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ABSTRACT 
 
 

The fundamental theorem of asset pricing in finance states that the price of any 

asset is its expected discounted payoff. Ideally, the payoff is discounted by a 

factor, which depends on parameters present in the market, and it should be 

unique, in the sense that financial derivatives should be able to be priced using the 

same discount factor. In theory, risk neutral valuation implies the existence of a 

positive random variable, which is called the stochastic discount factor and is 

used to discount the payoffs of any asset. Apart from asset pricing another use of 

stochastic discount factor is to evaluate the performance of the managers of hedge 

funds. Among many methods used to evaluate the stochastic discount factor, 

generalized method of moments has become very popular. In this paper we will 

see how generalized method of moments is used to evaluate the stochastic 

discount factor on linear models and the calculation of stochastic discount factor 

using generalized method of moments for the popular model in finance, CAPM. 
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Introduction 
 
 
The stochastic discount factor models are used to evaluate the performance of 

actively managed portfolios. Hedge fund returns are mostly the result of dynamic 

trading strategies that are being implemented by fund managers. As the result hedge 

funds have time varying exposures to risk, which makes traditional approaches to 

performance evaluation not applicable. For an investor the problem is to choose from 

a large universe of investment possibilities and for this reason and other ones 

measuring the performance of fund managers is a very important research problem in 

finance. One approach to evaluate the performance of hedge fund managers is to use 

the stochastic discount factor. The performance of hedge funds is evaluated under the 

assumption that there are on arbitrage opportunities in financial markets. This 

assumption implies that there is a positive stochastic discount factor that can price all 

assets. Under such assumption the price of any asset is given by the expected value of 

future payoff of the asset adjusted by the stochastic discount factor and in particular 

the gross return of any asset will satisfy: 

                                1][ 1,1 =++ titt RmE . 

Where 1+tm  is the stochastic discount factor at time 1+t  and tE  is the expectation 

conditioned on the information available up to time t. The stochastic discount factor 

is a positive random variable that adjusts the future payoffs for passage of time and 

uncertainly and as we already mentioned its presence is guaranteed by the absence of 

arbitrage.        
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  In order to evaluate the performance of hedge funds it is necessary to have some 

benchmark. Usually as benchmarks are taken portfolios of primitive assets. A 

conditional model of performance evaluation should assign a value of zero to any 

dynamic trading strategy that involves the available benchmarks as long as the 

strategy is based on data publicly available. If we denote by 1+tR  the vector of gross 

returns on primitive assets at time 1+t  and W the vector of amount invested in each 

asset. In what follows we will consider column vectors unless otherwise specified, 

and U’  denotes the transpose of vector U. Then we want a portfolio WRt
'

1+  such that 

                         1][ '
11

)
=++ WRRE ttt , 

where 1̂ is a vector of ones. 

The above expression is used to find the optimal weights which is given by 

                          1][ 1'
11

)−
++= ttt RREW  

Denote the total payoff of this portfolio as WRR tt
'

1
*

1 ++ = . Then we have 

                              1][ *
11

)
=++ ttt RRE   

from which it follows  

                         1][ *
11, =++ ttit RRE                  (*) 

for all i. Thus in this case the stochastic discount factor ( *
1+tR ) is represented by a 

portfolio of primitive assets, where the weights are estimated so at least the primitive 

assets themselves are priced by the (*) model.  

If a portfolio satisfies the above equation then a neutral performance is given to the 

manager, if the left hand side is greater than one the portfolio is believed to have an 

abnormal or positive performance and of course if the left hand side is less than one 
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than the performance is negative. To evaluate the performance of hedge funds we use 

the expression: 
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1, +tiR is the return on the primitive asset i for i = 1, 2, …, k; 1, +thR is the return on 

hedge fund index  or manager and α is the measure of investment risk adjusted excess 

return, which is to be estimated. If α is positive the hedge fund index has 

outperformed investment strategies that involve dynamic strategies which use 

primitive assets and are based on public available information. If α is negative we 

say that the performance is negative and if α is zero the performance is said to be 

neutral. 

However in most cases neither we know which is the exact form of the stochastic 

discount factor nor all the market variables involved in it. In this project we will use 

the generalized method of moments to find information about the stochastic discount 

factor.  
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Chapter 1. 
 

 
Section1.1 The Stochastic Discount Factor. 
 
In general, the basic equation of asset pricing can be written as: 

                              ][ 1,1, ++= tittti xmEp               (1) 

where tip ,  is the price of the asset i at time t, Et is the conditional expectation 

conditioned on information up to day t, 1, +tix  is the random payoff on asset i at time 

1+t  and 1+tm  is the stochastic discount factor at time t + 1.  The stochastic discount 

factor is a random variable whose realized values are always positive.  

If there is no uncertainty the stochastic discount factor is a constant that 

converts into the present value the expected payoffs. In this case the asset pricing 

formula can be written as: 

                                
1,,

1
+

=
tifti x

R
p  , 

fR  is the gross risk-free rate. In this case 
fR

1
 is the discount factor. Riskier assets 

have lower prices than risk free assets and they can be valued using formula 

                             )(
1

1,, += tititi xE
R

p  , 

where 
iR

1
 is the risk-adjusted discount factor for asset i.  

There are two important theorems that give the conditions for the existence of 

the stochastic discount factor. Before we give their definitions we will talk about the 

law of one price and absence of arbitrage. The law of one price states that if two 
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portfolios have the same payoffs in every state, then they must have the same price. 

The violation of this law will create the opportunity for arbitrage opportunity, as one 

investor could sell the expensive version and buy the cheap version of the same 

portfolio. Absence of arbitrage implies that if a payoff A is not smaller than a payoff 

B, and sometimes A is greater, the price of A must be greater than the price of B.  

Theorem 1: In complete markets, no arbitrage and the law of one price imply that 

there exists a unique 01 >+tm  such that ][ 1,1, ++= tittti xmEP .  

Theorem 2: No arbitrage and the law of one price imply the existence of a strictly 

positive discount factor,  01 >+tm ,  ][ 1,1, ++= tittti xmEP  for every x. (For a proof of  

both theorems see Asset Pricing [1] chapter 4). 

So the latter theorem assures the existence of the stochastic discount factor m > 0, but 

it does not say that m is unique therefore it does not say that every discount factor m 

must be positive. 

However the second theorem shows that we can use stochastic discount factors 

without assuming the markets to be complete which is a very strong assumption.   

Going back to equation (1) if tip ,  is not zero we can divide both sides of equation (1) 

by tip ,  and we get  

                               ][1 1,1 ++= titt RmE                              (2) 

Where 
ti

ti
ti p

x
R

,

1,
1,

+
+ =   is the gross return of asset i at time 1+t . When we derive the 

equation (2) we get tip ,  inside the conditional expectation as a constant because tip ,  

is known to us at time t. The equation (2) for the asset pricing formula is the formula 

form mostly used in empirical work.  
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Section 1.2. The stochastic discount factor and the weighted portfolios. 

The major assumption we made to use the stochastic discount factor in asset pricing 

is the absence of arbitrage opportunities in the financial markets. Under this 

assumption the gross return of any risky asset will satisfy the equation: 

                                         ][1 1,1 ++= titt RmE   

If there are no arbitrage opportunities it can be shown that a portfolio of available 

assets can be chosen to mimic the behavior of the stochastic discount factor (see 

Hansen, Richard [9]). Let 1+tR  be the vector of gross returns of primitive assets and 

let W be the vector of weights (amount invested in each asset). We want a portfolio 

WRt
'

1+ (where ‘ stands for transpose) such that 

                                   1][ '
11

)
=++ WRRE ttt              (1) 

where 1
)

 is a vector of ones. Using equation (1) to solve for the optimal weights we 

get 

                                     1][ 1'
11

)−
++= ttt RREW . 

If we define the payoff of this portfolio as WRR tt
'

1
*

1 ++ = , then the return on any 

portfolio of the primitive assets will satisfy equation 

                                        1][ '
1,

*
1 =++ WRRE titt  . 

It is obvious that in this case the stochastic discount factor is of the form     

                                  '
1

*
11 +++ == ttt RRm  . 

So a weighted portfolio is a special case of a stochastic discount factor.         
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Section 1.3 The Stochastic Discount Factor and the Consumption Based Model.      

In this section we will derive the stochastic discount factor in a consumption based 

model. We will need to find the value at time t of a payoff 1+tx , that is, the stock price 

1+tp  at time 1+t  plus the dividend 1+td  issued at time 1+t . So 111 +++ += ttt dpx  and 

1+tx  is random variable. One approach to find the value of the payoff uses the utility 

function, which is a mathematical formalism, used to model investors over current 

and future values of their consumption, therefore we have 

)].([)(),( 11 ++ += ttttt cuEcuccU β  

where tc is the consumption at time t. Usually, a  formula for )( tcu  is given by 

γ

γ
−

−
= 1

1

1
)( tt ccu  

and we can see as 1→γ , )(cu  converges to ln(c). 

The utility function captures the fundamental desire for more consumption. The 

period )(⋅u  utility function is increasing function reflecting the desire for more 

consumption, and concave, which means a decline of marginal value of additional 

consumption. Discounting future byβ  captures impatience, andβ  is called the 

subjective discount factor. 

Suppose that the investor can buy or sell as much of the payoff 1+tx  at time t as he 

wants. We denote by e the consumption level if the investor do not buy any assets, 

and we denote by ξ the amount of the asset investor buys. It is clear that if the 

investor buys ξ numbers of asset at time t then the consumption level at time t will 
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decrease by amount of ξtp  and at time t + 1 the consumption level will increase by 

ξ1+tx . Investor needs to  

)]([)(max 1
}{

++ ttt cuEcu β
ξ

         (2) 

  condition to:  

ξttt pec −=                             (3) 

                                       ξ111 +++ += ttt xec                         (4) 

Substituting restrictions (3) and (4) at equation (2) and taking the first derivative with 

respect to ξ and setting it to zero we get 

                                 ])('[)(' 11 ++= ttttt xcuEcup β ,           (5) 

                                 ]
)('

)('
[ 1

1
+

+= t
t

t
tt x

cu

cu
Ep β                     (6) 

Equation (6) is the first order condition for an optimal consumption and portfolio 

choice. Another way to think about the above formulas is: )(' cupt is the marginal 

loss in utility if investor buys another unit of asset and ])('[ 11 ++ ttt xcuE β is the 

expected increase in marginal gain from buying the extra unit of asset. To get the 

maximum gain investor will buy or sell until marginal loss equals marginal gain 

(equation (5)). 

Equation (6) is the central asset pricing formula. There we see that if we define  

                      
)('

)(' 1
1

t

t
t cu

cu
m +

+ ≡ β   

then  1+tm  plays the role of the stochastic discount factor and, the basic asset pricing 

formula becomes: 

                                 )( 11 ++= tttt xmEp                                  (7) 
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where expectation is being condition on information at time tm is also called kernel 

pricing or change of measure. 

 In this context asset pricing formula (7) is a generalization that puts together all risk 

corrections by defining a single discount factor, which is the same for each asset. Of 

course 1+tm is stochastic or random because it is not known at time t. It is the 

correlation between the random components of stochastic discount factor m and 

asset-specific payoff ix that will generate asset-specific risk corrections. Asset pricing 

formula is a very general formula that can be used to price any assets such as stocks, 

bonds, and options. For stocks one-period payoff is 111 +++ += ttt dpx . If we divide 

1+tx  by tp we get the gross return,  

                       
t

t
t p

x
R 1

1
+

+ =  

and asset pricing formula can be expressed as:  

                                     ][1 11 ++= ttt RmE  

The latter formula for asst pricing is often used in empirical work because returns are 

very close to being stationary over time.  

We know that the risk free rate at time t+1 is known at time t.  Using the asset pricing 

formula for the risk-free rate we get: 

                 )()(1 11111 +++++ == t
f

t
f

ttt mERRmE  

f
tR 1+  comes out of expectation because its value it is known at time t. So the formula 

for the risk free rate can be written as: 

                                   
)(

1

mE
R f =  . 
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Now, remember that the covariance between 1+tm  and 1+tx , denoted as 

),cov( 11 ++ tt xm , is defined by  

)()()(),cov( 111111 ++++++ −= tttttt xEmExmExm ,  

therefore the asset pricing formula (7) can be written as: 

                                    ),cov()()( 1111 ++++ += ttttt xmxEmEp , 

replacing )( 1+tmE  with 
fR

1
 we get 

                                     ),cov(
)(

11
1

++
+ += ttf

t
t xm

R

xE
p . 

The first term is the asset’s price in a risk neutral world. The second term is a risk 

adjustment. An asset that is positively correlated with the discount factor has its price 

increased and vice versa.  

If 0)cov( 11 =++ tt xm  then  

                                     
f
t

t
R

xE
p

)( 1+=   

no matter what the risk of  x  (i.e. or variance of x ) is. So if the asset is uncorrelated 

to the discount factor the asset receives no risk correction to its price and pays an 

expected return equal to the risk-free rate. 
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Section 1.4 Stochastic Discount Factor and Complete Markets. 

The asset pricing formula )( 11 ++= tttt xmEp , does not assume that markets are 

complete and does not say anything about the return distributions. 

A contingent claim is a security that pays one dollar in one state s. Denote pc(s) the 

price today of the contingent claim. A market is complete if any financial asset can be 

built synthetically using contingent claims. Now we will show that if markets are 

complete a discount factor exists and it is equal to the contingent claim price divided 

by probabilities. Let x(s) be the payoff of an asset at state s. Because the market is 

complete we can consider the asset as a bundle of contingent claims and the asset 

price must be equal to the value of those contingent claims, 

                            ∑=
s

sxspcxp )()()( ,                    (8) 

where p(x) is the price of the payoff x. If we multiply both sides of equation (8) by 

probabilities π(s), where π(s) is the probability that state s occurs, we get: 

                             )()
)(

)(
)(()( sx

s

spc
sxp

s
∑=

π
π             (9)  

Then we define m as the ratio of contingent claim to probability,            

                
)(

)(
)(

s

spc
xm

π
= . 

We can write equation (9) as 

                         ∑ ==
s

t mxEsxsmsxp )()()()()( π .  

So we just showed that in complete market stochastic discount factor m exist and it is 

a set of contingent claims divided by probabilities. 
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Chapter 2. 

 
 

Section 2.1 Generalized Method of Moments. 
 

We have to solve an equation of the form 

                 1][ 11

)
=++ ttt RmE . 

We will use the generalized method of moments to solve the above equation. 

Since Lars Hansen first introduced it in 1982, the Generalized Method of Moments 

(GMM) has been widely applied to analyze financial data. Generalized Method of 

Moments has simulated the development of a number of statistical inference 

techniques that are based on GMM estimators. These applications have been used in 

different areas of macroeconomics, finance, etc. Depending on the context of the 

problem GMM has been applied to time series, cross sectional and panel data.  

It is natural to ask the question why GMM is being used so widely and has a great 

impact in such areas as macroeconomics and finance. Maximum Likelihood 

estimation (MLE) has been used since the beginning of the twentieth century and it is 

the best available estimator. However there are two problems that come from the use 

of MLE estimator and these have motivated the use of GMM estimators. 

The first problem is the sensitivity of statistical properties to the distributional 

assumption. In order to use MLE estimators we need to know the probability 

distribution function of the population’s data, but most of the time this distribution 

function is not known. One way to get around this is to make an educated guess and  
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choose distribution. However unless our guessed distribution is the same as the true 

distribution the result estimator is no longer optimal and, even worse it may lead to 

biased inferences. 

The second problem is the computational burden. Maximum Likelihood estimation 

could be computationally very difficult.  

In contrast GMM framework provides a computationally convenient method of 

performing inference in the models without the need to know the distribution 

function. GMM is based in the idea of using moment conditions for estimation.  

We already have seen that the asset-pricing model gives us  

              ].),([ 11 ++= tttt xparametersdatamEp                       (10) 

  After taking the unconditional expectations on both sides of equation (10) (using the 

formula ][]][[ YEHYEE = ) we get 

            ].),([][ 11 ++= ttt xparametersdatamEpE                       (11) 

In order to use Generalized Method of Moments (GMM) we need to make some 

statistical assumptions. The most important one is that ttt xpm ,,  are stationary 

random processes which means that joint distribution of tx and jtx − depends on j not 

t. Sample averages must converge to population means as the size of sample 

increases. The latter assumption is true for stationary random processes. 

The GMM approach is to estimate the parameters by making sample averages in 

equation (11)  

∑
=

T

i
tp

T 1

1
  and   ]),([

1
1

1
1 +

=
+∑ t

T

i
t xparamatersdatam

T
         (12) 

 as close as possible to each other. 
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Based on asset pricing formula (11), the GMM approach is as follows: sample 

averages are calculated for both sides of equation (11), so we need to calculate 

sample averages (12) then GMM estimates the parameters of the model by equating 

sample averages.  

So  ∑
=

≈
T

t
tt p

T
pE

1

1
][ and 1

1
111 ),([

1
][ +

=
+++ ∑≈ t

T

t
ttt xparametersdatam

T
xmE . 

As we mentioned above asset pricing model implies 

                             ])([][ 11 ++= ttt xbmEpE                                 

which can be written in the form 

                             0])([ 11 =−++ ttt pxbmE                                (13) 

where 1+tx  and tp are vectors. We need to check whether a model for 1+tm  can price 

a number of assets at the same time. Equation (13) is called moment condition or 

orthogonal condition equation. Each component of equation (13) is the difference 

between predicted price ][ 11 ++ tt xmE  and the actual price ][ tpE . If the number of 

parameters we want to estimate is the same as the number of components of 

equations (13) then we use the method of moments. However the number of moment 

conditions is usually greater than the number of parameters. If we have more 

equations than parameters to estimate we use GMM.  

If we let  tttt pxbmbu −= +++ 111 )()(  

then )(but  represents the error at time t + 1 and of course, the mean of this error 

should be zero. Parameters are chosen so that the predicted prices are as close as 

possible to the actual prices. Model is evaluated based on how large the errors are. 
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For the given values of the parametersb , we could construct a time series on )(but  

and look at its mean. 

Let )(bgt  be the sample mean of the errors )(but . If the sample is of size T,  

])([)]([)(
1

)( 11
1

tttTtT

T

t
tT pxbmEbuEbu

T
bg −=== ++

=
∑ , 

where we are using notation TE to denote sample means, 

                    ∑
=

⋅=⋅
T

t
T T

E
1

)(
1

)( . 

It is better to work with the asset returns so if we divide by tp  both sides of equation 

(13) the moment conditions are written as: 

                                   .0]1[ 11 =−++

)

TTT RmE  

T

T
T p

x
R 1

1
+

+ =  is the gross return. The reason for this is that stock prices tp  and 

dividends d  vary over time; even more they are not stationary, whereas stock returns 

are close to being stationary.         

The process for estimating b  is a two-stage process. On the first stage we choose b  

that makes the pricing errors )(bgt  as small as possible by minimizing the quadratic 

form of the sample mean of the errors 

                       )()'(minargˆ
}{1 bWgbgb ttb=  

 W  is a positive definite matrix that shows us how much attention is given to each 

moment. Normally IW = , because GMM treats all assets symmetrically: however, 

we may use a matrix W  different from identity matrix. We may start with a matrix 

W  that has different values on the main diagonal. This way we will give more weight 
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to some assets we think are more important. It can be shown that 1̂b  is a consistent 

estimator of b  and is asymptotically normal so we may choose to stop here and not 

go further on a second stage.  

But if we go on a second stage, using the value of 1̂b  obtained on the first stage, we 

form an estimate Ŝ  of 

                            ∑
∞

−∞=
−≡

j
jtt bubuES )].(')([  

 The reason for that is that some assets may have a much higher variance than others 

and for those assets the sample mean is a much less accurate measurement of the 

population mean because the sample mean will vary from sample to sample. So it 

makes sense to give less weight to the assets with higher variance. We could use a 

diagonal matrix W  with inverse variances of ]1[
)

−= ttTT RmEg  on the diagonal. 

However since assets returns are correlated a good idea is to use covariance matrix of 

asset returns. The basic idea is to pay more attention to linear combinations of 

moments that contain the most of the information. 

The assumption is that 0)]([ =buE t  and )(but is stationary. With that in mind we get 

...])()()1()([
1

)
1

var()var( '
1

'
1

'
2

1
1 ++−+== −−

=
+∑ tttttt

T

t
tT uuEuuETuuTE

T
u

T
g  

and as ∞→T , 1→−
T

jT
,  S

T
uuE

T
g jt

j
tt

1
)(

1
)var( ' =≈ −

∞

−∞=
∑  for large values of T. 

So a good weighting matrix is the inverse of S. It can be shown that 1−= SW  is the 

optimal weighing matrix that gives us the estimates with the smallest asymptotic 

variance (Hansen [10]). 
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Using the value we found for matrixŜ  ( Ŝ  is an estimate for )( '∑
∞

−∞=
−=

j
jttuuES , we 

will talk more about this later at linear models), we calculate the estimate 2b̂  

                        ).(ˆ)'(minargˆ 1
}{2 bgSbgb ttb

−=   

2b̂ is not only consistent and asymptomatically normal  but it is also asymptotically 

efficient estimate of the parameter vector b. By efficient we mean that 2b̂ has the 

smallest variance-covariance matrix among all estimators that make )(ˆ)'( 1 bgSbg tt
−  

equal to zero for different choices of weighted matrix W. Using delta method which 

says that the asymptotic variance of )(xf  is )var()(' 2 xxf  (for more on delta 

method see Casella and Berger [5] section 5.5.4) the variance-covariance matrix of 

2b̂  is 

                11
2 )'(

1
)ˆ( −−= dSd

T
bVar , 

where    
b

bg
d t

∂
∂

=
)(

. 

The test of overidentifying restrictions is done to check the overall fit of the model. It 

can be shown that T which is the sample size, times the minimized value of 

)(ˆ)'( 1 bgSbg tt
−  calculated on second stage is 2χ  distributed with degrees of 

freedom equal to number of moments less the number of parameters. 

)]()'(min[ 1 bgSbgTTJ ttT
−=  ~ )#(#2 parametersmoments−χ  

The TJ  test basically evaluates the model by looking at the sum of squared pricing 

errors and evaluates how big they are. The  TJ test asks whether errors are big by 
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statistical standards and how often we should see a weighted sum of squared pricing 

errors this big.  
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Chapter 3. 

 
Section 3.1 The Linear Factor Models. 

 

We start with basic formula of asset pricing  

                ][ 11 ++= ttt xmEp  .                            (14) 

Let the discount factor be of the form fbm '=  where xp, are N X 1 vectors of asset 

pricing and pay offs, f is a K X 1 vector of factors, b is a K X 1 vector of parameters 

that we want to estimate. As before, to simplify notation we will drop the sub indices 

in m, p and x unless otherwise specified.  

After taking the unconditional expectations on both sides of equation (14) (and using 

the formula ][]][[ YEHYEE = ) we get 

                             ][][ mxEpE =  

Substituting m with b’f we get 

                             E [p] = E [b’f x] = E [x f ’] b 

To implement GMM we need to choose a set of moments. The obvious ones are the 

pricing errors: 

                             ]'[)( pxfEbg TT −=  

Our goal is to find parameter b such that makes the sum of squared of pricing errors 

as small as possible. The GMM estimator of b is defined as     

                           )()'(minargˆ bWgbgb ttb=  

where W is an N X N positive definite weighting matrix. W is chosen in a way that 

the more volatile assets get less weight than less volatile assets. 
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Start with step one by choosing W = I, then we calculate 1̂b  by setting 

                          0
)ˆ()'ˆ( 11 =

∂
∂

b

bWgbg tt  

                           0)ˆ('2 1 =bWgd t  

                            0))ˆ'(
1

('
1

1 =−∑
=

pbxf
T

Wd
T

j

 

                            

0'ˆ'

0))'(ˆ1
('

1

1
1

=−

=−∑
=

pWdbWdd

pxfb
T

Wd
T

j  

where ∑
=

=
T

t
tp

T
p

1

1
 and ∑

=

==
∂

∂
=

T

t
T

t xf
T

xfE
b

bg
d

1

1 '
1

]'[
)ˆ(

    

So d is a N X K matrix and  

                                 pWdWddb ')'(ˆ 1
1

−=   

 But W = I so  

                                  .')'(ˆ 1
1 pdddb −=                              (15) 

Second step: using the value of 1̂b  we found on the first step, form an estimate Ŝ of 

∑
∞

−∞=
−≡

j
jtt bubuES )].ˆ()ˆ([ 1

'
1  

           )ˆˆ(ˆˆ '

1
0 jj

k

j

SSSS ++= ∑
=

 

where              jt

T
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tj uu

T
S −

+=
∑= 'ˆˆ

1ˆ
1

 ,    
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and )ˆ(ˆ 1
'
11 tttt pbfxu −= ++ ,  =j 0, 1, 2, …, k , where k is equal to maximum lag 

value selected. Choosing 1ˆ −= SW  will give us the optimal value for the weighting 

matrix. (Optimal estimators here means estimator with the smallest variance. For 

more on that see Hansen [10]). 

However, in practice longer lags get less weight than the shorter ones. One example 

of that is the Bartlett kernel where  

                   )ˆˆ)(
1

1(ˆˆ '

1
0 jj

k

j

SS
k

j
SS +

+
−+= ∑

=

 

(For more on Bartlett kernel see Newey and West [11]). 

Then we precede the same way as on the first step but this time .ˆ 1−= SW  

The solution we get for 2b̂  is 

                               .ˆ')ˆ'(ˆ 11
2 pSddSdb −−=  

We already have shown that .)'(
1

)ˆcov( 11
2

−−= dSd
T

b   

Let )(ˆ)'( 1 bgSbgJ TTT
−= . TJ  is the minimum criterion J-static that is used to test 

for the overidentifying conditions. Under null hypothesis moment conditions are zero 

and TTJ  ~ )#(#2 parametersmoments−χ . 
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Chapter 4. 

 
 
Section 4.1 Numerical Implementation for CAPM. 
 
First let see the relation between stochastic discount factor and betas. 
 
Using the asset pricing formula for the returns we get: 

                      ),cov()()()(1 iii RmREmEmRE +==  

from the above formula we get: 

                      
)(

),cov(

)(

1
)(

mE

Rm

mE
RE i

i −=              (16) 

If we multiply and divide both sides of equation (16) by var(m) we get: 

                     )
)(

)var(
)(

)var(

),cov(
()(

mE

m

m

Rm
RE i

i −+= γ  

 where           
)(

1

mE
=γ . 

As we see we have a single-beta representation. So p = E(mx) implies  

mmi
iRE λβγ ,)( += which is the beta representation model. CAPM, APT are 

expected return-beta models and can be shown that beta pricing models are 

equivalent to linear models for the discount factor m, 

                   fbamRE mmi
i ')( , +=⇔+= λβγ   

 (For the proof of the above result see Asset Pricing [1] chap.6) 

A special case of the above result is the CAPM model. For the CAPM model 

                           m = a – b’f. 

 
 
CAPM implied stochastic discount factor is: 
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e
tmt bRam ,−=  where  tftm

e
tm RRR ,,, −=  

e
tmR , is the excess return of the market, tmR , is the gross return of the  market and 

tfR , is the risk free return. 

From the asset pricing formula we have 

1][ =tmRE  and 1][ =fmRE . 

Combining the two formulas we get: 

.0][][ =− ft mREmRE That can be written as: 

0)]([ =− ft RRmE   or   0][ =e
tmRE  where e

tR is the asset excess return. 

The problem with the model e
tmt bRam ,−= is that we cannot separately identify a 

and b so we have to choose some normalization. The reason for that is that if              

0][ =e
tmRE  then 0])2[( =e

tRmE .  

We write the equation 0][ =e
tmRE  as 0)]([ , =− e

tm
e
t bRaRE .  

If we divide both sides of the last equation by a, and replace β=
a

b
  we get: 

  .0)]1([ , =− e
tm

e
t RRE β   

Following the same procedure we did for linear factor models we get 

   )1(
1

)]1([)( ,
1

,
e

tm

T

t

e
t

e
tm

e
tTT RR

T
RREg βββ −=−= ∑

=

 

We need to find the value of β  that minimizes )()'( ββ TT Wgg . For that we take the 

first derivative of )()'( ββ TT Wgg  with respect to β  and equate it to zero. 

 0)]()'([ =
∂
∂ ββ
β TT Wgg . Taking this derivative we get: 
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0)('2 =βTWgd  ,                                   (17) 

 where d is a N X 1 matrix and N is the number of assets we are using in our model.  

e
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= β
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β
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We can rewrite the formula for )(βTg  as         

            dRRR
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g e
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e
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e
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where   ∑
=

=
T

t

e
t

e
T R

T
R

1

1
. 

Substituting )(βTg  at equation (17) we get: 

              0)(' =+ dRWd e
T β  

              0'' =+ WddRWd e
T β  

   e
TRWdWdd '' −=β  

And the solution is e
T

e
T RdddRWdWdd ')'(')'(ˆ 11

1
−− −=−=β  because W = I on the 

first step. We also get: 11
1 )'(')'(

1
)ˆcov( −−= ddSdddd

T
β  and 

)')'(()')'((
1

)](cov[ 11 ddddISddddI
T

gT
−− −−=β  

where ∑
∞

−∞=
−≡

j
jtt uuES )]()([ ββ  

On the second step we get e
TRSddSd 111

2 ')'(ˆ −−−−=β  and hence 

11
2 )'(

1
)ˆcov( −−= dSd

T
β  and ')'((

1
)]ˆ(cov[ 11

2 ddSddS
T

gT
−−−=β . 

We have chosen to use eight stocks for numerical implementation of CAPM model. 

We have chosen the following stocks taken from S&P500 index: Adobe Systems Inc. 
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(ADBE), Citigroup Inc. (C), Chevron Corp. (CVX), Duke Energy Corp. (DUK), 

Halliburton Co. (HAL), Lowe’s Companies (LOW), Microsoft Corp. (MSFT) and 

Pfizer Inc. (PFE) with market factor SP500 as the single factor. Data used in our 

computation are weekly excess returns from April 4, 1996 to April 4, 2006, so sample 

size is 520=T . 

 We are using 01.1=fR % for the risk free rate. After the computation we get 

 936.5=β ,  0030.0=TJ , and the p-value 97.0)56.1( =>TTJP . 

The code was implemented in Matlab. 
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Section 4.2 Conclusion 

 
The stochastic discount factor is a generalization of a more intuitive and practical 

concept, which arises, in more specific problems or models such as weighted 

portfolios, consumption based models, and CAPM. The GMM is a technique that 

provides means to estimate certain forms of the stochastic discount factor. 
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