

Telenursing RoboPuppet
WPI MQP 2019-2020

Authors: Tabitha Gibbs, Daniel Oates, Michael Sidler
Advisor: Zhi Li

Abstract
RoboPuppet is a scale-model arm of ReThink Robotics’ Baxter used for intuitive remote control.
The arm contains joint angle sensors and motors which allow for gravity compensation and
limited haptic feedback. The project includes a ROS package for controlling Baxter in real life
and simulation, with a basic real-time GUI for calibration and debugging. This platform is ideal
for helping nurses work remotely with patients in high-risk and contaminated environments.

1

Table of Contents
Abstract 0

Table of Contents 1

Background 3

Mechanical Design 4
Design Goals 4
Motor Selection 4
Design 4

Repeating Segments 4
Rotary Joints 5
Twist Joints 6
Final Twist Joint 8
End Effector 8
Connections 9

Design Iterations 9
Iteration 1 9
Iteration 2 10
Iteration 3 11

Design Issues 11
Size vs Ergonomics 11
Motor Torque Requirements 11

Mechanical Analysis 13

Electrical Design 14
Power Delivery Subsystem 14
Microcontroller Subsystem 16

Sensors 16
Motor Controllers 17
Microcontroller Wiring 17

Software Design 19
Overview (RoboPuppet/) 19
ROS Software (Catkin/src/robopuppet/) 19

Launch File Structure (launch/) 19
Simulation Launch File (main_sim.launch) 20
RoboPuppet Launch File (puppet.launch) 20

2

Arm Launch File (arm.launch) 21
Config File Structure (config/) 22
ROS Source Code (src/) 23

Constants File (constants.py) 23
ROS Interface Class (ros_interface.py) 23
GUI Node (gui.py) 23
Main Tab (main_tab.py) 24
Joint Tabs (joint_tab.py) 25
Live Plotting Class (live_plot.py) 26
Config File Node (config.py) 26
Serial Interface Node (serial_interface.py) 26
Arm Controller Node (arm.py) 26

ROS Topics and Services 27
ROS Topics List 28
ROS Services List (srv/) 28

Embedded Firmware (Firmware/) 29
Main Functions (src/main.cpp) 29
Firmware Subsystems (sub/) 29

Robot Constants (RoboPuppet/) 31
Power Supply Subsystem (PowerSupply/) 31
User Buttons Subsystem (UserBtns/) 31
Grippers Subsystem (Grippers/) 31
Angle Filters Subsystem (AngleFilters/) 31
Encoders Subsystem (Encoders/) 31
Hall Encoders Subsystem (HallEncoders/) 32
Quad Encoders Subsystem (QuadEncoders/) 32
Angle Controllers Subsystem (Controllers/) 32
Motor Drivers Subsystem (Motors/) 32
ROS Communication Subsystem (ROSComms/) 32

External Libraries (lib/) 33
Serial Message Protocol 34

Message Structure 34
Message List 34

Conclusion 36

Important Links 36

3

Background
The Human-Inspired Robotics (HiRo) Lab designs teleoperation interfaces for robotic systems
designed for nursing applications. RoboPuppet is an on-going MQP project at the HiRo Lab to
develop an intuitive scale-model arm controller for the Rethink Robotics Baxter robot. This
project is the third generation of RoboPuppet controllers seeking to improve upon the prior work
to create a more intuitive controller. The 2017-18 team used potentiometers as joint angle
sensors and had no actuation. They had several issues with calibration and potentiometer
resolution, but proved that the device could be used to control Baxter and that future
development was warranted. The 2018-19 upgraded the joint angle sensors to absolute
encoders and (unsuccessfully) attempted to add actuation to the arm.

Figure 1. 2018 MQP Figure 2. 2019 MQP

The goal of our project was to create an improved version of the RoboPuppet interface with
functional actuation. Our project goals were as follows:

● Upgrade base electronics to support arm actuators
● Redesign arm links to include motors that could successfully lift the arm
● Route all wiring internally to make handling the arm less cumbersome
● Implement gravity compensation control so that the arm can hold its position
● Develop an interface to ROS for simulation of Baxter and configuration of arm

4

Mechanical Design

Design Goals
Given the cumbersome nature of the previous designs, the major goals of the mechanical
design of this iteration of Robopuppet were centered around ergonomics and maneuverability.
First, all sensors and motors were to fit inside the arm so they would not be disturbed during the
operation of the arm. Second, to prevent tangling and provide smoother motion, wiring should
be channeled internally. Finally, the arm’s general shape and design should be as ergonomic
and intuitive as possible to allow ease of use.

Motor Selection
Using weight estimations and dimensions from the components and dimensions of the previous
projects, estimates of required torque under worst-case joint configurations were calculated.
The results are shown below in Table 1. To ensure appropriate torque for haptic feedback, a
factor of safety of two was used.

Joint 0
(base)

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
(gripper)

0.0 12.02 7.60 4.22 1.88 0.58 .06

Table 1. Initial Motor Torque Requirements

We chose to use 25 kg*cm servo motors for all joints except for joint 6 since it would be too
large to hold. The motor for the 6thh joint is a 9G servo motor which can provide 1 kg*cm of
torque.

Design

Repeating Segments
The arm has 7 joints to map exactly to the design of Baxter. To keep the design and
manufacturing of the arm simple, the arm was broken into repeating segments of rotary joints
(end segments in Figure 3) and twist joints (middle segment in Figure 3). Only the final two
joints were modified to be smaller and grippable (see below sections).

5

Figure 3. Repeating Rotary and Twist Segments

Rotary Joints
The rotary joints are broken into two 3D-printable PLA+ pieces. The larger of the two pieces is
the housing for the important components: the motor, AS5048B, bearing, and magnet adapter.
The housing includes several cutouts and holes for allen keys and other tools during assembly.
The other piece is the cap for the housing and provides the interface for the shaft extending off
of the previous twist joint. The layout of a rotary joint is depicted in Figure 4.

Each standard rotary joint is made up of:

● Eleven 3mm x 6mm bolts
● Four M2 bolts for the hall effect encoder
● One 3mm hex nut
● One AS5048B hall effect encoder
● One 25 kg*cm servo motor
● One shaft-magnet adapter
● One .25”x 1.1” length aluminum D-shaft
● One .25” flanged bearing
● One rotary housing piece
● One rotary cap piece

6

Figure 4. Model of a Rotary Joint

Twist Joints
The body of a twist joint also contains two 3D-printable PLA+ pieces. The larger of the two
pieces has a U shaped extension off of it to wrap around the previous rotary joint. A design was
considered where a single tail would extend inside the previous rotary joint, but there was no
way found that would provide an acceptable range of motion while maintaining the structural
integrity of the rotary joint. The servo motor and servo-shaft coupler are housed inside the main
structural piece. The other 3D printed piece is a cap for the housing. The bearing is pressure
fitted inside the cap and held in place by the AMT10 quadrature encoder screwed on top of it.
The shaft runs through the AMT10, bearing, and cap piece into the next rotary joint. The layout
is depicted in Figure 5.

7

Figure 5. Model of a Twist Joint

Each standard twist joint is made up of:

● Ten 3mmx6mm bolts
● Two 3mmx4mm bolts
● One 3mm hex nut
● One AMT10 encoder
● One 25 kg*cm servo motor
● One 25” servo-shaft adapter
● One .25”x 1.88” length aluminum D-shaft
● One .25” flanged bearing
● One twist housing piece
● One twist cap piece
● One round metal servo horn

8

Final Twist Joint
Since the final twist segment was so close to where the user would be manipulating the arm, it
needed less torque than the standard 25 kg*cm motors that were used throughout the arm.
Using a 25 kg*cm motor here would have made the joint too difficult to manipulate. Instead, a
9G servo motor was used. This allowed the housing piece to be shrunk significantly, with the
AMT10 being the limiting factor instead of the motor. Other than the change in motor, the parts
list for the smaller twist joint is the same. A size comparison of the two twist joints can be seen
below in Figure 6. The only difference in the parts list between a normal twist joint and the
smaller twist joint is the smaller twist joint needs only six 3mm bolts but also needs two 1mm
bolts for the smaller servo motor.

Figure 6. Size Comparison of Twist Joints

End Effector
The final joint is the piece the user should hold during operation of the arm. The piece’s design
was inspired by a pencil- the long, thin plastic piece was designed to be comfortably held
between the thumb and forefinger. The piece is made of two 3D printed pieces. The first is the
housing, which the user holds. It has a hole for a button to be inserted into. This button is used
for opening and closing the gripper on Baxter. The second piece is the cap piece for the
housing. It serves as the interface between the end piece and shaft from the smaller twist piece.
The end piece is shown in Figure 7.

9

Figure 7. End Gripper Casing and Cap

Connections
Designs were explored where the twist joint would only have one extension contacting the rotary
joint, but it left the connection too flimsy and limited the freedom of the joint. Therefore, a two
pronged design was used for the twist joint, where one prong is screwed directly onto the metal
servo horn on the rotary joint motor, and the other prong serves as a collar for a shaft. That
shaft runs inside the rotary joint and has an adapter for a magnet on it, so it can interface with
the AS5048B hall effect encoder. The connection between the twist joint and the next rotary
joint is much simpler; a shaft running from the twist joint motor is inserted into the rotary joint’s
built in shaft collar and fastened.

Design Iterations
The mechanical design of RoboPuppet went through three major iterations, with the third being
incomplete. Within iterations, there were countless minor changes, but they can be grouped
together into three major stages during development.

Iteration 1
The goal of iteration 1 was to create a working prototype for verifying length/mass estimations
and to provide a base that code could be tested on. In this iteration, parts were too exposed and
maneuvering the arm was difficult. Originally, the servo motor in the twist joint ran length wise in
the same direction as the U shaped tails. This proved to be too bulky, so the design was to
rotate the servo motor 90 degrees. The original design is shown in Figure 8.

10

Figure 8. Original Rotary Joint

Iteration 2
The focus of this iteration was reworking the twist joints to be slimmer and more ergonomic. In
this design, the rotary joint was redesigned by moving the shaft interface to the cap piece
instead of the shaft going through the part between the motor and the encoder. This became the
“final” iteration that was fully implemented with wiring and interfacing with the software. The fully
designed arm for this iteration is shown below in Figure 9.

Figure 9. Full 3D-Modeled Arm

11

Iteration 3
This iteration was not completed due to time, but will be a solid launching point for future teams.
The issue of size vs. ergonomics, which is discussed in the issues section that follows, became
the biggest focus. Larger curves were added to the parts to increase the ergonomics and
aesthetic of the arm. This made the pieces slightly larger, as shown in Figure 10.

Figure 10. Work in Progress of Larger Curved Casings

Design Issues

Size vs Ergonomics
The largest problem during the design of the arm was keeping the components as compact as
possible, because the larger the arm became, the more difficult it was to manipulate. With
components crammed into the joint housings from wall to wall, adding basic fillets became
difficult. It became a challenge to balance ergonomics with size. In the end, joints leading up to
the end effector were focused on staying compact. The end piece, which is the piece the user is
supposed to hold, was focused on ergonomics. A better balance was sought in iteration 3, but it
was not fleshed out enough.

Motor Torque Requirements
When initially selecting motors, we estimated the required torques and gave a factor of safety
for variations/changes in the 3D printed parts as well as for applying extra force in the case of
haptic feedback. The large torque requirement for the motors closer to the base of the robot
causes several issues with the design. First, the higher the torque requirement, the larger and
heavier the motor will be. This causes the design to become larger and require motors with
even more torque to hold it. Second, the gears in the servo motors create friction which causes
the arm to require more force than intended to move by hand. These issues were worked
around, but are worth noting for future development and improvements.

12

Mechanical Analysis
The assumptions made during the final torque calculations are as follows:

● No friction in the joints
● Masses are applied at the center of the components
● For rotary joints, ⅔ of the weight is applied halfway between the axis of rotation and the

far edge of the housing to accommodate for the uncentered rotation axis.

The masses and lengths of each joint type are as they are listed in Table 2.

 Standard Twist
Assembly

Rotary
Assembly

Small Twist
Assembly

Gripper
Assembly

Mass (kg) 0.16 0.14 0.11 0.026

Length (cm) 9.57 4.75 8.3 6.5

Table 2. Joint Masses and Lengths

The torques were calculated with this python script. The results, in kg*cm, are shown in Table 3.

Joint 0
(base)

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
(gripper)

0.0 12.73 7.73 4.426 1.43 0.54 0.0013

Table 3. Final Motor Torque Requirements

https://gist.github.com/TabithaGibbs/cd0017d4a91a84fb4f714aceee477e3a

13

Electrical Design
This section documents the power delivery and digital control logic of RoboPuppet. This system
was designed to be robust so that future teams should not need to spend time redesigning it.

Power Delivery Subsystem
The main power to the system is provided by a 12V 360W power supply. This power supply
takes 120V wall power and converts it to 12V to use as an input to the various other power
supplies within the system, and is shown in Figure 11.

Figure 11. 12V Power Supply

A 5V 3A converter takes in power from the 12V rail and converts it to 5V to power the
microcontroller and various sensors. This device is shown in Figure 12.

Figure 12. 5V 3A Converter

14

An adjustable buck-boost converter is also included to provide power to the motors, as shown in
Figure 13. This power supply takes power from the 12V rail and can output 0-32V at up to
240W. It has the ability to be configured through a built in user interface, or over a UART
connection. It is currently conFigured to supply 7.2V to our motors. This power supply should
allow powering any motors needed in any future versions of RoboPuppet.

Figure 13. Buck-Boost Converter

The 12V and 5V rails are each fed through a fuse before connecting to any downstream devices
to prevent damage in case there is a short or broken component. The 7.2V rail is fed through 14
fuses - one going to each motor controller. This way failure of one motor/controller will not
damage the power supply or any of the other components. Figure 14 below shows the wiring of
the power delivery system:

Figure 14. Power Delivery System Diagram

15

Microcontroller Subsystem
The main controller of RoboPuppet is a Teensy 3.5 microcontroller running at 120MHz. This
was the microcontroller chosen by the 2019 team, which we continued using as it was powerful
enough to run control algorithms and ROS serial communications. It had just enough IO to be
used with one RoboPuppet arm, so if more features are to be added it may be necessary to
switch to a different microcontroller (see Future Improvements).

Sensors
RoboPuppet uses two different types of encoders, hall effect and quadrature. The AS5048B hall
effect sensors were used by the 2019 team and repurposed in this design. These are absolute
encoders that sense the magnetic field produced by a small magnet. They are used in the rotary
links where the axis of rotation does not need to pass through the encoder. These encoders
have a 14-bit resolution. An image of this encoder type is shown in Figure 15.

Figure 15. AS5048B Hall Encoder

The AMT10 quadrature encoders are used for the twist joints where the axis of rotation does
need to pass through the encoder. They have a homing pulse that is sent out once per rotation.
This allows the RoboPuppet arm to be calibrated without having the operator move the arm to a
specific position on powerup. These encoders have an 11-bit resolution (2048 PPR). An image
of the AMT10 is shown in Figure 16.

16

Figure 16. AMT10 Quadrature Encoder

Motor Controllers
RoboPuppet uses seven Pololu TB9051FTG motor drivers to control the servo motors. These
were chosen to replace the existing drivers in the motors which were defective. They can
provide up to 2.6A continuously to a motor. The drivers have a current monitoring output and
error output that were not used by our team, but could be useful in the future. An image of the
breakout board for these motor drivers is shown in Figure 17.

Figure 17. TB9051FTG Motor Driver Breakout

17

Microcontroller Wiring
The Teensy 3.5 is connected to the sensors and motor drivers as shown in Figure 18.

Figure 18. Microcontroller Wiring Table

18

Software Design
The Software Design section of this document will be heavily linked internally and externally to
GitHub repositories for ease of code navigation.

Overview (RoboPuppet/)
The current RoboPuppet software is split among two hardware subsystems: the embedded
controller and the host machine. The embedded controller directly interfaces with the
RoboPuppet joint angle sensors and motors used to stabilize the arm during gravity
compensation. It also filters the raw joint angle readings and reads gripper analog signals and
pushbuttons. The host machine runs a real-time GUI for visualization, debugging, RoboPuppet
tuning, and Baxter control. These two systems communicate via USB serial. RoboPuppet
periodically transmits its full state at 10Hz while the host machine asynchronously sends
messages to enable, disable, and conFigure the robot. Currently, RoboPuppet has only been
tested with a Baxter simulator on the host machine (see Install Instructions). Future teams will
have the opportunity to test with the real Baxter robot.

ROS Software (Catkin/src/robopuppet/)
The ROS software runs on the host machine using ROS Kinetic for Ubuntu 16.04. It consists of
launch files, arm config files, python nodes, and support classes.

Launch File Structure (launch/)
The RoboPuppet-Baxter simulator launch file structure is shown in Figure 19.

Figure 19. RoboPuppet-Baxter Simulator Launch File Structure

https://github.com/doates625/RoboPuppet
https://github.com/doates625/RoboPuppet/blob/master/README.md
https://github.com/doates625/RoboPuppet/tree/master/Catkin/src/robopuppet
https://github.com/doates625/RoboPuppet/tree/master/Catkin/src/robopuppet/launch

19

The simulator is launched by <main_sim.launch>. This file calls the launch files for the baxter
simulator <baxter_world.launch> and RoboPuppet <puppet.launch>. The RoboPuppet launch
file launches (at most) two instances of <arm.launch> for the left and right arms by changing its
arguments for arm side and serial port.

Simulation Launch File (main_sim.launch)
The simulator launch file has five arguments which pass directly to the RoboPuppet launch file.
These arguments are described in Table 4.

Name Type Default Description

comm_rate double 10.0 Serial communication rate [Hz]

frame_rate double 8.0 GUI framerate [Hz]

debug_mode bool true Flag to enable joint debug tabs in GUI

run_side_L bool false Flag to run L-side arm launch file

run_side_R bool true Flag to run R-side arm launch file

Table 4. Simulation Launch File Arguments

The <comm_rate> argument is the rate at which the embedded processor transmits state
updates over serial. This argument should match the constant <f_states> in <ROSComms.cpp>
in the ROS Communication subsystem. The default value of <run_side_L> is currently set to
<false> as the 2019-2020 team only had the budget to build the right arm. Note that if the
<frame_rate> argument is set too high for the host machine to keep up, the live plots in the joint
tabs of the GUI will lag behind real time.

RoboPuppet Launch File (puppet.launch)
The RoboPuppet launch file has five arguments which are all overridden by the arguments of
the simulation launch file. The only difference between the two is that the <run_side_L>
argument in this launch file defaults to <true> instead of <false>. This file conditionally launches
the arm launch file for the L and R sides based on the <run_side_L> and <run_side_R>
arguments, respectively. The <comm_rate>, <frame_rate>, and <debug_mode> arguments are
also passed down to the arm launch files. This file also specifies the serial port argument for
each arm. Currently the two are the same, which should be changed once a second arm is
included in the hardware stack.

https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/launch/main_sim.launch
https://github.com/doates625/RoboPuppet/blob/master/Firmware/sub/ROSComms/ROSComms.cpp
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/launch/puppet.launch

20

Arm Launch File (arm.launch)
The arm launch file has five arguments which pass to the nodes that it launches. These
arguments are described in Table 5.

Name Type Default Description

arm_side str L Arm side (L or R)

port_name str /dev/ttyACM0 Serial port of embedded controller

comm_rate double 10.0 Serial communication rate [Hz]

frame_rate double 8.0 GUI framerate [Hz]

debug_mode bool true Flag to enable joint debug tabs in GUI

Table 5. Arm Launch File Arguments

The <comm_rate>, <frame_rate>, and <debug_mode> arguments are overridden by the
RoboPuppet launch file. The <arm_side> argument (“L” or “R”) is used in the names of ROS
topics and services generated by the launched nodes to prevent cross-talk. The file launches
four nodes, which are described in Table 6, where “X” in the names denote “L” or “R”.

Name File Description

config_X config.py Config file manager

serial_X serial_interface.py Embedded serial interface

arm_X arm.py Baxter arm controller

gui_X gui.py Arm control GUI

Table 6. Arm Launch File Nodes

These nodes are described in more detail in the ROS Source Code section. Together, they form
all the required functionality of RoboPuppet for controlling both real and simulated Baxter.

https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/launch/arm.launch

21

Config File Structure (config/)
Each arm has an associated config file <arm_X.ini> (where “X” denotes the side “L” or “R”)
whose parameters are loaded into the embedded controller on ROS startup by the associated
serial interface node. If the file is not found on startup by the config file node, the node
generates the file with default values enumerated in <constants.py>. The file consists of seven
sections named [joint_X] (where X = 0...6), each with identical options for the seven joints.
These options are described in Table 7.

Name Units Default Description

home_angle rad +0.000 Angle zero offset

angle_min rad -1.571 Min angle command

angle_max rad +1.571 Max angle command

velocity_min rad/s -6.283 Min velocity of angle command

velocity_max rad/s +6.283 Max velocity of angle command

voltage_min V -7.200 Min PID voltage command

voltage_max V +7.200 Max PID voltage command

pid_kp V/rad +0.000 Angle PID P-gain

pid_ki V/(rad*s) +0.000 Angle PID I-gain

pid_kd V/(rad/s) +0.000 Angle PID D-gain

sign_angle [+1, -1] +1.000 Direction of angle

sign_motor [+1, -1] +1.000 Direction of motor voltage

Table 7. Config File Joint Options

The <home_angle> option is used by the Encoders subsystem to calibrate the arbitrary encoder
angles to match the angles defined by Baxter. The angle and velocity limit parameters are used
by the Angle Filters subsystem to prevent RoboPuppet from commanding Baxter to perform
impossible or dangerous motions. The voltage limits and PID gains are parameters of the joint
angle PID controllers in the Angle Controllers subsystem used to stabilize the arm when in
gravity compensation mode. Finally, the angle and motor signs can be set to -1 to reverse the
sense of positive rotation and voltage, respectively. These parameters are used by the
Encoders and Motor Drivers subsystems, respectively. This eliminates the need to reprogram
the MCUs during calibration and allows both arms to use the same software.

https://github.com/doates625/RoboPuppet/tree/master/Catkin/src/robopuppet/config

22

ROS Source Code (src/)
This section describes the ROS source code divided by file. The code consists of node classes
and support classes, including GUIs and serial communication helpers.

Constants File (constants.py)
The constants file contains RoboPuppet constants used by multiple python source files.

ROS Interface Class (ros_interface.py)
The RoboPuppet ROS interface class acts as a ROS message and service abstraction layer for
any node using it. On construction, it creates all of the publishers, subscribers, and service
proxies required to control RoboPuppet remotely. Commands are sent via “set” methods which
invoke publishers, and state data is read via “get” methods, which return fields populated by
subscriber callbacks. The only exception to this rule is the <get_configs(joint)> method which
invokes a service from the Config File node and returns a struct containing all of the config
parameters for one joint. The class is used by both the GUI node and Arm Controller node, and
should be used by any other node designed in the future to interface with RoboPuppet to save
time and avoid error and confusion in navigating the complex ROS message hierarchy. For a
complete description of the ROS communication protocol, see ROS Topics and Services.

GUI Node (gui.py)
The GUI node displays a single window consisting of a main tab and seven optional joint debug
and configuration tabs which can be enabled or disabled by the Simulation launch file. The main
tab prints the RoboPuppet state data in real-time, including joint angles, voltages, calibration
statuses, and gripper readings. Each joint tab plots the joint angle and voltage in real-time and
allows the user to change all configuration parameters in real-time.

The GUI is implemented in python with the Tkinter library. On construction, the node launches a
Tkinter window and creates one instance of the Main Tab class and (optionally) seven of the
Joint Tab class. These instances register themselves with the GUI Notebook widget <self._nb>
to appear as tabs in the GUI window. To keep the GUI updating in real-time, the GUI node
conFigures the Tkinter window to call its <self._update()> method periodically until ROS is shut
down. The <self._update()> method calls the respective update methods of the main tab
<self._tab_main> and (optionally) joint tabs <self._tab_joints>. When ROS is shut down, the
node destroys the Tkinter window to prevent hangup.

https://github.com/doates625/RoboPuppet/tree/master/Catkin/src/robopuppet/src
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/constants.py
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/ros_interface.py
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/gui.py
https://docs.python.org/3/library/tkinter.html

23

Main Tab (main_tab.py)
The main tab is the focal point of the GUI where the average user will spend 100% of their time.
A rendering of the main tab is shown in Figure 20.

Figure 20. GUI Main Tab Rendering

The “Last Heartbeat” section shows the time since the last registered heartbeat in seconds. The
“Opmode” section contains a radio button for setting the opmode to “limp” (no actuation) or
“hold” (gravity compensation). Currently, this button is disabled and overwritten by the user
buttons. The calibration statuses, angles, voltages, and gripper readings are displayed tabularly
and updated in real-time via the class’ <self._update()> method. The latest version of this GUI
displays encoder status messages instead of boolean calibration statuses. The statuses can be
either “Working”, “Uncalibrated”, or “Disconnected”. Uncalibrated joints must be turned until their
home angle is triggered. Disconnected joints indicate a hardware communication failure.

https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/main_tab.py

24

Joint Tabs (joint_tab.py)
The joint tabs are used for real-time visualization, debugging, and tuning of the RoboPuppet
joint filters and controllers. A rendering of one of the joint tabs is shown in Figure 21.

Figure 21. GUI Joint Tab Rendering

The joint angle and voltage plots update in real-time scrolling right to left, with the most recent
values displayed on the right at Time = 0. The settings text fields correspond one-to-one with
the config file configurations for the given joint. The current settings can be retrieved from the
config file by clicking the “Get” button, and updated in the file and robot with the “Set” button.
The latest version of this GUI has an additional ‘setpoint’ entry for direct angle commands.

https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/joint_tab.py

25

Live Plotting Class (live_plot.py)
The live plots of joint angle and voltage in each of the joint tabs are managed by instances of
the LivePlot class. The class takes a matplotlib axes object, plot color, time duration, and update
rate at construction and uses this to update the plot with the most recent reading at every call to
<self._update(y, render), where <y> is the new plot value and <render> is a flag to display the
plot. The update method for both live plots is called in the joint tab update method. The render
flag is set to true only when the tab is selected (i.e. visible in the GUI) to improve framerate.

Config File Node (config.py)
This node manages the config file for its associated arm. On construction, it opens and parses
the file via the ConfigParser library. If no file is found, it creates the file with hard-coded default
parameters defined in <constants.py>. It subscribes to all joint config messages. Whenever it
receives a config message, it opens the file, re-writes it with the new parameter, then saves and
closes the file. This means that the node can be shut down at any time and all changes to the
file made at runtime will be preserved. This node also provides the <GetConfig> service.

Serial Interface Node (serial_interface.py)
The serial interface node converts ROS messages to serial messages and vice versa. On
construction, it uses the <GetConfig> service to get all joint configuration parameters from the
Config File node and load them into the embedded controller. It also subscribes to all config
topics in order to update RoboPuppet at runtime. Its <update()> method is called periodically to
publish ROS messages corresponding to serial messages received from the embedded
controller. For ROS message details, see ROS Topics and Services.

Arm Controller Node (arm.py)
The arm controller node interprets RoboPuppet ROS messages to control the Baxter arms and
grippers via the baxter_interface Limb and Gripper classes. It disables all arm control until all
RoboPuppet encoders are in the “Working” state. Once all joints are calibrated, the node runs
an arm control state machine based on the four user buttons. Button 1 switches the puppet
between ‘limp’ and ‘hold’ mode. In limp mode, the arm can move freely. In hold mode, the
puppet arm aligns with its corresponding arm on Baxter using motor control, and cannot be
moved manually. Buttons 2 and 3 toggle the left and right baxter arms, respectively. When
enabled, the right arm directly follows the joint angles of RoboPuppet, and the left arm follows in
mirrored motion. Button 4 currently has no use in the software. When enabled, each arm also
closes its gripper when the button at the end of RoboPuppet’s arm is pressed.

https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/live_plot.py
https://matplotlib.org/3.1.1/api/axes_api.html
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/config.py
https://docs.python.org/2/library/configparser.html
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/serial_interface.py
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/arm.py
http://docs.ros.org/hydro/api/baxter_interface/html/baxter_interface.limb.Limb-class.html
https://www.google.com/search?rlz=1C1CHBF_enUS879US879&sxsrf=ALeKk00XPXROtKuIVI09GnqfkkKoLPiCrw%3A1585951930860&ei=urSHXs2RNMGHggf1-YuIBw&q=baxter_interface.Gripper&oq=baxter_interface.Gripper&gs_lcp=CgZwc3ktYWIQAzIECAAQHjIFCAAQzQI6BAgjECdKDggXEgoxMS0xMTJnMTA2SgoIGBIGMTEtM2c2UPUPWLsXYJcYaABwAHgAgAFviAGbB5IBAzIuN5gBAKABAaoBB2d3cy13aXo&sclient=psy-ab&ved=0ahUKEwjN1uCro83oAhXBg-AKHfX8AnEQ4dUDCAw&uact=5

26

ROS Topics and Services
The RoboPuppet ROS nodes communicate via many topics and one service per arm. There is
no topic or service cross-talk between the arms when mirrored motion is disabled, allowing for
one or both to run independently. The general flow of information between the nodes for a
single arm is shown in Figure 22.

Figure 22. ROS Information Flow in RoboPuppet Nodes

The serial interface periodically publishes state messages which are visualized in the GUI node.
The joint angle, gripper, and button states are interpreted by the arm controller, which
periodically sends commands to the Baxter nodes. Both the serial interface and GUI nodes
make <GetConfig> service requests which are fulfilled by the config file node: the former on
startup, and the latter whenever the GUI user requests.

27

ROS Topics List
All ROS topics created by the RoboPuppet nodes are described in Table 8. RW indicates
read-write from the perspective of the ROS interface class. All message types are std_msgs.

Topic (puppet/arm_{L,R}/) RW Type Description

heartbeat R Empty Publishes when running

opmode RW String Options ‘limp’ or ‘hold’

joint_{0..6}/enc_stat R Bool Encoder calibration status

joint_{0..6}/angle R Float32 Publishes joint angle [rad]

joint_{0..6}/voltage R Float32 Joint motor voltage [V]

joint_{0..6}/setpoint W Float32 Joint angle setpoint [rad]

joint_{0..6}/home_angle W Float32 Home angle offset [rad]

joint_{0..6}/angle_min W Float32 Min joint angle command [rad]

joint_{0..6}/angle_max W Float32 Max joint angle command [rad]

joint_{0..6}/velocity_min W Float32 Min joint angle velocity [rad/s]

joint_{0..6}/velocity_max W Float32 Max joint angle velocity [rad/s]

joint_{0..6}/voltage_min W Float32 Min motor voltage command [V]

joint_{0..6}/voltage_max W Float32 Max motor voltage command [V]

joint_{0..6}/pid_kp W Float32 Angle controller P-gain [V/rad]

joint_{0..6}/pid_ki W Float32 Angle controller I-gain [V/(rad*s)]

joint_{0..6}/pid_kd W Float32 Angle controller D-gain [V/(rad/s)]

joint_{0..6}/sign_angle W Float32 Direction of angle [+1, -1]

joint_{0..6}/sign_motor W Float32 Direction of motor voltage [+1, -1]

gripper_{0..3} R Float32 Gripper reading [0...1]

user_btn R Uint8 Button index [1-4, 0 if no press]

Table 8. RoboPuppet ROS Topics

ROS Services List (srv/)
Currently there is only one ROS service specific to RoboPuppet, which is the <GetConfig>
service defined in <Getconfig.srv>. This service takes a joint index [0...6] as a parameter and
returns a struct containing all configuration parameters for said joint, as enumerated in the
Config File Structure. This service is used by both the GUI and serial interface nodes.

http://wiki.ros.org/std_msgs
https://github.com/doates625/RoboPuppet/tree/master/Catkin/src/robopuppet/srv
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/srv/GetConfig.srv

28

Embedded Firmware (Firmware/)
The MCU is responsible for reading joint angles, gripper inputs, and button inputs, controlling
the angles via PID and DC motor control when in gravity compensation mode, and maintaining
communication with ROS via serial. The firmware consists of main functions, subsystems, and
external libraries (Git submodules).

Main Functions (src/main.cpp)
The main functions consist of Arduino <setup> and <loop> and the controller interrupt service
routine (ISR) <ctrl_update>. The setup function initializes all of the firmware subsystems and
conFigures the controller ISR to interrupt the loop function at a regular interval. The loop
function repeatedly checks for and processes serial messages from ROS. Finally, the controller
ISR updates and filters the joint angle readings and runs the angle PID controllers when in
gravity compensation mode.

Firmware Subsystems (sub/)
The RoboPuppet firmware is divided into subsystems for code organization and readability. The
subsystems are listed and briefly described in Table 9.

Name Description

Robot Constants Constants used by main et. al.

Power Supply ConFigures motor power supply

User Buttons Reads user button inputs

Grippers Reads gripper ADC values

Angle Filters Filters raw encoder readings

Encoders Facade for hall and quad encoders

Hall Encoders Reads angles from hall encoders

Quad Encoders Reads angles from quad encoders

Angle Controllers Joint angle PID controllers

Motor Drivers Motor controller digital IO

ROS Communication Serial communication with ROS

Table 9. Embedded Firmware Subsystems

https://github.com/doates625/RoboPuppet/tree/master/Firmware
https://github.com/doates625/RoboPuppet/blob/master/Firmware/src/main.cpp
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub

29

The information flow between these subsystems are summarized in Figure 23. Rectangular
blocks represent firmware subsystems while rounded blocks represent terminal hardware.
Configuration information delegated by the ROS Communication subsystem is omitted for clarity
and discussed in its own section.

Figure 23. Information and Flow through Firmware Subsystems

30

The subsystems are implemented as C++ namespaces and provide a unified function interface.
Subsystems that require startup initialization have an <init()> function which is called by the
main <setup()> function. Each init function only executes when called for the first time, and calls
the init functions of all subsystems used by the current subsystem. Thus, any subsystem
initialized in isolation is guaranteed to run properly. Additionally, subsystems which must run
periodically have an <update()> method called by either main <loop()> or <ctrl_update()> which
handle all periodic subroutines.

Robot Constants (RoboPuppet/)
This subsystem contains constants used by main and multiple other subsystems. The constants
are declared, defined, and described in <RoboPuppet.h>.

Power Supply Subsystem (PowerSupply/)
This subsystem attempts to conFigure and enable the variable voltage power supply used to
power the arm motors at 7.2V. This is done via sending commands over a secondary UART.
However, this method does not work for unknown reasons. Currently, the power supply must be
conFigured manually using the available buttons.

User Buttons Subsystem (UserBtns/)
This subsystem reads the push buttons by interpreting a single analog input. Its <get()> function
returns the index of the pressed button 1-4, or 0 if no button is pressed.

Grippers Subsystem (Grippers/)
This subsystem is an abstraction layer for reading the gripper ADCs. It creates ADC interface
objects in <init()> and has a function <get(id)> for reading ADCs 0 to 3.

Angle Filters Subsystem (AngleFilters/)
This subsystem applies angle and velocity limits to the raw angles provided by the Encoders
subsystem. It creates the required filter objects in <init()> and performs the angle filtering on
every call to <update()>. It also has functions for setting the angle and velocity limits, which are
called by the ROS Communication subsystem. These limits are defined by the <angle_min>,
<angle_max>, <velocity_min>, and <velocity_max> configurations.

Encoders Subsystem (Encoders/)
This subsystem is a facade for the Hall Encoders and Quad Encoders subsystems. It initializes
the two subsystems in <init()> and updates all seven encoder readings in <update()>,
delegating angle reading requests and configuration function calls to the appropriate subsystem
based on joint index. Joints [1, 3, 5] delegate to the Hall Encoders while joints [0, 2, 4, 6]
delegate to the Quad Encoders. It stores and applies the <sign_angle> configuration for each
joint, and delegates the <home_angle> configuration to its two child subsystems. All angles are
wrapped to the range [-pi, +pi].

https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/RoboPuppet
https://github.com/doates625/RoboPuppet/blob/master/Firmware/sub/RoboPuppet/RoboPuppet.h
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/PowerSupply
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/UserBtns
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/Grippers
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/AngleFilters
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/Encoders

31

Hall Encoders Subsystem (HallEncoders/)
This subsystem manages the AS5048B I2C hall encoders for joints [1, 3, 5]. It initializes the I2C
bus and creates encoder interface objects in <init()>. Its <get_angle(joint)> function reads and
formats the raw I2C angle register of the encoder corresponding to the given joint.

Quad Encoders Subsystem (QuadEncoders/)
This subsystem manages the quadrature encoders for joints [0, 2, 4, 6]. In <init()> it attaches
the appropriate ISR to the A, B, and X channels of each encoder to enable ISR-based counting.
The A and B channels are standard quadrature outputs while the X channel goes high once per
revolution. The X channel acts as a known location which allows the quadrature encoders to
function as absolute angle encoders. Once an X channel is tripped, the corresponding encoder
angle is reset to its <home_angle> configuration, and the calibration of the joint is flipped from
false to true, which is displayed in the main tab of the ROS GUI.

Angle Controllers Subsystem (Controllers/)
This subsystem runs the joint angle PID controllers and controls the Motor Drivers subsystem
when RoboPuppet is in gravity compensation mode. It creates PID control objects in <init()> and
runs the controllers in <update()> when enabled. The <set_enabled(enabled)> function resets
the PID controllers and sets the joint setpoints to the current joint angles when <enabled> is true
to stabilize the arm at its current orientation. When <enabled> is false, it zeros the voltages and
stops commanding the motors. The PID controllers store and apply the gains defined by the
<pid_kp>, <pid_ki>, and <pid_kp> configurations, as well as the voltage command limits defined
by the <voltage_min> and <voltage_max> configurations.

Motor Drivers Subsystem (Motors/)
This subsystem interfaces with the DC motor driver circuits to control the motors. Each circuit
has three primary inputs: forward PWM, reverse PWM, and enable. Because all seven motors
are enabled and disabled simultaneously, all seven enable lines are wired to one digital output
managed by this subsystem. This subsystem also manages the <sign_motor> configuration by
swapping PWM outputs when the sign is set to -1.

ROS Communication Subsystem (ROSComms/)
This subsystem manages all incoming and outgoing serial messages with the Raspberry Pi
ROS nodes, implementing the Serial Message Protocol. It initializes the serial port and server
object in <init()> and handles TX and RX messages in <update()>. Heartbeat messages are
transmitted at a rate defined by <f_heartbeat> in <ROSComms.cpp>, and joint, gripper, and
button state messages are transmitted at a rate defined by <f_states>. The incoming opmode
and config messages are delegated to their respective subsystems via function calls.

https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/HallEncoders
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/QuadEncoders
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/Controllers
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/Motors
https://github.com/doates625/RoboPuppet/tree/master/Firmware/sub/ROSComms
https://github.com/doates625/RoboPuppet/blob/master/Firmware/sub/ROSComms/ROSComms.cpp

32

External Libraries (lib/)
The external libraries used by the embedded controller are described in Table 10.

Repository Category Brief Description

Platform General Utility Header for Arduino-Mbed-compatible libraries

CppUtil General Utility Collection of common C++ functions

Struct General Utility Class for interpreting byte arrays as C data types

Timer General Utility Class for Arduino-Mbed event timing

DigitalIn Digital IO Class for Arduino-Mbed digital inputs

AnalogIn Digital IO Class for Arduino-Mbed analog inputs

DigitalOut Digital IO Class for Arduino-Mbed digital outputs

PwmOut Digital IO Class for Arduino-Mbed PWM outputs

AS5048B Hardware Interface I2C interface for AS5048B hall encoder

I2CDevice Hardware Interface Class for generic I2C device communication

QuadEncoder Hardware Interface Quad encoder class with ISR methods

QuadEncoderX Hardware Interface Quad encoder class with calibration channel

PID Control Systems Class for discrete-time feed-forward PID control

ClampLimiter Control Systems Limits signal between two bounds

SlewLimiter Control Systems Limits signal velocity between two bounds

SerialServer Communication Simple Arduino serial packet protocol

Table 10. External Libraries used by RoboPuppet Embedded Controller

All of these libraries are maintained by Dan Oates <danoatesnh@gmail.com>.

https://github.com/doates625/RoboPuppet/tree/master/Firmware/lib
https://github.com/doates625/Platform/tree/2a996ce43cc85e717dc869676b98876b02bba3eb
https://github.com/doates625/CppUtil/tree/a50f0e92d93dcd4f550fcecc953c3f3740c4dd39
https://github.com/doates625/Struct/tree/42bb3e64cb523984e100971828f27cf5c34a7b5b
https://github.com/doates625/Timer/tree/4f5af503a31f586883a4ce617f420ecce7a0af47
https://github.com/doates625/DigitalIn/tree/9183572f9f3435b97cea773e0904c6afce2c7da5
https://github.com/doates625/AnalogIn/tree/380ddbe5c5556da9313a32d36b378fef05524c5c
https://github.com/doates625/DigitalOut/tree/2b552fdad131bf66a144e489eb5f40ade6ff5318
https://github.com/doates625/PwmOut/tree/1c76265ea4c7863c9d80dd1f8ca3b26cae8de572
https://github.com/doates625/AS5048B/tree/0412140980eab1dac149cdf256dfc1efb1aad567
https://github.com/doates625/I2CDevice/tree/8cf50d23677f74a9c244d26aeb3b1e915b6702f2
https://github.com/doates625/QuadEncoder/tree/22d24a2b75fa8bc83c792c3d2c029df5a53587a9
https://github.com/doates625/QuadEncoderX/tree/8a87b2a33bbd20c55c350053f1939352b0cdcdca
https://github.com/doates625/PID/tree/20ca437283888604e03ab1eb7af7a492a4815a4d
https://github.com/doates625/ClampLimiter/tree/00a4ea91d7883dc2d7b996b099050805b4bbe9ee
https://github.com/doates625/SlewLimiter/tree/f37f52cb3d01d90963ddbf39343b5e634d9a3ccb
https://github.com/doates625/SerialServer/tree/d5b1c3f4238d8c1dbff3bd7d87f1559bb0941d9a

33

Serial Message Protocol
To support periodic fault-tolerant serial communication, a simple serial message protocol was
developed with message IDs, variable-length data packets, and checksums. This protocol was
developed as an alternative to rosserial_arduino due to its slowness, enormous firmware
overhead, and tediousness of installation. This message protocol is implemented in python in
<serial_server.py> and in C++ for Arduino by the <SerialServer> library (See External
Libraries).

Message Structure
Messages in this protocol consist of a constant start byte, a message ID, a variable-length data
packet, and a checksum. This means that an N-byte data packet is sent as N+3 bytes, which
adds very little overhead. This format is shown in Table 11.

Byte(s) 0 1 2..2+N-1 2+N

Part Start byte Message ID Data packet Checksum

Table 11. Format of Serial Messages

Using the Python struct library and C++ struct library (see External Libraries), the bytes in the
data packet can be easily interpreted as both integers and floats, resulting in zero-accuracy-loss
transmission of real numbers. The checksum sent after the data packet is equal to the wrapped
sum of all bytes in the data packet, each interpreted as an unsigned 8-bit integer. Messages
read with an invalid start byte, message ID, or checksum are discarded. Correct messages
result in a function callback corresponding to the message ID which can process the data.

Message List
For the RoboPuppet project, the start byte was selected to be an arbitrary 0xA5. The list of
serial messages implemented between the host machine and embedded controller with this
protocol are described in Table 12. RW indicates read-write from the host perspective

Name ID RW Length Data

Heartbeat 0x00 R 0 NA

Opmode 0x10 W 1 [0-0]: Mode (enum)
 0x00 = Limp
 0x01 = Hold

Joint State 0x20 R 10 [0-0]: Joint number (0-6)

http://wiki.ros.org/rosserial_arduino
https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/serial_server.py
https://docs.python.org/2/library/struct.html

34

[1-1]: Calibration status (enum)
 0x00 = Working
 0x01 = Disconnected
 0x02 = Uncalibrated
[2-5]: Joint angle (float32) [rad]
[6-9]: Motor voltage (float32) [V]

Joint Config 0x30 W 6 [0-0]: Joint number (0-6)
[1-1]: Config ID (enum):
 0x00 = Home angle [rad]
 0x01 = Min angle [rad]
 0x02 = Max angle [rad]
 0x03 = Min velocity [rad]
 0x04 = Max velocity [rad]
 0x05 = Min voltage [V]
 0x06 = Max voltage [V]
 0x07 = PID P-gain [V/rad]
 0x08 = PID I-gain [V/(rad*s)]
 0x09 = PID D-gain [V/(rad/s)]
 0x0A = Angle sign [+1, -1]
 0x0B = Motor sign [+1, -1]
[2-5]: Setting (float32)

Joint Setpoint 0x31 W 5 [0-0]: Joint number (0-6)
[1-4]: Joint setpoint (float32)

Gripper 0x40 R 5 [0-0]: Gripper number (0-3)
[1-4]: Normalized reading (float32)

Buttons 0x41 R 1 [0-0]: Press ID [1-4, 0 = no press]

Table 12. Serial Messages between Raspberry Pi and Embedded Controller

The heartbeat message is published periodically by the embedded controller to indicate that it is
connected and working. The joint config IDs correspond one-to-one with the config file fields.
This message list is implemented in <serial_interface.py> and <ROSComms.cpp>.

https://github.com/doates625/RoboPuppet/blob/master/Catkin/src/robopuppet/src/serial_interface.py
https://github.com/doates625/RoboPuppet/blob/master/Firmware/sub/ROSComms/ROSComms.cpp

35

Conclusion
This year, the team fully redesigned the system from scratch, implementing absolute angle
sensing, actuators capable of joint position control and gravity compensation, and a GUI-based
ROS package for calibration and control. Due to the COVID-19 pandemic we were unable to
complete user testing. However, we believe that the system would have been intuitive to use.
Our team has come up with several areas for potential improvement and expansion that could
be pursued in future MQPs or other research projects:

1. User testing: Compare RoboPuppet to a game controller, keyboard/mouse, or other
control setups used at the HiRo lab

2. Better motors: The servos used have relatively large friction due to the internal gearing
required to reach the necessary torque. Due to budget and time constraints, we were
unable to test motors with lower friction. A useful upgrade would be finding smaller,
higher torque, and lower friction motors to use.

3. Semi-autonomous teleoperation: Apply learning from demonstration algorithms to enable
bimanual tasks while only explicitly controlling one arm with RoboPuppet. This work has
already been started by Dan Oates and Thejus Jose with Professor Zhi Li.

4. Robust control: The 7-axis PID control system used in gravity compensation mode was
not precisely tuned and can be unstable for some joint configurations in which the arm is
extended near the edge of its workspace. Future teams might implement robust MIMO
manipulator control algorithms.

5. Better electronics: Using a microcontroller with more I/O would allow both arms to be run
from one device. The idea of adding a Raspberry Pi to the base to run the ROS node
was also considered.

6. Baxter driving control: Add support for driving baxter

Important Links
Github Repo: https://github.com/doates625/RoboPuppet
Demo Video: https://youtu.be/C2uG090qyT4
Google Drive: https://drive.google.com/drive/folders/14oBt00tnT1gJ5yeOCeMDETZeyMbo0HgO

https://github.com/doates625/RoboPuppet
https://youtu.be/C2uG090qyT4
https://drive.google.com/drive/folders/14oBt00tnT1gJ5yeOCeMDETZeyMbo0HgO

