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ABSTRACT

The fundamental theorem of asset pricing in finastages that the price of any
asset is its expected discounted payoff. Idedily,dayoff is discounted by a
factor, which depends on parameters present imtr&et, and it should be
unique, in the sense that financial derivativesukhbe able to be priced using the
same discount factor. In theory, risk neutral vatuaimplies the existence of a
positive random variable, which is called the stastit discount factor and is
used to discount the payoffs of any asset. Aparhfasset pricing another use of
stochastic discount factor is to evaluate the perémce of the managers of hedge
funds. Among many methods used to evaluate théastic discount factor,
generalized method of moments has become very gopnlthis paper we will
see how generalized method of moments is usedalaae the stochastic
discount factor on linear models and the calcutatibstochastic discount factor

using generalized method of moments for the populadel in finance, CAPM.



I ntroduction

The stochastic discount factor models are usedaluate the performance of
actively managed portfolios. Hedge fund returnsnaostly the result of dynamic
trading strategies that are being implemented by fmanagers. As the result hedge
funds have time varying exposures to risk, whiclkesaraditional approaches to
performance evaluation not applicable. For an itorete problem is to choose from
a large universe of investment possibilities arrdHcs reason and other ones
measuring the performance of fund managers isyainggortant research problem in
finance. One approach to evaluate the performahicedge fund managers is to use
the stochastic discount factor. The performandeedige funds is evaluated under the
assumption that there are on arbitrage opportgnitidinancial markets. This
assumption implies that there is a positive stoohdgscount factor that can price all
assets. Under such assumption the price of anyiasggen by the expected value of
future payoff of the asset adjusted by the stoahdscount factor and in particular

the gross return of any asset will satisfy:
E[M.uR .l =1

Wherem,, is the stochastic discount factor at tilnel and E, is the expectation

conditioned on the information available up to tim&he stochastic discount factor
is a positive random variable that adjusts theraupayoffs for passage of time and
uncertainly and as we already mentioned its presenguaranteed by the absence of

arbitrage.



In order to evaluate the performance of hedgddunis necessary to have some
benchmark. Usually as benchmarks are taken pasfali primitive assets. A
conditional model of performance evaluation shagdsdign a value of zero to any

dynamic trading strategy that involves the avaddi#nchmarks as long as the

strategy is based on data publicly available. Iideaote byR, ,, the vector of gross

returns on primitive assets at tihe 1 and W the vector of amount invested in each

asset. In what follows we will consider column westunless otherwise specified,

andU’ denotes the transpose of vedibiThen we want a portfoli& ,,W such that

Et[Rt+1R[‘+1W] = 1 '

wherel is a vector of ones.

The above expression is used to find the optimajlwie which is given by
W = E[R,R.]"1
Denote the total payoff of this portfolio &,, = R, W . Then we have
E[R.R.]=1
from which it follows
E[R..Ral=1 *)
for all i. Thus in this case the stochastic discount fadRy, ) is represented by a

portfolio of primitive assets, where the weights astimated so at least the primitive
assets themselves are priced by the (*) model.

If a portfolio satisfies the above equation thereatral performance is given to the
manager, if the left hand side is greater thantbegortfolio is believed to have an

abnormal or positive performance and of courskeafleft hand side is less than one



than the performance is negative. To evaluate ¢n®pnance of hedge funds we use

the expression:

RuRu | 1 0

YRR | |1 0
RuRy. | I+a] [0

R .11S the return on the primitive assdori=1, 2, ..., k R, ,,,is the return on

hedge fund index or manager ant the measure of investment risk adjusted excess
return, which is to be estimatedolis positive the hedge fund index has

outperformed investment strategies that involveatiyic strategies which use

primitive assets and are based on public availalidemation. Ifa is negative we

say thathe performance is negative andifs zer o the performance is said to be
neutral.

However in most cases neither we know which isetkect form of the stochastic
discount factor nor all the market variables inealvn it. In this project we will use

the generalized method of moments to find infororatibout the stochastic discount

factor.



Chapter 1.

Sectionl.1 The Stochastic Discount Factor.

In general, the basic equation of asset pricingbeawritten as:
pi,t = Et[rnt+lxi,t+1] (1)
where p,, is the priceof the assettat timet, Et is the conditional expectation

conditioned on information up to dayx; ., is the random payofin asset at time

t+1 and m, is the stochastic discount factor at time1. The stochastic discount

factor is a random variable whose realized valueshvays positive.

If there is no uncertainty the stochastic discdaator is a constant that
converts into the present value the expected paylfithis case the asset pricing
formula can be written as:

_ 1
pi,t —?Xi,tﬂ ’

R' is the gross risk-free rate. In this cag—r1 is the discount factor. Riskier assets

have lower prices than risk free assets and theyeavalued using formula

1
pi,t :EEt(Xi,tﬂ) J

where% is the risk-adjusted discount factor for agset

There are two important theorems that give the itimmd for the existence of
the stochastic discount factor. Before we giverttefinitions we will talk about the

law of one price and absence of arbitrage. [&laeof one pricestates that if two



portfolios have the same payoffs in every staten they must have the same price.
The violation of this law will create the opporttynfor arbitrage opportunity, as one
investor could sell the expensive version and heycheap version of the same
portfolio. Absence of arbitraganplies that if a payofA is not smaller than a payoff
B, and sometimeA is greater, the price & must be greater than the priceBof

Theorem 1in complete markets, no arbitrage and the lawnef jarice imply that

there exists a unique,, >0 such thatP, = E[m,, X ,].

Theorem 2No arbitrage and the law of one price imply thesence of a strictly
positive discount factorm,, >0, B, =E[m,; X .,] for everyx. (For a proof of
both theorems see Asset Pricing [1] chapter 4).

So the latter theorem assures the existence sttiebastic discount facton > O, but
it does not say thahis unique thereforé does not say that every discount fagtor
must be positive.

However the second theorem shows that we can osleasttic discount factors
without assuming the markets to be complete whichvery strong assumption.

Going back to equation (1) ib, , is not zerove can divide both sides of equation (1)
by p;, and we get

1=E[muR .l ©)

Xi t+1

WhereR ,,; =

is the gross return of assedt timet +1. When we derive the
it

equation (2) we gep, , inside the conditional expectation as a constacalige, ,

is known to us at time The equation (2) for the asset pricing formulthes formula

form mostly used in empirical work.



Section 1.2. The stochastic discount factor and the weighted portfolios.
The major assumption we made to use the stochdistiount factor in asset pricing
is the absence of arbitrage opportunities in tharfcial markets. Under this

assumption the gross return of any risky assetsatisfy the equation:

1= E[MuR l

If there are no arbitrage opportunities it can e that a portfolio of available

assets can be chosen to mimic the behavior ofttichastic discount factor (see
Hansen, Richard [9]). LelR ,, be the vector of gross returns of primitive asaet$
let W be the vector of weights (amount invested in easletd. We want a portfolio

R.,W (where * stands for transpose) such that

E[R.,R.W]=1 1)

where1 is a vector of ones. Using equation (1) to sobrettie optimal weights we

get
W =E[R,R.]"1L.
If we define the payoff of this portfolio &, = R,,W , then thereturnon any
portfolio of the primitive assets will satisfy edicm
E[R4R.W]I=1.
It is obvious that in this case the stochasticalist factor is of the form
m,, =R, =Ry .

So a weighted portfolio is a special case of alsietic discount factor.



Section 1.3 The Stochastic Discount Factor and the Consumption Based M odel.

In this section we will derive the stochastic disaebfactor in a consumption based

model. We will need to find the value at timef a payoffx,,,, that is, the stock price
p,,, attimet +1 plus the dividend,,, issued at time+1. So x,,, = p,,, +d,,, and

X, IS random variableOne approach to find the value of the payoff ubesutility

function, which is a mathematical formalism, usedipdel investors over current

and future values of their consumption, therefoeehave
U(c.C.) = u(c) + BE [u(c,.,)]-

wherec, is the consumption at timteUsually, a formula fau(c,) is given by
U(Ct) = ictl_y
1-y

and we can see gs— 1, u(c) converges tdn(c).

The utility function captures the fundamental de$éar more consumption. The
period u(l) utility function is increasing function reflectirige desire for more
consumption, and concave, which means a declineaoginal value of additional
consumption. Discounting future I captures impatience, afdis called the
subjective discount factor.

Suppose that the investor can buy or sell as muitteqgayoffx,,, at timet as he
wants. We denote bythe consumption level if the investor do not buy assets,

and we denote bythe amount of the asset investor buys. It is dieairif the

investor buys numbers of asset at timé¢hen the consumption level at tirheill

10



decrease by amount ¢f, and at time + 1 the consumption level will increase by

X..¢ . Investor needs to
maxu(c) +E[Auc.,)]  (2)

condition to:
G =6~ ptf (3)
Crg = €y T Xs§ 4)

Substituting restrictions (3) and (4) at equatidpand taking the first derivative with

respect t@ and setting it to zero we get
pu'(c) = E[AU (Cruy) Xl (5)

ul(ct+l)

b =E[B )

XI+1] (6)

Equation (6) is the first order condition for artiogl consumption and portfolio
choice. Another way to think about the above fomsus: p,u'(c) is the marginal
loss in utility if investor buys another unit ofse$ andE, [ Au'(C,,,) X,.,] IS the

expected increase in marginal gain from buyingetktea unit of asset. To get the
maximum gain investor will buy or sell until margidoss equals marginal gain
(equation (5)).

Equation (6) is the central asset pricing formiilzaere we see that if we define

= ﬁ ul (Ct+1)

+1 = '
u'(c,)
then m,,, plays the role of the stochastic discount factat, ahe basic asset pricing
formula becomes:

pt = Et (rnt+1xt+1) (7)

11



whereexpectation is being condition on information atdim, is also callekernel

pricing or change of measure
In this context asset pricing formula (7) is agmtization that puts together all risk

corrections by defining a single discount factonjck is the same for each asset. Of

coursem,,, is stochastic or random because it is not knovtmret. It is the
correlation between the random components of sgtichdiscount factom and
asset-specific payofk that will generate asset-specific risk correctioksset pricing
formula is a very general formula that can be usqatice any assets such as stocks,

bonds, and options. For stocks one-period payoff,is= p,,, +d,,,. If we divide

X, by p,we get the gross return,

_ X
P

R

and asset pricing formula can be expressed as:

1=E[m,R.]
The latter formula for asst pricing is often use@mpirical work because returns are
very close to being stationary over time.
We know that the risk free rate at ti#el is known at time. Using the asset pricing

formula for the risk-free rate we get:
— f — f
1= Et+1(rnt+1Rt+1) - Rt+1E(rnt+l)
R, comes out of expectation because its value i@ at timet. So the formula

for the risk free rate can be written as:

o1
CE(m)

12



Now, remember that the covariance betweem,, and X,,, denoted as
cov(m,,, X, ), is defined by

Cov(rn[+1’ X’[+1) = E(rn[+1x’[+1) - E(rn[+1)E(xt+1) '

therefore the asset pricing formula (7) can betemias:

pt = E(rnt+1)E(Xt+1) + COV(m+l, Xt+1) ’

replacing E(m,,,) with R_lf we get

= E(X'[+1)

Rf + Cov(rn[+1’ Xt+1) .

Py

The first term is the asset’s price in a risk ngutvorld. The second term igigk
adjustmentAn asset that is positively correlated with thecdunt factor has its price

increased and vice versa.

If cov(m,,X,.,,) =0 then

_ E(X)
PR

no matter what the risk ok (i.e. or variance ok ) is. So if the asset is uncorrelated

to the discount factor the asset receives no ostection to its price and pays an

expected return equal to the risk-free rate.

13



Section 1.4 Stochastic Discount Factor and Complete M ar kets.

The asset pricing formulg, = E,(m,,X,,,), does not assume that markets are

complete and does not say anything about the relistributions.

A contingent claim is a security that pays oneatdh one state s. Denqge(s)the
price today of the contingent claim. A market isngbete if any financial asset can be
built synthetically using contingent claims. Now w#l show that if markets are
complete a discount factor exists and it is equ#hé contingent claim price divided
by probabilities. Lek(s) be the payoff of an asset at statBecause the market is
complete we can consider the asset as a bundtmtihgent claims and the asset

price must be equal to the value of those contihgams,

p(X) =D pe(s)X(s), (8)

wherep(x) is the price of the payoX. If we multiply both sides of equation (8) by

probabilitiesz(s), wherer(s) is the probability that stateoccurs, we get:

0 = Y (s 2o "j??)x(s) ©)

Then we definen as the ratio of contingent claim to probability,

We can write equation (9) as

p(X) = D 7(s)m(s)x(s) = E,(mX).

So we just showed that in complete market stoahdgtount factom exist and it is

a set of contingent claims divided by probabilities

14



Chapter 2.

Section 2.1 Generalized Method of Moments.

We have to solve an equation of the form

Et [rn[+1R[+1] = 1 .

We will use the generalized method of moments beesine above equation.

Since Lars Hansen first introduced it in 1982, @eneralized Method of Moments
(GMM) has been widely applied to analyze finandata. Generalized Method of
Moments has simulated the development of a nunmfirabstical inference
techniques that are based on GMM estimators. Téaygskcations have been used in
different areas of macroeconomics, finance, etpedding on the context of the
problem GMM has been applied to time series, csestional and panel data.

It is natural to ask the question why GMM is beusgd so widely and has a great
impact in such areas as macroeconomics and findfeamum Likelihood
estimation (MLE) has been used since the beginaiinige twentieth century and it is
the best available estimator. However there arepneblems that come from the use
of MLE estimator and these have motivated the Gi€&\M estimators.

The first problem is the sensitivity of statistigabperties to the distributional
assumption. In order to use MLE estimators we riedghow the probability
distribution function of the population’s data, obst of the time this distribution

function is not known. One way to get around thitoimake an educated guess and

15



choose distribution. However unless our guessddition is the same as the true
distribution the result estimator is no longer oyl and, even worse it may lead to
biased inferences.
The second problem is the computational burden.iidiam Likelihood estimation
could be computationally very difficult.
In contrast GMM framework provides a computatiopatbnvenient method of
performing inference in the models without the neekinow the distribution
function. GMM is based in the idea of using momentditions for estimation.
We already have seen that the asset-pricing maodes gs
p, = E,[m(data,,, parameteryx,,]. (20)
After taking the unconditional expectations ohbsides of equation (10) (using the
formula E[E[Y|H]] = E[Y]) we get
E[ p,] = E[m(data,,, parameter}x,,, ]. (11)
In order to use Generalized Method of Moments (GMW#)need to make some
statistical assumptions. The most important orteasm,, p,, X, are stationary
random processes which means that joint distributfox, and x,_; depends on j not

t. Sample averages must converge to population sremthe size of sample
increases. The latter assumption is true for statyprandom processes.
The GMM approach is to estimate the parametersdking sample averages in
equation (11)

1 1

?; p, and ?iZ:l:[m(datqﬂ, paramatersx. ., ] (12)

as close as possible to each other.

16



Based on asset pricing formula (11), the GMM apginda as follows: sample
averages are calculated for both sides of equétiby so we need to calculate
sample averages (12) then GMM estimates the paeasneftthe model by equating

sample averages.

1L 1L
So E[ pt] = ?Z Py and E[rnt+1xt+1] = ?Z[m(dataﬂ’ parameter$xt+l'
t=1 t=1

As we mentioned above asset pricing model implies
Elp] = E[m,,(0)%.,]
which can be written in the form
E[m.,(0)x,, —p]=0 (13)
where x,,, and p, are vectors. We need to check whether a modaifgrcan price

a number of assets at the same time. Equationigt3)led moment condition or
orthogonal condition equation. Each component atégn (13) is the difference
between predicted pricE[m,,,X,.,] and the actual pridg[ p,] . If the number of
parameters we want to estimate is the same asuthbar of components of
equations (13) then we use the method of momemtseMer the number of moment
conditions is usually greater than the number chipeters. If we have more
equations than parameters to estimate we use GMM.

If we let u,,,(b) =m,, (b)X., — P,

thenu, (b) represents the error at time t + 1 and of couhgemean of this error

should be zero. Parameters are chosen so thatetieted prices are as close as

possible to the actual prices. Model is evaluateskd on how large the errors are.

17



For the given values of the parameteysve could construct a time series @r{b)

and look at its mean.

Let g,(b) be the sample mean of the erngi®) . If the sample is of size T,

9 (b) =%Zut (b) = Er[u, (0)] = Er[m; (0) % = P

where we are using notatida; to denote sample means,

HOEES 0!

It is better to work with the asset returns soefawide by p, both sides of equation

(13) the moment conditions are written as:
ET[rn'l'+1RT+1 _i] = O

Xrag - . .
R.,, =—* is the gross return. The reason for this is tteatkspricesp, and
Pr

dividendsd vary over time; even more they are not stationahgreas stock returns
are close to being stationary.
The process for estimatiry is a two-stage process. On the first stage wesghoo

that makes the pricing errog (b) as small as possible by minimizing the quadratic

form of the sample mean of the errors

A

b, =argmin, g,(b)'Wg, (b)
W is apositive definite matrix that shows us how muclertibn is given to each
moment. NormallyWV = | , because GMM treats all assets symmetrically: vewe
we may use a matri/ different from identity matrix. We may start wighmatrix

W that has different values on the main diagonais Way we will give more weight

18



to some assets we think are more important. [tbeashown thatA)l is a consistent
estimator ofb and is asymptotically normal so we may choosedp kere and not

go further on a second stage.

But if we go on a second stage, using the vaIthfr1 afbtained on the first stage, we

form an estimateS of
S= Y Eu (b, (b)].
j=—00

The reason for that is that some assets may hauech higher variance than others
and for those assets the sample mean is a mucadessate measurement of the
population mean because the sample mean will vany §ample to sample. So it

makes sense to give less weight to the assetdigitier variance. We could use a
diagonal matridV with inverse variances df, = E;[mR —i] on the diagonal.

However since assets returns are correlated aigeads to use covariance matrix of
asset returns. The basic idea is to pay more gttettt linear combinations of

moments that contain the most of the information.

The assumption is thEfu, (b)] =0 andu, (b) is stationary. With that in mind we get

var@@,) =varC 3 ) = = [TEUU) + (T D E(UU) + EQUU) +..]
6 2 b) = 1

and asT - o, % -1, var(g,) 2% Z E(utut'_j) =%S for large values of T.

j=—

So a good weighting matrix is the inverse of $alt be shown tha/ = S™ is the
optimal weighing matrix that gives us the estimatéh the smallest asymptotic

variance (Hansen [10]).

19



Using the value we found for mat$ (S is an estimate fof = z E(uu,_;), we

j:—oo

will talk more about this later at linear modelsg calculate the estimafg

b, = argmin, g, (b)'S™g, (b).
Bzis not only consistent and asymptomatically norrbat it is also asymptotically
efficient estimate of the parameter vector b. Biceint we mean thaltA)2 has the

smallest variance-covariance matrix among all extims that makey, (b)'é‘lgt (b)
equal to zero for different choices of weighted nmatv. Using delta method which
says that the asymptotic variancefofx) is f'(x)* var(x) (for more on delta

method see Casella and Berger [5] section 5.5edydhiance-covariance matrix of

b, is
N 1 eyt
Var(b2)=?(d S7d),
where d = 99, (b) .
ob

The test obveridentifying restrictionss done to check the overall fit of the model. It

can be shown that T which is the sample size, timesninimized value of
g, (b)'é‘lgt (b) calculated on second stage)$ distributed with degrees of
freedom equal to number of moments less the nuofljgrameters.
TJ; =Tmin[g, (b)'S™g, (b)] ~ x*(#moments# parametery
The J; test basically evaluates the model by lookindnatdum of squared pricing

errors and evaluates how big they are. Thetest asks whether errors are big by

20



statistical standards and how often we should seeighted sum of squared pricing

errors this big.

21



Chapter 3.

Section 3.1 The Linear Factor Models.

We start with basic formula of asset pricing

P = E[mu Xl - (14)
Let the discount factor be of the form=b'f where p,xare N X 1 vectors of asset
pricing and pay offs, fis a K 1 vector of factors, b is a K1 vector of parameters
that we want to estimate. As before, to simplifyation we will drop the sub indices
in m, p andx unless otherwise specified.

After taking the unconditional expectations on bsittes of equation (14) (and using

the formulaE[E[Y|H]] = E[Y]) we get

E[p] = E[mX
Substitutingm with b’f we get
E[p]=E[bfx]=E[xf]b
To implement GMM we need to choose a set of momdims obvious ones are the
pricing errors:
9; (b) = E;[xf'~p]
Our goal is to find parameter b such that makestne of squared of pricing errors

as small as possible. The GMM estimator of b isnéef as

b = argmin, g, (b)'Wg, ()

whereWis anN X N positive definite weighting matri¥V is chosen in a way that

the more volatile assets get less weight thanvelsdile assets.

22



Start with step one by choosilg = 1, then we calculaté1 by setting

09, (b,)Wg (B) _
ob

2d'Wg, (b,) = 0

WD (xf'B, = p)) = 0

j=1

dW(TB Y (x'-p) =0

d'Wdb, -d'Wp =0

T - T
Wherer‘_):lz pt andd :agt(bl) =ET[Xf|]=£ZXf|
T t=1 T t=1

db

Sodis a N X K matrix and

A

b, = (d"Wd) *d"Wp

ButW =1so
b, = (d'd)™d'P. (15)

Second step: using the valuequwe found on the first step, form an estim@ef

S= Z Efu, (b)u,_; (b)].
§=§+2.6 +8)

1 G-
where S, =T Zutut_j :
t=j+

23



and U, = (X, ft;lf)l -p). 1=0,1,2, .., k,wherekis equal to maximum lag

value selected. ChoosiMy = S will give us the optimal value for the weighting
matrix. (Optimal estimators here means estimatth thie smallest variance. For
more on that see Hansen [10]).

However, in practice longer lags get less weiganttine shorter ones. One example

of that is the Bartlett kernel where
A A k i va a
S= + 1-——)S. + S,
S Z( R CREY
(For more on Bartlett kernel see Newey and Wed)[11

Then we precede the same way as on the first stieghib timeW = s

The solution we get fotA)2 is
b, = (d'S™d)d'S™p.
We already have shown theov(,) = %(d'S‘ld)‘l.

Let J; =0, (b)'é‘lgT (b) . J; is the minimum criterion J-static that is usedetst
for the overidentifying conditions. Under null hypesis moment conditions are zero

andTJ; ~ x?(#moments# parameters.

24



Chapter 4.

Section 4.1 Numerical Implementation for CAPM.
First let see the relation between stochastic discfactor and betas.
Using the asset pricing formula for the returnsgse
1=E(mR) =E(ME(R) +cov(mR)
from the above formula we get:

_ 1 covmR)
E(R)_E(m) E(m)

(16)

If we multiply and divide both sides of equatiob) by var(m)we get:

cov(mR )) (- var(m))

var(m) E(m)

E(R)=y+(

where = i

E(m)
As we see we have a single-beta representatiop.=S6(m» implies
E(R)=y+ B, .Anwhich is the beta representation model. CAPM, ART a
expected return-beta models and can be shownekaipbicing models are
equivalent to linear models for the discount factor
E(R)=y+ LA = m=a+b'f
(For the proof of the above result see Asset Ryifl] chap.6)

A special case of the above result is the CAPM rhdéaw the CAPM model

m=a-b’f

CAPM implied stochastic discount factor is:

25



m = a_sz,t where Rren,t =Ry ~ Ry,
R}, is the excess return of the markB,, is the gross return of the market and

R; .is the risk free return.

From the asset pricing formula we have
E[mR] =1 andE[mR,; ] =1.

Combining the two formulas we get:

E[mR] - E[mR; ] = 0. That can be written as:
EIm(R -R;)] =0 or E[mR’] =0 whereR’is the asset excess return.

The problem with the modeh, = a—bR;,, is that we cannot separately identify

andb so we have to choose some normalization. The ndfasahat is that if
E[mR’] =0 thenE[(2m)R’] =0.

We write the equatioe[mMR’] =0 as E[R°(a-bR;,)] =0.
If we divide both sides of the last equationahyand replaceg = [ we get:

E[R° Q- AR, =0.

Following the same procedure we did for lineardachodels we get
1 T
Or (,B) = ET [ Rte (1_ :BR:M )] = ?z Rte (1_ :BR:M)
t=1

We need to find the value ¢f that minimizeg); (8)'Wg; () . For that we take the

first derivative ofg; (8)'Wg; (8) with respect tof and equate it to zero.

%[gT (B)'Wg, (B)] = 0. Taking this derivative we get:

26



2d'Wg, (B8) =0, (17)

whered is a N X 1 matrix andN is the number of assets we are using in our model.

T

99:(P) _ 9 s
T

g8 _ 01

> RA-ARI =2 D - R

We can rewrite the formula fagy, (5) as

0 ()= 2 Y R~ 2 By RIRE, = R+

where R? :%g‘ R°.

Substitutingg; (£) at equation (17) we get:
d'W(Rs +4d) =0
d'WR? + Ad'Wd =0
Bd'wWd = -d'WR?

And the solution isB, = —(d'Wd) *d'WR® = —(d'd) d'R® becaus&V = | on the

first step. We also getov(s, :%(d'd)‘ld'Sd(d'd)‘l and
covg; (B)] =%(| —d(d'd)™d")S(I -d(d'd)™d")

whereS = jiE[ut (B, (B)]

On the second step we g8 = —(d'S™d)™d'S™R?® and hence

cov(B,) = %(d'S‘ld)‘l and covig, (3,)] = %(s— d(d's™d)d".

We have chosen to use eight stocks for numerigalleimentation of CAPM model.

We have chosen the following stocks taken from S&PiBdex: Adobe Systems Inc.
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(ADBE), Citigroup Inc. (C), Chevron Corp. (CVX), Re Energy Corp. (DUK),
Halliburton Co. (HAL), Lowe’s Companies (LOW), Misoft Corp. (MSFT) and
Pfizer Inc. (PFE) with market factor SP500 as thgle factor. Data used in our
computation are weekly excess returns from April996 to April 4, 2006, so sample
size isT =520.

We are usingR; = 101% for the risk free rate. After the computation ges

B =5.936, J; =0.0030, and the p-valud>(TJ; > 156) = 097.

The code was implemented in Matlab.
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Section 4.2 Conclusion

The stochastic discount factor is a generalizadiom more intuitive and practical
concept, which arises, in more specific problemsodels such as weighted
portfolios, consumption based models, and CAPM. GMM is a technique that

provides means to estimate certain forms of thehststic discount factor.
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