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Abstract

Classroom instruction time is a valuable yet scarce resource to teachers, who must decide how

to best meet their objectives by selecting which topics to spend time on and when to move forward.

Intelligent Tutoring Systems (ITS) are a powerful tool for teachers in this regard, allowing them

to measure their students current level of knowledge, helping them gauge student knowledge ac-

quisition, and providing them with valuable insight into learning methodologies. By using ITS to

identify the effectiveness of proven methods of instruction, we can more effectively teach students

both in and outside of the classroom. In this paper we review the results and contributions of a

new Bayesian data mining method which can be used to identify what works in an ITS and how it

can be used to learn from data which is not in the typical randomized controlled trial design. We

then discuss modifications to this dataset which use more knowledge about the students to improve

accuracy. Lastly we evaluate this model on detecting and predicting long term student retention,

and discuss methods to improve its predictive accuracy.
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Chapter 1

Introduction

Today, Intelligent Tutoring Systems (ITS) arise not just in mathematical domains where they

started, but also in physics, programming languages, speaking and reading, and even in scientific

thought process. Their aim is to provide tutoring equivalent to, if not better than a human tutor,

at a fraction of the price. [7] The tutoring system can provide a oneto-one interaction with students

and address their individual needs, while not requiring the teacher to slow the entire class for one

student. The student who needs additional help, is easily identified by the tutoring system, and

given adjusted instruction. The teacher is then informed and can decide if additional steps can be

taken.

Most student learning is done outside of the classroom where the teacher is not available. Web

based tutoring can allow students to take the teacher wherever they go, including their home, a

library or even on smart phones while riding the bus. The students have this highly interactive ap-

paratus, which has been shown to increase learning when compared to paper and pencil homework.

[9]

The creators of ITS attempt to provide the most beneficial content possible, as they want their

product to be used. They are therefore very interested in developing cognitive models of student

learning as well as determining information about their content. One area of research is identifying

certain characteristics of knowledge components, which are very similar to mathematical skills.

For example, the addition of two positive integers may be classified as easy to learn and easy to

remember , while other skills are classified as slow to learn, but easy to remember. [16] One difficulty

in this type of analysis is that the differences in the characteristic of knowledge components may
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be very small. In the Reading Tutor from Project Listen, it is shown students learn to read very

slowly, and therefore there was no difference in different types of tutoring It was later discovered

this was due to the long time it takes a student to learn and the drastically slow learning rate. [10]

The cognitive models which are created serve many purposes. They can be used to predict a

students knowledge which is used to determine how many questions to give a student. If there is

strong evidence a student knows the topic, the tutoring system will stop giving problems. This

variable rate of problems goes against the ideas of mass practice and the one size fits all of set size

nightly homework assignments. Additionally, the models can identify certain personas, or groups

of students who benefit from one type of tutoring more than another. Students who are very smart

and answer problems incorrectly because they have not seen them in the past, are very different

from students who are in special needs. These models attempt to different classifications of students

to allow for a more personalized tutoring experience.

There are millions of student responses generated by Intelligent Tutoring Systems annually,

creating a rich source of data from which to learn what learning strategies and content are effective,

and which ones are not. However, for most of this data, the format is not conducive to traditional

educational research methods, and the data is not embedded between a pre and post test. As

a result, much of this hard to analyze data is not analyzed, and from a research perspective, is

wasted. We will present ways in which this data can be analyzed that will allow for these models

to be developed and for pedagogical insights to be learned.

In [11], we discussed ways in which experimental designs can be found within log data even

when the authors did not intend for the data to be from an experimental design. This was realized

through demonstrations of how randomly assigned questions can form an experiment, since as data

collects, it is as if students had been placed into conditions. However, since there was no posttest

assessment given to the students, an evaluation method which could learn from the responses from

students progressing through a set of problems was needed. By adapting known Bayesian methods

to these domains, we showed posttest evaluations were not needed. This approach has practical

effects such as being able to learn from teacher created content, which accounts for sixty four

percent of the student responses within ASSISTments, a web based ITS.

Also in [11], we analyzed the Item Effect Model [12], a Bayesian network method which had been

shown effective in simulated student data, but which had not been used on actual student data.
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We used this method on eleven datasets from ASSISTments, and compared it to a more traditional

t-test approach. We argued that even if the Bayesian method was not more powerful at detecting

significant differences than the t-test, there was additional benefit in the other parameters of the

Bayesian model. These included parameters for the relative difficulty and relative effectiveness

of each of the problems. Through analyzing these datasets, we realized an early goal of a true

embedded experiment in which students may be unaware of the condition in which they are placed.

[1] We review some of these findings and then demonstrate how we can adapt our model to use

more domain knowledge about students as well as how to model student learning more pedagogically

correctly.

A critique of [11] led to a search of a retention rate for students that could be incorporated

into the Item Effect Model. If the model detects differences in learning rates amongst types of

help given to students, or amongst different formats knowledge components, do these necessarily

translate into differences in long-term retention? We would like it, that if our model states there

is a difference in learn rates among two types of help, that when students encounter a problem a

week or a month later, those students who were exposed to the more beneficial help, can complete

the related problem correctly a higher percentage of the time. At the time of [11], data of this

format was not accessible. With a new system introduced into an Intelligent Tutoring System,

we can both validate if our current model is able to predict long term student retention rates

without modification, as well as discover the expected student retention rate for each knowledge

component.



4

Chapter 2

Background

2.1 The ASSISTments System

The ASSISTments System [14] is a Web-based math and science tutor and assessment platform

that allows teachers to easily find or create content to assign to their students.Students work

through their assignments by answering multiple choice, fill-in, or even open response questions.

These problems can give different types of tutorial feedback or tutoring to the students, which

can either represent different pedagogical ways to solve the problem or different ways to present

the material.Teachers can actively monitor how their students are progressing using reports that

provide both question-by-question analyses as well as aggregated information.These reports are used

to allow teachers to alter their plan and either review certain problem topics with students more,

or bypass lessons where students are already knowledgeable. This process, known as formative

assessment, plays a major role in the new federal Race to the Top initiative, in which teachers

are encouraged to use student derived data to drive their classroom instruction. ASSISTments

differs from other intelligent tutoring systems such as the Cognitive Tutor, the largest such ITS

which started in Pittsburg, PA, since it gives teachers the control, and does not attempt to progress

students through a curriculum. As a result, it is used as an addition to and not a replacement of

classroom instruction.

ASSISTments mirrors a typical student school relationship. In ASSISTments, a student is

enrolled in a school, and can join any class taught by one of the teachers at that school. The teacher

can teach multiple classes and can even break a class down further if needed. This is often used
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for teachers who teach, for example, multiple Algebra-2 classes. All students enroll in the teachers

Algebra-2 class, and they are further broken down by what period they are in. Teachers can assign

collections of problems known as a problem set to their students. When assigned to a class, we

refer to these problem sets as assignments. These assignments can be homework assignments or

could be intended to be solved in a computer lab.

On each of these assignments, students must complete problems until they meet some ending

condition for the assignment. To help the students complete the problems, ASSISTments gives

tutorial feedback or help to the students. This help takes many forms, and on each problem a

student is randomly assigned to one of the possible types of help. The most common type of

help in ASSISTments is hints, which are small instructions that provide progressively more of the

solution to the problem. Often, the first hint provides a general reminder to the student of how to

solve the problem. In ASSISTments, unlike some other ITS, when a student asks for help, he is

marked incorrect on that problem.

The system is constantly being updated with new features that generate new and unique

datasets. One of these features is an Automatic Reassessment and Relearning System (ARRS)

that attempts to track student retention, and in the process, creates a new type of dataset. This

dataset is just one of the many datasets that is generated from thousands of students a day who

use the system. In just the 2010-2011 school year, over 19,000 students have signed up for accounts

and have completed multiple assignments. Within this same time frame, these students produced

a large amount of data, including almost 4 million question-response pairs.

2.2 Mastery Assignments Within Assistments

The ASSISTments system contains different types of assignments, which we define as a problem

set, or collections of problems students are required to complete. In some assignments, all students

receive the same questions in the same order. In other cases, the ordering differs for each student

or the questions themselves differ. In one type of assignment known as mastery, students receive

questions in a random order from a large question bank until they can correctly answer a preset

number consecutively correct without asking for help.Once they achieve this streak, we consider

the student to have mastered the assignment. Typically, mastery assignments are on one particular
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skill, or knowledge component. They may be as general as solving for an unknown, or as specific

as solving for x when it appears on both sides of an equation.

2.3 Item Templates Within Assistments

Mastery assignments require a large question bank from which to select problems to give the

student. Item templates fill this purpose while reducing the content creation time. A template

is a skeleton or variable form of a problem. For example, a question might ask a student which

number line represents the solution to an inequality. In this case the inequality might be of the

form a+ bx ≥ kb+ a, where a, b and k are integers. The solution to this problem will be a range

starting from an integer and ending at infinity. Multiple number lines can also be generated which

provide possible solutions to these problems. Figure 1 provides two potential problems that are

instantiated or generated from this template.

Figure 2.1: An example of two problems in ASSISTments that are from the same item template.
An item template provides a skeleton form for a question, and allows large question banks to be
created with low content development time. An item template can also make a skeleton form for
tutoring.

To reduce the number of unique problems that we will analyze, we will assume that all questions

which are instantiated from the same item template are equal in difficulty, and the amount of

learning that results from answering them. The item template can also provide a skeleton version
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of tutoring. This allows the generation of question specific tutoring from the same item template.

For figure 1, this means that for the first generated problem, this skeleton version of tutoring will

solve the equation 4 + 7 ≥ 242 and in the second generated problem, it will solve 12x+ 9 ≤ −363.

Similar to the problems generated from an item template, we will treat all tutorial feedback that

has the same form to be equivalent.

2.4 Automatic Reassessment and Relearning System (ARRS)

ASSISTments contains a new feature which takes ordinary mastery assignments and, through a

process of reassigning those assignments, allows students knowledge and long term retention rates

to be tracked. This system is called the Automatic Reassessing and Relearning System (ARRS),

which worked its way into ASSISTments at the end of the 2009-2010 school year. Instead of calling

a student mastered when she complete an assignment, the student is given an initial mastery level

of zero. Then after a set number of days (depending upon their mastery level) have passed, the

student is presented with a random question from that assignment, on what we will refer to as

a retention test. This test checks to see if the student has retained what she has learned during

completion of the assignment.

If the student answers correctly on the reassessment test, his mastery level for the assignment

increases by one. If he answers incorrectly, his mastery level remains the same, and he has to relearn

the assignment. Relearning is defined as completing the assignment after answering incorrectly on a

reassessment test. The student finishes ARRS for the assignment when their mastery level reaches

a teacher specified parameter, which defaults to four. 2.4 shows three assignments for the given

student. The student only needs one more correct answer for the area of rectangle assignment

to complete the reassessment cycle. If a student continuously answers their reassessment test

incorrectly, they will never complete ARRS.

Towards the top of 2.4 are the two classes a student is enrolled in. To take her reassessment

test, the student may click on the Reassessment Test link under the class called Mastery Learning

Extra Practice. The student may also view their assignments by clicking on the Show Assignments

link to the far right of the class name. When this page is loaded, the student will see assignments

similar to the three shown in red in the bottom of figure.
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Figure 2.2: A typical view of classes that a student is enrolled in. For the mastery learning class,
the student can take their reassessment test, or can complete one of their assignments, shown in
red. The checkmarks next to an assignment name indicate the mastery level of the student.

The ARRS system tests and retests students on a particular topic. The student is first presented

with a mastery assignment, which they must complete to continue. They then are reassessed at

varying intervals until they are able to answer correctly a week later, two weeks later, a month later

and lastly two months later. A student only moves from one time interval to another if they answer

correctly on the reassessment test. For each incorrect answer on a reassessment test, the student

will have to complete the mastery learning assignment again, and be reassessed again at that same

interval. Therefore, in order to proceed through the system, the student needs to retained the

knowledge gained from the mastery assignment, and answer correctly when reassessed.

This dataset offers more data per student than an ordinary mastery learning assignment, a

valuable asset in educational data mining, but it has this non uniform distribution of student

responses. The perfect student will answer three correct in a row on his mastery assignment,

answer correctly on his reassessment test a week later, and progress to the two week retention

interval. Two weeks later, he will again see a question from this mastery assignment and answer

it correctly, moving onto the month long retention period. After answering his reassessment test

correctly a month later, his final hurdle is answering a question correctly two months after that.

Since he is perfect, he answers this question correctly.

In the same class is another student, Sally, who is almost as smart as this perfect student. She

does exactly what he does until the two month reassessment test, where she makes a mistake and

answers incorrectly. She then has to go back and relearn this assignment, and it may take her three

questions, six questions or even ten questions in order to get three correct in a row. Two months
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later she gives her second attempt at the two month retention interval and this time she answers

correctly.

These two students show some of the variance in this ARRS dataset. Sally may just of easily

taken fifteen questions to initially complete the mastery learning assignment, or took four attempts

to answer correctly on a reassessment test for the two week time interval. In order to analyze

this dataset, models need to be able to handle arbitrary length sequences associated with different

students progressing through the system. In addition, good models will leverage which retention

interval the student is currently working towards.

Over five school districts used ARRS in its first year of deployment. Many teachers use it to

make sure their students have the prerequisite skills upon entering their current grade. Since the

teachers lack the time to review these prerequisites in class, they place them into this system and

have students work though these recurring assignments for homework. These teachers like the

system and view it as an aid rather than an intrusive research generation tool. However, by testing

if students retain knowledge, its datasets can be used to model the long term learning gains that

cognitive models discover.
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Chapter 3

Methods and Data Manipulation

We analyze data using a dynamic Bayesian network which tracks student knowledge as they

progress through items. This model identifies the learning each item causes as well as the effective-

ness of tutorial feedback given to the student. This learning is quantified in a learn rate which is

defined as the probability a student will now understand and have the necessary knowledge to solve

a similar problem, after having completed a problem. However, due to scarcity in the datasets on

particular items, accurate parameters cannot be learned for each problem. This is due to the size

of the current datasets in relation to the number of items, and is not due to a limitation of the

Bayesian network technique. However, by representing an item by the item template from which

it was generated, accurate parameters are learned for each item template. Instead of a learning

rate per question, we can have twenty questions generated from the same item template sharing

the same learning rate.

In this work we measure the effectiveness of various types of tutorial feedback using a Bayesian

network approach. We review the work done in [11] and show the effectiveness of various adaptations

to this model. In the second part, we attempt to identify the ability of the model to determine

student retention rates, and at the same time, validate the model as causing either short term or

long term learning. We will also explore other factors which influence student retention.

In the first part of this paper, we attempt to learn the effectiveness of different types of tutorial

feedback. In order to minimize any outside learning, we chose to analyze only the responses of a

student on a mastery assignment the first day he worked on it. We found most students answered

at least three questions (though some students did not complete the assignment) and few students
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answered more than ten. Since at a minimum, students answered three questions, all reported

results are based on the first three responses of each student. In subsequent research we found the

results of looking at the first ten questions to be highly correlated with the results of looking at

the first three. This analysis also discovered that datasets in which students end with three correct

in a row, have higher learn rates than ones in which all students complete the same number of

questions, but the relative difference between the different learn rates are highly correlated.

Since we are comparing the effectiveness of tutorial feedbacks, we are interested in the type

of help given to the student. For each experimental problem set, all item templates within that

problem set were designed to have two types of tutorial feedback. Although there may be six

different templates that generated the problems in the problem set, there are only two distinct

types of tutorial feedback amongst those items. This allows us to identify the item a student

received by the type of help that was assigned to them.We did not have enough data to analyze

the combination of the pairing of the item template that generated the question and the type of

help given on the question, although we believe it to be an interesting analysis.

3.1 Tutorial Feedback

The experiments aimed to determine if the same material and tutoring strategies were presented

in different ways, would there be a dramatic and significantly significant difference in learning.

For example, one experiment attempts to identify a measure of cognitive overload. It compares

presenting a full solution to the student, called a worked solution, to that same solution presented

one step at a time. For low knowledge students presenting one step at a time helps, but for high

knowledge students, we found that just giving them the procedure was enough to cause learning. For

these students, even presenting them with a worked example, or a solution to a similar problem, was

just as effective. The problem sets and types of tutorial feedback are shown in table 3.1. [14, 8, 15]

The skills represented were finding percents, ordering fractions and decimals, and two step

equation solving. Experiment 1 consists of problems with ordering positive and negative fractions

and decimals. The tutoring has the student convert each fraction to a decimal and then asks the

studentto order the corresponding decimals. In both conditions, the tutoring is broken down into

three steps. In one condition, the student is told what to do on each step and just has to select a
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Table 3.1: Five experiments were embedded into mastery learning problems sets. Each experiment
compared the effectiveness of the tutorial feedback in Condition A with that in Condition B.

Experiment # Condition A Condition B Subject Matter

1 Solution (Steps) TPS Ordering fractions and decimals
2 Solution Worked Example Finding percents
3 Hints TPS Equation solving (Easy)
4 Solution (Steps) Solution Equation solving (Medium)
5 Solution (Steps) TPS Equation solving (Hard)

box stating they are ready to move on. In the other condition, tutored problem solving (TPS), the

student is asked to input the answer to each step.

Experiment 2 deals with finding percents. In condition A, the tutoring consists of a worked out

solution, while the second condition the student the same form of the solution, but its to a different

question. Students are exposed to the same methodology, or procedure of solving, but they differ

with the actual numbers of the problem.

The remaining three experiments are on equation solving. Experiment 3 compares hints that

show the algebraic steps to solve the problem, with TPS. For example, the first step of TPS asks

the student which number we need to add or subtract from each side to isolate the variable term

on the left hand side. It then asks the student to identify how to arrive at a coefficient of one on

the variable by selecting from four possible equations written in algebraic form. Lastly the student

is asked to solve the original question. The hints in this experiment are similar, but start of with

general guidance to solving the problem, and then show the steps without any explanation.

Experiment 5 seeks to answer the question of is it better to tell the student, or ask them how

to do it. For both conditions, the help breaks solving the given equation into three steps. In the

broken down solution condition, the user is asked to click that they see how the step is performed.

In the TPS condition, the steps are the same, except the user is asked to select which operation

was performed or to solve for the variable by dividing both sides by the coefficient of the variable.

3.2 Traditional t-tests and the Item Effect Model

We used two different procedures for analyzing which tutorial feedback is more affective. The

traditional approach viewed the data as a pre and post test design and used a t-test to analyze

learning gains due to the help seen on the first question. Since students are marked incorrect
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once they see help, we only looked at students who answered the first question incorrectly. For

these students, their response pairs to the first two questions were either incorrect then correct, or

incorrect then incorrect. By splitting a student response pair by the type of feedback the question

gave, we were able to analyze two different populations of learning gains, one for each type of

tutoring. This approach only uses a small portion of the dataset, which by its nature, is not

designed to be easily analyzed.

The other approach used a variant of the Item Effect Model, which is based on a Bayesian

theory called Knowledge Tracing that assumes a student either possesses or does not possess the

necessary knowledge to answer a question [6, 5] . In our context, this knowledge refers to a single

skill, and we will use having the required knowledge and knowing the skill interchangeably. Since

this required knowledge is not observable, we will refer to it a hidden or latent variable. The model

estimates the students knowledge based upon the models parameters and the responses of the user

on questions. There is a certain probability that by answering a question, a student who does not

have the skill will gain it. This is referred to as the learn rate.

This theory still allows for a student to guess the answer if they do not have the skill, and to

make a mistake even if they do. Formally knowledge tracing has four parameters. These are the

initial probability a student knows the skill (L0), the probability they student transitions from the

unlearned state to the learned state (T), the guess rate, or probability a student answers correctly

given they do not have the required knowledge of the skill (g0), and the probability they slip, or

answer incorrectly given they have the required knowledge of the skill (s0). We will be primarily

concerned with the different learning rates of questions.

A common assumption that we adopt is that once a student has a skill, they do not forget

it. Our datasets are from the first day a student works on an assignment. Allowing a student to

forget the skill is more accurately described as the student never having known the skill. In this

sense, allow a student to forget may cause a better fitting knowledge, but goes against the idea of

a cognitive model.

The Item Effect Model, shown in the bottom left of 3.2 differs from standard Knowledge tracing

mainly by introducing the idea of students learning different amounts depending upon the question.

There is a (Ti), for each question (qi), instead of just a single learning rate for all questions.It also

assumes that some questions are easier to guess on, and other questions are easier to make mistakes
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Figure 3.1: An example of a three problem topology for Knowledge Tracing and the Item Effect
model including the associated parameters. The Item Effect Model learns additional parameters
for each different item template in the problem set.

on. By introducing these additional per question parameters, the Item Effect Model has been shown

to outperform standard knowledge tracing. [12] Our Item Effect approach consists of analyzing up

to the first three questions each student answered. To detect significance, we divided the dataset

into ten distinct equally sized bins. If both conditions caused the same amount of learning, the

bins would follow a binomial distribution with n = 10 and p = 1/2. For a significant finding, we

require the same tutorial feedback that has a higher learn rate when all the data is analyzed, to

have a higher learn rate in eight of the ten bins.

In the educational data mining community, the two most common fitting procedures for Bayesian

networks are expectation maximization (EM) and grid search. EM maximized the log likelihood

of the observed events by adjusting its parameters in an iterative procedure. Grid search searches

over the parameter space by testing all possible sets of parameter values at a certain precision

increment, and selecting the set which minimizes the log likelihood or other error metric. In our

work, we use the Expectation Maximization procedure due to the increased number of parameters

in our model.
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3.3 Findings from Previous Work

In [11], we looked at the effectiveness of various types of feedback from questions within mastery

assignments by using both t-tests and the Item Effect Model.We ran five experiments that we

embedded into mastery assignments at the beginning of the academic year.These experiments were

discussed earlier and are shown in 3.3. The students were not placed into conditions and then given

exclusively one condition, but rather were given one question at a time, with that question being

randomly assigned either condition A or condition B. It was not uncommon for a student to receive

both conditions multiple times in the same assignment.

Table 3.2: The results of comparing the Item Effect Model vs. t-tests to determine the effectiveness
of various methods of tutorial feedback within mastery assignments.

Learning gain analysis Item Effect Model analysis

Exp. Users gain A gain B p-value Guess Slip lrateA lrateB p-value

1 155 0.6875 0.7059 0.8737 0.26 0.28 0.2469 0.3188 7
2 559 0.2611 0.2246 0.3038 0.06 0.11 0.1586 0.1259 9
3 774 0.3544 0.3992 0.2735 0.15 0.12 0.1090 0.1229 6
4 505 0.4024 0.3827 0.6725 0.17 0.18 0.1399 0.0996 6
5 189 0.2142 0.3418 0.0696 0.12 0.13 0.2143 0.3418 6
5* 138 0.2833 0.4225 0.0994 0.14 0.17 0.0834 0.1480 8

We see that even with only using a small amount of data, the two methods agreed with each

other in five of the six experiments. A significant finding was found for Experiment 5. However,

it was discovered as a direct result of this finding that the significantly worse tutoring strategy

contained a typo which told the students the wrong answer. This was later corrected and formed a

new version of the same experiment. Although our model is unable to detect a significant difference

in this experiment with users from when this typo was corrected onward, there is strong evidence

to suggest that this typo effect may not have been the main cause for the original finding. This

demonstrates that requiring a student to answer each step in equation solving is more beneficial

than simply presenting them with the solution

This comparison provided justification into using the Item Effect Model to analyze actual stu-

dent logs by showing that it agreed with a method (t-test approach to learning gains) that is widely

used. In the remainder of [11], we showed how to look at student log data in such a way that it

appears to have been designed as a randomized controlled experiment. The two main results of

that paper are the idea of making use of the millions of unutilized student logged data records
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using data mining techniques, and to show the Item Effect Model works with actual student data.

Having established this, we are free to use this model to analyze other types of datasets.
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Chapter 4

Further Method Explorations

Knowledge tracing is the simplest dynamic Bayesian network that can track student knowledge

over timesteps. It is comprised of a latent knowledge node, and an observed performance node.

Even with this simple consistency, it forms the basis of progressing students through the Cognitive

Tutor, the largest intelligent tutoring system in the United States. This system treats all questions

of the same skill as equivalent. In this sense, it has no notion of a question identity, and no sense

of the relative difficulty of effectiveness of questions. To account for having only one learn rate for

all questions of a given skill, the Cognitive Tutor tracks approximately 3000 different skills. The

idea of an item template in ASSISTments, or a particular form of a question pertaining to a given

skill, may exist as a skill in and of itself in the Cognitive Tutor. However, this is often not the most

accurate representation of questions.

For example, consider three different item templates that are related to equation solving. In

the Cognitive Tutor, each one of these three item templates may relate to one of its 3000 skills.

When knowledge tracing is applied, a student will have a probability of knowledge associated with

each one of the skills corresponding to these three item templates. However, since they are all

equation solving questions, if a student knows one of them, he is more likely to know the other two.

Independence among the three item templates can not be assumed. Conversely, if the three item

templates are tracked as one skill, the knowledge tracing model will ignore the relative difficulty

among these three item templates, and treat their difficulty and learning rate to be equivalent.

The Item Effect Model addressed this issue by allowing for these three templates to be equivalent

as a skill, but to vary in difficulty and learning rate. A similar argument could be made on the
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shortcomings of treating questions answered on different days as equivalent. Therefore, adapting

a model to maintain an item template has grounding, but yet itself is just one specific example of

capturing more of the variance in student responses.

In this chapter we explore improvements to the model of detecting the effectiveness of various

type of tutorial feedback by using more data about the students and the questions. Instead of

using just the student performance and item template, we consider system wide user performance

and look closely at the type of tutoring the student actually received. We compare the models on

predictive accuracy under various metrics. We are primarily interested in modeling a pedagogical

correction to the model, which states learning rate for an item should not be determined by the

tutoring received if the student answers correctly and is not exposed to the condition. Remember

that in ASSISTments, a student who is marked correct could not have been exposed to any type

of tutorial feedback. We first exhibit this model and the other possible improvements, and then

show the results of their predictive accuracy. Lastly we comment on the convergence behavior of

the model under different topologies.

4.1 Correct Response Explicitly Modeled

To explicitly model a student answering correctly, we use a variant of the Item Effect Model

in which we explicitly model the difference between learning from answering an item correctly and

viewing confirmation of the correct answer, and learning due to tutorial feedbacks. In the model,

the measure of student knowledge is dependent upon the knowledge of the student at the prior state

(the previous question they answered) and the tutorial feedback given on the previous question.

By modeling this tutorial feedback effect as a multinomial node taking on one more value than the

maximum number of possible tutoring strategies, we can associate this extra value with a correct

response on the previous item. This means that if the student did not get exposed to one of the

types of help, we do not arbitrarily assign them to a condition for that item. In theory, this model

allows us to make explicit the difference in effectiveness of various tutorial feedbacks.

This model makes the assumption that there can be a difference in learning rates depending

on if the student answers correctly, and is not exposed to tutoring, and if the student answers

incorrectly, and the type of feedback given for the item. There is an amount of learning associated
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with seeing the main question, and a separate amount of learning associated with seeing the tutorial

help. Although there is still some obfuscation in that only students who answer correctly do not

see help, this could be fully realized by having a tutorial feedback which simply tells the student

their answer is wrong and progresses them to the next item.

For an interpretive model, we would like the learning associated with seeing tutorial help in

addition to the main item to be larger than just seeing the main item. Stated alternately, we would

like students to learn more when they answer incorrectly and are given help. To reduce the number

of parameters in this model, we assume that the same help on different items causes the same

amount of learning. The different item templates all share the same parameters, which mitigates

any intrinsic differences in their relative difficulty.

Unlike the current implementation of the Item Effect Model used in [11], this model does not

model all possible sequences through a set of items or a set of tutorial feedbacks. Instead, any

alterations to the original knowledge tracing model are localized in a specific node which represents

the tutorial feedback received, the template of the current item or even a different factor such as

a discrete interval of time spent on the current problem. We represent in our model the tutorial

feedback used in the previous time step by an incoming arc to the knowledge node of the current

time step. This node is a multinomial, taking on one more value than the maximum number of

tutorial feedbacks in the dataset.

A benefit of this model is that all questions share the same guess and slip parameters. These

shared parameters are pedagogically important, as we would expect students to guess and slip at

the same rate regardless of future feedback to be received; i.e. this model is causal in this way.

Moreover, using equivalence classes, the same item can appear in multiple places and share these

same parameters, allowing for a smaller parameter space and potentially more accurate models

with smaller datasets.

A significant advantage of using this topology is the ability for the model to scale. There is

not one sequence per ordering of the tutorial feedback received, but rather one sequence for the

maximum length user response sequence with an extra node that represents all possible types of

feedback for that time step. For example, for sequences of length four, this model has eleven nodes,

with three taking on three values, and the remaining eight taking on two values. For the adapted

Item Effect Model used previously, we could potentially have sixteen sequences of eight nodes each.
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Another benefit of having fewer nodes in our network is faster convergence rates. In some cases,

this new topology will converge to very similar parameters twice as fast.

Figure 4.1: The Tutorial Effect Model with a sample set of student responses; correct, incorrect,
incorrect, correct (1,0,0,1).

This new model with four questions is shown in 4.1. We see that after a correct answer, the

student always receives T0 which is to signify the previous item was answered correctly and no

tutorial feedback was seen. We remark that our model has the same initial knowledge node which

is only affected by the prior of the dataset. Similarly, the performance nodes are unchanged from

the Item Effect Model and all questions share guess and slip parameters. With equivalence classes

we can model different guess and slips per questions, but this would either introduce a new node per

time slice or modeling of individual sequences. We state that this can be done, but ignore it. The

simulation studies and comparison of learn rates will be presented in the appendix for this model.

We next state the other factors including bin splitting procedures and prior setting heuristics and

their effect on predictive accuracy.
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4.2 Splitting Students and Setting Priors

Recent work [13] introduced a further individualization into the knowledge tracing model. In

this approach, each student is allowed to have both an individual learn rate and an individualized

prior. This gives rise to the notion of one student entering a classroom or more appropriately,

signing into an ITS with a higher probability of knowing the items presented to them, even before

they have their first opportunity to learn. It was shown that this approach can reduce degenerate

models, which are those models in which a student has a higher chance of answering correctly

if they do not know the skill. Since preliminary explorations of our datasets have shown certain

classes with a high percentage correct on the first item, as well as classes with a low percentage

correct on the first item, we find motivation to explore this model. Our model is a simplification

of the prior per student model. Instead of having a prior knowledge parameter per student, we

will have just two prior parameters for all students. By reducing the number of prior knowledge

parameters in our model, we will be able to learn accurate learn rates with less data per student.

In our case, we will learn the parameters with fewer question responses by students.

In the model presented, we represent two distinct sets of students classified by their level of prior

knowledge; or simply, how likely they are to answer a question when they first log into an ITS on a

given day.One set corresponds to high knowledge students and the other to low knowledge students.

We refer to these sets as knowledge classes. Intuitively, one expects the high knowledge students

to answer correctly when presented with a new question on a possibly unknown topic. Examples

include students who study ahead, or students who repeat a course. Both of these students are

expected to have prior knowledge of the topic, and with high probability, can answer a question

correctly. Since knowledge is again a latent variable in our model, heuristic splitting techniques

need to be employed that are capable of placing students in a knowledge class when they start off

an assignment.

4.3 Splitting Methods and Initialization for Prior Knowledge

Two different splitting methods are used to place a given student into one of the two knowledge

classes. In order to easily implement this model into an ITS, we require that the splitting algorithm

must be implemented at run time. In other words, we cannot place a student into a knowledge
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class based upon their performance on future questions. We will not discuss special considerations

for new students to the ITS, but remark that either a cold start procedure or some combination

of the predictions from placing the student in each knowledge class can be used. For this analysis,

we place these new students consistently into the same bin, and ignore any data we may have on

them.

The first bin splitting procedure that we refer to as bin split 1, is based upon system wide

performance on problems prior to starting the assignment. We include all of the non tutorial

feedback questions for each assignment for a given student. For instance, if a student asks for help

on question X and is subsequently presented with tutorial feedback questions Y and Z, we only

include the students incorrect response to question X. Many times questions in tutored problem

solving which break a question into smaller steps, i.e. questions Y and Z, are easier than the original

question. Subsequently, counting these helper questions leads to a bias estimate by overestimating

weak students abilities. We use the system wide average for all students who answered at least five

questions, and set the remaining students to the system wide average.

The median and average for all students using ASSISTments is slightly higher than 60 percent.

Therefore, the low knowledge class represents all those students whose average is below 60 percent.

The remaining students including those who have fewer than five completed questionsare placed

in the high knowledge class. This procedure ignores those students who get the first few questions

incorrect, but who quickly learn and answer the remaining questions correctly. This type of student

will be placed in the high knowledge class when they start out each assignment with low knowledge.

However, the robustness of the model combined with other students who fit in their natural class

allows for well fitting parameters to be learned.

The other procedure, bin split 2, attempts to capture the student who quickly learns but starts

off every assignment answering incorrectly. Instead of counting all main questions a given student

has completed, this procedure only counts the first question on each assignment. Similarly, the

median system wide average for all students who have completed at least five questions with this

restriction is 60 percent, although the average percent correct is only 49 percent. Those students

whose average is 60 percent or less are placed into the low knowledge class, with the remaining

students placed into the high knowledge class. If a student has answered fewer than five problems,

we set their average to 60 percent when we place them into the high knowledge class. Both of
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these procedures can be calculated at run time, as they are based on past data. A third procedure

could attempt to look at a students first response on a question of a given skill, although we were

restricted in this attempt by a low system wide skill tagging percentage. Simply put, not enough

problems are tagged with a given skill in our datasets.

Once students are classified as belonging to one of the two knowledge classes, our model still

requires two prior parameters corresponding to these classes. For our model, we wanted to know the

effectiveness of fixing the prior knowledge parameters for each knowledge class using other system

information on the students in each knowledge class. The model is capable of learning these prior

knowledge parameters through its fitting procedure, expectation maximization, but these learned

parameters will maximize the log likelihood of the observed data, instead of modeling the data as

accurately as possible. The aim here is to see the effectiveness of the model when we put a restriction

on its parameters space, which is to say, the prior knowledge parameters are fixed. To fix these two

parameters, we employed two prior parameter setting procedures, which initialized the prior for

each knowledge class using a heuristic. System average, the first fitting procedure, averaged each

students system wide performance according to the bin splitting procedure and initialized the prior

to that amount. The other procedure, actual average, set the prior to the students average on the

first question in the current assignment. Although this appears to look at the data, our evaluation

method uses cross validation and tests against a test set that is not viewed by this procedure.

4.3 shows an example of the metadata collected for each student. The columns labeled Bin Split

1 correspond to all the problems the student completed in the system prior to their data collected

on the given assignment. The columns labeled Bin Split 2 correspond to the students performance

on the first problem of each assignment. Student 52037, is placed in the high knowledge class for

Bin Split 2 since she completed only four problems, but her average of twenty five percent correct

may suggest a low knowledge student.

Once the students are placed into bins, we need to set the prior for each class. Table 3 shows

the initialization values for a single knowledge class, where the column labeled system performance

is their percent correct from one of the two bin splitting procedures. Students 52037 and 52042

appear in this knowledge class, indicating this is sample data corresponding to high knowledge

students using Bin Split 2. Since student 52037 answered fewer than five problems, his system

statistic is set at sixty percent. The columns initial system average and initialize actual average
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Table 4.1: The statistics for five sample students are shown under the two bin splitting procedures.
The last two columns show which knowledge class each student would be placed in for each of the
splitting procedures.

All problems First problem Class student placed

Student id Completed % Correct Completed % Correct Bin 1 Bin 2

52018 577 39 32 31 Low Low
52033 209 48 25 56 Low Low
52037 22 62 4 25 High High
52040 336 70 36 56 High Low
52042 329 65 35 71 High High

show the prior knowledge value that would be set if all students up to the current row were included

in the knowledge class. For the first row, only the first students average contributes to these, where

as in the last row, all students contribute. This is only shown here for clarity on the procedure

used. In implementation, these two initialization values are calculated with all students of the given

knowledge class.

Table 4.2: Example of five students and using their statistic from Bin Split 1 to seed the prior
knowledge for the high knowledge class.

Student Statistics

Student id System stat. Correct q1 Init. system avg Init. actual avg

45620 85 0 85 0
48781 100 1 93 50
52037 60 1 82 67
48782 63 1 77 75
52042 71 1 76 80

The intuitive approach for using these initialization values lies in assuming the guess and slip

values for the model are similar. If we assume they are equal, the number of students who have the

required knowledge and answer incorrectly will be offset by those who do not have the knowledge,

but who guess correctly. By using the actual average of the students performance on the first

question, we should be able to better fit our training dataset as we are using the true prior.However,

work [3, 4] has shown that various sets of parameters can fit and predict Knowledge Tracing models

equally, while pedagogically representing very different characteristics. Therefore, we cannot expect

a better fitting model, but we should expect the parameters found by the model to fit with our

domain knowledge. By using these classification methods and heuristic starts, we are in effect

leading our model into a certain parameter range, which is similar to work done with contextual
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guess and slips and Dirchilet distributions [2]. In these other approach, instead of fixing a parameter

based on heuristics or domain knowledge, the model tends to toward certain parameters as a

distribution is placed on a parameter, which in effect, limits how far that parameter will vary, as

this distribution makes it increasingly less likely that it move further from its believed mean.

4.4 Metrics for Accuracy

Different metrics are used in the literature to measure the accuracy of a model. In some cases we

are interested in a binary prediction, either zero or one, in which case area under the curve or AUC

is often used. This metric is a measure of the number of swaps needed to order the predictions in

such a way such that all predicted values that correspond to actual values of zero, are sorted before

any value that is actually one. A value of one is a perfect prediction, and a value of zero is the

opposite of a perfect prediction. Any other score is a measure of the skewness of the predictions.

Other areas are interested in minimizing our total error, which is commonly expressed as either the

root mean squared error (RMSE) or mean absolute error (MAE). Our fitting procedure, expectation

maximization uses log likelihood measure to determine which parameters cause the observed data

with the highest probability. In this work we are interested in prediction, as if we can accurately

detect students who answer correctly, we can give less problems to them, and similarly, students

who answer incorrectly, can be given some type of intervention prior to more reassessment.

Our model makes predictions for all students, with the differences in the predictions arising

from the knowledge class of the students, the types and ordering of tutorial feedback the student

receives, and the performance of the student. The tutorial feedback and performance of the student

is observed, while the knowledge class of the student is set using heuristics. Since as an ITS we do

not want to change a students path before we have information about their knowledge in a given

domain, we do not attempt to model the accuracy of the first question. We only predict a students

second and third responses.

Root mean square error measures the square of the differences between the predicted per-

formance of a student, a continuous measure from zero to one, and the actual performance of the

student, a binary zero or one. Since the difference is squared, a few large deviations can equal many

smaller deviations. A common measurement of the predictive accuracy of a model is to compare it
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to selecting the value that minimizes the square of the deviations. For example, if 70 percent of the

responses are correct, a base model is one that maximizes .7 ∗ (p(x)− 1)2 + (1− .7) ∗ (p(x)− 0)2,

where p(x) is the predicted value. The model will always predict p(x). which in this case is

0.7.Taking the functions derivative can easily show this.

This metric also does not include information as if the model is receiving its score for predicting

close to zero or close to one most of the time. Taking a dataset with half correct and half incorrect

answers, a prediction of 0.75 which is close to 1receives the same score as a prediction of 0.25,

which is close to zero. Identifying causes of RMSE often leads to multiple methods of prediction

and ensembling , and will not be included. Mean absolute error is very similar to RMSE, except

that it takes the absolute value of the deviations instead of square.

We will use five fold cross validation to test the accuracy of our model. The students in a dataset

are be partitioned into five bins. To predict the responses of students in bin three, our model trains

on the students responses from bins one, two, four and five. Using the learned parameters, it

predicts the responses for each student in bin three. To predict the second question, we use the

knowledge class of the student, the performance on the first question and the type of tutorial

feedback on the first question. To predict the third question, we use the performance of the student

on the first two questions and the type of tutorial feedback given on the first two questions. Using

this procedure to predict student responses for bins one through five results in five different sets of

predictions. We will refer to each one of these as a fold. We predict the entire dataset by combining

the predictions from each one of the folds. This is referred to as the complete prediction for the

dataset.
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Chapter 5

Results

In this section we decide which model performs best at predicting students performance. We are

specifically interested in the differences between the two bin splitting procedures, the differences

between the heuristic setting procedures, and whether we should attempt to model a student

answering correctly and not receiving any help.Since we have eight possible combinations, each

run over five fold cross validation, we present aggregated information.The data used here is of the

same format as ??, except for it includes all data collected up until April 20, 2011. For all of the

experiments, we have additional users. Experiment 5* will not be analyzed in this section.

5.1 Comparing Bin Splitting Procedures

The two bin splitting procedures attempt to identify students by either their overall performance,

or their performance at the start of assignments. To compare the effectiveness of the bin splitting

procedure, we are going to compare each with using the original model without explicitly modeling

a correct response. We set each bin to the actual average of the students on the first question. We

do this to reduce bias from having a population within a knowledge class not having done enough

problems for the first response, and having their averages artificially set to 60 percent. The results

are presented in 5.1.

Using all of the data for a student to seed a student into a high or low knowledge bin results

in better root mean squared error, and mean absolute error. Although the two averages appear

close, and differ only in the hundredth digit, RMSE using all data outperforms a students first
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Table 5.1: Comparison of cross fold validation results for the two bin splitting procedures with
prior set to average of first response. The last two rows state for the full prediction, how many
times did each bin splitting procedure have the lower error rate.

Error Metric # times best in folds

Bin Split RMSE MAE AUC RMSE MAE AUC

1 All .4252 .3475 .7267 22 16 13
2 First .4272 .3497 .7219 3 9 12

Total 1 All .4217 .3475 5 3
Total 2 All .4236 .3497 0 2

response in twenty two out of the twenty five folds, and in all five of the complete predictions

for the dataset. The metrics are close for predicting the second and third questions, but could

accelerate in divergence as the number of predicted questions increases. Unfortunately, there is no

concise better method for AUC. Setting knowledge classes by system wide average outperforms the

first response by looking at the average AUC, but there is no distinction, thirteen vs. twelve for

one procedure causing a larger number of test sets to be favorable.

5.2 Comparing Prior Setting Procedures

In this model we thus far have explored two distinct bin splitting procedures. In the prior

section, we saw evidence thatshows using all of the students data results in better predictions. For

comparing different prior setting procedures, we will adapt this bin splitting procedure 1that looks

at all the student data and had shown to result in better RMSE. Like before, we will use the original

topology of the model, and will not explicitly model a student answering correctly.

Table 5.2: The percentage correct for each of the five experiments by question.

Percent Correct

Experiment Question 1 Question 2 Question 3

1 .7424 .8563 .8797
2 .4622 .4549 .5293
3 .4318 .5115 .5719
4 .3417 .4847 .5032
5 .2649 .4239 .5269

Total .4486 .5463 .6022

Both of the bin splitting procedures ignored the relative difficulty of the problem set in that

they assume all questions a student answered should be equally weighted. In addition, if we use this
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system wide performance to set the prior for an analysis, it assumes the dataset is representative

of a mastery learning assignment in ASSISTments, which has on average, a 67 percent correct. If

however our problems sets do not follow this pattern and are much harder, as shown in 5.2, our

model will have to compensate, either through worse predictions, lowering the guess and rate and

increasing the slip rate, or reducing the learn rate. These are all ways that a knowledge tracing

model can adjust to too high of a prior and many early incorrect responses.

We would expect the procedure that sets students prior based upon their actual performance

to the current problem set, to be more representative of these harder problem sets. 5.2 shows the

students actual mean performance on the first question when Bin Split 1 is used, in the columns

labeled Avg. Q1.Under high knowledge, this column represents the mean performance on each

problem set for students whose system wide average was above 60 percent. This should be compared

to the All column under system performance, which is the system wide average for the same

students. For completeness, we also show the first response average for each knowledge class when

bin split 2 is used, although we do not showing their corresponding mean performance on the first

question of each problem set.

Table 5.3: Compares the actual percentage correct on each of the experimental problem sets to the
mean of the students system wide percentage correct. We can tell that experiments 2 through 5
are much harder than an average question.

High Knowledge Low Knowledge

System Performance System Performance

Experiment Avg Q1 All First Resp. Avg. Q1 All First Resp.

1 .8273 .7373 .7624 .4127 .5334 .5030
2 .5861 .7278 .7286 .2909 .4542 .4548
3 .5197 .7421 .7554 .3025 .4750 .4503
4 .5388 .7148 .7424 .2015 .4277 .4243
5 .4527 .7223 .7279 .1666 .4840 .4648

Our high knowledge students, whose system wide average is in the seventies, was mostly found

to be in the fifties. By fixing the prior knowledge parameter in our model to the student system

performance average which is in the seventies, our model is in effect attributing a higher knowledge

level to the students. Similarly for our low knowledge students, their actual performance on the first

item was only about half of their system wide performance. Since two bin splitting procedures pro-

duce nearly identical means, using the system wide performance does not seem indicative of actual

performance, and therefore we would expect the difference error metrics to be very pronounced.



30

Table 5.4: Comparison of cross fold validation results for the two prior setting procedures when
bin split 1 is used. The last two rows state for the full prediction, how many times did each prior
setting procedure have the lower error rate.

Error Metric # times best in folds

Prior setting proc. RMSE MAE AUC RMSE MAE AUC

Dataset .4252 .3475 .7267 22 23 15
Mean system perf. .4234 .3602 .7208 3 2 10

Total dataset .4217 .3475 1 4
Total mean system perf. .4202 .3603 4 1

However, this distinction is not well pronounced in the results. This is a byproduct of a robust

model adjusting to too high of a prior by altering its other parameters to make early mistakes

more likely. The data suggests that the two procedures are relatively equal, with indication that it

depends upon the metric used. In twenty three of the twenty five runs, fixing the prior based upon

the percentage correct of the students first response in the dataset is best under mean absolute error,

but is only better in ten datasets for mean square error. This could be indicative of the model using

the system setting as predicting higher correct values for students who are making more mistakes

in the test datasets. The RMSE errors are here large, but they still beat the baseline of guessing

the average percent correct for each question. The high AUC (above .66) indicates that although

the model is usually far off from the true result, it is giving students who tend to answer incorrectly

a lower prediction than students who answer correctly, which is acceptable and wanted for binary

predictions.

5.3 Comparing Modeling Correct Response

In the model presented in [11], students who did not see any help are still attributed to the

help that they were randomly assigned. By explicitly modeling students not seeing help, we hoped

to improve our accuracy of predictions, as well as find closer to the true parameters of the model.

To determine if modeling this pedagogical correction of not attributing a student to seeing help

unless they viewed such help, we will use Bin Split 1 and will seed the priors based upon the mean

performance of the first question for each of the experiments. 5.3 shows the errors associated with

predicting students in five fold cross validation. From this, we can see some mild evidence to suggest

that modeling correct may be warranted, but it is not appear enough to adjust the original model.
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Table 5.5: Comparison of cross fold validation results for the adapted Item Effect model with and
without a correct response explicitly modeled.

Error Metric # times best in folds

Model used RMSE MAE AUC RMSE MAE AUC

Correct not modeled .4252 .3475 .7267 10 23 15
Correct modeled .4251 .3497 .7219 15 2 10
Total no correct .4217 .3475 3 5
Total correct .4216 .3491 2 0

The two models presented here are identical in topology (and differ in this respect to the Item

Effect Model) and number and type of parameters except for this extra learn rate for answering

a question correctly. The two models find near identical parameters (simulated datasets and item

template datasets appeared very similar), although certain patterns emerge. For each of the five

folds, the learned guess rates differ usually by 5 percent, but for the easiest problem set, in Exper-

iment 1, this difference rises to 20 percent. The slip values difference is usually smaller, between

one and five percent, but rises to 9 percent for Experiment 1. The higher slip values are always

associated without modeling the correct node. Similarly, in four problem sets high guess values

were also associated with this model. However, this difference in guess rates is mitigated when all

the entire dataset is analyzed, which indicates it is an artifact of the particular splits.

Generally higher guess and slip values are either to be taken as that the problems were easy

to guess and make mistakes on, or as less accurate student knowledge predictions. If the model

is less certain about a students knowledge, they need to allow for a larger variation in responses

by increasing the performance guess and slip parameters. Often in practice, these parameters are

bounded by domain knowledge, which can be implemented through assigning distributions to them

or by using a different fitting procedure such as grid search.

Another commonality among the learned parameters is high learn rates associated with tutoring,

and low learn rates associated with answering correctly. By answering a question correctly, the belief

about a students knowledge should increase. This can be interpreted either as a student learning

and gaining the acquired knowledge, or the model detecting the student had the knowledge with

the correct response serving as evidence supporting this claim. Although one might expect a high

learn rate to be needed for the model to detect the student has the required knowledge with high

probability, a sequence of correct answers with a low learn rate can produce the same result. A

model that has a prior of 30 percent, a slip rate of 10 percent, a guess rate of 15 percent, and a learn
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rate of 3 percent, can still advance a student to an 89 percent level of knowledge following three

consecutive correct answers. The same model but with a learn rate of 20 percent achieves an 87

percent belief in the students knowledge after two consecutive answers and a 90 percent level after

three correct responses. Although the first model has a learn rate of .17 lower than the second,

the two models converge towards the same level of belief about a students knowledge level after a

similar number of correct responses. This demonstrates how our model can give a low learn rate

to a student not seeing any tutoring.

The learn rate is almost ignored following multiple correct answers as was shown by the two

models converging towards the same belief state following three correct responses. This is due in

part to the diminishing potential increases in the belief of a students knowledge following multiply

correct responses. This pattern does not follow following an incorrect response. For the model with

a learn rate of 20 percent, following an incorrect response on the first question, the model reduces

its belief about the students knowledge to the 41 percent level. After the student answers correctly

on the second response, the model predicts their knowledge to be 71 percent, and then 86 percent

following another correct response. For the increase in belief from one knowledge state to the next,

i.e. from 41 percent to 71 percent or from 71 percent to 86 percent, to be large, the model needs to

assume a student does not have the required knowledge. This typically follows an incorrect or series

of incorrect responses. In this example, we can see from this example the model would attribute

a 30 percent increase in student knowledge to the tutoring seen on the first question, and only

a 15 percent increase in student knowledge following a correct response on the second question.

Intuitively, we see that the model can associate more learning following incorrect responses, which

provides insight into the large differences in learn rates for tutoring and for a correct response.

The two models appear very similar as they very nearly find the same parameters. There was

strong agreement among the found learn rates in each fold, and also when all of the data was

analyzed at once. The Pearson correlation among found learn rates between the two models is

0.9514, and the linear line of best fit has a slope of 1.17 and an intercept of −.0073. This shows

for all values found where probability of learning is below 0.4, the learned parameters are nearly

identical, although the magnitude of the learning rates for the tutoring strategies are higher when

a learn rate for a lack of tutoring is not modeled. This is a desirable function of a cognitive model;

making a small adjustment does not cause the parameters to drastically change.
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Figure 5.1: The plotted matching guess and slip rates for the model with and without a correct
response explicitly modeled as a lack of a tutorial feedback.

This equivalent parameters and predictive accuracy also demonstrates the robustness of the

original model to detect true learn rates even when noise is introduced by students who are at-

tributed to having seen help, when they actually did not. Since we found our predictive accuracy

for the two models to be close to the same, as well as highly correlated parameters for the learning

rates, we can rest assured in using the original model. This demonstrates that good models tend

to be robust, and then modifying them to capture more variance is not always warranted.
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Chapter 6

Long Term Retention

It is potentially even more important to measure which type of tutoring is likely to be retained

and lead to retention after a period of time, as this can lead to better prediction and better

performance on end of year and standardized tests. The most common measure of retention in

a classroom setting is a quiz or test that assesses students on topics which have been previously

discussed with the class over a usually short time period. Multi-chapter reviews, midterm exams

and final exams provide a measure of retention over a multi-week to multi-month time span. By

being able to predict long-term retention, student scores can be more accurately predicted, allowing

detailed attention to be spent on those students expected to perform below average. Furthermore,

by determining which content and tutoring is effective, the material presented to the students can

be selected in such a way as to maximize the benefit, by delivering to the student the content which

promotes the most learning and long term retention.

The methods to measure this retention are similar in nature to those already discussed. An

experiment with a pre and post test without feedback can be given which has conditions based

upon the type of tutoring the student receives while working on problems in the assignment. This

will require setting up the experiment and selling the idea of a pre and post test without feedback.

Another idea could treat the students first response as a pretest and their last question as a posttest.

However, it will often be the case that the students last response will be from the same day as their

first response, and it will fail to measure long term retention. If only those students who complete

a problem on a later date are included, a selection effect will exist, as it is indicative of a lower

knowledge student to have responses to the same assignment on multiple days. In most cases, this
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is due to a student answering the maximum number of questions allowed per day in the problem

set, without meeting the conditions for exit, and subsequently being forced out by the tutor.

The ARRS system within ASSISTments bypasses many of these limitations, but poses new

trouble for the knowledge tracing approach. Part of this difficulty arises by the ending requirement

on a mastery assignment, and part arises from the characteristics of different skills given to students

in the ARRS system. There are skills which are difficult for students to remember or which students

do not fully understand when they complete the assignment. The average week long retention

interval for a class on a given assignment ranges mainly from fifty percent to one hundred percent,

though there are a few assignments with a forty or even thirty percent correct on the reassessment.

6.1 Datasets and Methods

To analyze long term retention we will look at more responses for each student. The dataset

consists of twenty different problem sets assigned to five different classes that are in ARRS. The

dataset includes the first twenty responses for a given student on one of his mastery assignments.

The format of an ARRS dataset was described previously. We removed all students who took more

than twenty problems to answer three correct in a row, as they material may have been too difficult

for them. The remaining students were split into a training set and a test set. The model trained

on data from sixty percent of the students, and was evaluated by predicting the remaining forty

percent of the students’ performances. For this analysis, we treated all items within a problem set

to be identical.

This dataset was analyzed to assess if students forget knowledge after a period of time. We used

a variant of knowledge tracing where we allowed forgetting to occur whenever a student returned

to an assignment on a new day. This occurs either on a reassessment test or when a student is

unable to complete a mastery assignment in one day. The forget rate was seeded at four different

values from 0 to 0.20, and the parameters of the resulting models were learned by expectation

maximization. When the value for the forget rate was seeded at 0, it was fixed to this rate. For

the other three seeds, this value was allowed to vary. We remark that when the forget rate is fixed

at zero, the model is equivalent to standard knowledge tracing.
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6.2 Results Modeling Forgetting

Modeling forgetting with four different seeds for the forget rate did not perform as expected. We

wanted an AUC score which was close to 0.70 which as a rule of thumb indicates a good prediction.

However, the average AUC for all four models was below 0.60 with little difference between them.

This suggests that our model is not ordering the predictions accurately, but is managing to predict

close to the students actual score. The MAE is low and would suggest accurate predictions by the

model. However, the RMSE is as good, and indicates a reason for the low MAE.

Table 6.1: Shows the average error for three different metrics fo each of the starting seeds of the
forget value. Also shows the average prediction and percentage correct for each of these seeded
forget rates

Forget rate RMSE MAE AUC Prediction % Correct

0.00 .3420 .2440 .5989 .8304 .8288
0.02 .3411 .2425 .5959 .8298 .8288
0.05 .3416 .2428 .5942 .8294 .8288
0.20 .3421 .2440 .5915 .8278 .8288

According to MAE, knowledge tracing appears accurate in predicting student responses. Further

inspection revealed the students prior was nearly always eighty percent, which means the model

predicted the student to answer correctly with a probability almost entirely in the eighty percent

range. The model is capable of producing relatively low RMSE and MAE errors by predicting close

to the average percent correct for each prediction, but obtains a poor AUC score as it is unable

to distinguish between students who will answer a reassessment and those who will not. 6.2 shows

the relationship between the average prediction and the average actual response.

Allowing for a small amount of forgetting when a student returns to the tutor on a new day

allowed for an increase in predictive accuracy for RMSE and for MAE, although not for AUC. By

breaking these metrics by the response from the student being on a new day on the same day as a

previous question, we see a disparity. Our model is predicting closer to the actual performance for

students work on the same day, but is doing so by basing these predictions within a small interval.

In other words, this model appears close to predicting the average percent correct for each student

on the same day. The AUC score suggests that the predictions for students on a subsequent day

are ranked more accurately relative to one another, although are further from the actual student

correctness.
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Table 6.2: Comparison of error metrics by same day and new day.

Same Day New Day

Forget RMSE MAE AUC RMSE MAE AUC

0.00 .3763 .2869 .6149 .3517 .2418 .5757
0.02 .3741 .2795 .6221 .3516 .2456 .5623
0.05 .4217 .3475 .6224 .3520 .2477 .5621
0.20 .4216 .3491 .6275 .3528 .2526 .5590

This demonstrates mild evidence that forgetting can be accurately modeled using knowledge

tracing. The model was a better predictor when we initialized the forget rate to two percent, and

was learned by the model to be between one and four percent in most of the problem sets in the

dataset. The AUC scores for students on new days appears a worthy exploratory route, although

the high prior parameter learned and relatively small range of predicted values placed doubt in

the ability of the model to distinguish which students will answer correctly on a reassessment test.

Other problem sets with a lower overall percentage correct should be analyzed to test if the model

is able to predict better when there is more variance in student responses. Furthermore, the relative

forget rates for that analysis should be compared to the optimal forget rate of around two percent

found in this analysis.
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Chapter 7

Conclusions

In this work we showed how a cognitive model of student learning can be adapted to learn from

data in new domains. We conducted five original embedded experiments which were invisible to

the user and beneficial to the researcher. We showed that for low knowledge students, it is better

to ask the student how to solve each step than to tell them how to solve each step. We found that

for high knowledge students, there was no difference. All high knowledge students need to learn

is the information. This finding agreed with the literature, providing further evidence towards the

benefits of adapting content to specific subgroups of students. This analysis also resulted in an

extra application for the Item Effect Model. The model is capable of detecting typos in content,

and more generally, it can be used to identify certain subskills within a problem set. If one item

within a problem set has a relatively low learn rate and high slip rate, this item may be of a different

skill. Identifying such misplaced items will lead to more focused content and tutoring that can help

the student master the distinction between the misplaced item and the other items in the problem

set.

We also showed how a model could be altered to take in specific domain knowledge. We found

that splitting students into knowledge classes by their system wide average led to better prediction

than by splitting students based on their first performance on each assignment. This area is full of

research potential by identifying not just the different priors of these groups, but also the different

learning characteristics. Perhaps the students who were placed into the low knowledge class by their

first responses but the high knowledge class by their system wide average are characteristically fast

learners. They answer the first or first few questions incorrectly, but then answer the rest correct.
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Special tutoring or ending conditions could be identified for such a group of students.

The robustness of the Item Effect model was shown in two ways. First, the model was able to

perform equivalently when the prior parameters for the students were fixed using outside knowledge.

Even when the prior was set above the average percent correct on the first question in the problem

set, the model learned parameters that produced a similar error than when these priors were seeded

with information from the current problem set. We argued that even if we get the same predictive

accuracy from the two models, we want the one that is truer to our beliefs about learning.

The Item Effect model attributes students to seeing tutoring even when they do not. Although

this seems to be potentially introduce noise in the dataset, the model gracefully handles it and

finds highly correlated parameters to a model that explicitly models this conflict. The intuitive

reason is that the model cannot attribute much learning following a correct response, and therefore

there is less noise introduced than expected. This demonstrates the robustness of a good model,

in handling noise. In the more general sense, it shows how we can ignore some domain knowledge

when deciding what to represent in our model.

We saw that knowledge tracing is not very predictive for all domains. For predicting a student’s

performance on a reassessment test in ASSISTments, the model suffers from a student having three

previous correct responses leading to that reassessment test. This causes most students to obtain

a relatively equal state of knowledge from the model’s perspective, which results in less variance in

predictions. The model tends to predict the same probability of a correct answer for all students.

We therefore see a need to include more personalization into the model, either through individual

forgetting rates, or retention characters of a given skill.

Future work can further investigate which factors are important for predicting a student’s

reassessment tests, as well as adaptations of knowledge tracing to handle all students ending with

three correct in a row. This work showed a small amount of forgetting is beneficial for predictions,

but is not accurate. In this model we realized the idea of invisible experiments by embedding

different tutoring into mastery assignments. A future goal is to embed experiments that measure

long term student retention. This is difficult since students may learn from outside sources, but is

very beneficial to the educational research community.
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Glossary

Forget rate; The probability a student transitions from

the learned state to the unlearned state.

Guess rate; The probability a student who has does not

have the required knowledge answers correctly.

Hints; A form of tutorial feedback in which the student

is presented with hints to solve the current problem. The

student must ask for each additional hint.

Item Template; A variable form of a question from

which concrete instances are created. All created in-

stances share the same parameters as their item template.

Knowledge Tracing; A dynamic Bayesian network

model which assumes a student does or does not have the

required knowledge to solve a problem. Each question a

student answers provides an opportunity for the student

to learn the required knowledge if they do not already

have it.

Learn rate;The probability a student will transition

from the unlearned state to the learned state (gaining the

required knowledge) after answering a question.

Prior knowledge; The probability a student has the

required knowledge prior to having an opportunity to

answer a question.

Slip rate; The probability a student who has the re-

quired knowledge will answer incorrectly.

Tutored problem solving; A form of tutorial feedback

in which a problem is broken into smaller steps and the

student must answer each step.

Tutorial feedback; A form of tutorial provided by an

Intelligent Tutoring System to assist a student in answer-

ing questions.

Worked example; A form of tutorial feedback in which

the student is told the complete solution for the problem

similar to the current problem.

Worked solution; A form of tutorial feedback in which

the student is told the complete solution for the current

problem.

Worked solution by steps; A form of tutorial feedback

in which the student is told the complete solution for the

current problem, but this solution is presented a single

step at a time.
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