;

MutlChainB_diff = WTAvg_ ChainB - MutlAvg_cChainB;

Mut2ChainA_diff = WTAvg ChainA - Mut2Avg_cChainA;

Mut2ChainB_diff = WTAvg ChainB - Mut2Avg_cChainB;

Mut3ChainA_diff = WTAvg ChainA - Mut3Avg_cChainA;

Mut3ChainB_diff = WTAvg ChainB - Mut3Avg_cChainB;

$Determine significant difference
Mutlsigdiff ChainA = zeros(99,1);
Mutlsigdiff ChainB = zeros(99,1);
Mut2sigdiff ChainA = zeros(99,1);
Mut2sigdiff ChainB = zeros(99,1);
Mut3sigdiff ChainA = zeros(99,1);
Mut3sigdiff ChainB = zeros(99,1);
for i = 1:99
if -0.02 <= MutlChainA diff (i) && MutlChainA diff (i) <= 0.02

Mutlsigdiff ChainA(i) = 0;

else Mutlsigdiff ChainA(i) = MutlChainA diff (i);

end

if -0.02 <= MuthhainB_diff(i) && MuthhainB_diff(i) <= 0.02
Mutlsigdiff ChainB(i) = 0;

else Mutlsigdiff_ ChainB(i) = MutlChainB_diff (i);

end

if -0.02 <= Mut2ChainA diff (i) && Mut2ChainA diff (i) <= 0.02
Mut2sigdiff ChainA(i) = 0;

else Mut2sigdiff ChainA(i) = Mut2ChainA diff(i);

end

if -0.02 <= Mut2ChainB_diff(i) && Mut2ChainB_diff (i) <= 0.02
Mut2sigdiff ChainB(i) = 0;

else Mut2sigdiff ChainB(i) = Mut2ChainB_diff (i);

end

if -0.02 <= Mut3ChainA diff (i) && Mut3ChainA diff (i) <= 0.02
Mut3sigdiff ChainA(i) = 0;

else Mut3sigdiff_ ChainA(i) = Mut3ChainA diff(i);

end

if -0.02 <= Mut3ChainB_diff (i) && Mut3ChainB_diff (i) <= 0.02
Mut3sigdiff ChainB(i) = 0;

else Mut3sigdiff ChainB(i) = Mut3ChainB_diff (i);

end

end

ChainA diffs =
horzcat (Mutlsigdiff_ ChainA, Mut2sigdiff ChainA, Mut3sigdiff ChainAd);
ChainB_diffs =
horzcat (Mutlsigdiff_ ChainB,Mut2sigdiff ChainB,Mut3sigdiff_ ChainB) ;

36

191

van der Waals Energies

Average Significant Engery Differences to WT

residuesA = [];
ChainA data = [];
for i = 1:99
if ChainA diffs(i,1l) ~= 0 | ChainA diffs(i,2) ~= 0 |
ChainA_diffs(i,3) ~= 0
X = ChainA diffs(i,1);
y = ChainA diffs(i,2);
z = Chaind diffs{i,3);

ChainA_data = [ChainA data; x,y,z];
residueshA = [residuesk; il ;
end
end
residuesB = [];

ChainB_data = [];
for i = 1:99
if ChainB_diffs(i,1l) ~= 0 | ChainB_diffs(i,2) ~= 0 |
ChainB_diffs(i,3) ~= 0
x = ChainB_diffs(i,1);
y = ChainB_diffs (i, 2);
z = ChainB_diffs(i,3);
ChainB_data = [ChainB_data; x,y,zl;
residuesB = [residuesB; il ;
end
end

figl=figure;
subplot (2,1,1)
barA = bar (ChainA data) ;

hold on

set(gca, 'XTick',l:length(residuesd));
set(gca, 'XTickLabel', residuesi);
barA(l) .FaceColor = 'r';

barA (1) .EdgeColor = 'r';

barA (2) .FaceColor = 'b';

barA (2) . EdgeColor = 'b';

barA(3) .FaceColor = 'g';

barA (3) .EdgeColor = 'g';

ylabel ('Change in kcal/mol')

xlabel ('Residue Number')

legend('I84V Difference', 'V82F+I84V Difference', '"M46I+V82F+184V
Difference')

title('Average Chain A Differences Compared to WT')
ylim([-1.2,0.6])

subplot (2,1,2)

barB = bar (ChainB_data) ;

set(gca, 'XTick', 1l:length(residuesB));
set(gca, 'XTickLabel', residuesB);

barB(l) .FaceColor = 'r';
barB (1) . EdgeColor = 'r';
barB (2) .FaceColor = 'b';

37

192

van der Waals Energes

bazrB (2} .EdgeColor = 'b';
barB (2} .FaceColoxr = 'g';
baxB (3} .EdgeColor = 'g';

vlabel {' Change in kcal/meol'}

xlabel ('Residue Number')

title('average Chain B Differences Compared to WT')

ylim{[-1.2,0.6])

Average Chain A Differences Compared to

B O 5 [T T T T T T T T T T T T T T T T T T
£ I 184V Difference
8 0 I /5 2F +184V Difference
*é [M461+V82F+184V Difference
5 L |
o -05
c
2 1
O = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 23 25 27 28 29 30 32 47 48 49 50 52 53 76 80 81 82 84

Residue Number
Average Chain B Differences Compared to WT

B O 5 | T
£
g o
£
8, 05
| =
(0]
3 oo At
o 1

8 232527 2829 303132474849 505476 798081 8283 84

Residue Number
Published with MATLAB® R2015a

38

193

B.5 Hydrogen Bonds Script

Table of Contents

FE BT S ssusmommenmsnsntsc s 0 S AN S 1
WL R i vt 0 s e St 2
VT RO ettt 3
T R D3 e e e e 4
Average + STD £Or WT ..o e e 5
1Y, 15171 T3 1 RSSO ————————————— 5
DAL, R D et cmmemmssonssss s s R 6
IIUET REDB s s o o s S S e 7
Average + STD £Or I8AV L. 8
MULZ R EPT e e e 8
MULZ R EP3 .iiieeee eeeeeeeeeeee 9
Average + STD for V82F+I84V . 10
Mut3 Repl wsnsonmmmnnmnmmsssnnas . 10
Mut3 ReP2-seesnmmmamrie s i .11
Average + STD for MAGIHVE2EHIBAV ...oiiiiiiiii e 12
H-Bonds

% Importing H-Bond Data

WT_Repl=fopen ('WTRepl HBond.csv',6'rt');
[data_WT_Repl] =textscan (WT_Repl, '%d 3d %s %s %s
$s', 'headerlines',1l,'delimiter',"',"');

fclose (WT_Repl) ;

oe
0}

WT_Rep2=fopen ('WTRep2 HBond.csv',6'rt');
[data_WT_Rep2] =textscan (WT_Rep2, '%d %d %s %s %s %s
%s', 'headerlines', 1, 'delimiter',"',"');

fclose (WT_Rep2) ;

WT_Rep3=fopen ('WTRep3_HBond.csv', 'rt');

[data_WT_Rep3]=textscan (WT_Rep3, '%d %3d %s %s %s %s
%s', 'headerlines',1, 'delimiter',"',");

fclose (WT_Rep3) ;

Mutl_Repl=fopen('I84VRepl HBond.csv',6 'rt');
[data_Mutl_Repl] =textscan (Mutl_Repl, '%d %d %s %s %s %=
%s', 'headerlines',1l, 'delimiter',"',"');

fclose (Mutl_Repl) ;

Mutl_Rep2=fopen('I84VRep2 HBond.csv',6 'rt');
[data_Mutl_Rep2] =textscan (Mutl_Rep2,'%d %d %s %s %s %s

%s', 'headerlines',1, 'delimiter',',"');
fclose (Mutl_Rep2) ;

Mutl_Rep3=fopen('I84VRep3 HBond.csv',6 'rt');
[data_Mutl_Rep3]=textscan (Mutl Rep3,'%d %d %s %s %s %s
%s', 'headerlines',1, 'delimiter', ', ") ;

fclose (Mutl_Rep3) ;

194

Mut2_ Repl=fopen('V82F+I84VRepl HBond.csv','rt');
[data_Mut2 Repl] =textscan (Mut2_Repl,'%d %d %s %s %s %=
%s', 'headerlines',1, 'delimiter',', ") ;

fclose (Mut2_Repl) ;

Mut2_Rep3=fopen('V82F+I84VRep3_HBond.csv','rt');
[data_Mut2_Rep3]=textscan (Mut2_Rep3,'%d %d %s %s %s %s
%s', 'headerlines', 1, 'delimiter',"',"');

fclose (Mut2_Rep3) ;

Mut3_Repl=fopen('M46I+V82F+I84VRepl HBond.csv', 'rt');
[data_Mut3_Repl] =textscan (Mut3_Repl, '$d %d %s %s %s %s
%$s', 'headerlines',1, 'delimiter', ', ") ;

fclose (Mut3_Repl) ;

Mut3_Rep2=fopen('M46I+V82F+I184VRep2 HBond.csv', 'rt');
[data_Mut3_Rep2] =textscan (Mut3_Rep2, '%d %d %s %s %s %s
%s', 'headerlines',1,'delimiter',"',");

fclose (Mut3_Rep2) ;

WT_Rep1

WT_Repl_A=[];

WT_Repl_B=I[];

for i=1:length(data_WT Repl{1l})
WT_Repl_A=[WT_Repl A data WT_Repl{l}(i)];
WT_Repl_B=[WT_Repl B data WT_Repl{2}(i)];
C=[WT_Repl A;WT_Repl B]';

end

Chain A WT_Repl=[];

Chain B_WT_Repl=[];

for i=1:length(data WT Repl{1l})

if strcmp(data WT_Repl{3}(i),'A') == 1
Chain_A WT_Repl=[Chain_ A WT_Repl C(i,2)];
elseif strcmp(data WT_Repl{3} (i), 'B') == 1

Chain_B_WT_Repl=[Chain_B_WT_Repl C(i,2)];
end

end

uniqueA WT_Repl = unique(Chain A WT_Repl) ;
uniqueB_WT_Repl = unique(Chain B_WT_Repl) ;

countOfA WT_Repl =

hist (double (Chain A WT_Repl) , double (uniqueA WT_Repl)) ;
countOfB_WT_Repl =

hist (double (Chain_B_WT_Repl) ,double (uniqueB_WT_Repl)) ;
indexToRepeatedValueA WT_Repl = (countOfA WT_Repl~=1);
indexToRepeatedValueB WT_Repl = (countOfB_WT_Repl~=1);
repeatedValuesA WT_Repl =

uniqueA WT_Repl (indexToRepeatedValueA WT_Repl) ;
repeatedvValuesB_WT_Repl =

uniqueB_WT_Repl (indexToRepeatedValueB_WT_Repl) ;
numberOfAppearancesOfRepeatedValuesA WT Repl =
countOfA WT Repl (indexToRepeatedValueA WT Repl);

195

numberOfAppearancesOfRepeatedValuesB_WT Repl =
countOfB_WT_ Repl (indexToRepeatedValueB_WT_ Repl) ;

% Percentage of H-Bonds
H_Bonds_A WT _Repl=[];
H_Bonds_B_WT_Repl=[];
NumFrames=500;
for i=1l:length (uniqueA WT_Repl)
H_Bonds_A WT_Repl=[H Bonds A WT_Repl countOfA WT_Repl(i)/
NumFrames] ;
end
Perc_H Bond A WT_Repl=[double (H_Bonds_ A WT_Repl) ;uniqueA WT Repl] ;
for i=1:length (uniqueB_WT_Repl)
H_Bonds_B_WT_Repl=[H Bonds B_WT_Repl countOfB_WT_ Repl(i)/
NumFrames] ;
end
Perc_H Bond_B_WT_Repl=[double (H_Bonds_B_WT_Repl) ;uniqueB_WT_Repl] ;

WT_Rep2

WT_Rep2 A=[];
WT_Rep2_B=[];
for i=1:length(data_WT Rep2{1})
WT_Rep2_ A=[WT_Rep2 A data WT_Rep2{1}(i)];
WT_Rep2_ B=[WT_Rep2 B data WT_Rep2{2} (i)];
C=[WT_Rep2 A;WT_Rep2 B]';
end
Chain A_WT_Rep2=[];
Chain B_WT_Rep2=[];
for i=1:length(data WT Rep2{1})
if strcmp(data WT Rep2{3}(i),'A') == 1
Chain A WT Rep2=[Chain A WT_Rep2 C(i,2
elseif strcmp(data WT _Rep2{3} (i), 'B') == 1
Chain_B_WT_ Rep2=[Chain B_WT_Rep2 C(i,2
end
end
uniqueA WT_Rep2 = unique(Chain A WT_Rep2) ;
uniqueB_WT_Rep2 = unique(Chain B_WT_Rep2) ;
countOfA WT_Rep2 =
hist (double (Chain A _WT_Rep2) ,double (uniqueA WT_Rep2)) ;
countOfB_WT_Rep2 =
hist (double (Chain B_WT_Rep2) ,double (uniqueB_WT_Rep2)) ;
indexToRepeatedValueA WT Rep2 = (countOfA WT Rep2~=1) ;
indexToRepeatedValueB WT_Rep2 = (countOfB_WT_Rep2~=1) ;
repeatedValuesA WT_Rep2 =
uniqueA WT_Rep2 (indexToRepeatedValueA WT_Rep2) ;
repeatedValuesB_WT_Rep2 =
uniqueB_WT_Rep2 (indexToRepeatedValueB_WT_Rep2) ;
numberOfAppearancesOfRepeatedValuesA WT Rep2 =
countOfA WT Rep2 (indexToRepeatedValueA WT Rep2);
numberOfAppearancesOfRepeatedValuesB_WT Rep2 =
countOfB_WT_ Rep2 (indexToRepeatedValueB_WT_Rep2);

196

% Percentage of H-Bonds

H_Bonds_ A WT Rep2=[];
H_Bonds_B WT Rep2=[];
NumFrames=500;
for i=1l:length (uniqueA WT_Rep2)
H_Bonds_A WT_Rep2=[H Bonds_ A WT_Rep2 countOfA WT_Rep2(i)/
NumFrames] ;
end
Perc_H Bond_A WT_Rep2=[double (H_Bonds_A WT_Rep2);uniqueA WT_ Rep2] ;
for i=1:length (uniqueB_WT_Rep2)
H_Bonds_B_WT_Rep2=[H Bonds_B_WT_Rep2 countOfB_WT_Rep2(i)/
NumFrames] ;
end
Perc_H Bond_B_WT_Rep2=[double (H_Bonds_B_WT_Rep2) juniqueB_WT_Rep2] ;

WT_Rep3

WT_Rep3_A=[];
WT_Rep3_B=I[];
for i=1:length(data WT Rep3{1})
WT_Rep3_A=[WT_Rep3 A data WT Rep3{1}(i)];
WT_Rep3_B=[WT_Rep3_B data WT_Rep3{2} (i)]
C=[WT_Rep3_A;WT Rep3 B]';
end
Chain A _WT_Rep3=[];
Chain B_WT_Rep3=[];
for i=1:length(data_WT Rep3{1})
if strcmp(data WT Rep3{3}(i),'A') == 1
Chain A WT Rep3=[Chain A WT_Rep3 C(i,2)];
elseif strcmp(data WT Rep3{3}(i),'B') == 1
Chain B _WT Rep3=[Chain B _WT_Rep3 C(i,2)];

i

end

end
uniqueA WT_Rep3 = unique(Chain A WT_Rep3) ;
uniqueB_WT_Rep3 = unique(Chain B_WT_Rep3) ;

countOfA WT_Rep3 =

hist (double (Chain A _WT_Rep3) ,double (uniqueA WT_Rep3)) ;
countOfB_WT_Rep3 =

hist (double (Chain B_WT_Rep3) ,double (uniqueB_WT_Rep3)) ;
indexToRepeatedValueA WT_Rep3 = (countOfA WT_Rep3~=1);
indexToRepeatedValueB WT Rep3 = (countOfB_WT Rep3~=1) ;
repeatedValuesA WT_Rep3 =

uniqueA WT_Rep3 (indexToRepeatedValueA WT_Rep3) ;
repeatedValuesB_WT_Rep3 =

uniqueB_WT_Rep3 (indexToRepeatedValueB_WT_Rep3) ;
numberOf AppearancesOfRepeatedValuesA WT Rep3 =
countOfA WT Rep3 (indexToRepeatedValueA WT_ Rep3);
numberOfAppearancesOfRepeatedValuesB_WT Rep3 =
countOfB_WT Rep3 (indexToRepeatedValueB_WT_ Rep3) ;

% Percentage of H-Bonds
H_Bonds_A WT Rep3=[];
H_Bonds_B WT Rep3=[];

197

NumFrames=500;
for i=1l:length (uniqueA WT_Rep3)

H_Bonds A WT_Rep3=[H Bonds A WT_Rep3 countOfA WT Rep3(i)/
NumFrames] ;
end
Perc_H Bond_A_ WT_Rep3=[double (H_Bonds_A WT_Rep3) ;uniqueA WT_Rep3] ;
for i=1:length (uniqueB_WT_Rep3)

H_Bonds_B_WT_Rep3=[H Bonds_B_WT_Rep3 countOfB_WT_Rep3(i)/
NumFrames] ;
end
Perc_H Bond_B_WT_Rep3=[double (H_Bonds_B_WT_Rep3) ;uniqueB_WT Rep3] ;

Average + STD for WT

RepWTlsum= (sum(H_Bonds_A WT_Repl)+sum(H Bonds_B_WT_Repl));
RepWT2sum= (sum(H_Bonds_A WT_Rep2)+sum(H _Bonds B_WT_Rep2));
RepWT3sum= (sum(H_Bonds A WT Rep3)+sum(H Bonds B_WT_Rep3))
y=[RepWT1lsum; RepWT2sum; RepWT3sum] ;

WTmean=mean (y) ;

WTstd=std(y);

Mut1_Rep1

Mutl_Repl A=[];

Mutl_Repl B=[];

for i=1:length(data_Mutl Repl{1l})
Mutl Repl_ A=[Mutl Repl A data_Mutl Repl{l} (i)];
Mutl Repl_ B=[Mutl Repl B data_ Mutl Repl{2} (i)];
C=[Mutl_Repl A;Mutl Repl B]';

end

Chain A Mutl Repl=[];

Chain B_Mutl Repl=[];

for i=1:length(data_Mutl Repl{l1})

i

if strcmp(data Mutl Repl{3}(i),'A') == 1
Chain_A Mutl_Repl=[Chain A Mutl Repl C(i,2)];
elseif strcmp(data_Mutl Repl{3}(i),'B') == 1

Chain_B_Mutl_Repl=[Chain B_Mutl Repl C(i,2)];
end

end
uniqueA Mutl Repl = unique (Chain A Mutl Repl);
unigqueB_Mutl Repl = unique (Chain B_Mutl Repl);
countOfA Mutl Repl =
hist (double (Chain A Mutl_ Repl),double (uniqueA Mutl Repl)) ;
countOfB_Mutl_ Repl =
hist (double (Chain_B_Mutl_Repl), double (uniqueB_Mutl_Repl)) ;
indexToRepeatedValueA Mutl Repl = (countOfA Mutl Repl~=1);
indexToRepeatedValueB_Mutl Repl = (countOfB_Mutl Repl~=1);
repeatedvValuesA Mutl Repl =
uniqueA Mutl_Repl (indexToRepeatedValueA_ Mutl Repl);
repeatedValuesB_Mutl Repl =
uniqueB_Mutl Repl (indexToRepeatedValueB_Mutl Repl);
numberOfAppearancesOfRepeatedValuesA Mutl Repl =
countOfA Mutl Repl (indexToRepeatedValueA Mutl_ Repl) ;

198

numberOf AppearancesOfRepeatedValuesB_Mutl Repl =
countOfB_Mutl Repl (indexToRepeatedValueB_Mutl_ Repl) ;

% Percentage of H-Bonds
H_Bonds_A Mutl Repl=[];
H_Bonds_B_Mutl_Repl=[];
NumFrames=500;
for i=1l:length (uniqueA_Mutl_Repl)
H_Bonds_A Mutl Repl=[H Bonds_ A Mutl Repl countOfA Mutl_Repl(i)/
NumFrames] ;
end
Perc_H Bond_ A Mutl Repl=[double (H Bonds A Mutl Repl) juniqueA Mutl Repl] ;$issue
wih not displaying decimal
for i=1:length (uniqueB_Mutl_ Repl)
H_Bonds_B_Mutl Repl=[H Bonds_B_Mutl Repl countOfB_Mutl Repl(i)/
NumFrames] ;
end
Perc_H Bond_B_Mutl Repl=[double (H Bonds_B_Mutl_Repl) ;uniqueB_Mutl_Repl] ;$issue
wih not displaying decimal

Mut1_Rep2

Mutl Rep2 A=[];
Mutl Rep2 B=[];
for i=1:length(data_Mutl Rep2{1})
Mutl Rep2 A=[Mutl Rep2 A data Mutl Rep2{1}(i)];
Mutl Rep2 B=[Mutl Rep2 B data_ Mutl Rep2{2} (i)]
C=[Mutl_Rep2_ A;Mutl_Rep2 B]';
end
Chain A _Mutl_Rep2=[];
Chain_ B_Mutl_Rep2=[];
for i=1:length(data_Mutl Rep2{1})
if strcemp(data_Mutl Rep2{3} (i), 'A') == 1
Chain_ A Mutl Rep2=[Chain A Mutl Rep2 C(i,2)];
elseif strcmp(data_Mutl Rep2{3} (i), 'B') ==
Chain_ B_Mutl Rep2=[Chain B_Mutl Rep2 C({

i

1
i,2)1;
end

end

uniqueA Mutl Rep2 = unique (Chain_A Mutl Rep2);
uniqueB_Mutl Rep2 = unique (Chain_B_Mutl Rep2);
countOfA Mutl Rep2 =

hist (double (Chain A Mutl_Rep2),double (uniqueA_ Mutl Rep2)) ;
countOfB_Mutl Rep2 =

hist (double (Chain B_Mutl_ Rep2),double (uniqueB_Mutl Rep2)) ;
indexToRepeatedValueA Mutl Rep2 = (countOfA Mutl Rep2~=1);
indexToRepeatedValueB _Mutl Rep2 = (countOfB_Mutl Rep2~=1);
repeatedValuesA Mutl Rep2 =

uniqueA Mutl_ Rep2 (indexToRepeatedValueA Mutl Rep2);
repeatedValuesB_Mutl Rep2 =

uniqueB_Mutl_Rep2 (indexToRepeatedValueB_Mutl_Rep2);
numberOf AppearancesOfRepeatedValuesA Mutl Rep2 =

countOfA Mutl_ Rep2 (indexToRepeatedValueA Mutl_ Rep2) ;

199

numberOfAppearancesOfRepeatedValuesB_Mutl Rep2 =
countOfB_Mutl Rep2 (indexToRepeatedValueB_Mutl_ Rep2) ;

% Percentage of H-Bonds
H_Bonds_A Mutl Rep2=[];
H_Bonds_B_Mutl_Rep2=[];
NumFrames=500;
for i=1l:length (uniqueA_Mutl_Rep2)
H_Bonds_A Mutl Rep2=[H_Bonds_ A Mutl Rep2 countOfA Mutl_Rep2(i)/
NumFrames] ;
end
Perc_H Bond A Mutl Rep2=[double (H Bonds A Mutl Rep2) juniqueA Mutl Rep2] ;
for i=1l:length (uniqueB_Mutl_Rep2)
H_Bonds_B_Mutl Rep2=[H Bonds B _Mutl Rep2 countOfB_Mutl Rep2(i)/
NumFrames] ;
end
Perc_H Bond_B_Mutl_ Rep2=[double (H Bonds_B_Mutl_Rep2) juniqueB_Mutl_Rep2] ;

Mut1_Rep3

Mutl_ Rep3 A=[];

Mutl_Rep3_ B=[];

for i=1:length(data_Mutl Rep3{1})
Mutl Rep3 A=[Mutl Rep3 A data Mutl Rep3{1}(i}];
Mutl Rep3 B=[Mutl Rep3 B data Mutl Rep3{2}(i)];
C=[Mutl_Rep3_A;Mutl_Rep3_B]';

end

Chain A _Mutl_Rep3=[];

Chain B_Mutl_ Rep3=[];

for i=1:length(data_Mutl Rep3{1})
if strcmp(data Mutl Rep3{3}(i),'A') == 1

Chain A Mutl Rep3=[Chain A Mutl Rep3 C(i,2)];
elseif strcmp(data_Mutl Rep3{3}(i),'B') == 1
Chain_B_Mutl_Rep3=[Chain B_Mutl Rep3 C(i,2)];

end

end

unigqueA Mutl Rep3 = unique (Chain_ A Mutl Rep3);
unigqueB_Mutl Rep3 = unique (Chain_ B Mutl Rep3);
countOfA Mutl Rep3 =

hist (double (Chain A Mutl_ Rep3),double (uniqueA Mutl Rep3));
countOfB_Mutl Rep3 =

hist (double (Chain B_Mutl_Rep3),double (uniqueB_Mutl Rep3)) ;
indexToRepeatedValueA Mutl Rep3 = (countOfA Mutl Rep3~=1);
indexToRepeatedValueB Mutl Rep3 (countOfB_Mutl Rep3~=1);
repeatedValuesA Mutl Rep3 =

uniqueA Mutl_Rep3 (indexToRepeatedValueA_Mutl_Rep3);
repeatedValuesB_Mutl Rep3 =

uniqueB_Mutl_Rep3 (indexToRepeatedValueB_Mutl Rep3);
numberOfAppearancesOfRepeatedValuesA Mutl Rep3 =

countOfA Mutl Rep3 (indexToRepeatedValueA Mutl Rep3);
numberOfAppearancesOfRepeatedValuesB _Mutl Rep3 =
countOfB_Mutl Rep3 (indexToRepeatedValueB_Mutl_ Rep3) ;

200

% Percentage of H-Bonds

H _Bonds_A Mutl Rep3=[];
H_Bonds_ B Mutl Rep3=[];
NumFrames=500;
for i=1:length (uniqueA Mutl_Rep3)
H_Bonds_A Mutl Rep3=[H_Bonds_A Mutl Rep3 countOfA Mutl_Rep3(i)/
NumFrames] ;
end
Perc_H Bond_A Mutl Rep3=[double (H Bonds_A_ Mutl_ Rep3) ;uniqueA Mutl Rep3];
for i=1l:length (uniqueB_Mutl Rep3)
H_Bonds_B_Mutl Rep3=[H Bonds B _Mutl Rep3 countOfB_Mutl Rep3(i)/
NumFrames] ;
end
Perc_H Bond_B_Mutl Rep3=[double (H Bonds_B_Mutl Rep3) juniqueB_Mutl_Rep3];

Average + STD for 184V

ReplMutlsum= (sum(H Bonds_A Mutl_Repl)+sum(H_Bonds_B_Mutl_ Repl));
Rep2Mutlsum= (sum(H Bonds_ A Mutl_Rep2)+sum(H_Bonds_B_Mutl Rep2));
Rep3Mutlsum= (sum(H Bonds A Mutl Rep3)+sum(H_Bonds B Mutl Rep3));
z=[ReplMutlsum;Rep2Mutlsum;Rep3Mutlsum] ;

Mutlmean=mean (z) ;

Mutlstd=std(z) ;

Mut2_Rep1

Mut2_Repl A=[];
Mut2_Repl B=[];
for i=1:length(data_Mut2 Repl{l})
Mut2 Repl A=[Mut2 Repl A data Mut2 Repl{l}(i)];
Mut2_ Repl B=[Mut2 Repl B data Mut2 Repl{2}(i)];
C=[Mut2_ Repl A;Mut2 Repl B]';
end
Chain_A_ Mut2_Repl=[];
Chain_B_Mut2_Repl=[];
for i=1:length(data_Mut2 Repl{l})
if strcmp(data_Mut2 Repl{3} (i), 'A') == 1
Chain A Mut2_ Repl=[Chain A Mut2 Repl C(i,2)];
elseif strcmp(data_Mut2 Repl{3}(i),'B') == 1
Chain_B_Mut2 Repl=[Chain B_Mut2 Repl C(i,2)];
end
end
uniqueA Mut2 Repl = unique (Chain A Mut2 Repl);
unigqueB_Mut2_Repl = unique (Chain_B_Mut2_ Repl);
countOfA Mut2_ Repl =
hist (double (Chain A Mut2_Repl),double (uniqueA_ Mut2_ Repl)) ;
countOfB_Mut2 Repl =
hist (double (Chain B_Mut2_Repl), double (uniqueB_Mut2_ Repl)) ;
indexToRepeatedValueA Mut2 Repl = (countOfA Mut2 Repl~=1);
indexToRepeatedValueB Mut2 Repl = (countOfB_Mut2 Repl~=1);
repeatedValuesA Mut2_ Repl =
uniqueA Mut2 Repl(indexToRepeatedValueA Mut2 Repl);

201

repeatedValuesB_Mut2_Repl =

uniqueB_Mut2 Repl (indexToRepeatedValueB_Mut2 Repl);
numberOf AppearancesOfRepeatedValuesA Mut2 Repl =
countOfA Mut2_ Repl (indexToRepeatedValueA Mut2_ Repl) ;
numberOf AppearancesOfRepeatedValuesB_Mut2 Repl =
countOfB_Mut2_Repl (indexToRepeatedValueB_Mut2_Repl) ;

% Percentage of H-Bonds
H_Bonds_A Mut2 Repl=[];
H Bonds B Mut2 Repl=[];
NumFrames=500;
for i=1l:length (uniqueA Mut2 Repl)
H_Bonds_A Mut2 Repl=[H Bonds A Mut2 Repl countOfA Mut2 Repl(i)/
NumFrames] ;
end
Perc_H Bond_A Mut2_Repl=[double (H Bonds_A_Mut2_ Repl) juniqueA Mut2_Repl] ;
for i=1l:length (uniqueB_Mut2_Repl)
H_Bonds_B_Mut2_ Repl=[H_Bonds_B_Mut2_Repl countOfB_Mut2_ Repl(i)/
NumFrames] ;
end
Perc_H Bond B Mut2 Repl=[double (H Bonds_ B _Mut2 Repl) juniqueB Mut2 Repl] ;

Mut2_Rep3

Mut2_ Rep3 A=[];

Mut2_Rep3_B=[];

for i=1:length(data_Mut2 Rep3{1})
Mut2_Rep3 A= [Mut2 Rep3 A data Mut2 Rep3{1}(i}];
Mut2_Rep3_B=[Mut2 Rep3 B data_ Mut2 Rep3{2} (i}];
C=[Mut2_Rep3_A;Mut2_Rep3_B]';

end

Chain A Mut2_ Rep3=[];

Chain B_Mut2_ Rep3=[];

for i=1:length(data_Mut2 Rep3{1})

if strcmp(data Mut2 Rep3{3}(i),'A') == 1
Chain A Mut2 Rep3=[Chain A Mut2 Rep3 C(i,2)];
elseif strcmp(data_Mut2 Rep3{3}(i),'B') == 1

Chain_B_Mut2_ Rep3=[Chain_ B_Mut2 Rep3 C(i,2)];

end
end
unigqueA Mut2_Rep3 = unique (Chain_ A Mut2 Rep3);
uniqueB_Mut2_Rep3 = unique (Chain_ B Mut2 Rep3);
countOfA Mut2 Rep3 =
hist (double (Chain A Mut2 Rep3),double (uniqueA Mut2 Rep3)) ;
countOfB_Mut2_Rep3 =
hist (double (Chain B_Mut2_ Rep3),double (uniqueB_Mut2 Rep3)) ;
indexToRepeatedValueA Mut2 Rep3 = (countOfA Mut2_ Rep3~=1);
indexToRepeatedValueB _Mut2 Rep3 = (countOfB_Mut2 Rep3~=1);
repeatedValuesA Mut2 Rep3 =
uniqueA Mut2_Rep3 (indexToRepeatedValueA_Mut2 Rep3);
repeatedValuesB_Mut2 Rep3 =
uniqueB_Mut2_Rep3 (indexToRepeatedValueB_Mut2_ Rep3);

202

numberOfAppearancesOfRepeatedValuesA Mut2_ Rep3 =
countOfA Mut2 Rep3 (indexToRepeatedValueA Mut2_ Rep3) ;
numberOf AppearancesOfRepeatedValuesB_Mut2 Rep3 =
countOfB_Mut2_Rep3 (indexToRepeatedValueB_Mut2_Rep3) ;
% Percentage of H-Bonds
H_Bonds_A Mut2_ Rep3=[];
H_Bonds_B_Mut2_ Rep3=[];
NumFrames=500;
for i=1l:length (uniqueA Mut2 Rep3)
H _Bonds_A Mut2 Rep3=[H _Bonds A Mut2 Rep3 countOfA Mut2 Rep3(i)/
NumFrames] ;
end
Perc_H Bond_ A Mut2 Rep3=[double (H Bonds_A Mut2 Rep3) juniqueA Mut2_ Rep3];
for i=1l:length (uniqueB_Mut2_ Rep3)
H_Bonds_B_Mut2 Rep3=[H_Bonds_B_Mut2_Rep3 countOfB_Mut2_ Rep3(i)/
NumFrames] ;
end
Perc_H Bond_B_Mut2_Rep3=[double (H Bonds_B_Mut2_ Rep3) ;uniqueB_Mut2_Rep3];

Average + STD for V82F+184V

ReplMut2sum= (sum(H _Bonds_A Mut2_ Repl)+sum(H_Bonds_B_Mut2_Repl));
Rep3Mut2sum= (sum(H_Bonds_A Mut2_Rep3)+sum(H_Bonds_B_Mut2_Rep3));
x=[ReplMut2sum; ; Rep3Mut2sum] ;

Mut2mean=mean (x) ;

Mut2std=std (x) ;

Mut3_Rep1

Mut3_Repl A=[];
Mut3_Repl B=[];
for i=1:length(data_Mut3 Repl{l})
Mut3_Repl A=[Mut3 Repl A data Mut3 Repl{l}(i)];
Mut3_Repl B=[Mut3_Repl B data Mut3 Repl{2}(i}];
C=[Mut3_Repl_ A;Mut3_Repl B]';
end
Chain A Mut3_Repl=[];
Chain B_Mut3_Repl=[];
for i=1:length(data_Mut3_Repl{1l})
if strcmp(data Mut3 Repl{3} (i), 'A') == 1
Chain_ A Mut3_Repl=[Chain A Mut3_Repl C({
elseif strcmp(data Mut3 _Repl{3} (i), 'B') ==
Chain_B_Mut3_Repl=[Chain_ B_Mut3_Repl C({

i,2)1;
1
i,2)1;
end
end
unigqueA Mut3_Repl = unique (Chain_A Mut3_Repl);
unigqueB_Mut3_Repl = unique (Chain_B_Mut3_Repl);
countOfA Mut3_Repl =
hist (double (Chain A Mut3_Repl), double (uniqueA Mut3_Repl)) ;
countOfB_Mut3_Repl =
hist (double (Chain B_Mut3_Repl), double (uniqueB_Mut3_Repl)) ;
indexToRepeatedValueA Mut3 Repl = (countOfA Mut3_Repl~=1);

10

203

indexToRepeatedValueB _Mut3 Repl = (countOfB_Mut3_ Repl~=1);
repeatedValuesA Mut3_Repl =

uniqueA Mut3_Repl (indexToRepeatedValueA Mut3_Repl);
repeatedValuesB_Mut3_Repl =

uniqueB_Mut3_Repl (indexToRepeatedValueB_Mut3_Repl) ;
numberOf AppearancesOfRepeatedValuesA Mut3_Repl =

countOfA Mut3_Repl (indexToRepeatedValueA Mut3_Repl) ;
numberOfAppearancesOfRepeatedValuesB_Mut3_Repl =
countOfB_Mut3_Repl (indexToRepeatedValueB_Mut3_Repl) ;

% Percentage of H-Bonds

H_Bonds_A Mut3_Repl=[];

H_Bonds_B_ Mut3_Repl=[];
NumFrames=500;

for i=1:length (uniqueA Mut3_Repl)

H_Bonds_A Mut3_Repl=[H_Bonds_ A Mut3_Repl countOfA Mut3_Repl(i)/

NumFrames] ;

end

Perc_H Bond_A Mut3_Repl=[double (H Bonds_A Mut3_Repl) juniqueA Mut3_Repl] ;
for i=1:length (uniqueB_Mut3_Repl)

H Bonds B _Mut3 Repl=[H Bonds B Mut3 Repl countOfB_Mut3_Repl(i)/

NumFrames] ;

end

Perc_H Bond_B_Mut3_Repl=[double (H Bonds_B_Mut3_Repl) juniqueB_Mut3_Repl] ;

Mut3_Rep2

Mut3_Rep2 A=[];
Mut3_Rep2 B=[];
for i=1:length(data_Mut3 Rep2{1})
Mut3_ Rep2 A=[Mut3 Rep2 A data Mut3 Rep2{1}(i)];
Mut3_Rep2 B=[Mut3_Rep2 B data Mut3 Rep2{2}(i)];
C=[Mut3_Rep2_ A;Mut3_Rep2 B]';
end
Chain_A_ Mut3_Rep2=[];
Chain_B_Mut3_Rep2=[];
for i=1:length(data_Mut3_Rep2{1})
if strcmp(data_Mut3_Rep2{3} (i), 'A') == 1
Chain A Mut3_Rep2=[Chain A Mut3_Rep2 C(i,2)];
elseif strcmp(data_Mut3_Rep2{3}(i),'B') == 1
Chain_B_Mut3_Rep2=[Chain B_Mut3_Rep2 C(i,2)];
end
end
uniqueA Mut3_Rep2 = unique (Chain A Mut3_Rep2);
unigqueB_Mut3_Rep2 = unique (Chain_B_Mut3_Rep2) ;
countOfA Mut3_Rep2 =
hist (double (Chain A Mut3_Rep2),double (uniqueA_ Mut3_Rep2)) ;
countOfB_Mut3_Rep2 =
hist (double (Chain B_Mut3_Rep2),double (uniqueB_Mut3_Rep2)) ;
indexToRepeatedValueA Mut3 Rep2 = (countOfA Mut3_Rep2~=1);
indexToRepeatedValueB Mut3 Rep2 = (countOfB_Mut3_Rep2~=1);
repeatedValuesA Mut3_Rep2 =
uniqueA Mut3_Rep2 (indexToRepeatedValueA Mut3_Rep2);

11

204

repeatedValuesB_Mut3_Rep2 =
uniqueB_Mut3_Rep2 (indexToRepeatedValueB_Mut3_Rep2);
numberOf AppearancesOfRepeatedValuesA Mut3 Rep2 =
countOfA Mut3_Rep2 (indexToRepeatedValueA Mut3_Rep2) ;
numberOf AppearancesOfRepeatedValuesB_Mut3_Rep2 =
countOfB_Mut3_Rep2 (indexToRepeatedValueB_Mut3_Rep2) ;

% Percentage of H-Bonds
H_Bonds_A Mut3_Rep2=[];
H Bonds_ B Mut3 Rep2=[];
NumFrames=500;
for i=1l:length (uniqueA Mut3_Rep2)
H_Bonds_A Mut3_Rep2=[H Bonds A Mut3_Rep2 countOfA Mut3_Rep2(i)/
NumFrames] ;
end
Perc_H Bond_A Mut3_Rep2=[double (H Bonds_A_Mut3_Rep2) juniqueA Mut3_Rep2] ;
for i=1l:length (uniqueB_Mut3_Rep2)
H_Bonds_B_Mut3_Rep2=[H_Bonds_B_Mut3_Rep2 countOfB_Mut3_Rep2(i)/
NumFrames] ;
end
Perc_H Bond B Mut3_ Rep2=[double (H Bonds_ B _Mut3_Rep2) juniqueB Mut3_ Rep2] ;

Average + STD for M461+V82F+184V

ReplMut3sum= (sum(H _Bonds_A Mut3_Repl)+sum(H_Bonds_B_Mut3_Repl)) ;
Rep2Mut3sum= (sum(H_Bonds_A Mut3_Rep2)+sum(H_Bonds_B_Mut3_Rep2)) ;
w=[ReplMut3sum;Rep2Mut3sum] ;

Mut3mean=mean (w) ;

Mut3std=std (w) ;

Published with MATLAB® R2015a

205

B.6 Alpha-Carbon Distances Script

Table of Contents

SYANEY TUCKET ...ttt e e e e et e 1
Retrieving WT DATAoiiiiiiitii i 1
RETTTCNAMPHIRIN IR 0010000000ttt et 0058 15 T B S B AR 2
Retfieying: VEIFLTBAN TIOR8 omsmnsmmmenmmsn e st e e s R S SR ST s 3
RettieVing IMAGLAVIBDF RIS DAY uroscasasnsresisssssssss ittt aerss st 5105658564 R 5 G 4
Compiling:the AVerages- 101 25-25 s i s i e e 5
Compiling the Averages for 84-84 it e 5
Compiling the Averages for 25-50ttt e 6
Retrieving Data fOr 25-50"o 6

Retrieving Data for 25'-50' ..
Retrieving Data from 25'-50 ... :
Means of the Values 8
PlOtHNG the AVEIAZESuu ittt e e 8

Sydney Tucker

Made on April 3, 2016

$PURPOSE: Compare C-alpha Distances to WT and put all on same graph

clear; clc; close all;

Retrieving WT Data

$Rep 1
WT = csvread('MQP-WTRepl C-alphaDis25A-50B.csv’,3,0);
WT_1 = csvread('MQP-WTRepl C-alphaDis25-25.csv',3,1);

$C-alpha Distances of the 84-84' in third column
WT84 = WT(:,2);

$C-alpha Distances of the 25-25' in second column
WI25 = WT _1;

$C-alpha Distances of the 25B-50B in fourth column
WT25B50B = WT(:,3);

$C-alpha Distances of the 25B-50A in fifth column
WT25B50A = WT(:,4);

$C-alpha Distances of the 25A-50B in sixth column
WT25A50B = WT(:,5);

$C-alpha Distances of the 25A-50A in seventh column
WT25A50A = WT(:,6);

% Rep 2
WT2 = csvread('MQP-WTRep2 C-alphaDis25A-50A.csv',3,0);

$Time Step

Time2 = WT2(:,1);

$C-alpha Distances of the 84-84' in seventh column
WT84 _R2 = WI2(:,7);

206

$C-alpha Distances of the 25-25' in second column
WT25 R2 = WI2(:,2);

$C-alpha Distances of the 25B-50B in third column
WT25B50B_R2 = WT2(:,3);

$C-alpha Distances of the 25B-50A in fourth column
WT25BS50A _R2 = WT2(:,4);

$C-alpha Distances of the 25A-50B in fifth column
WI25A50B_R2 = WT2(:,5);

$C-alpha Distances of the 25A-50A in sixth column
WT25A50A R2 = WT2(:,6);

%Rep 3

WT3 = csvread('MQP-WTRep3 C-alphaDis25A-50A.csv',3,0);
$Time Step

I84V3 = WI3(:,1);

%$C-alpha Distances of the 84-84' in third column
WT84 _R3 = WI3(:,3);

$C-alpha Distances of the 25-25' in second column
WI25_R3 = WI3(:,2);

$C-alpha Distances of the 25B-50B in fourth column
WT25B50B_R3 = WT3(:,4);

$C-alpha Distances of the 25B-50A in fifth column
WT25B50A R3 = WT3(:,5);

$C-alpha Distances of the 25A-50B in sixth column
WT25A50B_R3 = WT3(:,6);

$C-alpha Distances of the 25A-50A in seventh column
WT25A50A R3 = WT3(:,7);

Retrieving 184V Data

%Rep 1
I84v = csvread('MQP-I84VRepl C-alphaDistances.csv',3,0);

$C-alpha Distances of the 84-84' in third column
I84v84 R1 = I84v(:,3);

$C-alpha Distances of the 25-25' in second column
I84v25 _R1 = I84vV(:,2);

$C-alpha Distances of the 25B-50B in fourth column
I84V25B50B_R1 = I84V(:,4);

$C-alpha Distances of the 25B-50A in fifth column
I84V25B50A R1 = I84V(:,5);

$C-alpha Distances of the 25A-50B in sixth column
I84V25A50B Rl = I84V(:,6);

$C-alpha Distances of the 25A-50A in seventh column
I84V25A50A R1 = IB4AV(:,7);

% Rep 2
I84v2 = csvread('MQP-I84VRep2_ C-alphaDistances.csv',3,0);

$C-alpha Distances of the 84-84' in third column
I84v84 R2 = I84V2(:,3);
$C-alpha Distances of the 25-25' in second column
I84v25 R2 = I84vV2(:,2);

207

$C-alpha Distances of the 25B-50B in fourth column
I84V25B50B_R2 = IB84V2(:,4);

$C-alpha Distances of the 25B-50A in fifth column
I84V25B50A R2 = IB4V2(:,5);

$C-alpha Distances of the 25A-50B in sixth column
I84V25A50B_R2 = I84V2(:,6);

$C-alpha Distances of the 25A-50A in seventh column
I84V25A50A R2 = IB4V2(:,7);

%Rep 3
I84v3 = csvread('MQP-I84VRep3 C-alphaDistances.csv',3,0);

$C-alpha Distances of the 84-84' in third column
I84v84 R3 = I84vV3(:,3);

$C-alpha Distances of the 25-25' in second column
I84v25 R3 = I84V3(:,2);

$C-alpha Distances of the 25B-50B in fourth column
I84V25B50B_R3 = I84V3(:,4);

$C-alpha Distances of the 25B-50A in fifth column
I84V25B50A R3 = IB84V3(:,5);

$C-alpha Distances of the 25A-50B in sixth column
I84V25A50B_R3 = I84V3(:,6);

$C-alpha Distances of the 25A-50A in seventh column
I84V25A50A_R3 = I84V3(:,7);

Retrieving V82F+184V Data

%Rep 1
DubMutl = csvread('MQP-VB82F+I84V_C-alphaDistances.csv',3,0);

$C-alpha Distances of the 84-84' in third column
DubMut84_R1 = DubMutl(:,3);

$C-alpha Distances of the 25-25' in second column
DubMut25_R1 = DubMutl(:,2);

$C-alpha Distances of the 25B-50B in fourth column
DubMut25B50B_R1 = DubMutl(:,4);

$C-alpha Distances of the 25B-50A in fifth column
DubMut25B50A R1 = DubMutl(:,5);

$C-alpha Distances of the 25A-50B in sixth column
DubMut25A50B_R1 = DubMutl(:,6);

$C-alpha Distances of the 25A-50A in seventh column
DubMut25A50A R1 = DubMutl(:,7);

% Rep 2
DubMut2 = csvread('MQP-V82F+I84VRep2 C-alphaDistances.csv',3,0);

%C-alpha Distances of the 84-84' in third column
DubMut84_R2 = DubMut2(:,3);

$C-alpha Distances of the 25-25' in second column
DubMut25_R2 = DubMut2(:,2);

$C-alpha Distances of the 25B-50B in fourth column
DubMut25B50B R2 = DubMut2(:,4);

$C-alpha Distances of the 25B-50A in fifth column

208

DubMut25B50A R2 = DubMut2(:,5);

$C-alpha Distances of the 25A-50B in sixth column
DubMut25A50B_R2 = DubMut2(:,6);

$C-alpha Distances of the 25A-50A in seventh column
DubMut25A50A R2 = DubMut2(:,7);

% Rep 3
DubMut3 = csvread('MQP-V82F+I84VRep3_C-alphaDistances.csv',3,0);

%C-alpha Distances of the 84-84"' in third column
DubMut84_R3 = DubMut3(:,3);

$C-alpha Distances of the 25-25' in second column
DubMut25_R3 = DubMut3(:,2);

$C-alpha Distances of the 25B-50B in fourth column
DubMut25B50B_R3 = DubMut3(:,4);

%C-alpha Distances of the 25B-50A in fifth column
DubMut25B50A R3 = DubMut3(:,5);

$C-alpha Distances of the 25A-50B in sixth column
DubMut25A50B_R3 = DubMut3(:,6);

$C-alpha Distances of the 25A-50A in seventh column
DubMut25A50A R3 = DubMut3(:,7);

Retrieving M461+V82F+184V Data

Rep 1
TripMutl = csvread('MQP-M46I+V82F+I84V_C-alphaDistances.csv',3,0);

$C-alpha Distances of the 84-84' in third column
TripMut84 R1 = TripMutl(:,3);

$C-alpha Distances of the 25-25' in second column
TripMut25 R1 = TripMutl(:,2);

$C-alpha Distances of the 25B-50B in fourth column
TripMut25B50B_R1 = TripMutl(:,4);

$C-alpha Distances of the 25B-50A in fifth column
TripMut25B50A_R1 = TripMutl(:,5);

$C-alpha Distances of the 25A-50B in sixth column
TripMut25A50B_R1 = TripMutl(:,6);

%$C-alpha Distances of the 25A-50A in seventh column
TripMut25A50A R1 = TripMutl(:,7);

% Rep 2
TripMut2 = csvread('MQP-M46I+V82F+I84VRep2 C-alphaDistances.csv',3,0);

$C-alpha Distances of the 84-84' in third column
TripMut84_R2 = TripMut2(:,3);

$C-alpha Distances of the 25-25' in second column
TripMut25_R2 = TripMut2(:,2);

$C-alpha Distances of the 25B-50B in fourth column
TripMut25B50B_R2 = TripMut2(:,4);

$C-alpha Distances of the 25B-50A in fifth column
TripMut25B50A R2 = TripMut2(:,5);

$C-alpha Distances of the 25A-50B in sixth column

209

TripMut25A50B_R2 = TripMut2(:,6);
$C-alpha Distances of the 25A-50A in seventh column
TripMut25A50A R2 = TripMut2(:,7);

Compiling the Averages for 25-25

WT

edges25=[5,5.5,6,6.5,7,7.51;
[NWT25]=histcounts (WT25,edges25);

[NWT252]=histcounts (WT25_R2,edges25);

[NWT253]=histcounts (WT25_R3,edges25);
AlIWT25=[NWT25;NWT252; NWT253] ;
AvgWT25=mean(Al1WT25);

$I84V

[NI84V25]=histcounts(I84V25_R1,edges25);
[NI84Vv252]=histcounts(I84V25_R2,edges25);
[NI84Vv253]=histcounts(I84V25_R3,edges25);
A11I84V25=[NIB4V25;NI84V252;NI84V253];
AvgIB84V25=mean(A11I184v25);

SVB2F+I84V

[NDubMut25]=histcounts (DubMut25_R1,edges25);
[NDubMut252]=histcounts (DubMut25_R2,edges25);
[NDubMut253]=histcounts (DubMut25_R3,edges25);
AllDubMut25=[NDubMut25; NDubMut252; NDubMut253];
AvgDubMut25=mean (AllDubMut25);

$MA6I+VB2F+I84V

[NTripMut25]=histcounts (TripMut25_R1,edges25);
[NTripMut252]=histcounts(TripMut25_R2,edges25);
AllTripMut25=[NTripMut25;NTripMut252];
AvgTripMut25=mean (Al1TripMut25);

Compiling the Averages for 84-84

IWT
edges84=[14,14.5,15,15.5,16,16.5,17,17.5];
[NWT84]=histcounts(WT84,edges84);

[NWT842]=histcounts (WT84_R2,edges84);
[NWT843]=histcounts (WT84_R3,edges84);
Al1WT84=[NWT84;NWT842; NWT843];
AVgWT84=mean(A1l1WT84);

$I84V

[NI84Vv84]=histcounts(I84Vv84 R1,edges84);
[NI84Vv842]=histcounts(I84V84_R2,edges84);
[NI84Vv843]=histcounts(I84V84_R3,edges84);
All1T84VB84=[NIB4V84;NIB84V842;NI84VB843];
AvgIB84v84=mean(A11I84v34);

FVB2F+I84V

[NDubMut84]=histcounts (DubMut84 R1l,edges84);
[NDubMut842]=histcounts (DubMut84 R2,edges84);
[NDubMut843]=histcounts (DubMut84_ R3,edges84);

210

AllDubMut84=[NDubMut84; NDubMut842; NDubMut843];
AvgDubMut84=mean(AllDubMut84);

SMA6I+VE2F+I84V

[NTripMut84]=histcounts (TripMut84 R1l,edges84);
[NTripMut842]=histcounts(TripMut84_R2,edges84);
AllTripMut84=[NTripMut84;NTripMut842];
AvgTripMut84=mean(AllTripMut84);

Compiling the Averages for 25-50

IWT

edges25A50A=[13,13.5,14,14.5,15,15.5];
[NWT25A50A]=histcounts (WT25A50A, edges25A50A) ;
[NWT25A50A2]=histcounts (WT25A50A R2,edges25A50A);
[NWT25A50A3]=histcounts (WT25A50A R3,edges25A50A);
Al1WT25A50A=[NWT25A50A; NWT25A50A2; NWT25A50A3];
AVgWT25A50A=mean (A11WT25A50A) ;

$184V

[NI84V25A50A]=histcounts(I84V25A50A R1,edges25A50A);
[NI84V25A50A2 J=histcounts (I84V25A50A R2,edges25A50A);
[NI84V25A50A3 J=histcounts (I84V25A50A R3,edges25A50A);
Al1IB4V25A50A=[NI84V25A50A;NIB4V25A50A2; NIB4V25A50A3];
AvgIB84V25A50A=mean(Al1I84V25A50A);

SVB2F+I84V
[NDubMut25A50A]=histcounts (DubMut25A50A R1,edges25A50A);
[NDubMut25A50A2]=histcounts (DubMut25A50A_ R2,edges25A50A);
[NDubMut25A50A3]=histcounts (DubMut25A50A_R3,edges25A50A);
AllDubMut25A50A=[NDubMut25A50A; NDubMut25A50A2 ; NDubMut25A50A3];
AvgDubMut25A50A=mean (Al1DubMut25A50A) ;

$MA6I+VE2F+I84V

[NTripMut25A50A]=histcounts (TripMut25A50A_R1,edges25A50A);
[NTripMut25A50A2]=histcounts (TripMut25A50A R2,edges25A50A);
AllTripMut25A50A=[NTripMut25A50A; NTripMut25A50A27];
AvgTripMut25A50A=mean(Al1TripMut25A50A);

Retrieving Data for 25-50'

IWT

edges25A50B=[11,11.5,12,12.5,13,13.5,14,14.57;
[NWT25A50B]=histcounts (WT25A50B, edges25A50B) ;
[NWT25A50B2]=histcounts (WI25A50B_R2,edges25A50B);
[NWT25A50B3]=histcounts (WIT25A50B_R3,edges25A50B);
Al1WT25A50B=[NWT25A50B; NWT25A50B2; NWT25A50B3];
AvgWT25A50B=mean (A11WT25A50B) ;

$I84V
[NI84V25A50B]=histcounts(I84V25A50B_R1,edges25A50B);
[NI84V25A50B2]=histcounts (I84V25A50B_R2,edges25A50B) ;
[NI84V25A50B3]=histcounts (I84V25A50B R3,edges25A50B);
A11184V25A50B=[NI84V25A50B;NI84V25A50B2; NI84V25A50B3];
AvgIB84V25A50B=mean(Al1I84V25A50B);

211

SVB2F+I84V
[NDubMut25A50B]=histcounts (DubMut25A50B R1,edges25A50B);
[NDubMut25A50B2]=histcounts (DubMut25A50B_R2,edges25A50B) ;
[NDubMut25A50B3]=histcounts (DubMut25A50B_R3,edges25A50B) ;
AllDubMut25A50B=[NDubMut25A50B; NDubMut25A50B2; NDubMut25A50B3];
AvgDubMut25A50B=mean (Al11DubMut25A50B) ;

SMA6I+VB2F+IB4V

[NTripMut25A50B]=histcounts (TripMut25A50B_R1,edges25A50B);
[NTripMut25A50B2]=histcounts (TripMut25A50B_R2,edges25A50B);
AllTripMut25A50B=[NTripMut25A50B; NTripMut25A50B2];
AvgTripMut25A50B=mean(Al1TripMut25A50B);

Retrieving Data for 25'-50'

IWT

edges25B50B=[13,13.5,14,14.5,15,15.5,16];
[NWT25B50B]=histcounts (WT25B50B, edges25B50B) ;
[NWT25B50B2]=histcounts (WIT25B50B_R2,edges25B50B);
[NWT25B50B3]=histcounts (WIT25B50B_R3,edges25B50B);
Al1WT25B50B=[NWT25B50B; NWT25B50B2; NWT25B50B3];
AvgWT25B50B=mean (A11WT25B50B) ;

$I84V
[NI84Vv25B50B]=histcounts(I84V25B50B_R1,edges25B50B);
[NI84V25B50B2]=histcounts (I84V25B50B R2,edges25B50B) ;
[NI84Vv25B50B3]=histcounts (I84V25B50B R3,edges25B50B);
Al11I84V25B50B=[NI84V25B50B;NI84V25B50B2;NI84V25B50B3];
AvgIB84V25B50B=mean(Al1I84V25B50B);

$VB2F+IB84V

[NDubMut25B50B]=histcounts (DubMut25B50B_R1,edges25B50B) ;
[NDubMut25B50B2]=histcounts (DubMut25B50B_R2,edges25B50B) ;
[NDubMut25B50B3]=histcounts (DubMut25B50B_R3,edges25B50B) ;
Al1DubMut25B50B=[NDubMut25B50B; NDubMut25B50B2 ; NDubMut25B50B3] ;
AvgDubMut25B50B=mean (A1l1DubMut25B50B) ;

SMA6I+VE2F+I84V
[NTripMut25B50B]=histcounts(TripMut25B50B_R1,edges25B50B);
[NTripMut25B50B2]=histcounts (TripMut25B50B_R2,edges25B50B) ;
AllTripMut25B50B=[NTripMut25B50B; NTripMut25B50B2];
AvgTripMut25B50B=mean(AllTripMut25B50B);

Retrieving Data from 25'-50

IWT

edges25B50A=[11.5,12,12.5,13,13.5,14,14.5];
[NWT25B50A]=histcounts (WI25B50A, edges25B50A) ;
[NWT25B50A2]=histcounts (WT25B50A R2,edges25B50A);
[NWT25B50A3]=histcounts (WI25B50A R3,edges25B50A);
Al1WT25B50A=[NWT25B50A; NWT25B50A2; NWT25B50A3];
AVgWT25B50A=mean (A11WT25B50A) ;

212

$I84V

[NI84Vv25B50A]=histcounts(I84V25B50A R1,edges25B50A);
[NI84Vv25B50A2 J=histcounts (I84V25B50A R2,edges25B50A);
[NI84Vv25B50A3]=histcounts(I84V25B50A R3,edges25B50A);
Al11I84V25B50A=[NI84V25B50A;NIB4V25B50A2;NI84V25B50A3];
AvgIB84V25B50A=mean(Al1I84V25B50A);

$VB2F+I84V
[NDubMut25B50A]=histcounts (DubMut25B50A R1,edges25B50A);
[NDubMut25B50A2 J=histcounts (DubMut25B50A_R2,edges25B50A) ;
[NDubMut25B50A3]=histcounts (DubMut25B50A_ R3,edges25B50A);
Al1DubMut25B50A=[NDubMut25B50A; NDubMut25B50A2 ; NDubMut25B50A3] ;
AvgDubMut25B50A=mean (A11DubMut25B50A) ;

$MA6I+VB2F+I84V

[NTripMut25B50A]=histcounts (TripMut25B50A_R1,edges25B50A);
[NTripMut25B50A2]=histcounts (TripMut25B50A R2,edges25B50A);
AllTripMut25B50A=[NTripMut25B50A; NTripMut25B50A2];
AvgTripMut25B50A=mean(Al1TripMut25B50A);

Means of the Values

25-25

Al1WT25=[WI25,WT25_R2,WT25 R3];
Al1184v25=[I84Vv25_R1,I84Vv25_R2,I84V25_R3];
AllDubMut25=[DubMut25 R1,DubMut25_R2,DubMut25_R3];
AllTripMut25=[TripMut25_R1,TripMut25_R2];
MeanWT25=mean (AL1WT25);
MeanI84V25=mean(Al1I84v25);
MeanDubMut25=mean(AllDubMut25);
MeanTripMut25=mean(AllTripMut25);

% 84-84

Al1WT84=[WT84,WT84 R2,WT84 R3];
Al11184v84=[184v84_R1,I84v84 R2,I84V84_R3];
AllDubMut84=[DubMut25 R1,DubMut25_R2,DubMut25_R3];
AllTripMut84=[TripMut25_R1,TripMut25_R2];
MeanWT84=mean(AL1WT84);
MeanI84VB84=mean(Al1I84v84);
MeanDubMut84=mean(AllDubMut84);
MeanTripMut84=mean(AllTripMut84);

Plotting the Averages

figl=figure;

gsubplot(2,3,1)

plot(edges25(2:end),AvgWT25/5, 'b',edges25(2:end),AvgIB84V25/5, 'r' ,edges25(2:end) ,Av
hold on

plot(edges25(2:end),AvgTripMut25/5, ‘Coloxr', '[0 0.5 0]")

xlabel('Distance (Angstroms)')

ylabel('$% Time"')

title('C-alpha Dis of 25-25'")

ylim([0,80]);

213

fig2=figure;

gsubplot(2,3,2)

plot(edges84(2:end),AvgWT84/5, 'b', edges84(2:end),
AvgI84v84/5, 'r',edges84(2:end), AvgDubMut84/5,'k")

hold on

plot(edges84(2:end), AvgTripMut84/5, 'Color', [0 0.5
0]', 'Linewidth',0.75)

xlabel('Distance (Angstroms) ')

ylabel('$% Time"')

title('C-alpha Dis of 84-84")

ylim([0,80]);

fig3=figure;

$subplot(2,3,3)

plot(edges25A50A(2:end),AvgWT25A50A/5, 'b',
edges25A50A(2:end) ,AvgI84V25A50A/5, 'r', edges25A50A(2:end),
AvgDubMut25A50A/5, 'k")

hold on

plot(edges25A50A(2:end), AvgTripMut25A50A/5, 'Color', [0 0.5
0]', 'Linewidth',0.75)

xlabel('Distance (Angstroms)')

ylabel('% Time')

title('C-alpha Dis of 25A-50A'")

ylim([0,801);

figd=figure;

$subplot(2,3,4)

plot(edges25A50B(2:end) ,AVgWT25A50B/5, 'b'
,edges25A50B(2:end) ,AvgI84V25A50B/5, 'r'
,edges25A50B(2:end) ,AvgDubMut25A50B/5, 'k ")

hold on

plot (edges25A50B(2:end), AvgTripMut25A50B/5, 'Color','[0 0.5 01")

xlabel('Distance (Angstroms)')
ylabel('$% Time')

title('C-alpha Dis of 25A-50B')
ylim([0,80]);

figs=fiqure;
%subplot(2,3,5)

plot(edges25B50B(2:end) ,AVvgWT25B50B/5, 'b' ,edges25B50B(2:end),AvgI84V25B50B/5, 'r'

,edges25B50B(2:end) ,AvgDubMut25B50B/5, 'k ")
hold on

plot(edges25B50B(2:end), AvgTripMut25B50B/5, 'Color','[0 0.5 0]1")

xlabel('Distance (Angstroms)')
ylabel('% Time')

title('C-alpha Dis of 25B-50B')
ylim([0,80]);

figé=figure;
%subplot(2,3,6)

plot(edges25B50A(2:end) ,AVvgWT25B50A/5, 'b' ,edges25B50A(2:end),AvgI84V25B50A/5, 'r'

,edges25B50A(2:end) ,AvgDubMut25B504/5, 'k ')

214

hold on

plot(edges25B50A(2:end), AvgTripMut25B50A/5, 'Color', [0 0.5 01")
xlabel('Distance (Angstroms)')

ylabel('$% Time')

title('C-alpha Dis of 25B-50A')

ylim([0,807);

Published with MATLAB® R2015b

10

215

