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Abstract  

BNP Paribas requires a high volume of calculations in order to support its front office. In 

order to perform those calculations in a more efficient way, BNP Paribas requested the 

implementation of a distributed system. The project outcome was a distributed system using the 

Oracle Coherence framework, utilizing .NET as the main development framework. The structure 

provided a flexible system of task distribution to be implemented at BNP Paribas. 
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Executive Summary 

BNP Paribas in New York is a firm that requires a high volume of calculations in order to 

support its front office. These calculations can range from profit and loss analysis to risk analysis 

to pricing of exotic financial instruments. Currently, these computations are executed locally or 

handled using task-specific servers, and are often controlled manually. In addition to this, the 

reliance on specifically created servers and applications makes extensibility of the system to 

incorporate new products difficult. Furthermore, this current system of individual servers is not 

fast enough to keep up with the future needs at BNP Paribas.  

The solution to the problem facing BNP Paribas was to consolidate all tasks into a single 

system. The approach to this solution was through the use of a distributed cache system, one that 

was capable of processing all calculations given to it in a timely manner. Implementing this 

solution allowed BNP Paribas to move away from its previous design of having numerous task-

specific servers, and instead have all servers capable of performing any calculation when asked. 

This implementation meant a great improvement to the speed, extensibility and consistency of 

their computation system. 

Project Goal 

The goal of the project was to have a functioning prototype of an Oracle Coherence cache 

system that could serve as a proof of concept for the use of such a system at BNP Paribas to 

manage a varying number of tasks from a varying number of clients in a distributed fashion. Two 

main objectives were established to achieve this goal: 
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1. To create an Oracle Coherence application capable of computing any given task. We 

created and configured this system, which was able to compute tasks in Java and .NET in 

a distributed fashion. The system created needed to have the following characteristics:  

 Reliability: The system needs to be stable, and errors should not have any 

negative consequences on the system itself 

 Transparency: Clients don‟t have to worry about the system or the computation 

process. New features or applications added to the system do not have any 

consequence on the system. 

 Scalability: The system needs to be able to handle large amount of users, server 

and task at the same. 

 Monitor: The system needs to be able to keep track of the progress of the 

calculations and the performance of the calculation. 

2. To implement two applications used daily at BNP Paribas into the Coherence cluster 

implemented. This goal was accomplished in order to demonstrate that Coherence cluster 

created could handle any giving work in distributed fashion and be more efficient that the 

system currently used. Two graphical user interfaces for two different applications were 

implemented in order to accomplish this goal: 

 The first application implemented was PolyPaths, which is a fixed income 

analytics application (PolyPaths, 2010).  

 The second application implemented was Westminster, which is a market 

scenario engine. 
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Results 

 The outcome of the project was a comprehensive distributed system with the ability to 

extend to varied performance requirements. This implementation not only met the objectives of 

the original goal of the project, but also succeeded in improving the performance as compared to 

the existing system. Together, these accomplishments contributed to a well-rounded framework 

that was inherited by BNP Paribas to improve the current implementation.  
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1 Introduction 

Rapid, up to date analysis of market data is absolutely vital to the success and 

profitability of any investment firm‟s trading operations. BNP Paribas in New York is a firm that 

requires a high volume of calculations in order to support its front office, which handles its high 

number of portfolios and transactions. All of these calculations have to be handled as efficiently 

as possible, whether they are small problems with only a few calculations, or large batches of 

algorithms that may take hours to complete.  These tasks can range from profit and loss analysis, 

to risk analysis, to pricing of exotic financial instruments; all of which are crucial to supporting 

the profitability of the traders, as well as the monitoring of management. Prior to this project, 

these computations were executed locally or handled using task-specific servers, and were often 

controlled manually and did not provide the most up-to-date estimates. In addition to this, the 

reliance on specifically created servers and applications made extensibility of the system to 

incorporate new products difficult. Furthermore, the existing system of individual servers was 

too inconsistent and not fast enough to keep up with the future needs at BNP Paribas.  

The solution to the problem facing BNP Paribas was to consolidate all tasks into a single 

system. One approach to this solution was the use of a distributed cache system, one that was 

capable of processing all calculations given to it in a timely manner. Implementing this solution 

allowed BNP Paribas to move away from its existing design of having numerous task-specific 

servers, and instead have all servers capable of performing any calculation when asked. This 

implementation meant a great improvement to the speed, extensibility and consistency of BNP 

Paribas‟ computation system. 
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For the project, this solution was implemented by the use of a distributed cache 

framework based upon the Oracle Coherence product. The reason for the selection of Coherence 

was that it provides a very stable framework to build upon. This framework is highly scalable, 

has no single point of failure, and is optimized for fast distribution of data and tasks throughout 

its cluster of services. All of these features made Oracle Coherence an ideal solution to the 

problem facing BNP Paribas. It was used to effectively overcome their issues regarding 

consistency and speed of vital calculations that support the front office and managerial office 

operations. 
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2 Background and Literature Review 

In this chapter we begin by explaining in more depth the principles of the technologies 

we implemented. Second, we describe the Oracle Coherence framework, along with its features 

and its advantages over other technologies. In addition, we touch base on the Coherence 

Incubator projects and the Processing Pattern project, which is an application for Coherence that 

provides the functionality of distributing work among the nodes in the system.  

2.1 Distributed Cache 

In order to get a more accurate definition and better understanding of distributed cache 

systems, it is important to take an overview and define the terms „distributed systems‟ and 

„cache‟. A distributed system consists of a computer network containing multiple nodes, where 

each node interacts with other nodes (Khan, 2009). A great example of distributed system is 

parallel computation, where a large calculation is broken into smaller calculations and the 

smaller calculations are then distributed between the nodes to compute the result. The principle 

of cache is used to increase the performance of a data storage center by allocating a cache 

memory which contains the data that is most likely to be accessed in the system; this process 

reduces the I/O overhead in the system. Combining both principles, we get a distributed cache 

system, which is a form of distributed system, which allows multiple machines to share a cache 

memory in order to increase the performance of the system. The main purpose of a distributed 

cache is to provide a scalable solution in order to maximize the performance of any application 

that constantly requires data.  
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2.2 Oracle Coherence 

This section focuses on the last release of Oracle Coherence 3.6 as well as its features and 

usage. The Oracle Coherence framework is a distributed cache framework that is based upon the 

Coherence Data Grid, developed by Tangosol Inc. in 2006 (Oracle Coherence, 2010). One year 

later, Tangosol Inc. was formally acquired by Oracle (Ledbetter, 2007), and Oracle launched the 

project under the name of Oracle Coherence. Oracle Coherence has become a popular solution 

for businesses over the years due to its reliability, consistency and scalability.  

Being a distributed cache system, Oracle Coherence provides the capability for an 

application running on a machine to use the memory of other machines in the cluster as if it were 

local memory. Oracle Coherence uses a peer-to-peer clustering data protocol. The usage of such 

protocol while sharing data greatly increases the performance compared to protocols based on 

central servers. Also, by not relying on a central server, the peer-to-peer protocol benefits in case 

one of the nodes malfunctions. The Oracle Coherence framework was developed in Java, 

however clients and servers of Coherence are supported in Java, .NET and C++.  

The Oracle Coherence framework provides a large amount of features which make the 

framework reliable, consistent, scalable and very powerful. The peer-to-peer protocol and the 

storage implementation used by Oracle Coherences allow fast access to frequently used data in 

the system. Another important factor is that it supports instantaneous data management, which 

provides cache management in real time. In addition, Coherence provided a scalable solution that 

was very suitable for the project, since the project sponsors were planning to expand this 

technology over the following years. Furthermore, according to Oracle, Coherence provides an 

exclusive system for failures that Oracle describes as not having any single point of failure 
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(Oracle Coherence, 2010). Should a node become unresponsive or nonfunctional, the system 

provides the ability to redistribute the data on the cluster. In addition, new nodes and nodes that 

disconnect or restart are able to automatically join the cluster.  

On top of Coherence‟s reliability and consistency, Coherence offers its own serialization 

library named Portable Object Format (POF). The POF library is used to encode objects into 

binary form in order to move them around the cluster. One of the advantages of using POF is that 

it is supported in the Java, .NET and C++ frameworks. According to Oracle, the POF 

serialization or deserialization can be up to seven times faster, and the binary result down to one 

sixth the size compared the standard library offered by Java (Arliss, 2009).  

Analysis of the multiple advantages and features that Oracle Coherence provided a better 

idea of why BNP Paribas wanted to implement the Coherence framework into their systems. 

Oracle Coherence provides a unique technology that has become more popular over the past 

years due to the solutions it offers. 

2.3 The Coherence Incubator 

The Oracle Coherence Incubator offers a repository of different projects. These projects 

provide multiple solutions for some common design patterns and functionalities using Oracle 

Coherence (Misek, Coherence Incubator, 2010). In simpler terms, the Incubator is a set of 

applications for Coherence. All of the projects in the Incubator are distributed as source code and 

JAR files, which provide great flexibility for developers. The Processing Pattern is a project in 

the Incubator, which offers an extensible framework for performing distributed computing using 

Oracle Coherence. 



 

 

6 

However, the projects in the Incubator are only supported by nodes inside the cluster and 

Extend nodes written in Java. According to one of the main developers of the Incubator‟s 

project, in the near further Oracle will provide the ability to support Extend nodes written in 

.NET and C++ (Fahlgren, 2010).  

2.4 The Processing Pattern 

As mentioned previously, the Processing Pattern is an application for Coherence, 

developed by Oracle; its main purpose is to compute tasks among the nodes in the system. The 

Processing Pattern uses three different Coherence caches to communicate tasks and results 

between nodes. The first cache is used by clients and allows them to submit tasks into the 

Coherence cluster; this cache is named the „SubmissionsCache‟. The dispatcher, which is inside 

the Coherence cluster, reads the „SubmissionsCache‟, and posts the tasks into another cache 

named the „DispatchersCache‟. This cache is then read by one of the nodes in the list of 

registered nodes that can execute the tasks. The tasks are executed in those nodes, where each 

task is executed in a different thread. The thread pool of each processing node is defined in the 

configuration of the nodes, and it allows configuring the number of threads running on each 

node. Once a task is complete the result is returned to the client via a „SubmissionResultCache‟ 

and retrieved by the client using a unique task ID.  

The Processing Pattern handles the task distribution between the processing nodes. In 

order to distribute the tasks the Processing Pattern provides three different policies: “Round 

Robin”, “Random” and “Attribute Matching” (Misek, Processing Pattern, 2010). The three 

different policies offered by the Processing Pattern provide a very flexible task distribution 

system. Should the case be that all processing nodes are busy and there is a new task to compute, 
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the Processing Pattern puts the new task on “wait”, which makes the task wait until one 

processing node is available. 

As part of its flexibility, the Processing Pattern provides different features for the tasks 

that have been submitted. One of the most noteworthy features is the ability to cancel any task at 

any given moment. In order to complete this, the Processing Pattern removes the task and the 

task‟s listeners from the corresponding cache(s), and then the processing node stops the process 

running that task. In addition, the Processing Pattern has the capability of pausing and resuming 

tasks.  

Furthermore, the Processing Pattern handles errors without any consequence on the 

system itself. In case a task fails while executing for any given reason, the outcome of the task is 

returned as an exception; this allows the user to find the reason for the failure. Another possible 

scenario is that a processing node disconnects from the Coherence cluster while computing a 

task. In this case, the Coherence cluster gets notified that the processing node has disconnected, 

and the Coherence cluster takes care of redistributing the tasks among the other processing 

nodes. 

All of the previous capabilities mentioned are crucial for the reliability and stability of the 

system. However, as mentioned in the previous section, the projects in the Incubator are not 

supported by .NET or C++. The solution to this problem was to set up a JNI bridge between Java 

and .NET. 

2.5 JNI Bridge 

Jni4net is an application that provides the ability to create a bridge between Java and 

.NET (Savara, 2009). This bridge provides the capability of wrapping Java or .NET code and 
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calling it from either Java or .NET. The application takes a library, either a Dynamic-Link 

Library (DLL) or a Java Archive (JAR), as an input and then the application automatically 

generates an interface for each of the classes specified in the library. Once this step has been 

completed, the application builds the generated classes and it outputs a library (DLL or JAR), 

which can be used as a normal library in either programming language. In order to access the 

generated libraries, the developer needs to establish the connection between the proxy and the 

program. This process is very “light” since both virtual machines use the same process. One of 

the main advantages is that the jni4net allows having a total object oriented design between both 

programming languages.   

Jni4net still is in Alpha phase, however, and is an open source project which has some 

limitations handling both programming languages. One of the most notable limitations is that the 

application cannot handle multi-dimensional arrays in any programming language.  
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3 Requirements Specification 

The goal of the project was to have a functioning prototype of a Coherence cache system 

that could serve as a proof of concept system. Furthermore, the use of such a system at BNP 

Paribas needed to manage a varying number of tasks from a varying number of clients in a 

distributed fashion. At a minimum, the hope was to have a final product capable of coordinating 

the distribution of tasks from clients to servers through the use of Coherence as a middleware 

product. The connection from client to server via the Coherence Cluster allowed the passing of 

work, with the client having the ability to monitor its progress and be notified of completion. 

Furthermore, it was vital to the project that the system was capable of executing both in a Java as 

well as .NET environment. This requirement was necessary in order for the system to be able to 

integrate into the already existing frameworks and operations at BNP Paribas. It became 

necessary to design and create a simple, yet powerful, application that could be used as a tool to 

demonstrate the capabilities of the system. This application‟s purpose was twofold: it not only 

facilitated demonstration of the efficiency and ease-of-use of the final product, but also provided 

sample code that would be a base to expand upon by the employees at BNP Paribas.  

3.1 The Processing Pattern Implementation 

The Processing Pattern needed to be tailored specifically to fit the requirements. The 

elements that were developed were: 

 Establishment of the core cluster nodes 

 Use of Extend proxies 

 Configuration and instantiation of servers 
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 Creation of tasks to operate on the system 

Each of these pieces of the overall processing pattern were developed individually, but 

were ultimately combined to create a system that achieved all of the goals for the project. 

It was vitally important to the project to be able to establish a level of communication 

where tasks could be delivered to the server for processing and returned upon completion. 

Through the use of features within the Processing Pattern, this was accomplished by moving the 

processing workload away from the client, which was only notified when its requested 

calculations had been completed. In doing so, the overall overhead related to Coherence handling 

the communication between client and server was kept to a minimum, as little to no direct 

interaction was necessary aside from sending a task and relaying results. In the scope of this 

project, the Coherence Cluster was implemented in such a way that moved the task processing 

nodes outside of the cluster.  

Moving the communication capabilities of both client and server outside the Coherence 

cluster necessitated the use of Extend proxies. The reasoning behind this is that although the 

Coherence cluster is capable within an isolated network of containing all actions performed by 

client and server, this functionality is not available to systems that need access over Wide-Area 

Networks or personal computers (Howes, 2009). However, the configuration and usage of such 

proxies provided the cluster with listeners to specific ports, allowed for both clients and servers 

to communicate transparently to the cluster, regardless of physical location. Ultimately, these 

Extend proxies were implemented by having designated ports and proxies, one each for both 

client and server communication, which are automatically connected to the cluster. This decision 



 

 

11 

also resulted in another framework feature: the use of Single Task Processors set up on dedicated 

server nodes. 

By default, the Processing Pattern comes equipped with the functionality to handle task 

execution in two places, within the grid through „Grid Task Processors‟, and outside of the grid 

though the use of „Single Task Processors‟. While „Grid Task Processing‟ allowed for server-

side computation to take place on any grid node that is storage-enabled, it was not capable of 

functioning through the use of Coherence Extend. On the other hand, „Single Task Processing‟ 

was implemented as it could handle processing outside of the cluster through connection by 

Extend proxies. However, it needed to be individually instantiated on each server that is to take 

part in processing. In order to do so, customized XML files that contain the instructions on how 

to use the Coherence libraries were used. Furthermore, these configuration specifications also 

declared the type of tasks that could be processed on a server. 

In order for any server to be able to handle executing a task, the server needed to be able 

to understand how it was structured. In particular, instructions about how the task data and 

results are serialized and deserialized were stored within the task‟s Java class file, which was 

referenced in the configuration for servers as well as members of the cluster. This allowed for 

application-specific tasks to be written, ultimately being integrated into the distributed cache as a 

whole. After a task had been written, however, the necessity of managing the execution of each 

task that was invoked was handled within the cluster, and did not require client action outside of 

providing data upon which to calculate. This framework was crucial to making the system as 

adaptable as possible as well as reaching as a wide scope of potential applications used at BNP 

Paribas. 
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3.2 Using Algorithms to Distribute PolyPaths Effectively 

In order to speed up the rate at which a task could be processed on the Coherence cluster, 

it was necessary to break it into subtasks. This is because submission of a single task to compute 

a given number of securities is not as quick as numerous submissions, each with a piece of the 

overall task, which are recombined later. This was a difficult challenge, as in order to achieve a 

good performance considerations had to be made for the overall complexity of the task, the 

composition of individual securities to be calculated, and the number of servers that were 

available to work. Furthermore, there was a substantial startup cost to operate PolyPaths under 

some circumstances for certain security types. This startup cost involved loading a large amount 

of static data and was shared for all securities of a certain type. Therefore, handling each security 

individually was far from efficient, when securities of similar cost could be grouped for a 

fraction of the overall cost. Fortunately, PolyPaths was well suited to subdivision, as multiple 

instances could be instantiated asynchronously, each with their own unit of work to calculate. A 

full analysis of the metrics of algorithm performances can be found in Section 5. Nonetheless, 

the following sections are a breakdown of the structure of the algorithms from a functional 

standpoint. 

3.2.1 Common Overhead 

In the project‟s implementation of an application to run PolyPaths, several algorithms and 

methods of work distribution have been developed and tested. While each of these 

methodologies has unique components, they also share a common pattern of how to divide and 

merge the subtasks in a submitted task.  
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Initially, each uses an object that is written to read through the input file, whether in 

XML or CSV format, and parse the information contained therein about securities into memory. 

Next, a database of securities at BNP Paribas is queried to find out what type of security each 

individual security is. This information is logged for every security, and is indicative of the 

expected complexity to calculate it. From this type, an estimate of the complexity both of 

PolyPaths overhead by security as well as an estimated calculation time for the security are 

stored.  

Once the data for individual securities has been calculated, any given algorithm can be 

used to group securities into subtasks. The next step is to write temporary input files, each with a 

respective task‟s assigned securities. Once these have been created, the subtasks are ready to be 

sent to the Coherence cluster.   

Each subtask is sent as an individual task to Coherence, which is passed on to the servers 

for computation. Once the subtasks receive word that all have been completed, they are then 

merged into one output file. Internally, all of this is repeated consistently, varying only in what 

type of algorithm is used, which decides how securities are grouped into subtasks. 

Over the course of the project, five algorithms were produced, each of which can be 

modified, and each of which perform to different degrees. The algorithm that performs the well 

over all instances is the „Limited Complexity‟ algorithm, which groups tasks into subtasks each 

with a maximum allowable time to completion. Other algorithms take different approaches, such 

as „Limited Number of Tasks‟ and „Limited Number of Tasks, Average Complexity‟ which 

control how many subtasks a task is divided into. Furthermore, an algorithm was developed to 

group securities into tasks by the type of security they are, an effort to maximize the sharing of 
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startup costs. Lastly, a simple algorithm was developed to split each security into its own 

subtask. Each of these methods of task distribution was tested over numerous different tasks and 

environments, with each performing well in certain circumstances. The algorithm that provided 

the most consistently efficient performance, however, was „Limited Complexity‟ with a 

predefined means of finding the maximum complexity per task. 

3.2.2 Limited Complexity 

One of the best performing algorithms 

used to distribute work on the servers is to create 

subtasks that have a limit on their individual 

complexity. This is accomplished first by sorting 

the securities in decreasing order by complexity. 

Next, the most complex security is added to the 

current subtask, provided that doing so would not 

go over the defined limit. Preference is given to 

securities of the same type as are already present 

within a subtask, in order to share in startup 

overhead. This common overhead cost can be seen 

in Figure 1, where three types of securities, when 

calculated, have a specified baseline cost to run the calculation. Failing at using a similar type 

security, any other type can be viable, provided that it falls within the complexity limit. If no 

security can be found to fit within these constraints, a new subtask is dynamically created and the 

process continues with the new subtask. In this manner, a task can be broken into a relatively 

Figure 1 – Performances for Differing Security Types 
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small number of subtasks that incur low startup costs and take approximately the same time to 

complete. 

Furthermore, in order to strike an effective balance between minimizing task costs and 

overreaching the capacities of the server farm, an improvement upon this algorithm was 

developed that effectively provides a sliding scale of complexity limits that is related to the 

number of securities to be calculated. This system starts off with a small grouping complexity for 

small tasks, which helps to prioritize small requests to finish as rapidly as possible. For larger 

tasks, a gradually increasing cap on the complexity is imposed, which helps the subtasks grow 

gradually to account for the growing complexity while avoiding over or under grouping. 

Utilizing this approach, an algorithm was derived that proved itself to perform well under all 

circumstances tested, both for very simple tasks as well as for quite complex tasks. 

3.2.3 Limited Number of Tasks 

A straightforward yet effective algorithm to distribute the work into subtasks is to simply 

distribute each security evenly. In this algorithm the list of securities are iterated through and 

distributed to the set number of subtasks in a round robin fashion, with no regard for the 

expected complexity of each security. In practice, this method tends to perform reasonably well, 

as when the securities are randomly distributed they tend to develop tasks with approximately 

average complexities. However, this method‟s pitfall is that there is no guarantee of good 

distribution, and with no consideration of complexity for each security, it is very possible for a 

large number of complex securities to be put into a single subtask. Therefore, while in most 

situations this performs well and operates quickly, certain circumstances could lead to great 

inefficiencies in task distribution. 
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3.2.4 Limited Number of Tasks, Average Complexity 

Another algorithm was developed that performs similarly to a straightforward limited 

number of tasks method, but additionally considers the weights of tasks in deciding how to 

distribute workload. This was accomplished by evaluating the complexities of all securities, and 

then sorting the list of them in descending order of complexity. Once this is done, they are 

distributed into the predefined number of bins in a modified round-robin fashion. The 

modification is to distribute them iterating up the list of subtasks and then distributing down the 

list, rather than always in an increasing manner. Doing so prevents the early tasks from always 

being given the more complex securities, and provides a more homogeneous weight in each 

subtask. This improves upon simple sorting of securities without consideration for their 

complexity, as it helps to avoid unexpected conditions where subtasks are poorly balanced. 

However, this system does little to consider the wastage generated from redundant startup costs 

across tasks, as it will lead to similar securities being distributed widely across subtasks. 

3.2.5 Group by Security Type 

Grouping the securities into subtasks based upon the type of security they are was found 

to be quite effective, and maximizes sharing of overhead costs. This is achieved by iterating 

through the list of securities, keeping a list of types that have been encountered up to that point. 

This list also stores which corresponding subtask is being used to store a certain security type, 

and can be used for sorting securities that belong to already-encountered types. If it encounters a 

new type while iterating, it dynamically creates a new subtask, which is reserved for the new 

security type. This method performs well for small and medium size batches of securities, and 

keeps a low startup cost regardless of batch size. However, larger batches may result in single 
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tasks that contain hundreds of complex securities, and will perform quite poorly under these 

circumstances.  

By additionally limiting the size of subtask, this algorithm was improved to address the 

issue of poor performance with heavy tasks. This was done by establishing a defined limit on the 

size of any task. The algorithm then performs very similar as to without the limit, however it 

keeps track of the growing size of subtasks as they are built. If at any one time a subtask would 

be overloaded by adding another security, this security is instead added to a new subtask and all 

future securities of that type enter the new subtask. This improvement to the algorithm allows for 

flexibility to provide high performance across a wide band of task sizes. 

3.2.6 Individual Security Tasks 

The algorithm that merely divides each security within a task into a subtask can be 

effective if the number of securities is very small, but otherwise is highly inefficient and 

burdensome to the cluster as a whole. The delay of writing and reading temporary files for 

subtasks is small in most circumstances, but the latency to build and write these files is 

substantial when this is done for a very large number of individual files. Furthermore, if the 

number of tasks exceeds the number of available nodes on the server, the excess tasks will be 

queued until other subtasks finish. This latency both slows the outcome dramatically as well as 

inhibits other tasks from different users from being processed in a timely fashion. Therefore, 

splitting securities into individual tasks is best reserved for small batches of only a handful of 

securities, where expediency is desired and is possible without overloading the servers.   
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4 Results 

4.1 Coherence Cluster 

In developing the Coherence cache product for BNP Paribas, it was especially important 

to ensure that the final product met the original requirements of the project. In particular, 

considerations were constantly made to ensure that the cache was extensible, efficient, and able 

to be closely and constantly monitored. Doing so required not only a focused interpretation of 

how each piece of the puzzle was to operate, but also a broad realization that all pieces had to fit 

perfectly together and work in harmony to achieve the goal. Among the many minute 

considerations to be made were some large interactions to consider, such as: 

 How the cluster itself was to be designed 

 How the clients and servers pass data through the Coherence Cluster 

 How to make the cluster easily extensible to suit any necessity 

 How to harness and control the tasks that are sent through the system and monitor 

them appropriately 

 How to make the end product be flexible enough to apply to a broad range of 

applications  

In completion, all of these features were interwoven into a system that achieves the initial 

objectives effectively, and provides a strong demonstration of the Oracle Coherence cluster in 

action. 
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4.1.1 Core Structure 

The internal design of the Coherence cluster was the core of the project that was to be 

built upon. The initial concept for the design of the cluster was predicted to be very simple and 

straightforward, however the ultimate development proved to be quite complex. The foundation 

for the Coherence cluster is the „Dispatcher‟ nodes that reside within the cluster. These took the 

form of Coherence cache servers that are instantiated in such a way as to persist and 

automatically join other members of the cluster. Within the framework, their core responsibility 

is to negotiate the distribution of work to connected servers, as well as monitor progress and 

relay messages regarding completion. Even though these nodes can be configured to distribute 

work in several different manners, the usage chosen for the project was to provide a round-robin 

distribution of work to all servers, effectively balancing the workload amongst the server farm.  

In addition to the dispatchers, the Coherence cluster also was designed to incorporate the 

use of two Extend proxies. These proxies resided in the cluster, but on the fringe. Their purpose 

was simply to allow points of communication both on the server side as well as the client side. 

Due to the necessity to operate in .NET as well as to operate in a distributed, non-local network, 

these proxies were required to contain the cluster locally yet still allow communication to either 

side of the work distribution. Similar to the dispatchers, these proxies were lightweight and 

instantiated to persist and connect to other nodes within the cluster.  

This final design approach for the core of the Coherence cluster creates a fully functional 

approach that allows for a wide variety of operations to pass through the cluster. Furthermore, 

from a design perspective, this allowed for the entire cluster to be thought of as one monolithic 

entity, with just one access point for the client and another for the server. This created a generic 

implementation that is more readily extensible to other applications. 
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4.1.2 Client Structure 

In this project, the structure of the client was extremely straightforward and of minimal 

size. Each client obviously must have some means of communicating to the cluster, which was 

handled by using a coherence JAR file structured to handle access to the appropriate proxy. With 

this connection established, the core features of the task submission were to submit the task to 

the cluster, and to wait for the response. Both of these were provided by Coherence, and in fact 

only the submission was required, as tasks were able to be submitted without concern for 

feedback if desired. Both submission and reception allowed for a significant amount of transferal 

of data, which was still feasible through the current implementation. Although both applications 

that were developed in the course of this project primarily used shared files for communication 

and had relatively small amounts of data transfer directly, the functionality for more data transfer 

directly through the cluster was still provided. 

4.1.3 Server Structure 

The structure of the servers in the overall implementation was simple and shares some 

characteristics of both the clients and the cluster itself. As with the client, servers connected to 

the cluster through a proxy connection reserved for such use, and needed no more setup in order 

to participate in calculations. However, the servers were instantiated in much the same way as 

the units of the cluster were started: via simple execution scripts that were based on Coherence 

configuration files and remained active indefinitely. As far as the actual task execution that takes 

place on the server was concerned, a simple class that inherited the „Resumable Task‟ interface 

from Coherence can be used by a server, and was included in its running environment through a 

simple configuration file. This allowed for servers to be easily extended in order to execute any 

desired calculations. 
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4.1.4 Monitoring and Feedback 

As monitoring and the overall accessibility of information about tasks as they are 

executing was of high importance to BNP Paribas, specific considerations were made to bring as 

much transparency to these aspects as possible. From the client perspective, an application was 

given the capability to view the status of any submitted task, as well as specific metrics as to the 

progress within. Also, the ability to terminate tasks before completion was also accessible to the 

client, which provided important features related to controlling the overall execution.  

4.1.5 Extensibility 

In designing the project framework into the final iteration that was delivered, several 

features made the system particularly extensible. Firstly, with concern to extending the size of 

the cluster and of the servers, creation and startup of new dispatchers, proxies, or servers was 

relatively simple. This was because of the way in which they dynamically organized themselves, 

as well as the means through which redundancy and failover considerations were controlled 

within Coherence. Furthermore, during the project a simple script was developed in order to 

automatically create a unique ID for any new server that was to join in on handling the workload. 

This allowed for next to nothing in startup work in order to add servers to server farm. 

Aside from expanding the size of the cluster and server farm, extensibility was achieved 

through the constrained points of entry and exit to passing through the Coherence cluster. This 

meant that the core within the cluster could remain unmodified, while only adaptors to the 

proxies needed to be created for a new operation that was to be handled. This improvement 

drastically improved upon development time, allowing new calculations to be run on the system 

without the overhead of developing a system that would stand in the place of Coherence for each 

new application. 
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4.2 Command Line PolyPaths as a Task 

A major proof of concept for the prototype Distributed Coherence Cache framework was 

to be able to handle the invocation of PolyPaths remotely on servers (PolyPaths, 2010). To 

accomplish this, considerations for transparency to the client invoking a task, accessibility of the 

data to be used, implementation within the Coherence framework, and efficiency in task 

distribution were carefully considered. However, all of this hinged upon the system being 

designed in such a way as to integrate easily into the current usage of the PolyPaths functionality 

at BNP Paribas. 

Before the availability of the distributed computing architecture that is provided by this 

project, the primary means by which to perform large volumes of necessary calculations by 

PolyPaths would have been executed by a command line operation and performed locally on 

each machine. However, this system can create a large load to a single computer, which is 

problematic if the computer is a personal desktop used by traders. Also, there are substantial 

slowdown costs, as each security must be calculated in sequence, while a distributed system 

could share the workload over many processors. The project‟s implementation allowed for the 

invocation of a client that can communicate tasks to the cluster, with little or no difference in the 

complexity of the operation call. Additionally, part of the project‟s accomplishment was the 

creation of a straightforward Windows Form application that can be used to demonstrate and use 

the Coherence Cluster for PolyPaths calculations through a graphical user interface. This 

application offered all functionality of command-line calls, as well as the ability to start multiple 

calculations simultaneously and monitoring of task progress. In both instances, the task 

processing was handled the same way within the structure of the Coherence Cache. 



 

 

23 

Within the Coherence framework, the actual implementation of a PolyPaths calculation 

request was very simple. A task had been written that simply receives the command like 

arguments that would ordinarily be executed on the client‟s machine, and instead invokes them 

on the server. This simple passing of work allows the task to be loaded on the server processor 

instead of the client‟s, thereby lightening the load on the client. This task was visible across all 

sections of the cluster and servers, and therefore allowed for a very lightweight method of 

migrating work away from the client. However, in order to do so successfully still relied upon 

the ability for the server to be able to access the input data that needs to be calculated. 

The PolyPaths application required access to the data in a compatible form in an input 

file. Therefore, in order for the calculations to be moved onto a server that is located on a 

computer other than where the files are stored, the system needed to be able to compensate for 

this. Fortunately, much of the networking framework in place at BNP Paribas relied on shared 

drives for file storage. As a result, any input file or output destination could be used by the 

project‟s implementation provided that its absolute network path was provided. A benefit from 

this was that this system of task passing was very easily distributed over numerous servers to 

speed up processing. 
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The greatest benefit that the use of a distributed cache for PolyPaths calculation provides 

was the opportunity to use the processing power of numerous servers to expedite the valuation of 

large batches of securities. In the implementation of PolyPaths that was used within this project, 

this was accomplished by shredding the input file into numerous smaller input files, each of 

which was handled individually on different servers. Each file had the necessary input data, 

could be calculated in parallel, and was recombined with other files upon completion. This 

architecture was located within the client specific to the PolyPaths application, and could easily 

be replicated in other clients, provided an understanding of how the target application‟s work 

could be piecemealed and executed. 

Figure 2 is an example of the final structure, including how the layers of the process 

appear in Java versus .NET, as well as the interoperability between the two. As can be seen, it is 

important to note that the client side makes use of .NET, while the server side remains 

Figure 2 – Structure of Flow Data 
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Figure 3 – Structure of the PolyPaths Application 

exclusively in Java. Also, both sides share the usage of commonly accessible shared files instead 

of using the cluster as a means of passing of data. 

 

4.2.1 WinForms Application Associated with PolyPaths 

The culmination of client-side development for PolyPaths was a comprehensive 

WinForms application. This application was intended as a demonstrative tool of the power of the 

system developed. The complete structure of the completed project for PolyPaths can be seen in 

Figure 3. In doing so, a complex yet intuitive interface was developed to exemplify the different 

algorithms, different calculation formats, and task monitoring and management options available 

to the end user. The resulting product of all features can be seen in Figure 4. Starting from the 

top left of the window pane, it can be seen that different input and output paths can be specified 

for the calculations, and within these options are the choices for both .xml and .csv file formats. 

Beneath this is a listing of „switches‟ corresponding to different data values that are to be 
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calculated for the given securities (specific switch names have been omitted from this figure for 

confidentiality reasons). Any number of these can be chosen to be run together, or alternatively 

the box beneath it can be used to directly copy and paste in a specific list of options, allowing for 

greater flexibility. Next down are the various methods of grouping as described in section 3, and 

also corresponding configuration data may be entered where available. Lastly on the left column 

is the output pane, where performance data about the application as a whole may be inspected 

and tracked. To the right is the pane allowing monitoring and inspection of the currently 

submitted tasks. Within these collapsible lists it can be seen that a particular task may be 

inspected with greater granularity to observe what components of it have completed, while also 

Figure 4 – Example of PolyPaths Application 
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being able to easily identify any trouble spots. During the execution, a great deal of data is 

available to the user, such as the progress of the task(s) (as visible in the progress column), the 

types of securities in each batch (omitted), and the presumed complexity of a task as well as its 

actual runtime. Furthermore, tasks may be cancelled directly through this interface by means of 

the „cancel‟ button associated with a task on the right of the pane. As can be seen from the task 

in the figure, a cancelled task remains on the list of computations, but is immediately abandoned 

on the server, and only remains for informational purposes. Collectively, this application 

demonstrates all of the capabilities present both in the core of the Coherence Cache as well as the 

adaptation suited to PolyPaths calculations.  

4.3 Westminster Coherence Client Application 

As a result of proving how fast applications could be incorporated into the cluster, during 

our last week of work we implemented a graphical user interface to compute tasks using 

Westminster in a distributed fashion. Westminster was an application used by BNP Paribas that 

allowed computing market scenarios by inputting a list of parameters for a specific market. 

Westminster is an application fully written in .NET and developed by BNP Paribas, which has an 

extreme importance on a daily basis for traders.   

In order to prove that the cluster was also able to compute tasks written in .NET, and due 

to the fact that Westminster had a significant impact on a daily basis for traders, we decided to 

implement a Westminster application into our Coherence cluster. The application developed was 

programmed in Java to prove that our system was also able to handle both .NET and Java at the 

same time, and on the same cluster. In order to implement a Westminster application into our 

Coherence cluster, we decided to create a Westminster controller, which we will refer as 
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Figure 5 – Westminster Coherence Client Design 

„Westminster Server Controller‟. The „Westminster Server Controller’ was based on a wrapper 

written as interface in .NET, which called a Westminster application, referred as „Westminster 

Server‟, through the use of the „RemoteObject‟ library. 

Figure 5 represents the design we decided to implement for the Westminster Coherence 

Client application. The major difference in the design compared to the PolyPaths application 

created was that 

Westminster clients 

were written in Java, 

and the servers 

executed a Java task 

that opened a jni4net 

bridge to 

execute the 

task written in .NET. The .NET task calls the „Westminster Server Controller‟, which takes care 

of sending a list of parameters to the „Westminster Server‟. Then, the „Westminster Server‟ takes 

care of running the scenario engine with the parameter provided. Once the market scenario has 

been created, the output file containing the scenario specification is created on a shared drive 

where the user can easily retrieve the file.  

As with the PolyPaths application, the Westminster Coherence application allows the 

users to monitors the tasks launched. In order to monitor the tasks, the client sets up a listener on 

the output file, once the output file is completed by the „Westminster Server‟, the application was 

notified and outputs the total time taken to compute and which machine computed the given 

scenario. 
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Another key point during the creation of this application was to make a very flexible 

environment with different capabilities, so developers can keep implementing the application 

very easily and adapt new functionality to the application without major issues. As a proof of 

this, our application had two tabs, the first one where the user can launch the creation of a single 

scenario with a list of parameters. The second has the capability of taking a CSV file with 

different scenarios parameters and generates the different scenarios in a distributed fashion.
1
  

  

                                                 
1
 For confidentiality reasons, we cannot post screenshots of the Westminster Coherence Client 

application. 
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5 Analysis of PolyPaths Algorithms 

In order to more accurately evaluate the effectiveness of different algorithms that were 

created to organize PolyPaths calculation requests, as well as to spot room for possible 

improvements, all of these algorithms were run numerous times under differing environments. 

These benchmarking tests provided useful interpretations of how well a particular algorithm 

could perform, as well as gave a point of comparison to determine overall improvement. Figure 6 

gives a distribution of performance, measured in overall runtime, of all algorithms and previous 

means of calculation over a variety of task complexities. It is important to note that the 

„Command Line‟ and „Demand Batch‟ performances are representative of the two means of 

calculation currently in use at BNP Paribas. The rest of the performance distributions, labeled in 

green, are the myriad of different algorithms that were implemented. It is important to note that 

the „Demand Batch‟ calculations were executed on approximately 100 processors and the 

algorithms used were executed on only 16 processors, yet still outperformed in most 

circumstances. (For brevity‟s sake and in order to reasonably understand the data, much of the 

„Command Line‟ execution was excluded for more complex files. In actual testing, the largest 

files were found to take in excess of 2 hours to calculate). 
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Figure 6 – Runtimes of Algorithms & Demand Batch Execution 

 Figure 6 demonstrates the relative consistency of runtimes throughout the algorithms 

attempted, but it was necessary to develop upon a single algorithm to create an algorithm that 

would perform reasonably well under all circumstances. This is the „Limited Complexity‟ 

algorithm as described in the Methodology section, with a sliding scale for the complexity to be 

used. In the next graph, it can be seen how this metric performed in comparison to „Demand 

Batch‟, the best-case means of data generation currently in use at BNP Paribas. As can plainly be 

seen, in the event of very large and complex tasks being run, the developed system with 

accompanying algorithm can outperform the current implementation in roughly half the time. 

This is impressive as this is still being performed on the 16 processors versus the 100 processors 

in use 

for the 
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Figure 7 – Comparison of Best Algorithm to Current Implementation 

current method. The poorer performance experienced by the algorithm for some mid-ranged file 

sizes can be attributed to this difference in processors in use. If the number of processors within 

the cluster were to be comparable, it could be expected for this gap to shrink considerably, 

possibly even reversing. 

 The major outcome of these benchmarking tests of the created algorithms is positive. 

When run under comparable features and on identical calculations, the algorithms written in 

conjunction with the Coherence cluster developed could reasonably match or outperform the 

current implementation, at times by a factor of 2 This comparison can be seen quite clearly in 

Figure 7, a comparison between the optimal algorithm chosen and the existing calculation 
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methods in use at BNP Paribas. This is a strong indicator that the Coherence cluster can not only 

be used as an effective means of having generic distribution of work, but also as a lightweight 

platform for powerful distribution algorithms that provide noticeable benefits to BNP Paribas. 

6 Further Steps 

There are more improvements to the product that could be implemented, so it was 

structured in such a way so as to make their later development possible. The primary 

improvements that could have been made were to integrate the PolyPaths and Westminster 

applications into the systems currently in use, to make the cluster operate as a series of windows 

services, to move the algorithms to distribute work into the cluster itself, and of course to 

perform calculations for other applications on the system. While all of these would provide their 

own benefits to the product, the improvement that BNP Paribas could implement quickest in 

order to see performance improvements would be to integrate the system into the current 

applications. 

 Integrating access to the Coherence Cluster into current applications at BNP Paribas 

could provide performance improvements with relative ease. These integrations would likely not 

use the applications developed during the project specifically for calculation, as these were 

merely for demonstrative and testing purposes. Nonetheless, the core concept of the means of 

accessing the cache could be transferred quite easily, and transparently implemented in systems 

already in place at BNP Paribas. Once this is done, the next logical step would be to help 

improve the ease of use of the cluster itself, which would take the form of developing windows 

services. 
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 Windows services, which are applications that persist in the background of a running 

operating system, are a perfect candidate for the long-term implementation of the Coherence 

Cluster developed. It is probable that windows services would be an ideal implementation of the 

cluster, as they provide the simplicity necessary to manage as well as the reliability desired. 

Once a reliable and stable server has been established, it would then be feasible to transition the 

burden of deciding how to distribute work into the cluster itself. 

 While the developed implementation where the algorithms to distribute PolyPaths are 

retained within the client application works well, it would be preferable to have this sort of 

calculation be performed in a generic manner within the cluster. By modifying the 

implementation of the Processing Pattern to insert an intermediate step wherein work is split, 

distributed, and rejoined transparently, it would be possible to achieve the performance benefits 

regardless of the application being distributed. This would lessen the burden to the developers, as 

they would only have to write a small wrapper to this implementation, rather than rewrite the 

algorithm for each specific application. Of course, having such ease of extensibility would of 

course allow for far more applications to be integrated effortlessly. 

 Lastly, the addition of more and more applications to the list of calculations that can be 

performed on the developed system is possibly the most evident extension of the software. Due 

to the fact that the Coherence Cluster is so adaptive and the structure is as flexible as it is, 

extensions and additions should not be a great challenge for BNP Paribas, and is an opportunity 

in the near future for even more performance benefits to be gained through the use of the system 

created. 
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8 Work Schedule 

While working on the project, the goals and objectives moved fluidly and continuously 

from week to week. As expected, there was a decent amount of setup work to begin acclimating 

to the workplace. By the end of the first week, however, much of the work of obtaining ID 

badges, installing software, and receiving administrative rights on computers had been 

accomplished.  

Once this was over, the work of setting up a simple coherence cluster began. This 

required a large amount of effort towards setting up the computer environments correctly, and 

began to cause difficulties particularly with using the Processing Pattern in .NET. Fortunately, 

early in the second week a meeting was held with representatives from Oracle, which produced 

an introduction to and means of contacting one of the lead developers of the Processing Pattern. 

His assistance with fixing bugs in their software allowed the transmission of tasks from clients to 

servers, a major accomplishment for the overall project, to be achieved by the end of the second 

week.  

Upon having a proof of concept for creation of a Coherence Cluster was completed, the 

next consideration was to assess the ability to extend this across multiple computers in a 

distributed fashion. Fortunately, the design structure that had been used and the functionality 

provided by Coherence allowed for this step to happen very quickly, and only required a few 

days of development before this could be achieved reliably and easily.  

With a truly distributed Coherence system functioning, work began on outfitting it to be 

used to perform specifically needed tasks. This process required concise code that would be in 

Java to act on both sides of the cluster. Although the server side was able to remain in Java, the 
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client side also needed to have functionality in .NET. In order to achieve this goal, a complex 

process of developing the client side into a product that could be interoperable with .NET was 

undertaken. Through some trial and error, the conclusion was reached to use jni4net, a product 

specifically designed to provide limited interaction between the two languages. This product‟s 

implementation proved to be very difficult to work with but its use was unavoidable as the bridge 

between the two languages was necessary. Once jni4net had been implemented, the step of 

developing the .NET application to be used could begin. 

Development of the graphical application that could be used to interact with the already 

developed Coherence Cluster was the next major objective, and began roughly in the early part 

of the fourth week of the project. This application underwent numerous iterations and evolved 

considerably throughout the project. Its development proceeded uninterrupted for the next few 

weeks, and was only finalized shortly before the final product was delivered.  

As an additional focus of the development of the Cluster for use with PolyPaths was the 

creation of the assortment of algorithms used to partition work. These began to be developed 

approximately in the fifth week of the project, and were continually improved and added on to 

up until the middle of the sixth week. Along the way they had been developed to operate 

seamlessly within the developed application itself, and therefore little work was needed in order 

to combine the two. 

Simultaneously, beginning towards the end of the fifth week, the development of an 

entirely separate feature to the Coherence cluster was begun. This took the form of implementing 

operation with Westminster, and additionally required the usage of jni4net on the client as well 

as the server. Unfortunately, the difficult problems with the server side were overcome and there 
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existed serious limitations to the jni4net product that prevented the client side from functioning 

in the desired fashion. As a result, the Westminster implementation remained in Java on the 

client side, and development lasted until the end of the sixth week. Nonetheless, this addition 

provided an exceptional proof of the fact that the cluster was as versatile as desired, and capable 

of handling vastly different tasks in parallel. 

As the code development aspect of the project drew to a close the focus shifted once 

again, this time to the development of the final demonstration and presentation of the 

accomplishments. This involved not only the development of the final presentation, but also the 

benchmarking of performances of varying algorithms as well as structuring applications to be 

understood easily. This phase began roughly in the middle of the sixth week and continued 

through the end of the project. The presentation also underwent several revisions as presentations 

uncovered to improvements that could be made to the overall delivery. 

In the final two weeks, the transfer of the code base occurred, and involved extensive 

commenting and documenting of the code base, as well as reviewing it with sponsors at BNP 

Paribas to familiarize them with the approach. In addition, due to the complexity of the systems 

implemented a technical guide had to be created, in order to introduce new developers into the 

system. This technical guide can be found in Technical Documentation. This handing over of the 

final product was the major conclusion to the project as a whole. Table 1 resumes how the team 

managed his time during the course of the project. 
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Plan of Work

Meet with Contacts, familiarize 

with environment

Develop product code, expand 

functionality and features

Test code, fix any bugs that appear

Prepare Presentation

Write Report

Week 7Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

 Table 1 – Work Schedule 


