Abstract

Our team has decided that there is currently a need for a driveline system that is capable of
performing a zero radius turn and being maneuverable at low speeds while also maintaining
traction, stability, and energy efficiency at high speeds. We designed and prototyped a modified
Ackermann steering system driven by a single motor, with an extended range of motion. This
driveline system will also incorporate all wheels driven in all conditions. The steering system
was integrated into a robot chassis that meets FIRST Robotics Competition requirements.

Project Goals

Primary Goals General Goals
» High speed stability « Maximize traction at low speed operation
» At least 10 feet per second speed * Minimize skidding while turning
» Maintain 4 foot lane driving a 10 foot « Comply with all 2013 FRC design rules
radius circle » 112" perimeter, fit in a 54” cylinder
» Complete a performance course » 120Ibs without 13lbs FRC battery
faster than traditional FRC 190 robot » Number/Type of motors
« Low speed maneuverability « System will be as simple as possible
» Capable of zero radius turning » Limit degrees of freedom

> Intuitive driver operation

Existing Drivelines

Ackermann Steering
The front wheel angles are controlled simultaneously

by a single mechanism. Wheel speeds must vary for
different turning radii, which is done using differentials.
Pros Cons
» High speed stability » Limited turning radius
« Mechanism easily « Limited maneuverability
designed for chassis size w
|

Ackermann steering geometry

Swerve Steering

Each wheel is both driven and steered independently of
the others.

Pros

« Wide range of steer angles

« Capable of high and low speed maneuvers

Cons

« High complexity both mechanically and electronically
« Unintuitive user control

Swerve module

Tank Drive/Skid Steering

Steering controlled by fixed wheels on either side

of chassis. Turning is controlled by wheel velocity.

Pros

« Simple implementation

« Zero radius turning is simple and intuitive when
stopped

Cons

« Limited maneuverability while moving quickly

 Inefficient due to wheels skidding while turning

Tank drive chassis

Optimal Driveline Robot Base

Team: Michael Cullen (ME), Stephen Diamond (RBE/ECE), William Dunn (RBE), Kirk Grimsley (RBE)
Advisors: Kenneth Stafford & Taskin Padir
Robotics Engineering Department

Design

Chassis and Wheel Modules
 Frame made from 17, 1/8” thick steel angle bars.

* AndyMark Wild Swerve wheel module kits in front.

Steering Assembly

« Combined aspects of Ackermann steering and swerve drive, allowing for the stability and simplicity of
Ackermann steering and the wide range of motion and maneuverability of swerve drive.
« Atrapezoidal linkage system is optimized for a smaller steering range and then amplified using a 3:1

chain and sprocket assembly.

* The trapezoidal linkage is driven by a steering arm with a pin in slot connection. This allows for a

single, high-torque motor to control all steering.

Design vs. Perfect Ackerman Comparison
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Electrical System
» Microcontroller: Arduino Mega 2560
 Wheels driven independently by CIM motors

o 5310 free speed RPM, 21.5 Ib-ft stall torque
« Steering mechanism driven by a Bosch Van Door motor

o 48 free speed RPM, 360 Ib-ft stall torque
« Powered by 12 Volt lead acid battery
« Turnigy Tx/Rx operating on 2.4GHz band

—Designed Ackermann

« 30 Amp fuse box for CIM motors, 20 Amp for Van Door motor, and 1 Amp for Arduino
« 300 degree potentiometer used to measure turns
« Two limit switches to stop turns at maximum range

* 5 Volt regulator used for Arduino Voltage In

Programming

* Programmed in Arduino development environment, in language based on C
* PID system used to control turning Van Door motor
« CIM motors driven using servo values, converted to PWM via Victor speed controllers

« Used case statements to calculate and send separate servo values to each wheel based upon

equations for front outer steer angle

Wheel Velocity vs. Steer Angle
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Results

Capable of zero radius turning about either of the back wheels
Vehicle can maintain circle at 10 ft/sec
Performance test against typical tank drive FRC 190 robot
o 9 test drivers- 6 were experienced with tank drive, 3
inexperienced
o FRC 190 was 1.8% faster on average (without penalties)
o 2.4x more obstacles hit with ODRB robot- indicates that
fine control was a problem
o ODRB was 4 times more energy efficient than FRC 190
o Feedback from drivers: mechanical operation was great
but controls were too sensitive

7 2'/'\\
—_——_—N\ S \
N I

N\ FINISH

~
—— s |\ |
/\Q \
\ \

\ |
START ‘ \}




