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Abstract
This project is a part of a larger project with the goal of implementing algorithms to solve

systems of binary quadratic equations using a recursive search on FPGAs. The goal of this part
was to implement an exhaustive search method for a binary quadratic system of equations as a
proof of concept, as well as creating a lookup table to store the solutions to two binary quadratic
equations that were similar to each other besides two variables. For a lookup-table,
recursion-based approach for equations that were similar to each other, a table was created
through simulations created using the hardware description languages Verilog and SystemVerilog
to find solutions for those similar equations that were differing in a combination of two variables,
with different combinations of linear and quadratic terms accounted for. For the future
verification of produced solutions via an improved recursive search, a low-resource utilization
method of exhaustive searching has been developed and implemented on upgraded hardware that
can be scaled up both in terms of linear terms present, as well as the number of equations, with a
method of displaying via a terminal being developed in the future. All of the code from the
Vivado project can be found in the Appendix.
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Background
The Solution of Boolean multivariate quadratic (MQ) systems, aka Boolean Satisfiability

Problem (SAT). is a popular problem in Cryptography. The SAT (satisfiability) problem
involves determining whether a given logical expression, represented as a system of boolean
equations, can be satisfied by finding a combination of truth values for the variables that makes
the entire expression true at the same time. The MQ problem takes this premise and asks if there
is a solution to a system of binary, quadratic systems, similar to the one shown in Figure 1.

𝑋1 +  𝑋2 +  𝑋3 +  𝑋4 +  𝑋3𝑋2 +  𝑋3𝑋5 =  1
𝑋2 +  𝑋3 +  𝑋5 +  𝑋1𝑋4 +  𝑋4𝑋5 =  0

𝑋1 +  𝑋4 +  𝑋5 +  𝑋3𝑋4 +  𝑋3𝑋5 +  𝑋4𝑋5 =  0
Figure 1: An Example System of Binary Quadratic Equations

The MQ problem itself is stated to be used in regard to post-quantum cryptography as
“the building block of the Multivariate public key cryptosystems (MPKCS)” (Bellini, et al. 2022)
such as Rainbow, LUOV. These public keys have specific parameters that help to determine the
hardness of the MQ problem given as well as the specific time and space complexities. (Bellini,
et al. 2022):

1. Size of Finite Field (usually 2)
2. Number of variables
3. Number of polynomials

Knowing this, there have been numerous attempts at solving the MQ as well as the SAT
problem such as the “Crossbred” algorithm, different variations of the AmoebaSAT algorithm, as
well as looking back at algorithms created by previous MQP teams such as the one made by
Frank Kennedy to solve linear systems via exhaustive searching as the first step towards solving
quadratic systems. The goal of this project is to see what can be enhanced from Frank’s
algorithm as well as laying the groundwork for the next steps in the implementation on an
FPGA.

Implementations of MQ/SAT Problems

“Crossbred” Algorithm
The “Crossbred” algorithm developed by French cryptographers Antoine Joux and

Vanessa Vitse, focused on solving systems of quadratic binary polynomials through the use of
Macaulay matrices, much like the FXL/BooleanSolve algorithm it is based on (Joux 2018). A
Macaulay matrix is able to show the coefficient weight of each linear and quadratic term.
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Figure 2: An Example Degree 2 Macaulay Matrix (Joux 2018)

The main problem with a lot of solving algorithms that involve the use of this matrix is linear
algebra that is “performed 2n-k times,” where n is the number of unknown terms and k is the
number of known variables that can be taken out of the system (Joux 2018). Joux and Vitse
decided to mitigate this issue by performing this portion after the elimination of the known
variables.

The basic premise would be to first construct the matrix in alphabetical order, like the
matrix in Figure 2, and compute the last rows of the constructed matrix’s reduced row echelon
form. By being able to just compute the last rows of the system, excluding variables with the X1
term from the reduced row echelon form as shown in Figure 3, we can solve for the rest via
exhaustive search methods, and then chicking the solutions with the equations that contain X1
(Joux 2018).

Figure 3: Reduced Row Echelon of Figure 2’s Matrix (Joux 2018)

However, it is not necessary to eliminate all of the k variables from the system. Joux and
Vitse explain that a more refined version of the algorithm involves ordering the columns of the
matrix in graded reverse lexicographic (grevlex) order, with all quadratic terms first before the
linear terms, creating a row echelon form of the matrix shown in Figure 4. From the last 3 rows,
we see that all of the equations have X1, X2, and X3 in degree 1. This allows us to assign X4 to
whatever we want and solve for the other variables, theoretically eliminating them from the
search.
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Figure 4: Grevlex Row Echelon Form of Matrix (Joux 2018)

In terms of implementation, Joux and Vitse tackled the Fukuoka Type I MQ challenges issued in
2015 to assess the hardness of solving the systems of equations (Joux 2018). They used a
network of Opteron and Xeon processors and were able to solve challenges using up to 74
differing variables taking an estimated maximum of 300,000 hours to solve (Joux 2018).

AmoebaSAT
The AmoebaSAT algorithm is a cooperation between software and the hardware of an

FPGA based on amoeba cell biology. Primarily used for Internet of Things (IoT)
oriented-applications, requiring the processing of many variables, the algorithm is based on how
an amoeba can grow and move from light signals called “Bounceback signals” (Ngyuen, et al.
2020). These signals are sets of rules that dictate that each variable can not be both 1 and 0 at the
same time, all literals can not be 0, and rules to resolve situations where a variable can not be
either 0 or 1. These decisions end up consuming a lot of memory to operate.

Figure 5: AmoebaSAT model for 4 Variable SAT Case (Nguyen, et al. 2020)
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An iteration of this algorithm known as AmoebaSATslim (ASATslim) is able to reduce
the amount of memory it uses by omitting certain rules from the bounceback signals and instead,
implementing them as temporary signals on a branch-by-branch basis. Although it will need
nearly the same number of iterations as the original ASAT algorithm, due to memory issues
being mitigated to a degree, ASATslim can handle more variables (Ngyuen, et al. 2020). An
even more “evolved” version of this algorithm known as ASATone further reduces the
computational resources needed by representing variables as single branches in a more
instance-based method.

This version of the ASAT algorithm was able to be implemented h copies of the
uf50-100.cnf 3-SAT instance, a set of variables that only have one solution with 50h variables
and 218h clauses on a Zynq Ultrascale+ FPGA and compared with a software implementation
using a Ryzen 3960X 24 Core CPU (Nguyen 2020). When compared to the software
implementation, the FPGA was able to be anywhere between 3 and 15 times faster while sipping
power using under ten watts (Nguyen 2020). By utilizing the ability to execute multiple instances
through parallelization on FPGAs, they are best suited for these multiple variable problems.

Frank Kennedy’s Implementation
Frank Kennedy’s implementation has been built off of previous work from WPI students

Liam Stearns, Carlton Mugo, and James McAleese, from the past two years with the main idea
of his recursive algorithm was to split the system into smaller groups decreasing the number of
solutions to “2n-s, where s is equivalent to the number of groups'' (Kennedy, 2023). Kenndey’s
goal was to create a program to solve a set of quadratic equations via partial solutions to the
linear terms of the equations. Kennedy started his improvements by observing when different
equations would be nearly identical besides one variable, while also observing the Right Hand
Side (RHS) variable, also known as the solution of the equation, along with a Rest variable that
is defined as “what the solution adds to using bitwise addition with the exception of the variable
in question” (Kennedy, 2023) to see if there is a possible solution and what the said solution
would be. Figure 6 below shows Kennedy’s table for two equations with a one variable
difference. These rules are able to assist in Kennedy’s recursive algorithm, eliminating sets that
need to be figured out in the rest of the algorithm.
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Figure 6: Rules for One Different Variable (Kennedy, 2023)

In terms of Kennedy’s recursive searching algorithm for the sets of equations, he intended
on splitting the system matrix into smaller pieces, treating the linear portion as its own section.
Kennedy only assigns weights to each linear portion of the equations, organizing the equations
from lowest weight to highest weight. This organized form of the matrix is then further
reorganized “starting with the first equation in the matrix, if a 1 is found, the entire column
swaps places with the first 0, ” removing that column from other reorganizations, and repeated
for the following equations to form an upper right-hand triangle, creating a priority on how to
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search the variables (Kennedy 2023). This first variable can be set to 0 at first and evaluate the
rest of the terms to see if it was a viable solution in the first place. If it works, then the solution is
considered SAT and the work is done. If not, then the first term is set to 1 and the process starts
all over again. If there continues to not be a solution found, then the system can be considered
UNSAT, meaning that there are no solutions.

Although Kennedy was unable to finish or implement this searching algorithm, he states
that the algorithm has a theorized number of solutions of 2n/2, which is a significant improvement
when compared to the 2n complexity of exhaustive searching. From his report, Kennedy also
states that he “utilized many hard coded values in order to establish the equations and matrices
used in the setup portion of the code,” and that the process could be made more efficient if there
was less hard coding and a possible reading from a memory file occurred instead. Kennedy also
suggested that creating a lookup table of solutions for cases in which two variables differ would
also be beneficial in checking solutions for complexity reduction. The only issue he saw with this
method would be that there would be a significant jump in the memory usage and the board he
was using did not have enough non-volatile flash to store this data and that a new board should
be looked into.
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Improving Solving Lookup Table to Account for
Quadratics and Two Term Differences

Building off of Kennedy’s work on comparing two equations with one differing linear
variables, I decided to create a simulation written in SystemVerilog in the Xilinx Vivado ISE to
generate all of the combinations of coefficients for the equations of the format shown in Figure 7,
excluding the Rest and RHS. The aim was to be able to create a lookup table of common
solutions for when equations may appear very similar besides two coefficients that involve linear
or quadratic terms, hence the exclusion of Rest and RHS. The goal is that this lookup table
would be able to be referenced in recursive searching algorithms when breaking down equations
with differences in three or more terms, decreasing the complexity of solving these kinds of
systems.

X1 X2 X3 X4 X1X2 X2X3 X3X4 REST RHS

0 0 1 0 1 0 0 0 1

Figure 7: Equation Format for Weight of 2 Solving with Example Coefficients

Using this specific set of terms, I am able to cover all of these five different scenarios:
1. Two different linear terms (X1, X3),
2. One linear and one quadratic without a shared term (X1, X2X3),
3. One linear and one quadratic with a shared term (X1, X1X2),
4. Two quadratics without a shared term (X1X2, X3X4),
5. Two quadratics with a shared term (X1X2, X2X3).

This equation format also uses the assumption that there are more terms that we are not looking
at that are the same between each equation that both reduce down to a simple “Rest” term of
either 1 or 0, similar to Frank’s research. The RHS can be either the same or different for each
equation and thus is not accounted for in the binary weight as well as the rest.

In order for me to figure out what every combination of weight of two was for the seven
coefficients, I started with a simple bit-counting simulation in Verilog that would use a seven-bit
counter as an input and output a 1-bit flag that says if the input value has a binary weight of 2.
From there, I was able to construct the table shown in Figure 8 that shows the combination of
two sets of coefficients that follow the following rules:

1. The coefficients can NOT be the same value (blacked out in Figure 8)
2. The combination of coefficients can not be covered twice

(i.e (EQ1 = 0000011, EQ2 = 0000101) and (EQ1 = 0000101, EQ2 = 0000011)
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Figure 8: Valid Combinations of Coefficients

The table demonstrates that there are 190 total valid combinations of coefficients that can
be iterated through, alongside the different variations of RHS (00, 01, 10, and 11 for
{EQ1,EQ2}, respectively) and Rest (0 or 1), resulting in a total of 1,520 systems in the format
portrayed in Figure 9.

Figure 9: Format for Two Equations with Weight Two in Code

Knowing all of this, I was able to create a look-up table to iterate two counters through all
of the valid coefficients from Figure 8 and form a simulation that would also iterate through the
combinations of the RHS for the equations via a two-bit value (RHS[1] = RHS2 and RHS[0] =
RHS1), as well as the rest value, outputting all data on the number of total systems created, what
the equations are, all valid combinations of X1, X2, X3, and X4 iterated via a 4-bit counter
mapped to each linear term (the quadratic terms are just the linear terms multiplied by each other
through the use of bitwise AND), as well as the number of solutions for each system. The
systems are solved via conducting a bitwise-XOR on both equations generated, then performing
a bitwise-AND on the resulting coefficients and the possible solution made by the 4-bit counter.
From there, the resulting string is XOR’d with each other and compared to the final RHS value.
If the values are the same, then it is labeled a valid solution and displayed in the console of the
simulation. The code for finding the weight of two, look-up table, solving module, simulation,
and the results can be found in Appendices B, C, D, E, and F respectively. At the end of my time
on this project, I was also able to create the look-up table for cases involving a weight of three
and modified the weight-finding code to parametrize the binary weight. The code for these will
be in Appendix I and J respectively.
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Choosing a New Board
To perform such operations for row and column operations that act similar to Gaussian

elimination , as well as the storage of multiple arrays, we will need to utilize more memory on
the FPGA. With taking Frank Kennedy’s input and recommendations on getting a better board
than the Digilent Basys-3 board with the Artix-7 A35 FPGA on-board (Kennedy, 2023), I
decided to look for a board that fulfilled these requirements:

1. Has more than 32 megabits of non-volatile flash
2. At least 5 times as many logic cells as Basys-3 (A35 has 33,280)
3. At least 5 times as much Block RAM (BRAM) (5 * 1800 kilobits on Basys-3)

When accounting for these requirements, a board with the Artix-7 A200 FPGA, more
specifically, Digilent’s Nexys Video board would be the best for this application. The A200
Artix-7 FPGA has 215,360 logic cells, covering the second requirement, and has 13 megabits of
BRAM, fulfilling the third requirement. The board itself has 32 megabytes of non-volatile flash
on board when compared to the 32 megabits on the Basys-3, fulfilling the first requirement.

Figure 10: Comparison of A35 and A200 FPGA (Xilinx Website)

Using this board would allow for implementation of systems of equations with a larger
number of equations and a numerous number of differing terms, executing programs in a
reasonable amount of time.

Aside from this board chosen, the team wanted to explore implementing code using
Python onto a Xilinx Zynq 7000 System-on-Chip (SoC) board, more specifically the PYNQ-Z2
board. PYNQ itself is an open-source project developed by Advanced Micro Devices (AMD)
that takes Python and any associated libraries and translates it to hardware description language
during run-time or for parallelization of the code. Although the board has been ordered, it has not
been delivered or tested at the time of this report.
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Exhaustive Searching
When looking at the previous exhaustive search code from Frank Kennedy, the team and

I saw that there were many areas that could be improved. The first one that was shown was the
creation of classes, column-swapping, and weight assignments, which would not impact the time
complexity of 2n, where n is the number of linear terms. The classes also contained more
information than what was needed for exhaustive search to be performed.

After consideration, I was able to create a new packed structure 16 bits long for the
equation’s coefficients, with n for the implementation being five linear terms (5 linear terms + 10
quadratic terms + RHS = 16). This structure is used to create a packed array of 16 hard-coded
equations generated with the use of a random number generator online to perform the exhaustive
search. Although the initial idea was to use a clocked 16-bit linear feedback shift register (LFSR)
to create the array, there ended up being some cross-clock domain synchronization issues making
some equations have all values of X (don’t care in SystemVerilog) and concerns of true
randomness not being possible that resorted to the use of the hard-coded equations discussed.
While this hard-coded solution is not the final idea, the team intends to move this
implementation to read off of an SD card loaded onto the Nexys board, which will take a longer
amount of time to determine a proper way of doing so in the future.

From there, I XOR all of the equations together, similar to my simulation in the
improving linear solving section. This is to determine what terms are needed to be accounted for
to solve the system. In regards to the terms, I use five of the switches on the Nexys board to
assign values of 1 or 0 to the linear terms X1 to X5 and assign the quadratic values via a bitwise
AND between these linear terms. All of these terms are concatenated into a 15-bit long string as
shown in the code snippet in Figure 11 to easily perform a bitwise AND between them and the
term coefficients (bits 16 to 1) of the XORed equations.
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Figure 11: Term Assignment Code Snippet

Once the AND operation has been completed and stored in a 15-bit wire, all of the bits in
it are XORed together for the addition to compare to the RHS value created from XORing all of
the initial equation coefficients’ RHS to determine if the combination of switches is solves the
system. If it is a solution, the set of LEDs corresponding to the switches will turn on, indicating
that it is a solution; if not, then an LED not controlled by the LED will be turned on, indicating
that it does not provide a solution. As my solution was only concerned with combinational logic,
a clock was not required for my implementation to operate. Of course, with wanting to read from
an SD card in the future, there will arise the need to use a clock and ensure that the SD card is
fully read from to ensure the system of equations is properly solved.

Figure 12: Exhaustive Searching Flow Diagram

When the solution flag within the code is 1, the team also wants a string to be outputted
saying that a solution has been found at the value of the terms. This is currently being worked on
and utilizes the UART protocol to operate while encoded our string into ASCII text for
communication purposes. At the time of this report, we are able to print out the equations into a
terminal and some of the solutions.
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Exhaustive Searching Results
To first test to see if the exhaustive searching works, I simulated my searching module,

updating the terms register of the simulation every 10 nanoseconds, and comparing it to what the
good_out wire, the representation of the LEDs, gave. As shown in Figure 13, any time that the
wire had a hexadecimal value of 20 (binary value of 100000), that would mean that the
combination of terms was not a solution to the system. Conversely, when the wire equals the
terms register, that indicates that the combination is a valid solution. Figure 14 shows that my
implementation uses little-to-no resources of the board, meaning that this implementation can be
scaled to include many more linear terms, thus more quadratic terms as well, up to however
many switches that you would want to control the value of the linear terms.

To prove that the simulation is correct, I also generated the bitstream and programmed
the Nexys board to run the exhaustive search code. Figure 15 shows that a hex value of 0a (X2
and X4 = 1) does not provide a solution to the system, while a value of 12 (X2 and X5 = 1) is a
solution and turns on the LEDs shown in Figure 16.

Figure 13: Exhaustive Search Vivado Simulation Results

Figure 14: Exhaustive Search Resource Utilization
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Figure 15: X2 and X4 = 1 on Board

Figure 16: X2 and X5 = 1 on Board
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Conclusion
During my time on the project, the overall goal was to construct improvements to solving

systems of similar equations besides a combination of linear and/or quadratic terms,
implementing the quadratic exhaustive search, and upgrading the hardware used for
implementation. I was able to aid the team in implementing an exhaustive search algorithm on a
system of 16 equations with five linear terms and ten quadratic terms, with progress starting on
being able to use an upgraded board, containing a magnitude of more computational resources
and memory, to report what solutions are satisfiable in a terminal. Using a system of three linear
terms and three quadratic terms, it was possible to generate a table of 1,521 situations of two
equations with a difference of two terms excluding the RHS and Rest terms to aid in a possible
lookup table-based solution to recursive searching. I was also able to parametrize the
weight-finding code and create the lookup table for a theoretical search for two equations with a
difference of three variables. I believe that the improvements that were made on the foundation
started by Frank Kennedy and the implementations on the new FPGA as well as the PYNQ SoC
board will lay excellent groundwork for future research in this field.
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Appendix B: Finding Binary Weight of Two Code
module hamming #(parameter length = 7)( //Defines how many bits long testing

input [length-1:0] counter, //arrays start @ 0
output flag2
);

integer i;
reg [length -1:0] weight;

always @ (counter) begin
weight = 0;
for(i = 0; i <= length; i = i + 1)begin
if(counter[i] == 1'b1) begin

weight = weight + counter[i];
end
end
end

assign flag2 = (weight > 1 && weight < 3) ? 1'b1 : 1'b0;

endmodule
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Appendix C: Binary Weight of Two Lookup Table Code
module weight2_lut(

input [4:0] counter,
output reg [6:0] coeff
);

always @ (counter) begin
case(counter)

5'd0: coeff <= 7'd3;
5'd1: coeff <= 7'd5;
5'd2: coeff <= 7'd6;
5'd3: coeff <= 7'd9;
5'd4: coeff <= 7'd10;
5'd5: coeff <= 7'd12;
5'd6: coeff <= 7'd17;
5'd7: coeff <= 7'd18;
5'd8: coeff <= 7'd20;
5'd9: coeff <= 7'd24;
5'd10: coeff <= 7'd33;
5'd11: coeff <= 7'd34;
5'd12: coeff <= 7'd40;
5'd13: coeff <= 7'd48;
5'd14: coeff <= 7'd65;
5'd15: coeff <= 7'd66;
5'd16: coeff <= 7'd68;
5'd17: coeff <= 7'd72;
5'd18: coeff <= 7'd80;
5'd19: coeff <= 7'd96;
default: coeff <= 7'd3;

endcase
end

endmodule
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Appendix D: Two Equation Weight of Two Solving Module Code
module solver(

input [3:0] terms,
input [8:0] Co_1, Co_2,
output solved
);

wire X1, X2, X3, X4;
assign {X4, X3, X2, X1} = terms[3:0];

//X1 + X2 + X3 + X1X2 + X2X3 + X3X4 + Rest = RHS
//7 Terms + Rest + RHS = 9 Bit long Equations

wire X1X2 = X1 & X2;
wire X2X3 = X2 & X3;
wire X3X4 = X4 & X3;

wire [8:0] temp_eq = Co_1 ^ Co_2; //XOR arrays

wire result = (X1 & temp_eq[8]) ^ (X2 & temp_eq[7]) ^ (X3 & temp_eq[6]) ^(X4 *
temp_eq[5]) ^(X1X2 & temp_eq[4]) ^(X2X3 & temp_eq[3]) ^(X3X4 & temp_eq[2]) ^
temp_eq[1];

assign solved = (result == temp_eq[0]) ? 1'b1 : 1'b0;

endmodule
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Appendix E: Two Equation Weight of Two Solving Simulation Code
`timescale 1ns / 1ps

module weight2_table(

);
reg [4:0] eq1_count, eq2_count; //iterate for loop
reg [2:0] RHS; //for equations
wire RHS1, RHS2;
assign {RHS2, RHS1} = RHS[1:0];
reg [1:0] Rest; //for equations
wire [6:0] eq1_co, eq2_co; //output of lut
integer sys_num, solutions_num; //for # of systems and solutions per system
reg [4:0] terms; //for iterating through X1-X4
wire solved; //for saying if solution

//Equations
wire[8:0] eq1, eq2;
assign eq1 = {eq1_co, Rest[0], RHS1};
assign eq2 = {eq2_co, Rest[0], RHS2};

weight2_lut eq1_coefficient(
.counter(eq1_count),
.coeff(eq1_co)
);

weight2_lut eq2_coefficient(
.counter(eq2_count),
.coeff(eq2_co)
);

solver algorithm(
.terms(terms[3:0]),
.Co_1(eq1),
.Co_2(eq2),
.solved(solved)
);
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initial begin
eq1_count = 0;
eq2_count = 1; //avoid "squared" positions
RHS = 3'b000;
Rest = 2'b00;
sys_num = 0;
solutions_num = 0;
terms = 0;
#20;
while(Rest[1] != 1'b1) begin
while(RHS[2] != 1'b1) begin

while(eq1_count <= 18) begin
while(eq2_count <= 19) begin
sys_num = sys_num + 1;
$display("System # %d", sys_num);
$display("EQ1 : %b", eq1);
$display("EQ2 : %b", eq2);
while(terms[4] != 1) begin

if(solved) begin
solutions_num = solutions_num + 1;
$display("Solution : X1 = %b X2 = %b X3 = %b X4 = %b", terms[0],

terms[1], terms[2], terms[3]);
end
#5 terms = terms + 1;

end
terms = 0;
solutions_num = 0;
eq2_count = eq2_count + 1'b1;
end
eq1_count = eq1_count + 1'b1;
eq2_count = eq1_count + 1'b1;
end
RHS = RHS + 1'b1;
eq1_count = 0;
eq2_count = 1;

end
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Rest = Rest + 1'b1;
RHS = 3'b000;
eq1_count = 0;
eq2_count = 1;
end
$stop;
end

endmodule
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Appendix F: Two Equation Weight of Two Solving Results
Due to the brevity of the results, a link to the text on Github has been provided.
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Appendix G: Exhaustive Search Code
module exhaustive_search(

//input clk, reset_n,
input [4:0] sw,
output [5:0] led
);

// Define packed struct for equation coefficients
typedef struct packed {
logic [15:0] coefficient;
} EquationCoeff;

//16 equations with 15 coefficients + RHS
EquationCoeff EQ_Matrix [0:15]; //X1 + X2 + X3 + X4 + X5 + X1X2 + X1X3 + X1X4

+ X1X5 + X2X3 + X2X4 + X2X5 + X3X4 + X3X5 + X4X5 = RHS

wire X1, X2, X3 ,X4 ,X5 ,X1X2, X1X3, X1X4, X1X5, X2X3, X2X4, X2X5, X3X4,
X3X5, X4X5;

wire [4:0] Terms = sw[4:0];
assign X1 = Terms[0];//Assign Linear Terms
assign X2 = Terms[1];
assign X3 = Terms[2];
assign X4 = Terms[3];
assign X5 = Terms[4];

//Assigning Quad Terms
assign X1X2 = X1 & X2;
assign X1X3 = X1 & X3;
assign X1X4 = X1 & X4;
assign X1X5 = X1 & X5;
assign X2X3 = X2 & X3;
assign X2X4 = X2 & X4;
assign X2X5 = X2 & X5;
assign X3X4 = X3 & X4;
assign X3X5 = X3 & X5;
assign X4X5 = X4 & X5;
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wire [14:0] term_string = {X1, X2, X3, X4 ,X5, X1X2, X1X3, X1X4, X1X5, X2X3,
X2X4, X2X5, X3X4, X3X5, X4X5}; //easier for computation

//Equations
assign EQ_Matrix[0].coefficient = 16'b01001_1011_001_11_0_1; //X2 + X5 + X1X2 +

X1X4 + X1X5 + X2X5 + X3X4 + X3X5 = 1
assign EQ_Matrix[1].coefficient = 16'b10110_0001_101_01_1_0;
assign EQ_Matrix[2].coefficient = 16'b11001_1010_010_10_0_1;
assign EQ_Matrix[3].coefficient = 16'b11110_1100_111_00_1_0;
assign EQ_Matrix[4].coefficient = 16'b01011_0011_011_10_1_0;
assign EQ_Matrix[5].coefficient = 16'b01000_0100_110_01_0_0;
assign EQ_Matrix[6].coefficient = 16'b00000_0101_101_01_0_1;
assign EQ_Matrix[7].coefficient = 16'b01101_1001_111_01_1_0;
assign EQ_Matrix[8].coefficient = 16'b00100_0100_101_01_0_1;
assign EQ_Matrix[9].coefficient = 16'b11100_0000_100_00_1_0;
assign EQ_Matrix[10].coefficient = 16'b10110_1000_101_10_1_1;
assign EQ_Matrix[11].coefficient = 16'b00101_1111_100_00_1_0;
assign EQ_Matrix[12].coefficient = 16'b11111_1011_010_00_0_0;
assign EQ_Matrix[13].coefficient = 16'b01101_0011_101_01_0_0;
assign EQ_Matrix[14].coefficient = 16'b00001_0010_001_00_0_1;
assign EQ_Matrix[15].coefficient = 16'b10100_0111_100_11_0_1;

//XOR all coefficients together
wire [15:0] EQ_XOR = (EQ_Matrix[0].coefficient ^ EQ_Matrix[1].coefficient ^

EQ_Matrix[2].coefficient ^ EQ_Matrix[3].coefficient ^
EQ_Matrix[4].coefficient ^ EQ_Matrix[5].coefficient ^ EQ_Matrix[6].coefficient

^ EQ_Matrix[7].coefficient ^
EQ_Matrix[8].coefficient ^ EQ_Matrix[9].coefficient ^

EQ_Matrix[10].coefficient ^ EQ_Matrix[11].coefficient ^
EQ_Matrix[12].coefficient ^ EQ_Matrix[13].coefficient ^

EQ_Matrix[14].coefficient ^ EQ_Matrix[15].coefficient);

//AND all coefficients and terms together
wire [14:0] EQ_AND = EQ_XOR[15:1] & term_string;

//XOR EQ_AND together
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wire EQ_SUM = (EQ_AND[14] ^ EQ_AND[13] ^ EQ_AND[12] ^ EQ_AND[11] ^
EQ_AND[10]

^ EQ_AND[9] ^ EQ_AND[8] ^ EQ_AND[7] ^ EQ_AND[6] ^ EQ_AND[5]
^ EQ_AND[4] ^ EQ_AND[3] ^ EQ_AND[2] ^ EQ_AND[1] ^ EQ_AND[0]);

//Check to see if sum = RHS of XOR'd equations
wire solution = (EQ_SUM == EQ_XOR[0]) ? 1'b1 : 1'b0;

assign led = (solution) ? {1'b0,Terms[4:0]} : 6'b1_00000; //display the solution on the
LEDs

//Used for Simulation Purposes (working on a way to do this on FPGA)
/*initial begin

$display("Solving System of Equations");
$display("Equation 1: %b", EQ_Matrix[0].coefficient);
$display("Equation 2: %b", EQ_Matrix[1].coefficient);
$display("Equation 3: %b", EQ_Matrix[2].coefficient);
$display("Equation 4: %b", EQ_Matrix[3].coefficient);
$display("Equation 5: %b", EQ_Matrix[4].coefficient);
$display("Equation 6: %b", EQ_Matrix[5].coefficient);
$display("Equation 7: %b", EQ_Matrix[6].coefficient);
$display("Equation 8: %b", EQ_Matrix[7].coefficient);
$display("Equation 9: %b", EQ_Matrix[8].coefficient);
$display("Equation 10: %b", EQ_Matrix[9].coefficient);
$display("Equation 11: %b", EQ_Matrix[10].coefficient);
$display("Equation 12: %b", EQ_Matrix[11].coefficient);
$display("Equation 13: %b", EQ_Matrix[12].coefficient);
$display("Equation 14: %b", EQ_Matrix[13].coefficient);
$display("Equation 15: %b", EQ_Matrix[14].coefficient);
$display("Equation 16: %b", EQ_Matrix[15].coefficient);
end

always @(*) begin
if(solution) begin
$display("Solution Found: X1 = %b, X2 = %b, X3 = %b, X4 = %b, X5 = %b", Terms[0],

Terms[1], Terms[2], Terms[3], Terms[4]);
end
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else begin
$display("Solution not found at this state");
end
end*/

endmodule
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Appendix H: Exhaustive Search Simulation Code
`timescale 1ns / 1ps

module exhaust_sim();
reg [4:0] terms;
wire [5:0] good_out; //showing what terms work

exhaustive_search uut(
.sw(terms),
.led(good_out)
);

initial begin
terms <= 5'b00000;

repeat(31) begin //go until 5'b11111
if(terms == 5'b11111) begin

$stop;
end
#10 terms <= terms + 1'b1;

end
end

endmodule
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Appendix I: Weight of Three Lookup Table

module weight3_lut(
input [4:0] counter,
output reg [6:0] coeff
);

always @ (counter) begin
case(counter)
5'd0: coeff <= 7'd7;
5'd1: coeff <= 7'd11;
5'd2: coeff <= 7'd13;
5'd3: coeff <= 7'd14;
5'd4: coeff <= 7'd19;
5'd5: coeff <= 7'd21;
5'd6: coeff <= 7'd22;
5'd7: coeff <= 7'd25;
5'd8: coeff <= 7'd26;
5'd9: coeff <= 7'd28;
5'd10: coeff <= 7'd35;
5'd11: coeff <= 7'd37;
5'd12: coeff <= 7'd38;
5'd13: coeff <= 7'd41;
5'd14: coeff <= 7'd42;
5'd15: coeff <= 7'd44;
5'd16: coeff <= 7'd49;
5'd17: coeff <= 7'd50;
5'd18: coeff <= 7'd52;
5'd19: coeff <= 7'd56;
5'd20: coeff <= 7'd67;
5'd21: coeff <= 7'd69;
5'd22: coeff <= 7'd70;
5'd23: coeff <= 7'd73;
5'd24: coeff <= 7'd74;
5'd25: coeff <= 7'd76;
5'd26: coeff <= 7'd81;
5'd27: coeff <= 7'd82;
5'd28: coeff <= 7'd84;
5'd29: coeff <= 7'd88;
5'd30: coeff <= 7'd97;
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5'd31: coeff <= 7'd98;
5'd32: coeff <= 7'd100;
5'd33: coeff <= 7'd104;
5'd34: coeff <= 7'd112;
default: coeff <= 7'd3;
endcase
end

endmodule
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Appendix J: Parametrized Binary Weight Code

module weightfinding#(parameter length = 7, parameter weight = 3)(
input [length-1:0] counter, //arrays start @ 0
output flag
);

integer i;
reg [length -1:0] weight_count;

always @ (counter) begin
weight_count = 0;
for(i = 0; i <= length; i = i + 1)begin

if(counter[i] == 1'b1) begin
weight_count = weight_count + counter[i];

end
end

end

assign flag = (weight_count > (weight-1) && weight_count < (weight+1) ) ? 1'b1 : 1'b0;

endmodule
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