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Abstract

The fundamental principle behind item-based recommender systems is to compare

the similarity of an item to a ranked set of items. Our study explores the use of

such recommendation system to suggest feedback comments for open-ended student

answers in Intelligent Tutoring Systems. Several research works in the past have

contributed to the development of technologies and strategies to assess and grade

students’ work. The study in this paper aims to leverage Natural Language Process-

ing, Machine Learning, and Statistical Methods to build a feedback infrastructure to

help teachers in assessing their students’ open-ended answers. We investigate mul-

tiple approaches in determining the semantic similarity between two answers and

evaluate the quality of semantic relatedness using our own metric called Teacher

Agreement Score (TAS). It is often considered difficult task to assess open-ended

data such as natural language. To evaluate the quality of the system, we have built

a Software Infrastructure that enables running Randomized Control Trials on AS-

SISTments Platform to study the behavior by extracting information on the usage

and effectiveness of the developed system.



Acknowledgements

I would like to thank my advisor, Professor Neil T. Heffernan for the guidance

I received from him during the last two years. I would like to thank my mentor,

Anthony Botelho for his guidance over the Thesis work. His patience and attention

to details has been instrumental in making me a better researcher. I would like to

thank John Erickson for his support while working on the recommendation model of

the thesis. I also want to thank my thesis reader, Professor Yanhua Li, for reading

my thesis and giving useful feedback to make this thesis a success.



Contents

1 Introduction 1

1.1 Goal of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 ASSISTments Quick-Comments . . . . . . . . . . . . . . . . . . . . . 4

3 Feedback Recommendation 5

3.1 Sentence Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Sentence Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.1 Sentence-BERT . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.2 Universal Sentence Encoder . . . . . . . . . . . . . . . . . . . 8

3.4 Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Method I - Comparing Encoder-Distance Combinations . . . . . . . . 9

3.5.1 Finding Similar Answers . . . . . . . . . . . . . . . . . . . . . 9

3.5.2 Evaluation - Teacher Agreement Score . . . . . . . . . . . . . 10

3.5.3 Algorithm to compute TAS . . . . . . . . . . . . . . . . . . . 12

3.5.4 Experiment Analysis . . . . . . . . . . . . . . . . . . . . . . . 13

i



CONTENTS

3.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Method II - Ensemble model of Encoder-Distance Combinations . . . 16

3.6.1 Approach to Assemble Dataset . . . . . . . . . . . . . . . . . 16

3.6.2 Linear Regression Results . . . . . . . . . . . . . . . . . . . . 17

3.7 BERT-Canberra Model in ASSISTments . . . . . . . . . . . . . . . . 18

3.7.1 Current Implementation . . . . . . . . . . . . . . . . . . . . . 18

3.7.2 Pilot Observational Data Analysis . . . . . . . . . . . . . . . . 19

4 RCT Logging Infrastructure 21

4.1 Randomized Control Trials . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 QUICK-Comments RCT . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Database Design . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Randomizing User Conditions . . . . . . . . . . . . . . . . . . 25

4.3 BERT-Canberra-Wise Model . . . . . . . . . . . . . . . . . . . . . . . 27

5 Limitations and Future Work 28

6 Conclusion 29

7 References 30

ii



List of Figures

3.1 Dataset Collection sample . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Embedding representations in a 2D vector space . . . . . . . . . . . . 10

3.3 TAS calculation at answer-level . . . . . . . . . . . . . . . . . . . . . 11

3.4 Pseudo code to compute average TAS score . . . . . . . . . . . . . . 12

3.5 Ensemble of best approaches for Training Linear Regression . . . . . 16

3.6 ASSISTments Quick Comments with Sentence-BERT-Canberra . . . 18

4.1 Quick Comments RCT High-Level Design . . . . . . . . . . . . . . . 22

4.2 ER Diagram of RCT . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Randomization Sequence of Events . . . . . . . . . . . . . . . . . . . 26

4.4 Example of Wise suggestions . . . . . . . . . . . . . . . . . . . . . . . 27

iii



List of Tables

3.1 Encoder-Distance Comparison Report . . . . . . . . . . . . . . . . . . 14

3.2 Encoder-Distance Comparison Reports with Max Possible Score . . . 15

3.3 Number of times obtained TAS agreed with Teachers . . . . . . . . . 15

3.4 Linear Regression Results . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Encoder-Distance Comparison Reports with max possible score . . . 19

iv



Chapter 1

Introduction

Intelligent Tutoring Systems (ITS) leverage Artificial Intelligence and Cognitive

Science to provide learners personalized instructions to suit their specific require-

ments[1]. Several studies show Intelligent Tutoring Systems have been proven to

be beneficial in the advancement of student learning in the context of education[2].

The technology and research in computer-aided education are constantly evolving

to provide autonomous feedback and engage students in active learning.

While many intelligent systems do support immediate feedback, they mostly

involve question types such as multiple choice or fill-in-the-blanks or questions with

a finite set of answers. This lack or little support for descriptive answers in intelligent

systems necessitates the intervention of human teachers.

1.1 Goal of the Thesis

The goal of this study is to delve into one such research aspect and develop an

NLP model that auto-suggests feedback comments to student answers based on

item-based recommendation and then incorporate the model into ASSISTments’

QUICK-Comments feature. In this work, we provide a method to recommend feed-

1



CHAPTER 1. INTRODUCTION

back comments utilizing all the previously seen teacher comments for a given prob-

lem. The assumption that we make here is, if a student’s expertise on the subject

is at a certain level, then, other students at the same level of expertise, on the

same subject, in general, may have a similar understanding of the subject and are

likely to make similar mistakes or have similar misconceptions. Thus, paving a way

for recommendation systems to cluster a pool of similar answers and recommend

appropriate feedback comments.

We attempt to improve the relevancy of feedback comments by taking into ac-

count the syntactic and semantic similarity when comparing two answers and explore

new ways of formulating feedback comments. We also build infrastructure to sup-

port exploration beyond the scope of this thesis by enabling the system to apply

randomization policies to the suggested feedback comments and support logging

user actions.

1.2 Research Contributions

In this study, we make the following contributions towards NLP-based text recom-

mendation.

1. We formulate a method to recommend teacher comments to a new student

answer, by making use of historic feedback samples of a given problem.

2. We devise an evaluation metric that measures the recommendations proposed

by the model.

3. We build a software infrastructure to support running RCTs within the QUICK-

Comments system.
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Chapter 2

Background

2.1 Related Work

Prior research works have attempted to grade and provide feedback to open-ended

answers by majorly using a corpus-based approach, or by modeling a set of correct

answers using structured domain knowledge. C-Rater[4] uses predicate-argument

structure, pronominal reference, morphological analysis, and synonyms to provide

full or partial credit to an open-ended answer.

A link grammar[5] based approach uses the extraction of the keywords and then

identifies and extracts the relational expressions for that keyword, the model utilizes

the relational expressions to automatically evaluate student’s short answer with

respect to a modeled answer.

Earth Mover’s Distance Pooling over Siamese LSTMs for Automatic Short An-

swer Grading (ASAG) [6] provides a framework for grading open-ended student an-

swers. It utilizes an attention mechanism with Siamese bidirectional LSTM trained

onto a model and a student answer.

Google’s Smart Reply[7], provides an end-to-end framework for automatically

3



CHAPTER 2. BACKGROUND

generating short email responses. The LSTM model trained on tech support chat

corpus generates semantically diverse suggestions that can be used as complete email

responses.

2.2 ASSISTments Quick-Comments

ASSISTments hosts a platform for teachers to grade and provide feedback on stu-

dent assignments. The students solve assigned math problems, provide open-ended

explanations to their reasoning, and submit answers asynchronously. The teacher

then accesses the submission to grade and provide feedback. The system currently

can auto-grade the submitted answer by assigning a numerical grade ranging from

0-4. The system also suggests 3 hard-coded simple but useful feedback comments.

The teachers can pick one of the suggested comments or they can choose to write

their own. Our study explores ways to suggest problem-specific feedback comments

to a student answer. We utilize this platform to run our experiments and study the

behavior.
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Chapter 3

Feedback Recommendation

3.1 Sentence Similarity

The similarity between two sentences is determined by comparing both lexical and

semantic closeness of the sentences. One of the many ways to identify the similarity

between two documents is to take an average of the number of common characters

they share or compute a cosine distance between them. Methods such as TF-IDF,

Bag of Words, Word2Vec, and Glove pre-trained encoder do not take the word order

into account. The differences in the order of the words often change the meaning

behind it. It is vital to parse full text to capture the meaning of the student’s answer,

and hence, this study focuses on the syntactic and semantic similarity when making

teacher response recommendations. We explore pre-trained NLP sentence encoders

namely Sentence-BERT[8] and Universal Sentence Encoder (USE)[9] to transform

the student answers into sentence embeddings in a vector space.
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CHAPTER 3. FEEDBACK RECOMMENDATION

3.2 Dataset

Seventeen middle school mathematics teachers were recruited for the data collection

task. They used Open Educational Resources (OERs) in their classrooms to assign,

score, and provide feedback for open-response problems. The Dataset is a collection

of CSV files, each of which corresponds to a particular problem ID. Each problem is

graded by 1-4 teachers and contains an average of about 80 student answers. Each

CSV file contains the following attributes: student ID, the problem ID of a spe-

cific problem the student had worked on, the student’s open-ended answer to the

problem, the teacher comments(up to 4 teachers), and the teacher comment cate-

gories(up to 4 teachers). The teacher comments are pooled in from various teachers

grading the same student answer. Teachers were asked to categorize the comments

into categories using their desired naming, and desired number of categories. They

were given no further instructions on how to categorize the comments. This was

done in attempt to capture the essence of how teachers think of similar comments.

Figure 3.1: Dataset Collection sample

In the figure 3.1, we see a student’s open-ended answer, three teacher comments

belonging to three different teachers, and three teacher category columns each of
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CHAPTER 3. FEEDBACK RECOMMENDATION

which corresponds to the teacher comment. The teacher categories are labeled

in such a way that similar comments are grouped under a single category. i.e,

a teacher with their own judgement, groups a bunch of their comments into one

category, indicating that all the comments within that group are similar comments.

Teachers were intentionally not provided with any additional info on how to group

the comments, with the intent to capture variations in how teachers think about

the comment similarity. When two different teacher comments in the same teacher

column are assigned the same category label in the corresponding teacher category,

we assume that the comments are similar in meaning. i.e, they are similar in the

eyes of the teacher which can be used by our model to suggest as a similar answer

candidate. For example the 1st and 3rd comment in Teacher 1 column are different

but are labelled as C in teacher 1 column, meaning they are similar. The category

coding of one teacher means entirely different when comparing the same coding for

another teacher category in another column. The category ‘A’ in teacher 2 column

is note the same as category ‘A’ in teacher 3 column. The category labels are unique

to individual teachers. We will be making use of these labels in determining how a

teacher think of similar comments with respect to other teachers.

As a pre-processing step, we discarded problems with zero teacher responses,

eliminated rows with empty student answers, and removed rows that had less than

1 matching categories. i.e. if a teacher has categorized an answer say ‘X’ as ‘AF’ and

there is no other answer in the same teacher column that shares the same category

then it means that the dataset does not contain a similar answer entity for the

answer ‘X’. Such samples are of less significance to us since we are attempting to

establish a metric that determines what “similar” means to the teacher audience.

7



CHAPTER 3. FEEDBACK RECOMMENDATION

3.3 Sentence Encoders

3.3.1 Sentence-BERT

Sentence-BERT is a deep learning NLP model tuned for efficient performance on

the task of semantic textual similarity (STS). Sentence-BERT is modeled after

BERT[10] which was able to achieve state-of-the-art performance on STS. However,

finding the most similar pair in a corpus of 10000 sentences takes around 65 hours

with BERT. Sentence-BERT modifies the BERT construction by using Siamese and

triplet network structures which cuts down that time to 5 seconds. This makes it

ideal for use in our work.

3.3.2 Universal Sentence Encoder

Universal Sentence Encoder (USE) is another pre-trained embedder by Google which

is trained on a large wiki corpus with supervised and unsupervised tasks and encodes

sentences into a 512d vector space. USE uses the transformer architecture and

provides capability to look at text context when generating embeddings for entire

sentences.

3.4 Distance Metrics

We choose 4 distance metrics namely Levenshtein Distance, Euclidean distance,

Cosine distance, and Canberra distance to include a wide variety of metrics. We

pick these both for their large usage in NLP tasks and significant difference in their

meaning.

The Levenshtein distance is the minimum number of the edits required to trans-

form one sentence into another[11]. Levenshtein distance is applied on raw text and

8



CHAPTER 3. FEEDBACK RECOMMENDATION

not vector representations of the sentence.

The Euclidean distance between two points measures the geometric length be-

tween two points in Euclidean space and is computed as the summation of squared

differences between two points.

Cosine distance is the cosine of the angle between two n-dimensional vectors in

an n-dimensional space. It is the dot product of the two vectors divided by the

product of the two vectors’ lengths. Cosine distance is widely used in applications

like plagiarism checker.

Canberra distance is another numerical measure of the distance between pairs

of points in a vector space and has been used as a metric for comparing ranked

lists[12] Canberra distance is similar to the Manhattan distance. The only change

is that the absolute difference between the variables of the two points is divided by

the sum of the absolute point values prior to the summation.

3.5 Method I - Comparing Encoder-Distance Com-

binations

3.5.1 Finding Similar Answers

We start by transforming the student answer corpus to their equivalent embedded

vectors, then we use the vectors to compute the pair-wise distance between a holdout

answer and the rest of the answers in that problem set. This gives us an array of

distances between each pair. We then sort the array to get the top 3 distances.

In other words, we take the top 3 closest answers to the holdout answer. The

reasoning behind computing distances is that the answers in vector space appear

closer to answers that are both syntactically and semantically similar.

9



CHAPTER 3. FEEDBACK RECOMMENDATION

Figure 3.2: Embedding representations in a 2D vector space

3.5.2 Evaluation - Teacher Agreement Score

The above method to compute similar answers regardless of the choice of encoder

or distance metric, will always produce some closest answer which we consider as

the similar answer and they all might look good to the naked eye. But How do we

know which one are the most similar?

We evaluate how good the pre-trained model’s suggestions are by calculating how

much category label overlap there is between observed student answer and similar

answers found. This is done through a simple average co-occurrence measure that we

call Teacher Agreement Score (TAS). TAS is the count of the number of co-occurring

categories divided by the total number of categories.

As mentioned earlier, we asked the teachers to categorize or label the feedback

comments into desired number of groupings. These are labels are used to define a

measure representing similarity as defined by the teachers cohort. These category

labels act as the ground truth values to compare our model category recommenda-

tions. The TAS can range from 0-1 based on the number of matching categories. A

higher TAS value indicates more likeliness for the suggested comments to be utilized

by teachers.

For the top 3 similar answers found, we retrieve the associated teacher categories

10



CHAPTER 3. FEEDBACK RECOMMENDATION

Figure 3.3: TAS calculation at answer-level

and do a 1-1 comparison and average the score by the number of teacher categories

T . This process is then repeated in a hold-one-out manner observing each student

answer as the selected holdout and an average TAS is calculated for the similar

answers found with respect to the given problem. Finally, this process is repeated

across all the problems and an average TAS and per-problem TAS is reported.

TASi =
3∑

j=1

1

T

T∑
t=0

int(Categoryi = Categoryj) (3.1)

In the example shown in fig 3.3, the observed student answer has 3 categories

CC, B, and PC. Again the naming conventions have no meaning, it is just what

teachers chose. The first similar answer has categories CC, B and PC, which is a

complete overlap with a total 3 and divided by number of categories gives a TAS

score of 1. For the second we see a TAS score of 0.66 since two of the categories

overlap. And for the third none of them overlap resulting in a TAS score of 0. We

finally average the 3 TAS scores of similar answers and this gives us a TAS score

for the observed student answer. Which is 0.533. TAS metric demonstrates to be a

good evaluation metric since it captures the similarity measure according to what

the teachers think is similar. i.e, the dataset contains the ground truth values which

are categorized by a group of teachers. We are essentially modelling the system to

11



CHAPTER 3. FEEDBACK RECOMMENDATION

think like teachers.

3.5.3 Algorithm to compute TAS

Figure 3.4: Pseudo code to compute average TAS score

This algorithm represents finding similar answers and computing TAS for the

entire dataset. We calculate dataset TAS to analyze which approach performs the

best on overall data. For each problemSet say ‘p’ i.e a csv file containing student

and teacher data for a specific problem ID in all the problemSets ‘P’, and for each

student answer ‘a’ in each problemSet ‘p’, we get the sentence embeddings for all

the answers in current problem ’p’ using a chosen pre-trained encoder. Next, we

calculate the distance between current holdout answer embedding and other answers’

embeddings using the chosen distance metric. We sort the distances in the order

that best defines higher similarity and take the top 3 distances. Now we have our

Top 3 similar answers pairs.

To Evaluate the similar answer pairs, We get the list of teacher categories for

the observed answer ’a’ and the lists of teacher categories for all the similar answers

12
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found. Then we calculate TAS for an answer ’a’ as described in the equation (3.1)

above which is the answer level TAS score. All the answer level TAS scores are

averaged to get a problem level TAS score. And then finally, all the problem level

TAS scores are averaged to get a dataset TAS score.

3.5.4 Experiment Analysis

In this experiment, we analyze the overall TAS performance of different approaches

of encoder-distance metric combinations on entire Dataset. As a baseline model,

we simply compute the Levenshtein ratio between the textual answer pairs. Leven-

shtein distance does not account for varying lengths. Therefore, we simply compute

Levenshtein ratio between a pair of answers. Levenshtein ratio computes levenshtein

distance and divides by the character alignment length to account for varying length

in the sentences. The pre-trained encoders Sentence-BERT and USE are chosen for

their popularity in the NLP world and for being the current state-of-art sentence

encoders. We compare the metrics Euclidean, Cosine and Canberra in combination

with both the sentence encoders.

3.5.5 Results

In the table 3.1, we show the TAS scores obtained for each of the encoder-distance

combinations. Levenshtein Ratio has a TAS of 0.536 which we use as the baseline for

our model. USE-Euclidean and USE-Cosine have slightly increased score compared

to Levenshtein which is at 0.556 and the USE score slightly reduces with Canberra

at 0.554. Sentence-BERT has shown to perform the best among the models that we

have considered with 0.623 for Cosine and Canberra.

It is possible that for any given problem set, the maximum possible TAS score(MPS)

may always be less than 100 percent. i.e, in any given problem set, if there are no

13



CHAPTER 3. FEEDBACK RECOMMENDATION

Encoder-Distance TAS score

Levenshtein Ratio (No Encoder) 0.536
Universal Sentence Encoder-Euclidean 0.556

Universal Sentence Encoder-Cosine 0.556
Universal Sentence Encoder-Canberra 0.554

Sentence BERT-Euclidean 0.621
Sentence BERT-Cosine 0.623

Sentence BERT-Canberra 0.623

Table 3.1: Encoder-Distance Comparison Report

two similar comments such that their categories have a complete overlap, the max-

imum possible TAS will always be less than 1. In such cases, if we average it by

the total number of categories then we’re penalizing the TAS score. To mitigate

this penalty, we also keep a record of MPS for each problem. Now, we apply the

same evaluation algorithm as above to compute the average TAS score for the entire

dataset by taking the top 3 predictions for each answer. This time we also divide

the per-problem TAS by the MPS to boost the confidence of the model. Note that

as a pre-processing step we already discarded, answers that did not have at least

one similar answer candidate with at least one overlapping teacher category. So, the

Max Possible Score will never be zero. The results are reported in table 3.2 below.

TASi =
3∑

j=1

1

T

T∑
t=0

(int(Ci = Cj))/MPSi (3.2)

Averaging the TAS by MPS slightly increased the confidence in the model. We

see the best performing Sentence-BERT TAS increased by nearly 0.2 units, which is

not a large enough difference but still an improvement. For all future experiments,

we will use the revised TAS calculation formula(3.2). This step does not make a

difference in finding the best approach, but just a better metric overall.

It’s no doubt that SBERT performed the best among the comparison approaches.

14
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Encoder-Distance TAS score

Levenshtein Ratio (No Encoder) 0.559
Universal Sentence Encoder-Euclidean 0.581

Universal Sentence Encoder-Cosine 0.581
Universal Sentence Encoder-Canberra 0.576

Sentence BERT-Euclidean 0.649
Sentence BERT-Cosine 0.651

Sentence BERT-Canberra 0.651

Table 3.2: Encoder-Distance Comparison Reports with Max Possible Score

Encoder-Distance
Number
of times
Best TAS

% Best
TAS

Levenshtein Ratio (No Encoder) 1/67 1.49%
USE-Euclidean 8/67 11.94%

USE-Cosine 8/67 11.94%
USE-Canberra 3/67 4.48%

Sentence-BERT-Euclidean 12/67 17.91%
Sentence-BERT-Cosine 17/67 25.37%

Sentence-BERT-Canberra 27/67 40.3%

Table 3.3: Number of times obtained TAS agreed with Teachers

But with respect to our dataset, none of them either performed too poorly or too

strongly. Also the choice of the distance is an important factor in improving the

suggestions. To study how these approaches performed against each other, we com-

pute problem wise performance . We compared each of the approaches to see how

many times they agreed with teachers. Table 3.3 provides the number of times

an approach had the best possible TAS score for a given problem. Out of the 67

problems Levenshtein Ratio agreed with teachers at least once. USE-Euclidean and

cosine managed to top the TAS for 8 problems each. USE-Canberra seemed to have

managed only 3 times. A clear indication that this combination may not be useful in

our model. Sentence-BERT with consistent high TAS scores appears to have topped

15
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12 times for Euclidean, 17 times for Cosine, and 27 times for Canberra. There were

9 cases where at least two approaches had the same top score. We deemed both

approaches to be counted as the best performing approach. Sentence-Bert with

Canberra has managed to agree at least 40.3% of the time, making it the winning

approach among the Encoder-distance combinations considered in this work. From

this data we can infer that there is no single policy that outperforms others in every

case, but SBERT-Canberra is arguably the best achieving 40.3% Best TAS score.

3.6 Method II - Ensemble model of Encoder-Distance

Combinations

3.6.1 Approach to Assemble Dataset

Since each encoder-distance approach performed the best on certain problems, With

ensemble model, we try to bring the best of each encoder and train a linear regression

to predict TAS scores between answer pairs. We assemble a dataset by combining

Levenshtein ratio, Sentence-BERT-Canberra distance, and USE-Cosine distances

between the answer pair as independent variables and the TAS score of the answer

pair being the dependent variable or the ground truth value.

Figure 3.5: Ensemble of best approaches for Training Linear Regression

The figure 3.5 shows a sample of assembled dataset. We pick a character compar-

ison approach Levenshtein Distance to capture the textual similarity aspect between

16
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the sentences. USE-Cosine and USE-Euclidean both were a tie in terms of overall

TAS score, but we pick USE-cosine for popularity in NLP similarity tasks. SBERT-

Canberra is chosen as it was the best performing approach. We compute these

distances between every answer pair of every problem set and use the TAS score

between them to be the ground truth value for training the model.

3.6.2 Linear Regression Results

We trained a Linear regression model with a hold-one-answer-out policy. The pre-

dicted TAS for the held-out answer pairs are recorded. For each held-out answer,

we sorted the predicted TAS scores in increasing order and took the top 3 answer

pair predictions as the most similar answers. We use the TAS evaluation from the

Algorithm above to calculate the average TAS for the entire dataset.

Root Mean Squared Error 0.2914
Overall TAS for the Dataset 0.650

Table 3.4: Linear Regression Results

We achieved an overall TAS score of 0.65 which is closer to SBERT-Canberra

results. And an RMSE of 0.2914. We were expecting this model to score better since

this was supposed to be an ensemble of all the best approaches. Perhaps there was

a correlation between SBERT-Canberra distance scores and TAS scores. Or may be

Normalizing the distances would have helped. We can definitely investigate further

into this as future work. We opted to implement the SBERT-Canberra Model in

the ASSISTments infrastructure considering the training times and implementation

ease of both the models.
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3.7 BERT-Canberra Model in ASSISTments

3.7.1 Current Implementation

The current Quick-Comments feature in ASSISTments is updated with BERT-

Canberra Model implementation. The model provides 3 suggestions from previ-

ously seen feedback comments of the same problem set. To ensure the quality of

suggested comments, we set an upper threshold for Canberra distance when com-

paring answers beyond which the answer’s comments are considered to be of lower

confidence. To calculate the threshold, we compute the mean of distances which

are sorted in ascending order and mark 1.5 std deviation apart from the mean. Set

the threshold to be the lower 1.5 std deviation mark. We consider all the answers

only below this threshold as potential candidates for comment suggestion. The clos-

est answer’s comments within the threshold are used as suggestions. If not enough

answers within the threshold, the hard-coded comments are used to fill the gap.

Figure 3.6: ASSISTments Quick Comments with Sentence-BERT-Canberra
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3.7.2 Pilot Observational Data Analysis

We enabled the updated feature for certain duration for 8 teachers and collected

a preliminary set of teacher usage data. This dataset contains 20,053 samples of

teacher and student data along with student answer, teacher comment and suggested

comments. A total of 631 students data was collected from ASSISTments database.

Comparison Method Mean score

No Edits 0.112
As is or with Edits 0.126

Longest Sub-string Match 0.242
Normalized Compression Distance 0.185

Table 3.5: Encoder-Distance Comparison Reports with max possible score

The system supports opting to edit the suggested answer by teachers. The

teacher is free to either choose a suggested comment with or without editing it or

write entirely their own feedback. To get a sense of how the feature is being used,

we analyzed the dataset to match each teacher provided comment to predicted

comments using the implemented BERT-Canberra model. Using the problem ID

and student answer, we predicted the suggested comments for each of the student

answer using our previous dataset. While there are many ways to compare the match

between two strings/sentences, we have employed the methods shown in table 3.5

to learn about the percent of times the suggestions being used.

First, we check for the number of times one of the predicted suggestions being

used as is i.e, without any edits. We simply loop through all the predicted comments

and see if one of them completely matches with the teacher provided comment. If

it matched, we scored it 1 otherwise 0. Taking a mean of all the scores resulted

in the mean score of 0.112 indicating that at least 11% of the times the suggested

comments are used as is.
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To accommodate for edits made by the teacher, we check if one of the predicted

comments is a continuous sub-string in the teacher comment accounting for edits

made at the beginning or at the end. After scoring, we saw a mean score of 0.126,

which isn’t a lot of improvement compared to ’No Edit’ comparison method.

Next we look for longest matching sub-string to account for cases where a sug-

gested comment is edited to remove/replace a part of it. We compute the longest

sub-string match and consider only the comments that contain more than 50% of

the predicted comment to be scored as 1. The mean score resulted to be 0.24. This

indicates about at least 24% of the times the suggested comment is being used as a

reference or base comment structure.

Another comparison method we use is the Normalized Compression Distance

(NCD)[14] method. NCD is a way of measuring similarity between two objects

represented as file objects in bit representation. It is measured as the ease with

which one object can be transformed into another. NCD is being used in several

applications like plagiarism checker, which motivates us to use it in our analysis.

While scoring, we only consider the comments which require less than 50% effort to

transform the object into another. The resulting mean score of NCD was 0.185.

These methods are used to just get a fair idea of the model usage in the real-

time scenario so we could improve upon the model and keep increasing the usage

percentage. With that thought, we proceeded to implement an infrastructure that

caters to all researchers needs to run an experiment in Quick-Comments to further

improve the model accuracy of the overall feature in ASSISTments.
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RCT Logging Infrastructure

4.1 Randomized Control Trials

Randomized Control Trials (RCT) are a way of experimenting with the newly built

systems to study their efficacy. The users of the system are subjected to either a

controlled system or a treated system. The controlled system is where the users

continue to use the traditional version of the system without any new features,

whereas the treated system is the one where the users are subjected to a specific

user condition.

4.2 QUICK-Comments RCT

The implementation of this RCT logging infrastructure is aimed to create a single

data storage place for multiple studies conducted using Quick-Comments. We have

designed the database in such a way that makes it generic to fit the needs of all

logging experiments. The teachers log into their ASSISTments accounts and grade

their students’ submissions as they usually do on ASSISTments. The system logs

all actions, namely the student answer, the answer grade, suggested responses, the
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Figure 4.1: Quick Comments RCT High-Level Design

user condition, the submitted feedback comment.

The teacher actions are communicated using REST APIs implemented with

Python Flask. When the teacher launches the grading page, the API ”qc generate comment”

loads the student data containing teacher id, problem id, student ids, student an-

swers and returns with a list of suggested comments for each of the student answers.

qc generate comment(problems, response list, request) where,

problems: List of all problem IDs found in loaded json file.

response list: List of dictionaries, with number of dictionaries matching num-

ber of responses in data.

request: Deserialized json file containing student response data.

return: List of dictionaries where each dictionary is a student response and

relevant related data.

The RCT is embedded within the Flask Application and supports user condi-

tion randomizations at teacher, student, assignment, or mixed level. With this layer

researchers will have the ability to randomize which models are used based on the

given user conditions. Each study can have multiple user conditions and each user
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condition can be associated with multiple models. Each study has predetermined

associations with the randomization attributes. When a request comes in, first we

check if a condition has already been assigned to the given attributes. If condition

exists, we read the conditions and return the appropriate model for comment gen-

eration. If condition does not exist, we randomly pick a user condition at run-time

to ensure equal likelihood based on assignment probability set for the study. Log

the user condition, and return the user condition model for comment generation.

4.2.1 Database Design

In figure 4.2, the database ER diagram describes the relationship between the tables.

The upper half tables colored dark blue are used to log student data, teacher data,

suggested comment data, model data and request metadata. The lower half tables

in light blue are used to store the user conditions, randomizations, study data and

study status. Below we provide description of the main tables.

• Request logs: Stores the request metadata when a POST request is made

from the client side.

• Request problem logs: Stores the teacher id and problem ids associated

with the request.

• Student answers: Stores the student answers, student id, associated grade,

number of comments suggested for each problem id.

• Comments: Stores suggested comments, comment order, teacher comment

for each student answer.

• Models: Stores all the models developed for Quick-Comments and their de-

scriptions.
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Figure 4.2: ER Diagram of RCT
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• Studies: Stores each RCT logged in as an individual study.

• Study status logs: Stores the status of each study. The status can be in

one of the following. 1. Started 2. Running 3. Halted 4. Finished.

• Conditions: Stores all the conditions a study is subjected to.

• Condition models: Stores the condition and model associations.

• Study condition associations: A study can have more than 1 condition.

This table stores all the user conditions associated with the study.

• Condition assignment objects: Stores an object i.e a record to map to all

associated object attributes predetermined for a study condition.

• Object attributes: Stores the attribute value for each object attribute type.

• Object attribute types: Stores the types of object attributes. Currently

the RCT uses 1. Teacher type 2. Student type 3. Assignment type.

• Condition assignment logs: Stores the study-condition associations to con-

dition assignment objects.

• Condition assignment attributes: Stores all the attribute types the study

is associated with.

4.2.2 Randomizing User Conditions

RCT supports setting the number of suggested comments as required by the study.

The conditions required by the study must be logged before running the study and

the table study condition associations populated accordingly. The study condition

associations table also requires the researchers to set the assignment probability
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for each associated condition which is the weight assigned to the condition when

randomly selecting a user condition for a new request. Researchers must agree

beforehand on which attributes they intend to randomize the study and accordingly

associate the object attribute types with the study. The object attributes could be

teacher id, student id, problem id or a mix of these. Suppose we are randomizing a

study on student id and problem id, we could create a condition assignment object

and use the condition assignment object id to link to two object attribute records.

One for storing student id as attribute value which is of type ‘student’, and the

other for storing problem id as attribute value which is of type ‘problem’. This

condition assignment object is associated with the chosen user condition and logged

into condition assignment logs. Figure 4.3 depicts a high level Sequence diagram of

Randomizing attributes in the RCT logging infrastructure.

Figure 4.3: Randomization Sequence of Events
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4.3 BERT-Canberra-Wise Model

Wise feedback refers to psychological interventions that convey a genuine belief of

teachers’ high expectations from the students. A study conducted on the effects of

Wise feedback[14] in which 7th-grade students received critical feedback from their

teacher that, in the treatment condition, was designed to lessen mistrust by em-

phasizing the teacher’s high standards and belief that the student could meet those

standards, a strategy known as wise feedback. Wise feedback increased students’

likelihood of submitting a revision of an essay and improved the quality of their final

drafts.

Our implementation simply uses a list of predefined Wise preambles that at

random, one of them will be appended to the suggested response. The user condition

here would be to subject teachers to responses with and without the Wise Preamble

appended to the suggested response. The system logs the actions of the teacher in

a database of the infrastructure. The running of the WISE RCT is left as a scope

for future work.

Figure 4.4: Example of Wise suggestions
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Limitations and Future Work

We have developed a model that recommends responses which are trained at a

problem level, this means the model recommendation is limited to only previously

seen problems. The problem-wise recommendation approach seems promising when

compared to across-problem recommendation. If a new problem comes through

for which there is no previously recorded data, the model is unable to suggest any

feedback comments. We intend to keep adding more answers to each problem set

and new problems to the dataset for future experiments. The model is designed

to do well for ASSISTments dataset structure. The same model might not score

well on differently structured dataset. As a future work, we will also explore more

methodologies to provide suggestions for unseen problems and explore ways to gen-

eralise models for unstructured data. We will also explore an RCT to study the

implications of WISE feedback on student learning by utilizing the Wise model.
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Conclusion

In this research we have demonstrated a model for recommending responses to open-

ended student answers. We have analysed several encoders and distance metrics

that work well for the dataset at hand. We identified a methodology to evaluate the

recommending model and found SBERT-Canberra model to be the best performing

model with 65% teacher agreement. Through the teacher usage data analysis we

roughly estimated that a small percent about 11% to 24% of suggested comments

were indeed useful in reducing teachers grading effort. To improve the efficiency

of the model we have developed an RCT infrastructure that allows researchers to

randomize models and user conditions as required by the study.
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