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Abstract

This study explores iterative neural networks (INNs), which reimagine neural network designs as iterated
functions, and the recently introduced Sequential2D framework for neural networks that frames INN functions
as left matrix multiplications for enhanced computational efficiency. We investigate the effects of sparse
and low-rank matrix approximations on model performance, particularly focusing on sparsity and weight
distribution using the MNIST Random Anomaly Task. Our results highlight the delicate balance between
parallelization advantages and the need for equitable weight distribution. The comparison of sparse, low-
rank, and dense matrices reveals sparse matrices’ role in boosting computational speed without drastically
affecting model accuracy. Overall, this research advances our understanding of INNs and Sequential2D,
underlining the significance of matrix representation methods in fine-tuning neural network architectures for
improved performance and efficiency.
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Executive Summary

This body of research aims to unravel the dynamics of the recently proposed iterative neural

networks (INNs), focusing particularly on employing sparse and low-rank matrices within these models.

INNs represent traditional neural networks as iterated functions; subsequently, they provide a more gener-

alized approach for modifying neural architectures and selecting hyperparameters. Furthermore, INNs are

2-dimensional and therefore more easily interpretable. Despite their benefits, they are slow and unoptimized

for current GPU-based accelerators. Our work is on the implementation of INNs and how it can be done

faster.

First, we extend previous research on INNs’ representational capacity and show that they capture

the Simple Recurrent Unit (SRU), which despite its name is a fairly complex model involving light recurrence

and GPU parallelization.

Figure 1: Our INN representation of the Simple Recurrent Unit.

We identify that parallelizable weights in the Simple Recurrent Unit appear in the same column

of the INN. Drawing on the ideas of parallelization and sparsity, we begin the task of optimizing the INN.

Through experimentation, we determine that low-rank weight matrices not only hold their ground against

dense matrices but, in many instances, surpass them in test set accuracy. This remarkable finding is un-

derscored by a significant reduction in the number of trainable parameters, highlighting the efficiency and

potential simplification that low-rank matrices bring to the INN.
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Figure 2: Model performance of dense, sparse, and low-rank weight matrices.

Further investigation into weight distribution indicates a sweet spot in concentrating a higher

proportion of weights in the input column of the INN, which not only enhances model performance but also

hints at increased parallelizability. We also identify a balance between feed-forward and recurrent connections

within INNs, suggesting a trade-off where recurrent connections accelerate training but increase the risk of

overfitting.

As we distill these results into actionable insights, it is evident that integrating sparse and low-

rank matrices within INNs can catalyze model speed and accuracy. This research not only contributes to

the theoretical understanding of INN architectures but also paves the way for practical applications that

demand efficiency and accuracy in equal measure.

In conclusion, our exploration into the realms of sparse and low-rank matrices within iterative neural

networks proves incredibly promising for the future of machine learning. By harnessing these matrices and

fine-tuning the weight distribution and recurrence within neural networks, we can develop more sophisticated,

efficient, and effective neural networks. As we continue to push the boundaries of what neural networks can

achieve, the insights gleaned from this research will play a pivotal role in shaping the future of machine

learning, enabling us to tackle increasingly complex tasks with unprecedented efficiency and accuracy.
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1 Introduction

In the realm of machine learning (ML), there is a relentless demand for models that are not only accurate but

also efficient and scalable. The complexity of modern ML tasks and burgeoning data demand models that

can learn from vast datasets without compromising speed or requiring exorbitant computational resources.

Inspired by the human brain’s architecture, neural networks have emerged as a powerful tool for pattern

recognition, decision-making, and prediction tasks. [1] These models represent complex functions as a series

of layers, where each layer’s output feeds into the next layer’s input. [2] For example, a two-layer neural

network could be,

F (x, θ) = f (2)(f (1)(x, θ1), θ2) (1)

However, as neural networks grow in size and depth to capture the intricacies of high-dimensional

data, the need for innovative strategies to optimize their performance and efficiency becomes essential. [3]

The Iterative Neural Network (INN) is one such strategy, drawing inspiration from an area of

mathematics known as dynamical systems theory. [4] This class of models redefines neural networks as

iterated functions, turning Equation 1 into

F (x, θ) = f(f(x, θ)) (2)

By representing an entire neural network with one function f , INNs provide a more generalized ap-

proach for modifying neural architectures and selecting hyperparameters. Furthermore, they only require one

function and are therefore more easily interpretable. Despite their benefits, INNs are slow and unoptimized

for current GPU-based accelerators. [5]

This study delves into the basic structure of iterative neural networks. By revisiting the fundamental

components of these models, particularly the representation and distribution of weight matrices within INNs,

we aim to uncover techniques to enhance their computational efficiency and learning performance. Our

exploration is grounded in the application of sparse and low-rank matrix representations within INNs, as

opposed to traditional dense matrices, to investigate their impact on model speed and accuracy.

Sparse matrices, characterized by primarily consisting of zero-valued elements, offer an enticing

prospect for reducing computational overhead. By focusing computational efforts on the non-zero elements,
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sparse representations promise to accelerate matrix operations, a cornerstone of neural network computations.

[6] Similarly, low-rank matrix approximations, which decompose a matrix into simpler, lower-dimensional

matrices, offer a path to reduce matrix complexity, potentially enhancing learning efficiency and model

interpretability.

Our empirical investigations are set against the MNIST Random Anomaly task, a challenging

variant of the widely utilized MNIST handwritten digit recognition task. [7] This task, designed to test the

models’ ability to discern anomalies in sequences of transformed digit images, provides a fertile ground for

assessing the efficacy of sparse and low-rank matrices in handling complex, sequential data.

A pivotal aspect of our study is examining the weight distribution within INNs. By manipulating

the allocation of trainable parameters across the input, hidden, and output layers of the network, we seek

to identify the influence of weight concentration on learning dynamics and model performance. This explo-

ration is particularly poignant in the context of recurrent connections, which enable the network to leverage

temporal dependencies in the data. [8] Balancing the proportion of feed-forward and recurrent connections

emerges as a critical factor in tuning the model’s capacity for fast learning and robust generalization to

unseen data.

Through a series of experiments, we juxtapose the performance of INNs employing sparse, low-rank,

and traditional dense weight matrices across varying configurations and effective weight percentages. The

findings from these experiments shed light on the trade-offs between computational efficiency, learning speed,

and model accuracy, providing valuable insights for the design of optimized neural network architectures.

This research contributes to the ongoing discourse on neural network optimization by offering

empirical evidence on the benefits and limitations of sparse and low-rank matrices in INNs. By unraveling

the effects of weight distribution and the balance between different types of connections, this study paves

the way for the development of faster and more memory-efficient INNs.
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2 Methodology

2.1 Notation

Notation Description
a Scalar (a real number)
v Vector (a column vector by default)
A Matrix
A ·B Matrix product of matrices A and B. This is equivalent to AB.
a⊙ b Hadamard product (element-wise product) of vectors a and b
1n A column vector (1, 1, . . . , 1) ∈ Rn

Table 1: Notation table

2.2 Neural Networks

Neural networks are a cornerstone of machine learning, inspired by the structure and function of the human

brain. [2] At their core, they aim to model complex relationships between inputs and outputs, learn patterns,

and make predictions. A neural network can be mathematically represented as an equation y = f(x, θ),

where:

• x denotes the input data to the network. This could be any form of data such as images, text, or

numerical values.

• y denotes the output from the network. This could be either a vector or a scalar value.

• θ represents the parameters or weights of the network. These are the values that the network adjusts

through learning to improve its predictions.

The function f maps inputs to outputs through a series of layers, each consisting of nodes or

neurons. The layers transform the input data step by step, using linear combinations followed by nonlinear

activation functions, to capture complex relationships and patterns in the data. [2]

To refine the network’s parameters for better accuracy, a process known as backpropagation is

employed. Backpropagation calculates the gradient of the loss function with respect to each parameter by

the chain rule, efficiently propagating the error backward through the network. This allows the network to

adjust its parameters in a way that minimizes the error, making the function f a more accurate model of

the relationship between x and y and enhancing the network’s ability to make accurate predictions. [9]
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Traditionally, a neural network is not just a single function but rather a composition of multiple

nested functions, each associated with a specific layer in the network. [2] These layers are structured in

a hierarchy, where each layer’s output serves as the input for the next layer. This can be mathematically

represented as:

f(x, θ) = f (n)(f (n−1)(. . . f (2)(f (1)(x, θ1), θ2) . . . , θn−1), θn) (3)

where:

• f (1), f (2), . . . , f (n) represent the functions associated with each layer from the input layer to the output

layer.

• θ1, θ2, . . . , θn denote the sets of parameters or weights for each corresponding layer.

• n indicates the total number of layers in the neural network, excluding the input layer.

Each layer’s function typically involves a linear transformation, given by Wx+b where W ∈ Rm×n

and b ∈ Rm are the weights and biases of the layer where m is the number of output features and n is the

number of input features, i.e. the length of x, followed by a nonlinear activation function like ReLU [10],

Sigmoid [9], or Tanh [11]. This composition of linear and nonlinear operations allows neural networks to

model highly complex and nonlinear relationships in the data.

The architecture of a neural network, including the number of layers and the number of neurons in

each layer, is a critical factor that influences its ability to learn and generalize from the input data. [3] The

choice of activation functions and the method of initializing the weights are also important considerations

that affect the network’s performance. [12]

2.3 Iterative Neural Networks

Notice that the neural network equations,

f(x, θ) = f (n)(f (n−1)(. . . f (2)(f (1)(x, θ1), θ2) . . . , θn−1), θn)

can be rewritten using the function composition notation ◦, which represents the composition of

functions in a more compact and mathematically elegant way. [4] In this context, function composition

(f ◦ g)(x) means applying function g to x first and then applying function f to the result of g(x). Applying
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this concept to the given equation, we can express the nested function applications as a chain of compositions.

Therefore, the equation simplifies to:

f(x, θ) = f (n) ◦ f (n−1) ◦ · · · ◦ f (2) ◦ f (1)(x, θ1, θ2, . . . , θn−1, θn)

This notation streamlines the expression by eliminating the need for repeated parentheses and

explicitly showing the sequence of function applications from right to left, starting with f (1) applied to x

and parameters θ1 through θn, and ending with f (n).

Iterative neural networks derive from dynamical systems theory, an area of mathematics interested

in modeling complex systems such as feedback loops and fractals. [4] Their basic structure replaces the

composition of nested functions from a traditional neural network with functions that iterate upon themselves

as depicted in Equation 4 below.

f ◦ f ◦ · · · ◦ f ◦ f(x, θ) (4)

Instead of representing neural networks as n separate functions, where n is the depth of the network,

iterative neural networks repeatedly apply the same function to the input, flattening the network into a single

layer with parameters θ. Despite this seemingly limiting constraint, iterative neural networks can represent

a wide variety of network architectures ranging from multi-layer perceptrons to recurrent neural networks

and beyond. [4]

2.4 Generalized MLPs as Iterative Neural Networks

Multi-layer perceptrons are neural networks where the forward propagation of inputs through the

network generates predictions. [2] The process involves the following steps:

1. An input vector x is fed into the input layer.

2. Each hidden layer transforms the inputs using a linear combination of weights W and biases b, followed

by a non-linear activation function σ. This can be represented as:

h = σ(Wx+ b) (5)

where h represents the output of the hidden layer.
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3. The transformed data is passed through subsequent layers until it reaches the output layer, which

produces the final prediction y.

This process can be summarized for two layers by the following equation.

f1 ◦ f0(x) = σ(W 1σ(W 0x)) = σ(W 1h) = y (6)

Here, W 0 and W 1 are implicit inputs to f0 and f1 respectively. To represent a multi-layer percep-

tron as an iterative neural network, there must be a single function f such that

f ◦ f(x̄) = y (7)

Here x̄ represents a modified input for the network. This input consists of x, h, and y vertically

concatenated together to form an expanded input vector where h and y are initialized as zero vectors. [4]

We then define our function as follows.

f (x̄) = f



x

h

y


 =


x

σ(W 0x)

σ(W 1h)

 (8)

The first iteration of f correctly computes h, and the second iteration computes y as,

f ◦ f(x̄) = f ◦ f



x

0

0


 = f


x

σ(W 0x)

σ(W 10)

 =


x

σ(W 0x)

σ(W 1(σ(W 0x))


Thus, a two-layer MLP can be replaced by an iterative neural network. [4] This idea generalizes

for an MLP with any number of layers, only requiring additional iterations to compute the final y.

2.5 Iterative Representations of Recurrent Neural Networks

Beyond multi-layer perceptrons, the iterative neural network architecture can extend to more com-

plex models as well. [8]

Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed to recognize
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patterns in sequences of data, such as text, genomes, handwriting, or numerical time series data. [9] Unlike

traditional neural networks, which process inputs independently, RNNs have loops within them, allowing

information to persist. This looping mechanism enables RNNs to take not only the current input but also

the previously received inputs into account, effectively giving them a form of memory. [13]

The fundamental operations within an RNN at each timestep can be described by the following

equation. [13]

ht = σ(W ixt +Whht−1) (9)

Here, the input to the RNN is a sequence of vectors x0,x1, . . .xn, W
i is the input weight matrix

and Wh is the hidden weight matrix. The RNN uses its hidden state ht, which is updated at every timestep,

to capture information from previous inputs. This is what gives the RNN its temporal dynamic behavior

and the ability to process sequences of data. [13] After the final timestep T , the hidden state hT serves as

the output y.

To represent an RNN as an iterative neural network, we must identify a single function f such that

the following equation holds. [8] Here, f is applied T times, where T is the sequence length of the RNN.

f ◦ f ◦ ... ◦ f(x̄) = y (10)

As with the MLP, x̄ represents a modified input to the network consisting of x and h vertically

concatenated together to form a single expanded input vector. We can then define our function as follows.

f(x̄) = f


xt

ht


 =

 xt+1

σ(W ixt +Whht)

 =

xt+1

ht+1

 (11)

We initialize the input with,

x̄ =

x0

0


and after T iterations, the hT section of the output will equal y, the final output of the recurrent

neural network, as shown below.. [8]
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f ◦ · · · ◦ f ◦ f


x0

0


 = f ◦ · · · ◦ f


x1

h1


 = · · · = f


xT−1

hT−1


 =

xT

hT

 (12)

2.6 Iterative Representation of the Simple Recurrent Unit

One significant challenge that arises with Recurrent Neural Networks (RNNs), including advanced

variants like LSTMs [14], QRNNS [15], and GRUs [16], is their difficulty in parallelizing operations effectively

on GPUs (Graphics Processing Units). [17] GPUs excel at handling multiple operations simultaneously,

making them ideal for the parallelizable tasks often found in multi-layer perceptrons and other feedforward

architectures. [18] However, RNNs have a sequential nature where each step depends on the computations

and outcomes of the previous steps, and this inherently limits the potential for parallel processing. [19]

The dependency chain in RNNs introduces a bottleneck because each step must wait for the completion

of its predecessor, preventing the full utilization of GPU capabilities for speed improvements. [14] This

contrasts with the more straightforward parallelization of other neural network architectures, where inputs

can be processed independently. As a result, training and inference with RNNs can be slower and more

computationally intensive. [20]

The Simple Recurrent Unit (SRU), introduced by Lei et al. in 2017, addresses the parallelization

challenges inherent in traditional Recurrent Neural Networks (RNNs) by redesigning the recurrent computa-

tion to reduce the sequential dependencies that typically bottleneck RNNs. [21] SRU incorporates elements

of parallelization within the recurrent computations, enabling it to process the large weight matrices of the

model concurrently. This design allows SRU to maintain the advantages of RNNs in handling sequential

data while significantly increasing the speed of training and inference by leveraging the parallel processing

capabilities of GPUs more effectively. [22] The SRU architecture demonstrates that it’s possible to retain

the sequential data processing capabilities crucial for language modeling and time series analysis, while also

achieving computational efficiencies closer to those of feedforward and convolutional networks. It thus offers

a promising solution to the parallelization issues that have traditionally limited RNN performance. [21]

Let positive integers n, T ∈ N, and let an input sequence x0,x1, . . . ,xT−1 such that xi ∈ Rn ∀ 0 ≤

i < T . The Simple Recurrent Unit (SRU) is defined by a set of equations as follows: [21]

1. ft = σ(Wfxt + vf ⊙ ct−1 + bf )

This equation computes the forget gate ft, which determines the extent to which the previous

state ct−1 is retained in the current state. Wf and bf are the weight matrix and bias for the forget gate,
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respectively, and σ denotes the sigmoid activation function, ensuring the output ranges between 0 and 1.

2. ct = ft ⊙ ct−1 + (1n − ft)⊙ (Wxt)

This equation defines the current state ct, which is updated by a blend of the previous state ct−1

and the new candidate state, Wxt, modulated by the forget gate ft. Note that ⊙ denotes element-wise

multiplication, and 1n is a vector of ones.

3. rt = σ(Wrxt + vr ⊙ ct−1 + br)

Here, rt represents the reset state, which adaptively combines the input xt and the past state ct−1.

Wr and br are the weight and bias for the reset state.

4. ht = rt ⊙ ct + (1n − rt)⊙ xt

The final output ht is a combination of the input, xt, and the current state ct, regulated by the

reset state rt.

These equations collectively enable SRU to efficiently manage the flow of information through

the network, maintaining the capacity to capture sequential dependencies while benefiting from parallel

computation. One significant improvement is that the weight matrices Wr, Wc, and W are all multiplied by

xt. Consequently, their multiplications can be batched together as follows. [21]

Ut =


W

Wf

Wr

 [x0,x1, ...,xT] (13)

The large weight matrix multiplications can not only be batched together across the SRU equations

but also across the input sequence. Notice that because of the element-wise multiplications, the weight vectors

vf ,bf ,vr,br all have length n, which is the length of the inputs xi. [21]

Converting the Simple Recurrent Unit into an iterative neural network is significantly more complex

than representing a multi-layer perceptron or an RNN. The goal is to identify a function f such that satisfies

the following equation.

ct,ht = f ◦ f ◦ ... ◦ f(x̄t) (14)

Here, ht is the final output as defined by the SRU equations, ct is the control gate, and x̄t is a

modified input to the equation consisting of xt concatenated with ct−1 and several other intermediary values
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as shown below. We need to compute ct since it becomes ct−1 for the next input. Notice that the most

straightforward solution, given below, computes ht in three iterations.

f(x̄t) = f





xt

ct−1

ft

ct

rt

ht




=



xt

ct−1

σ(Wfxt + vf ⊙ ct−1 + bf )

ft ⊙ ct−1 + (1− ft)⊙ (Wxt)

σ(Wrxt + vr ⊙ ct−1 + br)

ct ⊙ (Whxt + bh) + (1− ct)⊙ rt


(15)

Assume xt is initialized as the input, ct−1 is initialized as the previous control state (or zeros, if

this is the first input in the sequence), and the remaining values are initialized as zero. The first iteration

of f successfully computes ft and rt. The second iteration successfully computes ct. The third iteration

successfully computes ht.

f ◦ f ◦ f





xt

ct−1

0

0

0

0




= f ◦ f





xt

ct−1

ft

∗

rt

∗




= f





xt

ct−1

ft

ct

rt

∗




=



xt

ct−1

ft

ct

rt

ht


(16)

Here, the asterisks (∗) indicate values that are part of the computation but are not relevant for

further discussion or analysis. Although this is technically an iterative function, this solution does little more

than wrap the equations.

2.7 Iterative Neural Networks with Sequential2D

As demonstrated, iterative neural networks capture a variety of architectures from MLPs and RNNs

to more complex architectures such as the Simple Recurrent Unit. We have shown that theoretically, these

models are all representable as iterative neural networks, in their current form, these INN representations

are not all particularly insightful.

One major issue is that the iterative functions f used to describe these networks have very different

complexities. The iterative representation of the MLP uses only matrix multiplication and non-linearity

12



functions. The iterative RNN function adds in matrix addition. [4] Finally, the iterative Simple Recurrent

Unit function we developed in the previous section includes multiple matrix multiplications and element-wise

multiplications (Hadamard products) summed together within the same line. The function is practically just

a wrapper for the SRU equations.

The Sequential2D framework represents these models in a single unified format. Within Sequen-

tial2D, iterative functions are represented as left matrix multiplications. [5] This allows more complex models

like the SRU to be broken down into larger but simpler architectures. Instead of involving more complex

equations, the model requires a larger matrix multiplication and storage of more intermediary steps. The

goal of ’flattening’ neural network architectures is better served by the Sequential2D framework. [5]

The Sequential2D framework can be summarized as identifying a matrix F that satisfies the fol-

lowing equation. [5]

F · x̄ = f(x) (17)

Here, x is the input for the iterative function as described in the previous sections, and x̄ is a

modified input for the Sequential2D representation of the iterative function. This input can contain the

same values that are in x, or include additional intermediary steps. [5]

2.7.1 Multi-Layer Perceptron with Sequential2D

To represent the two-layer MLP from Section 2.4 with Sequential2D, we can use an [nx+nh+ny]×

[nx + nh + ny] matrix where nx is the input length, nh is the hidden size, and ny is the output size. [4]

F x̄ = F ·


x

h

y

 = σ(

σ(


I 0 0

W 0 0 0

0 W 1 0

)
)

·


x

h

y

 =


x

σ(W 0x)

σ(W 1h)

 (18)

Here, I ∈ Rnx×nx , W 0 ∈ Rnh×nx , and W 1 ∈ Rny×nh . The 0s similarly represent zero matrices.

Notice that this is not purely a matrix multiplication. The σ on the left-hand side of the second and third

rows indicates that after the matrix multiplication, the sigmoid function is applied to the value in that

row. That allowance for nonlinearity is what distinguishes a Sequential2D multiplication from an ordinary

matrix multiplication. [5] With that allowance, the Sequential2D multiplication F performs identically to

the iterative function described in Section 2.4. [4] We can initialize the input as

13



x̄ =


x

0

0


One left multiplication by F correctly computes h, and the second left multiplication correctly

computes the final output y. [4] In other words,

F (F x̄) = F (F ·


x

0

0

) = F ·


x

h

0

 =


x

h

y


as desired.

2.7.2 Recurrent Neural Network with Sequential2D

To represent the recurrent neural network from Section 2.5 with Sequential2D, we can use a [nx +

nh] × [nx + nh] matrix where nx is the input length and nh is the hidden size. [8] Let the input sequence

length T . Furthermore, we define a convenience function τ which takes an input and returns the next input

in the sequence, so

τ(xt) =


xt+1 0 ≤ t+ 1 < T

0 otherwise

Note that this function can be interpreted as a nonlinear activation for the Sequential 2D, although

its purpose is to iterate through the inputs. With that, the Sequential2D representation of the recurrent

neural network is as follows. [4]

F x̄t = F ·

xt

ht

 =
τ(

σ(

 I 0

W i Wh

)
)

·

xt

ht

 =

 τ(xt)

σ(W ixt +Whht)

 =

xt+1

ht+1

 (19)

A single multiplication by F (with non-linearity) computes the hidden state for an input. Notice

that after each iteration, xt is replaced by the following input xt+1. We can initialize the input as
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x̄0 =

x0

0


Recall that T is the length of the input sequence. After T left multiplications by the Sequential2D

matrix F , the output is

F · F · · · · · F · x̄0 = x̄T =

 0

hT


Notice there is no xT since the sequence is 0-indexed. Therefore, τ(xT−1) = 0. The hidden state

hT is also the final output y of the RNN. [4]

2.7.3 Simple Recurrent Unit with Sequential2D

The Simple Recurrent Unit is significantly more complicated to represent as a Sequential2D. How-

ever, redefining it in this framework has several benefits. First, it provides a way to incrementally transition

from simpler networks such as the multi-layer perceptron to more complex networks by changing one matrix

block at a time. Secondly, it means that any performance improvements which are made to the Sequential2D

architecture then extend to improving the performance of the Simple Recurrent Unit.

To that end, we derive a 14n× 14n matrix multiplication representing the Simple Recurrent Unit,

where n is the length of the input vector. This representation cleverly decomposes the SRU equations

into individual matrix additions and multiplications. To account for the element-wise products within

the SRU architecture, the representation requires the element-wise product of two Sequential2D matrix

multiplications. This adds some complexity, however maintains the overall goal of Sequential2D, which is to

flatten the neural network.

For this formulation, we need diagonal matrices Vf , Bf , Vr, Br containing the entries of vf ,bf ,vr,br.

Diagonal matrices only contain non-zero entries on their main diagonal. For example, let vf =

[
v1 v2 . . . vn

]T
,

then the diagonal matrix corresponding to vf is

Vf =


v1

. . .

vn


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As shown below, left multiplication by the diagonal matrix Vf has the same action as elementwise

multiplication by the vector vf .

vf ⊙ x =



v1

v2

. . .

vn


⊙



x1

x2

. . .

xn


=



v1x1

v2x2

. . .

vnxn


=



v1 0 . . . 0

0 v2 0
...

... 0
. . . 0

0 . . . 0 vn


·



x1

x2

. . .

xn


= Vf · x (20)

With this in mind, the equation below computes the Simple Recurrent Unit with Sequential2D

matrix multiplications.

F (x̄) = Gx̄⊙Hx̄ (21)

where,

Gx̄ =

σ(

σ(



I 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 I 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

Wf Vf Bf 0 0 0 0 0 0 0 0 0 0 0

0 0 I −I 0 0 0 0 0 0 0 0 0 0

W 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I I 0 0 0 0 0 0

Wr Vr Br 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 −I 0 0 0 0

0 0 0 0 0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 0 0 0 0 I I 0



)

)

·



xt

ct−1

1n

ft

1n − ft

Wxt

ct1

ct2

ct

rt

1n − rt

ht1

ht2

ht



(22)
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and,

Hx̄ =



0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 I 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 0



·



xt

ct−1

1n

ft

1n − ft

Wxt

ct1

ct2

ct

rt

1n − rt

ht1

ht2

ht



(23)

Recall that the SRU weight vectors vf ,bf ,vr,br all have length n. Since each section of the input x̄ has

the same length, the identity matrices are square, and element-wise multiplication throws no errors. We

initialize the input as follows.

x̄ =

[
xt 0 1n

1
2ct−1

1
2ct−1 0 1

2ct−1
1
2ct−1 ct−1 0 0 0 0 0

]T
(24)

For the first input in the sequence x0, we let c−1 be a zero vector. After two left multiplications

by Sequential2D matrix G, followed by four left multiplications by F , the output is

F (F (F (F (G(G(x̄)))))) =

[
xt ct 1n ∗ ∗ Wxt ∗ ct2 ct ∗ ∗ ∗ ht2 ht

]T

Recall that the asterisks (*) indicate values that are part of the computation but are not relevant

for further discussion or analysis. After these six multiplications, the Sequential2D representation correctly

computes ct, the current state, and ht, the hidden state. Henceforth, we refer to two iterations of left

multiplication by G followed by four iterations of left multiplication by F as one complete iteration of the
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Sequential2D representation of the Simple Recurrent Unit.

x̄ Input Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Output
x ✓ ✓ ✓ ✓ ✓ ✓ ✓ → ✓
ct−1 ✓ ✓ ✓ ✓ x ct ct → ct
1n ✓ ✓ ✓ ✓ ✓ ✓ ✓ → ✓
ft

1
2ct−1 ✓ ✓ ✓ ✓ ∗ ∗ → 1

2ct
1− ft

1
2ct−1 ∗ ✓ ✓ ✓ ✓ ∗ → 1

2ct
Wxt 0 ✓ ✓ ✓ ✓ ✓ ✓ → 0
ct1

1
2ct−1

1
2ct−1 ∗ ✓ ✓ ✓ ∗ → 1

2ct
ct2

1
2ct−1

1
2ct−1 ∗ ✓ ✓ ✓ ✓ → 1

2ct
ct ct−1 ct−1 ct−1 ∗ ✓ ✓ ✓ → ct
rt 0 ✓ ✓ ✓ ✓ ∗ ∗ → 0
1− rt 0 1n ✓ ✓ ✓ ✓ ∗ → 0
ht1 0 0 ∗ ∗ ∗ ✓ ∗ → 0
ht2 0 0 ∗ ✓ ✓ ✓ ✓ → 0
ht 0 0 0 ∗ ∗ ✓ ✓ → ht

Table 2: State of the modified input vector x̄ after each iteration of the Sequential2D formulation of the
Simple Recurrent Unit.

Here, ✓ represents correct values, i.e. the checkmarks in the first row indicate that the x section

of x̄ always equals the input values x. Note, after the sixth step at the end of the complete iteration, we

apply the convenience function τ to the first row of F .

τ(xt) =


xt+1 0 ≤ t+ 1 < T

0 otherwise

This function swaps in the next input in the sequence. We apply similar convenience functions to

every row to correctly initialize x̄ for the next input sequence. After completing the six steps as described

above for each input xt | t ∈ [0, T ] where T is the sequence length, then hT is the final output. It takes 6T

total steps to compute hT.

Note that each multiplication by F is the element-wise product of two matrix multiplications.

F (x̄) = Gx̄⊙Hx̄

The Sequential2D representation flattens the SRU into a much simpler matrix multiplication. However, this

comes at a cost. Two multiplications by G and four multiplications by F totals to 10 matrix multiplications.

Thus, it takes 10T total matrix multiplications to compute the final output. Since G,H ∈ R14n×14n, each

matrix multiplication requires 14n ∗ 14n = 196n2 float multiplications, where n is the length of the input

vectors.
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A majority of these operations are multiply-by-zeros. The identity matrices I and the diagonalized

weight matrices Vf , Bf , Vr, Br each contain n non-zero entries. The weight matrices Wf ,W,Wr each contain

n2 non-zero entries. The non-zero matrix entries of the Sequential2D formulation of the SRU are highlighted

for clarity in Figure 3 below.

Figure 3: The 14x14 iterative representation of the Simple Recurrent Unit.

Referring to Figure 3, Sequential2D matrix G contains 15 identity matrices, 4 diagonalized weight

matrices, and 3 normal weight matrices, all in Rn×n. This totals to 19n + 3n2 non-zero entries. Similarly,

Sequential2D matrix H contains 14 identity matrices in Rn×n, totalling to 14n non-zero entries. This means

that for each complete iteration of the SRU, out of 196n2 ∗ 10 matrix multiplications, only 6(19n + 3n2) +

4(14n) = 18n2 + 170n are not multiply-by-zero operations. As the problem size grows large,

lim
n→∞

18n2 + 170n

196n2
=

18

196
≈ 9.2% (25)

Therefore for large input vectors, less than one out of every ten SRU operations is non-zero. The

table below provides the percentage of non-zero multiplications for various input lengths n.

n Total Ops (196n2) Non-zero Ops (18n2 + 170n) % Non-zero Ops
10 19600 3500 17.86
50 490000 53500 10.92
100 1960000 197000 10.05
576 65028096 6069888 9.33
1000 196000000 18170000 9.27

Table 3: Number of non-zero multiplications in the Sequential2D SRU at various input sizes.

While this is certainly slower than the original SRU equations, the Sequential2D formulation does

retain one of the crucial SRU speed-ups. Note that in the Sequential2D representation of the Simple Re-

19



current Unit, the weight matrices Wf ,Wr,W all appear in the same column. This means that the weight

matrix multiplications can all be computed in parallel, as described in Equation 11. They are all multiplied

by the input x, so the multiplications can be done simultaneously. However, even with that optimization, the

Sequential2D representation of the Simple Recurrent Unit will train much slower than the original equations

because of unnecessary multiply-by-zero operations.

2.8 Improvements to Iterative Neural Networks

As demonstrated, iterative neural networks have a very high representational capacity and can

emulate multi-layer perceptrons, recurrent neural networks, and even Simple Recurrent Units. [4] We have

further shown that, for the given examples, iterative neural networks can be represented by Sequential2D

matrices - which are essentially matrices with added non-linearity. Although a general proof is not included

here, it stands to reason that many other complex networks like the Simple Recurrent Unit, and possibly even

all neural networks, could be represented by Sequential2D. [5] By improving the performance of Sequential2D

networks, we can foreseeably improve the performance of the various architectures that Sequential2D can

contain.

2.8.1 Sparsity

One potential improvement to Sequential2D is using sparse matrices to eliminate the many multiplication-

by-zero operations that slow down its performance.

Sparse matrices are characterized by having most of their elements as zeros. For example, a diagonal

matrix D ∈ Rn×n has n non-zero elements out of n2 total elements. This diagonal matrix can be written as:

D =



a11 0 · · · 0

0 a22 · · · 0

...
...

. . .
...

0 0 · · · ann


where a11, a22, . . . , ann are the non-zero elements, and the rest are zeros. As n grows larger, diagonal

matrices get increasingly sparse.

The Compressed Sparse Column (CSC) format is an efficient way to store sparse matrices. [6] It

uses three arrays to represent the matrix:
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1. Values Array (val): Stores all the non-zero elements of the matrix, column by column.

2. Row Indices (row ind): Contains the row indices for each non-zero element in the val array.

3. Column Pointers (col ptr): Stores index pointers to the first element of each column in the val

array. The size of this array is one more than the number of columns, with the last element pointing

just beyond the last element of val.

For example, consider the following sparse matrix:

A =



0 4 0 0

3 0 0 0

0 5 6 0

0 0 0 0


The CSC representation of matrix A would be:

val = [3, 4, 5, 6]

row ind = [1, 0, 2, 2]

col ptr = [0, 1, 3, 4, 4]

Here, col ptr[0] points to the start of the first column in val, col ptr[1] points to the start

of the second column, and so on. The last element of col ptr helps in identifying the range of the last

column. Here, using CSC representation reduces the storage space for matrix A from 4 × 4 = 16 values

to 4 + 4 + 5 = 13 values. Moreover, given an arbitrary vector x ∈ R4×1, computing Ax requires only 4

multiplications now instead of 16. This suggests that given a neural network whose weight matrices W have

many zero entries, using sparse representations could significantly improve the model speed.

The idea of a sparse matrix representation can be extended to the Simple Recurrent Unit matrices

as well. Notice that, at a block level, we can treat the Sequential2D formulation of the Simple Recurrent

Unit from Equation 21 as two 14 × 14 matrices of functions. In this case, the CSC representation for the

Simple Recurrent Unit matrix G from Equation 22 is:

val = [I,Wf ,W,Wr, Vf , Vr, I, Bf , Br, I,−I, I, I, I, I, I,−I, I, I, I, I]

row ind = [0, 3, 5, 9, 3, 9, 2, 3, 9, 10, 4, 6, 7, 8, 8, 1, 10, 11, 12, 13, 13]

col ptr = [0, 4, 6, 10, 12, 13, 13, 14, 15, 16, 18, 19, 20, 21]

Notice that the val and row ind arrays always have a length equal to the number of nonzero entries in
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the matrix, and col ptr has length equal to the number of columns in the matrix. Treating the matrices

each as one value, CSC representation reduces the number of stored values from 14 × 14 = 196 values to

21+21+14 = 56 values. The representation for matrix H is similarly concise. If we instead break the weight

matrices, identity matrices, and zero matrices into their component values, the resulting CSC representation

saves even more space. In this case, both matrices G,H from Equation 21 are in R14n×14n where n is the

length of each input vector x.

As derived above in Section 2.7.3, there are 19n+3n2 non-zero values in G and 14n non-zero values

in H. The CSC representation for G would then contain (19n+3n2)+(19n+3n2)+14n = 6n2+52n values,

and similarly, the CSC representation for H would contain (14n) + (14n) + 14n = 42n values. The table

below contains the number of values in the dense representations and the sparse representations of G and

H.

These values are computed based on the formulas provided for each of the matrix representations

(dense and sparse) for G and H.

n G (dense, 196n2) G (sparse, 6n2 + 52n) H (dense, 196n2) H (sparse, 42n)
10 19600 1120 19600 420
50 490000 17600 490000 2100
100 1960000 65200 1960000 4200
576 65028096 2020608 65028096 24192
1000 196000000 6052000 196000000 42000

Table 4: Number of values in the sparse and dense representations of the Sequential2D SRU matrices.

Aggregated over both G and H, there are 196n2 + 196n2 = 392n2 values in the dense representations, and

just (6n2 + 52n) + (42n) = 6n2 + 94n values in the sparse representation. As n grows large,

lim
n→∞

(6n2 + 52n) + (42n)

(196n2) + (196n2)
=

6

392
≈ 1.5% (26)

The CSC representation requires 1.5% of the space used by the dense representation. We also only

need to do the non-zero operations, so the CSC representation requires just 9.2% of the time required by

the dense representation, as computed in Equation 25 in the previous section.

2.8.2 Parallelization

Another potential improvement to Sequential2D neural networks is to aggregate weight matrices

in the same column so they can be computed in parallel. This is already done in the Simple Recurrent Unit

network, but could also be extended to more generalized neural networks. For example, consider the network
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below.

F x̄ = F ·


x

h

y

 = σ(

σ(


I 0 0

W 00 W 01 0

W 10 W 11 0

)
)

·


x

h

y

 (27)

Suppose that the total number of non-zero entries across all the weight matrices is fixed. W 00x

and W 10x can be computed in parallel, as can W 01h and W 11h. As a result, keeping most of the weights

in one column, i.e. W 00 and W 10, and having very few weights in the other column, i.e. W 01 and W 11, will

compute faster than spreading the weights evenly across the columns.

In practice, we can achieve this uneven distribution of weights by forcing the two columns to have

different sparsities. For example, suppose we fix the sparsity of W 01 and W 11 to be 10%. We can do this

by randomly selecting 90% of the values within W 01 and W 11 and permanently setting them to zero. Even

as the network trains, those values remain zeroes, so the sparsity of the matrices remains 10%. Let x and

h both be in Rn. If we similarly fix the sparsity of W 00 and W 10 to 90%, then the total number of weights

is 0.1(n2 + n2) + 0.9(n2 + n2) = 2n2. This is the same total weights as if we had fixed all of the matrices

to 50% sparsity. The 10%-90% split allows for more parallelization than the 50%-50% split, and through

our experiments, we determine whether the uneven distribution of weights adversely affects the train/test

performance of a neural network.

2.9 Low Rank Matrix Representations

In addition to removing zeroes by representing Sequential2D weight matrices in Compressed Sparse

Column format, another way to reduce the size of the weight matrices is to replace them with low-rank

matrix approximations. This technique has already been attempted with reasonable success to improve deep

neural network performance [23] and to compress extremely large neural networks such as large language

models [24]. In this case, consider a weight matrix W ∈ Rm×n that is intrinsic to a model’s architecture,

such as in a neural network layer. The traditional method directly employs W during training and inference,

which can be computationally intensive and memory-demanding, especially for large m and n.

To address this, W can be redefined as the product of two lower-dimensional matrices A and B,

where A ∈ Rm×k and B ∈ Rk×n, with k being significantly smaller than both m and n (k ≪ m,n). This

formulation replaces the original weight matrix with:

23



W ≈ A ·B (28)

Here, A and B are initialized as part of the model’s parameters and are subject to optimization

during the training process, just like any traditional weight matrix. This restructuring not only reduces the

number of free parameters, thereby diminishing the model’s memory footprint but also reduces the number

of multiplications required to compute Wx for an input vector x ∈ Rn. [23] By the associative property of

matrix multiplication,

Wx = (AB)x = A(Bx) (29)

Computing Bx ∈ Rk requires k × n multiplications. Then, left-multiplying by A requires an

additional m×k multiplications. In total, the low-rank multiplication requires m×k+k×n multiplications.

Recall that the dense matrix multiplication requires mn multiplications. By algebra,

m× k + k × n < mn ∀ k <
mn

m+ n
(30)

Therefore when m = n, the low-rank matrix multiplication requires fewer individual multiplications

for any rank k < n2

n+n = n
2 .

Furthermore, this approach can potentially enhance the model’s generalization capabilities by mit-

igating overfitting, as the rank constraint on W limits the complexity it can represent. Thus, by integrating

this low-rank matrix factorization strategy directly into the model architecture, we can achieve a more

efficient and potentially more robust model. [23]

2.9.1 Comparing Sparse and Low Rank Matrix Representations

Both sparse matrices and low-rank matrix approximations provide a way to reduce the memory

footprint of a matrix with fixed dimensions. That said, they do so in distinctly different ways.

Recall that the SRU matrix G contains three weight matrices W,Wf ,Wr ∈ Rn×n. Suppose, we

want to halve the storage space required for each weight matrix. In other words, we aim to store each matrix

with just 1
2n

2 values. As described in Section 2.8.1, the Compressed Sparse Column (CSC) representation of

each weight matrix contains j+ j+n entries, where j is the number of non-zero entries and n is the width of

the matrix. Setting j + j + n = 1
2n

2, we find that each matrix must contain j ≈ 1
4n

2 − 1
2n non-zero entries.
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In practice, we apply this by randomly choosing n2 − ( 14n
2 − 1

2n) entries and fixing them at zero.

Now, suppose that we replaced the weight matrices W,Wf ,Wr ∈ Rn×n with low-rank approxima-

tions AB,AfBf , ArBr. Let A,Af , Ar ∈ Rn×k and B,Bf , Br ∈ Rk×n where k is the hidden rank. Then,

each low-rank matrix approximation contains n × k + k × n entries. Setting 2kn = 1
2n

2, we find that the

hidden rank must be k ≈ 1
4n to store each weight matrix in half as many values.

Although this successfully balances the storage space of the sparse and low-rank weight matrices,

in practice, we are more interested in balancing the number of weights. Furthermore, weight matrices are

not always square.

Suppose instead of halving storage space, we want to halve the number of weights stored in a weight

matrix W ∈ Rm×n. In CSC format, we simply set the number of non-zero elements j = 1
2mn. For the low-

rank approximations, we want m × k + k × n = 1
2mn, so k ≈ mn

2(m+n) . This setting allows us to compare

the speed and training performance of sparse and low-rank weight matrices with the same representational

capacity.

In this case, we halve the number of weights in each weight matrix, leaving 50% as many weights. In

general, we can create sparse representations and low-rank approximations with E% of the original weights,

where E ∈ [0, 100]. Henceforth, we refer to E as the effective weight percentage of the matrix.

3 Results

3.1 Comparing Sparse, Low-Rank, and Dense Matrix Multiplication

We first test the computing speed of sparse, low-rank, and dense matrices of varying sizes. To do

so, we randomly initialize a dense matrix M with E% of the entries set to zero. For each matrix M , we

measure the time required to calculate Mx for a randomly initialized vector x. We also measure the time for

Msx where Ms is the CSC representation of M , and we measure Mlrx where Mlr is a low-rank substitution

for M with effective weight percentage E.

We also measure the time required to compute LinearModel(x), SparseModel(x), and LowRankModel(x)

where LinearModel, SparseModel, and LowRankModel are PyTorch Linear models with the same initializa-

tion as M , Ms, and Mlr respectively. Note, SparseModel is a modified Pytorch Linear which implements

the PySparse library for sparse matrix multiplication.

First, we explore how the problem size m × n affects the computing speed of dense, sparse, and
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low-rank matrix multiplication on a single GPU for a fixed weight percentage E = 1%.

Figure 4: Log-log scale plot of the compute time of matrix multiplications of various sizes with 1% of entries
set to non-zero.

The low-rank multiplications are approximately 10 times faster than the dense multiplications.

However, there is no significant difference in speed between the sparse and dense multiplications. We

hypothesize that the difference between sparse and dense multiplication will become more apparent at a

lower effective weight percentage E = 0.1%.

Figure 5: Log-log scale plot of the compute time of matrix multiplications of various sizes with 0.1% of
entries set to non-zero.

At E = 0.1%, the sparse multiplication operates faster than the dense multiplication. However,

the low-rank multiplication remains the fastest by an order of magnitude. For both weight percentages, the

Pytorch wrapper models LinearModel(x), SparseModel(x), and LowRankModel(x) follow the same trend

as the raw weight matrix multiplications.
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3.2 MNIST Random Anomaly

We next investigate whether iterative neural networks (INNs) using low-rank or sparse weight

matrices ca perform on par with dense matrices on a supervised learning problem. The MNIST handwritten

digits data is a common and widely available benchmark for evaluating the performance of machine learning

algorithms. [7] It consists of 60,000 28 × 28 pixel images of handwritten digits (0-9). However, for our

purposes, we need to test large deep-learning models where the speed difference between the various matrix

representations is significant enough to provide a high signal-to-noise ratio. Furthermore, we desire a problem

with sequential data, to explore the effect of recurrence on iterative neural network performance.

For these reasons, we test our models against the MNIST Random Anomaly problem built out

of the MNIST handwritten digits dataset. [4] Each point in the Random Anomaly dataset consists of ten

images drawn from MNIST, all corresponding to the same integer. Note, the images are all resized from

28× 28 to 50× 50 pixels. Nine images have the same combination of random transformations applied, while

the remaining image has a different random set of transformations applied. The transformations include

distortion, random erasing, added Gaussian noise, and/or normalization. The output is the index of the

differently altered image. This problem is significantly harder than MNIST digit classification. Furthermore,

it requires passing in a sequence of 10 digits rather than just a single digit making it suitable for iterative

neural networks with recurrence. [4]

3.2.1 Model Architecture

For the following experiments on MNIST Random Anomaly, we fix the iterative neural network to

have three hidden layers, each with 434 elements. This means the input to each network is,

x̄ =

[
x h1 h2 h3 y

]T
(31)

Here, the input is x ∈ R2500, the hidden layers are h1,h2,h3 ∈ R434, and the output is y ∈ R10.

Therefore, the total length of each input sequence is 2500 + 434 × 3 + 10 = 3812 elements. Note that the

networks do not only contain feed-forward layers. In general, the INNs takes the form,
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F · x̄ =



2500 434 434 434 10

2500 I 0 0 0 0

434 R10 R11 R12 R13 R14

434 R20 R21 R22 R23 R24

434 R30 R31 R32 R33 R34

10 R40 R41 R42 R43 R44


·



x

h1

h2

h3

y


(32)

Here, R represents matrices with E% of their entries trainable and the rest fixed at zero. The labels

on the left and top of the matrix indicate the dimensions of each weight matrix. Note that the first row only

contains an identity matrix, so the original input is preserved throughout every model.

In the following experiments, we study the iterative neural networks by varying the effective weight

percentage E% and using different implementations for the weight matrices R (i.e. sparse, low-rank, or

dense).

3.3 Effect of Unequal Weight Distribution on Model Performance

To study the impact of unequally distributing the weights among columns, we split the weights as

follows. We distinguish the weights that are multiplied by the input layer as Ri, those multiplied by the

hidden layer as Rh, and those multiplied by the output layer as Ro. Our iterative neural network is,

F =



2500 434 434 434 10

2500 I 0 0 0 0

434 Ri Rh Rh Rh Ro

434 Ri Rh Rh Rh Ro

434 Ri Rh Rh Rh Ro

10 Ri Rh Rh Rh Ro


(33)

In total, there are 2500 × (434 × 3 + 10) = 3, 280, 000 Ri weight matrices. Similarly, there are

(434 × 3) × (434 × 3 + 10) = 1, 708, 224 Rh weight matrices, and 10 × (434 × 3 + 10) = 13, 120 Ro weight

matrices. Suppose 20% of all the weights are trainable. Then, in total, there are 3,280,000+1,708,224+13,120
3 =

1, 000, 268 trainable weights. Now, let the effective weight percentage for Ri be Ei and the effective weight

percentage for Rh be Eh. To keep the number of weights constant while varying Ei and Ej , we must satisfy,

3, 280, 000Ei + 1, 708, 224Eh + 13, 120 × 0.20 = 1, 000, 268. From this equation, we can compute different
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settings of Eh and Ei that keep the total number of weights constant as shown in Table 5 below.

Total params Ei Eh Eo

1,000,268 0 0.584 0.2
1,000,268 0.001 0.582 0.2
1,000,268 0.01 0.565 0.2
1,000,268 0.05 0.488 0.2
1,000,268 0.1 0.392 0.2
1,000,268 0.2 0.2 0.2
1,000,268 0.225 0.152 0.2
1,000,268 0.25 0.104 0.2
1,000,268 0.275 0.056 0.2
1,000,268 0.3 0.008 0.2

Table 5: Effective weight percentage settings for Ri and Rh that keep the total number of weights at
1,000,268.

Note that the effective weight percentage Eo corresponding to the output column is always 20%

to ensure that the output layer is never too sparse. By varying Ei and Eh but keeping the total number

of weights constant, we can isolate the effect of concentrating more weights in fewer columns. Recall from

Section 2.7.3 that weights in the same column can be multiplied in parallel, so if the weights are concentrated

in fewer columns, the INN becomes more parallelizable.

We test the ten models as described in Table 5 on the Random Anomaly task. In this case, we

implement the weights as dense matrices multiplied by a binary elementwise mask to force 100−E% of the

entries to zero. The results show that keeping the weights evenly distributed is not optimal. Setting Ei to

25% and Eh to 10.4% achieves the best results. This setting is also more parallelizable than Ei = Eh = 20%,

as described above.

Figure 6: Model performance on MNIST Random Anomaly with an unequal distribution of weights among
columns.
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3.4 Effect of Recurrence on Model Performance

Next, we test whether there is an optimal ratio of feed-forward and recurrent connections for model

performance. To do so, we split the weights as follows. We distinguish the weights that feed information for-

ward as Rl, those that keep information on the same level as Rd, and recurrent weights that send information

backward as Ru. Our iterative neural network is,

F =



2500 434 434 434 10

2500 I 0 0 0 0

434 Rl Rd Ru Ru Ru

434 Rl Rl Rd Ru Ru

434 Rl Rl Rl Rd Ru

10 Rl Rl Rl Rl Rd


(34)

In total, there are 3,858,088 Rl weight blocks, 565,168 Rd weight blocks, and 578,088 Ru weight

blocks. Suppose that 20% of all blocks are trainable, then there are 1,000,268 trainable blocks in total. Let the

Ru effective weight percentage be Eu% and the Rl effective weight percentage be El%. To keep the number

of weights constant while varying Eu and El,, we must satisfy, 3, 858, 088El+578, 088Eu+565, 168× 0.20 =

1, 000, 268. From this equation, we can compute different settings of Eu and Er that keep the total number

of weights constant as shown in Table 6 below.

Total parameters ρu ρl ρd
1,000,268 0 0.23 0.2
1,000,268 0.001 0.2298 0.2
1,000,268 0.01 0.228 0.2
1,000,268 0.05 0.222 0.2
1,000,268 0.1 0.215 0.2
1,000,268 0.2 0.2 0.2
1,000,268 0.4 0.17 0.2
1,000,268 0.8 0.11 0.2
1,000,268 1 0.08 0.2

Table 6: Number of values in the sparse and dense representations of the Sequential2D SRU matrices.

Note that the effective weight percentage Ed corresponding to the main diagonal is always 20%,

since these weights are neither feed-forward nor recurrent. By varying El and Eu but keeping the total

number of weights constant, we can isolate the effect of recurrence on the network.

We test the ten models as described in Table 6 on the Random Anomaly task. As with the previous

experiment, we implement the weights as dense matrices multiplied by a binary elementwise mask to force

30



100− E% of the entries to zero.

Figure 7: Model performance on Random Anomaly of networks with no recurrence (red) to full recurrence
(cyan).

The validation loss per epoch shows that models with more recurrent connections learn faster than

those with more feed-forward connections. However, models with less recurrent connections overfit less and

perform better on the test set. This suggests that the recurrent connections increase the model variance

more than an equal number of feed-forward connections.

3.5 Comparing Model Performance of Sparse, Low-Rank, and Dense Weight

Matrices

Lastly, we study whether using CSC or low-rank representations for weight matrices significantly

affects their performance. Due to training time constrants, we replace the three hidden layers of length 434

with two hidden layers of 300 and 20 elements, respectively. The resulting INNs take the form,
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F · x̄ =



2500 300 20 10

2500 I 0 0 0

300 R10 R11 R12 R13

20 R20 R21 R22 R23

10 R30 R31 R32 R33


·



x

h1

h2

y


(35)

We experiment with using different matrix representations (dense, sparse, low-rank) for all of the

weights R as depicted in Equation 35 and adjusting the effective weight percentage E%. The one exception

is R32, which is always fully dense so that the output y is non-zero.

For each setting, we train on MNIST Random Anomaly 25 times to account for noise. Since we are

interested in whether CSC or low-rank weight matrices allow models to learn faster, training time is of more

interest than the number of training epochs. For this reason, each model is time-limited to 300 seconds of

training.

Figure 8: Model performance at various E% for dense, sparse, and low-rank representations of weight
matrices.

Note that the dense INNs always have every parameter trainable. Although they are initialized

with only E% of entries set to non-zero, all of the weights can become nonzero, i.e. E = 100%. This explains

the zero-slope trendline for dense test accuracy in Figure 8 above. On average, low-rank weight matrices

outperform dense weight matrices at every setting of E%. Moreover, they do so with fewer weights. The

figure below contains the training, validation, and test statistics for the various representations at E = 20%.
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Figure 9: Model performance at E = 20% for dense, sparse, and low-rank representations of weight matrices.

The table below contains the number of trainable weights at each effective weight percentage.

Effective Weight Percentage (%) Dense Weights Low Rank Weights Sparse Weights
1 933900 16180 10803
2 933900 22380 19978
5 933900 47780 47024
10 933900 94340 90412
20 933900 188430 170789
30 933900 279770 243481
50 933900 467340 368956

Table 7: Number of trainable weights in each weight matrix representation per effective weight percentage.

Notice that since the low-rank representation must have an integer hidden rank, the number of

weights is not exactly E%; however, this will suffice for our analysis.

4 Conclusions and Discussion

In our investigation into the effects of various matrix representations and weight distributions

within iterative neural networks (INNs) applied to the MNIST Random Anomaly task, we observe several

key findings that underscore the delicate balance between computational efficiency, model complexity, and

learning performance.

4.1 Computational Efficiency of Matrix Representations

Our initial comparison between computing speeds for sparse, low-rank, and dense matrices reveals

that low-rank matrix multiplications are significantly faster than their dense counterparts, with computa-

tional times being nearly 10 times shorter for matrices with 1% non-zero entries. This gap widens as the
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effective weight percentage decreases to 0.1%, where sparse matrix multiplication also begins to outpace dense

multiplication, demonstrating the computational advantages of sparse and low-rank matrices in large-scale

problems.

4.2 MNIST Random Anomaly Task Performance

The core of our research centers around the MNIST Random Anomaly task, a more complex

variant of the traditional MNIST digit classification problem designed to test the models’ capacity to identify

anomalies in sequences of transformed digit images.

4.2.1 Effect of Low-rank and Sparse Matrix Representations

In our experiments with varying the effective weight percentage (E%), low-rank matrix represen-

tations consistently match or outperform dense matrices in test accuracy across the board, while requiring

far fewer trainable parameters. This is evident at E = 10%, where low-rank matrices achieve test accura-

cies comparable to dense matrices but with only 94,340 trainable parameters compared to 933,900 in dense

matrices, underscoring the parameter efficiency of low-rank approximations.

There are several possible explanations for the success of low-rank matrix representations. Firstly,

low-rank matrices are essentially a compressed representation of the original data, capturing the most critical

information or patterns within the dataset. [23] If the data or the relationships within the data can be

effectively captured in a lower-dimensional space, then low-rank matrices can perform as well as dense

matrices, because they’re essentially distilling the data to its most informative components. [25]

Notice that the low-rank matrix INNs also learn faster than the dense matrix INNs, as evidenced

by the sharper increase in validation accuracy over time (see Figure 9). During training, the low-rank model

can allocate its capacity more precisely, adjusting a smaller set of parameters to capture the underlying data

distributions, which can lead to faster convergence and potentially better generalization. [25]

Utilizing low-rank matrices can also act as a form of regularization, reducing the likelihood of

overfitting to the training data. By limiting the number of free parameters, low-rank matrices constrain the

model, forcing it to focus on the most salient features in the data. This can lead to models that generalize

better to unseen data, contributing to comparable or sometimes superior test accuracies. For tasks where the

underlying data structure is inherently low-rank or can be well approximated in a lower-dimensional space,

low-rank matrices can naturally excel. [26] The MNIST dataset, for example, despite its high-dimensional

input space, is believed to have an underlying structure that can be captured in fewer dimensions, making
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low-rank approximations particularly effective. [7]

Similarly, low-rank approximations can help filter out noise in the data. By focusing on the primary

structure or patterns in the dataset and disregarding components that contribute less variance, low-rank

matrices might be discarding noisy, less informative aspects of the data, which can lead to improved model

performance on test data. [25]

4.2.2 Effect of Weight Distribution within INNs

The distribution of weights within the INNs also plays a crucial role in model performance. Our

findings indicate that models with a higher concentration of weights in the input column of the INN (Ei =

25% and Eh = 10.4%) achieve better results on the MNIST Random Anomaly task. In addition, these

models theoretically benefit from increased parallelizability. This suggests that prioritizing the forward flow

of information can enhance both the performance and computational efficiency of neural networks on certain

tasks.

From the training and validation loss over time (see Figure 9), the exploration into the optimal

ratio of feed-forward and recurrent connections reveals that while more recurrent connections facilitate faster

learning, they also lead to greater overfitting. Conversely, models with a greater emphasis on feed-forward

connections demonstrate slower learning rates but ultimately achieve better generalization on the test set.

This trade-off highlights the need for a balanced architecture that supports both efficient learning and robust

generalization.

One possible explanation for this result is that recurrent connections increase a model’s capacity to

capture sequential dependencies within the data due to their ability to maintain and update a hidden state

over time. While this increased capacity can accelerate learning by leveraging these dependencies, it also

raises the model’s complexity, potentially leading to quicker overfitting on the training data if not properly

regularized or if the training data is not diverse enough to support the additional complexity. [17] By focusing

more on feed-forward connections, a model might adopt a simpler representation of the data that hinges

more on the present input’s salient features rather than intricate sequential patterns. This simplification

may lead to better generalization on unseen data, as the model is less likely to overfit to noise or to specific

sequential artifacts present in the training set.
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4.3 Concluding Insights

In summary, our study provides compelling evidence that leveraging sparse and low-rank matrix

representations within INNs can lead to substantial gains in computational efficiency without sacrificing per-

formance. The careful distribution of weights and the strategic balance between feed-forward and recurrent

connections enhance the models’ ability to learn effectively and generalize well.

This research contributes valuable insights into the ongoing pursuit of optimizing neural network

architectures for enhanced performance and efficiency. By exploring the benefits of sparse and low-rank

matrices and the effects of weight distribution and recurrent connections, our work paves the way for the

development of more sophisticated and resource-efficient iterative neural network models, capable of tackling

complex tasks with high accuracy and computational efficiency.
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