Data Generation
Distribution &
Management

A Major Qualifying Project submitted to the faculty of
Worcester Polytechnic Institute
in partial fulfillment of the requirements for the
Degree of Bachelor of Science by:

Claudio Herreros
Jotham Kildea

March 4", 2011

Report Submitted to

I Professors Arthur Gerstenfeld
Danel J.Dougherty
Worcester Polytechnic Institui

This report represents the work of two WPI undergraduate students submitted to the facul
evidence otompletion of a degree requirement. WPI routinely publishes these reports on
web site without editorial or peer review.

Abstract

BNP Paribas requires a high volume of calculations in order to support its front office. In
order toperformthose calculations a more efficient way, BNP Paribas requested
implementation of a distributexystem.The project outcome wasdistributedsystem usinghe
Oracle Coherendeamework utilizing .NET as themain development frameworkhe structure

provided a flexible system of task distribution to be implemented at BNP Paribas.

Acknowledgements

Over the course of this project, a numbepebplewere instrumental in contributing to
our success. Without their generous and patient support along the way, the final result would
have undoubtedly been far weaker of a product. These people that have helped us have come
from varying directions, nainly of course BNP Paribas and WPI but also outdelelopers

from Oracle and jni4net

Many of those at BNP Paribas that we have interacted with during our project have also
helped us in some way. Without exception, they were all generous with theartdrieppy to
help us to achieve our goals. First and foremost, we would like to acknowledge and thank Andy
Clark, not only for sponsoring the project and getting the groundwork in place for us, but also for
his continued contributions to the project ajahe wayAlso, thank youlordan Prevé, for being
our day-to-dayliaison and contact point for whatever information we need, as well as for putting
us in contact with whomever may have the answers we fbadks as well t&/ipin Bharathan
and Mu Liu, then-house gurus of all things Coherence, who patiently helped us get our
Coherence framework off the ground and continued with support and ideas whenever we needed
them. Also, to the many others at BNP Paribas that never backed away from providing feedback

and help throughout the process.

Acknowledgements are certainly in order for professors Dan Dougherty and Art
Gerstenfeld. Wi thout t hei rPrgectrtCentea sugesy, ltavinga k e
such an opportunity would certainly have been impossithleir feedbaclon boththe final
reportandpresentation was considered in developing each final proaasbf vital importance

Additionally, praise is in order fdheir guidamwe over theourse of the project.

During the project, we were fortunate enough to have input from the lead dew&foper
two of the productsweude Or acl e Coherenceds Processing Pa
Fahlgrenis to be praiseébr patiently woking with and attentively keeping in touch with us as
we began to implemetite Processing Pattern for our own uBeaise is Boin order forPavel
Gavara, whose opespurce product jni4net was vital to our being able to achieve one of the
biggest requements of the projectvhich was to have it operable.MET. His product, as well

as his consistent feedback to issues we encountered, greatly alleviated problems along the way.

Thank you again to those mentioned, as well as to the others who helpekeuhisa

project a success.

Executive Summary

BNP Paribas in New York is a firm that requires a high volume of calculationden tr
support its front officeThese calculations can range from profit and loss analysis to risk analysis
to pricing of exdic financial instrumentCurrently, these computations are executed locally or
handled using tasgpecific servers, @hare often controlled manually addition to this, the
reliance on specifically created servers and applications makes extensfhitigysystem to
incorporate new products difficult. Furthermore, this current system of individual servers is not

fast enough to keep up with the future needs at BNP Paribas.

The solution to the problem facing BNP Parib&sto consolidate all tasks im@a single
system.Theapproach to this solutiomasthrough the use of a distributed cache system, one that
wascapable of processing all calculations given to it in a timely manner. Implementing this
solution alloved BNP Paribas to move away from fiseviousdesign of having numerous task
specific servers, and instead have all servers capable of performing any caloutan asked.
Thisimplementatiormeart a great improvement to the speed, extensibility and consistency of

their computation system.
Project Goal

The goal of the project was to have a functioning prototypa @racleCoherence cache
system that could serve as a proof of concept for the use of such a system at BNP Paribas to
manage a varyingumberof tasks from a varying number ofeits in a distributed fashiofwo

main objectives were established to achieve this goal:

1. To createanOracle Coheenceapplicationcapable of computingny giventask We
createdand configured this system, which was abledmpute taskin Java and .NETnh

a distributed fashiornThe system created needed to have the following characteristics:

1 Reliability : The systermeeddo be stable, and errors should not have any

negative consequences on the system itself

1 Transparency. Clientsdo n 6 t to lwarry &at thesystem or the computation
process. New features or applicationsextid the systendo not have any

consequence on the system.

1 Scdability : The systenmeedgo be able to handle large amount of users, server

and task at the same.

1 Monitor : The systenmeeddo beable to keep track of the progress of the

calculations and the performance of the calculation.

2. To implementiwo applicationsuseddaily at BNP Paribasito the Coherence cluster
implementedThis goalwas accomplisheth orderto demonstrate thafoherence cluster
createdcould handle any giving work in distributed fashion and be more efficient that the
system currently usedwo graphical user interfaséor two different applicatios were

implemented in order to accomplish thisago

1 The first applicationmplemented waBolyPathswhichis afixed income

analytics applicatioiPolyPaths, 2010)

1 The second application implemented was Westminster, vikgmarket

scenario engine.

Results

The outcome of the project was a comprehensive distributed systeth&athility to
extend to varied performance requiremeifitss implementation not only met the objectives of
the original goal of the project, but also succeeded in improving the iparice as compared to
the existing system. Together, these accomplishments contributed terawmeled framework

that was inherited by BNP Paribas to improve the current implementation.

Vi

Table of Contents

Y 0111 7= VX PRSP]
ACKNOWIEUGEIMENLS. ...ttt e ee ettt eeer e e ettt e e e e e e e e e e e s amme e e e e e e e eaeeaeeaans i
Tl UL AY 2o ST U]] 4= T Y Iv
TADIES & FIQUIES. ... it ee ettt eeee e et ettt e e e e e e e e e e s ammme e e e e e e e e e e e e e e e aaanns IX
R [1 0T [Tod 1 o] o SRR 1
2 Background and Literature REVIEM..........cccoiiiiiiiiiiiieee e 3
2.1 DIStributed CaCh®........ccooiiiieieei e e 3
2.2 OracCle CONBIENCE.......uuuiiiiiiiiiiiiiiiieeetii ettt ettt e e e e e e e e st e e e e e e e e e e e e e s s s s s nnne e e e e e s 4
2.3 The Coherence INCUDALOL............uuiiiiiiiiiii ettt e e 5
2.4 The Processing PallB...........cccoiiiiiiiiiiiiieeee e smmme s e e e e e e e e e emenas 6
2.5 INIBIIOQE. ..o e e e e e e e aeernnnnnneseeeeeeeeessl
3 Requirements SPECITICALION.uiiiiiiiiiiii e 9
3.1 The Processing Pattern Implementation..................ouvieeieeeiiieeeeeiie e 9
3.2 Using Algorithms to Distribute PolyPaths Effectively............cccccvvvviiieeciiiiiiiiennn. 12
3.2.1 Common OVEINEAd.........uuueeiiiii e eerer e e e e 12
3.2.2 Limited COmMPIEXItYccoiiiiiiiieiiie e eeer e e e e e e e e e 14
3.2.3 Limited NUMDEr Of TASKS......uuuiiiiiiiiiiiiieie et eeee e 15
3.2.4 Limited Number of Tasks, Average CompleXity............ccccevviiiiieeeiieeeeeennnnnnn. 16
3.2.5 Group DY SECUNMLY TYPE . .uuiiiiiiiiiiiiiiiee e 16
3.2.6 Individual SECUNtY TASKS.......uutiiiiiiiiiiiiii e 17

A RESUIS. ..uu et e e e e et e e e ettt b ———————a e eeeeta e eeeern—— 18
o R o 1 1= =7 g o I O U] (= 18
L O A O o (Y {1 (o LU | = PP 19

vii

A.1.2 ClBNE SITUCIUI. ..o e e e remmns 20

4.1.3 SEIVELN SHUCIUIE.....uei ettt e e ernme e et e e e e e e et e e e e e enenas 20
4.1.4 Monitoring and Feedback..............ooovriiiiie 21
4.1.5 EXENSIDIILY....uueeiei e e 21

4.2 Command Line PolyPaths as a TasK.........cccceeeeieiiieeeiiic e 22
4.2.1 WinForms Application Associated with PolyPaths.............ccccooviiiiiacn. 25

4.3 Westminster Coherence Client Application.............ooooiiiiiiiccee e 27

5 Analysis of PolyPaths Algorithms............oooiiiiii e 30
B FUIMNEE STEPS. ... ettt 33
BiIDlIOGIraPNY ... i e ————————————————— 35
7 Technical DOCUMENTALIQN.........cooiiieiieiieiiieeee et a e e e e e e e e emnnnes 37
8 WOIK SCREAUIE.... ..o e 53

viii

Tables & Figures

,,,,,,,,,,,,,,,,,,,,,,,,,,

1 Introduction

Rapid, up to date analysis of market data is absolutely vital to the success and
profitability of any i nBNPParibesim Newfrorkisradishatt r ad i n
requires a high volume of calculations in order to support its front offibech handles its high
number of portfolios and transactiodl of thesecalculationshave to be handled as efficiently
as possible, whethéney aresmall problems with only a fewsalculations, or large batches of
algorithms that may take hours to complete. These tasks can range from profit and loss analysis,
to risk analysis, to pricing of exotic financial instruments; all of which are crucial to supporting
the profitability of he traders, as well as the monitoring of managenfeit to this project
these computationsereexecuted locally ohandled using tasgpecific servers, angereoften
controlled manually andid not provide the most ufp-date estimates. In addition to this, the
reliance on specifically created servers and applicatimdeextensibility of the system to
incorporate new products difficult. Furthermattee existingsystem of individual servergas

too inconsistent and noagt enough to keep up with the future needs at BNP Paribas.

The solution tahe problem facing BNP Paribagasto consolidate all tasks into a single
system. One approach to tslutionwasthe use of a distributed cache system, onevihat
capable oprocessing all calculations given to it in a timely manheplementing this solution
allowedBNP Paribas to move away from égistingdesign of having numerous tasgecific
servers, and instead have all servers capable of performing any calculatioaskied. This
implementatiormeart a great improvement to the speed, extensibility and consisteBiyrf

P a r icbnpuwadion system.

Fortheproject, this solutionvas implementedy the use of a distributed cache
frameworkbased upon the Oracle Coheremproduct. The reason for the selection of Coherence
wasthat itprovides a very stable framework to build upon. This framework is highly scalable,
has no single point of failure, and is optimized for fast distribution of data and tasks throughout
its cluster of services. All of these featureadeOracleCoherence an ideal solution to the
problem facing BNP Pariba.was usedo effectively overcome their issues regarding
consistency and speed\wofal calculations that suppattte front office and mangerial office

operations.

2 Background and Literature Review

In this chapter we begin by explaining in more deptiptivgciples of thetechndogies
we implementedSecond, we describe the Oracle Coherence framework, alongs/ghtitres
and its advantages over other technolodreaddition we touchbaseonthe Coherence
Incubatorprojects and th@rocessing Pattern project, which is an application for Coherence that

provides the functionality ddistributingwork among the ndes in the system.

2.1 Distributed Cache

In order to get a more accurate definition and better understanding of distributed cache
systemsit is important tdake an overview and definlee termgdistributed systendsand
&aché A distributed system consgsbf a computemetwork containing multiplenodeswhere
each node interacts with other no@iéhan, 2009)A great &le of distributed system is
parallel computationwhere a large calculation is brakito smaller calculations and the
smaller calculationarethendistributed between the nodescompute the resulfhe principe
of cache is used to increase the performaneedatastoragecenter by allocating a cache
memorywhich containghe datahat is most likelyto be accessdd the system; this process
reduceshe I/Ooverhead in the syster@ombining both princifs, we getadistributed cache
systemwhich isa form ofdistributedsystem, whiclallows multiple machines to share a cache
memoy in order toincreasdahe performance of the systefhe main purpose a@distribuied
cache is to provide a scalable solution in order to maximize the performance of any application

that constantly requires data

2.2 Oracle Coherence

This section focuses on the last release of Oracle Coherence 3.6 as well as its features and
usageTheOracle Coherencegameworkis a distributed cache framewdtiatis basedipon the
Coherence Data Grideveloped by Tangosol Inc. in 200Bracle Coherence, 201@ne year
later, Tangosol Incwasformally acquired by Oraclé_edbetter, 2007)and Oracle laun@dthe
project under the name Gfracle Coherenc®racleCoherence has becora@opularsolution

for businesssover the years due to its reliability, consistency and scalability.

Being adistributedcachesystem OracleCoherence providdse capabilityfor an
application running on a machine to use the memory of other maahithescluser asif it were
localmemory Oracle herence uses a pderpeer clustering data protocdlhe usage of such
protocolwhile sharingdata greatlyncreaseshe performanceompare to protocols based on
central servex Also, by not relying on a central servéing peeito-peer protocobenefisin case
one of the nodes malfunctienrhe OracleCoherencéramework was developed Java

however clients and sengeof Coherencaresupported indJava .NET and C++.

The Oracle Gherence framework provides a large amount of featingsh make the
framework reliable, consistergcalableandvery powerful. The peeito-peer protocoand the
storage implementatiamsed by Oracle Coherencalfow fast access trequently usedlata n
the systemAnother important factor is thétsupportanstantaneoudata managemenihich
provides cache managememtreal time In addition,Coherencgrovideda scalablesolution that
wasvery suitable forthe project sincethe projectsponsorsvereplanning to expand this
technology over the following yearsurthermore, ecording to OracleCoherencgrovides an

exclusive system for failurgbat Oracledescribes sinot having anysingle pointof failure

(Oracle Cohererg; 2010) Shoulda node becomenresponsive anonfunctionalthe system
provides the ability toedistributethe data on the clustdn addition, new nodes dmodes that

disconnecbor restartareableto automatically join the cluster.

Ontop ofCoherencé s r el i abi | ity a noffersitoowss dergalizationcy, Co
library named Portable Object Format (POH)e POFlibrary is used to encode objectsan
binary formin order to move them aroutide clusterOne of the advantages of usiR@F is that
it is supported in th@ava .NET and C++rameworks According to Oraclgthe POF
serialization or deserializatiaran be up tseven timesaster and the binary result down tme

sixththe sizecompared the standardviary offered bylava(Arliss, 2009)

Analysis ofthe multiple advantages and featuttest Oracle Coherengeovided abetter
idea of why BNP Paribasantedto implement the Cohereadramework into their systems.
Oracle Coherence providasinique technology that h&agcome more populawver the past

years due to the solutisit offers.

2.3 The Coherence Incubator

The Oracle Coherence Incubator offers a repositodjfferent projects. These projects
providemultiple solutions for some commatesign patterns and functionalities using Oracle
CoherencéMisek, Coherence Incubator, 2010) simplerterms the Incubator is a set of
applications for Coherence. All of the projects in the Incubator are distributed as sode and
JAR files, which provide great flexibility for developers. The Processing Pattern is a project in
the Incubator, which offers an extensible framework for performing distributed computing using

Oracle Coherence.

However, the projects in the Ingator are only suppatiby nodes inside the cluster and
Extend nodes written idava According to one of the main developers of the Inculbator
project in the near further Oracle will provide the ability to support Extend nodes written in

.NET and C++Fahlgren, 2010)

2.4 The Processing Pattern

As mentioned previous)yhe Processing Pattern is an application for Coherence,
developed by Oracjéts main purposés to computetasks among the nodes in the systéhe
ProcessindPattern uses three different Coherence csitheommunicate taskand results
between noded he firstcache isusedby clients and allows them to submit tasks into the
Coherenceluster;this cache is nametie SSubmissionsCaclieThe dispatchemhich s inside
the Coherence clustegads thé&SubmissionsCaclieand post the tas&into another cache
named th&DispatchersCachie This cache is then redy one ofthenodes in thdist of
registeednodesthat carexecute the task$he tasks are executen thosenodes whereeach
task is executed in a different thredtie thread pool of eagirocessingiode is defined in the
configuration of the nodeand it allowsconfiguringthe number of threads running on each
node Once a task is complete thesult is returadto the client via @ubmissionResultCaadhe

and retrieved by the clientsinga unique task ID

TheProcessingPattern handles the task distribution between the processing nodes. In
order to distribute the taskhe Processing Patternopides three different policieBRound
Robird ,Rarfilond a Attdbutd Matching (Misek, Processing Pattern, 201The three
different policies offered by thierocessindPattern provide a very flexible task distribution

sydgem.Should the case be thalt processing nodes are busy and there is a new task to compute,

the Processing Pattern puts the new task on

processing node is available.

As part of its flexibility, theProcessingPatternprovides different features for tiasks
that have been submitted. One of thestnoteworthyfeaturess the ability to cancel any task at
any givenmoment In order to complete this, the Processing Pattern removes the tasie and
t a slisténgsfrom the correspondingache(s)and the the processing nodtopsthe process
running that taskin addition, the Processing Pattern has the capability of pausing and resuming

tasks

Furthermore,lie Processing Pattern handles ervatiout any consequence on the
system itselfIn casea task fails whileexecutingfor any given reson the outcome of the task
returredasan exceptionthisallows the user to find the reasfam the failure. Another possible
scenario is that a pressing node disconnects from the Coherence cluster while computing a
task In this case, the Coherence cluster getsiadtifiat the processing node has discorect
and the Coherence cluster takes care of redistributing theaiasing the other procesg

nodes.

All of the previous capabilities mentioned are crucial for the reliability and stability of the
system. However,samentioned in the previous section, the projects in the Incubator are not
supporedby .NET or C++. Thesolution to this problenwasto set up a JNI bridge betweéava

and.NET.

2.5 JNI Bridge

Jnidnetis an applicationthat provides the ability to create a bridge betw#ssraand

.NET (Savara, 2009)This bridge provides the capability of wrappiayaor .NET code and
7

~

n

calling it from eitherJavaor .NET. The application takes library,either aDynamicLink

Library (DLL) or aJavaArchive (JAR), asaninputand therthe application automatically

generates an interface for each of the classes specitieg library. Once this step has been

completed, the application builds the generated classds amputs a library (DLL 0JAR),

which can be used as a normal librameither programming languagie order to access the

generated libraries, the devply needs to establish the connection between the proxy and the
program. This process is very filighto since b
the main advantages is that fhelnetallows having a total object oriented design between both

programming languages.

Jnidnetstill is in Alpha phaseéhowever, ands an open source projeghich has some
limitations handling both programming languages. One of the nobablelimitations is that the

application cannot handle muttimensional arrays in any programming language.

3 Requirements Specification

The goal otthe project wago have a functioning prototype of a Coherence cache system
thatcouldserve as a proof of coaptsystem Furthermorethe use of such a system at BNP
Paribasmneeded tananage a varying number of tasks from a varying numberesftslin a
distributed fashionAt a minimum, the hopeasto have a final product capable of coordinating
the distributon of tasks from clients to servers through the use of Coherence as a middleware
product. Tle connection from client to servera the Coherence Clustallowedthe passing of
work, with the client having the ability to monitor its progress and be robtifieompletion.
Furthermore, it was vital to the projebat thesystemwascapable of executing both inJavaas
well as.NET environment. This requirement was necessary in ordeéhdéosystento be able to
integrate into the already existing framek®and operations at BNP Paribddecame
necessary tdesign and create a simple, yet powerful, application that could be used as a tool to
demonstrate the capabilities of the system. Thislap cat i onds putngalye was
facilitated demostration of the efficiency and easéuse of the final product, but also provided

sample code that would be a base to expand upon by the employees at BNP Paribas.

3.1 The Processing Pattern Implementation

TheProcessingPatternneeded to be tailorespecifically to fit the requirements. The

elements that were developed were:
1 Establishment of the core cluster nodes
1 Use of Extend proxies

1 Configuration and instantiation of servers

1 Creation of tasks to operate on the system

Each of these pieces of theerall processing pattern were developed individually, but

were ultimately combined to create a system that achieved all of the goals for the project.

It was vitally important to the project to be able to establish a level of communication
where tasks cdd be delivered to the server for processing and returned upon completion.
Through the use of features within the ProcesBattern, thisvasaccomplished by moving the
processing workload away from the client, whighsonly notified when its requested
calculations hd been completedn doing so, the overall overhead related to Coherence handling
the communication between client and sewaskept to a minimum, as little to no direct
interactionwasnecessary aside frosendinga task and relaying regsilIin the scope of this
project, the Coherence Cluster was implemented in such a way that moved the task processing

nodes outside of the cluster.

Moving the communication capabilities of both client and server outside the Coherence
cluster necessitatetld use of Extend proxies. The reasoning behind this isithatigh the
Coherence cluster is capable within an isolated network of containing all actions performed by
client and server, this functionality is not available to systems that need accedéderéirea
Networks or personal computdgidowes, 2009)However, the configuration and usage of such
proxies provided the cluster with listeners to specific ports, allowed for both clients and servers
to communicate transparénto the cluster, regardless of physical location. Ultimately, these
Extend proxies were implemented by having designated ports and proxies, one each for both

client and server communication, which are automatically connected to the cluster. This decision

1C

also resulted in another framework feature: the use of Single Task Processors set up on dedicated

server nodes.

By default, the Processing Pattern comes equipped with the functionality to handle task
execution in two pl aGrid fask Processbis, n atnhde ogurtisdi dteh roof
t hough tSngle Task Processarsé \WiGrid Mask Processiri@allowedfor server
side computation to take place on any grid node that is steraj®ed, it was not capable of
functioning through the use# Coherence Extend. On the other haiilngle Task Processifig
was implemented as it could handle processing outside of the cluster through connection by
Extend proxiesHowever, itneeded to be individually instantiated on each server that is to take
part in processingn order to do so, customizedML files that contain the instructions on how
to use the Coherence libraries were used. Furthermore, these configuration specifications also

declared the type of tasks that could be processed on a server.

In order for any server to be able to handle executing attestervemeeded tde able
to understand how wasstructured. In particular, instructions about how the task data and
results are serialized and deserialinel e st or ed wiaviadassiile, whichvast a s k 6 s
referenced in the configuration for servers as well as members of the cluster. Thesl &dlow
applicationspecific tasks to be written, ultimately being integrated into the distributed cache as a
whole.After a task hd been witten, however, the necessity of managing the execution of each
task thatvasinvokedwashandled within the cluster, amlild not require client action outside of
providing data upon which to calculate. This framework was crucial to making the system as
adaptable as possible as well as reaching as a wide scope of potential applications used at BNP

Paribas.

11

3.2 Using Algorithms to Distribute PolyPaths Effectively

In order to speed up the rate at which a taskdbe processed on the Coherence cluster,
it wasnecessary to break it into subtasks. This is because submission of a single task to compute
a given number of securities is not as quick as numerous submissions, each with a piece of the
overall task, which are recombined later. Thiesa difficult challen@, as in order to achieve a
good performance consideratidmsdto be made for the overall complexity of the task, the
composition of individual securities to be calculated, and the number of serveretbat
available to work. Furthermore, thesasa substantial startup cost to oper&telyPathsinder
some circumstances for certain security types. This startungosted loading a large amount
of static data andiasshared for all securities of a certain typherefore handling each security
individually wasfar from efficient, when securities of similar cost could be grouped for a
fraction of theoverallcost. FortunatelyRolyPathsvaswell suited to subdivision, as multiple
instancesouldbe instantiated asynchronously, each with their own dimitook to calculateA
full analysis of the metrics of algorithm performances can be fouSddtion5. Nonetheless
the followingsectionsarea breakdown of the structure of the algorithms from a functional

standpoint.

3.2.1 Common Overhead

I n the projectds i mpl e nPelyPatlstevetahalgarithmsaand a p p |
methods of work distribution have been develoged tested. While each of these
methodologies has unique components, they also share a common pattern of how to divide and

merge the subtasks in a submitted task.

12

Initially, each uses an object that is written to read through the input file, whether in
XML or CSVformat, and parse the information contained therein about securities into memory.
Next, a database of securities at BNP Paribas is queried to find out what $goeirafy each
individual security is. This information is logged for every security, and is indicative of the
expected complexity to calculate it. From this type, an estimate of the complexity both of
PolyPathsverhead by security as well asestimatedtalculation time for the security are

stored

Once the data for individual securities has been calculated, any given algorithm can be
used to group securities into subtasks. The next step is to write temporary input files, each with a
respect isigeed seausitiesd Gncealese have been created, the subtasks are ready to be

sent to the Coherence cluster.

Each subtask is sent as an individual task to Coherence, which is passed on to the servers
for computation. Once the subtasks receive word thhtge been completed, they are then
merged into one output file. Internally, all of this is repeated consistently, varying amhatn

type of algorithmis usel, which decidefiow securities are grouped into subtasks.

Over the course of the project, fiabgorithms were produced, each of which can be
modified, and each of which perform to different degrees. The algotithiperforms the well
over all i nstances is the OLimited Complexity
with a maximum dbwable time to completion. Other algorithms take different approaches, such
as OLimited Number of Tasksdé6 and OLi mited Num
control how many subtasks a task is divided into. Furthermore, an algorithm was developed to

group securities into tasks by the type of security they are, an effort to maximize the sharing of

13

startup costs. Lastly, a simple algorithm was developsglibeach security into its own

subtask. Each of these methods of task distribution was testedwwerous different tasks and
environments, with each performing well in certain circumstances. The algorithm that provided

the most consistently efficient performanbeo wever , was O6Li mited Compl «

predefined means of finding the maximum coexgly per task.

3.2.2 Limited Complexity 1,225

One of the best performing algorithms 1000 899

632

®conds

used to distribute work on the servers is to creatg ., 417

193
subtasks that have a limit on their individual

complexity. This is accomplished first by sorting 1,176

1000
.. . . . 845
the securities in decreasing order by complexity.g 697 | |

Seco
(4]
=
|

Next, the most coniex security is added to the 500 |
I 210

current subtask, provided that doing so would not o
122

go over the defined limit. Preference is given to 100

@ 50 43
within a subtask, in order to share in startup .
I

96
" S
securities of the same type as are already presefst 5 |
[i}]
overheadThis common overtaa cost can be seen s

25 50
Quantity

in Figurel, where three types of securities, when Figure 11 Performances for Differing Security Types

100

calculated, have a specified baseline cost to run the calculatiting at using a similar pe
securiy, any other type can be viabjgpvided that it falls within the complexity limit. If no
security can be found to fit within these constraints, a new subtask is dynamically created and the

process continues with the new subtask. In this maartagk can be broken into a relatively

14

small number of subtasks that incur low startup costs and take approximately the same time to

complete.

Furthermore, in order to strike an effective balance between minimizing task costs and
overreaching the capa@s of the server farm, an improvement upon this algorithm was
developed that effectively provides a sliding scale of complexity limits that is related to the
number of securities to be calculated. This system starts off with a small grouping complexity for
small tasks, which helps to prioritize small requests to finish as rapidly as possible. For larger
tasks, a gradually increasing cap on the complexity is imposed, which helps the subtasks grow
gradually to account for the growing complexity while avoidiwgr or under grouping.

Utilizing this approach, an algorithmasderived that proved itself to perform well under all

circumstances tested, both for very simple tasks as well as for quite complex tasks.

3.2.3 Limited Number of Tasks

A straightforward yeeffective algorithm to distribute the work into subtasks is to simply
distribute each security evenly. In this algorithm the list of securities are iterated through and
distributed to the set number of subtasks in a round robin fashion, with no regiuel for
expected complexity of each security. In practice, this method tends to perform reasonably well,
as when the securities are randomly distributed they tend to develop tasks with approximately
average complexities. H o whereigno guarantee af goote t hod 6 s
distribution, and with no consideration of complexity for each security, it is very possible for a
large number of complex securities to be put into a single subtask. Therefore, while in most
situations this performs well ammgberates quickly, certain circumstances could lead to great

inefficiencies in task distribution.

15

3.2.4 Limited Number of Tasks, Average Complexity

Another algorithm was developéuhtperforms similarly to a straightforward limited
number of tasks method, butdiiibnally considers the weights of tasks in deciding how to
distribute workload. Thisvasaccomplished by evaluating the complexities of all securities, and
then sorting the list of them in descending order of complexity. Once this is done, they are
distributed into the predefined number of bins in a modified renafoih fashion. The
modification is to distribute them iterating up the list of subtasks and then distributing down the
list, rather than always in an increasing manner. Doing so prevents ltheasks from always
being given the more complex securities, and provides a more homogeneous weight in each
subtaskThisimproves upon simple sorting of securities without consideration for their
complexity, as it helps to avoid unexpected conditionsreveebtasks are poorly balanced.
However, this system does little to consider the wastage generated from redundant startup costs

across tasks, as it will lead to similar securities being distributed widely across subtasks.

3.2.5 Group by Security Type

Grouping he securities into subtasks based upon the type of security they are was found
to be quite effective, and maximizes sharing of overhead costs. This is achieved by iterating
through the list of securities, keeping a list of types that have been encoumte¢oetthat point.
This list also stores which corresponding subtask is being used to store a certain security type,
and can be used for sorting securities that belong to akmambuntered typed. it encounters a
new typewhile iterating it dynamicallycreates a newubtask, whiclis reserved for the new
security type. This method performs well for small and medium size batches of securities, and

keeps a low startup cost regardless of batch size. However, larger batches may result in single

16

tasks that antain hundreds of complex securities, and will perform quite poorly under these

circumstances.

By additionally limiting the size of subtask, this algorithm was improved to address the
issue of poor performance with heavy tasks. Wasdone by establishg a defined limit on the
size of any task. The algorithm then performs very similar as to without the limit, however it
keeps track of the growing size of subtasks as they are built. If at any one time a subtask would
be overloaded by adding another sé@guthis security is instead added to a new subtask and all
future securities of that type enter the new subtask. This improvement to the algorithm allows for

flexibility to provide high performance across a wide band of task sizes.

3.2.6 Individual Security Tasks

The algorithm that merely divides each security within a task into a subtask can be
effective if the number of securities is very small, but otherwise is highly inefficient and
burdensome to the cluster as a wholee delay of writing and reading t@arary files for
subtasks is small in most circumstances theiatency to build and write these files is
substantialvhen this is done for a vergiige number of individual files-urthermore, if the
number of tasks exceeds the number of available rod#dse server, the excess tasks will be
gueued until other subtasks finish. This latency both slows the outcome dramatically as well as
inhibits other tasks from different users from being processed in a timely fashion. Therefore,
splitting securities it individual tasks is best reserved for small batches of only a handful of

securities, where expediency is desired and is possible without overloading the servers.

17

4 Results

4.1 Coherence Cluster

In developinghe Coherence cache product for BNP Paribasagespecially important
to ensure that the final produoietthe original requirements of the projeltt particular,
considerations were constantly made to enthatthe cachevasextensible, efficient, and able
to be closely and constantly monitor&hing so required not only a focused interpretation of
how each piece of the puzziasto operate, but also a broad realization that all pieces had to fit
perfectly together and work in harmony to achieve the goal. Among the many minute

considerations tbe made were some large interactions to consider, such as:

1 How the cluster itself was to be designed

1 How the clients and servers pass data through the Coherence Cluster

1 How to make the cluster easily extensible to suit any necessity

1 How to harness and caot the tasks that are sent through the system and monitor

them appropriately

1 How to make the end product be flexible enough to apply to a broad range of

applications

In completion, all of these features were interwoven into a system that achievesahe ini
objectives effectively, and provides a strong demonstration of the Oracle Coherence cluster in

action.

18

4.1.1 Core Structure

The internal design of the Coherence cluster was the core of the project that was to be
built upon. The initial concept for the desigf the cluster was predicted to be very simple and
straightforward, however the ultimate development proved to be quite conipkefoundation
for the Coher Bigpatehedbc | nuosdteesr tihsatt hree s de wi t hi n
form of Colerence cache servers that are instantiated in such a way as to persist and
automatically join other members of the cluster. Within the framework, their core responsibility
is to negotiate the distribution of work to connected servers, as well as moogoegs and
relay messages regarding completion. Even though these nodes can be configured to distribute
work in several different manners, the usage chosen for the pngetd provide a roundobin

distribution of work to all servers, effectively balargthe workload amongst the server farm.

In addition to the dispatchers, the Coherence cluster also was designed to incorporate the
use of two Extend proxies. These proxies rasidehe cluster, but on the fringe. Their purpose
wassimply to allow poims of communication both on the server side as well as the client side.
Due to the necessity to operate in .NET as well as to operate in a distributéatalaoretwork,
these proxies were required to contain the cluster locally yet still allow commanitaeither
side of the work distribution. Similar to the dispatchers, these praxaesightweight and

instantiated to persist and connect to other nodes within the cluster.

This final design approach for the core of the Coherence cluster creates a fully functional
approach that allows for a wide variety of operations to pass through the cluster. Furthermore,
from a design perspective, tlaowedfor the entire cluster to lbought of as one monolithic
entity, with just one access point for the client and another for the servecrdiisca generic
implementation that is more readily extensible to other applications.

19

4.1.2 Client Structure

In this project, the structure of tisent wasextremely straightforward and of minimal
size. Each client obviously must have some means of communicating to the clustewyaghich
handled by using a coherence JAR file structured to handle access to the appropriate proxy. With
this connectiorestablished, the core features of the task submissogto submit the task to
the cluster, and to wait for the response. Both of theseprovided by Coherence, and in fact
only the submissiowasrequired, as tasksere able tde submitted withoutoncern for
feedback if desired. Both submission and reception allidar a significant amount of transferal
of data, whichwasstill feasible through the current implementation. Although both applications
that were developed in the course of this prgpeicharily used shared files for communication
andhadrelatively small amounts of data transfer directly, the functionality for more data transfer

directly through the clustevasstill provided.

4.1.3 Server Structure

The structure of the servers in the ovieraplementatiorwassimple and shares some
characteristics of both the clients and the cluster itself. As with the client, servers editmect
the cluster through a proxy connection reserved for such use, aretineauore setup in order
to participatan calculations. However, the servevereinstantiated in much the same way as
the units of the clusteverestarted: via simple execution scripts thetrebased on Coherence
configuration files and rematal active indefinitely. As far as the actual tastecution that takes
place on the servevasconcerned, a simple class thatintesiit he O Resumabl e Task§aé
from Coherence can be used by a serveryagincluded in its running environment through a
simple configuration file. This allogdfor servers to be easily extended in order to execute any

desired calculations.

2C

4.1.4 Monitoring and Feedback

As monitoring and the overall accessibility of information about tasks as they are
executing was of high importance to BNP Paribas, specific consaleratere made to bring as
much transparency to these aspects as possible. From the client perspective, an apg@iation
given the capability to view the status of any submitted task, as well as specific metrics as to the
progress within. Also, the ali§i to terminate tasks before completiwasalso accessible to the

client, which providd important features related to controlling the overall execution.

4.1.5 Extensibility

In designing the project framework into the final iteration thasdelivered, seveta
featureamadethe system patrticularly extensible. Firstly, with concern to extending the size of
the cluster and of the servers, creation and startup of new dispatchers, proxies, owssrvers
relatively simple. Thisvasbecause of the way in which thdynamically organizéthemselves,
as well as the means through which redundancy and failover considevegi@t®ntrolled
within Coherence. Furthermore, during the project a simple script was developed in order to
automatically create a unique ID foryamew server thavasto join in on handling the workload.

This allonedfor next to nothing in startup work in order to add servers to server farm.

Aside from expanding the size of the cluster and server farm, extensazbgchieved
through the constnaed points of entry and exit to passing through the Coherence cluster. This
meart that the core within the clusteouldremain unmodified, while only adaptors to the
proxies neeed tobe created for a new operation theatsto be handled. This improventen
drastically improve upon development time, allowing new calculations to be run on the system
without the overhead of developing a system that would stand in the place of Coherence for each
new application.

21

4.2 Command Line PolyPaths as a Task

A major proofof concept for the prototype Distributed Coherence Cache framework was
to be able to handle the invocationRadlyPathgemotely orserverqPolyPaths, 2010)To
accomplish this, considerations for transparency to the clieokiimg a task, accessibility of the
data to be used, implementation within the Coherence framework, and efficiency in task
distribution were carefully considered. However, all of this hinged upon the system being
designed in such a way as to integratelgasto the current usage of timlyPathgunctionality

at BNP Paribas.

Before the availability of the distributed computing architecture that is provided by this
project, the primary means by which to perform large volumes of necessary calculations by
PdyPathswould have been executed by a command line operation and performed locally on
each machine. However, this system can create a large load to a single computer, which is
problematic if the computer is a personal desktop used by traders. Also réhsubstantial
slowdowncosts,as each security must be calculated in sequence, while a distributed system
could share the workload over manyedfortiecessor s
invocation of a client that can communicate tasks telinger, with little or no difference in the
complexity of the operation call. Additional!/
creation of a straightforward Windows Form application that can be used to demonstrate and use
the Coherence ClustenrfPolyPathgalculations through a graphical user interface. This
application offeedall functionality of commandine calls, as well as the ability to start multiple
calculations simultaneously and monitoring of task progress. In both instances, the task

processingvashandled the same way within the structure of the Coherence Cache.

22

Within the Coherence framework, the actual implementation of a Polytthuation
requestvasvery simple. A task libeen written that simply receives the command like
arguments that would ordinarily be exhemuted o
on the server. This simple passing of work allows the task to be loaded on the server processor
instead of the clientds, ther eMagyisidleiagdssat ni ng t
sections of the cluster and servers, and thereftm@edfor a very lightweight method of
migrating work away from the client. However, in order to do so successfully stitl tglan

the ability for the server to be able to access the input data that needs to be calculated.

The PolyPathapplication regired access to the data in a compatible form in an input
file. Therefore, in order for the calculations to be moved onto a server that is located on a
computer other than where the files are stored, the systeded tde able to compensate for
this. Fotunately, much of the networking framework in place at BNP Paribad malishared
drives for file storage. As a result, any input file or output destinataidbe used by the
projectds i mplementation p wasprovided. & bendfitdrom i t s ab
this wasthat this system of task passiwgsvery easily distributed over numerous servers to

speed up processing.

23

The greatest benefit that the use of a distributed caclifgPathscalculation provides
wasthe opportunity to use the processing power of numerous servers to expedite the valuation of
large batches of securities. In the implementation of PolyRadivwasused within this project,

thiswasaccomplished by skdding the input file into numerous smaller input files, each of

Coherence Cluster \

_ | Proxy | Rlapatchey [Proxy
- - | " -

/ Application ; — Servers
| (Polypaths, ' :
| Westminster) / ‘ _ ‘

Figure 27 Structure of Flow Data

which washandled individually on different servers. Each filel llee necessary input data,

couldbe calculated in parallel, amcasrecombined with other files upon completion. This
architecturewaslocated within the client specific to the PolyPatipglication, and could easily

be replicated in other clients, provided an

couldbe piecemealed and executed.

Figure 2 is an example of the final structure, including how the layers of the process
appear in Java versus .NET, as well as the interoperability between the two. As can be seen, it is

important to note that the client side makes use of .NET, while thers#de remains

24

exclusively in Java. Also, both sides share the usage of commonly accessible shared files instead

of using the cluster as a means of passing of data.

4.2.1 WinForms Application Associated with PolyPaths

The culmination of clienrside development for PolyPaths was a comprehensive
WinForms applicationThis applicatiorwas intended as a demonstrative tool of the power of the
system developed’he complete structure df¢ completed project for PolyPaths can be seen in
Figure3. In doing so, a complex yet intuitive interface was developed to exemplify the different
algorithms, diffeent calculation formats, and task monitoring and management options available

to the end useilhe resulting product of all features can be sedfigare4. Startingfrom the

i \ i
i Java Coherence Cluster |
: Send/Receive :) Send/Receive :
I : . Tasks I)) Tasks) 1
= y { hY D. h / 3
: (PolyPaths \ gl Prexy) ispatcher | Proxy) o S :
!\ Java Client J r Servers I
I \ i
i ’ i
! 4 !
|- E——— . AU [
INI

Bridge
s i —— 1)
I - | ——
: 1 . E——— ;
- Get Security Data Read Input
I L | f oo ; -
; i S Security Database © Write Output
. PolyPaths '~]
I WinForms Client — S i
i \ Application . h i, '
H 1 . -
- - e _ » _
!] Read Input — —
I = Write Temp Files ’ - .._:'».5_____ .
: NET Read Config Files — -

Shared Files

Figure 31 Structure of the PolyPaths Appl.i-'c-ation

top left of the window pane, it can be seen that different input and output paths can be specified

for the calculations, and within these options are the choices for both .xml and .csv file formats.

Beneath this i s a obndisgtoidiffegentaldta vallsesvthat ateltocbe 6 cor r e

25

calculated for the given securities (specific switch names have been omitted from this figure for

confidentiality reasons). Any number of these can be chosen to be run together, or alternatively

B8 PolyPath Client

Calculate

Input / Dutput Input/Sec | Task Secuiies In Time to Task System | Ewecution
Taskit f et Progiess e Grouping Method Compitte | Dvehesd | Ovshond ToMN | WaitTime | Cancel
Input. | | [CBrowss. |
prop20sml | 3075 - Inlividual T asks Cancel
Output: | | (Browee.] P50 0 274 Firishad - . - - 130785 | 00785
Switches [1 285 [In_Progress |
1 O [l 2 21 Finished - - - - %2975 | 003
L] vl E ------- 3 285 Finished - - - - 3004985 | 0047
= = a || - 1 21 Finished . - . . 21031 | 00B2s
; ; 5 285 In_Progress
V|
- B 216 In_Progress
[0 UseCustomSwitches | 7 18 Friehed . N . . 2422s Lo62s
‘ g 3% Finished - - - - 2854045 | 0047
Grouping Method | e 9 216 In_Progress
Limited #of Tasks, | _ N _ _
O Individual Tasks O siverage \Weight per Task 10 201 Finished 04873 | DOBZe
© Limited # of Tasks T 1 18 Finished - - - - 22187 | 0.047s
O By Secuy Trpe O micdweightpor Task. | o 12 18 Finishad sitEhs | noms
® B S s, () Wariable Limited \Weight 13 207 Finished - - - - 282732 0.031 ¢
Limited ‘weight per Task 14 207 Finished - - - - 282561 s 0.03 s
....... 15 18 Finished . - . . 209845 | 00B2s
Finished - B . .
HorTaks [] weigh 16 12 0781 | 00E2s
17 207 Finished - - - - 023025 | 00T
1321:00 JNI Bridge has been established. | [18 207 Tn_Progress
132110 Task: 0 started
1321:16 Task: 1 started 19 12 Finished - - - - 20709 | 00A ¢
132127 Task: 2 started. -
135136 Tosk 2 concelied 1| pepsiem | 5z | - Limited Weight. Variable: [Cancel
132154 Task: 3 started 2| props0aml | 2088 . Security Type
ZCusip.csy - Secuity Type (Cap: 375]

Figure 41 Example of PolyPaths Application

the box benedtit can be used to directly copy and paste in a specific list of opétbosing for
greater flexibility. Next down are the various methods of grouping as described in sectidn 3, an
also corresponding configuration data may be entered where avdiaftly.on the left column

is the output pane, where performance data about the application as a whole may be inspected
and tracked. To the right is the pane allowing monitoring anEkect®n of the currently

submitted taskdVithin these collapsible lists it can be seen that a particular task may be

inspected with greater granularity to observe what components of it have completed, while also

26

being able to easily identify any troubleoss. During the execution, a great deal of data is

available to the user, such as the progress of the task(s) (as visible in the progress column), the
types of securities in each batch (omitted), and the presumed complexity of a task as well as its
actualruntime. Furthermore, tasks may be cancelled directly through this interface by means of
the 6cancel & button associated with a task on
in the figure, a cancelled task remains on the list of computabahg immediately abandoned

on the server, and only remains for informational purpd@Sekectively, this application

demonstrates all of the capabilities present both in the core of the Coherence Cache as well as the

adaptation suited to PolyPaths cddtions.

4.3 Westminster Coherence Client Application

As a result of proving how fast applicatgeould be incorporated into the cluster, during
our last week of work we implemented a graphical user interface to compute tasks using
Westminstein adistributed fashion. Westminsterasan application used by BNP Paribas that
allowed computing market scenarios by inputting a list of parameteisdpecific market.
Westminster is an application fully written in .NET and developed by BNP Pawbashhas an

extreme importance on a daily basis for traders.

In order to prove thahecluster was alsableto compute tasks written in .NE@nd due
to the fact that Westminster had a significant impact on a daily basis for traders, we decided to
implemern a Westminster application into our Coherence cluster. The application developed was
programmed in Java to prove that our system was also able to handle both .NET and Java at the
same time, and on the same cluster. In order to implement a Westminstateppinto our

Coherence cluster, we decided to create a Westminster controller, which we will refer as

27

ONestminster Server Controlter. Wa et mi nst er Swas based onGaovragpero | | er €
written as interface in .NET, which called a Westminspepal i c at i o nNestminsterer r ed a

Serveb, t hr ough RenfoteObje& el iohr amhye. 0

Figure5 represents the design we decided to implement for the Westminster Coherence
Client application. The major difference in the design compared to the PolyPaths application

created was that . .. I

Java Coherence Cluster \

Westminster clients | — — [
I | Westminster) \—) = Saryars ” '
[Client) I

were written in Java,

and the servers P

executed dava task 1

A |

bridge to o

that opened a jnidnet | . LR ”’ - s
I Shared Files | | Controller |

Figure 51 Westminster Coherence Client Design
execute the

task written in .NET. TheNET taskc a | | ¥estmmser Qerver Controlier, whi ch t akes
of sending alistof parametdr o t he O West mi o $ WestninSes Sew@akes. Then
care ofrunningthe scenario engingith the parameter providednce the market scenario has

been created, the output file containing the scenario specification is created on a shared drive

where the user can easily retrieve the file.

As with the PolyPaths appmiation, the Westminster Coherence application allows the
users to monitors the tasks launched. In order to monitor the tasks, the client sets up a listener on
the output file, once tWestminsiertSprvet, ftihlee wgsp | d cmp
notified and outputs the total tirtakento compute and which machine computed the given

scenario.

28

Another key point during the creation of this application was to make a very flexible
environment with different capabilities, so developers can keeleimgmting the application
very easily and adapt new functionality to the application without major issues. As a proof of
this, our application had two tabs, the first one where the user can launch the creation of a single
scenario with a list of parameteihe second has the capability of taking a CSV file with

different scenarios parameters and generates the different scenarios in a distributed fashion.

! For confidentiality reasons, we cannot post screenshots of the Westminster Coherence Client

application.

29

5 Analysis of PolyPaths Algorithms

In order to more accurately evaluate the effectiveness of ditfalgorithms that were
created to organizZeolyPathscalculation requests, as well as to spot room for possible
improvements, all of these algorithms were run numerous times under differing environments.
These benchmarking tests provided useful interpogigbf how well a particular algorithm
could perform, as well as gave a point of comparison to determine overall improvEigere6
gives a distribution of perforamce, measured in overall runtime, of all algorithms and previous
means of calculation over a variety of task complexities. It is important to note that the
&Command Liné@ aDechandBatch per f or mances are representat
calculationcurrently in use at BNP Paribas. The rest of the performance distributions, labeled in
green, are the myriad of different algorithms that were implemented. It is important to note that
t hBeméndBatch cal cul ati ons wer e ex eessarsanditheon appr o>
algorithms used were executed on only 16 processors, yet still outperformed in most
circumstances. (For brevitydéds sake and in ord
CommandLiné execution was excl indcudl te$tiogrthedaogese ¢ o mp |

files were found to take in excess of 2 hours to calculate).

3C

Figure6 demonstrates the relative consistency of runtimes throughout the algorithms

attemptedbut it wasnecessary to develop upon a single algorithm to create an algorithm that

would perform reasonably well under all circumstances. Thishidamitéd Complexit§

algorithm as described in the Methodology section, with a sliding scale for the complexity to be

used.

Batchd |

I n

t

he next

graph, it can

b eDemamek n

how

t {tase eans of data gerteya currently in use at BNP Paribas. As can plainly be

seen, in theventof very large and complex tasks being run, the developed system with

accompanying algorithm can outperform the current implementation in roughly half the time.

This is impressive atis is still being performed on the 16 processors versus the 100 processors

in

for

Avg. Minutes

34
32
30
28
26
24
22
20
18
16
14
12
10

20

Command Ling

Individual Tasks

50 100 200 500 1000
Figure 61 Runtimes of Algorithms & Demand Batch Execution

31

Demand Batch

Security Type

Specific Count
/érage Weight

Limited Weight

2000

34
32
30
28
26
24
22
20
18
16
14
12
10

[+7]

o MN E =

Avg. Minutes

use

the

t

current method. The poorer performance experienced by the algorithm for sowanged file
sizes can be attributed to this difference in processors in use.ntithber of processors within
the cluster were to be comparable, it could be expected for this gap to shrink considerably,

possibly even reversing.

The majoroutcome of these benchmarking tests of the created algorithms is positive.
When run under comparable features and on identical calculations, the algorithms written in
conjunction with the Coherence cluster developed could reasonably match or outperform the
current implementation, at times by a factor dftzs comparison can be seen quite clearly in

Figure7, a comparison between the optimal algorithm chosen and the existing calculation

34 34
32 Demand Batch 32
30 30
28 28
26 26
24 24
22 22
w 20 20 »
2z L
2 18 18 2
= =
2 18 16 2
E Limited Weight <:E
14 14
12 12
10 10
8 8
6 / 6
4 § 4
=
2 2
0 0
20 50 100 200 500 1000 2000

Number of Securities
Figure 71 Comparison of Best Algorithm to Current Implementation

32

methods in use at BNP Paribdsis is a strong indicator that the Coherence cluster can not only
be used as an effective means of having generic distribution of work, datsadslightweight

platform for powerful distribution algorithms that provide noticeable benefits to BNP Paribas.

6 Further Steps

There are more improvements to the product that could be implementedaso it
structured in such a way so as to make thedr ldévelopment possibl€he primary
improvements that could have been made were to intapeateolyRiths and Westminster
applications into the systems currently in use, to make the cluster operate as a series of windows
services, to move the algorithriwsdistribute work into the cluster itself, and of course to
perform calculations for other applications on the syswimle all of these would providieir
own benefits to the product, the improvement that BNP Paribas could implement quickest in
order b see performance improvements would be to integrate the system into the current

applications.

Integrating access to the Coherence Cluster into current applications at BNP Paribas
could provide performance improvements with relative ease. These intaegnatald likely not
use the applications developed during the project specifically for calculation, as these were
merely for demonstrative and testing purposes. Nonetheless, the core concept of the means of
accessing the cache could be transferred qusié/eand transparently implementedsiystems
already in place at BNP Parib&mnce this is done, the next logical step would be to help
improve the ease of use of the cluster itself, which would take the form of developing windows

services.

33

Windows serices, which are applications that persist in the background of a running
operating system, are a perfect candidate for thetiermg implementation of the Coherence
Cluster developedt is probable that windows services would be an ideal implementatibie of
cluster, as they provide the simplicity necessary to manage as well as the reliability desired.
Once a reliable and stable server has been established, it would then be feasible to transition the

burden of deciding how to distribute work into the tdustself.

While the developed implementation where the algorithms to distribute PolyPaths are
retained within the client application works well, it would be preferable to have this sort of
calculation be performed in a generic manner within the cliByemodifying the
implementation of the Processing Pattern to insert an intermediate step wherein work is split,
distributed, and rejoined transparently, it would be possible to achieve the performance benefits
regardless of the application being distrdaitThis would lessen the burden to the developers, as
they would only have to write a small wrapper to this implementation, rather than rewrite the
algorithm for each specific applicatiodf course, having such ease of extensibility would of

course allowfor far more applications to be integrated effortlessly.

Lastly, the addition of more and more applications to the list of calculations that can be
performed on the developed system is possibly the most evident extension of the sDitevare.
to the facthat the Coherence Cluster is so adaptive and the structure is as flexible as it is,
extensions and additions should not be a great challenge for BNP Paribas, and is an opportunity
in the near future for even more performance benefits to be gained thiheugde of the system

created.

34

Bibliography

Oracle Coherencg2010). Retrieved October 2010, from Oracle:

http://lwww.oracle.com/technetwork/middleware/coherence/overview/index.htmi

Arliss, N. (2009, June 4Y.he Portable Object FormaRérieved October 2010, from Oracle:

http://coherence.oracle.com/display/COH35UG/The+Portable+Object+Format

Fahlgren, C. (2010, November 02). Oracle Meeting. (C. Herreros, & K. Jotham, Interviewers)

New York, MA, United States.

Howes, J. (2009, April 20 onfiguring and Using Coherence Exterivktrieved December 12,
2010, from Oracle Coherence:
http://coherence.oracle.com/display/COH34UG/Configuring+and+Using+Coherence+Ex

tend
Khan, I. (2009). Distributed caching on the path to scalabM&§DN Magazine

Ledbetter, L. (2007, March 23pracle Buys IfrMemory Data Grid Leader Tangos®&tetrieved
October 2010, from Oracle:

http://www.oracle.com/corporate/press/2007_mar/tangosol.html

Misek, R. (2010, October 4¢.oherence IncubatoRetrieved October 2010, fro@racle

Coherence: http://coherence.oracle.com/display/INCUBATOR/Home

Misek, R. (2010, 06 24Processing PatternN. Arliss, Editor, & Oracle) Retrieved 11 27,
2010, from The Coherence Incubator:

http://coherence.oracle.com/display/INCUBATOR/Processintefa

35

PolyPaths. (2010, 12PolyPaths Fixed Income SysterRetrieved 12 2010, from PolyPaths:

www.PolyPaths.com

Savara, P. (2009JNI4Net Retrieved 11 26, 2010, from JNI4Net: http://jni4net.sourceforge.net/

Waldo, J., Wyant, G., Wollrath, A., &endall, S. (1994)A note on distributed computin§ML

Technical Report Series, Sun Microsystems Laboratories, Mountain View, CA.

36

Technical Documentation

WPI 2010
DDGM

Technical Documentation

Claudio Herreros
Jotham Kildea
12f17/2010

37

Table of Contents

1 Coherence CIOStEI. ..o e e e 2
1.1 How to Bmm dt ettt et et e 2
1.2 How it Works o 2

2 NodeConfiglreator .o et e et en e e et enen 4
21 How i WOk o e e e 4
22 BeqMremiemiis. ..ottt ettt et et n e 4

L = OSSPSR 5
3.1 BemtIIOthOMS oottt ettt et et n e 5

A Py PatIS e ettt ettt st e 6
41 Howto Compile I 6
42 PolyClientWinForm (INet). ..o 6
43 PolyChent (TAVAY ... oo ettt et et et e 7
44 Enown Unresolved Bugs .o Y

3 WeSTIISIET .o e e e 10
3.1 How to Compile 18 oot ee e et e 10
3.2 Howto BRI It oottt ettt et et eme e 10
3.3 WestTest (et) e 10
3.4 Java (application, gud, WHLIHES) .o 10
3.5 Enown Unresolved Bugs oo 11

& How to Develop the Current Structure Further . 13

Comtact 15
1

38

1 Coherence Cluster

1.1 How to Run it

. Launch "cache.cmd”
. Wait until "cache.cmd" has been initialized
. Launch "client-proxy.cmd”

1
2
3
4.
5
6

Launch "server-proxy.cmd”

. Wait uatil "server-proxy.cmd " has been initialized

. Launch "server.cmd”

1.2 How it Works

All the configurations for the nodes (cache, proxy, server and client) can be found
at

http://coherence. oracle. com/display INCUBATOFR Configuration+for+the+Proce

ssing+Pattern

custom-paf-config.xml: POF serialization contains the path to the task locations.
The POF configuration file will look for * class.

Inside the PFServer folder there are two folders: application and process. These
folders contain the class files for the Tasks.

cache.cmd : Launches the cache and dispatcher, the cache needs to be executed
with the following classpaths: coherence jar, commen jar and
processingpattern jar. The libraries can be founded at:

(http://coherence oracle.com/display/ INCUBATOE Heme). The configuration
file mitializes the dispatcher.

server-proxy.cmd & client-proxy.cmd : Create a proxy to connect the servers and
clients. Need to make sure that the proxies for the server and client use different
ports.

server.cmd - Launches a processing node.

3¢

Coherence Cluster l

/" Application

Final positioning and function of the coherence cluster in the overall architecture

40

2 NodeConfigCreator

This solution is executed as part of the execution of server.cmd when creating a new
node. Once the NodeConfigCreator project has been built. the created exe file needs to
be copied into the WPI directory for server.cmd to access it. It should not need to be run
on its own. The executable file takes as an argument the absolute path to the

confignration file of the server.

2.1 How it Works

Loads the serverxml file, and replaces the “ID” with a dynamically generated
unigue ID. The unique ID is currently setup to be the corrent time.

* MNecessary to quickly start up servers, as no two servers may share an ID

2.2 Requirements

The absolute path to the configuration file of the server. (serverxmi)
+ Beinvoked by laonching server.cmd

41

3 Jni4.Net

JNI4 Net is an application that allows to port libraries from Net to Java and from
Java to Net. The application auto generates the required code from one language to the
other. We used JNI in order to address the problem of supperting Net in the Processing
Pattern. JINI4 Net requires having the following directories:

o [ib: this folder contains all the libraries to run JNI4 Net. alzo the user needs to
put the library he wants to port into this folder and modify generateProxies,
to reference the library correctly

s work: this folder 13 where the worl: gets computed and where the ported
library is outputted

¢ bin: this folder contains the application proxygen.

3.1 Restrictions

The JAR file to port cannot start with an upper letter case

Proxygen needs to be inside a folder named bin

* Jnid Net does not support multidimensional arrays

The bridge cannot be initialized on a shared driver. It needs to be initialized
locally

® Questions http://gronps_google.com/sroup/jnidnet Thi=en

42

4 Polypaths

4.1 How to Compile it

B Y R e

Notes:

Once the Java code is ready, we need to create a JAR file

Copy the created JAR. into the [ib folder

Bun generateProxies.cmd (This will create a DLL named polyclient j4n.dll)

Need to make sure that VS is closed (or any application that 15 using the C#
classes)

Run copyJarDILemd (This will copy the DLL and JAR files into the Debug folder
of the solution

Make sure that the Coherence cluster is running

Execute the solution

In case of making any changes to CommandResumableTaskjava. you will need to
get the binary file (_class) and copy it into the server.

4.2 PolyClientWinForm (.Net)

This 15 the primary client application and WinForm that is used to interact with

the closter and send calculations. As 1t 1s a VS project, it can be run simply by building

the project and either munning it from VS or through the exe file that is created. Within

the project itself there are several components to lock at specifically:

Form.cs, Program.cs - Rather self-explanatory, these are what interfaces with the
GUT and handle the default woik to set up a WinForm

Task.cs - This 1s the main class that handles all things related to parsing a task,
sending it, receiving it, and aggregating it

FolyFile.cs and related classes — These classes implement the PolyFile interface,
and are nsed to specifically handle the shredding and merging of their respective

file types.

43

s FileJoin.cs and related classes — These classes implement the FileJoin interface,
and are all of the different algonthms wsed to distribute files. By looking at them
as a foundation, more algorithms can easily be added.

s ProgressColumn.cs and CustomCancelColumn.cs — Used exclusively in the UI
for the grid view displaying progress of tasks and offering the ability to cancel
tasks.

* DafabaseConnection.cs — Sets up and persists a connection to the MBS database,

to be used for querying information about specific tasks.

The core of the application to lock at is within the LaunchTask method within the
Task.cs class. In here, it can be seen where the work is split up. each subtask is sent
individually, and how. Also it covers merging of results and sending feedback and
metrics back fo the Form.cs class.

Reguirements:

+ Inidpet must be used to create the proxies to the PolyClient (see jnidnet
documentation for more detailed instructions). These proxy files must be
incleded into the preject and located in the same directory as the .exe

 Inidpet dll and jar files must be located in the bin'Debug directory. or located
with the .exe file in order to run

+ Within the coherence jar file, there is a file called coherence-cache-config.xml
which must be modified to list the port(s) and machine(s) that it is to
attempt to connect to.

« Within the coherencejar file. the pof-config.xml file must be modified to kst

any tasks that it must understand how to execute.

4.3 PolyClient (Java)

This project contains the java classes necessary for actual execution of tasks.
There are three classes to consider:
CommandResumableTaskjava — this class is the “task” that is the instructions to

the server specifying what work is to be done. In this application, this 1s simply to take

44

the given command line argument and executed it as a process. It implements the
ResumableTask and PortableObject interfaces, allowing for it to be used in the
Coherence Cluster. This class appears in two specific locations, the resulting jar file
which a proxy to NET is built upon, and in a specified folder within the same directory
as the server, to be referenced in the server’s pof confipuration. (more specifics about this

can be found i the jnidnet and cluster sections, respectively)

TaskExecution java — This class is the client side to the operation, and is what is
responsible for entering calculation requests into the cluster. It does so by use of the
‘submit’ method. and waits for the outcome with the “wait” method. It can be used
directly or also through creating a jnidnet bridge to the resulting jar file that can be
mvoked from NET.

CoherenceTask5tais java — This is a simple class that allows for multiple matime
metrics to be refurned to the calling platform. It 1s specifically within the Polypaths class
structure, but is not specific to the Polypaths function.

i i
. Coherene Clusber \ L
: send/Receive :
i Tasks Sond/Racoha i
! | PoyPaths | . w o e Proay | - !
' Java Chent Servers i
i I| i
i i
: : :
- | -- 8 Lot vl
NI
Bridge

RN [———
1 | e ———
i] : Get Security Data - Read Input
2 . Security Database Werite Crutput
! DolyPathu I |‘_-—'_FI
|| WinFarms Client b
.. Apglication i
I ; Rezadl Input &
i H Wirite Temp Files . |
] MET ! Read Contig Files e

L_ Shared Files J

-

Final structure of the Polypaths implementation

45

4.4 Known Unresolved Bugs

In certain circomstances, when the PolyClientWinForm should happen to
encounter an unresolved exception and crash, there is a chance that the tempeorary
output files of BatchCal executing on the servers may occasienally be written into
the directory that the task processing servers are run from. This is not easily
repeatable. and is only observable through the appearance of errant output files
appearing in the server’s directory.

o Likely canse: npon the client crashing, the server has no application
watting for its feedback, and the “current directory” may be getting reset to
point to the local directory where the server was spawned from. When the
writing of the output file occurs, it may be written here instead of the

intended location

46

5 Westminster

5.1 How to Compile it:

Once the solution is dene editing, build it {create the DLL)
Copy the DLL into the Ilib directory

Faun generateProxies.cmd

L Y

Fun the application

Notes:
* In case of making any changes to CommandResumableTask java, you will need to

get the binary file (.class) and copy it into the server.

+ [Ifthe solution is changed, copy the DLL and the created JAR into the Coherence
server folder

Make sure that the Coherence Cluster executes the JNI bridge locally (cannot be
on a shared drive), otherwise this will create a fatal java error.

5.2 How to Run it

1. The Coherence cluster needs to be initialized
2. WestServer needs to be running on the server(s)

3. Bam WestClient.cmd

5.3 WestTest (.Net)

This application is a server controller for the Westminster server. This project
calls the Westminster server throngh an interface. The code was originally created by
Andrew Clark.

5.4 Java (application, gui, utilities)

The project is divided into three different packages:

10

47

+« Applicaton: This package contains the main class to execute the task
o Client.java: The main class to execute the program
o CommandResumableTask java: A class confaining information of how to
execute the task into the server.

o TaskSender java: Wrapper to the task for the GUL

s Gui: This package contains all the classes to display the Graphical User Interface

s Utilities: This package contains two helper classes. One to read and split the CSV
files. and the second one to filter the files by name.

Final structure of the Westminster implementation

5.5 Known Unresolved Bugs
s The way the program checks if the task is done, is by checking the cutput path of

the file. The application checks if there is a new file with the specific name. In

11

48

49

