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Abstract:

Based on the combined surface and volume RWG (Rao-Wilton-Glisson) basis
functions, a simulator of a patch antenna on a finite dielectric substrate using
the Method of Moments (MoM) has been implemented in Matlab. The metal
surface is divided into planar triangular elements whereas the

(inhomogeneous) dielectric volume is divided into tetrahedral elements.

The structure under study is comprised of a typical patch antenna consisting
of a single patch above a finite ground plane, and a probe feed. The

performance of the solver is studied for different mesh configurations.

The results obtained are tested by comparison with the commercial ANSOFT
HFSS v8.5 and WIPL-D simulators. The former uses a large number of finite
elements (up to 30,000) and adaptive nesh refinement, thus providing the

reliable data for comparison.

Behavior of the most sensitive characteristic — antenna input impedance — is
tested, close to the first resonant frequency. The error in the resonant
frequency is estimated at different values of the relative dielectric constant e,
which ranges from 1 to 20. The reported results show reasonable agreement.

However, the solver needs to be further improved.
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1. Introduction

1.1 Problem Statement

Thisthesis aims at simulation of combined metal-dielectric structures using the Method of
Moments (MoM) based on surface-volume RWG (Rao-Wilton-Glisson) basis functions
[1], [2]. A typical patch antenna structure consisting of a single patch above a finite
ground plane was mostly considered in the present study. The performance of the solver
(radiation/scattering) is studied for different mesh configurations and different dielectric
constants of the substrate. Other straightforward applications of the present solver include
simulation of antennas embedded in inhomogeneous dielectric (human body) and
el ectromagnetic compatibility (EMC) problems of printed circuit boards designed for very

high clock speeds.

1.2 Review of other smulation methods

Before going into the derivation and implementation of the MoM equations for the
combined metal-dielectric structure, we summarize various approaches to simulate patch

antennas and various software packages available for that purpose.

Finite Element Method (FEM): ANSOFT HFSS [3] is the commercialy developed

package for electromagnetic modeling. It uses the finite dement method. The festures of
ANSOFT HFSS are
1. The geometric modd is divided into large number of tetrahedra. The collection of these

tetrahedrais referred as the finite e ement mesh.



2. HFSS uses FEM with the unknown vector quantities being volume dectromagnetic
fields and currents.

3. The FEM approach requires (sophisticated) absorbing boundary conditions at an
artificia boundary.

4. Asthe structure is divided into larger number of tetrahedra for obtaining more accurate
results and assuring internal convergence, the execution time becomes very high (from
observations while working with ANSOFT HFSS).

5. ANSOFT HFSS can be used to model various inhomogeneous diglectric structures.

Method of Integra Equation (MIE) [4]: (surface to surface approach). WIPL-D [5] is

another commercially available and relatively inexpensive package for electromagnetic
modeling. It is based on the integra equation method, which implements the surface-to-
surface approach — surface equivalence principle of electrodynamics. The integra
equations for surface electric/magnetic currents are solved using the second-order basis
functions. WIPL-D (WI stands for wires, PL stands for plates, and D stands for dielectrics)
is a genera-purpose 3D electromagnetic simulator in the frequency domain capable of
handling any finite materia bodies and aso magnetic bodies. It is available in two
versions, basic and professional. The basic version is limited to 350 unknowns for metallic
structures and 500 unknowns for composite structures. It costs about $400. The most

significant features of WIPL-D are the following:

1. The metallic and diglectric surfaces are modeled using quadrilateral patches.



2. The Method of Moments/Surface Integral Equation (SIE) code is used to compute the
impedance matrix. In the MoM/SIE code the unknown quantities are surfaces currents
(electric and magnetic). Hence, the number of unknowns and CPU time required by the
MOM/SIE are usualy much smaller than those of the FEM and MoM/VIE. Typicad
execution time per frequency step can be a fraction of second.

3. WIPL-D, being aMoM/SIE code, does not need any absorbing boundary conditions and
associated discretization of the volume outside of the structure under investigation.

4. 1t does not alow modelling of inhomogeneous diglectric substrates and has noticeable
problems with embedded metal objects. It doesn't alow considering periodic

structures.

Integral_equation method: (volume to surface approach [1, 2, 6]): This approach has been

used in this thesis. It is based on the electric field integral equation (volume equivaence
principle for the dielectric and surface equivalence principle for metal) and uses some
basi¢/ testing functions for the derivation of MoM equations. The approach keeps the major
advantage of FEM — capability with handling inhomogeneous dielectrics. At the same time,
it doesn’t need any absorbing boundary conditions. The approach is also readily extendable

to the periodic case.

The system matrix is sill dense, as it is typica for any MoM method. The structure of the
system matrix will be discussed in the following sections. We suggest using combined
surface-volume RWG basis functions [1, 2] to derive the system matrix. Such a choice is

inviting for many reasons. The RWG basis functions are first-order vector-basis functions



that allow accurate representation of the field behavior. While the use of surface RWG
basis functions is a well-known matter [7-10], the volume RWG basis functions are almost
unknown. To the author’'s knowledge, this is the first use of combined RWG bass

functions for modeling patch antennas.

1.3 RWG bagsfunctions

Simulation of a combined metal-dielectric structure involves modeling of the metal surface
and the dielectric volume, respectively. In this section we discuss the surface RWG basis
functions used for modeling the metal surface [1] and then the volume RWG basis

functions for modeling dielectric volume [2].

a. Definition

The meta surface is divided into triangular patches as shown in Fig.1.3.1.

Fig.1.3.1 Surface RWG basis function



For any two triangular patches, t, and t,, having areas A’ and A, , respectively, and

sharing the common edgel , the n™ basis function is defined as

| n —+S = +
i5ar e Ting
NGRS (1.3.1)
I—r% Fint;
1 2A,

where 1'® =7 - 1"

n

is the vector drawn from free vertex of triangle t. to the observation
point; I";° =T, - I isthe vector drawn from the observation point to the free vertex of

triangle t; . The basis function is zero outside two adjacent triangles t* and t, .

Volume RWG basis functions [2] are very similar to the surface RWG basis functions [1].
Instead of two adjacent triangular patches sharing the common edge, one needs to consider

two adjacent tetrahedra sharing the common face as shown in Fig.1.3.2.

J

Fig.1.3.2 Volume RWG basis function



For any two tetrahedra, T,” and T, , having volumes V" and V, , respectively, and sharing

the common facea, , the n™ basis function becomes

A ST
fV(F) = J.' 3;/ (1.3.2)
;a/” Y rinT,

— -+

where 7Y =7-T" is the vector drawn from free vertex of tetrahedron T to the
observation point; ;¥ =7~ - I isthe vector drawn from the observation point to the free
vertex of tetrahedronT, . The basis function is zero outside two adjacent tetrahedra T,
andT, .

The component of f,Y normd to the n™ face is congtant and continuous across the face
because the normal component of r > along face n isjust the height of T* with face nas

the base and the height expressed as3V,*/a, . This latter factor normalizes ' in (1.3.2)

such that its flux density normal to face nis unity, ensuring continuity of the component of

f Y norma to the face. Thus it can be showed that [2]

fV(r)xi=1 onfacen (1.3.3)



Only one tetrahedron can be attached to the face, which lies on the boundary of the

dielectric structure, say T.". Therefore, the corresponding basis function is defined as in

equation (1.3.2) but only within T.". It is not defined otherwise [2].

b. Use
Since the volume RWG bass functions are used in conjunction with the volume

equivalence principle [4] for a dielectric object, they must be able to support
I. Volume polarization currents
il. Volume bound charges
iii. Surface bound charges.
The discussion of volume polarization currents and volume bound charges is

straightforward [2]. It is therefore not duplicated here. However, the discussion of surface

bound charges needs to be revisited.

The total electric flux densityD(F) is expanded into a set of basis functions (1.3.2).

Considering only one basis function for simplicity, one has

D(F)=D. " (F) (1.3.4)

The volume polarization current j\, (M), by definition [4], is given by



Jy (F) = jwK(r)D(F) ,

where K (r) is the contrast ratio,

0

&(r)

K(r_):é(r)—-e

The total polarization charge is given by Gauss' theorem

~

jwr (7) =- N, xJ,, (1)

which, after substitution of equation (1.3.5), becomes

(1.35)

(1.3.6)

(1.3.7)

The first term on the right-hand side of equation (1.3.7) describes the volume bound

charges. The second term is related to surface bound charges. This term appears when the

permittivity and the contrast change abruptly. Thus, this term is formally represented by a

generalized function (d-function).

Below, we will check the behavior of bound surface charges

rs(f) =-D,fY ([N, xK

for different physical situations.

(1.3.8)



c. Typesof dielectric boundary
Consider three cases depicted in Fig. 1.3.3. In the first case (a), the “full” volume RWG
element lies within the (inhomogeneous) didlectric. It includes two tetrahedra with

piecewise constant dielectric contrasts, i.e.

K*=congt, K~ =const (1.3.9)

respectively. In the second case (b), the “boundary” volume RWG eement lies on the

boundary dielectric-air. It has the constant contrast

K* = const (1.3.10)

amost everywherewithin T." but not on the face a,,. Thislast remark actually assures the

presence of surface bound charges on the boundary. If the gradient of the contrast would be
absent, the volume RWG basis functions wouldn’t be able to support surface boundary
charges on the boundary dielectric — air.  Findly, in the third case (c), the “boundary”
volume RWG element lies on the boundary dielectric-metd. It again has the constant

contrast

K™ = const (1.3.11)

amost everywherewithin T,” but not on the face a, .



a) b)
+ - + ‘
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Fig.1.3.3 Surface bound charges supported by a volume RWG basis function.

d. Surface bound charges—inner face between two different didlectrics

In case (@) of Fig.1.3.3 it follows from equations (1.3.8) and (1.3.3) that

r4(F)=-D, fY(F)N, XK =- D, lim h®o% (1.3.122)

snce FnV (r)xn=1 onface n and the direction of the normal vector is from I€ft to right in

Fig. 1. Equation (1.3.124) leads to the residing surface charge density

r(F)=-D (K -K")=D (K- K )=D'(K'-K)=D (K'-K)  (L3.12b)

10



On the other hand, it is well known thet “the bound charge density at the interface between

two didlectrics1 and 2 is

-1
(2]
~
=
~
I
—~
~0!
1
N
~
X,

(1.3.12¢)

where the polarization in 1 is P, and is directed into the interface; the polarization in 2 is

P, and points away from the interface’ [11]. By definition

P(7) = K(M)D(r) (1.3.12d)

We plug (1.3.12d) in (1.3.12c) to obtain equation (1.3.12b). Thus, the volume RWG basis

functions exactly satisfy the boundary condition at the dielectric-dielectric interface.

Indeed, the total eectric flux is continuous across the face, i.e. D, =D, [11].

e. Surface bound charges—boundary face at air-diglectric interface

In this case we must assume equation (1.3.10) to hold amost everywhere within T,”. On

the face itsdlf, the contrast K~ must become zero, which corresponds to the case of air.

Then,

ro(f)=-D, fY(FN, XK =-D, lim h®OO'TK (1.3.133)

11



ro(f)=D;K* (1.3.13b)

which is the particular case of the result of previous section. We can conclude that the

boundary condition is also satisfied at the boundary between the dielectric and air.

f. Surface bound charges—boundary face at dielectric-metal interface

In this case we must assume equation (1.3.11) to hold almost everywhere within T.". On

the face itsdf, the contrast will have some value K™, which is a priori unknown. Let’s try

to find that value, using the boundary condition at the metal-dielectric interface. One has

[11] (Fig:1.330)
rs(r)zgi-l%s; s.=-D (1.3.143)
€r (4]

where s g is the free charge density on the contact side of the metal interface. It follows

from equation (1.3.14a) that
e, -10
r (F):g—R D =K'D, (1.3.14b)
® € @

12



On the other hand, when the dielectric contrast drops down to some value K~ on the face

itself, the surface charge is going to be (1.3.12b)

rs(f) =D (K" - K") (1.3.140)

Comparing equations (1.3.14b) and (1.3.14c) one seesthat it should be

K =0 (1.3.14d)

in order to be consistent with the boundary conditions on the dielectric- metal interface.

g. Point of concern

On the one hand, the condition

K~ =0 (1.3.15)

corresponds to the boundary face in contact with air. On the other hand, it corresponds to
the boundary face in contact with metal (cf. previous section). It seems that we cannot
discriminate between those two conditions a priori, which leads to the following paradox.

Any boundary face in contact with metal must satisfy equation (1.3.15). Thus, it can be
treated as a face in contact with air as well. Therefore, it should be an air gap between the
metal and the dielectric of infinitesmally small thickness. Such an air gap is dangerous

since it usually assumes very high fields and significant parasitic impedance.

13



To eliminate this uncertainty, one can introduce the boundary condition between metal and

dielectric explicitly. In other words, one should put

s.=-D; (1.3.16)

into MoM equations explicitly. While the boundary condition is implemented in the

elegant way when the metal face is in contact with dielectric, i.e.

ss=-D' +D; (1.3.17)

total

for thetotal surface charge density s s on the metal surface, it is difficult to implement

it for the infinitely thin metal sheet on the boundary dielectric-air.

With this discussion as a background of RWG basis functions, we will pursue the

derivation of Method of Moment (MoM) equations for a simple patch antenna structure in

the following section.

14



2. Derivation of MoM equations

In this section the MoM equations is derived for a pure metalic, a pure dielectric and a
combined meta-dielectric structure based on the surface-volume RWG basis functions.
The derivations in this section form the core of the solver, which is tested in the following

section.

2.1 MoM equationsfor a metallic (air-filled) patch antenna

In this section, the MoM equation for a pure metal object (an antenna or a scatterer) is
accurately derived for the electric field integral equation (EFIE) [4], utilizing RWG basis

functions[1].
a. Scattering problem

Thetotal eectric field (antenna or scattering problem) is a combination of the incident field

(labeled by superscript i) and the scattered field (labeled by superscript s), i.e.
E=E +E°® (2.1.1)

The incident field is ether the incoming signal (scattering problem) or the excitation

electric field in the antenna feed (radiation problem). The scattered field has a

15



straightforward interpretation for the scattering problem. For the antenna radiation, the

“scattered” field isjust the field radiated by the antenna.

The scattered eectric field E*® is due to surface currents and free charges on the metal

surface S (the so-caled mixed- potential formulation)

ES=-jwA(F)- NF(F) FonS (2.1.2)

The magnetic vector potentia ,&S(r”) describes current radiation whereas the electric

potential F (') describes charge radiation. In the near field, the F -contribution is

somewhat more critical than the A-contribution. In the far-field, the F -contribution is

negligibly small. On the metal surface S the tangential component of the electric field,

E.., =0, thus giving the EFIE,

El, =(jwA, +RF,), rons 2.13)

an

b. Test functions

Assume that some test functions, f °(F) m=1... Ny, cover the entire surface Sand do not

have a component normal to the surface. Multiplication of (2.1.3) by fnf and integration

over Sgives Ny eguations

16



OF S »E'dr = jwyf S xAgdr - N xf3 F of (2.1.4)
S S S

snce

ONF ¢ xf S0 =- ¢F (N xf >dF (2.15)
S S

if fn? doesn’t have a component perpendicular to the surface boundary or edge (if any).

c. Surface current/char ge expansions

The surface current density, J s IS expanded into basis function (which usualy coincide

with the test functions) in the form

N
J. =31 Fs 2.16)
n=1
The magnetic vector potential [1]
(2.1.7)

-~ m .= ~
As() =4 Olsgare
after substitution of expansion (2.1.6) becomes

17



Of s (F gar cg,| (2.1.8)

where g =exp(- kR /R, R=|r - 1| is the free-space Green's function (time dependency

exp( jwt ) isassumed everywhere). Similarly, the electric potential,
F.()= 1 s dr', jws¢=-N<xJ (2.1.9)
s 4pegsg WS s L

(s . isthe surface charge density) has the following form

, 11
Fo(F) = T#TWO\ISXIC (rtpdrf\; (2.1.10)

d. Moment equations
The moment equations are obtained if we substitute expansions (2.1.8) and (2.1.10) into the

primary equation (2.1.4). In terms of symbolic notations,
m=1,...,N,, (2.1.11)

where

18



= Of 5 xE'dF (2.1.12)
S

are the “voltage” or excitation components for every test/basis function and

zt = B0 () of 2 Yo - L SopfR, 2, i tJoorer (2113
. D00 ggarer - £ SN, N o Joorer (21,19

are the components of the impedance matrix of the size (Nv X Nu). Note that the
impedance matrix is symmetric for any set of bass functions (test functions should be the
same) when the corresponding surface integrals are calculated precisely. The components
of the impedance matrix are the double surface integrals of the Green’s function and they

mostly reflect the geometry of the problem. In the matrix form, (2.1.11) becomes

=2l (2.1.14)

e. RWG basisfunctions

Below, we recall the following properties of the RWG basis functions [1]. For any two
triangular patches, t; and t,, having areas A’ and A, , and sharing the common edgel ,,

the n-th basis function becomes

19



|
f 5(F) :¥ zlA“ (2.1.15)
I 75 fint;
1 2A,
and
-1'; |"+ rint,
R xf 3 =1 ™ (2.1.16)
- rint;
t A
where 1'° =7 - I* is the vector drawn from free vertex of triangle t* to the observation

point; 7~ ° =7’ - T isthe vector drawn from the observation point to the free vertex of

triangle t; . The basis function is zero outside two adjacent triangles t~ and t, .

Substitution of equations (2.1.15), (2.1.16) into equation (2.1.13) gives the components of

the impedance matrix in terms of surface RWG basis functions in the form

QO S xf Sgdr & =
S S
| ] . | ]
o S S o ¢S Jgdr o +—20— Ar S % ¢ S oo dr (21.17)
amA 00( AAA, 00(
| | A \[—~-S S = PN [ | AN - S S
mn S2x 67 Jgdr dr + —20 -2 ¢ Jgdr dr
4AnAh tfntxn{ ) 4 tfthn{ )
ad

20



O xf SR xf Sgdr &l =

SS
[ | .
+ Tn+ P df'dr- Tn_ hP dr"df’ (2118)
Amph tgﬁ A’“A‘ 1%9
[ Il
- 0 Adpdrdr +—"2— Aopdr dr
/\Tllxh tg?gjg /\"W/Nh tfsﬁ;xg

f. Integral calculation

Calculation of the surface integrals presented in equations (2.1.17), (2.1.18) forms a major
part (about 90%) in the evaluation of the MoM impedance matrix for RWG basis functiors.
Consider a structure where al triangular patches are enumerated by p =1,...,P. Then, every
integral in equation (2.1.17) is build upon the term

Al = odfF s ¥ e Jo(r - rhdrer pg=1..P i,j=123 (2.1.19)

thly

Here, r,° =T - T for any vertex i of paich p whereas "> =T"-T, for any vertex j of patch

g. Smilarly, every integral in equation (2.1.18) is build upon the term

Fsp = O0Q(F - FPoFer p,q=1..P (2.1.20)
t

The integrals (2.1.19) and (2.1.20) can be found using a vectorized routine, which employs

Gaussian integration of variable order (up to 7" for both the surface integrals [12, 13].

21



Cdculation is performed over al triangular patches, not over RWG basis functions. The

corresponding formulas are given in Appendix B.

g. Self-integrals
The sdf-integrals (p =q in equations (2.1.19), (2.1.20)) are found precisely, using a
number of anaytical base integrals presented in [14]. Before doing that, the Taylor

expangion is written for the Green’s function

.  k?R
g=exp(- jkR/R»1/R- jk- 5 (21.21)
Therefore
1
F oo = OR(F - THAF&r » Oy——dreir - jkA p=1..P (2.1.22)
p oog Or-rg kA,
and

Agpp N (PTG
ey |r- rtF

p=1..P i,j=123

o & - jKOQYT - 7)) X7 ¢ T, )dr e
kodr - 1)) (2.1.23)

Introduction of the smplex coordinates | ,,I , for thetriangle t gives[14]

22



r=I 1(r1' r3)"" 2(r2' I73)""73’ re=| l((rl- rs)"'l 5('72 B I73)+I73 (2.1.24)

and

(F-r):(re-r)=
(- F)X- 1) 1+
(F;' F3)>(2F3- Fi' Fj), |1+

(G- ) X2 -6-1) 1+ (2.1.25)
(- )X - 1) " 1yl o+

(rz' rs)’(rz' I73)' Izl §t+

('71' F3)>(F2' rs), |1I §t+

('71' F3)>(F2' rs), |1¢2

Subgtitution of equation (2.1.25) into the first term on the right-hand side of equation
(2.1.23) results in seven integrals. Each of those is reduced to one of the four independent
base integrals given in [14]. The remaining values are obtained using cyclic transformation.
Integral (2.1.22) only needs the first base integral [14]. The second term on the right-hand
sde of equation (2.1.23) is calculated straightforwardly. Further details are given in

Appendix B.

h. Impedance matrix filling —batch method
After the integrals (2.1.19) and (2.1.20) are calculated and stored, the complete impedance
matrix is found by substitution of (2.1.17) and (2.1.18) into equation (2.1.13) and using

equations (2.1.19), (2.1.20), in theform

23



ZMM -

mn
\|+ 1 = -LF u
j '1 ATAT Semam’) T AT AT Seama)
+ 1] ,
dpwe T 1 F L1 F ?/
f' A AT SPmam) A A Se(ma),
(2.1.26)
'+i i(mHimT 1 Ais(m*)j(n')_ U
Cjwm, 1 AAY S A A e

ImIn I Yy
16p (P Ay 1 A
f AnA\q Sp(m)a(n’) Aw“\q Sp(m)a(n )b

Here, p(m*) is the patch number corresponding either to plus or minus triangle of the
RWG basic function m, respectively. Indexes g(n*) have asimilar meaning.
Index i(m*) isthe vertex number of the triangular patch, corresponding to the free vertex

of either plus or minus triangle of the RWG basic function m, respectively. Indexes j(n*)

have a similar meaning.

Switching between plus and minus sign in the second part on the right-hand side of

equation (2.1.26) is due to the opposite sign of *° and " °. In equation (2.1.20), only

n
“positive’” 1 (ori*°) were formaly considered. To includef” °into consideration one

therefore needs to change the sign of the corresponding term.

The impedance matrix Z can be filled using two nested loops over the total number of
RWG basis functions. This procedure doesn’t imply possible double calculations of the

same surface integrals (cf. discussion in [1]). The reason is that al the surface integral pairs

24



(2.1.19) and (2.1.20) were dready found for different triangular patches on the previous

step.

Although the batch filling is very fast, it requires a substantial amount of RAM and cannot
typicaly be used when the size of the impedance matrix exceeds 5,000x5,000. Therefore,
one can utilize another method, where only one row of the impedance matrix is caculated

a atime.

2.2 MoM equation for a puredidectric structure

In this section, the MoM equation for a purely dielectric object (a scatterer) is accurately
derived from the dectric field integral equation (EFIE) [4], utilizing volume RWG basis

functions[2].

a. Scattering problem
The total €eectric field (antenna or scattering problem) in a dielectric volume is a
combination of the incident field (labeled by superscript i) and the scattered field (labeled

by superscript s), i.e.

E=-E +E°® (2.2.1)
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Let V denote the volume of a lossy, inhomogeneous, dielectric body with (complex)
dielectric constante(r) =e(r) - js (F)/w, where e and s are the medium permittivity
and conductivity when risinV . The total eectric field in that case can be expressed in

terms of the electric flux density, D(F) as

The incidert field is the incoming signal for the scattering problem. The scattered electric

field E® is found using the volume equivaence principle [4]. The diglectric materid is
removed and replaced by equivalent volume polarization currents. The scattered field is

due to volume polarization currents in dielectric volume V (bounded by surface W) as

follows

ES=-jwA, (F)- NF,(F) FinV (2.2.2)

The magnetic vector potential ,5\, () describes radiation of volume polarization currents,
whereasthe electric potential F ,, (") describes radiation of the associated bound charges. In

the far field, the F -contribution is negligibly small. Thus, from the expressions for E

and E®, we can write the EFIE as

O

= _DbC

(r)

N

+ jwA, (F) +RF, (F) FinV (2.2.3)

D,
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b. Test functions

Assume that some test functions, fY(F) m=1... Np, cover the entire didlectric volumeV .

Multiplication of equation (2.2.3) by f:;’ () and integration over volume V gives Np

equations

since
NF, Y (F) = ¢F o [Ny (P))aF + oF , (AxFY (7))oF

where W is the boundary ofV or the boundary of a region where ﬂ;’ (r) is defined, and

nisthe outer unit normal to the surface W.

c. Volume current/char ge expansions

The volume polarization current j\, (M), by definition, is written in terms of the electric flux

density D(F) [2] in the form

J, (F) = jwK(F)D(F) (2.2.5)

27



where K(F) is the contrast ratio,

The electric flux densityD(r) is expanded into a set of basis functions (which usually

coincide with the test functions) as

The volume current density, j\, () can be expanded in the form

3, (F) = jwd DK, ()Y (r)

n=1
Thus, the magnetic vector potentia [2]
~- m .- ,_ -
A (F)=——0Qly (F9gdre
P

after substitution of expansion (2.2.7) becomes
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A, (F)= Se%"&al | 9< (FOFY (r‘fyng(%Dn (2.2.9)

where g =exp(- jkR/R, R=[ - r'¢ is the free-space Green’s function (time dependency

exp( jwt) is assumed everywhere). Similarly, the electric potentia (r is the volume

charge density")

Y

@l 0. on e .
F,(@)=¢c—- dr ¢ =-N, xJ 2.2.10
v(r) g®e§(r©g rg¢ jwr(r) v X<y (F) ( )
has the following form

Fu(f)= Q4T9§.d<n<r<»(Nxf (9 Jodr o+ dNKnG‘D)an(F‘ngF%Dn (2.2.11)

Gha iy

The first term on the right-hand side of equation (2.2.3) can be expanded in the form

O Fv -
. D, £ (F) (22.12)
1%}

1 The volume charge density in homogeneous dielectric is zero, except for bound (surface) charges.
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d. Moment equations
The moment equations are obtained if we substitute expansions (2.2.9), (2.2.11) and

(2.2.12) into the primary equation (2.2.4). In terms of symbolic notations,

Np

u,=gq Z°°D, (2.2.13)
n=1

where

Uy = Of n(F)XE'dF (2.2.14)

are the “voltage” or excitation components for every test/basis function and

é- Wzm N — re — N u

&4 QO (M) xF (T, gdrer g

e VvV U

€ oy m)RxFy (ro )k, garer + ofR xFY (7))FY (ro(RK, (F9)garer

go0 g L B 8 {73
™ e ey oY () AIRFY (FO)K, drer - Ty (1) A)T (FO(RK, (F9)gdrery
g wv WV bl;j

S 1 G

& Op =g I (N XFY (O i

8 Y, e(rg H

(2.2.15)

are the components of the impedance matrix of the size Np X Np. Note that the impedance
matrix is symmetric for any set of basis functions (test functions should be the same) when

the corresponding volume integrals are calculated precisely. The components of the
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impedance matrix are the double volume and/or surface integrals of the Green’s function
and they mostly reflect the geometry of the problem. In the matrix form, equation (2.2.13)

becomes

(2.2.16)

<
I
N>
(W]

e. RWG basisfunctions

Below, we recall the following properties of the volume RWG basis functions [2]. For any
two tetrahedra, T,” andT, , having volumes V" andV, , and sharing the common facea,,,

the n-th basis function becomes

%33+ FYoFinT
f/(r) =i o (2.2.17)
Y FinT:
3V,
and
-,} \‘/3*1 FinT:
Ny, <) (F) =1 5 (2.2.18)
- FinT,
(A
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=+

where 1Y =7 - [’ is the vector drawn from free vertex of tetrahedron T," to the
observation point; ;¥ =7 - I isthe vector drawn from the observation point to the free
vertex of tetrahedronT,, . The basis function is zero outside two adjacent tetrahedra T,
andT, .

The component of Y norma to the n™ face is constant and continuous across the face
because the normal component of r *V dong face n isjust the height of T." with face nas
the base and the height expressed as3aVv* / a, . This latter factor normalizes " in (2.2.17)
such that its flux density normal to face nis unity, ensuring continuity of the component of

f VY normal to the face. Thusit can be showed that [2]

fY(r)xi=1 onfacen (2.2.19)
Consider the second term on the right-hand side of equation (2.2.11) given as,

NK, (FO)fY (Fggdre (2.2.20)

Theterm (NK , (FQ) is zero if the n'" face is separating two identical dielectrics. But if the

n™ face is separating two dissimilar media, different contrast ratios will be associated with

two tetrahedra sharing the n™ face. Thus,
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(RK,(F9)=(K; - K; H(s) A

where K and K, arethe contrast ratios associated with T,” andT, sharing the n™ face,
respectively, and d (<) is the surface delta-function. This alows us to express the volume

integra (2.2.20) in the form

ARK , (F9)FY (F9gdre= (K - K )pdre (2.2.21)
\Y S

Subgtitution of equations (2.2.17), (2.2.18) into equation (2.2.15) and substitutions of
equations (2.2.19) and (2.2.21) give the components of the impedance matrix in terms of

volume RWG basis functions. Hereafter we have assumed that contrast K is constant

within each tetrahedron. So that K (r) can be represented as just K, for n" tetrahedron.

Following similar procedure for €(r), the expressions for the integrals in (2.2.15) can be

written in the form

QOfw (1) xf (r 9gdr & =
VA%

+Z"\’,af\ll<+” OdF s ()3 (F9)gorar + agg*;/a:Kﬁ odr Y ()<Y (F9Jodidi (22.22)

Tty m¥n 11
+ 202Ka v () (rg)gdr o + 208Ka. sofev (1) (rg)gdr dr
NoVi' oy NoVo 1,
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AN xfy (NN xFY (r §gar ér =
vV

a.a, K* . N
+ 0 AGdr dr - a‘“a“ - ocp (2.2.23)
mon o ToTY mon T,
amanKn << a,a, K, L.
- cpdr dr + 21— fegdrd
Vin Vn ToTo ViV TnTn

IR XFY (1)K, (r9)gdr &ir = OdN <FY (1) JRIK, (r9)gdr &F

(K Ko e (e Koo (2224
v, v, oo
+ K-
(‘I‘{N <FY (rQ)K ., (r 9gdr &F = “a“ O oF - ~2% 3 aade dr (2.2.25)
v, & v, &
ORI, (F9)adrer = (K - K; ) odpdrdr (2.2.26)
SnSh SinSh
ad
O () XF (7 9
vers
él a,a NtV gtV 1 ama NtV -V I
A——0 0 oYXy ar + — n oYXy dr
o aupv; O o e -




f. Integral calculation
Evaluation of the MoM impedance matrix for RWG basis functiors is by 90% the
calculation of the volume/volume; volume/surface and surface/surface integrals presented

in equations (2.2.22) to (2.2.27). Consider a structure where all tetrahedral volumes are

enumerated by p =1,...,P. Then, every integral in equation (2.2.22) is built upon the term

Al = odry < ¢ Jo(r - rhdrer pg=1..P i,j=1234 (2.2.28)
Tqu

Also, every integral in equation (2.2.23) is built upon the term

Fig = OOR(F - Fddrer p,q=1...P (2.2.29)

Every integral in equation (2.2.24) is built upon the term

Flw = OCR(F - Fdrer p,g=1..,P (2.2.30)
T.S

Every integral in equation (2.2.25) is built upon the term

Fiw = OR(F - rdrer  pq=1..,P (2.2.31)
S
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Every integral in equation (2.2.26) is built upon the term

Fu = OCR(F - rdrer p,q=1..,P (2.2.32)
S, S

Similarly, every integral in equation (2.2.27) is built upon the term

DY = ff Y ¢ Jo(r - rdrer p,q=1...P i,j=123 (2.2.33)
T

p

Here, 1Y =T - F;¢for any vertex i of tetrahedron p whereas )’ ='- ,¢for any vertex j of

tetrahedron g. The integrals (2.2.28)-(2.2.33) are found using a vectorized routine, which
employs Gaussian integration of variable order (up to 10™) for both the volume integrals
[13], [15]. Caculation is performed over dl tetrahedral patches, not over RWG basis

functions. The corresponding formulas are given in Appendix B.

2.3 MoM equationsfor a combined metal-dielectric structure

In this section, the MoM equations for a combined metal-dielectric object (a scatterer) are
accurately derived for the eectric field integral equation (EFIE) [4], utilizing surface and

volume RWG basis functions [1], [2] following the approach as given in [6].
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a. Scattering problem
The totd eectric field (scattering problem) is combination of the incident field (labeled by

superscript i) and the scattered field (labeled by superscript ), i.e.

m
11
m
+
m

(2.3.1)

Let V denote the volume of a lossy, inhomogeneous, dielectric body with (complex)
dielectric constante(r) =e(r) - js (F)/w, where e and s are the medium permittivity

and conductivity when risinV . Let ameta surface Sbe attached to this dielectric object.
The incident field is the incoming signal for the scattering problem. The scattered electric
field E*® in this case will have two components. One is due to volume polarization currents

Jy (r) = jw(é(r) - &,)E(r) (23.2)

in the dielectric volume V and associated bound charges on the boundaries of an
inhomogeneous dielectric region, and the other component is due to surface currents and

free charges on the metal surface S Using the expressions for scattered field in terms of

electric and magnetic potentials A and F one has

ES=-jwA, (r)- NF, (F)- jwA(F)- NF(F) FinV (2.3.33)

Es=- jwA(F)- NF 4(r)- jwA, (F)- NF,(F) FfonS (2.3.3b)
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where index V refers to dielectric volume and index S refers to meta surface, respectively.
The magnetic vector potential A(F') and eectric potential F (F) carry their usua meanings

corresponding to metal and dielectric. Since

D =éE, in the didlectric volume V (2.3.49)

E.., =0, onthemetal surface S (2.3.4b)

using the expressionsfor E and E*, we can write the EFIE as

—

E' :%+ jwA, (F) + NF, (F) + jwA (F) + NF ((F) FinV (2.3.59)

EL,= |+ iWA(F) +RF o)+ jwA, (N +NF, ()], rons (2:3.5h)

b. Test functions

Assume that the volume test functions, f:;’(r*) m = 1... Np, cover the entire diglectric
volume V . Each function is defined (different from zero) within a smaller volumeV,,.
Multiplication of equation (2.3.5a) by Fn‘{ () and integration over volume V gives Np

equations
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5o (N 2D o 4 jw oY (r)hydr - Y ©)F o + a)<FY (r)F, or
é, e(r) v, v, W,
R - g ZDD
Of v (F)<E'dr =&
v é s NFVY (Y wA AdAF - NRKI < f V7 & NAamrEYwfV E =
¢ +jw Y (7)Asdr - JRxEY (M) ooF + JaE) <FY (7)F oo
a Vi Vi Wh
g ZMD
(2.36)
snce
OFY F)RF , ooF =- oF o <[y (7))oF + ¢F , () xFY (7))dF (2.3.7)
Vi, v, W,

where W_ isthe boundary of volume V_ and f isthe unit outer normal to the surface W.__
bounding volume V,_ . Notethat W, and S may intersect. The term on the right-hand side
of equation (2.3.6), labeled Z°°, is exactly the right-hand side of equation (2.2.4) from

section 2.2 for pure didlectric. The term, labeled ZM°, describes the contribution of

radiation from the metal surface to the didectric volume.

Now assume that the surface test functions, an (") m=1... Ny, cover the entire meta
surface S and do not have a component normal to the surface. Each function is defined

(different from zero) within a smaller surface S,,. Multiplication of equation (2.3.5b) by

ﬂf (r) and integration over surface S gives Ny equations
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&+ jw 3 S(F)<Adr - JNxFS(F))F (aF O
S S S u
e u
B B é ZMM l]
Of m (M) *E'dr =& ¥ (2.3.8)
e ~ - - = u
° &+ jw §f S (F) <A, dF - RIxES(P)F, drg
¢ = s G
8 7DM H
since
OFS(F) NF , ooF = - OF < [NxF5(7) )aF (2.3.9)
Sn Sn

The term on the right-hand side of equation (2.3.8), labeled Z™ | is exactly the right-hand

side of equation (2.1.4) from section 2.1 for pure metal. The term, labeled Z° | describes

the contribution of radiation from the didectric volume to the metal surface.

c. Surface, Volume current/char ge expansions
Here we recall the equations for expansion of magnetic vector potential and electric

potentials in terms of the corresponding basis functions.

The surface current density, J s for the metal surface, is expanded into Ny surface RWG

basis functions fns in the form (identica to section 2.1)

Js=a1,f° (2.3.10)
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The magnetic vector potential [1] after substitution of expansion (2.3.10) becomes
\7S/> — u
f. (r9gdr Ggl n (2.211)

Where g=exp(- jkR/R R=|7 - ¢ is the freespace Green's function (time
dependencyexp( jwt) is assumed everywhere). Similarly, the electric potential takes the

form, (identical to section 2.1)

1
dpe

Ve

N
T

Qaz

Fo(F) = N xf S (F@gdf@zl n (2.3.12)

1
w

S
N

Turning to dielectric, the volume polarization current j\, (r) is written in terms of the

electric flux density D(F) [2]

J, (F) = jwK(F)D(F) , (2.3.13)

where K(r) is the contrast ratio

=21/ % (2.3.14)

The dectric flux density D(F) is expanded into a set of basis functions (m = 1... Np,) &s
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oo
D, fy ()

n=1

O
=i

(r)

The volume current density, j\, () can be expanded in the form

3, (r) = jwd DK, (") FY ()

n=1

Thus, the magnetic vector potential [2]
A[F)=— c‘)] (F9gare

\%
after substitution of expansion (2.3.7) becomes

aw ONoDi\ eV /= —'u
P n fn d Dn
A ()= o ﬂi:vd((f@ (f9g r‘Z

(2.3.15)

(2.3.16)

(2.3.17)

(2.3.18)

where g =exp(- kR /R, R= |F - F¢ is the free-space Green’s function (time dependency

exp( jwt) is assumed everywhere). Similarly, the electric potential (r

charge density)
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me=§%%nmmm jwr (F) = - Rd, (F) (23.19)

has the following form

- 16T o e 2y o) o o Ny . U
Fv()= ée%ia:‘l%\g(”(r (D(N xfy(r q)gdr¢+de K, (F9)f (F 9gdr GgDn (2.3.20)

The first term on the right-hand side of equation (2.3.5a) can be expanded in the form

D(F) ®eael 6 -y,
an L my ! (23.21)

d. Moment equations

The moment equations are obtained if we substitute expansions @.3.11), (2.3.12) and

(2.3.18), (2.3.20), (2.3.21) into equations (2.3.6), (2.3.8). In terms of symbolic notations,

b Y
ur=a ZmbD,+ta Zm I, (2.3.224)
n=1 n=1
%M %D
Up=a Zm ln*a Zm D, (2.3.22b)

n=1 n=1
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where

uV=Of Y (F)<E'dr, u S=Of S(F)*E edr (2.3.23)
\%

are the “voltage” or excitation components for every test/basis function and the parts Z"“°

and Z®" can be expanded as

g—JZme OOF Y (F) xf 2 (r 9gdreir ﬂ
é VinSn (j
Z¥° =3 | odRixTy (n)RxT S (rgJodrer Ul (2.3.24)
e | I nS: 4
g 4|owe.- o Ty ()R =F; (rcp)gdrcir?’
e WS b
. \
eI A2 (1) XT, (r 0K, (g gorer ;
é P sy a
o0 =8 1 adREsm R ro)k, rogarer (2325
e 1 ? S La
& apey+ R xFs(m)FY (r 9K, (ro)gor ey U
é f sw b

Note that the impedance matrices (Z"° and Z®") are not symmetric in this case since test
functions don’t coincide with the basis functions. The components of the impedance matrix

are the double volume and/or surface integrals of the Green’s function. Also, a relation

between Z"° and Z°" can be derived from (2.3.24) and (2.3.25) as
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s (
ZDM - (JWK)szD
(. : : . .
where Z"° isthe transpose of ZMP matrix (the inner and outer integrals interchanged) and

K isamatrix of corresponding contrast ratios.

e. RWG basisfunctions

Below, we recall the following properties of the surface RWG basis functions [1].

|
()| 2|A“ (2.3.26)
—r % Fint;
1 2A,
and
R
1 — rinT,
Ng xt>(F) =1 A}‘ (2.3.27)
I-—— rinT,
A

Substitution of equations (2.3.26), (2.3.27) into equation (2.3.24) gives the components of

the impedance matrix in terms of RWG basis functions.
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QOfw (F) <2 (FYgdrer =

V'S
a‘mf \\—>V+ = S+ a'mg _'V+ - S-
+ r rQ)gdr'd r r¢)gdr'd 2.3.28
6\//%00( (O (9o ar + 2 O (O (rgJoerdr 2329
Toty Toty

am’gn A\ -V- — S+ Fd IR fd af Y
+— M (M) (F§)gdrdr + ——- r)x . (f9)odrdr
wmAng?( g WmAngﬁd (NS 9

N xf Y (PN F ° (7 9gdr & =

V'S

2.3.29)
a'r‘ng N AN amgn AP ! m n 2\ (
cxpdrdr ——- oopdrdr ajgdr dr
V A’l VmAn Tty m Thth m Tt
A\ £S/ - 1w f S/v = gn \\—»—»En\\ Fa =
£5(F) )N xS (79 Jodr & = A OOy - o (2:3.30)
ws St Snt,
Now, we recall the following properties of the volume RWG basis functions[2].
-,;;/’L FYoorinT
fr (=17 (2.3.31)
;3\/“ Y rinT,
i \?’1 rinT,
N, xf () = “an (2.3.32)
; v rinT,
and
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(FnV(F) ><ﬁ) =1 onfacen

(2.3.33)

Substitution of equations (2.3.31), (2.3.32) into equation (2.3.25) gives the components of

the impedance matrix in terms of RWG basis functions.

Q0f < (F) xfY (FOK, (F 9gor & =
SV

’g man N\ ——S+ —-V+ = 1 gma —-S+
S 3qr S () XY (P Q)K,, (TG gd dF +—1 3 5 (r)
6'A‘mvn t;T 6 n t T

lqa, ?.a,

AC (r)xr\”(r(;)K (rQgdr'dr + AT (F)xrY

BETSVANSS AV, o

w\| xf S(FN xfY (FQK, (F Qgdr &F =

z a, e
~C (rQgdrdr- m L(rQgdrdr

Amvn Ay, 004 Ay, 00

I ¢ (FGgF dF + -0 A (7o gof o

AnVn e AV. o1

SR 20T (79 RK, (79 )gdrer =

£alKi - Ko saggrr - £alks = Ka) s sgrer
Aﬂ t Sh Am tmSn
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(2.3.35)
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f. Integral calculation

Following a similar procedure to section 2.1 and 2.2, we take a closer look at the integra
caculations that form the magjor part of the impedance matrix calculations. Consider a
structure where al tetrahedral volumes are enumerated by p =1,...,P and al triangular
surface patches are enumerated by q =1,...,Q..

Then, every integral in equation (2.3.28) is build upon the term

Ao = OFFY 5 €)o(r - Fdrer p=1..P q=1.,Q i=1234 j=123
T.t

(2.3.37)
Also, every integral in equation (2.3.29) is build upon the term
F Ve :T(‘tﬁ;qr -r¢drer p=1..,P gq=1..Q (2.3.38)
Every intega in equation (2.3.30) is build upon the term
F i = S@c‘pqr -rdrer p=1..P g=1..Q (2.3.39)

Similarly in case of Z°V, every integral in equation (2.3.34) is build upon the term

AL =odr e Jor- rodrer p=1..P g=1..Q i=1234 j=123

taTp

(2.3.40)
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Also, every integral in equation (2.3.35) is build upon the term

Fim = OCR(7- rddrer p=1..P q=1..Q (2.3.41)
T, t

Every integra in equation (2.3.36) is build upon the term

F e = OR(F - Fodrer p=1..,P q=1..,Q (2.3.42)
St

Here, I’ =T - F,¢for any vertex i of tetrahedron p whereas [, ="~ F.¢for any vertex j of

triangle g. The integras (2.3.37)-(2.3.42) are found using a vectorized routine, which
employs Gaussian integration [13], [15] as discussed in sections 2.1 and 2.2. Calculation is
performed over all tetrahedral/triangular elements, not over RWG basis functions. The

corresponding formulas are given in Appendix B.
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3. Test results of smulations

The MoM equations derived in sections 2.1, 2.2, 2.3 were implemented in the form of
Matlab scripts. The solver was then tested for pure metallic (radiation), pure dielectric
(scattering) and combined metal-dielectric structure (radiation and scattering). This section

provides a summary of the test results obtained in each case.

3.1 Test of smulationsfor a pure metallic patch antenna (radiation)

In this section, simulation of a simple structure of an air-filled metal patch antennais tested
for different mesh configurations. The simulations are based on the derivation in section

2.1. Error in the caculation of resonant frequency is reported for each case.

a. Structure under study

The structure under study is comprised of a simple patch antenna consisting of asingle
patch above afinite ground plane. The dimensions of the patch are2 by 4 cmon a4 by 8
cm ground plane, with the thickness of the substrate (air-filled) 0.5 cm. A typical structure
with base grid size 4 by 8 (in X, y directions respectively,) is shown in Fig.3.1.1. This

structure has 117 surface RWG e ements.
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Fig.3.1.1 Metal patch antenna structure

(Grid Size: 4x8, Feed Division: 1, Patch Border rendering: 0)

b. Test results

The variation of real and imaginary part of the impedance over a suitable frequency range
was considered. The results were compared with those obtained by using ANSOFT HFSS.
Comparison results for the basic mesh configuration in Fig.3.1.1 can be seen in Fig.3.1.2.
The error in the calculation of resonant frequency was found to be 2.04 percent. The
execution time per frequency step in this case was 0.22 sec as compared to 34 min for

ANSOFT HFSS.
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Grid Size:4x8 Patch Border Rendering:0 Feed Division:1 Percent Error:2.0423

6001 B TR TEE R e [ R s s ‘
o o G o g g E —*— Matlab (Real) :

B : . : . . . . -©- Matlab (Imaginary) | .
500k 8- FRPPUORNY SRR B | =¥ nsof ‘

400

300

200

Impedance (Real, Imaginary), Ohm

-100 [

-200

-300 I I I I I I i I I |

Frequency, Hz x10

Fig.3.1.2 Test results for the basic structure

(Grid Size: 4x8, Feed Division: 1, Patch Border rendering: 0)

Tests were performed for different mesh configurations including higher level of feed
discretization and patch border rendering. It can be observed that the performance of the
solver was improved (error: 1.19 percent, execution time per frequency step: 0.25 sec) for

the structure with higher patch border rendering as shown in Fig.3.1.3.
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Fig.3.1.3 Metal patch antenna structure

(Grid Size: 4x8, Feed Division: 1, Patch Border rendering: 1)

Similar improvement in the solver performance was observed when the feed discretization
level was increased. The result can be seen in Fig.3.1.4. (error: 0.49 percent, execution time

per frequency step: 0.96 sec) .
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Fig.3.1.4 Test results for structure with patch border rendering

(Grid Size: 4x8, Feed Division: 1, Patch Border rendering: 1)

The performance is further improved if the base grid is refined as shown in Fig.3.1.5.
Similar tests were performed on the refined (6x12) structure. In the best case (Base Grid:
6x12, Patch Border Rendering: 2, Feed Discretization: 6), the error in the calculation of the
resonant frequency was found to be 0.21 percent (Fig.3.1.6). The execution time per

frequency step in this case was 8.53 sec as compared to 3-4 min for ANSOFT HFSS.
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Fig.3.1.5 Metal patch antenna structure

(Grid Size: 6x12, Feed Division: 6, Patch Border rendering: 2)

Discretization:6x12 Patch Border Rendering:2 Feed Division:6 Percent Error:0.21817
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Fig.3.1.6 Test results for the best case

(Grid Size: 6x12, Feed Division: 6, Patch Border rendering: 2)
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The test results are summarized in Table 3.1a, 3.1b and 3.1c. Nf denotes the levd of feed

discretization. A steady improvement is observed with higher mesh refinement.

Table 3.1a Test results-1 for pure metal patch antenna

4 by 8 Discritization

6 by 12 Discritization

Vaue (Patch border rendering: 0) (Patch border rendering: 0)
of Nf Number of RWG Number of RWG
Percent Error Percent Error
edge dements edge elements
1 117 2.04 258 1.93
2 119 1.68 260 1.60
3 121 1.56 262 1.49
6 127 1.40 268 131
Table 3.1b: Test results-2 for pure meta patch antenna
4 by 8 Discritization 6 by 12 Discritization
Vaue (Patch border rendering: 1) (Patch border rendering: 1)
of Nf | Number of RWG Number of RWG
Percent Error Percent Error
edge el ements edge e ements
1 265 1.19 486 1.19
2 267 0.84 488 0.83
3 269 0.68 490 0.68
6 275 0.49 496 0.47
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Table 3.1c: Test results-3 for pure meta patch antenna

4 by 8 Discritization 6 by 12 Discritization
Vaue (Patch border rendering: 2) (Patch border rendering: 2)
of Nf Number of RWG Number of RWG
Percent Error Percent Error
edge el ements edge el ements

1 597 0.92 990 0.93

2 599 0.57 992 0.58

3 601 0.43 994 0.43

6 607 0.22 1000 0.21

3.2 Test of smulationsfor a puredieectric structure (scattering)

In this section, smulation of a pure dielectric structure is tested for different dielectric
congtants and different mesh configurations. The smulations are based on the derivation
given in section 2.2. Error in the calculation of magnitude of scattered electric fidd is

reported for various cases.

a. Structure under study
The structure under study is comprised of adielectric volume of dimensions 4 by 8 by 0.5
cm. A typical structure with base grid size 4 by 8 (in x, y directions respectively,) is shown

inFig.3.2.1. This structure has 472 volume RWG e ements.
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Fig.3.2.1 Pure dielectric structure

(Grid Size: 4x8, Number of layers: 1)

b. Test results

Normal incidence of a linearly polarized wave adong the Z-axis was considered. The
variation of magnitude of the scattered field along the X or Y-axis was computed. The
results were compared with those obtained by using ANSOFT HFSS. Tests were carried
out at two frequencies for each e, of the substrate. One frequency was in the lower range
as compared to the resonant frequency and the second one was considered near the
resonance region. E.g. for e, 10 of the substrate, tests were carried out for 75 and 125 MHz.
Agreement with ANSOFT was found to be better at lower frequencies as compared to
those near resonant frequencies. Results for higher frequencies are presented in this section.
Comparison results for the basic mesh configuration in Fig.3.2.1 can be seen in Fig.3.2.2.

Only the dominant component of the scattered field is plotted in Fig.3.2.2. The stepsin the
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plot are inherent to the computation method since, the magnitude of electric fied is

congtant inside a single tetrahedron.

Polarization: Y- EscaY - EpsR =2, Frequency =250MHz
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Fig.3.2.2 Test results for the basic structure

(e,: 2, Grid Size: 4x8, Number of layers: 1)

Computations for different dielectric constants for the same structure (Fig.3.2.1) were done
and it was observed that for a given mesh, the agreement with ANSOFT improves as the

didectric constant increases. Test results for dielectric constant 10 can be seenin Fig.3.2.3.
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Polarization: Y- E@ca - EpsR =10, Frequency =125MHz
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Fig.3.2.3 Test results for the basic structure

(e,: 10, Grid Size: 4x8, Number of layers: 1)

For higher order of base grid size (6x12) improvement in the agreement (even for lower

dielectric constants) is observed. Fig.3.2.4 shows resultsfor e, = 2.
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Polarization: Y- EscaY - EpsR =2, Frequency =250MHz
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Fig.3.2.4 Test results for the refined structure

(e,: 2, Grid Size: 6x12, Number of layers: 1)

Also, computations for two layers of volume elements were done for e, : 2. The structure is
shown in Fig.3.2.5. The number of volume RWG elements for this structure is 1944. The
results for this structure can be seen in Fig.3.2.6. As can be observed the agreement is

consderably improved as compared to those for the rough structure (Fig.3.2.2)
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Fig.3.2.5 Refined dielectric structure

(e,: 2, Grid Size: 6x12, Number of layers: 2)
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Fig.3.2.6 Test results for the refined structure

(e,: 2, Grid Size: 6x12, Number of layers: 2)
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3.3 Test of smulationsfor a combined metal-diglectric structure

In this section, smulation of a combined metal-dielectric object (a scatterer) is tested for
different dielectric constants and different mesh configurations. The simulations are based
on the derivations given in sections 2.1, 2.2 and 2.3. Error in the calculation of magnitude

of scattered eectric field is reported for various cases.

a. Structure under study

The structure under study is comprised of the dielectric structure of dimensions 4 by 8 by
0.5 cm (from section 3.2) with an attached metal ground plane. A typica structure with
base grid size 4 by 8 (in X, y directions respectively,) is shown in Fig.3.3.1. This structure

has 84 surface RWG dements and 472 volume RWG dements.

Fig.3.3.1 Meta - dielectric structure (Grid Size: 4x8)
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b. Test results
Normal incidence of a linearly polarized wave along Z-axis was considered. The variation
of magnitude of the scattered field along X or Y-axis was computed. Similar to section 3.2,
tests were carried out at two frequencies for each e, of the substrate. The results were
compared with those obtained by using ANSOFT HFSS. A trend similar to section 3.2 was
observed in the results for various casesi.e.
() It was observed that for a given mesh, the agreement with ANSOFT improves
as the dielectric constant increases.
(i) Agreement with ANSOFT was found to be better at lower frequencies as
compared to those near resonant frequencies.
Test results for incidence of a 75 MHz wave for the structure in Fig.3.3.1 with dielectric
constant 10 can be seen in Fig.3.3.2. Only the dominant component of the scattered field is

plotted in Fig.3.3.2.
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Fig.3.3.2 Test results for the metal-dielectric structure at 75 MHz

(e,: 10, Grid Size: 4x8)

Fig.3.3.3 shows comparison with ANSOFT for the same structure at 125 MHz. The

agreement with ANSOFT gets worse as we compute the results for scattering near the

resonant frequency. Similar observations were made for different e, values (2, 3and 5).
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Polarization: Y- EscaY - EpsR =10, Frequency =125MHz
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Fig.3.3.4 Test results for the meta-dielectric structure at 125 MHz
(e,: 10, Grid Size: 4x8)

Improved results are obtained for structure with two layers of volume RWG eements.

3.4 Test of smulationsfor a patch antenna on adielectric substrate

In this section, smulation of a smple structure of a metal patch antenna on a dielectric
substrate is tested for different mesh configurations and different dielectric constants for the
substrate. The ssimulations are based on the derivation given in section 2.1, 2.2 and 2.3.

Error in the calculation of resonant frequency is reported for each case.
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a. Structure under study
The structure under study is comprised of a simple patch antenna consisting of asingle
patch on a dielectric substrate with afinite ground plane. The dimensions of the patch
are 2 by 4 cm on a4 by 8 cm ground plane, with the thickness of the substrate 0.5 cm.
A typical structure with base grid size 4 by 8 (in x, y directions respectively,) is shown
in Fig.3.4.1. This structure has 117 surface RWG el ements and 502 volume RWG

elements (execution time per frequency step: 2.75 sec).
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Fig.3.4.1 Patch antenna structure (on dielectric substrate)

(Grid Size: 4x8, Feed Division: 1, Patch Border rendering: 0)

b. Test results

The variation of real and imaginary part of the impedance over a suitable frequency range

was plotted. The results were compared with those obtained by usng ANSOFT HFSS.
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Comparison results for the basic mesh configuration in Fig.3.4.1 can be seen in Fig.3.4.2.

Didectric constant of the substrate was taken as 2 in this case.
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Fig.3.4.2 Test resultsfor e, : 2

(Grid Size: 4x8, Feed Division: 1, Patch Border rerdering: 0)

For higher values of dielectric constants of the substrate higher error in the calculation of

resonant frequency is observed. Fig.3.4.3 shows the result for e, :10 for the same structure.
The error is observed to be 8.09 percent as compared to 4.29 in case of e,: 2. Table 3.3a

provides the complete set of observations for this structure.
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Fig.3.4.3 Test resultsfor e, : 10

(Grid Size: 4x8, Feed Division: 1, Patch Border rendering: 0)

Tests were performed for higher patch border rendering for different values of the dielectric
constants of the substrate. Fig.3.4.4 shows the refined structure. A steady improvement on
the performance was observed as compared to the previous case. Fig.3.4.5 shows the result
for e, :2 for the higher patch border rendering. The error is observed to be 3.59 percent as
compared to 4.29 in case of e, : 2. Table 3.3b provides the complete set of observations for

this structure.
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Fig.3.4.4 Refined patch antenna structure

(Grid Size: 4x8, Feed Division: 1, Patch Border rendering: 1)
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Fig.3.4.5 Test resultsfor e, : 2

(Grid Size: 4x8, Feed Division: 1, Patch Border rendering: 1)
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Two layers of volume RWG elements were considered as shown in Fig.3.4.6. This
structure has 119 surface RWG elements and 1024 volume RWG elements. Test results

can be seen in Fig.3.4.7. Better agreement with ANSFOT was found for this refined

structure. Table 3.3c provides resultsfor dl e, valuesof the substrate.
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Fig.3.4.6 Patch antenna structure (2 layers)

(Grid Size: 4x8, Feed Division: 2, Patch Border rendering: 0)
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Fig.3.4.7 Test results for 2 layered patch antenna structure

(Grid Size: 4x8, Feed Division: 2, Patch Border rendering: 0)

Following smilar testing procedure as for pure metal patch antenna the base grid size was

increased from 4x8 to 6x12. Corresponding test results can be seen in Fig.3.4.8.
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Fig.3.4.8 Test results for higher base grid size

(Grid Size: 6x12, Feed Division: 1, Patch Border rendering: 0)

Table 3.3a provides the test results for other values of e, for this structure. An
improvement in the results is seen as compared to the structure with base grid size 4x8
(Fig.3.4.1). The mesh is further refined by rendering the patch border at a higher level as
shown in Fig.3.4.9 (486 surface RWG elements, 1692 volume RWG e ements, execution

time per frequency step: 42 sec). The improvement in the agreement can be seen in

Fig.3.4.10.
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Fig.3.4.9 Structure with higher patch border rendering

(Grid Size: 6x12, Feed Division: 1, Patch Border rendering: 1)
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Fig.3.4.10 Test results for structure in Fig.3.4.9

(Grid Size: 6x12, Feed Division: 1, Patch Border rendering: 1)
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Table 3.3a: Test results-1 for patch antenna on dielectric substrate

Percent Error

Percent Error

Grid Size: 4x8 Grid Size: 6x12
Feed division: 1, Feed division: 1,
& Patch border rendering: O Patch border rendering: O
Surface RWG elements: 117 Surface RWG elements: 258
Volume RWG elements: 590 Volume RWG elements: 1262
2 4.29 3.97
3 5.61 5.17
5 7.66 7.07
10 8.09 7.33

Table 3.3b: Test results-2 for patch antenna on dielectric substrate

Percent Error

Percent Error

Grid Size: 4x8 Grid Size: 6x12
Feed division: 1, Feed division: 1,
N Patch border rendering: 1 Patch border rendering: 1
Surface RWG elements: 265 Surface RWG elements: 486
Volume RWG eements: 1092 Volume RWG elements: 1692
2 3.59 3.24
3 4.95 4.47
5 6.95 6.31
10 7.27 6.60
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Table 3.3c: Test results-3 for patch antenna on dielectric substrate

Percent Error

Percent Error

Grid Size: 4x8 Grid Size: 6x12
Feed division: 2, Feed division: 2,
e, Number of layers. 2 Number of layers: 2
Patch border rendering: O Patch border rendering: O
Surface RWG elements: 119 Surface RWG e ements: 260
Volume RWG elements: 1024 Volume RWG elements: 2000
2 3.62 311
3 4.79 4.16
5 6.67 5.85
10 6.91 6.09
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4. Analysis of test results

Test results obtained in section 3 are analyzed in this section and methods to improve those

results are proposed.

From the test results in Table 3.1a for the pure metallic (air filled) patch antenna structure,
it can be seen that, for the moderate size of the grid (117 surface RWG basis functions), the
error in the calculation of the resonant frequency is about 2 percent (about 7 MHZz). It was
also observed that the performance of the solver was more sensitive to the patch border
rendering as compared to overall mesh refinement (Table 3.1b and 3.1c). Thus we can
observe that there is a steady improvement in the performance as we refine the mesh. The
error was considerably reduced (to about 0.22 percent) for a refined mesh with about 550

surface RWG dements.

The test results in section 3.2 with the pure dielectric structure show a similar improvement
with regard to the mesh refinement for different dielectric constants in the range 1-10. At
higher degree of discretization for the volume mesh (1944 volume RWG eements), near
perfect agreement with ANSOFT HFSS was observed for the inner eectric field within

didlectric.

Keeping in mind these observations for the pure metallic and pure dielectric structure, we
now take a look at the results for the patch antenna structure in section 3.4. From Table
3.3a, it can be seen that there is an improvement using higher mesh discretization but the

error in the calculation of resonant frequency increases when the dielectric constant of the
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substrate increases. Also, the discretization-dependent improvement was not as prominent
as in case of the pure metalic structure. In this section we try to give reasoning for this

matter.

As observed from the results for pure metallic structure, for the very basic structure (base
grid Size is 4x8), the error in the calculation of the resonant frequency was found to be 2.04
percent (Fig.3.1.2). An error of 2.04 percent for the particular frequency range (270-370
MHz), corresponds to a frequency shift of about 7 MHz. Similarly, for pure dielectric
structure with the basic mesh (base grid: 4x8), the agreement with ANSOFT HFSS was not
as impressive. In the case of a patch antenna structure, since it is a combined meta-
dielectric structure, the errors for metal and dielectric both affect the test results. Also, as

the dielectric constant of the substrate increases, the corresponding frequency range is

lowered e.g. 75-175 MHz for e, =10.

If the frequency shift of 7 MHz in the case of pure metallic structure (e, =1) also exists in

this case, it would correspond to a very high error percentage (about 7-8 percent). Thisis

nearly the value that is observed in practice.

Hence, if the perfect agreements are to be achieved, the refined mesh (with around 550
surface RWG elements) should be chosen for the metallic part. Because the meshing of
metallic structure and the underlying dielectric substrate are inter related, higher
discretization for metal mesh implies higher discretization for the dielectric substrate as

well. Thiswill lead to over 2500 RWG elements and a dense impedance matrix on the size
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2500%x2500. The execution time for a frequency step will increase accordingly (as N*2), but
accurate results can be obtained. The performance in terms of execution time and memory
handling can be considerably improved by converting the Matlab scripts into C/C++
executable files and linking them with the other Matlab scripts. An improvement of severa
orders was observed after implementing the calculation of self/non-self MoM integrals in

C.

Another reason for the error in the calculation of the resonant frequency can depend on
how well the boundary conditions are satisfied at the dielectric-metal-dielectric (near the
antenna feed) interface and dielectric-metal-air (boundary of dielectric surface) interface.
This was briefly discussed in section 1.3. Further investigation in this direction is reported

in Appendix A.
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5. Conclusions

Modeling of patch antennas on arbitrary dielectric substrates using surface/volume RWG
elements and the Method of Moments was implemented. Performance of the solver was
tested for different mesh configurations and for different dielectric constants of the
substrate. Further scope for improvement lies in the investigation of boundary conditions

a the meta-dielectric interface and the optimization of the Matlab scripts.
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Appendix A

According to the equivalence theory, any Method of Moment solver should inherently
satisfy the boundary conditions, thus giving accurate results for possibly moderate number
of elements as compared to the Finite Element Method (FEM). Also, the performance of
the MoM solver should not be dependent on the dielectric constant of the patch antenna
substrate. The test results reported in section 3, were not particularly impressive since it
would take at |east a few thousand elements for converging to the accurate solution. Hence
we decided to investigate this subject further and present the results as an Appendix to the
primary part of implementing the MoM solver. We could not succeed to investigate this

matter completely and this subject is open for discussion.

A test was conducted to check how well the boundary conditions on the metal-dielectric
face are satisfied. As discussed in section 1.3, the condition to be satisfied at the metal-

dielectric interface is;

. ®l 0
rs(r)—ge—- 1;_:;5 (A2)

Hence it follows that, for al boundary faces,

DI(K"- K')-s4()=0 (A2)
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where s ;(I) is the total charge density of the metal sheet (the sum of charge densities on
both sides). To check the accuracy of the boundary conditions, the two quantities
D,(K"- K)ad D;(K"- K)-s¢(F) were plotted in Fig.A.1 for al dielectric-metal
boundary faces (4x8 base grid size; eps=10) in solid and dashed lines, respectively. Thus,
the dashed curve should tend to zero according to theory. But it can be seen from the plot

that it is not exactly zero as it should be. Though the difference magnitudes are not high,

they may be responsible for the error in the computation of resonart frequency.

Dn (red) and Dn-sf (blue) for dielectric tetrahedra
x10° in contact with metal for lambda/2 wide patch antenna
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Thisissue was introduced as a point of concern in section 1.3.3-g and it was suggested that
the boundary conditions could be explicitly implemented in the program to assure that they

are accurately satisfied.

We tried to implement the boundary condition for the metal feed embedded in the dielectric
volume. According to the definition of volume RWG basis functions, a basis function
corresponding to a nontboundary face is defined in a pair of tetrahedra sharing that face,
whereas for a boundary face, the basis function is defined only in a single tetrahedron. This
gives rise to a possible air gap at the meta-dielectric interface as discussed in section 1.3.

We tried to avoid this air gap adjacent to the feed.

In the surface-volume mesh, any triangular element of the metal feed surface is sandwiched
between two dielectric tetrahedra. These two tetrahedra would belong to two different
volume RWG basis functions according to the definition. To implement the boundary

condition it is necessary to eliminate one of the variables from the equation,

DY (K" - K')-s4(f)=0

In the Matlab script this equation was implemented through a few matrix manipulations.
Corresponding terms in the MoM impedance matrix are updated as well. Effectively, for
avoiding the air gap, we considered that these two tetrahedra shared a single face (which
also was a triangular element of the feed). The results were improved for all dielectric

congtants of the patch antenna substrate. Table A.1 shows the test results.
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Table A.1 Test results for boundary conditions implemented only for feed

Percent Error Percent Error
Grid Size: 4x8 Grid Size: 4x8
Feed division: 1, Feed division: 1,
e Patch border rendering: O Patch border rendering: 1
Surface RWG elements: 117 Surface RWG e ements. 265
Volume RWG elements: 590 Volume RWG elements: 1092
2 3.89 321
3 5.05 4.40
5 6.93 6.20
10 7.17 6.54

Similarly, appropriate boundary conditions were implemented for the dielectric faces in

contact with the metal patch. Table A.2 shows the test resuilts.

Table A.2 Test results for boundary conditions implemented for all metal-dielectric interfaces

Percent Error
Percent Error
. Grid Size: 4x8
Grid Size: 4x8
L Feed division: 1,
Feed division: 1,
e, _ Patch border rendering: 1
Patch border rendering: O
Surface RWG dements; 265
Surface RWG dements; 117
Volume RWG dements: 1092
Volume RWG €ements; 590
2 1.22 2.01
3 1.96 2.53
5 1.89 231
10 3.33 3.33
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Considerable improvement is observed in the performance of the solver after implementing
the boundary conditions. The solver with boundary conditions was not as extensively tested

asthe origina solver.
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Appendix B

Gaussian formulae for triangular patches[12, 13]

Degree of Precison=1 Number of Points=1

Points

Triangular
Coordinates

Weights

a

13,1/3,1/3

Degree of Precison=2 Number of Points=3

Points

Triangular
Coordinates

Weights

a

1/2,1/2,0

1/3

b

0, 1/2,1/2

1/3

c

1/2,0,1/2

1/3

Degree of Precison=3 Number of Points=4

Points

Triangular
Coordinates

Weights

a

13,13 13

-27/48

0.6,0.2,0.2

25/48

0.2,0.6,0.2

25/48

b
c
d

0.2,0.2,0.6

25/48

Degree of Precison=4 Number of Points=7

Points

Triangular

Coordinates

Weights

13,13, 13

0.2250000000

ag, 3,y

0.1323941527

3, &, K

0.1323941527

31, 3, &

0.1323941527

ap, [,

0.1259391805

0.1259391805

Q=D |0 (T

3, &, (%
3, [, &

0.1259391805

With
8,=0.0597158717
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31=0.4701420641
a,=0.7974269853
[3=0.1012865073

Degree of Precison=7 Number of Points=13

with

: Triangular .
Points Coor dign ~tes Weights

a | 1/3,1/3, 1/3 | -0.149570044467670
b ay, 3, 14 | 0.175615257433204
c (%, a1, & | 0.175615257433204
d 3, B, & | 0.175615257433204
e ap, (%, [» | 0.053347235608839
f %, &, [ | 0.053347235608839
g R, R, 2 | 0.053347235608839
h as, B, % | 0.077113760890257
i %, 8, % | 0.077113760890257
j s, %,a3 | 0.077113760890257
k az, %, B | 0.077113760890257
I %, g, & | 0.077113760890257
m %, a3, %2 | 0.077113760890257

a,=0.479308067841923
3:=0.260345966079038
a,=0.869739794195568
[3,=0.065130102902216
a3=0.638444188569809
[33=0.312865496004875
?23=0.04869031542531
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Analytical formulasfor self-integrals over patches[14]

The integrals given below [14] are necessary to compute expressions (2.1.22) and (2.1.23)

with the help of equations (2.1.24) and (2.1.25). Here,

a=(r- 0){i- n)b=(f- 1) - n)c=(- )G - 1) dt=Ja- 2b+c (B

and A is the area of the triangular patch. The remaining integrals are obtained using cyclic

transformation.
glogae a- b+J_detXb+J_J_) 0 ﬂ
& ( b+J_J_ a+b+J_det)5 a
; 6/a K
glogaﬁ(bw_f)( b+c+yoda)o

21 Oasas dagate € é( c+~/cdet)- b+«/_«/_) G

g4A2gA AC r r¢ g 6\/6 H
glogae(a b+adet)- b+c+ode)l
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Gaussian formulasfor tetrahedral elements[13, 15]

Degree of Precison=1 Number of Points=1

. Tetrahedral .
Points Coordinates Weights
A 14, 1/4, 1/4, 1/4 1

Degree of Precison=2 Number of Points=4

With

Tetrahedral

a =0.58541020, b = 0.13819660

Degree of Precison=3 Number of Points=5

With

a=12,b=1/6

Points Coordinates Weights

a a,b,b,b 1/4

b b,a,b,b 1/4

C b,b,a,b 1/4

d b,b,b,a 1/4
. Tetrahedral .

Points Coordinates Weights

A 1/4,1/4, 1/4,1/4| -4/5
B a,b,b,b 9/20
C b,a,b,b 9/20
D b,b,a,b 9/20
E b,b,b,a 9/20
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Degree of Precision=4 Number of Points=11

With

. Tetrahedral .
Points Coordinates Weights

a 1/4, 1/4, 1/4, 1/4 | -0.131555555555555550e- 1
b ap, by,by, by | 0.762222222222222222¢-2
c by,ai,by, by | 0.762222222222222222¢-2
d by, by, a1, b 0.762222222222222222e-2
e by, by, by, a; | 0.762222222222222222¢-2
f azas by, by | 0.248888888888388838e-1
g b, azay by 0.248888888888888888e-1
h bs, by, az a2 0.248888888888888888e-1
i az by, by a, | 0.248888838888888888e-1
j b,,a, by a, | 0.248888888888888888¢e-1
k ar byar b, | 0.248888888888888888e-1

a1 = 0.714285714285714285
b1=0.785714285714285714
a, = 0.399403576166799219
b, = 0.100596423833200785
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Appendix C

M esh Generation

|. Plane Mesh:

1. Flow Chart for execution of wrapper.m.

g_plate.m

g_refine.m

t select.m

m4_border.m

mb5_ispatch.m

grid.mat

viewer.m

2. Explanation of individual functions:

g_pl ate

Creates uniform mesh for a plate (strip)

Synt ax:

[p, t]=g_plate (W,H ,Nx, Ny, xf, yf, eps)
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Descri ption:
The function g_plate returns two matrices t and p, which correspond, to the vertices of the
triangles and their X, y and z coordinates respectively for a given structure. The structure

can be defined using the input parameters.

W = Ground plane width (along the x-axis)
H = Ground plane height (along the y-axis)
Nx = Mesh grid size in the x-direction

Ny = Mesh grid Sze in the y-direction

xf = Feed edges - x

yf = Feed edges -y

eps = Adjustment parameter for Delaunay triangulation

g_refine

Refines patch mesh close to patch/ground plane borders.

Synt ax:

[p, t, PatchNumber]=g_refine (p, t, PatchNumber, IterP)

Descri ption:
The function g_refine returns two matrices t and p which correspond to the vertices of the
triangles and their x, y and z coordinates respectively for a given structure. It also returns

PatchNumber which is row matrix of ndices which specify the metal faces. The input
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parameters to the function are the p and t matrices obtained from g_plate and IterP which

specifies the order of patch border rendering.

t _select:

Selects certain triangular patches, to identify the patch or refine, using mouse.

Synt ax:

[SelectNumber] =t_select (p, t)

Descri ption:
The function t_select returns a row matrix corresponding to the triangular patches selected.
The input parameters to the function are t and p, which correspond to the vertices of the

triangles and their X, y, and z coordinates respectively for a given structure

m4_bor der:

Finds border triangles of the mesh and refines them.
Synt ax:

[pn, tn]=m4_border (p, t, set, unset)

Descri pti on:
The function m4_border refines the patch border and returns two matrices tn and pn, which

correspond, to the new vertices of the triangles and their x, y and z coordinates respectively
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for a given structure. The structure to be refined can be described by the following input

parameters.

set = Set of triangles that form the structure to be refined
unset = Set of triangles that do not have to be refined
t = vertices of the triangles of the original structure

p = X,y and z coordinates of the vertices of the original structure.

nb_i spat ch:
Identifies the new set of patch triangles after mesh refinement.
Synt ax:

[PatchNumberNew]=mb5_ispatch (pn, tn, p, t, PatchNumber)

Descri ption:

The function mb5_ispatch identifies the new patch triangle after mesh refinement
corresponding to tn and pn and returns a new value of patch number. The input parameters
to the function are the old patch number aong with the old values of p and t (before mesh

refinement) and the values of p and t after mesh refinement, pn and tn.

Vi ewer :

Viewer for the structure
Synt ax:

viewer (p, t)
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Descri ption:

The function viewer is used to view the structure defined by p and t where t and p
corresponds to the new vertices of the triangles and their x, y and z coordinates respectively

for agiven structure.

3. Data File

wrapper.m generates a data file called grid.mat. The parameters saved in thisfileare: H,

PatchNumber , W , t, yf , Nx, Points,d, xc,Ny, R, eps, xf , Out, SelectNumber , p,

yC
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[1.Volume M esh:

1. Flow Chart for execution of wrapper.m

t_mesh.m

t_faces.m

t_patch.m

mesh.mat

viewer.m

2. Explanation of individual functions:

t _nmesh:

Creates volume tetrahedral mesh for the patch antenna using the given ground
plane/patch mesh
Synt ax:

[P, T]=t_mesh (p, R, xf, yf, h, Nf, eps, Interm)

Descri pti on:
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The function t_mesh returns two matrices T and P which correspond to the vertices of the
tetrahedron and their X, y and z coordinates respectively for a given structure. The structure

can be defined using the input parameters.

h = Dielectric layer thickness (along the zaxis)

Nf = Feed subdivision number

Iterm = Layer subdivision number

eps = Adjustment (shift) parameter for Delaunay tessellation
xf = Feed edges - x

yf = Feed edges -y

R = Points to be cloned into the depth

t faces:

Finds al faces and adjacent tetrahedra
Synt ax:

[Faces, FacesBoundary, TetP, TetM]=t_faces (P, T)

Descri ption:
The function t_faces retuns dl the inner and the boundary faces of the tetrahedra along

with the indices of the plus and minus tetrahedra. The inputs to the function arethe Pand T
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matrices, which correspond to the vertices of the tetrahedron and ther x, y, and z

coordinates respectively.

t _patch:

Recreates the mesh for the ground plane, patch, and feed using the tetrahedral faces.
Synt ax:

[t, Faces, TetP, TetM, FeedFaces, MetalFaces, ContactFaces] = t_patch (p, P, t, Faces,

FacesBoundary, TetP, TetM, PatchNumber, xf, yf, Nf, h, eps)

Descri ption:

The function t_patch as an argument takes the variables that describe the mesh, and
rearranges the arrays in a systematic manner. Faces in contact with the metal part of the
structure i.e. patch, ground plane, feed are grouped separately, and faces completely inside
the dielectric volume, faces on the boundary of the dielectric substrate are grouped
separately as well. Same procedure is carried out for the plus and minus tetrahedrons. This
saves considerable amount of computation in the later parts, since similar properties are
associated with the different classes of dielectric faces. The variables that are returned can

be described as:

Faces = All the faces in the structure (both metal and dielectric)
TetP = Plus tetrahedron

TetM = Minus Tetrahedron.
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FeedFaces = Faces in contact with the feed.
Metal Faces = Faces in contact with patch, ground plane and feed

ContactFaces = Boundary faces.

Vi ewer :

Visualizes the patch antenna structure.
Synt ax:

viewer (p, t)

Descri ption:

The function viewer is used to view the structure defined by p and t.

3. Data File

wrapper.m generates a data file called mesh.mat. The parameters saved in this file are:

ContactFaces, MetalFaces, TetM, t, Faces, P, TetP, xf, FeedFaces, T, h, yf
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[11. Extracting parameters for RWG elements:

1. Flow Chart for execution of wrapper.m

rwgm.m

analytma.m

gaussm.m

analytmb.m

rwgd.m

analytda.m

gaussd.m

analytdb.m

analytdc.m

rwg.mat

2. Explanation of individual functions:

rwgm

Computes parameters for metd triangles including self-integrals.
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Synt ax:

[geom]

Descri ption:

=rwgm (P, t, IndexF)

The function rwgm.m returns a structure geom which defines all the parameters of the

metal triangles including self integrals. The salf integrals for metal are calculated using the

functions analytma.m and analytmb.m. The input parameters to the function are IndexF

which defines the number of integration points and the P and t matrices which correspond

to the vertices of the tetrahedrons and their x, y and z coordinates respectively for a given

structure.

The structure geom includes the following parameters.

geom.PointsTotal I nteger
geom.EdgesTotal Integer Total edgesin the structure
geom.TrianglesTotd Integer Totd triangles
geom. Edgel_ength [1,EdgesTotal] Length of edge
geom.EdgeCenter [3,EdgesTotal] Coordinates of center
Geom.TriP [1,EdgesTotal] Index on plustriangle
geom.TriM_ [1,EdgesTotal] Index on minus triangle
geom.VerP [1,EdgesTotal] Free vertex of plustriangle
geom.VerM [1,EdgesTotal] Free vertex of minus triangle
geom.AreaM [1,TrianglesTotal] Area of faces
geom.CenterM [1,TrianglesTotal] Center of metal faces
geom.IndexF I nteger Order of integration for faces
geom.PointsF [3,TrianglesTotal* IndexMI]
geom.RHO [3,3, TrianglesTota*IndexMO] | Vector drawn from the free

vertex to the center of the
face

The integrals included in GEOM are listed in Table C.

anal yt ma
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Anaytically caculated self integrals for metal face to metal face.
Synt ax:
infine static void intsm (double *rl1, double *r2, double

*r3, double *11, double *12, double *I3, double *I14);

Description:
The function analytma returns the numerically calculated metal to meta self integrals. The

calculations are done using the formulae specified in appendix B.

gaussm

Locates the interior points on the face for Gaussian integration.

Synt ax:

[Points, Weights]=gaussm (P, Index)

Descri ption:

The function gaussm.m implements the Gaussian integration formulae given in appendix
A. The outputs of the function are the integration points and their corresponding weights.
The input to the function is the P matrix and a parameter Index whose vaue determines the

integration formulae to be used.

anal yt nb

Numericdly caculated self integrals for metal face to metal face.
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Synt ax:

[MMO01, MM2, MM3]=analytmb (P)

Descri ption:

The function analytmb returns the metal to metal self integra's geom.MMO01, geom.MM2
and geom.MM3. The size and explanation of these matrices in given in the table above.
The input to the function is the P matrix which corresponds to the X, y, and z coordinates of

the vertices of the tetrahedron.

rwgd

Creates RWG's for dielectric and @mputes the parameters for separate tetrahedra
including self-integrals.
Synt ax:

[GEOM] = rwgd (P, T, t, CenterM, TetP, TetM, Faces, IndexF, IndexV, ContactFaces,

MetalFaces)

Descri ption:

The function rwgd.m returns a structure GEOM which defines all the parameters of the
dielectric tetrahedron including self integrals. The self integrals for dielectric are calculated
using the functions analytda.m, anaytmb.m and analytdc.m. The input parameters to the
function are IndexF and IndexV which defines the number of integration points for the face
and volume respectively. The other input parameters are P and t matrices, which

correspond to the vertices of the tetrahedrons and their X, y, and z coordinates respectively
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for a given structure. Additional input parameters are CenterM, TetM, TetP, ContactFaces

and Meta Faces which are calculated in volume mesh and saved in mesh. mat

The structure GEOM includes the following parameters

GEOM .TetrahedraTotal integer Tota number of
tetrahedrons in the structure
GEOM .FacesTotal integer Total number of Faces
GEOM.VolumeD [1x204 doubl €] Volume of each tetrahedron
GEOM.TetP [1x502 doubl€] Index on plus tetrahedron
GEOM.TetM [1x502 doubl €] Index on plus tetrahedron
GEOM.VerDP [1x502 doublé€] Free vertex of plus
tetrahedron
GEOM.VerDM [1x502 doublé€] Free vertex of minus
tetrahedron
GEOM .AreaF [1x502 doublé€] Area of face
GEOM .CenterF [3x502 double€] Center of dielectric faces
GEOM.TriFace [1x502 doublé€] triangle number for a given
face
GEOM .FaceFac {1x502 cdl} face number for a given face
GEOM.IndexV integer Order of Gaussian
integration for volume
GEOM .PointsV [3x1020 double€]
GEOM.Rho [4x3x1020 doubl€] Vector drawn from the free

vertex to the center of the
tetrahedron.

The integrals included in GEOM are listed in Table C.

anal yt da

Computes sdlf integrals from tetrahedron (volume) to tetrahedron (volume).

Synt ax:

[DO, DD00, DDO01, DD1, DD2, DD3]= analytda (P)

Descri ption:
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The function analytda returns matrices of numerically and anayticaly calculated volume to
volume salf integrals DO, DD0O, DDO01, DD1, DD2, and DD3. The size and explanation of
these matrices in given in the table B1. The input to the function is the P matrix which

corresponds to the x, y, and z coordinates of the vertices of the tetrahedron.

gaussd

Locates the interior points inside the dielectric volume for Gaussian integration.

Synt ax:
[Points, Weights]=gaussd (P, Index)

Descri ption:

The function gaussd.m implements the Gaussian integration formulae given in appendix B.
The outputs of the function are the integration points and their corresponding weights. The
input to the function is the P matrix and a parameter Index whose value determines the

integration formulae to be used.

anal ytdb
Computes sdlf integrals from dielectric faces (surface) to tetrahedron (volume).

Synt ax:
[FDOP, FD1P, FDOM, FD1M] = analytdb (Vertexes, VP, VM)

Descri ption:
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The function analytdb returns matrices of numerically and analytically calculated surface to
volume self integrals FDOP, FD1P, FDOM and FD1M. The size and explanation of these
matrices in given in Table C. The input to the function is the P matrix which corresponds to

the x, y, and z coordinates of the vertices of the tetrahedron.

anal yt dc

Computes sdf integrals from the metal face (surface) to diglectric tetrahedron
(volume).
Synt ax:

[MD1, MD2, MD3]=analytdc (Vertexes, VP)

Description:
The function analytdb returns matrices of numerically calculated metal surface to dielectric
volume sdf integras MD1, MD2 and MD3. The size and explanation of these matrices in
given in the Table C. The inputs to the function are the Vertexes matrix which corresponds
to the x, y, and z coordinates of the vertices of the tetrahedron and VP matrix which are the

coordinates of the indices of the vertices of the plus tetrahedron.

3. Data File

wrapper.m generates a data file called rwg.mat. The parameters saved in this file are:
ContactFaces, IndexF, T, h, Faces, IndexV, TetM, t, FeedFaces, MetalFaces, TetP, xf, P, yf

and the structures geom and GEOM.
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TableC

Self-integrals— metal structure

Obtained for the expansion

- jkr 2
e 01 k- K
r 2
Script/ Variable Description Sze Structure
Function
rwgm MMO0O(m) « 1 [TrianglesTotal] geom
Analytical (qf_—ﬂdr dré
analytma.m Rl .
electric potential; from
metal face to metal
face
MMO1(m) (ﬁ? _ F'| drdr ¢ [TrianglesTotal] geom
rwgm Numerical FF
electric potential; from
analytmb.m metal face to meta
face
MM1(3,3,m) Fiort drdr e [3.3, TrianglesTotal] geom
rwgm Analytica W
analytmam magnetic vector
potential; from meta
face to meta face
MM2(3,3,m) (\]f):' 7 G dr ¢ [3,3, TrianglesTotal] geom
rwgm Numerical ot
magnetic vector
analytmb.m potential; from metal
face to meta face
MM3(3,3,m) C\ﬁf - FIF, 7~ gdrdr ¢ [3.3, TrianglesTotal] Geom.
nwgm Numerical b :
magnetic vector
analytmb.m potential; from metal
face to metd face
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Obtained for the expansion

. jkr

r

»E_ jk- —

kr
2

Self-integrals— dielectric structure

Script/ Variable Description Sze Structure
Function
rwgd DO(3,3m) o < o [4,4, TetrahedraTotal] GEOM
Analytical v
analytdam D/e term
rwgd DDO0(m) « 1 [TetrahedraTotal] GEOM
Numerical %drdm
analytdam Wi )
eectric potential; from
tetrahedron to
tetrahedron
rwgd DDO01(m) C‘W'_ F'|dFdF¢ [TetrahedraTotal] GEOM
Numerical W
anaytdam electric potential; from
tetrahedron to
tetrahedron
rwgd DD1(4,4,m) UL e [4,4, TetrahedraTotal] GEOM
Numerical (nhﬁ —yarar
analytdam wl - r |
magnetic vector
potential; from
tetrahedron to
tetrahedron
rwgd DD2(4,4,m) (\II\):' X7 QP dr ¢ [4,4, TetrahedraTotal] GEOM
Numerical | v, = '
andlytdam magnetic vector
potential; from
tetrahedron to
tetrahedron
rV\/gd DD3(4'4’m) @—;_ F||r—' < Gdrdr ¢ [4,4, TetrahedraTotal] GEOM
Numerical | L)
andlytda.m magnetic vector
potential; from
tetrahedron to
tetrahedron
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FFOO(m) - 1 e [ContactFaces] GEOM
rwgd Analytica FGH = F_'|
analytmam electric potential; from
face to face
FFO1(m) (‘ﬁf F'|dFdF¢ [ContactFaces] GEOM
rwgd Numerical e
electric potentia; from
analytmb.m face to face
rwgd FDOP(m) « 1 -¢ [ContactFaces] GEOM
Numerical qu e drar
analytdb.m VR )
electric potential; from
faceto T tetrahedron
rwgd FD1P(m) C‘W F'|dFdF¢ [ContactFaces] GEOM
Numerical VE
analytdb.m electric potential; from
faceto T tetrahedron
rwod FDOM(m) “ 1 [ContactFaces] GEOM
Numerical (qf 7 drdr¢
analytdb.m VR )
electric potentia; from
faceto T tetrahedron
rwgd FD1IM(m) c‘ib?_ F'|dl7df¢ [ContactFaces) GEOM
Numerical VE
analytdb.m electric potential; from

faceto T tetrahedron
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Self-integrals— combined metal/didlectric structure

Obtained for the expansion

- jkr

2
e » E - jk- ﬂ
r r 2
Script/Function | Variable Description Sze Structure
rwod MD1(44m) | F:rf [4,3 Metal Faces] GEOM
Nurmerical T drdr ¢
analytdc.m VF )
magnetic vector
potential; from metal
face to  adjacent
tetrahedron
rwgd MD2(4,4,m) QY < @irdre (4,3, Metal Faces] GEOM
Numerical | ., '
analytde.m magnetic vector
potential; from metal
face to  adjacent
tetrahedron
rwgd MD3(4,4,m) @7_ F'|F. X~ ddrdr¢ | [43:MetalFaces] GEOM
Numerical | v L
analytde.m magnetic vector
potential; from
tetrahedron to
tetrahedron
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Appendix D

M ethod of Moments

1. Flow Chart for execution of wrapper.m

wrapper.m

zdd.m zmd.m zmm.m

int.dll

epsout.mat

2. Explanation of individual functions:

Zmm

Calculates the impedance matrix and the charge matrix corresponding to pure metal.

Synt ax:

[ZMM, C] = zmm (geom, const, frequency, Array)

Descri ption:

The function zmm returns matrices ZMM (Edgestotal by Edgestotal) and C which
correspond to the impedance matrix for pure metal and the charge matrix (gives charge for
metd faces in Array).The inputs to the function are two structures geom and const and the

frequency of operation. The structure geom defines all the parameters of the metal triangles

116



including self integrals while the structure const defines the el ectromagnetic constants such

as mu, epsilon, speed of light etc.

zdd
Calculates the impedance matrix corresponding to pure dielectric.

Synt ax:

[ZDD, FD, FF] =zdd (GEOM, const, frequency, ContactFaces)

Descri ption:

The function zdd returns matrices ZDD (FacesTotal by FacesTota), FD and FF which
correspond to the impedance matrix for pure dielectric, integrals from dielectric to face and
sdf integrals from face to face. The inputs to the function are two structures GEOM and
const and the frequency of operation along with ContactFaces. The structure GEOM
defines all the parameters of the dielectric tetrahedron including self integrals while the

structure const defines the electromagnetic constants such as mu, epsilon, speed of light etc.

zmd
Calculates the impedance matrix corresponding to metal dielectric interaction.

Synt ax:

[ZMD] =zmd (GEOM, geom, const, frequency, ContactFaces, FV, FD, FF)

Descri ption:

117



The function zmd returns matrix ZMD (FacesTotal by EdgesTotal), which correspond to
the impedance matrix for metal dielectric interaction. The inputs to the function are three
structures geom, GEOM and const and the frequency of operation aong with ContactFaces
and integrals IV, FD and FF. The structure GEOM defines all the parameters of the
didlectric tetrahedron including self integrals while geom defines all the parameters of the
metal triangles including self integrals and the structure const defines the electromagnetic
constants such as mu, epsilon, speed of light etc. The integrals FD and FF are calculated in

zdd and are used directly.

i nt
Calculates the integrals for computation of impedance matrix.
I nput Paranet ers:
Points = number of integration points for triangle or tetrahedron.
weights = the weights of the individua ‘ Points'.
RHO = vector from the free vertex al the *Points on the triangle or tetrahedron
subpoints = total number of integration points in each triangle or tetrahedron.
elems = number of triangles or tetrahedrons.
vertexes = 3 for atriangle and 4 for tetrahedron.

minusk_r, minusK_i = real and imaginary part of k (wave number)

3. Data File

wrapper.m generates a data file called epsout.mat. The parameters saved in thisfile are:

FEEDPOWER, FREQUENCY, IMPEDANCE .
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