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1. Introduction 

Feature selection, also known as variable selection, is the technique that selects a subset 

of relevant predictors to improve the prediction accuracy in regression model. It is also 

widely used to reduce dimensions of data in discriminant analysis setting.  For example, 

tens of thousands of predictors (e.g. genes) are available in microarray data sets.  An 

initial reduction in the number of predictors must be performed before fitting regression 

models or discriminant models to predict the sample phenotypes. 

When outcome is a continuous variable, popular approach is to model the mean of 

response by linear combinations of predictors: 

εXβ1y ++= 0β  

Here, ),,,( 21 mxxxX L=  is predictor matrix with observed values of the m predictors, 

),,( 21 ′= nyyy Ly  are the observed values of the response variable, β  is the vector 

parameter of length , and ),,,( 21 nεεε L=ε  is the error vector, where iε ’s are iid 

normal random variables with mean zero and constant variance 2σ . One of classical 

methods to estimate parameters in linear regression is ordinary least squares (OLS), in 

which parameter estimates are chosen to minimize the residual sum of squares (RSS).  

That is, oβ0
ˆ  and oβ̂  are chosen as the solution to the following optimization problem: 
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With some linear algebra, the formula for estimate of parameters and mean of response 

are given by following formula: 
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Being able to reliably, and automatically, select variables in linear regression models has 

drawn the attention of both applied and theoretical statisticians for a long time.  

Traditional methods include best subset selection and stepwise selection.  The latter 

includes the techniques of forward addition and backward elimination.  Each technique 

chooses the model according to some kind of statistical criterion which measures how 

good the model fits the data.  

Best subset selection finds a subset among all possible combination of predictor 

variables that gives the best fit to a given data.  This method, however, is not practical 

for a large number of predictor variables.  For example, if there are 50 predictor 

variables in the data set, then the total number of all possible subset is 502 . Even a 

recently developed efficient algorithm, leaps and bounds (Furnival and Wilson, 1974), is 

suitable for the number of predictor variables as large as 40 (Hastie et al, 2001).  Instead 

of selecting model from all possible subsets, forward stepwise selection sequentially adds 

the predictor to the model based on the criterion adopted, while backward elimination 

reverses the forward stepwise procedure: it sequentially drops the predictor from the full 

model until all insignificant predictors have been removed. Compared to the best subset 

selection, stepwise selection procedures are relatively cheap in terms of computation, but 

they do have drawbacks: because of the “one-at-a-time” nature of adding/dropping 

variables, it is possible to miss the “optimal” model among all possible subsets.  

Moreover, stepwise selection may seriously overstate significance of results (Faraway, 

2005). 

 Tibshirani (1996) proposed a new method for variable selection least absolute 

shrinkage and selection operator, also called as LASSO. The LASSO imposes a L1 

regularization of the parameters on the OLS estimates.  In other words, it minimizes the 
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residual sum of squares subject to the sum of the absolute value of the coefficients being 

less than a constant. 
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Ridge regression has a similar objective function.  However, it imposes L2 

regularization of the parameters on the OLS estimates rather than L1.  It is 1L  

regularization that makes it possible for LASSO to shrink some coefficients and set 

others to zero as well, and hence retain both prediction accuracy and the purpose of 

variable selection.  

To find the lasso solutions, change (1) to its equivalent problem: 
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There is a one-to-one correspondence between the parameters λ  in (1) and t in (2). 

First, let 0≥t  to be fixed.  The constraint in (2) in effect includes m2  linear 

inequality constraints, which correspond to the m2  different possible signs for the jβ s.  

Due to the large number of constraints, Tibshirani (1996) suggested to solve (2) by 

starting from the overall least squares estimate, introducing the inequality constraints 

sequentially, searching a feasible solution satisfying Kuhn-Tucker conditions.  Efron et 

al (2004) proposed yet another model selection algorithm, Least Angle Regression 

(LARS), which can be modified to solve the whole LASSO path simultaneously.  It will 

be introduced in detail in the next chapter.  

 The first objective of this project is to investigate in what data structure LASSO 

outperforms forward stepwise method. Four simulation examples given by Tibshirani 

(1996) shows that in most cases LASSO performs better than best subset selection. But 

our simulation results indicate that for moderate number of small sized effect, 1). forward 
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stepwise outperforms LASSO in both mean squared error (ME) and model selection 

index (MI), when the variance of model error term is small, regardless of the correlations 

among the covariates; 2). forward stepwise also works better than LASSO in MI, when 

the variance of the error term is reasonably large but the correlations among the 

covariates are relatively small.  Both ME and MI will be defined in Section 4. 

The second objective of this project is to extend LASSO model to a more general L1 

regularized optimization problem in linear regression.  That is, to minimize the residual 

sum of squares subject to the sum of absolute value of a subset of parameters being less 

than a constant, which refers to feature selection by L1 regularization of subset of 

parameters (LRSP).  The motivation comes from the following two considerations.  

First, investigators often have prior knowledge of true predictors for response (i.e., some 

of predictors need to be always kept in the model).  Take the diabetes data used by 

Efron et. al. (2004) for example, 442 diabetes patients were measured on 10 baseline 

covariates: age, sex, body mass index, average blood pressure, glucose, and other five 

blood serum measurements.  The response is a measure of disease progression one year 

after the baseline.  It is known that glucose is a feature that contributes to diabetes for 

sure.  Second, when nuisance parameters exist, investigators often intend to focus 

covariate selection only on the parameters of interest.  Recall the gene expression 

example mentioned at the beginning of this Section, the parameters of interest are the 

differences between the genes of tumor cells and those of normal cells, while the genes 

of normal cells are actually nuisance parameters.  

 The structure of this report is as follows.  In Section 2 we mathematically describe 

our problem and introduce the relevant methodology in detail.  The algorithm and 

simulation results are provided in Section 3 and 4, respectively.  In Section 5 we 

describe how to apply our method to linear discrimination analysis (LDA) for two-group 

case where the means of one group are nuisance parameters.  Conclusions and future 
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research topics are discussed in Section 6. 

2. L1 regularization of a subset of parameters 

(LRSP) 

In this Section we provide formulations and brief descriptions of the new method, LRSP.  

Two model selection criteria that will be used in this project are also discussed.  First, 

we define notations used in this report. 

Notation 

Each jx is a predictor vector and there are n observations. m is the number of predictors. 

),,,( 211 spss xxxX L=  is a subset predictor matrix where { spss xxx ,,, 21 L } is a subset of 

predictor vectors { mxxx ,,, 21 L }. 1β is the vector parameter of length p , which 

corresponds to 1X . 2X  is the matrix which is constructed by the remaining (m -p) 

predictor vectors. 2β  is the vector parameter of length )( pm − , which corresponds to 

2X . 0β  is the intercept. 1 is a vector of 1’s of length n. nI  is the nn ×  identity 

matrix. oβ̂ and oβ0
ˆ  are the OLS estimate of β and 0β , respectively. Residual sum of 

squares is defined as following. 
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L1 Constraint on Subset of Parameters (LRSP) 

We extend LASSO model by incorporating prior knowledge part of predictors that 

should be always in the model: 
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That is, penalize only a subset of coefficients by 1L  regularization. Analytical solution 

to this problem is difficult, if not impossible. However, a simple modification of LARS 

algorithm can solve this problem.  Details of the algorithm and simulation results are 

left for Section 3 and 4, respectively. 

 

3．．．． Algorithm 

Following is a slight modification of LARS and LASSO algorithm (Efron 2004) that 

solves our problem (3).  

LRSP algorithm 

Step 1. Standardizes X and y by centering and scaling jx , j = 1, …, m; and centering y. 

Step 2. Fit the OLS to data (1X , y), and obtain the estimate 0
1β̂ .  Take the residual 

0
110 βXyr −= .  Calculate 01ˆ rXc T= , the correlation between X and 0r , { }j

j
cC 11 ˆmaxˆ =  

and the active set { } { } 00111
ˆˆˆ : SjSCcjS j ∪=∪== , where 0S  is the index set of 

1X   .Increase the coefficient in the direction of OLS, ( ) 10'1

1

'1'111
0
11

ˆ/ˆˆ CA TT rXXXSββ 1

−+= γ , 
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+min  indicates that the minimum is taken over only positive components within each 

choice of j.  Take residuals 1'11 β̂Xyr −=  along the way.  The value of 1γ  ensures 



 7 

that some new index j
~

 joins the active set and 
j
~x  has as much correlation with 1r  as 

ĵ
x  has, where j

~
 is the minimizing index in (4).  The new active set for next step 

is }
~

{12 jSS ∪= .  In fact, LRSP estimate 1β̂  have shrunk form the OLS estimate O
1β̂ . 

Step 3. Suppose k predictors are in the model, kkβXµk
ˆˆ =  and the new active set is 1+kS .  

Define the matrix
1

)  ( )1(1 +∈++ =
kSjjjk)S(k s LL xX , where )ˆ(sign )1()1( jkjk cs ++ =  for 1+∈ kSj  and 

)ˆ(ˆ 1 k
T

k µyXc −=+ , the correlation between X and residual kr .  Let )1)11 +++ = S(k
T
S(kk XXG   

and 2

1

1
1
111 )(

−

+
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+++ = kk

T
kkA 1G1 , then the unit vector )1(11 +++ = k)S(kk wXu , where 1

1
111 +

−
+++ = kkkk A 1Gw , 

makes equal angles, less thano90 , with the active predictors: 111)1 ++++ = kkk
T
S(k A 1uX .  Let 

11 ++ = k
T

k uXa  and { }jk
j

k cC )1(1 ˆmaxˆ
++ = , then the new estimate with k+1 covariates is 

=+1ˆ kµ 1uµ +++ kkk 1ˆ γ  where 
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The minimizing index joins the next active set 2+kS .  It is the choice of equiangular 

vector 1+ku  (which actually is kX ’s joint least squares direction) and step size kγ  that 

make LARS less greedy than forward selection and more efficient in computation.  The 

regression vector 1
ˆ

+kβ  is given by 1111
ˆˆ

++++ += kkkkk wSββ γ , where 1+kS  is the diagonal 

matrix with diagonal elements jks )1( + , for 1+∈ kSj .  The components of 1
ˆ

+kβ  are: 

jkjkkkjjk wsββ )1()1(1)1(
ˆˆ

++++ += γ , for 1+∈ kSj .               (7) 

Write (7) in another way: 

jkjkkjkj wsββ )1()1(
ˆ)(ˆ

+++= γγ  
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Still, the same derivation as in LARS algorithm, the LRSP estimates,kjβ̂ , have the same 

sign as the correlation jkc )1(ˆ + , for kSj ∈ : 

sign( kjβ̂ ) = sign( jkc )1(ˆ + ) = jks )1( + , for kSj ∈ .   (8) 

Since jkβ )1(
ˆ

+  will change sign from kjβ̂  at  

jkjkkjj wsβ )1()1(/ˆ
++−=γ  

Let 

(9)                                                             
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And j~
~ γγ = .  If γ~< 1+kγ  and j

~
 is in the index set of X2, for any γ between γ~ and 

1+kγ , )(ˆ ~)1( γjkc +  does not change sign within such a single LRSP step since it is a 

continuous function but )(ˆ ~ γ
jk
β  does.  Thus the sign restriction (8) must be violated.  As a 

result, stop the ongoing LRSP step at γ = γ~ and drop j
~

 from the active set. 

Step 4. Repeat Step 3 until all predictors are in the model.  Similar to LARS algorithm, 

estimates kµ̂  always approaching but never reaching the OLS estimates Oˆ kµ .  This last 

step m, however, is an exception.  mS  contains all predictors, thus (6) is not defined.  

Thus choose mmm AC /ˆ=γ  such that o
mm µµ ˆˆ =  and o

mm ββ ˆˆ = , the OLS estimate for the 

full set of m predictors.  

If we do not enforce any prior knowledge of variables, and start with the intercept, 

this algorithm generates regular LASSO solution. Moreover, if we do not shrink the 

estimates of the parameters at each step, and do not drop any covariates either, LRSP 

becomes forward selection algorithm. Figure 1 and 2 show the examples of LASSO and 

LRSP solution paths for diabetes data used by Efron et. al (2004). 
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Figure 1. LASSO paths for diabetes data.  The horizontal axis refers to the sum of absolute value of the 

estimates of coefficients divided by that of OLS estimates.  The vertical axis refers to the estimates of 

coefficients for standardized data.  The numbers on the top of the graph represent the LASSO steps. 
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Figure 2. LRSP paths for diabetes data.  Let glucose as the predictor of prior knowledge, and define 

constraint subset as other 9 covariates. 

4. Simulations  

In this section, first, we want to investigate when fix the setting of true parameters, how 

correlations (ρ ) among predictors and the variance (2σ ) of error term of linear model 

will affect the performance of LASSO and forward selection.  Second, once the big 

picture of their performance areas are obtained, we choose two representative pairs of 

( ρ ,σ ) to compare LASSO with LRSP, forward stepwise, and the full OLS estimates. All 

variable selection procedures discussed so far are implemented according to a specified 

criterion. We choose AICp and Cross-Validation as the criteria in this project. The 

subscription p indicates that there are p predictors in the model, p =1, …, m. For linear 

Gaussian models, pnnRSSnAIC pp 2lnln +−= is Akaike’s information criterion. 

Models are searched by small values of AICp.  Following is the description of K-fold 

Cross-Validation.  Divide the data into K parts, equal (or close to) in size.  For each 

part, use the rest of the data as the training set to fit the model, and that part as the test set 

to calculate the prediction error.  Repeat for each part and average the result to obtain 

the CV error for this model.  Choose the model with the smallest CV error among all 

models with different subsets of predictors.  

4.1. Investigate in what data structure LASSO outperforms forward stepwise 

method 

Here we compare LASSO with forward selection in both prediction accuracy and the 

performance of variable selection through two measurements, ME and MI.  AIC is used 
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as a model selection criterion for both ME and MI comparison for different pairs of 

( ρ ,σ ).  

 

300 data sets of 100 observations are generated, with 18 predictor variables.   
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β = (1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0). 

The response is obtained from the model, εXβy σ+= . In the error term ε  is a 

standard normal vector and the standard deviation σ  is a parameter to be changed in 

the simulation. As Tibshirani (1996) did, we use mean squared error (ME) as a measure 

of prediction error. ME is estimated by )ˆ)(()ˆ(ˆ ββXXββ −−= TT EEM . 
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To compare the performance of LASSO with forward stepwise in model selection, we 

define MI (model selection index) as: 

18

-18 ba
MI

−=  

a is the number of true covariates not selected and b is the number of false covariates 

selected. Thus if the model selected by LASSO or forward stepwise is exactly the true 

model, then MI = (18-0-0)/18 = 1; if the method select a completely wrong model, say,  

select the latter 9 covariates for the true β  above, then MI = (18-9-9)/18 = 0. Otherwise, 

MI is between 0 and 1. Higher MI indicates that the corresponding method performs 

better in variable selection. We compute the ratios of ME LASSO to ME forward 

selection, and MI LASSO to MI forward selection, respectively.  If the ME ratio is 

greater than 1, it means that forward selection works better than LASSO; if the MI ratio 

is greater than 1, it indicates that LASSO outperforms forward selection.  Then we draw 

the heatmaps (Figure 3 and 4) of the ratios to illustrate the comparison of ME and MI of 

LASSO with that of forward selection. Figure 3 indicate that that forward selection 

performs better than LASSO in ME when the variance of model error term σ  is smaller 

than 3.  Figure 4 demonstrates that forward selection works much better than LASSO in 

variable selection when the variance of model error term σ  is smaller than 4, regardless 

of the correlations among covariates, also performs better when σ  is larger but ρ  is 

relatively small. 
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Figure 3. The heatmap of ME ratios.  The vertical axis refers to ρ  from -0.9 to 0.9, the 

horizontal axis refers to σ  from 1 to 15.  Black area indicates forward selection works 

better and white area LASSO works better. 
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Figure 4. The heatmap of MI ratios.  Black area indicates forward selection works better 

and white area LASSO works better. 

4.2. Two representative cases 

Now for the same data setting as in 4.1, we choose two representative cases:  

( ρ ,σ ) = (0, 1) and (ρ ,σ ) = (0.9, 15).  Using 5-fold cross-validation (CV) as a 

criterion to select the model, and compare four methods, forward selection, LASSO, 

LRSP, and OLS, in their average of ME, MI, and CV, and the proportion of numbers of 
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covariates selected. Table 1 shows that in the case of low correlation among the 

predictors and low variance of the error term, forward stepwise performs the best in both 

MSE and variable selection, and LRSP works better than LASSO. The results in Table 2 

show that when both correlation among the predictors and the variance of the error term 

of the linear model are very large, OLS performs best in MSE, followed by forward 

selection, LRSP, and LASSO.  Regarding the variable selection, LRSP works best if 

prior knowledge of predictors is obtained, followed by LASSO, forward selection, and 

OLS. 
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Table 1. Comparison table when (ρ ,σ ) = (0, 1) 

Number of covariates 

Proportion 

 

Method 

 

ME 

CV error  

(std) mean 

1 2 3 4 5 6 7 8 9 number of noises 

 

MI 

OLS 1.01 1.31 

(0.21) 

18 1 1 1 1 1 1 1 1 1 9 0.50 

Forward 0.94 1.01 

(0.17) 

9.44 .98 .96 .98 .98 .98 1 .94 .94 .98 0.44 0.98 

Lasso 1.04 1.28  

(0.23) 

13.86 .98 1 1 1 1 .98 1 1 .96 4.86 0.73 

LRSP 1.03 1.27 

(0.22) 

13.06 1 1 1 1 1 .98 1 1 .96 4.06 0.77 

The proportions of nine true covariates that have been chosen are listed, while the number of noises means the average number of 

false covariates that have been selected.
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Table 2. Comparison table when (ρ ,σ ) = (0.9, 15) 

Number of covariates 

Proportion 

 

Method 

 

ME 

CV error  

(std) mean 

1 2 3 4 5 6 7 8 9 number of noises 

 

MI 

OLS 50.15 308.05 

(49.95) 

18 1 1 1 1 1 1 1 1 1 9 0.50 

Forward 13.31 214.51 

(33.72) 

0.6 .02 .02 .02 .06 .02 .04 .08 .06 .04 0.14 0.507 

Lasso 10.72 230.57  

(30.73) 

2.84 .06 .06 .22 .16 .10 .12 .32 .22 .28 1.3 0.51 

LRSP 14.73 238.48 

(33.23) 

5.78 1 1 1 .16 .28 .18 .28 .32 .26 1.26 0.68 

The proportions of nine true covariates that have been chosen are listed, while the number of noises means the average number of 

false covariates that have been selected.
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5. Application to LDA 

In this Section, we will introduce the application of LRSP to Linear discriminant analysis. 

Even though we do not present data analysis here, LRSP can be easily implemented to 

apply L1 regularaization-based feature selection method to LDA. Such analysis is 

currently widely used in analysis of high dimensional data such as ones arising from 

microarray data.  Considering two-group case, suppose that out of p (say, 10000) genes, 

we want to find significant genes that distinguish the observations )1(y  from cancer 

sample and )2(y  from normal sample.  Assume the distribution for group i is 

multivariate normal with mean )(iµ  and covariance )(iΣ , i = 1, 2.  Then we would like 

to test the difference between two group mean, )2()1( µµ − .  Furthermore we assume that 

the prior distributions are noninformative, and the covariance matrices are as following: 

















=
2

2
1

)(

ip

i
i

σ

σ
OΣ . 

The model can be written as εXβy Σ+=  where ),(~,, )1()1()1()1(
1 Σµyy N

iid

nK , and 

),(~,, )2()2()2()2(
1 Σµyy N

iid

mK . 

















=
















=

ip

i
i

i
jp

i
j

i
j

y

y

µ

µ
MM

1
)(

)(

)(
1

)(  ,µy . 

 



 19 

 



























=Σ



























−

−
=



















































=

2
2

2
21

2
1

2
11

12

1121

1

11

)2(

)2(
1

)2(
1

)2(
11

)1(

)1(
1

)1(
1

)1(
11

 ), ,(~ , ,

p

p

pp

p

mp

p

m

np

p

n

N

y

y

y

y

y

y

y

y

σ

σ
σ

σ

µµ

µµ
µ

µ

O

O

M

M

M

M

M

M

M

M

I0εβy . 

Let W=Σ−1 , then εWXβWy += .  This can be solved by iteratively reweighted least 

squares and LRSP with following substitutions: 
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6. Conclusions 

This project is trying to investigate the performance of several model selection techniques 

with different data structure.  The focus is on comparing LASSO with forward stepwise.  

Our results show that for moderate number of small sized effects, forward selection 

outperforms LASSO in both prediction accuracy (measured by ME) and the performance 

of variable selection (measured by MI) when the variance of model error term is smaller, 

regardless of the correlations among the covariates; forward selection also works better in 

the performance of variable selection when the variance of error term is larger, but the 

correlations among the covariates are smaller. In this project, we have developed a new 

approach (LRSP) that minimizes the residual sum of squares subject to L1 constraint of 

subset of parameters.  This approach can be applied to the problems when prior 

knowledge of some predictors is obtained.  It can also be used in the problems with 

nuisance parameters where there is no interest in making inferences about those unknown 

nuisance parameters.  The application to LDA is an example of this case.  The present 

study may be extended to GLM as a future work. The algorithm of LRSP is developed by 

modifying LARS.  Simulation results show that with prior knowledge LRSP performs 

better than LASSO in covariate selection.  
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