
Cyber Physical System for Continuous Evaluation of Fall Risks
to Enable Aging-In-Place

by

VINAYAK JAGTAP

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Master of Science

in

Robotics Engineering
by

MAY 2015

APPROVED:

Professor Taşkın Padır, Thesis Advisor

Professor Sonia Chernova

Professor Michael Gennert

Abstract

Every year, one out of three adults over the age of 65 falls, and about 30% of the falls

result in moderate to severe injuries. The high rate of fall-related hospitalizations and the

fact that falls are a major source of morbidity and mortality in older adults have motivated

extensive interdisciplinary clinical and engineering research with a focus on fall prevention.

This research is aimed at developing a medical Cyber Physical System (CPS) composed

of a human supervised mobile robot and ambient intelligence sensors to provide continu-

ous evaluation of environmental risks in the home. As a preventive measure to avoid falls,

we propose use of mobile robots to detect possible fall risks inside a house. As a step-

up to that, we also define a control framework for intelligent, networked mobile robots to

semi-autonomously perform assistive and preventive tasks. This framework is integrated

in a smart home that provides monitoring and control capabilities of environmental condi-

tions such as objects blocking pathways or uneven surfaces. The main outcome of this work

is the realization of this system at Worcester Polytechnic Institute’s (WPI) @Home testbed.

iii

Acknowledgements

I would like to express my sincere gratitude towards Professor Taşkın Padır for giving

me the opportunity to work on the projects mentioned in this thesis and his invaluable

support and direction throughout the duration of this work. I would also like to the thank

Professor Sonia Chernova and Professor Michael Gennert for being a part of my advising

committee and providing insights into different aspects of the projects presented. Robotics

and Intelligent Vehicles Research(RIVeR) laboratory has been a great place to collaborate

and learn. Thanks to Ruixiang Du and Velin Dimitrov for their patience during my learning

phase and guidance throughout the projects.

Thanks to Intel for sponsoring the Smart Home testbed and providing us with an op-

portunity to explore the vast possibilities of Internet of Things and its application in Cyber

Physical Systems.

Lastly, I would like to thank my parents and my loving wife for the motivation and

encouragement that was required for taking the tough decisions and choosing the right

path forward.

iv

Contents

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Background . 1
1.2 Closed-Loop Healthcare . 2
1.3 Fall Risk Assessment . 4
1.4 Smart Home Environment . 5
1.5 Structure of the Thesis . 5

2 Design Requirements 7
2.1 Mobile Robot . 7

2.1.1 Robot Features . 7
2.1.2 Graphical User Interface . 8

2.2 Smart Home Requirements . 9
2.2.1 Sensors . 9
2.2.2 Data Collection, Storage, and Retrieval in Smart Home 9
2.2.3 Scalability Requirements . 10

3 In-Home Evaluation of Environmental Fall Risks 11
3.1 System Overview . 11
3.2 Mobility . 13
3.3 Sensing . 15
3.4 Autonomous Navigation . 17
3.5 Teleoperation . 18
3.6 3D Interaction . 20
3.7 Telepresence . 20
3.8 Graphical User Interface . 20

4 Smart Home Environment 24
4.1 Network Architecture . 24
4.2 Embedded Controller . 25
4.3 Data Collection, Storage, and Retrieval . 27

v

4.4 Projects . 29
4.4.1 Height Adjusting Cane . 29
4.4.2 Localization of wheelchair . 30
4.4.3 Sleep detector . 31
4.4.4 Occupancy Detecting Floor Mat . 31
4.4.5 Intelligent Stool . 33
4.4.6 Intelligent Wardrobe . 34
4.4.7 Assistive Walker . 34

4.5 Integration in @Home testbed . 35

5 Conclusions 36

A Appendix 37
A.1 Kinematic Model of Turtlebot . 37
A.2 Intel Galileo Board Specifications . 39

A.2.1 GPIO . 40
A.2.2 Digital Read/Write . 40
A.2.3 Analog Read/Write . 42
A.2.4 Pulse Width Modulation . 43

Bibliography 45

vi

List of Figures

1.1 Dependency Ratio Estimates . 2
1.2 Closed-Loop Healthcare . 3
1.3 Risk factor model for falls in old age [1] . 4

3.1 System Overview . 12
3.2 Robot Management System[24] . 13
3.3 Turtlebot 2 - Mobile Robot . 14
3.4 Pulse Oximeter - Displaying oxygen saturation level and pulse rate 16
3.5 ROS Navigation stack . 18
3.6 Building a 3D map with Octomap . 19
3.7 Telepresence Demo . 21
3.8 Web Interface[8] . 22
3.9 Alternative GUI for more technically adept users[8] 23

4.1 Network Architecture . 25
4.2 Block diagram of Intel Galileo . 26
4.3 Localization data . 28
4.4 Motion sensor and door sensor data . 28
4.5 Height Adjusting Cane . 30
4.6 Hexoskin - Sleep Detector . 32
4.7 Smart Carpet . 32
4.8 Assistive Walker . 34

A.1 Turtlebot - Reference Frame . 37

vii

List of Tables

3.1 Requirement Matrix Based on HEROS Checklist 12
3.2 Sensors in Turtlebot 2 . 15
3.3 Lighting Condition for Different Levels of Luminosity 16

A.1 Intel Galileo GPIO pins . 41
A.2 PWM Pin mapping . 43

1

Chapter 1

Introduction

As per current population projections, it is estimated that 20% of US population would

be 65 years or over by year 2030 [18]. With this change in population, there would be

an increased demand of nurses to take care of older adults. However, even today, there is

limited availability of trained nurses to cope up with the existing demand to assist older

adults. To cater for the needs and provide good quality assistance to the older adults, we

need a framework that can provide a way to monitor well being of multiple people by limited

staff.

1.1 Background

The age structure of the U.S. population is expected to change over coming decades

[18]. As per the population estimates and projections, U.S. will experience considerable

growth in its older population in the next 3 decades. In 2015, population comprises of a

little less than 50 million people who are over 65 years of age which is about 15% of the

population. These numbers are projected to increase to almost 70 million which would be

20% of the population by the end of year 2030. Another metric that is useful to understand

the impact of this increase in number of older adults is Dependency Ratio. Dependency

Ratio of old-age dependency is given by

Old age dependency =
Population of 65 and over

Population 18 to 64 years
× 100 (1.1)

2

Figure 1.1: Dependency Ratio Estimates

As shown in the Figure 1.1, the old-age dependency ratio is projected to increase from

21 in 2010 to over 30 by 2030. This large increase in old-age dependency ratio would also

result in increase of total dependency ratio projected to be almost 75 by 2030. This means

that there would be less than one independent adult to every old age person by 2030. To

improve the healthcare for older adults, it is important to increase the efficiency of existing

systems such that available trained professionals would be able to assist multiple people

simultaneously.

1.2 Closed-Loop Healthcare

Existing healthcare system comprises of a loose collection of disparate devices and sys-

tems that do not talk, or require manual intervention to transfer or receive data. This leads

to inefficiencies and potentially dangerous conditions due to the lack of interoperability and

coordination. Closed-Loop Healthcare (CLHC)1 initiative introduces an in-home health

1http://smartamerica.org/teams/closed-loop-healthcare/

3

Figure 1.2: Closed Loop HealthCare 1

monitoring and alert system to interconnected, interoperable components in the hospital

to create a cohesive stream of patient-specific health information. The lifecycle of CLHC

is shown in Figure 1.2 with the help of an elderly patient, Randall, who lives alone. When

Randall falls and breaks his shoulder, a smart home system detects his fall and sends a

request for help immediately. The fall is detected using a kinect sensor installed at home.

The history of in-home sensor data helps facilitate personalized and better informed treat-

ment in the hospital. Because the hospital devices and systems are interconnected, Randall

receives more coordinated care with lower risk of complications. As Randall transitions

between care units, sensor data are automatically delivered to his bedside by the integrated

healthcare platform. When Randall returns home, the smart home system tracks his ac-

tivity, behaviors, and vital signs with more sensitivity to avoid re-hospitalization. Randall

4

is able to stay in his own home, and his adult children are confident he will receive help if

needed.

1.3 Fall Risk Assessment

According to the World Health Organization’s (WHO) global report [1] on fall prevention

in older age, there are four main risk factors for falls as shown in Figure 1.3. These risk

factors are classified as biological, behavioural , environmental, and socioeconomic. In this

project we are focusing on identifying and helping to reduce down the environmental risk

factors. Motivation of the project lies in the facts that (1) aging in place improves the

overall health and well-being of individuals, (2) falls are the leading cause of mortality in

older adults, (3) home environmental fall risk assessment is an effective preventive strategy,

and (4) extreme costs and shortage of trained personnel are huge barriers for effective and

efficient delivery of fall risk home assessments by health care providers.

Figure 1.3: Risk factor model for falls in old age [1]

Considering the above facts, we present use of a semi-autonomous mobile robot to detect

5

potential fall risks through continuous assessment of home environment [8]. This mobile

robot can be teleoperated by an operator from a remote location to help maintain risk free

environment. The framework allows a single operator to control multiple robots located at

different homes. In case of emergencies, the robot can be used to assess the seriousness of

emergency and also to communicate with the injured person till help arrives. Nationally, $30

billion is wasted in needless MRI/CT imaging [3]. Placing the ambient sensors and mobile

robot would provide a better picture of the incident obviating the need for unnecessary

procedures. For example, if there was no direct impact on head and the fall was less than

3 feet high then CT scan might not be required.

1.4 Smart Home Environment

Home is a complex environment for robot operations due to the fact that objects and

environmental parameters inside a house are not static. We propose use of smart homes [25]

to provide necessary data/alerts to the robots for performing different tasks like initiating

telepresence [7] session with health care provider, start or stop assessment of fall risks,

navigating to a particular location to fetch more details, etc. A “smart home” can be defined

as a residence equipped with computing and information technology which anticipates and

responds to the need of the occupants, working to promote their comfort, convenience,

security and entertainment through the management of technology within the home and

connections to the world beyond [13]. The home is fitted with several sensors and intelligent

devices to collect necessary environmental parameters. Data from these sensors is stored

in a central database either on the cloud or at a local server. Data collection, storage and

retrieval methods are defined in the central server that allows devices to store or fetch data.

This data can be accessed by robots to get a holistic view of the operating environment.

1.5 Structure of the Thesis

The thesis is organized as follows. Chapter 2 provides the design requirements for the

mobile robot and the smart home environment. Chapter 3 explains the hardware and

6

software components of the mobile robot used for fall risk assessment. This includes details

of the robotic system, mapping and navigation capabilities of the robot, telepresence and

teleoperation, GUI and screening of the environment for fall risks. Chapter 4 provides

details of network architecture, devices and data management strategies for Smart Home

and the thesis is concluded in the last chapter.

7

Chapter 2

Design Requirements

This system focuses on making it possible for the elderly to remain at home, safe and

comfortable. There are two kinds of users for the system, robot operators at the healthcare

center and the occupants of the house where the system is installed. Both types of users can

be safely assumed to have little technical background and hence appropriate user-oriented

design considerations are made as described below.

2.1 Mobile Robot

The mobile robot will be operated indoors for assessing fall risks. To assess the envi-

ronment, the robot should be able to possess a list of features as described below.

2.1.1 Robot Features

1. Semi-autonomous Navigation

The robot should be capable of navigating when provided a goal point. It should be

able to modify its generated trajectories if dynamic obstacles are encountered while

navigating.

2. Teleoperation and Telepresence

Teleoperation is the ability to remotely control a robotic system that comprises of

sensors and actuators [21]. Telepresence is the subclass of teleoperation that provides

8

the ability to interact with an environment that is physically away along with mani-

festation of one’s presence in the remote location [7]. The telepresence required in our

case should provide transmission of audio-video signals between both the users. For

remote assessment of a house the robot should have teleoperation and telepresence.

In case of emergency, the operator should be able to talk to the injured person to get

preliminary information so as to facilitate better response.

3. Internet Connectivity

The robot would be connected to the Internet using the available network at home,

hence it should not block the bandwidth and at the same time should be able to

send assessment information with available connection speed. Delays in sending or

receiving packets from/to the robot should be handled by the system such that there

are no negative impacts on the user experience.

2.1.2 Graphical User Interface

1. Software Compatibility

The GUI should be accessible from most of the commonly used Operating Systems,

specifically Windows and Mac OS. The required installation components on the user

end should be minimal.

2. Easy to Learn

The GUI should be simple and intuitive. Assuming that users of this interface use

computers on a daily basis, we pose a hypothesis that the interface would be intuitive

if they could learn 80% of the UI functionality in less than 15 minutes.

3. Delays in operation

All the commands sent from the UI should be executed near real-time. If there are

unpredictable delays, those delays should be handled elegantly without any side-effects

on the surroundings.

9

2.2 Smart Home Requirements

Smart Home would involve addition of networked sensors or devices to existing home.

As such, it should be able to record environmental parameters without impacting the ap-

pearance of the home.

2.2.1 Sensors

1. Record environmental parameters

Most of the environmental parameters like temperature, humidity, motion, door open-

ing/closing, etc should be recorded along with timestamp of the occurance.

2. Aesthetics

The devices should be small, such that they can be hidden or placed without negatively

impacting the aesthetics of the house.

3. Security

The system architecture should provide security against unauthorized access of the

data from the Internet. Security is one of the most important factors as there would be

actuators and robots in the environment that can cause physical injury to occupants

if exposed to wrong hands.

2.2.2 Data Collection, Storage, and Retrieval in Smart Home

1. Data Logging

All the data generated by different ambient sensors should be logged in a central

location. Ability to analyze sensor readings with respect to time or other sensor

readings should be possible.

2. Interfacing with embedded devices/sensors

Commonly used protocols should be used for lower deployment times of new devices.

Existing off-the-shelf Internet of Things (IoT) devices should be integrable. It should

support inserting or retrieving data from commonly used technologies like Arduino,

Python, and NodeJS.

10

3. Robust data server

The data server should be able to handle multiple requests asynchronously. This is

required as multiple devices would be connected to the network and each device would

be pushing some data independent of the other devices in the network.

2.2.3 Scalability Requirements

1. Scale up

Adding new devices should not result in rework on existing devices unless new func-

tionality is added to an existing device. Addition of new devices up to a maximum of

50, should be supported without the need to scale out the system architecture.

2. Robustness and Redundancy

The system should be able to restore to normal state after resolution of failures caused

by external factors like power failure, loss of internet connectivity, etc. Multiple

sensors providing similar information can be used to provide a layer of redundancy

for protection from failures within the system.

11

Chapter 3

In-Home Evaluation of

Environmental Fall Risks

Fall risk assessment system comprises of a mobile robot, a service management layer, and

the user interfaces. Turtlebot-2 [17] is the mobile robot that is teleoperated from a health

care center to evaluate the safety of environment using the checklist provided by Health,

Education, Research and Outreach for Seniors 1 (HEROS). Two interfaces are developed to

operate the robot, one that runs in web browser and can be accessed by any authorized user

and the other that is a standalone application designed for robot experts to fetch advanced

details of the robot and the environment.

Next section provides an overview of entire system and different components of the sys-

tem. After that we describe the implementation and design choices for every requirement

of this project. The HEROS checklist can be divided into five major areas - lighting con-

ditions, uneven floors, furniture placement, reading vital signs, and emergency response.

Requirements for these evaluation aspects are shown in Table 3.1.

3.1 System Overview

The system implements a client-server architecture in which server is connected to the

robots at patients’ home and thin-clients (web based user interfaces) are located at the

1http://www.temple.edu/older adult/

12

M
o
b

il
it

y

S
en

si
n

g

A
u

to
n

o
m

ou
s

N
av

ig
at

io
n

T
el

eo
p

er
at

io
n

3
D

In
te

ra
ct

io
n

T
el

ep
re

se
n

ce

Lighting Condition 3 3 3

Uneven Floors 3 3 3

Furniture Placement 3 3 3 3

Reading Vital Signs 3 3

R
is

k
E

va
lu

at
io

n

Emergency Response 3 3

Table 3.1: Requirement Matrix Based on HEROS Checklist

healthcare facility as shown in Figure 3.1. The server communicates with the robot to pull

sensor data and provides it to the operators. A Service Management layer hosts Web service

and Access Control to provide web based UI to the operators. Access Control takes care

of authorizing users before providing access to the robots. Multiple robots can be added to

Figure 3.1: System Overview

13

the system and the operators can chose which robot to operate.

The server has an instance of Robot Management System [24] (RMS) installed that

maintains the communication between robots and the web users. This forms the Service

Management layer and hosts Web Service and the Access Control modules as displayed in

Figure 3.1. RMS is a web-management system that utilizes model-view-controller frame-

work using CakePHP [5]. RMS uses Javascript Object Notation (JSON) [15], a lightweight

data-interchange format to communicate with robots running on Robot Operating System

(ROS) [20]. ROS provides implementation of numerous algorithms and services required

for robots to run. These services are accessed by RMS webserver and the requested data is

sent to the web clients via HTTPS. The architecture of RMS server is shown in Figure 3.2.

Figure 3.2: Robot Management System[24]

3.2 Mobility

We customized Turtlebot 2 for the mobility requirements of this project. Turtlebot

2 is a highly capable autonomous mobile platform for developing robot application. It

14

is commercially available and can be customized to one’s requirements. The hardware

structure can be divided in to three main parts: A Kobuki base, a netbook computer, and

sensors. The Kobuki base is a differential drive mobile robot base with two passive caster

wheels for balancing. The default netbook computer is replaced by a mini PC - Intel Next

Unit of Computing (NUC) and a 30,000 mAh lithium-ion polymer battery. The NUC runs

ubuntu OS and has ROS running on it which takes care of the communication between

different sensors and actuators. The customized version of turtlebot is displayed in Figure

3.3.

Figure 3.3: Turtlebot 2 - Mobile Robot

Turtlebot 2 can be used to navigate around in the house to evaluate the lighting condi-

tions, uneven floors, and furniture placement. The mobile base has the ability to navigate

in cluttered spaces due to its small dimensions. Differential drive and circular base design

provides a zero turn-radius making it easy to recover from obstructed positions.

15

3.3 Sensing

Specifications of all the sensors present in the mobile robot are provided in the Table

3.2. Kinect is a 3D vision sensor that provides RGBD data, i.e. depth information of every

point in the image along with the color image of the scene. The color images acquired from

Kinect are displayed in the web interface as a video feed and the depth data is used to

display distance of the center point in the image. This enables the operator to understand

the distances of objects in scene. The video feed is useful for tracking down irregularities

on floor or identifying clutter caused due to wires, magazines, or other objects.

Sensor Description

Microsoft Kinect 3D vision sensor

Odometry Sensors 52 ticks/enc rev,

2578.33 ticks/wheel rev,

11.7 ticks/mm

Gyro Sensors 1 axis 110 deg/s

Auxiliary sensors 3X forward bump sensors

3X cliff sensor

2X wheel drop sensor

Luminosity Sensor 0.1 - 40000+ Lux

(custom add-on to Turtlebot)

Pulse Oximeter Measures oxygen level &

(custom add-on to Turtlebot) pulse rate

Table 3.2: Sensors in Turtlebot 2

We estimate the lighting condition of an environment by using the lux values measured

by luminosity sensor. The relationship between the lux values and different lighting condi-

tion of the environment is shown in Table 3.3. We use these value as threshold for lighting

condition detection and show the result on the user interface. When the lux value represents

that the environment condition is in the dark range, a red light sign is displayed on the

16

corresponding item in checklist on the interface. Similarly, yellow light is used for medium

condition and green light for bright condition. Operator thus can have a sense of the current

lighting condition of the environment from these signs.

Luminosity [lux] Lighting Condition

≥ 401 Bright

201 - 400 Medium

<200 Dark

Table 3.3: Lighting Condition for Different Levels of Luminosity

As an example of integrating small medical devices and sending signals to the operator,

we have added a pulse oximeter to the robot. Pulse oximeter is a non-invasive medical device

that calculates the oxygen saturation in a person’s blood and changes in blood volume in the

skin. When a person inserts his/her finger in the slot provided, the reading on the oximeter

can be sent to the operator. Figure 3.4 shows an oximeter displaying oxygen saturation

level and pulse rate of a person.

Figure 3.4: Pulse Oximeter - Displaying oxygen saturation level and pulse rate

17

Upper level of Turtlebot is replaced with a 3D printed mount and a 10” LCD Touch

Screen. The touch screen can be used to initiate a telepresence session or to see the operator

if the operator starts one. The screen also acts as the input device for onboard computer

on the Turtlebot.

3.4 Autonomous Navigation

ROS provides packages for mapping and navigation of turtlebot. As a part of these

packages, a wrapper for gmapping is available which is a highly efficient Rao-Blackwellized

[12] particle filter to learn grid maps from laser range data and solve the simultaneous

localization and mapping (SLAM) problem. 2D map of an environment is built using

gmapping app on the robot. During map generation process, the robot is teleoperated

around in the home environment, the system converts the point cloud from kinect and

odometry information from the encoders to build a 2D map and stores this map locally on

the robot.

After the map of the environment is generated, we can navigate the robot in the envi-

ronment through web client or the standalone application using that map. Adaptive Monte

Carlo Localization (amcl) [10] is used to determine the position of the robot on the map

which in-turn is used for autonomous navigation of the robot. On the user interface, we can

see current position of the robot and provide a navigation goal to it by clicking the desired

position on the map. The robot will navigate to that position autonomously, avoiding any

static or dynamic obstacles on its way.

The way ROS handles navigation is shown in Figure 3.5. ROS provides implementation

of move base, which is shown in the central rectangle, along with amcl and map server.

These implementations are generic and can be used for any robot. Sensor transforms data

is combined with odometry source to provide tf and odom messages. tf message includes

relationship between different coordinate frames and odom message provides the data re-

lated to frame positions and velocities. Sensor sources provide details of obstacles in the

field of view in form of LaserScan or PointCloud. This information is used to assign costs

for every point on the map locally and globally, thus building a local and global costmap.

18

Figure 3.5: ROS Navigation stack

Navigation stack takes a goal as input in the form of geometry msgs/PoseStamped message.

This messages provides the coordinates of the final goal along with orientation. Global and

local planners plan the trajectory to reach the goal and it is sent to the robot through

/cmd vel topic.

Autonomous navigation is useful for moving the robot to a particular location in the

house to determine lighting conditions or to reach out to the occupant when a fall is detected.

In case of a fall, the robot can navigate to the person and initiate a telepresence session

with a doctor for immediate attention.

3.5 Teleoperation

Teleoperation is the ability to control a robot remotely. In traditional teleoperation,

a robot normally follows the commands of the operator even if obstacles detected by the

laserscan. It is the operator’s responsibility to consider or reject the sensor readings and

control the robot. This approach is of little use in cluttered dynamic environments with low

connection speeds between operator and the robot. If given a command to move forward,

the robot might collide with an object before the operator can see any possibility of collision.

To overcome this problem we propose assistive teleoperation, a strategy to avoid obstacles

19

autonomously while being teleoperated by an operator. Related works can be found in [9]

and [11]. Existing robotic systems such as PatrolBot, SpeciMinder and MapperBot also

provide similar features to improve the robot teleoperation experience.

Local costmap of the area in which robot is facing is built using the data from Kinect

and bump sensor. This data is stored in the form of point cloud and can be used to

determine obstacles and distances between the obstacles. The costmap divides an area

into a grid and assigns cost values to every square of the grid based on its distance from

the observed obstacles. When the robot receives a teleoperation command, it calculates a

trajectory to move to the desired location. If there is an obstacle present on the trajectory,

the planner would calculate a new trajectory candidates based on the costmap information.

The trajectory with the lowest cost is selected by the system and the robot follows the

selected trajectory so that the obstacles are avoided autonomously.

Figure 3.6: Building a 3D map with Octomap

20

3.6 3D Interaction

A 3D map is generated using octomap server [14]. Octomap server creates an octree

that represents occupied three dimensional space into small cubes as shown in Figure 3.6.

This map provides the ability to rotate or tilt the 3D space and analyze the conditions

better. Once a 3D map is created, any part of the map can be accessed and analyzed by

the operator at a later time depending on his availability. 3D map provides an ability to

measure height of furniture or distances between objects for evaluating related fall risks.

3.7 Telepresence

Telepresence allows the person to interact with a doctor or operator from his/her home.

In case of a fall, doctors can do a preliminary test by asking the patient to perform specific

movements to analyze severity of the fall. Based on the results of these preliminary tests,

unnecessary part of the diagnosis can be eliminated. For example, if the fall is from less

than 3 feet height with no impact to head, a CT scan can be ruled out. Information about

the fall can be collected from ambient sensors in the house. On the contrary, if there is

a fall but the person does not report it, the doctors can setup a telepresence session and

check the well being of the person. The telepresence feature is implemented using camera

and microphone array present in kinect sensor. Audio and video is transmitted in the form

of ROS messages and displayed on the screen of the user. This feature is embedded in the

interface on both patient’s and provider’s side.

3.8 Graphical User Interface

User interface is one of the most important aspects of this project as it is the only

method available for the operator to control the robot. Most existing robotic systems

come with a complicated interface for the operator to accomplish various complex tasks.

Thus operators for this kind of systems usually need to be trained or are professionals in

engineering technologies. However, for this in-home screening robotic system, users on both

ends, which are providers and patients respectively, generally don’t have experience with

21

Figure 3.7: Telepresence Demo

robots and it’s impractical to train all of them before they can really use the system. Hence

the user interface should require minimum training. Technical details should be hidden and

only necessary information should be shown to the users.

For the providers, a web interface is created. This interface is developed based on the

Robot Web Tools [2].There are two display areas as shown in Figure 3.8. One is for the

live video streaming from the robot where user can get a robot view as the visual feedback

for tele-operation. It also can be used to monitor the environment. The video stream from

the robot has a distance indicator. At the center of the image, a red circle is drawn and

a number is present besides the circle, which shows the distance between the object at the

center of the red circle and the robot. This distance indicator can give the operator a sense

of relative position of the robot in the environment and improve the user experience of tele-

operation. The other view is to display map of the environment. On this map, the position

and orientation of the robot is shown as a triangle. The operator can send a command to

the robot to move to a specific location by double clicking the the desired position on map.

A checklist is provided at the top of the web page. It can help the operator to check if all

items have been inspected. Patient’s interaction with the robot is very limited. It includes

22

Figure 3.8: Web Interface[8]

basic control such as turn the robot on or off, command the robot to generate map and so

on. All operations are done using the touch screen.

Another QT-based graphical user interface is developed as an addition to the web inter-

face. It is shown in Figure 3.9. This GUI provides all the information that is present on the

web page along with more details of robot status comprising of battery power and sensor

readings from bumper, cliff, and wheel drop sensors. 3D information such as point cloud

and 3D map can be seen in this GUI which allows users to do more advanced operations

such as measuring the distance between two specific points or the height of an interested

object. Accordingly this QT-based GUI has higher requirements for operators because more

knowledge of the robot’s perception and control is required to interpret the data shown in

23

Figure 3.9: Alternative GUI for more technically adept users[8]

the GUI. Moreover, since the QT library needs to be installed and configured properly to

run the QT-based GUI, this interface has few system prerequisites unlike the web interface

which only requires a web browser that that is available on most computers. However, more

low-level information of the system means this GUI is a more powerful tool for the developer

or administrator of the system. This kind of information is very useful for debugging and

troubleshooting when a problem occurs in the system.

24

Chapter 4

Smart Home Environment

Operating robots in home environment is a complex task due to the fact that most

of the objects in this environment are dynamic and can serve different purposes based on

time or context. To simplify the robot’s understanding of the environment and also to

reduce onboard processing for the robot, several sensors are installed in the house which

can communicate with a central data server and store the sensor readings for other devices

to access. Actuators or robots can fetch data from the server and trigger an action based on

the readings. Actions can be either scheduled or event-based. Ambient intelligence could

help in localizing the robot so as to improve accuracy of indoor navigation.

We describe the network architecture in next section followed by embedded controller

used for building intelligent devices in @Home. Then we provide details on the data collec-

tion, storage, and retrieval strategies. Few projects implemented in @Home are described

next with details of how they are integrated to work together.

4.1 Network Architecture

Network architecture diagram for WPI’s @Home testbed is shown in Figure 4.1. It has

a central server that separates all the devices from the Internet. All requests for data from

the Internet are handled by the server and responses are sent to appropriate devices. This

isolation along with a firewall on the server end ensures data security. All the devices are

connected to a local network. A Ubiquity Access Point with 3x3 MIMO capability providing

25

450 Mbps at 2.4Ghz and 1300 Mbps at 5.8Ghz is installed for WiFi connectivity. High speed

connectivity within the network helps in streaming HD images from camera. Ubiquity mFi

sensors are added to provide data related to motion, temperature and door status. These

sensors are connected to mPort which is responsible for pushing data from all these sensors

to the central database. WiFi activated power strips that can be switched on/off based

on some events or schedule are installed. These power strips also provide data related to

power consumption at each port. IP cameras are installed that can provide videos to other

devices/robots on demand.

Figure 4.1: Network Architecture

4.2 Embedded Controller

Intel Galileo first generation boards were used to develop projects for this testbed as

a part of a graduate course, Model-Based Design, in Fall 2014. Intel Galileo development

board is a microcontroller board based on the Intel R© QuarkTM SoC X1000 application

processor, a 32-bit Intel R© Pentium R© brand system on a chip (SoC). It is the first board

26

based on Intel architecture to be hardware and software compatible with Arduino Shields

designed for Uno R3. The pins of Intel Galileo board are as per Arduino 1.0 pinout. Arduino

IDE for Intel Galileo is available which enables uploading Arduino sketches to the board.

Block diagram of the board is shown in Figure 4.2. Specifications of the board are provided

in appendix at the end of the document.

Figure 4.2: Block diagram of Intel Galileo

Full linux image can be installed on Galileo board which enables users to write programs

27

in many different languages such as python, javascript, Java, C/C++, etc. OpenCV library

needs to be compiled by disabling SSE to make it work on Galileo. As a part of this project

we ported OpenCV, PCL, and ROS hydro onto Galileo. Ros-Serial can be used directly

without any modification to the OS image as it is compatible with Arduino.

4.3 Data Collection, Storage, and Retrieval

We have configured a Phant server [22] that accepts data insertion requests by http and

stores the data in a MongoDB [19]. Phant is a modular node.js based data logging tool for

collecting data from the Internet of Things. It is an asynchronous, event driven server that

can respond to many connections concurrently using callbacks. A data stream is created

for every device that would insert data. Data security is ensured through asymmetric

cryptography in which two hash keys are generated, one public key and one private key,

during the creation of every stream. The public key can be used to view or fetch data from

the stream and the private key is required to insert data into the stream. Each stream

contains one or more fields which are entered during creation of the stream. As an example,

a data stream of temperature and humidity sensor can have fields ‘temperature F’ and

‘humidity percentage’. Data of almost any form can be stored in these fields and data

validation should to be performed at the device end while generating the HTTP request.

Phant server adds a timestamp field to all the data streams which can be used for tracking

the sensor values over time. As an example, wheel chair localization data from @Home is

displayed in the Figure 4.3. The wheel chair sends position and orientation information to

the Phant server. The position is stored in the fields named x, y, z and the orientation is

stored in roll, pitch, and yaw. Phant server adds a timestamp field and logs the date-time

at which a record was inserted in the database. This data can be read by other devices to

find the position and orientation of wheel chair.

Once a data stream is created and keys are available, data can be inserted using a simple

HTTP GET or POST request. While generating a GET request the public key, private key,

variable names, and variable values are embedded in the URL that is sent to the server.

In POST request, this information can be added to the HTML header instead of the URL.

28

Figure 4.3: Localization data

The HTTP request in the form of GET or POST request can be generated and sent to the

Phant server using any of the programming language supported by the sensing device. We

used Python, NodeJS, C in arduino IDE, and C++ on Intel Galileo to insert and retrieve

data from different sensors. Data from Ubiquity sensors is inserted in the same database

using mFi controller provided by Ubiquity and hence Phant server is not required in this

case. The data collected can also be used to create charts for analysis of environmental

Figure 4.4: Motion sensor and door sensor data

29

parameters. Figure 4.4 shows motion sensor and door sensor outputs in a chart. Output

from both the sensors is digital, hence we see either high or low in the charts. The motion

sensor sends a high signal when motion is detected and low otherwise. Door sensor sends a

high signal when the door is closed and low when the door is open. Combining data from

both these sensors can provide an approximation of someone entering or leaving the house.

4.4 Projects

As a part of graduate-level course Model-Based Design, in Fall-2014, teams of students

have developed several subsystems that were tested and deployed in the @Home. As a part

of this course project, each team designed and implemented one subsystem that can be

placed in @Home [6]. Information collected by all the devices built during these projects

was stored in the central database and was used by other devices to perform their tasks.

The projects aimed at providing assistive technologies to older adults and were developed

using Intel Galileo boards. Description of few of those projects is given below.

4.4.1 Height Adjusting Cane

This project aims at revamping the idea of the walking cane by helping the elderly

to move efficiently and with minimal efforts. It provides automatic height adjustment for

the cane to suit different scenarios. The purpose of the cane is to facilitate and ease the

movement of the user, especially on stairs, landings, and when bending over to pick up

objects. A 1/3” per revolution and 30:1 gear motor are retrofitted in a milled slot on a

regular metal cane.

The cane can adjust its height based on user commands or based on contextual location

data. When the user enters the bottom of the staircase area, the cane retracts 7” to help

the user up the stairs. When the user enters the top of the staircase, the cane extends 7”

to help the user down the stairs. The retract and extend behavior of the cane is controlled

by a finite state machine (FSM) which provides a desired length to a PID controller. The

PID controller then spins the motor the correct amount to achieve the length.

Apart from the stair climbing scenario, the cane can also be beneficial to assist the user

30

Figure 4.5: Height Adjusting Cane

while rising, either from a chair, getting out of bed, or bending over to pick up an object.

The ultimate goal of the cane would be improve ease of use, so an untrained elderly user

can understand how the cane operates in less than 30 seconds. The cane also provides a

nice platform to integrate additional sensing such as heart monitors, fall detection, floor

anomaly detection, and obstacle mapping within the home.

4.4.2 Localization of wheelchair

Indoor localization is one of the biggest challenges for assistive robots, especially scooters

and wheelchairs. Without good localization, the user needs to teleoperate the assistive

device [4]. Sensors that have a global reference point do not suffer from the problems

of accumulating drift and progressively worse localization estimates [23]. We wanted to

demonstrate that with minimal modification to an environment, a cost effective device

could enable a robot within the @Home testbed to accurately localize. For simplicity, we

assumed the environment with the exception of the robot is static.

To implement the indoor localization, we placed a series of virtual reality April tags [16]

31

on the ceiling. An upward facing camera mounted to an embedded system calculated the

pose of the robot with respect to the ceiling tags. While it is not reasonable to expect people

to place tags that detract from the decor of the home on their ceiling, we have discovered a

workaround. The tags could be applied using an infrared absorbing or blocking paint that

is visually transparent. By swapping the camera with and infrared one, we can then detect

the tags on the ceiling without them being a visual impediment.

4.4.3 Sleep detector

One of the most significant concerns about elderly aging-in-place and living indepen-

dently is forgotten appliances that pose a fire hazard. This project proposes to utilize

wearable biometrics in a smart home to monitor sleep. If a persons sleep can be reliably

detected, an appliances connected to the WiFi controlled power strips can be automatically

checked and turned off if they pose a fire risk. By monitoring the heart rate, respiratory

rate, and acceleration, we can accurately determine if the user is sleeping. To eliminate

false negatives (which carry a heavy cost in this scenario), only three of the conditions,

heart rate, respiration rate, respiration rate, or accelerometer data need to be below their

thresholds to indicate the user has fallen asleep. A simple FSM defines these thresholds

and controls the power to the appliances.

The system was tested with the shirt on a user who was in the process of falling asleep.

The sensor data was then monitored by the FSM and within a prescribed time period

detected the sleeping state and shut off the connected devices. Because of the relatively

low thresholds for the sleep state, no false positives were detected during the users daily

routine. Future versions should have adaptive thresholds that eliminate the need to tailor

them manually to each individual using the system.

4.4.4 Occupancy Detecting Floor Mat

The team integrated an array of force sensors on the bottom of a small area rug that

would be common to a home environment. As an elderly persons senses and cognitive

abilities degrade, one problem that occurs is they have a harder time recognizing if anyone

is with them in a given room. Vision-based implementations to help track people throughout

32

Figure 4.6: Hexoskin - Sleep Detector

their homes have been developed before (in addition, we present one such project for tracking

an assistive robot or wheelchair), but privacy concerns limit their applicability in real-world

environments. Instead, a pressure sensitive rug can easily distinguish and track people

throughout rooms of a home without the privacy concerns that cameras introduce.

Figure 4.7: Smart Carpet

33

To execute the pressure sensitive rug, an array of force sensors was attached to the

bottom of an existing floor rug. A simple mass-spring-damper model was employed to

model the forces of the users foot on top of the rug. In order to eliminate false positive

detection from dropped objects, pets, etc, the action of a user stepping on and off the rug,

from heel strike to toe off, was modeled in logic and detections that did not fit the forces

associated with a step are rejected. This type of filtering proved very good at rejecting

spurious and accidental detection.

Given the simplicity of the system, several assumptions were made including one person

stepping on the rug at a time, the array of sensors is across the direction of travel (the

array is parallel to a door opening for example), the person does not Uturn on the rug, and

the person does not jump but walk onto the rug. Testing showed the system did not miss

a single detection when a user walked onto the rug from within ±45◦ of the centerline of

the rug. In addition, various objects were dropped onto the rug to test the false positive

rejection, and not a single objects registered as a footstep.

4.4.5 Intelligent Stool

Short stools are a popular furniture item in many households.Elderly individuals like

to use them because they are helpful for placing objects on top, seating, or using them as

a footrest. The stool serves as an extension that helps the elderly by providing flexibility,

comfort, and support as they need it. A serious issue though, stools present a tripping

hazard when they are not in use. They are short, and may be more difficult to recognize

than larger furniture such as tables making them a potential hazard.

The team implemented an intelligent stool that can be summoned or dismissed based

on voice commands. When the stool is needed, it approaches the user and provides the

necessary assistance. When the user is done using the stool, they can command it to move

away. The stool is implemented using the commercially available TurtleBot 2 platform,

which is a small differentially driven robot approximately the size of a stool. The robot

has a preloaded map of the environment and uses a 3D Adaptive Monte Carlo Localization

(AMCL) algorithm to localize within the map. Using the Bluetooth localization beacons to

locate the user, the robot can navigate to the user and assist them.

34

4.4.6 Intelligent Wardrobe

This project implemented in the CPS testbed involved an adaptive system that would

suggest wardrobe choices to the user based on the weather outside. Weather changes are

not always foreseen easily by the elderly. A simple system to assist their choice in clothing

in the morning can reduce the likelihood they are unprepared for the days weather. A series

of hangers with visual tags are placed in the wardrobe and an embedded system holds a

mapping of what articles of clothing are on each hanger.

A Mandani fuzzy inference system (FIS) provides a recommendation to the user based on

the most recent data about the days forecast. The system takes into account temperature,

rainfall, snowfall, and wind speed providing suggestions in categories such as shirts (both

short and long-sleeve), pants, jeans, shorts,etc. In addition, the users preferences can be

taken into account as the system functions over a longer period of time. A simple FSM

controlled the operation of the embedded system to detect the hangers, poll the latest

weather data, generate a suggestion, and confirm the users final selection.

4.4.7 Assistive Walker

Figure 4.8: Assistive Walker

Walkers help the elderly by providing support and a platform to rest on when they

have to stand for extended periods of time. The project team implemented a system that

assists the elderly to navigate and move around the environment when using their walkers.

Most commercially available walkers are simple aluminum frames with wheels and skids.

35

Some have brakes included as well, but none have any sort of built in intelligence. The

team developed an assistive walker that has obstacle detection system which provides visual

cues. A ring of LED lights can help the user navigate around obstacles or through doorways

without getting their walker stuck.

The system consisted of a regular aluminum walker, retrofitted with wheel encoders to

provide odometry information, ultrasonic sensors and LIDAR to detect obstacles in front

of the walker, and a ring of LED on the front bar to guide the user to a given direction.

In testing, the walker was able to correctly guide a user through the center of a doorway,

preventing them from bumping the sides. While the passive system would be useful to many

individuals, and system that also activates the brakes may be of more use to the elderly

with more severely degraded physical capabilities.

4.5 Integration in @Home testbed

Total of nine projects were built and integrated into the @Home testbed. Though the

projects were built independently, they form a part of the entire smart home environment.

All the projects are connected to the local network and insert or fetch data from the Phant

server. These projects use different technologies to communicate with the testbed and every

device is independent of hardware or software used in other device. None of the devices are

connected to Internet for security reasons. Any request that needs data from the Internet

is sent to the central server and the server responds to that request by fetching data from

Internet thus keeping an additional layer of security.

36

Chapter 5

Conclusions

We presented a framework for operating mobile robots at multiple homes to assess fall

risks in the home environment. This included development of a prototype using a turtlebot

platform. The robot is capable of screening homes and providing the collected information

to the health care provider through the proposed framework. As this is a shared control

system, an operator would be controlling the robot to collect necessary data. The user

interface provides tools to navigate the robot, measure distances between selected points,

set a navigation goal, and monitor the sensor outputs. During a typical screening, an

operator would navigate the robot around the house while monitoring the checklist. The

operator can also initiate or answer a telepresence call with the patient.

Next, we explained the architecture and design considerations of a Smart Home that

would serve as a testbed for rapid prototyping of Cyber Physical Systems that can commu-

nicate with each other using the Smart Home network and assist the occupants. One such

fully functional testbed is built at WPI @Home as a part of this project. We integrated

nine projects running different technologies, ranging from off-the-shelf devices to custom

built sensors, in this testbed.

37

Appendix A

Appendix

A.1 Kinematic Model of Turtlebot

Kinematics pertains to the motion of a body without considering the forces/torques that

cause the motion. In mobile robotics, we need to understand the mechanical behavior of

the robot both in order to design appropriate mobile robots for tasks and to understand

how to create control software for an instance of mobile robot hardware. The Turtlebot

is modeled as a two-wheeled differential drive robot with 2 additional points of contact as

shown in Figure A.1

Figure A.1: Turtlebot - Reference Frame

38

Radius of Wheel : r

Rotation of the wheel : ϕ

The speed of each wheel : rϕ̇i

Therefore, the translation speed is given by,

ẋR =
r(ϕ̇1 + ϕ̇2)

2

The angular velocity of P for one wheel :

θ̇1 =
rϕ̇1

2l

Hence, the total angular velocity of point P is given by,

θ̇ =
r

2l
(ϕ̇1 − ϕ̇2)

The robot motion can be defined as

ξI =


ẋ

ẏ

θ̇

 = f(l, r, θ, ϕ̇1, ϕ̇2)

For an angular rotation of reference frame by θ, Rotation matrix is given by,

R(θ) =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1


Therefore, the robot motion between frames is given by,

ξR = R(θ)ξI

ξI = R(θ)−1ξR

39

R(θ)−1 = R(θ)T = R(θ) =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1



ξI =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 r

2


ϕ̇1 + ϕ̇2

0

ϕ̇1+ϕ̇2

l

 =


ẋ

ẏ

θ̇

 (A.1)

Equation A.1 is the Kinematic Model of a differential drive robot.

A.2 Intel Galileo Board Specifications

• 400MHz 32-bit Intel Pentium instruction set architecture (ISA)-compatible processor

– 16 KByte L1 cache

– 512 KBytes of on-die embedded SRAM

– Simple to program: Single thread, single core, constant speed

– ACPI compatible CPU sleep states supported

– An integrated Real Time Clock (RTC), with an optional 3V coin cell battery for

operation between turn on cycles.

• 10/100 Ethernet connector

• Full PCI Express* mini-card slot, with PCIe* 2.0 compliant features

– Works with half mini-PCIe* cards with optional converter plate

– Provides USB 2.0 Host Port at mini-PCIe* connector

• USB 2.0 Host connector

– Support up to 128 USB end point devices

• USB Client connector, used for programming

40

– Beyond just a programming port - a fully compliant USB 2.0 Device controller

• 10-pin Standard JTAG header for debugging

• Reboot button to reboot the processor

• Reset button to reset the sketch and any attached shields

• Storage options:

– 8 MByte Legacy SPI Flash whose main purpose is to store the firmware (or boot-

loader) and the latest sketch. Between 256 KByte and 512 KByte is dedicated

for sketch storage. The upload happens automatically from the development PC,

so no action is required unless there is an upgrade that is being added to the

firmware.

A.2.1 GPIO

GPIO capabilities of Galileo board are exposed through Linux Sysfs interface. To control

a pin from linux(Yocto/Debian) we should write the GPIO number to /sys/class/gpio/ex-

port file. This creates a new directory under /sys/class/gpio. Parameters of the pin can be

controlled by writing required values to the files inside this newly created directory. GPIO

numbers are different than the on-board pin numbers. Reading sensor values or sending

commands to actuators through these pins can be achieved by Read/write operations on

these files. Pin mapping is given in the table A.1.

A.2.2 Digital Read/Write

As shown in the table A.1 Digital pin 7 can be controlled by setting parameters for

gpio27. To activate it write the gpio number to /sys/class/gpio/export. In the following

shell script examples, a line starting with $ is a command and a line without $ is the output

of command on previous line. Assuming that the IP address of Galileo board is 192.168.0.6

$ ssh root@192 . 1 6 8 . 0 . 6

$ cd / sys / c l a s s / gpio

41

On-Board number Linux sysfs number Settings

Digital 0 gpio50 gpio40 = 1

Digital 1 gpio51 gpio41 = 1

Digital 2 gpio32 gpio31 = 1

Digital 3 gpio18 gpio30 = 1

Digital 4 gpio28

Digital 5 gpio17

Digital 6 gpio24

Digital 7 gpio27

Digital 8 gpio28

Digital 9 gpio19

Digital 10 gpio16 gpio42 = 1

Digital 11 gpio25 gpio43 = 1

Digital 12 gpio38 gpio54 = 1

Digital 13 gpio39 gpio55 = 1

Analog 0 in voltage0 raw gpio37 = 0

Analog 1 in voltage1 raw gpio36 = 0

Analog 2 in voltage1 raw gpio23 = 0

Analog 3 in voltage3 raw gpio22 = 0

Analog 4 in voltage4 raw gpio21 = 0 & gpio29 = 1

Analog 5 in voltage5 raw gpio20 = 0 & gpio29 = 1

Table A.1: Intel Galileo GPIO pins

$ echo −n ”27” > export

$ cd gpio27

Set the I/O direction as input or output by writing in or out in the file named direction

$ echo −n ” out ” > d i r e c t i o n

42

Drive can be set as pullup, pulldown, strong or hiz depending on the application. In most

applications it would be set to strong.

$ echo −n ” st rong ” > dr ive

To confirm the values are written correctly, the following command can be used

$ cat d i r e c t i o n

out

$ cat dr ive

s t rong

To change the value of output pin, we can export either 1 or 0 to the value file. The output

can be confirmed by checking the voltage at digital pin 7

$ echo −n ”1” > value

$ echo −n ”0” > value

To read the value of pin, the following command can be used

$ cat value

0

A.2.3 Analog Read/Write

Six Analog inputs are available on Galileo. The resolution of each channel is 12 bit, pro-

viding a range of 0-4095. Value 0 signifies input voltage of 0V and value 4095 signifies input

voltage of 5V. To read the analog input in linux, we should first set/reset the corresponding

GPIO pin given in the settings column in table A.1. Once the pins are set, the value can be

read from /sys/bus/iio/devices/iio:device/in voltageX raw file. Example below shows how

to read input from pin A4.

For reading input from A4, GPIO 21 should be 0 and GPIO 29 should be 1.

$ echo −n ”21” > / sys / c l a s s / gpio /export

$ echo −n ” out ” > / sys / c l a s s / gpio / gpio21 / d i r e c t i o n

$ echo −n ”0” > / sys / c l a s s / gpio / gpio21 / value

43

$ echo −n ”29” > / sys / c l a s s / gpio /export

$ echo −n ” out ” > / sys / c l a s s / gpio / gpio29 / d i r e c t i o n

$ echo −n ”1” > / sys / c l a s s / gpio / gpio29 / value

Read A4 value from sysfs

$ cat / sys /bus/ i i o / d e v i c e s / i i o \ : dev i ce0 / in vo l t age4 raw

4090

A.2.4 Pulse Width Modulation

Six Pulse Width Modulation (PWM) Channels are available in Galileo. They are

mapped as shown in table A.2

Pin Number PWM Channel

3 3

5 5

6 6

9 1

10 7

11 4

Table A.2: PWM Pin mapping

Usage of PWM pins is similar to digital pins with minor modifications. To export a PWM

channel to sysfs, use

$ cd / sys / c l a s s /pwm/pwmchip0

$ echo −n ”3” > export

$ cd pwm3

Enable PWM

$ echo −n ”1” > enable

Set PWM period in nanoseconds. The following commands sets the period as 1 millisecond

44

$ echo −n ”1000000” > per iod

Set PWM duty cycle by writing its length in nanoseconds in duty cycle file. The following

command sets the duty cycle as 50

$ echo −n ”500000” > duty cyc l e

45

Bibliography

[1] World Health Organization. Ageing and Life Course Unit, Who global report on falls

prevention in older age, World Health Organization, 2008.

[2] B. Alexander, K. Hsiao, C. Jenkins, B. Suay, and R. Toris, Robot web tools [ros topics],

Robotics Automation Magazine, IEEE 19 (2012), no. 4, 20–23.

[3] Carlos Angrisano, Diana Farrell, Bob Kocher, Martha Laboissiere, and Sara Parker,

Accounting for the cost of health care in the united states, McKinsey Global (2007).

[4] Guillaume Blanc, Youcef Mezouar, and Philippe Martinet, Indoor navigation of a

wheeled mobile robot along visual routes, Robotics and Automation, 2005. ICRA 2005.

Proceedings of the 2005 IEEE International Conference on, IEEE, 2005, pp. 3354–3359.

[5] CakePHP, http://cakephp.org/.

[6] Velin Dimitrov, Vinayak Jagtap, Mitchell Wills, Jeanine Skorinko, and Taşkın Padır,

A cyber physical system testbed for assistive robotics technologies in the home, (Under

Review).

[7] John V Draper, David B Kaber, and John M Usher, Telepresence, Human Factors:

The journal of the human factors and ergonomics society 40 (1998), no. 3, 354–375.

[8] Ruixiang Du, Vinayak Jagtap, Yanren Long, Oke Onwuka, and Taşkın Padır, Robotics

enabled in-home environment screening for fall risks, Proceedings of the 2014 Workshop

on Mobile Augmented Reality and Robotic Technology-based Systems (New York, NY,

USA), MARS ’14, ACM, 2014, pp. 9–12.

46

[9] A. Enes and W. Book, Blended shared control of zermelo’s navigation problem, Amer-

ican Control Conference (ACC), 2010, June 2010, pp. 4307–4312.

[10] Dieter Fox, Kld-sampling: Adaptive particle filters, Advances in neural information

processing systems, 2001, pp. 713–720.

[11] P. Griffiths and R.B. Gillespie, Shared control between human and machine: haptic

display of automation during manual control of vehicle heading, Haptic Interfaces for

Virtual Environment and Teleoperator Systems, 2004. HAPTICS ’04. Proceedings.

12th International Symposium on, March 2004, pp. 358–366.

[12] G. Grisetti, C. Stachniss, and W. Burgard, Improved techniques for grid mapping with

rao-blackwellized particle filters, Robotics, IEEE Transactions on 23 (2007), no. 1,

34–46.

[13] Richard Harper, Inside the smart home, Springer Science & Business Media, 2003.

[14] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard, OctoMap: An efficient probabilistic 3D mapping framework based on octrees,

Autonomous Robots (2013).

[15] JSON, Javascript Object Notation http://www.json.org/.

[16] E. Olson, Apriltag: A robust and flexible visual fiducial system, Robotics and Automa-

tion (ICRA), 2011 IEEE International Conference on, May 2011, pp. 3400–3407.

[17] Open Source Robotics Foundation, Turtlebot 2.

[18] Jennifer M Ortman, Victoria A Velkoff, and Howard Hogan, An aging nation: the older

population in the united states.

[19] Eelco Plugge, Tim Hawkins, and Peter Membrey, The definitive guide to mongodb: The

nosql database for cloud and desktop computing, 1st ed., Apress, Berkely, CA, USA,

2010.

47

[20] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Y Ng, Ros: an open-source robot operating system, ICRA

workshop on open source software, vol. 3, 2009.

[21] Thomas B Sheridan, Teleoperation, telerobotics and telepresence: A progress report,

Control Engineering Practice 3 (1995), no. 2, 205–214.

[22] SparkFun, Phant Server http://phant.io/about/.

[23] Suguna P Subramanian, Jurgen Sommer, Stephen Schmitt, and Wolfgang Rosenstiel,

Rilreliable rfid based indoor localization for pedestrians, Software, Telecommunications

and Computer Networks, 2008. SoftCOM 2008. 16th International Conference on,

IEEE, 2008, pp. 218–222.

[24] Russell Toris, David Kent, and Sonia Chernova, The robot management system: A

framework for conducting human-robot interaction studies through crowdsourcing, Jour-

nal of Human-Robot Interaction 3 (2014), no. 2, 25–49.

[25] Ad Van Berlo, A smart model house as research and demonstration tool for telematics

development, Proc. 3rd TIDE Congres: Technology for Inclusive Design and Equality

Improving the Quality of Life for the European Citizen, 1998, pp. 23–25.

