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Abstract

Current model extraction attacks assume that the adversary has access to a surrogate

dataset with characteristics similar to the proprietary data used to train the victim model.

This requirement precludes the use of existing model extraction techniques on valuable

models, such as those trained on rare or hard to acquire datasets. In contrast, we propose

data-free model extraction methods that do not require a surrogate dataset. Our approach

adapts techniques from the area of data-free knowledge transfer for model extraction. As

part of our study, we identify that the choice of loss is critical to ensuring that the extracted

model is an accurate replica of the victim model. Furthermore, we address difficulties

arising from the adversary’s limited access to the victim model in a black-box setting.

For example, we recover the model’s logits from its probability predictions to approxi-

mate gradients. We find that the proposed data-free model extraction approach achieves

high-accuracy with reasonable query complexity – 0.99× and 0.92× the victim model

accuracy on SVHN and CIFAR-10 datasets given 2M and 20M queries respectively.

Furthermore, this study identifies and proposes techniques to alleviate two key bot-

tlenecks to executing deep neural networks in trusted execution environments (TEEs):

page thrashing during the execution of convolutional layers and the decryption of large

weight matrices in fully-connected layers. For the former, we propose a novel partitioning

scheme, y-plane partitioning, designed to (i) provide consistent execution time when the

layer output is large compared to the TEE secure memory; and (ii) significantly reduce

the memory footprint of convolutional layers. For the latter, we leverage quantization

and compression. In our evaluation, the proposed optimizations incurred latency over-

heads ranging from 1.09× to 2× baseline for a wide range of TEE sizes; in contrast, an



unmodified implementation incurred latencies of up to 26X when running inside of the

TEE.
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Chapter 1

Introduction

Machine learning (ML) and deep learning, in particular, often require large amounts of

training data to achieve high performance on a particular task [SGM19]. Curating such

data necessitates significant time and monetary investment [HNP09, DDS+09]. Thus, the

resulting ML model becomes valuable intellectual property, especially when considering

the computing resources and human expertise required [BMR+20, DBK+20]. Often to

monetize these models, companies make them available as a service via APIs over the web

(MLaaS). These models are also deployed to end-user devices, making their predictions

directly accessible to customers. However, the exposure of the model’s predictions repre-

sents a significant risk as an adversary can leverage this information to steal the model’s

knowledge [LM05, TZJ+16, CCG+19, PGS+19, OSF19, CSBB+18, MSDH18, JCB+20].

The threat of such model extraction attacks is two-fold: adversaries may use the stolen

model for monetary gains or as a reconnaissance step to mount further attacks [PMG+17a,

SZB+20, PMG+17b, BMR+20, DBK+20].

Furthermore, deep learning model owners often rely on the others’ hardware, such as

cloud providers or end-users, for model execution. A malicious hardware owner could

directly extract the model from memory. To address this issue, recent works have ex-

1



plored the use of trusted execution environments (TEEs), i.e., isolated environments which

provide a set of security features that allow running verified code safely on untrusted

hardware [LLP+19, KKR+20]. While TEEs provide a natural foundation for sensitive

computations, their severe memory constraints have important performance implications.

In the context of deep learning, where redundant access to large memory areas is fre-

quent, relying solely on existing TEE paging mechanisms results in prohibitively high

overheads—upwards of 26X increases in model latency.

In this work, we study deep learning model extraction in the context of MLaaS. We

consider two orthogonal avenues of attack. First, as a malicious user: we describe a

model extraction attack, which we call data-free model extraction, that aims at stealing

the remote machine learning model by repeatedly querying the prediciton API. More

specificly, the presented attack does not require any prior data nor knowledge about the

training data distribution (see Chapter 2).

Second, we describe how a model owner can leverage a TEE to run their deep learning

model confidentially on a remote, untrusted machine. We call this property confidential

deep learning. While the security guaranties for the model are handled by the TEE,

a significant overhead needs to be mitigated to efficiently run deep learning inference.

This work, thus, describes two major performance bottlenecks—namely, in convolutional

and fully-connected layers—and propose mitigations to enable efficient deep learning

inference inside a TEE (see Chapter 3).
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Chapter 2

Data-Free Model Extraction

While model extraction attacks are in many ways similar to model distillation, it dif-

fers in that the victim’s proprietary training set is not accessible to the adversary. To

stage a model extraction attack, the adversary typically queries the victim using sam-

ples from a surrogate dataset with semantic or distributional similarity to the original

training set [OSF19]. In the classification setting, the victim’s response may be limited

to the most-likely label [CCG+18] or include confidence values for different class la-

bels [JCB+20]. The number of queries—i.e., the query complexity—is also an important

consideration for the adversary. The greater the query complexity, the higher the cost of

the attack—unless the victim model is available offline (e.g., deployed on-device).

In this chapter, we first demonstrate that the success of current established practices

for model extraction, which often take the form of distillation, depends on the closeness

of the surrogate distribution to the victim’s proprietary training distribution (see Chap-

ter 2.2). This finding has important implications for the practicality of existing model

extraction techniques.

To remedy this, we propose techniques for data-free model extraction (DFME). In

short, we demonstrate the feasibility of extracting ML models without any knowledge of
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the distribution of the proprietary training data. In practice, gathering a surrogate dataset

for the purpose of model extraction can be a very expensive process, both in terms of

the time and money required to curate it. In particular, the most valuable models are

often those for which it is most challenging to curate an appropriate surrogate dataset,

i.e., when the victim model’s value arises from its proprietary dataset. Our work builds

on recent advances in data-free knowledge distillation, which involve a generative model

to synthesize queries that maximize disagreement between the student and teacher mod-

els [MS19, FSS+19]. Here, the teacher is the victim model whereas the student is the

stolen extracted model. We innovate on two fronts: the choice of loss to quantify student-

teacher disagreement and an approach for training the generator without the ability to

backpropagate through the teacher to compute its gradients (because we only have black-

box access to the victim/teacher predictions in our setting). We observe that it is essential

to ensure the stability of the loss computed, and find that the `1 norm loss is particularly

conducive to data-free model extraction. We also demonstrate that using inexpensive gra-

dient approximation (based on the victim model’s outputs) is sufficient to train a genera-

tive model that produces queries relevant to distill the knowledge of a victim to a student

model. In summary, our main contributions are 1:

• We demonstrate in Chapter 2.2 that successful distillation-based model extraction

attacks require the adversary to sample queries from a surrogate dataset whose dis-

tribution is close to the victim training data.

• In Chapter 2.4, we propose data-free model extraction (DFME) to extract ML mod-

els without knowledge of private training data, and only using the victim’s black-

box predictions. As a by-product of DFME needing to approximate gradients of

the victim, this leads us to present a method for recovering per-example logits out
1The majority of this work was made in equal contribution with Pratyush Maini. A few pieces are indi-

vidual contributions: Pratyush Maini is the main contributor of the analysis for data-based model extraction;
on my end, I am the main contributor to the logits approximation method.
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of the probability vector output by a ML model.

• We validate2 our DFME technique in Chapter 2.5 on the SVHN and CIFAR10

datasets and successfully extract a model with 0.99x the victim accuracy with only

2M queries for SVHN, and 0.92x the victim accuracy with 20M queries for CI-

FAR10.

• An ablation study of our approach in Chapter 2.6 provides two key insights: (1)

measuring disagreement between the victim and extracted models with the `1 norm

achieves higher extraction accuracy than losses previously considered in the litera-

ture; (2) weak gradient estimates yield sufficient signal to train a generator despite

only having access to the victim’s predictions.

2.1 Related Work

We covered the seminal results in model extraction based on surrogate datasets in the

introduction. Here, we discuss data-free knowledge distillation—the technique that un-

derlies our approach to data-free model extraction—as well as the rudiments of generative

modeling and gradient approximation required to understand our method.

2.1.1 Data-Free Knowledge Distillation

Knowledge distillation aims to compress, i.e., transfer, the knowledge of a (larger) teacher

model to a (smaller) student model [BC14, HVD15]. It was originally introduced to re-

duce the size of models deployed on devices with limited computational resources. Since

then, this line of work has attracted a lot of attention [ZXHL17,GYMT20,RBK+15,ZK17,

ZSG+19]. While the model owner usually performs knowledge distillation, the original

2Code and models for reproducing our work can be found at https://github.com/cake-lab/datafree-
model-extraction
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dataset used to train the teacher model may not be available during distillation [MS19],

e.g., because the dataset is too large or confidential. Therefore, others have proposed

distillation techniques that leverage a surrogate dataset with a similar feature space or dis-

tribution [LFS17, OSF19]. Others proposed techniques that altogether remove the need

for a surrogate dataset, i.e., data-free knowledge distillation [FSS+19,MS19]. Techniques

addressing data-free knowledge distillation have relied on training a generative model to

synthesize the queries that the student makes to the teacher [CCEKL20, MS19].

The success of data-free knowledge distillation hints at the feasibility of data-free

model extraction. Kariyappa et al. observe this as well in concurrent work [KPQ20].

They also tackle data-free model extraction through the synthesis of queries by a gen-

erative model. Key differences include our loss formulation and optimizer choice (see

Chapter 2.4). We show in Chapters 2.5 and 2.6 that our approach consistently outper-

forms theirs.

2.1.2 Generative Models

Model extraction through data-free distillation involves the generation of training data

with which the student (i.e., adversary) queries the teacher (i.e., victim) model. Naively,

one could generate these queries randomly [MS19, FSS+19]. In this work, we instead

build on a min-max game between two adversaries that try to optimize opposite loss func-

tions. This approach is analogous to the optimization performed in Generative Adversar-

ial Networks (GANs) [GPAM+14] to train the generator and discriminator. Here, we use

GANs in a fashion analogous to their application to semi-supervised learning [SGZ+16]:

our student and teacher models, in conjunction, play the discriminator’s role. The key

difference here is that GANs are generally trained to recover an underlying fixed data dis-

tribution. However, our generator chases a moving target: the distribution of data which is

most indicative of the discrepancies between the decision surfaces of the current student

6
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Figure 2.1: Dataset Interpolation with CIFAR10 as target. λ = 0 implies that the inputs
are sampled from the target distribution, while λ = 1 implies sampling from the surrogate.

model and its teacher model.

2.1.3 Black-box Gradient Approximation

Zeroth-order optimization is a common approach to approximating gradients [WDBS18,

NS17, CZS+17, LCK+20]. Such techniques have previously been used to mount attacks

against ML models in a black-box setting, e.g., to craft adversarial examples [TTC+19,

CZS+17, BHLS18]. Various gradient estimation methods solve different trade-offs be-

tween query complexity and the quality of the gradient estimate [TTC+19, CZS+17,

BHLS18]. We use the forward differences [WWJD12] method for its relatively low query

utilization, and systematically study the impact of its main parameter (e.g. the number of

random directions) in Chapter 2.4.3.
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2.2 How Hard is it to Find a Surrogate Dataset?

To motivate the need for data-free approaches to model extraction, we evaluate if an

adversary must ensure that the distribution of its surrogate dataset is close to that of the

victim’s training dataset. We hypothesize that in the absence of this condition, distillation-

based model extraction will return a poor approximation of the victim. We perform an

analysis on the closeness of the distributions along three axes: (1) similarity in feature

space, (2) marginal probability distribution of inputs, and (3) class-conditional probability

distribution of the inputs. In our experiments, we attempt to steal ML models trained

on CIFAR10 [Kri09] and SVHN [NWC+11] using various surrogate datasets that align

differently with the axes defined above. We study in details the experimental setting,

optimization problem, surrogate datasets and hyperparameters in Appendix A.1.

Our experiments support our hypothesis. For instance, in case of CIFAR10, with a vic-

tim model of accuracy 95.5%, extracting it using CIFAR100 [Kri09] as surrogate dataset

results in extraction accuracy of 93.5%. This can be largely attributed to the fact that both

the CIFAR10 and CIFAR100 datasets are subsets from the same TinyImages [TFF08]

dataset. However, on using SVHN as surrogate dataset, the model extraction performance

dropped remarkably, attaining a maximum of 66.6% across all the hyperparameters tried.

In the extreme scenario when querying the CIFAR10 teacher with MNIST [LBBH98]–

a dataset with disjoint feature space both in terms of number of pixels, and number of

channels)— accuracy did not improve beyond 37.2%.

On the contrary, we notice that the victim trained on the SVHN dataset is much easier

for the adversary to extract. Surprisingly, even when the victim is queried with completely

random inputs, the extracted model attains an accuracy of over 84% on the original SVHN

test set. We hypothesize that this observation is linked to how the digit classification task,

at the root of SVHN, is a simpler task for neural networks to solve, and the underlying

8



representations (hence, not being as complex as for CIFAR10) can be learnt even when

queried over random inputs.

While these correlations agree with our hypothesis, these experiments can not system-

atically quantify the distance between two distributions (viz. the surrogate and the target).

To more systematically understand how the shift away from the target distribution affects

extraction performance we interpolated inputs (xin) from the surrogate (xs) and target

(xt) datasets, s.t. xin = (1− λ) · xt + λ · xs. Figure 2.1 shows the decrease in extraction

accuracy as the distribution diverges from target (CIFAR10) for two different surrogate

datasets (SVHN and MNIST).

We make two conclusions from our observations: (1) the success of distillation-based

model extraction largely depends on the complexity of the task that the victim model

aims to solve; and (2) similarity to source domain appears to be critical for extracting

ML models that solve complex tasks. We posit that it may be nearly as expensive for the

adversary to extract such models with a good surrogate dataset, as is training from scratch.

A weaker or non-task specific dataset may have lesser costs, but has high accuracy trade-

offs.

2.3 Threat Model

We assume that the attacker has a user access to the prediction API. Therefore, he is able

to query the victim model repeatedly and collect the predictions. However, the attack

does not have any knowledge about the architecture of the deep learning model served by

the API.

The victim model is a deep learning model trained for a classification task. For each

query, the API returns a vector for probabilities (one for each class). The goal of the attack

is to perform a model extraction without prior data nor knowledge about the training

9



data distribution. As opposed to pre-existing data-based extraction attacks, this work

synthsizes all the queries that are made to the victim model.

Outside the scope of this work are defenses against model extraction attacks. There-

fore, we assume that all the queries are processed by the API and receive a valid response.

In other words, we assume no detection mecanism is in place.

2.4 Data-Free Model Extraction

The goal of model extraction is to train a student model S to match the predictions of

the victim V on its private target domain DV . That is to say, find the student model’s

parameters θS that minimize the probability of errors between the student and victim

predictions S(x) and V(x) ∀x ∈ DV :

arg min
θS

Px∼DV

(
arg max

i
Vi(x) 6= arg max

i
Si(x)

)
(2.1)

Since the victim’s domain, DV , is not publicly available, the proposed data-free model

extraction attack minimizes the student’s error on a synthesized dataset, DS . The error is

minimized by optimizing a loss function, L, which measures disagreement between the

victim and student:

arg min
θS

Ex∼DS
[L(V(x),S(x))] (2.2)

This section describes how we minimize the number of queries made to the victim model

with a novel query generation process, and how we train the student model itself.

2.4.1 Overview

The overall attack setup is inspired by Generative Adversarial Networks [GPAM+14].

A generator (G) model is responsible for crafting some input images, and the student

10
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Figure 2.2: Date-Free Model Extraction Attack Diagram

model S serves as a discriminator while trained to match the victim V predictions on

these images. In this setting, the two adversaries are S and G, which respectively try to

minimize and maximize the disagreement between S and V .

The data flow is shown as a black arrow in Figure 2.2: a vector of random noise z is

sampled from a standard normal distribution and fed into G which produces an image x.

Then the victim V and student S each perform inference on x to finally compute the loss

function L.

During the back-propagation phase (shown with red arrows) gradients from two dif-

ferent sources need to be computed: the gradients of L with regards to the student’s

parameters θS and the gradient of L with regards to the generator’s parameters θG. Be-

cause the victim is only accessible as a black-box, it is not possible to propagate gradients

through it. The dashed arrow indicates the need for gradient approximation (see Chap-

ter 2.4.3).

Student. Prior work on knowledge distillation showed that a student model S can learn

from a teacher and reach high accuracy even though its architecture is smaller and dif-

11



ferent [CH19, MS19]. Therefore, in the context of model extraction, the adversary only

needs to select a model architecture which has sufficient capacity. This does not require

knowledge of the victim architecture but rather generic knowledge of architectural choices

made for the task solved by the victim (e.g., a convolutional neural network is appropri-

ate for an object recognition task). In our work, we used a student with ResNet-18-8x

architecture for model extraction.

The loss function L is used to measure the disagreement between S and V . For this

function, we use the `1 norm loss between victim and student logits (i.e. pre-softmax acti-

vations), li(x) and si(x) respectively. This requires us to recover the logits from the soft-

max outputs, since the adversary only has access to the later. We introduce an approach

for doing so and further elaborate on the choice of L is detailed in Subsection 2.4.2. It is

important to note that the gradient of the loss with regard to the student’s weights θS does

not require gradients of V since the victim’s predictions don’t depend on the weights θS .

Generator. The generator model G is used to synthesize images that maximize the dis-

agreement between S and V . The loss function used for G is the same as for S except that

the goal is to maximize it. From this setting emerges an adversarial game in which S and

G compete to respectively maximize and minimize the same function. In other words, the

student is trained to match the victim’s predictions and the generator is trained to generate

difficult examples for the student. The adversarial game can be written as:

min
S

max
G

Ez∼N (0,1) [L(V(G(z)),S(G(z)))] (2.3)

As shown in Figure 2.2, computing the gradient of L with regard to θG requires gradients

of V . As we only have access to V as a black-box, gradient approximation techniques are

required. These techniques are discussed in Chapter 2.4.3.
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Algorithm 1: Data-Free Model Extraction
Input: Query budget Q, generator iterations nG , student iterations nS , learning rate

η, random directions m, step size ε
Result: Trained S
while Q > 0 do

for i = 1 . . . nG do
z ∼ N (0, 1)
x = G(z; θG)
approximate gradient∇θGL(x)
θG = θG − η∇θGL(x)

end
for i = 1 . . . nS do

z ∼ N (0, 1)
x = G(z; θG)
compute V(x), S(x), L(x), ∇θSL(x)
θS = θS − η∇θSL(x)

end
update remaining query budget Q

end

Algorithm. Each iteration alternates training the generator G and student S . To finely

tune the balance between G and S training, each of these training phases is repeated

nG and nS times, respectively, before moving on to the next epoch. While setting nG

higher allows G to train faster and to produce more difficult examples for S, it can also

be wasteful if S does not see enough examples. The trade-off between nG and nS is an

additional hyperparameter that needs tuning. The additional hyperparameters m and ε are

related to gradient approximation (see Chapter 2.4.3).

2.4.2 Loss function

Here we discuss different loss functions to measure the disagreement between V and

S. These losses are commonly used in the knowledge distillation literature given the

similarity with the model extraction task [CH19,FSS+19]. The choice of the loss function

is key to the outcome of the attack since gradients computed through S and V can easily
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impede the convergence of optimizers, e.g., if they vanish because the wrong loss function

is used.

KullbackLeibler (KL) Divergence Most prior work in model distillation optimized

over the KL divergence between the student and the teacher [CH19,HVD15,LZG18]. As

a result, KL divergence between the outputs of S and V is a natural candidate for the

loss function to train the student network. For a probability distribution over K classes

indexed by i, the KL divergence loss for a single image x is defined as:

LKL(x) =
K∑
i=1

Vi(x) log

(
Vi(x)

Si(x)

)
(2.4)

However, as the student model matches more closely the victim model, the KL divergence

loss tends to suffer from vanishing gradients [FSS+19]. Hypothesis 1 suggests that LKL

can make it difficult to achieve convergence while training G (refer to Appendix A.4

for justification). Specifically, back-propagating such vanishing gradients through the

generator can harm its learning. We confirm this through empirical evaluation as well in

Chapter 2.6.1.

Hypothesis 1. The gradients of the KL divergence loss with respect to the image x should

be small compared to the gradients of the `1 norm loss when S converges to V:

‖∇xLKL(x)‖ �
S→V
‖∇xL`1(x)‖

The `1 norm loss. To prevent gradients from vanishing, we use the `1 norm loss (L`1)

computed with the victim and student logits vi and si where i ∈ {1...K} and K is the

number of classes. This was previously found by Fang et al. to prevent gradients from

vanishing in knowledge distillation [FSS+19]. Even though L`1 is not differentiable ev-

erywhere, it does not suffer from the vanishing gradients issue and yields better results
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in practice (see Sec. 2.6.1). Lastly, the probabilities output by V need to be transformed

into logits to be used in L`1 . We describe how to perform logit approximation in Ap-

pendix A.2, and evaluate in Sec. 2.6.3.

L`1(x) =
K∑
i=1

|vi − si| (2.5)

2.4.3 Gradient Approximation

Because only black-box access is provided for V , the optimizer aims at maximizing a

function for which it only has an evaluation oracle. Yet, in order to train G, gradients of

the loss with regards to G’s parameters ∇θGL must be computed. Thus, we approximate

gradients by interacting with the oracle: we maximize L with zeroth-order optimization.

Images as a Proxy

The number of parameters in G is typically large (millions of parameters) and it would be

very query-expensive for a zeroth-order optimizer to get accurate gradient estimations on

this large space. Instead, one can approximate gradients with regards to the input images

x, and then back-propagate this gradient through G [KPQ20]. This way the dimensionality

of gradients being approximated is much smaller, which yields more accurate zeroth-order

approximations.

Additionally the oracle might only accept images that lie within a pre-defined input

domain, for example [−1, 1]d. To force G to respect this constraint, we use a hyperbolic

tangent activation at the end of the generator architecture. Furthermore, zeroth-order

gradients approximation methods usually evaluate the function in the neighborhood of a

given point, which can result in query images slightly outside the input domain. To avoid

this, we approximate gradients with regard to the pre-activation images (i.e. just before

the hyperbolic tangent function is applied).
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Forward Differences Method

The Forward Differences method approximates gradients by computing directional deriva-

tives Dui
f(x) of a function f at a point x along m random directions ui. The directional

derivatives are computed by measuring the variation of f a small step of size ε in the

direction ui. They are then averaged to form an estimator of the gradient∇FWDf(x). In a

way, each directional derivative brings some amount of information about true gradient.

The estimator being more accurate as the number of random directions increases.

∇FWDf(x) =
1

m

m∑
i=1

d
f(x+ εui)− f(x)

ε
ui (2.6)

The main advantage of this method is that the number of query directions m may be cho-

sen independently of the input space dimensionality, offering a trade-off between query

utilization and gradient accuracy. This makes it an appealing candidate for DFME [KPQ20].

The influence of the number of query directions m is further described in Chapter 2.6.2.

Finite differences, an alternative gradient approximation method used when crafting

adversarial examples [BHLS18], requires too many queries per gradient estimate to be

viable for data-free model extraction.

2.5 Experimental Validation

We evaluate data-free model extraction (DFME) against victim models trained SVHN

and CIFAR-10. We show that the resulting student models can reach high accuracy (e.g.,

95.2% on SVHN) even when the generator only has access to inaccurate gradient esti-

mates. Later in Chapter 2.6, we perform an ablation study and evaluate the impact of

each attack component on the final student model accuracy and on the query budget Q.
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2.5.1 Datasets and Architectures

We evaluate the effectiveness of the proposed DFME method on two datasets: SVHN

and CIFAR-10. For each dataset, the victim model architecture is a ResNet-34-8x. These

victim models were trained during 50 epochs for SVHN and 200 for CIFAR-10 with SGD

at an initial learning rate of 0.1, decayed by a factor of 10 at 50% of training.

We use ResNet-18-8x as the architecture for our student model. This is inspired by

previous works in knowledge distillation [FSS+19] that show how a smaller student is

sufficient to distill the knowledge of a larger teacher. The network was trained with a

batch size of 256 with SGD, with an initial learning rate of 0.1, a weight-decay of 5.10−4,

and a learning rate scheduler that multiplies the learning rate by a factor 0.3 at 0.1×,

0.3×, and 0.5× the total training epochs. The default query budget Q is 2M for SVHN,

and 20M for CIFAR-10 in our experiments.

The generator used three convolutional layers, interleaved with linear up-sampling

layers, batch normalization layers, and ReLU activations for all layers except the last one.

The final activation function was the hyperbolic tangent function to output values in the

range [-1,1] (see Chapter 2.4.3). It was also trained with a batch size of 256, but using an

Adam optimizer with an initial learning rate of 5.10−4 which is decayed by a factor 0.3 at

10%, 30%, and 50% of the training.

For gradient approximation we sample m = 1 random directions and a step size

ε = 10−3.

2.5.2 Results

We compare the performance of different extraction attacks in Table 2.1. We measure

the ratio between the student’s accuracy and the victim’s accuracy on the victim’s test

set. This helps compare the performance of DFME across different datasets. The stu-
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dent model’s normalized accuracy is reported for each dataset and extraction method

evaluated—our approach (DFME), our approach with KL divergence loss (DFME-KL),

our approach without logit correction (Log-Probabilities), and concurrent work [KPQ20]

(MAZE). Further, we perform DFME with a range of query budgets and reported the

accuracy in Figure 2.3.

Without any knowledge of the original training distribution, the proposed DFME

method achieved as high as 88.1% (0.92x target) of accuracy with Q = 20M and 89.9%

(0.94x target) with Q = 30M. The accuracy of the extracted model exceeds that reported

in concurrent work which we refer to as MAZE in our results [KPQ20]. However, in our

best-efforts at reproducing their results with the details in the paper,3 we were unsuccess-

ful in achieving the same reported accuracy, and were only able to achieve an accuracy of

45.6% (0.48x target) at best on the student model. In addition, MAZE reports that they

were unable to learn when using extremely few directions (such as m = 1) for the gra-

dient approximation with CIFAR10, whereas we find that weak gradient approximations

are beneficial to reduce the overall query budget of successful attacks.

We observed similar results for the SVHN victim model: reaching as high as 95.2%

(0.99x target) accuracy with only 2M queries. The task for SVHN is much simpler than

CIFAR10 given that a model with 84% (0.87x target) accuracy can be extracted from just

random noise. The proposed method allows one to achieve far higher accuracy.

One limitation of our study is that the reported query budgets do not include the cost

of hyperparameter tuning. This is an important direction for future work as preliminary

experiments suggest that extraction accuracy can be sensitive to the choice of hyperpa-

rameters.
3The authors declined to share their code upon request.
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Dataset (budget) Victim accuracy DFME DFME-KL MAZE* [KPQ20] Log-Probabilities

CIFAR10 (20M) 95.5% 88.1% (0.92×) 76.7% (0.80×) 45.6% (0.48×) 73.2% (0.77×)
SVHN (2M) 96.2% 95.2% (0.99×) 84.7% (0.88×) 91.1% (0.95×) 94.4% (0.98×)

Table 2.1: Accuracy and normalized accuracy of data-free model extraction methods. Results for
‘MAZE’ reflect our best-effort reproduction.
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Figure 2.3: Test accuracy wrt query budget, for SVHN and CIFAR10

2.6 Ablation Studies

Our work systematically transitions from a data-free knowledge distillation paradigm

[FSS+19, MS19] to a data-free model extraction scenario. The main challenges in this

transition were (1) to surpass the need for true gradients for training the student; (2) the

lack of access to true victim logits; and (3) the need to restrict the query complexity of

the attacks (to reduce the cost of stealing). With this goal, we made specific choices with

regards to (a) the loss function; (b) gradient approximation; and (c) logit access. In this

section, we detail the impact of each of these choices to the final performance of our

proposed DFME method.

2.6.1 Choice of Loss Function

The choice of loss is of paramount importance to a successful extraction. In our DFME

approach, the choice of loss involves similar factors to those outlined in research on
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GANs: multiple works have discussed the problem of vanishing gradients as the discrimi-

nator becomes strong in case of GAN training [AB17,ACB17]. For our DFME approach,

we minimize the `1 distance between the output logits of the student and the teacher. We

find that this significantly improves convergence and stability over other possible losses,

such as the KL divergence chosen in [KPQ20].

We perform DFME in the same setting to evaluate the difference between the KL

divergence and `1 losses. Below, we draw comparisons based on two metrics: (1) Final

accuracy attained by the student at the end of a fixed number of queries as well as the

learning curves of the student; and (2) The norm of gradients of the loss with respect to

the input image as the training progresses.

Test Accuracy. The key metric of interest for this comparison is the normalized ac-

curacy of the student model at the end of a designated query budget Q of 20M queries

for CIFAR10 and 2M queries for SVHN. Table 2.1 shows that using the `1 loss achieves

significantly better test accuracies compared to the KL divergence loss. For instance, on

CIFAR10 the accuracy improves from 76.7% to 88.1% when switching from KL diver-

gence to the `1 loss. We also visualize a learning curve for CIFAR10 in Figure 2.4: the

KL divergence objective slows converge and tappers off earlier, even when the student

has yet to plateau.

Gradient Vanishing. The KL divergence loss suffers from vanishing gradients, as ex-

plained in Chapter 2.4.2. In DFME, these gradients are used to update the generator’s

parameters and are thus essential to synthesize queries which extract more information

from the victim. In Figure 2.5 we empirically demonstrate that as the student accuracy

approaches that of the victim model, the gradients of the KL divergence loss with respect

to the input image reduce significantly in norm. The same decay is slower and less sig-

nificant in case of the `1 loss. We hypothesize that these vanishing gradients are the cause
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Figure 2.4: Test accuracy as training progresses for `1 and KL divergence losses.

m 1 3 5 8 10

No. of Queries 10.04 10.02 16.33 13.80 20.00

Table 2.2: Minimum queries (in millions) to reach 85% accuracy on CIFAR10, for differ-
ent number of gradient approximation steps.

for degraded accuracy when using the KL divergence loss.

2.6.2 Gradient Approximation

Recall that the `1 loss cannot be back-propagated through the victim since the adversary

only has access to it as a black-box. Recent work on data-free model distillation [FSS+19]

has claimed that the gradient information from the teacher is ‘indispensable at the begin-

ning of adversarial training’ because the student alone can not provide useful signal to the

generator when randomly initialized. Below we consider: (1) the quality of approxima-

tion required; and (2) the overall impact on query complexity. In particular, we compare

two approaches for improving the training of our DFME generator: using an increased

number of queries to compute more accurate gradient estimates or training generator for

longer using poorer gradient estimates.
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Figure 2.5: Norm of gradients with respect to the input image, for the KL divergence and
`1 norm losses.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Query budget consumed (M)

20

40

60

80

Ac
cu

ra
cy

 (%
)

m=1
m=3
m=5
m=8
m=10

Figure 2.6: Accuracy of the model during training for different number of gradient ap-
proximation steps, m.
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Model MTL (2.3e-6) MC (2.3e-6) LP (1.3)

Resnet-34-8x -1.24e-5 1.24e-5 4.98
Densenet 121 5.53e-7 1.88e-6 3.88
VGG 16 1.97e-5 1.97e-5 3.93

Table 2.3: Mean of true logits (MTL) for 3 victim architectures; reconstruction error
(MAE) between approximate and true logits when using mean correction (MC) and log-
probabilities (LP).

Number of gradient approximation steps. When gradients used to update the gener-

ator are approximated with the forward differences method, a larger number of random

directionsm allows one to compute more accurate gradients. However, in a model extrac-

tion setting, each additional gradient approximation step comes at the cost of increased

query complexity. In practice, with a fixed query budget Q, changing the number of ran-

dom directions directly impacts the proportion of queries used to train each network. This

ratio of queries r used to train the student is given by:

r =
nS

nS + (m+ 1)nG
(2.7)

In our setting (i.e. nG = 1, nS = 5) choosing m equal to 1 or 10 respectively results

in 71% and 31% of the query budget being used to directly train the student, while the

remainder is spent to get better gradient estimates to train the generator. Despite using a

majority of queries to train the generator, the setting with m = 10 achieves comparable

accuracy. In Table 2.2, we observe how choosing lower values of m achieves 85% test

accuracy in much fewer queries.

Amortizing the cost. We hypothesize that since early in the training the discriminator

(or student) provides only little signal, it is beneficial for the generator to initially rely

on weak signals of gradient approximation. Effectively, this helps amortize the cost of

gradient approximation over multiple epochs, and effectively pushes the expense to a
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later stage when the discriminator (or student) provides stronger signal. Figure 2.6 shows

that relative to the query budget utilization, different values of m perform similarly.

This also suggests a hybrid strategy where the adversary first extracts a (somewhat

poor) student model through distillation from a surrogate dataset. Indeed, we show in

Chapter 2.2 that surrogate datasets drawn from a different distribution (than the victim

model’s training data) enable distillation-based model extraction—albeit to a lower accu-

racy than in-distribution surrogate datasets. This poor initial student can then be improved

by synthesizing queries with the data-free model extraction’s generator to bring the stu-

dent model closer to the victim model’s performance.

Case m = 1. In the extreme case where the number of gradient approximation steps for

forward differences (m) is set to 1, the approximated gradient is colinear to the random

direction sampled for the approximation, but always points in the direction that helps max-

imize the loss (i.e. its projection onto the true gradient is positive). The cosine similarity

with the true gradient is, thus, very small. To validate this effect, we additionally exper-

iment with m = 1 where the approximate gradient was randomly flipped to the wrong

direction with half probability. As hypothesized, the student accuracy did not improve be-

yond 20% in our experiments on CIFAR10. This suggests that computing gradients that

are extremely inaccurate makes it possible to train the student as long as these gradients

are in the correct direction.

2.6.3 Impact of Logits Correction

A model extraction attack should be applicable to the nature of predictions offered by

MLaaS APIs. Most APIs provide per-class probability distribution rather than the true

logits, since probabilities are more easily interpreted by the end user. To perform model

extraction successfully we thus need to recover the logits from the victim’s prediction

24



probabilities. We show that is is possible to do so and recover approximate logits whose

Mean Average Error (MAE) with the true logits is low, on three different victim architec-

ture.

The MAE reported in Table 2.3 are negligible compared to true logits which take

values in the order of magnitude of 1. Therefore, the adversary can use these approximate

logits in lieu of the true logits. In comparison, approximating true logits with plain log-

probabilities resulted in a MAE in the order of magnitude of the true logits themselves.

Using the log-probabilities with such a large error makes the student training harder—it

did not yield accuracy above 75%.

This method is effective because the mean of the true logits is nearly 0 (see Table 2.3).

Therefore, subtracting the mean from the log-probabilities is equivalent to subtracting the

additive constant C(x) itself.

2.7 Summary

In this chapter, we demonstrate that data-free model extraction is not only practical but

also yields accurate copies of the victim model. This means that model extraction attacks

are a credible threat to the intellectual property of models released intentionally or not

to the public, even when no data is available. By leveraging a well-chosen loss, i.e. the

`1 loss, we achieved higher accuracy than concurrent work [KPQ20]. As a side-product

of this attack, we proposed an accurate method to recover logits out of the probability

vector.
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Chapter 3

Confidential Deep Learning

In this chapter, we characterize two bottlenecks that impact TEE performance and con-

sider methods to address them. For the page thrashing bottleneck described in Chap-

ter 3.5, we propose a data partitioning scheme, y-plane partitioning, that allows for ef-

ficient computation of convolutional layers in TEEs with as little as 28MB of secure

memory. Additionally, in Chapter 3.6, we identify a previously unexplored performance

bottleneck, the decryption bottleneck, that arises from parameter decryption and propose

a mitigation strategy based on compression and quantization. We used SGX-based TEEs

on Microsoft Azure cloud servers [Gor18] to measure the impact of these bottlenecks

and evaluate the proposed solutions. For the most extreme case (shown in Table 3.1),

the bottlenecks increased model latency to 26X over the unmodified baseline, while the

proposed optimizations reduced model latency from 26X to 1.09X.

The optimizations proposed in this study significantly reduce the per-layer memory

footprint for a model, which is a limiting factor for prior work such as Vessels [KKR+20].

Further, we demonstrate that the proposed y-plane partitioning scheme offers compli-

mentary design tradeoffs, with different strengths and weaknesses, to channel partition-

ing [LLP+19]. Our evaluation suggests that a combination of y-plane and channel parti-
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Inside TEE

Outside TEE Optimized Unmodified
(s) (s) (s)

28MB+1vCPU 3.174 3.468 (1.09X) 84.639 (26.73X)

56MB+2vCPU 1.858 2.430 (1.31X) 28.599 (15.39X)

112MB+4vCPU 1.112 1.868 (1.68X) 11.256 (10.12X)

168MB+8vCPU 0.808 1.667 (2.06X) 4.377 (05.42X)

Table 3.1: Model Latency of VGG-16. The “Optimized” column records the latency improve-
ments after applying the optimizations proposed in Chapters 3.5 and 3.6. Each row represents an
SGX enclave configuration; for example, 28MB+1vCPU means the enclave has 28MB of secure
memory and 1 virtual CPU core. Numbers are averaged over 30 runs.

tioning provides the smallest memory footprint for convolutional layers. The choice of

scheme depends on the size of the layer’s output versus the size of the weights. Finally,

reducing memory footprint improves model latency and allows for greater concurrency,

allowing more TEEs to coexist on the same system [KKR+20]. We leave an exploration

of model concurrency for future work.

In summary, we make the following contributions:

• the introduction of a novel y-plane partitioning scheme that complements channel

partitioning, alleviating the page thrashing bottleneck and reducing the memory

footprint of convolution layers;

• a characterization of the previously unexplored decryption bottleneck in fully-connected

layers;

• an evaluation of quantization and compression as a means to address the decryption

bottleneck and reduce the memory footprint of fully-connected layers.

3.1 Background

Trusted Execution Environments. While the exact capabilities of TEE implementations
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vary, some of the more common security features include (i) isolation, i.e., confidentiality

and integrity of the code and data located inside the TEE, and (ii) remote attestation, the

ability to verify the state of the TEE remotely. These properties are why recent works

have explored TEEs as a means to protect the confidentiality of both user [LLP+19] and

model [KKR+20] data when running deep learning inference on untrusted hardware.

An SGX enclave is a TEE implementation provided by Intel’s software guard ex-

tensions (SGX) [SGX15]. SGX enclaves include an area of secure memory, called the

processor reserved memory (PRM), which is isolated from the rest of the system. This

secure memory is only accessible from code within the enclave. The secure memory size

is usually small relative to the rest of the system; typically, far less than what deep learn-

ing models require for inference. For example, the enclaves used for this study offered

between 28MB and 168MB of memory, whereas VGG-16 [SZ14] requires over 1GB of

memory. To support programs with higher memory requirements, SGX provides pag-

ing mechanisms to encrypt and swap memory pages between secure and main memory.

When code running inside the enclave attempts to access a virtual memory address on a

page that is not currently in the enclave, a page fault is raised. SGX transparently ser-

vices this page fault: evicting an older page and transferring, decrypting, and checking

the requested page’s integrity. We refer to this as secure paging.

Convolutional Neural Networks. Convolutional neural networks (CNNs) are a type

of deep neural network that contain neurons organized into layers, including the epony-

mous convolutional layers. CNNs are commonly used for vision tasks but are garnishing

attention in other domains. The process of using a CNN model for classification is re-

ferred to as inference or model execution and the time taken to perform this inference is

called model latency.

Layer execution refers to the process of transforming the inputs (i.e., the output of the

previous layer) and parameters (e.g., weights) into the outputs for an individual layer. The
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precise computation performed depends on the layer’s type. We collectively refer to the

model’s static parameters (e.g., weights) and any values calculated at runtime as model

data.

Broadly, CNNs use three different types of hidden layers: fully-connected, convolu-

tional, and pooling layers. The inputs and outputs of convolutional and pooling layers are

3D arrays which resemble stacks of 2D images called channels (e.g. the RGB channels

of an image). In fully-connected layers, the inputs and outputs are simple 1D vectors.

3.2 Related Work

Deep Learning and Trusted Execution Environments. In Vessels [KKR+20], Kim et

al. optimize the memory usage of neural networks in TEEs by analyzing the dependency

graph of the model’s layers and then allocating a memory pool in which only the required

data is stored at any given time. The rationale is that the sequential nature of neural net-

works’ architecture allows reusing most memory buffers, avoiding unnecessary paging.

Furthermore, as all of the computations are done in a pre-allocated memory area, a single

machine can host multiple enclaves to compute different models concurrently. As long as

the different enclaves do not fill up the secure memory, the contention is minimized. The

limiting factor for such a system is the size of the memory pool, which relies primarily on

the size of the largest layers.

Partitioning is one mechanism to reduce the per-layer memory requirements. For ex-

ample, we propose a convolution-layer partitioning scheme, y-plane partitioning, in Chap-

ter 3.5. Another example is Occlumency’s channel partitioning. Occlumency [LLP+19]

is an inference framework implemented on top of SGX that uses channel partitioning

to divide the computation and memory requirements of convolutional layers. We com-

pare Occlumency’s channel partitioning scheme to y-plane partitioning and explain why
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a combination of both schemes provides the best performance in Chapter 3.5.4.

Grover et al. proposed Privado [TGS+18], a system designed to remove any input-

dependent memory accesses, thereby preventing information leakage from the TEE. Chi-

ron [HSS+18] uses SGX enclaves to train machine learning models, protecting the confi-

dentiality of the user’s training data, the model’s architecture, and the training procedure.

Neither work attempts to address the performance challenges described in this paper.

Encryption for Deep Learning. Cryptographic techniques offer an alternative to

trusted execution environments for maintaining user privacy [GBDL+16,MLS+20]. These

techniques rely on homomorphic encryption to process encrypted data on a server. Such

systems usually have high inference latencies, which they make up for with high through-

put. Thus, these systems are more appropriate for processing large batches of input

data. Further, existing cryptographic systems like CryptoNets [GBDL+16] do not pro-

tect model weights from disclosure—protecting the model confidentiality in Cryptonets

would significantly degrade performance.

3.3 Threat model

Our work focuses on performance rather than security when running a deep learning

model in a Trusted Execution Environment. For context we describe the thread model of

TEE model confidentiality:

The model owner is concerned with protecting the intellectual property of their trained

deep learning model. The hardware provider supplies the system on which the trusted

execution environment is created. For example, in the case of cloud-based inference, the

hardware provider is the company that maintains the cloud infrastructure. We assume the

TEE supports secure paging.

The model owner is concerned that the hardware provider will attempt to steal model
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data during execution. Further, as the hardware provider may have control over the sys-

tem’s operating system, the model owner must assume that a malicious hardware provider

will succeed if that data is ever placed unencrypted in memory accessible outside of the

TEE.

3.4 Methodology

We conducted our experiments on virtual machines provided by Microsoft’s Azure cloud

computing infrastructure. The four tested enclave configurations represent all of the con-

figurations offered by Microsoft Azure at the time of writing. We refer to each VM using

its enclave size and number of virtual CPUs; for example, 28MB+1vCPU refers the VM

configuration with 28MB of secure memory and 1 virtual CPU. All configurations ran

Ubuntu 18.04 and used an Intel Xeon E-2288G CPU. Unless otherwise specified, the

number of execution threads for each system was equal to the number of virtual CPUs—

this is why the baseline model latency varies, for example.

Our evaluation methodology emphasizes the per-layer performance of convolutional

neural networks (CNNs). Focusing on individual layers offers two distinct benefits. First,

it allows us to examine each of the components in isolation. Second, it helps us deter-

mine the performance implications for a variety of CNN architectures. For example, we

observed that the performance benefits offered by quantization and compression for the

large fully-connected layers in VGG-16 directly translated to performance benefits for the

large fully-connected layer in AlexNet—though we elide the AlexNet numbers for space.

Consequently, we focus primarily on the VGG architecture as VGG models contain a va-

riety of fully-connected and convolutional layers that range in size, shape, and memory

requirements.

We use Darknet as the baseline inference framework due to its portability. In par-
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ticular, Darknet uses C and lacks external dependencies, making it possible to port the

framework to SGX with relatively minor changes. In contrast, PyTorch is a more popular

framework, but moving model execution entirely into the TEE would require significant

engineering efforts.

3.5 The Page Thrashing Bottleneck

The mismatch between enclave size and convolutional-layer memory requirements man-

ifests as inefficient paging patterns during model inference, i.e., a page thrashing bot-

tleneck. In this section, we characterize this phenomenon. We then propose y-plane

partitioning as a means to mitigate this bottleneck. We compare y-plane partitioning to a

prior scheme and argue that the combination offers the best latency and smallest memory

footprint.

3.5.1 Characterization

As observed by Lee et al. [LLP+19], the challenge for convolutional layers is that the

memory access pattern during execution leads to page thrashing, i.e., the constant transfer

of pages into and out of the TEE.1 Every transfer between secure and main memory adds

significant overhead.

Darknet—as many usual deep learning frameworks—uses the im2col transformation

to speed up convolutional layer execution. This transformation expands the 3D input array

into a large 2D matrix and organizes the weights into a different 2D matrix. These trans-

formations allow the convolution operations to be computed using a large matrix-matrix

multiplication. They thus benefit from highly optimized general matrix to matrix mul-

tiplication (GEMM) functions provided by BLAS libraries (e.g. OpenBLAS [XQC12]).
1Denning [Den68] defines thrashing as “excessive overhead and severe performance degradation or

collapse caused by too much paging.”
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This method’s inherent tradeoff is that the im2col transformation duplicates the inputs,

resulting in a transformed im2col matrix that is significantly larger than the original input

array.

The above scheme has unintended consequences when used naively in the TEE. First,

im2col’s expansion of the input array—a factor of 9 in VGG-16—causes many memory

pages to be evicted from the TEE only to be brought back into the TEE during the matrix-

matrix multiplication. Second, as the im2col matrix cannot fit entirely in TEE memory,

the pattern of memory accesses to this matrix has important performance implications.

For example, in Darknet the output matrix is computed row by row, resulting in an un-

favorable memory access pattern that triggers cascading evictions and page faults. In

particular, computing one row of the output requires a lookup of the entire transformed

im2col matrix, and this lookup process is repeated for all rows of the output.

In our experiments with Darknet and VGG-16, we observed that convolutional layers

cause more page evictions, by multiple orders of magnitude, when run in a 28MB enclave

versus the 168MB enclave. Layer 8 triggers 1.8 million page evictions in the 28MB

enclave, but only 1,700 in the 168MB enclave.

3.5.2 Partitioning

Partitioning addresses the thrashing bottleneck by applying the im2col transformation to

a subset of the input array. The subset, i.e., partition, can be processed efficiently using

the limited secure memory of the TEE.

We evaluate two partitioning schemes: y-plane partitioning and channel partitioning.

The former is a contribution of this work, and the latter was previously used as part of

Occlumency [LLP+19]. While channel partitioning splits the input by channels, orthogo-

nal to the depth direction, y-plane partitioning uses planes parallel to the depth direction;

Figure 3.1 provides a visual representation of y-plane partitioning.
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Figure 3.1: Illustration of Y-Plane Partitioning. A 5x5x6 input is convolved with a
3x3x6 kernel. This figure highlights the computation of 1 output value. Three input
y-planes are required to compute one output y-plane.

s

3x3x1 kernel

Input Output

contribution

Figure 3.2: Illustration of Channel Partitioning. This figure highlights the contribution
of 1 input channel to 1 value on each output channel. Each input channel contributes to
the entire output.

34



28
M

B
+1

vC
P

U
56

M
B

+2
vC

P
U

11
2M

B
+4

vC
P

U
16

8M
B

+8
vC

P
U

La
ye

r
In

pu
t

La
te

nc
y

E
vi

ct
io

ns
La

te
nc

y
E

vi
ct

io
ns

La
te

nc
y

E
vi

ct
io

ns
La

te
nc

y
E

vi
ct

io
ns

(M
B

)
(s

)
(#

)
(s

)
(#

)
(s

)
(#

)
(s

)
(#

)

O
ut

si
de

TE
E

2
12

3
0.

54
7

-
0.

34
0

-
0.

21
9

-
0.

16
8

-
5

61
0.

45
5

-
0.

27
4

-
0.

15
2

-
0.

10
6

-
8

31
0.

41
6

-
0.

23
7

-
0.

12
7

-
0.

08
5

-
P

ar
tit

io
ni

ng
in

TE
E

2
12

3
0.

39
9

8,
27

0
0.

22
3

3,
50

3
0.

16
2

3,
25

1
0.

15
3

3,
18

4
5

61
0.

29
6

1,
99

9
0.

17
7

1,
71

6
0.

12
0

1,
71

8
0.

10
1

1,
71

2
8

31
0.

29
2

1,
37

4
0.

17
2

1,
36

4
0.

10
2

1,
36

2
0.

08
4

1,
36

0
U

nm
od

ifi
ed

in
TE

E
2

12
3

17
.8

99
1,

85
9,

81
5

10
.9

89
1,

88
1,

01
7

6.
15

3
1,

85
8,

25
9

0.
74

6
30

,2
86

5
61

17
.6

64
1,

83
8,

56
3

10
.6

51
1,

84
8,

77
2

0.
68

2
8,

79
9

0.
38

1
1,

72
9

8
31

17
.5

56
1,

82
7,

40
9

1.
12

1
4,

90
9

0.
53

8
1,

36
1

0.
32

3
1,

70
0

Ta
bl

e
3.

2:
L

at
en

cy
an

d
Pa

ge
E

vi
ct

io
ns

fo
r

C
on

vo
lu

tio
n

L
ay

er
su

si
ng

Y-
pl

an
e

Pa
rt

iti
on

in
g.

O
nl

y
th

e
th

re
e

co
nv

ol
ut

io
na

ll
ay

er
s

w
ith

th
e

la
rg

es
ti

np
ut

s
ar

e
sh

ow
n.

In
pu

ts
iz

e
w

as
m

ea
su

re
d

af
te

rt
he

im
2c

ol
tr

an
sf

or
m

at
io

n.



At a high level, both schemes first split the input into partitions and compute the

contribution of that partition to the output by (i) applying im2col on each partition, (ii)

computing a matrix-matrix multiplication with the corresponding subset of the weight

matrix, and (iii) adding the result to the output buffer. Y-plane and channel partitioning

offer different design tradeoffs, with complementary strengths and weaknesses. In partic-

ular, we find that y-plane partitioning is more memory-efficient when the layer output is

large, while channel partitioning is better when the weight matrix is large.

Y-Plane Partitioning. As illustrated in Figure 3.1, y-planes are the concatenation

of one row from each channel of a 3D array. For this scheme, a partition is a group of

contiguous y-planes; both the layer’s inputs and outputs are logically divided into y-plane

partitions. Each output y-plane is computed from a small and contiguous subset of the

input y-planes. The convolution kernel size and stride determine the relationship between

input and output y-planes.

Each round of computation involves three elements: (i) an output partition composed

of contiguous y-planes, (ii) the corresponding subset of input y-planes, and (iii) the entire

weight array. This repeated access to the entire weight array makes the weights size the

limiting factor of y-plane partitioning.

Channel Partitioning. Channel partitioning, illustrated in Figure 3.2, divides the

input into partitions of one or more channels [LLP+19], using a partition of the weights

to calculate each contribution to the output. Note that the output is not partitioned and

needs to be accessed during every round of computation to add the input-weight partition

pairs’ contribution. Thus, the output size is the limiting factor.

In practice, deep neural networks contain many convolutional layers, and the output

and weight sizes of each layer vary. This observation, along with the aforementioned

differences between y-plane and channel partitioning, suggests that a combination could

yield the best results. Such a scheme would use the best partitioning scheme for the given

36



layer. Further, the cost of switching from y-plane to channel partitioning (and vice versa)

is negligible. We explore this idea in Chapter 3.5.4.

3.5.3 Performance of Y-plane Partitioning

Table 3.2 illustrates the page thrashing bottleneck in convolutional layers, showing the

impact of enclave size on latency and page evictions for the unmodified baseline running

outside of the TEE, inside of the TEE, and inside of the TEE with y-plane partitioning.

We make several observations that are consistent with prior work [LLP+19].

First, with y-plane partitioning, the convolutional layer latency decreased significantly

and remained stable for all secure memory sizes. Second, page thrashing in Darknet

was triggered when the size of the im2col-transformed input exceeded the enclave size—

as measured by the drastic difference in page evictions. For example, layer 2, with its

123MB input, saw approximately 1.8 million page evictions for all three enclaves with

less than 123MB of secure memory, but only 30 thousand evictions for the enclave with

168MB of memory.

Third, Darknet’s per-layer latency varied dramatically, ranging from more than 17

seconds when thrashing occurred and less than 1 second when thrashing did not occur.

As the total number of floating point operations remained constant, this difference resulted

from thrashing.

3.5.4 Combining Y-Plane and Channel Partitioning

Different factors limit Y-Plane and Channel partitioning. Below we demonstrate those

differences using a model with layer sizes that far exceed the available secure memory.

We show that a combination of y-plane and channel partitioning allows us to execute this

model without thrashing, whereas either scheme would fail if used in isolation.
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Y-Plane Channel

Weights Output Latency Evictions Latency Evictions
(MB) (MB) (s) (#) (s) (#)

1 0.01 49.44 0.544 48,883 1.387 123,145
2 0.14 49.44 1.877 62,964 21.552 1,809,386
4 0.28 24.72 0.891 22,001 9.216 868,540
5 0.56 24.72 1.638 29,444 18.204 1,716,377
7 1.13 12.47 0.770 5,310 1.205 5,301
8 2.25 12.47 1.542 10,283 2.392 7,680

10 4.50 1.64 0.288 1,606 0.166 1,579
11 9.00 1.64 0.583 2,916 0.330 2,727
13 9.00 0.44 0.239 2,434 0.107 2,420
14 9.00 0.44 0.237 2,419 0.107 2,422
16 17.58 0.06 0.112 4,543 0.066 4,602
17 34.33 0.06 0.467 35,689 0.126 8,901
18 68.66 0.12 0.925 70,979 0.252 17,885
19 68.66 0.06 0.925 70,878 0.253 17,762

Table 3.3: Per-Layer Latency and Page Evictions for VGG-Large.

Methodology. To scale up the model, we preserved most layer parameters (stride,

padding, etc.), types, structure, and order of VGG-16. We only scale up two parameters:

(i) the input resolution, which has an impact on the input and output size in all the layers,

and (ii) the number of kernels in the first layer, which impacts the inputs, outputs, and

weights size in all the layers. We chose an input resolution of 450 × 450 and 64 kernels

in the first layer, so that some layers have either their output or weights larger than the

enclave size. We call this model VGG-Large.

Results. Table 3.3 shows the per-layer page evictions and inference latency for y-

plane partitioning and channel partitioning. We make four observations of these results.

First, when the output is large compared to the secure memory size, as is the case in the

first few layers, channel partitioning will start thrashing. In contrast, y-plane partitioning

divides the output and, consequently, saw up to 58X fewer page evictions than channel

partitioning.
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Second, in the last few layers the weights are larger than secure memory, and y-

plane partitioning shows up to 4.0X more page evictions than channel partitioning. This

behavior is expected as y-plane partitioning does not divide the weights, but channel

partitioning does.

Third, each scheme out-performed the other for a subset of the layers. In other words,

using y-plane and channel partitioning in conjunction allows for efficient computations

for models that neither y-plane nor channel partitioning could handle without page thrash-

ing. To completely avoid page thrashing with VGG-Large, an enclave of at least 68 MB

(resp. 50 MB) would be needed to run this model with y-plane-only (resp. channel-

only) partitioning; while the hybrid scheme can run it with just 28MB. This experiment

also shows that a large model can be ran with a significantly reduced memory footprint;

even if it can fit in memory. This result is useful in practice as systems that provide

concurrency for secure deep learning inference, like Vessels [KKR+20], are limited by

the memory footprint of individual models. Therefore, this hybrid scheme is likely to

allow for greater concurrency, enabling more models to share the available secure mem-

ory efficiently. Of course, our observations are incomplete, and it is essential to consider

other factors, such as the specifics of the target model and other potential sources of

concurrency-based contention. We leave such explorations for future work.

Lastly, for the layers that can fit both the output and weights in secure memory, chan-

nel and y-plane partitioning are comparable in terms of latency and number of page evic-

tions. Further experiments showed that, for these intermediate layers, the slight differ-

ence between both schemes is due to the GEMM (matrix multiplication) implementation.

When using standard GEMM libraries such as OpenBLAS [XQC12], this difference dis-

appeared. Thus, we do not claim that one scheme is supperior to the other for layers that

fit in secure memory.
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Compression Ratio

Accuracy Base. Quant. 32:10 32:5 32:4 32:3 32:2

Top-1 (%) 70.4 70.4 70.4 70.2 68.1 68.5 26.7

Top-5 (%) 89.8 89.8 89.8 89.8 89.1 89.0 53.6

Table 3.4: Model Accuracy with Quantization and Compression. A compression ratio
of 32:10 means that a buffer of 32 bytes is compressed into 10 bytes. We omit ratios from
32:9 to 32:6 as they produced the same results as ratio 32:10.

3.6 The Decryption Bottleneck

Partitioning alleviates the page thrashing bottleneck. Without thrashing, the transfer of

model parameters into the enclave becomes the dominating performance factor due to

the overhead of page decryption and integrity checking. This issue, which we call the de-

cryption bottleneck, is especially problematic for fully-connected layers with large weight

matrices. We explore quantization and compression as possible solutions, reducing the

number of pages that need to be transferred.

3.6.1 Characterization

For ease of exposition, we refer to the collection of components that handle secure paging—

i.e., the eviction, encryption/decryption, and integrity checking of pages—as the decryp-

tion link.

In fully-connected layers, loading the weights into secure memory is expensive. For

example, in our experiments, we observed that the first fully-connected layer of VGG-16

(i.e., layer 19) took 0.028 seconds to execute with Darknet normally, but 1.131 seconds

(∼40X) to execute with Darknet when run inside a trusted execution environment. Our

experiments show that the difference in execution time was due entirely to the additional

1.102 seconds needed for loading in the weights from main memory—the 0.028 seconds

needed for the layer computations was trivial by comparison.
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Assuming we cannot modify the hardware to improve secure paging performance,

and because the decryption link is already saturated, we turn toward techniques to reduce

the amount of data that must be transferred over that link. Specifically, we analyze the

use of two techniques, quantization and compression, to reduce the size of the weights

for fully-connected layers. Further, as these techniques require additional computation,

multi-threading can be used to keep the decryption link saturated.

Quantization is the process of converting the set of possible weight values (e.g., 32-

bit floats) into a smaller discrete set of values (e.g., 16-bit floats). Some information is

lost in this conversion, potentially affecting the model’s accuracy, but the total memory

requirements are halved. The weights are stored quantized and are converted back to 32-

bit floats once decrypted. The cost of converting the values back to 32-bits floats was

negligible in our experiments.

Similarly, compression also reduces data transfer requirements. We only consider

lossy compression here as the compression factor for lossless compression was too small

to be useful in our experiments. The amount of information lost is directly related to the

compression factor, which can be tuned for many compression algorithms. The compu-

tational cost of decompression is higher than quantization, but the workload can be split

more easily between virtual CPUs.

3.6.2 Performance of Quantization and Compression

Table 3.5 shows the execution latency for fully-connected layers. For the 28MB+1vCPU

and 56MB+2vCPU enclave configurations, we observe roughly half as many page evic-

tions as unmodified Darknet, and execution took roughly half of the time. This perfor-

mance difference is due to the quantization scheme, which halves the size of the weight

matrix. In separate experiments, we observed that adding more than two threads failed to

yield further improvement for quantization, suggesting that two threads are sufficient to
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saturate the decryption link.

Compression benefits more than quantization from the larger number of virtual CPUs

offered by the 112MB+4vCPU and 168MB+8vCPU configurations. When using com-

pression, the number of page evictions decreased to roughly 16% of unmodified Darknet.

Once the decryption link saturated with 6 threads, the compression scheme proved more

efficient than quantization in these enclaves.

Lastly, we observe no drop in accuracy from quantization, as shown in Table 3.4. Re-

sults will vary by model, and the impact of quantization on accuracy is an active area

of research in the AI community [Kri18, ZYG+17, DR95]. More aggressive quantiza-

tion strategies could yield even higher performance. For compression in all but the most

extreme compression rate, the top-1 accuracy was within 2% of baseline and the top-5

accuracy was within 0.8%.

3.7 Summary

In summary, we studied the use of partitioning, quantization, and compression to improve

the memory efficiency of deep learning inference in trusted execution environments. Par-

titioning addresses the page thrashing bottleneck, and a combination of the proposed y-

plane partitioning scheme and channel partitioning allows for the smallest memory foot-

print. Quantization and compression reduce the impact of the decryption bottleneck with

little impact on model accuracy.
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Chapter 4

Conclusions

We proposed a data-free model extraction attack that (i) does not require any prior data nor

knowledge about the training data distribution, and (ii) is able to extract a student model

that achieves high accuracy on CIFAR10 and SVHN. This attack was made possible by

using a well-chosen loss function and optimizer, as well as a method for approximating

the logits out of the probability vector.

This work has few limitations such as the high query budget of the attack. However,

additional efforts should lower this query budget and we leave such optimizations for

future work. More importantly, the cost of hyperparameter tuning is not included in the

query budget and can be quite high due to the sensitivity of the attack to the choice of

hyperparameters. We leave a detailed study of hyperparameter tuning for future work.

The second part of this study takes place in a context of remote deep learning inference

on untrusted hardware, equiped with a Trusted Execution Environment (TEE). By analyz-

ing two main performance bottleneck for deep learning inference in a TEE, we proposed

two mitigations based on partitioning, quantization, and compression. While partitioning

was already proposed in previous work as a solution to the page thrashing bottleneck,

the new y-plane partitioning described in this works complementarily with pre-existing
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channel partitioning. By using both partitioning methods together, the memory footprint

of individual models is reduced. Such optimization is useful for (i) running large deep

learning models in very small TEEs or (ii) allowing more models to be computed with

the same amount of memory in a concurrent execution setting.

The primary limitation of Chapter 3 is the limited number of models we consider.

While convolution and fully-connected are common to a wide range of deep learning

models, the benefits of the aforementioned optimizations depend on model specifics. For

example, partitioning will not reduce the inference latency for the layers that already

fit in memory. Even so, partitioning allows for a configurable memory footprint. This

configurability is especially important in the context of concurrent inference, i.e., multiple

enclaves running on a single server. We believe a full study of partitioning and model

concurrency is an interesting direction for future work.

It is also important to consider other hardware capabilities when configuring the op-

timizations, such as secure memory size and decryption speed. For example, one would

need to adjust the size of each partition to ensure they fit within secure memory. In the

current implementation, a partition can be as small as a single y-plane, which for VGG-

16, is at most a few hundred kilobytes. As another example, one might also want to tune

the compression and quantization factors based on the decryption speed and available

CPU resources.
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Appendix A

Appendix

A.1 How Hard is it to Find a Surrogate Dataset?

To motivate the need for data-free approaches to model extraction, we show here that an

adversary relying on a surrogate dataset must ensure that its distribution is close to the one

of the victim’s training set. Otherwise, model extraction will return a poor approximation

of the victim.

Consider a victim machine learning model, V , trained on a proprietary dataset, DV .

The victim model reveals its predictions through either a prediction API (as is common

in MLaaS) or through the deployment of the model on devices accessible to adversaries.

The adversary, A, attempts to steal V by querying it with a surrogate dataset, DS . This

surrogate dataset is assumed to be publicly available or easier to access because it does

not need to be labeled.

We now perform a systematic study of the features that characterize the closeness of

DS when compared to DV . Let the private and surrogate datasets DV and DS be charac-

terized by D = {X , P (X),Y , P (Y |X)} [Rud17]. The private and surrogate datasets can

vary in three ways, which we will illustrate in the following with object recognition tasks:
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Victim CIFAR10 CIFAR100 SVHN MNIST SVHNskew Random

CIFAR10 95.5% 95.2% 93.5% 66.6% 37.2% - 10.0%
SVHN 96.2% 96.0% - 96.3% 89.5% 96.1% 84.1%

Table A.1: Model Extraction accuracy across various surrogate datasets. Victim models
were trained on the CIFAR10 and SVHN datasets, and the source accuracies are reported
under the heading ‘Victim’

1. A: (XV 6= XS). When the inputs of DV and DS belong to different feature spaces

(i.e. domain). In computer vision, for example, this can be a scenario wherein

the input data (e.g., images, videos) for the datasets contain a different number of

channels or pixels.

2. B: (P (XV) 6= P (XS)). While the input domain of both the surrogate and private

datasets is the same, their marginal probability distribution is different. For exam-

ple, when the semantic nature is different for the two datasets (images of animals,

digits, etc).

3. C: (P (YV |XV) 6= P (YS |XS)). We consider a setting where the semantic distribu-

tion (P (X)) is the same, but the class-conditional probability distributions of the

victim and surrogate training sets are different, e.g. when the two datasets have

class imbalance.

A.1.1 Optimization Problem

The logit distribution of the victim network can often have a strong affinity toward the

true label. To address this issue, Hinton et al. suggested scaling the logits to make the

probability distributions more informative [HVD15].

Vi(x) =
exp (vi(x)/τ)∑
j exp (vj(x)/τ)

; L = −τ 2KL (V(x),S(x))
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where τ > 1 is referred to as the temperature scaling parameter. In the knowledge distil-

lation literature, a combination of both the cross entropy and knowledge distillation loss

are used to query the teacher [CH19]. However, model extraction we rely only on the

KL divergence loss because the queries are made from a surrogate dataset which may not

have any semantic binding to the true class.

A.1.2 Experimental Setting

Hyperparameters To search over a meaningful hyperparameter space for the temper-

ature co-efficient τ , we refer to prior work in knowledge distillation such as [CH19,

HVD15, LZG18] to confine the search over τ ∈ {1, 3, 5, 10}. We used the SGD opti-

mizer, and train the CIFAR10 students for 100 epochs, while the SVHN students were

trained for 50 epochs. We experimented with two different learning schedules: (1) cyclic

learning rate [Smi17]; and (2) step-decay learning rate. For step-decay, we reduced the

learning rate by a factor of 0.2 at 30%, 60%, and 80% of the training process. In both

cases, the maximum learning rate was set to 0.1.

Experimental validation. To illustrate our argument, we next detail the relation be-

tween a task-specific surrogate dataset and the accuracy of state-of-the-art model extrac-

tion techniques. The victim models under attack are ResNet-18-8x models, their accu-

racy is reported in Table A.1. Further details on the victim models training are provided

in Chapter 2.5). We find that querying from the original dataset yields the most query-

efficient and accurate extraction results. This is not surprising given that this setup corre-

sponds to the original knowledge distillation setting. Our observations are made on both

CIFAR10 and SVHN:

• CIFAR10. We benchmarked model extraction on 4 surrogate datasets, each re-

flecting a different property detailed above: CIFAR10 [Kri09], CIFAR100 [Kri09]
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(BC), SVHN [NWC+11] (AB) and MNIST [LBBH98] (AB). To ensure a fair com-

parison, we bound the maximum number of distinct samples queried by 50,000

while performing model extraction.

• SVHN. We evaluated model extraction by querying from SVHN, SVHNskew (C),

MNIST (A) and CIFAR10 (B) as surrogate datasets. Similar to the case for CI-

FAR10, we cap the maximum number of distinct samples queried to 50,000.

Finally, as a control for our experiments, we also studied the extraction accuracy of

the models when trained using totally random queries.

Dataset adaptation. The SVHN, CIFAR10, and CIFAR100 datasets contain 32 × 32

color images. To query networks trained on CIFAR10 and SVHN with images from the

MNIST dataset, which contains grayscale images of size 28× 28, we re-scaled the image

and repeated the same input across all three RGB channels. In case of random input

generation, we sample input tensors from a normal distribution with mean 0 and variance

1. Note that the teacher networks were trained on normalized datasets in the first place.

Finally, in case of SVHNskew, we supplied images from only the first 5 classes of the

dataset to skew the distribution of the modified dataset.

Results. We present the results for accuracy of extracted models across various sur-

rogate datasets for CIFAR10 and SVHN in Table A.1. Recall that both the CIFAR10

and CIFAR100 datasets are subsets from the same TinyImages [TFF08] dataset. We find

that the identical source distribution was extremely useful in making relevant queries to

the CIFAR10 teacher. The accuracy of the extracted model reached 93.5%, just below

the 95.5% accuracy of the teacher model. However, when we used the SVHN surrogate

dataset to query the CIFAR10 teacher, with a different source distribution, the model ex-

traction performance dropped remarkably, attaining a maximum of 66.6% across all of the
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hyperparameters tried. In the most extreme scenario when querying the CIFAR10 teacher

with MNIST–a dataset with disjoint feature space both in terms of number of pixels, and

number of channels)—model accuracy did not improve beyond 37.2%.

On the contrary, we notice that the victim trained on the SVHN dataset is much eas-

ier for the adversary to extract. Surprisingly, even when the victim is queried with com-

pletely random inputs, the extracted model attains an accuracy of over 84% on the original

SVHN test set. Further, nearly all surrogate datasets are able to achieve greater than 90%

accuracy on the test set. We hypothesize that this observation is linked to how the digit

classification task, at the root of SVHN, is a simpler task for neural networks to solve,

and the underlying representations (hence, not being as complex as for CIFAR10) can be

learnt even when queried over random inputs.

Given the current understanding of model extraction, we make two conclusions: (1)

the success of model extraction largely depends on the complexity of the task that the

victim model aims to solve; and (2) similarity to source domain is critical for extracting

machine learning models that solve complex tasks. We posit that it may be nearly as

expensive for the adversary to extract a CIFAR10 machine learning model with a good

surrogate dataset, as is training from scratch. A weaker or non-task specific dataset may

have lesser costs, but has high accuracy trade-offs.

A.2 Recovering logits from probabilities

The main difficulty with computing L`1 is that it requires access to V’s logits vi, but we

only have access to the probabilities of each class (i.e., after the softmax is applied to

the logits). In a first approximation, the logits can be recovered by computing the log-

probabilities but the resulting approximate logits are computed up to an additive constant

C(x) to which we don’t have access in a black-box setting. This additive constant is the
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same for all logits but is different from one image to another. Related works on adversarial

examples [BHLS18, CZS+17] use losses that are the difference of two logits, effectively

canceling out the additive constant. In our case, the logits need to be used individually

which makes the `1 loss more difficult to compute in our setting.

To overcome this issue, we propose to approximate the true logits of each image x in

two steps. First, compute the logarithm of the probability vector V (x).

ṽi(x) = logVi(x)= vi + C(x) (A.1)

Then, compute the approximate true logits v∗i (x) by subtracting the log-probability vector

with its own mean:

v∗i (x) = ṽi(x)− 1

K

K∑
j=1

ṽj(x)

= vi(x)− 1

K

K∑
j=1

vj(x) ≈ vi(x) (A.2)

The second equality holds because the mean of the log-probability vector ṽi(x) is equal

to the mean of the true victim logits vi(x) plus the mean of the additive constant (i.e. the

C(x) itself). By analyzing the mean values of the true logits from various pre-trained

models—which proves to be negligible in comparison to the logit values themselves, we

provide empirical evidence in Chapter 2.6.3 that this recovers a highly accurate approxi-

mation of the true logits v∗i (x).

A.3 Examples of Synthetic Images

Figure A.1 shows 4 images from the generator towards the end of the attack on CIFAR-10.

We do not observe any similarities with the images from the original training dataset.
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Figure A.1: Four synthetic images from the generator.

A.4 Hypothesis 1: Justification

A.4.1 Preliminary results

Lemma 1. If S(x) ∈ (0, 1)K is the softmax output of a differentiable function (e.g. a

neural network) on an input x and s is the corresponding logits vector, then the Jacobian

matrix J = ∂S
∂s

has an eigenvalue decomposition and all its eigenvalues are in the interval

[0, 1].
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Proof. By definition:

∀i ∈ {1 . . . K}, Si =
exp(si)∑K
k=1 exp(sk)

For some i, j ∈ {1 . . . K}, if i 6= j:

∂Si
∂sj

= − exp(sj)
exp(si)

(
∑K

k=1 exp(sk))
2

= −SiSj

if i = j:

∂Si
∂sj

=
exp(si)(

∑K
k=1 exp(sk))− exp(sj) exp(si)

(
∑K

k=1 exp(sk))
2

=
exp(si)∑K
k=1 exp(sk)

− exp(si)
2

(
∑K

k=1 exp(sk))2

= Si(1− Si)

Therefore, ∀x,

J =
∂S
∂s

=



S1(1− S1) −S1S2 . . . −S1SK

−S1S2 S2(1− S2) . . . −S2SK
...

...
...

−S1SK −S2SK . . . SK(1− SK)


The matrix J is real-valued symmetric, therefore it has an eigen-decomposition with

real eigenvalues. ∃λ1, λ2, . . . , λK ∈ R, X1, X2, . . . , XK 6= 0 such that:
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∀i ∈ {1 . . . K}, JXi = λiXi

Let us prove that all eigenvalues are in the interval [0, 1]. Suppose for a contradiction

that one eigenvalue λ is strictly negative. Let the associated eigenvector be:

X = [x1, x2, . . . , xK ]T

The i-th component of the vector JX is:

[JX]i = Sixi − Si
K∑
k=1

xkSk

= Sixi − Si〈X,S〉

where 〈·, ·〉 is the standard inner product.

Since X is an eigenvector we have,

JX = λX

So ∀ i,

Sixi − Si〈X,S〉 = λxi

xi(Si − λ) = Si〈X,S〉

Since X 6= 0, ∃ i0 such that xi0 6= 0. Furthermore, λ is strictly negative so:

xi0(Si0 − λ) = Si0〈X,S〉 6= 0

Therefore, the inner product on the right hand side is non-zero.
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In addition, λ < 0 implies that Si − λ > Si > 0 so ∀ i, xi and 〈X,S〉 have the same

sign. There are two cases left.

If 〈X,S〉 > 0, then ∀ i, xi > 0 and:

xi(Si − λ) > xiSi

Si〈X,S〉 > xiSi

By summing on all i we obtain:

K∑
i=1

Si〈X,S〉 >
K∑
i=1

xiSi

〈X,S〉
K∑
i=1

Si > 〈X,S〉

〈X,S〉 > 〈X,S〉

Which is an absurdity.

If 〈X,S〉 < 0, then ∀ i, xi < 0 and:

xi(Si − λ) < xiSi

Si〈X,S〉 < xiSi

The same summation and reasoning yields an absurdity. We just proved that all the

eigenvalues of J are non-negative.

Lastly, the trace of the Jacobian matrix tr(J) equals the sum of all eigenvalues. Com-
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puting the trace yields:

tr(J) =
K∑
i=1

λi =
K∑
i=1

Si(1− Si)

=
K∑
i=1

Si −
K∑
i=1

S2
i

= 1−
K∑
i=1

S2
i < 1

Since λi ≥ 0 and
∑K

i=1 λi < 1, all eigenvalues must be in the interval [0, 1], which

concludes the proof.

Lemma 2. In the same setting as for Lemma 1, if J is the Jacobian matrix ∂S
∂s

then for

any vector Z we have:

‖JZ‖ ≤ ‖Z‖

Proof. Let λ1, λ2, . . . , λK be the eigenvalues of J and X1, X2, . . . , XK be the associated

eigenvectors. We can decompose Z with the orthonormal eigenvector basis:

Z =
K∑
i=1

αiXi

Computing the product JZ yields:

JZ =
K∑
i=1

λiαiXi
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The norm of the product is:

‖JZ‖ = (JZ)T (JZ) =
K∑
i=1

λ2iα
2
i

≤
K∑
i=1

α2
i

because ∀ i, |λi| ≤ 1 (see Lemma 1). Since the eigenvector basis is orthonormal we have

‖JZ‖ ≤
K∑
i=1

α2
i = ‖Z‖

Lemma 3. Let S(x) and V(x) be the softmax output of two differentiable functions (e.g.

neural networks) on an input x, with respective logits s(x) and v(x). When S converges

to V , then ∂S
∂s

converges to ∂V
∂v

.

Proof. Recall that

∂S
∂s

=



S1(1− S1) −S1S2 . . . −S1SK

−S1S2 S2(1− S2) . . . −S2SK
...

...
...

−S1SK −S2SK . . . SK(1− SK)


If Vi(x)− Si(x) = εi(x), then:

Si(1− Si) = (Vi + εi)(1− Vi − εi)

= Vi(1− Vi) + εi(1− Vi)− ε2i

= Vi(1− Vi) + o(1)
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and

−SiSj = −(Vi + εi)(Vj + εj)

= −ViVj − Viεj − Vjεi − εiεj

= −ViVj + o(1)

Therefore, we can write:

∂S
∂s

=
∂V
∂v

+ ε̄(x)

where ε̄(x) converges to the null matrix as S converges to V . In other words we can

write:

∂S
∂s
≈
S→V

∂V
∂v

A.4.2 Justification of the hypothesis.

Hypothesis 1 states that for two differentiable functions with softmax output S and V , and

respective logits s and v, the gradients of the KL divergence loss LKL with respect to the

input should be small compared to the gradients of the `1 norm loss L`1 as S converges

to V . ∀x ∈ [−1, 1]d:

‖∇xLKL(x)‖ �
S→V
‖∇xL`1(x)‖
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Proof. First, we note that:

K∑
i=1

Si = 1

implies

K∑
i=1

∂Si
∂x

= 0

And the same holds for V because both are probability distributions.

Then we compute the gradients for both loss functions:

For the `1 norm loss:

∇xL`1(x) =
K∑
i=1

sign(vi − si)
(
∂vi
∂x
− ∂si
∂x

)
For the KL divergence loss:

∇xLKL(x) =
K∑
i=1

∂Vi
∂x

logVi + 1
∂Vi
∂x
− ∂Vi
∂x

logSi −
∂Si
∂x

Vi
Si

=
K∑
i=1

∂Vi
∂x

+
K∑
i=1

∂Vi
∂x

log
Vi
Si
− ∂Si
∂x

Vi
Si

=
K∑
i=1

∂Vi
∂x

log
Vi
Si
− ∂Si
∂x

Vi
Si

When S converges to V , we can write

Vi(x) = Si(x)(1 + δi(x))

where δi(x) →
S→V

0.
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Since log 1 + x ≈ x when x is close to 0 we can write:

∇xLKL(x) =
K∑
i=1

∂Vi
∂x

log
Vi
Si
− ∂Si
∂x

Vi
Si

≈
K∑
i=1

∂Vi
∂x

δi −
∂Si
∂x

(1 + δi)

≈
K∑
i=1

δi

(
∂Vi
∂x
− ∂Si
∂x

)
+

K∑
i=1

∂Si
∂x

≈
K∑
i=1

δi

(
∂Vi
∂x
− ∂Si
∂x

)

≈
K∑
i=1

δi
∂V
∂v

(
∂vi
∂x
− ∂si
∂x

)
(Lemma 3)

≈ ∂V
∂v

K∑
i=1

δi

(
∂vi
∂x
− ∂si
∂x

)

Using Lemma 2, the norm is upper bounded by:

‖∇xLKL(x)‖ ≤

∥∥∥∥∥
K∑
i=1

δi

(
∂vi
∂x
− ∂si
∂x

)∥∥∥∥∥ (A.3)

For the `1 norm, however, the norm is:

‖∇xL`1(x)‖ =

∥∥∥∥∥
K∑
i=1

sign(vi − si)
(
∂vi
∂x
− ∂si
∂x

)∥∥∥∥∥ (A.4)

From equation A.3, we can observe that each term is negligible compared to its coun-

terpart in equation A.4: for all i we have:
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∥∥∥∥δi(∂vi∂x
− ∂si
∂x

)∥∥∥∥ ≤ ε

∥∥∥∥(∂vi∂x
− ∂si
∂x

)∥∥∥∥

And also ∀i:

∥∥∥∥sign(vi − si)
(
∂vi
∂x
− ∂si
∂x

)∥∥∥∥ =

∥∥∥∥(∂vi∂x
− ∂si
∂x

)∥∥∥∥
Therefore, by summing these terms on the index i we can expect the KL divergence

gradient to be small in magnitude compared to those of the `1 norm. However, it does

not seem possible to prove this result rigorously without further assumptions on the data

distribution or the mode of convergence of S.
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