1. Introduction

Feature selection, also known as variable selecisotihe technique that selects a subset
of relevant predictors to improve the predictiowaacy in regression model. It is also
widely used to reduce dimensions of data in disicramt analysis setting. For example,
tens of thousands of predictors (e.g. genes) aadadle in microarray data sets. An
initial reduction in the number of predictors mbst performed before fitting regression
models or discriminant models to predict the sarpplenotypes.

When outcome is a continuous variable, popular @ggr is to model the mean of

response by linear combinations of predictors:
y=51+Xp+¢
Here, X =(Xx,,X,,-+,X,, ) iS predictor matrix with observed values of thepradictors,

y=(Y;,Y,,--+Y,) are the observed values of the response varigblés the vector

parameter of length , and=(¢&,,&,,---,&, 5 the error vector, where;’'s are iid

n

normal random variables with mean zero and constariance g?. One of classical
methods to estimate parameters in linear regressiondinary least squares (OLS), in

which parameter estimates are chosen to minimieerébidual sum of squares (RSS).

That is, ;@g and ﬁ" are chosen as the solution to the following optation problem:

[ﬁ} =argminly - (B,1+ XB)|; = argmin{i(ya NV W}
[5 BB o i=1 =1

With some linear algebra, the formula for estimaftparameters and mean of response

are given by following formula:



['f”‘?} = (X'X) Xy, §= 431+ Xp°
l30

Being able to reliably, and automatically, seleatiables in linear regression models has
drawn the attention of both applied and theoretistdtisticians for a long time.
Traditional methods include best subset selectioth stepwise selection. The latter
includes the techniques of forward addition andkbacd elimination. Each technique
chooses the model according to some kind of stalstriterion which measures how
good the model fits the data.

Best subset selection finds a subset among allilgessombination of predictor
variables that gives the best fit to a given daf@his method, however, is not practical
for a large number of predictor variables. For regke, if there are 50 predictor
variables in the data set, then the total numbeallopossible subset i2>°. Even a
recently developed efficient algorithm, leaps aodrxs (Furnival and Wilson, 1974), is
suitable for the number of predictor variablesaagé as 40 (Hastie et al, 2001). Instead
of selecting model from all possible subsets, fod\stepwise selection sequentially adds
the predictor to the model based on the criteridopted, while backward elimination
reverses the forward stepwise procedure: it secalgndrops the predictor from the full
model until all insignificant predictors have beemoved. Compared to the best subset
selection, stepwise selection procedures are velgtcheap in terms of computation, but
they do have drawbacks: because of the “one-at@-tinature of adding/dropping
variables, it is possible to miss the “optimal” nebdamong all possible subsets.
Moreover, stepwise selection may seriously ovezssagnificance of results (Faraway,
2005).

Tibshirani (1996) proposed a new method for vagiakelectionleast absolute
shrinkage and selection operator, also called as LASSO. The LASSO imposesia L

regularization of the parameters on the OLS es#mat In other words, it minimizes the



residual sum of squares subject to the sum ofltkelate value of the coefficients being

less than a constant.

e arg;nin{||y -] +A||s||1} - argﬁmin{z(yi ~2. %) +A2|B \} @
i=1 j=1 j=1
Ridge regression has a similar objective functionHowever, it imposes 4

regularization of the parameters on the OLS es@matther than 1L It is L,

regularization that makes it possible for LASSOstuink some coefficients and set
others to zero as well, and hence retain both giiedi accuracy and the purpose of
variable selection.

To find the lasso solutions, change (1) to its egjeint problem:
ﬁ'asm:argmin{Z(yi - B xij)z} subject toZ‘,Bj‘ <t. (2)
B i=1 j=1 j=1
There is a one-to-one correspondence between thenpters A in (1) andt in (2).
First, let t=0 to be fixed. The constraint in (2) in effect imdes 2™ linear
inequality constraints, which correspond to tB& different possible signs for thi; s.

Due to the large number of constraints, Tibshir@i196) suggested to solve (2) by
starting from the overall least squares estimat&pducing the inequality constraints
sequentially, searching a feasible solution satigfiiKuhn-Tucker conditions. Efron et
al (2004) proposed yet another model selectionrdlgo, Least Angle Regression
(LARS), which can be modified to solve the whole330 path simultaneously. It will
be introduced in detail in the next chapter.

The first objective of this project is to investtg in what data structure LASSO
outperforms forward stepwise method. Four simutatexamples given by Tibshirani
(1996) shows that in most cases LASSO perform&b#tan best subset selection. But

our simulation results indicate that for moderatenber of small sized effect, 1). forward



stepwise outperforms LASSO in both mean squaredr §ME) and model selection
index MI), when the variance of model error term is smathardless of the correlations
among the covariates; 2). forward stepwise alscksvbetter than LASSO iMI, when
the variance of the error term is reasonably laogé the correlations among the
covariates are relatively small. Bd#E andMI will be defined in Section 4.

The second objective of this project is to exteEBE0 model to a more general L
regularized optimization problem in linear regressi That is, to minimize the residual
sum of squares subject to the sum of absolute w&laesubset of parameters being less
than a constant, which refers to feature selecbgnL; regularization of subset of
parameters (LRSP) The motivation comes from the following two coresiations.
First, investigators often have prior knowledgedrok predictors for response (i.e., some
of predictors need to be always kept in the modelake the diabetes data used by
Efron et. al. (2004) for example, 442 diabetesguati were measured on 10 baseline
covariates: age, sex, body mass index, averagal ljogssure, glucose, and other five
blood serum measurements. The response is a meastisease progression one year
after the baseline. It is known that glucose feature that contributes to diabetes for
sure Second, when nuisance parameters exist, invéstigaften intend to focus
covariate selection only on the parameters of @ster Recall the gene expression
example mentioned at the beginning of this Sectiba, parameters of interest are the
differences between the genes of tumor cells aogetlof normal cells, while the genes
of normal cells are actually nuisance parameters.

The structure of this report is as follows. Irc@En 2 we mathematically describe
our problem and introduce the relevant methodologyetail. The algorithm and
simulation results are provided in Section 3 andregpectively. In Section 5 we
describe how to apply our method to linear disanation analysis (LDA) for two-group

case where the means of one group are nuisance@&rs. Conclusions and future



research topics are discussed in Section 6.

2. L1 regularization of a subset of parameters
(LRSP)

In this Section we provide formulations and briekdriptions of the new method, LRSP.
Two model selection criteria that will be used listproject are also discussed. First,
we define notations used in this report.

Notation

Each x; is a predictor vector and there arebservationsmis the number of predictors.
X, =(Xg,Xg, 1 Xg) IS @ subset predictor matrix wherg{, x,, -+, Xg,} is a subset of
predictor vectors ,,X,,---,X,, }. B,is the vector parameter of lengtip , which
corresponds toX,. X, is the matrix which is constructed by the remainiim -p)
predictor vectors.p, is the vector parameter of lengi{m- p), which corresponds to

X,. B, is the intercept.lis a vector of 1's of lengtm. I, is the nxn identity

matrix. ﬁ"and ;Eg are the OLS estimate df and p,, respectively. Residual sum of

squares is defined as following.

ly - (B,1+XB)[; = Zn:(yi -5 - iﬁj x;)?, for unstandarizeddata,
RSS = i=1 =1
ly - XB||§ =Y (y; =Y. B%;)?,for standardieddata.
i=1 =1

L1 Constraint on Subset of Parameters (LRSP)
We extend LASSO model by incorporating prior knadge part of predictors that

should be always in the model:



b =agminlly x5, nL ®

That is, penalize only a subset of coefficients by regularization. Analytical solution

to this problem is difficult, if not impossible. M@&ver, a simple modification of LARS
algorithm can solve this problem. Details of thigoathm and simulation results are

left for Section 3 and 4, respectively.

3. Algorithm

Following is a slight modification of LARS and LA8Galgorithm (Efron 2004) that
solves our problem (3).

LRSP algorithm

Step 1. Standardizesandy by centering and scaling;,j = 1, ...,m; and centering.

Step 2. Fit the OLS to dataX(, y), and obtain the estimatef}‘f. Take the residual

r,=y-Xp°. Calculate¢, =XTr,, the correlation betweex and r,, C, = maﬁélj ‘}

J
and the active s& ={j :‘élj‘:él}D S :{I}DSO, where S, is the index set of
X, .Increase the coefficient in the direction of QLf§ = p° +y1Al81(XIX1.)_1XIr0/CA:1,

1
where A =S (XIXl.)_lXIrO/Cl) 2, X, is the matrix that include$; and x., and

c’iﬁl._é\:lj c’SZI.-i_élj . (4)
A&_a:u‘ Ai+a1j

— min*
Y, =min;_.

+

min~ indicates that the minimum is taken over only pesicomponents within each

choice ofj. Take residuals, :y—Xl.ﬁl along the way. The value of, ensures



that some new index joins the active set andT has as much correlation with as
X; has, whereT Is the minimizing index in (4). The new activet $er next step
isS, =S 0{j}. Infact, LRSP estimatg, have shrunk form thOLS estimatg® .

Step 3. Supposepredictors are in the modefy, = Xkﬁk and the new active setSg,, .

Define the matriXXg,y, =(* Sup;X; " s, Where Sy.y; =sign(Cy.,y; ) for jOS,,, and

Ca =XT(y —1,), the correlation betweeX and residualr,. Let G =XguyXge

2
andpkﬂ :(l-l[ﬂG;}rllkﬂ) 2’ then the unit VeCtmrkﬂ = XS(k+1)W(k+l) ! WhereNk+l = A<+lG :rllkﬂl

makes equal angles, less tB&h, with the active predictorsXyu.,=A.ul.. Let

a,,, =X'U,,, andC,,, :mjaxﬂé(kﬂ)j‘}, then the new estimate witktl covariates is
P = By + ViaUysy Where

oy Ck+1 = Clisn) Ck+1 + Ciksn)
Vi =Min’ , : (6)
k+1 IS _ +
11 a'(k+1)j 1 a'(k+1)j

The minimizing index joins the next active s8t,,. It is the choice of equiangular

vector u,,, (which actually is X, s joint least squares direction) and step sjze that
make LARS less greedy than forward selection ancerafiicient in computation. The
regression vectorf}k+1 IS given b)ﬁk+1 = ﬁk + Vii1SaW.q » Where S, is the diagonal
matrix with diagonal elements,,,,);, for j0S,,,. The components oﬁk+1 are:

B\(kﬂ)j = Iékj * Vieer Sty j Wikn)  » forj0S,;. (7)
Write (7) in another way:

:Bkj )= :Bkj * VSke1)  Wik+1)



Still, the same derivation as in LARS algorithmg thRSP estimate,ékj , have the same

sign as the correlatiort,, ,,,;, for jOS,:

SIgN(Byy) = SIGNE ;) =Seony; » FOF §0S, 8)

Since f.,; Will change sign fromp, at

Vv, = _:Bkj /S(k+1)jW(k+l)j

Let

+oo,if oy, >0.

Ny Y >0
.,_{mln{y,} 1 )

And y=p-. If y<p, and | is in the index set of X for any y betweeny and

Viess s é(kﬂﬁ(y) does not change sign within such a single LRSP stece it is a
continuous function bul;ékjv(y )Yoes. Thushe sign restriction (8) must be violated. As a

result, stop the ongoing LRSP stepjat= y and drop T from the active set.

Step 4. Repeat Step 3 until all predictors ardhérhodel. Similar to LARS algorithm,

estimatesji, always approaching but never reaching the OLSnestigi;,. This last

stepm, however, is an exception.S, contains all predictors, thus (6) is not defined.

Thus choosey,, =C, /A such thatp,_=p° and B, =p°, the OLS estimate for the

full set ofm predictors.

If we do not enforce any prior knowledge of varef)land start with the intercept,
this algorithm generates regular LASSO solution.rédweer, if we do not shrink the
estimates of the parameters at each step, and tddrop any covariates either, LRSP
becomes forward selection algorithm. Figure 1 asth@w the examples of LASSO and

LRSP solution paths for diabetes data used by Edtoal (2004).
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Figure 1. LASSO paths for diabetes data. The bat& axis refers to the sum of absolute valuehef t
estimates of coefficients divided by that of OLSiraates. The vertical axis refers to the estimates

coefficients for standardized data. The numbertheriop of the graph represent the LASSO steps.
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Figure 2. LRSP paths for diabetes data. Let gliessthe predictor of prior knowledge, and define

constraint subset as other 9 covariates.

4. Simulations

In this section, first, we want to investigate whHenthe setting of true parameters, how
correlations fp) among predictors and the variana®®{ of error term of linear model

will affect the performance of LASSO and forwardestion. Second, once the big

picture of their performance areas are obtainedclse two representative pairs of

(0,0) to compare LASSO with LRSP, forward stepwise, tiradfull OLS estimates. Al

variable selection procedures discussed so famgremented according to a specified
criterion. We chooseAIC, and Cross-Validation as the criteria in this pcajeThe

subscriptionp indicates that there apepredictors in the modep =1, ..., m. For linear

Gaussian modelsAlC, =nInRSS, —ninn+2p is Akaike’s information criterion.

Models are searched by small valuesAbE,. Following is the description df-fold
Cross-Validation. Divide the data int6 parts, equal (or close to) in size. For each
part, use the rest of the data as the trainingpsittthe model, and that part as the test set
to calculate the prediction error. Repeat for epaft and average the result to obtain
the CV error for this model. Choose the model with smallest CV error among all

models with different subsets of predictors.

4.1. Investigate in what data structure L ASSO outperformsforward stepwise
method

Here we compare LASSO with forward selection inhbmtediction accuracy and the

performance of variable selection through two mearsentsME andMI. AIC is used

10



as a model selection criterion for batte andMI comparison for different pairs of

(p.o).

300 data sets of 100 observations are generatdd 1&ipredictor variables.

(x, - %) ~N(OZ,)i=1...100

where

1 0 000
0 1 0 p 00O

0 1 O 00O

ZX:? : o

0 0 0 1 000
0 0 0 0 100
0 0 0 0O 010
0 0 0 0O 0 01

18x18

p=-(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0).

The response is obtained from the modgk Xp+o0e. In the error termeg is a

standard normal vector and the standard deviationis a parameter to be changed in

the simulation. As Tibshirani (1996) did, we useamaquared erroME) as a measure

of prediction errorME is estimated byME = ( —=B)" E(X"X)(B -PB )

11



To compare the performance of LASSO with forwaepstise in model selection, we

defineMI (model selection index) as:

_18-a-b
18

Mi

a is the number of true covariates not selected amsdthe number of false covariates
selected. Thus if the model selected by LASSO owdod stepwise is exactly the true

model, therMI = (18-0-0)/18 = 1; if the method select a compietetong model, say,

select the latter 9 covariates for the trjeabove, theMl = (18-9-9)/18 = 0. Otherwise,

Ml is between 0 and 1. High&l indicates that the corresponding method performs
better in variable selection. We compute the rabbsME LASSO to ME forward
selection, andMl LASSO to MI forward selection, respectively. If the ME rai®
greater than 1, it means that forward selectiorke/dsetter than LASSO; if the Ml ratio

Is greater than 1, it indicates that LASSO outpenfoforward selection. Then we draw
the heatmaps (Figure 3 and 4) of the ratios tstilate the comparison ME andMI of
LASSO with that of forward selection. Figure 3 icatie that that forward selection
performs better than LASSO ME when the variance of model error teren is smaller
than 3. Figure 4 demonstrates that forward seleatiorks much better than LASSO in

variable selection when the variance of model éeon o is smaller than 4, regardless

of the correlations among covariates, also perfobetser wheng is larger but o is

relatively small.

12



Ratio of ME for different sigma and rho
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Figure 3. The heatmap ME ratios. The vertical axis refers tp from -0.9 to 0.9, the

horizontal axis refers tac from 1 to 15. Black area indicates forward sédectvorks

better and white area LASSO works better.
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Ratio of Ml for different sigma and rho
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Figure 4. The heatmap Ml ratios. Black area indicates forward selectiomksdetter

and white area LASSO works better.

4.2. Two representative cases

Now for the same data setting a<lifh, we choose two representative cases:

(p,0)=(0,1)and p,o0)=(0.9, 15). Using 5-fold cross-validation (C&9 a

criterion to select the model, and compare fourthmoes, forward selection, LASSO,

LRSP, and OLS, in their averageME, MI, and CV, and the proportion of numbers of

14



covariates selected. Table 1 shows that in the afdsev correlation among the
predictors and low variance of the error term, famvstepwise performs the best in both
MSE and variable selection, and LRSP works beli@n Lt ASSO. The results in Table 2
show that when both correlation among the predscamid the variance of the error term
of the linear model are very large, OLS performst loe MSE, followed by forward
selection, LRSP, and LASSO. Regarding the variablection, LRSP works best if
prior knowledge of predictors is obtained, followsdLASSO, forward selection, and

OLS.

15



Table 1. Comparison table whep (o) = (0, 1)

CV error Nurmber of covari ates

Met hod ME (std) mean Proportion M

1 2 3 4 5 6 7 8 9 nunmber of noi ses

aLs 1.01 1.31 18 1 1 1 1 1 1 1 1 1 9 0.50
(0.21)

Forward | 0.94 1.01 9. 44 .98 .96 .98 .98 .98 1 .94 .94 .98 0. 44 0.98
(0.17)

Lasso 1.04 1.28 13. 86 .98 1 1 1 1 .98 1 1 .96 | 4.86 0.73
(0.23)

LRSP 1.03 1. 27 13. 06 1 1 1 1 1 .98 1 1 .96 4.06 0.77
(0.22)

The proportions of nine true covariates that haaenlchosen are listed, while the number of noiss1the average number of

false covariates that have been selected.
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Table 2. Comparison table whep (o) = (0.9, 15)

CV error Nurmber of covari ates

Met hod ME (std) mean Proportion M

1 2 3 4 5 6 7 8 9 nunmber of noi ses

aLs 50. 15 | 308. 05 18 1 1 1 1 1 1 1 1 1 9 0.50
(49. 95)

Forward | 13.31 | 214.51 0.6 .02 .02 .02 . 06 .02 .04 .08 . 06 .04 0.14 0. 507
(33.72)

Lasso 10. 72 | 230. 57 2.84 . 06 . 06 .22 | .16 .10 .12 .32 | .22 |.28 |1.3 0.51
(30.73)

LRSP 14.73 | 238. 48 5.78 1 1 1 .16 .28 .18 .28 | .32 | .26 |1.26 0.68
(33.23)

The proportions of nine true covariates that haaenlbchosen are listed, while the number of noisns1the average number of

false covariates that have been selected.

17



5. Application to LDA

In this Section, we will introduce the applicatiohLRSP to Linear discriminant analysis.
Even though we do not present data analysis h&8PLcan be easily implemented to
apply L1 regularaization-based feature selectiothoteto LDA. Such analysis is
currently widely used in analysis of high dimensibdata such as ones arising from

microarray data. Considering two-group case, ss@ploat out op (say, 10000) genes,

we want to find significant genes that distinguisk observationsy® from cancer
sample andy® from normal sample. Assume the distribution fanugpi is

multivariate normal with meam® and covariance=®,i=1,2. Then we would like

2)

to test the difference between two group meaf, —p? .  Furthermore we assume that

the prior distributions are noninformative, and toeariance matrices are as following:
2
Jil
»0 =

id

The model can be written ag = Xp +3& where y?,...,y? ~Nu®,z®), and

id

y2oym ~N@®,x9).
Y§I1) Hi

yi=| ¢ 0=
Yip Hhi

18
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Let ™' =W, then Wy =WXp+¢. This can be solved by iteratively reweightedstea

squares and LRSP with following substitutions:

N

- argmin{nv Xy Yoo +A||s2||1}

1:P2

My Mo~
B.=| : |\B, = : 1WXZ(X1'X2)’S7:WY-

:ulp /'12p _/'Ilp
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6. Conclusions

This project is trying to investigate the perforroamf several model selection techniques
with different data structure. The focus is on paning LASSO with forward stepwise.
Our results show that for moderate number of smadld effects, forward selection
outperforms LASSO in both prediction accuracy (neesd byME) and the performance
of variable selection (measured ldy) when the variance of model error term is smaller,
regardless of the correlations among the covari&desard selection also works better in
the performance of variable selection when theavexe of error term is larger, but the
correlations among the covariates are smaller. higngroject, we have developed a new
approach (LRSP) that minimizes the residual susgobres subject to; lconstraint of
subset of parameters. This approach can be applib@ problems when prior
knowledge of some predictors is obtained. It dan be used in the problems with
nuisance parameters where there is no interesaking inferences about those unknown
nuisance parameters. The application to LDA isxample of this case. The present
study may be extended to GLM as a future work. dligerithm of LRSP is developed by
modifying LARS. Simulation results show that wighor knowledge LRSP performs

better than LASSO in covariate selection.
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