

DADiSP & SIMULINK Integration
A Major Qualifying Project

submitted to the Faculty
of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements

for the
Degree of Bachelor of Science

by

Bryan Ferguson

Date:
5 May, 2009

Advisor:
Hossein Hakim

2009

ii

ABSTRACT

MATLAB with Simulink is a powerful application set for signals processing in real-time

or offline however can be slow to learn and is unattractive. DADiSP is menu driven through a

colorful, intuitive Graphical User Interface but has limited signals processing capabilities and

only processes data offline. This project sets out to conjoin these applications using Microsoft

ActiveX technology to utilize the best features from each resulting in an easy to use and

powerful real-time signals processing application with eye-catching outputs.

1

List of Contents
ABSTRACT .. ii

List of Contents ... 1

List of Figures .. 3

1. Introduction .. 4

2. Background ... 9

2.1 MATLAB ... 9

2.1.1 MATHWORKS History ... 10

2.1.2 ActiveX integration and implementation ... 11

2.1.3 MATLAB evolution and SIMULINK Implementation .. 12

2.2 DADiSP .. 14

2.2.1 DADiSP Company History ... 15

2.2.2 DADiSP Application Evolution .. 16

2.2.3 Integration of ActiveX and implementation .. 18

2.3 Component Object Model .. 19

2.3.1 Object Linking and Embedding 1.0 .. 20

2.3.2 OLE 2.0 ... 23

2.3.3 OLE Custom Controls ... 25

2.3.4 Distributed COM (DCOM) .. 26

2.3.5 COM+ ... 29

2.3.6 ActiveX Automation ... 29

2.3.7 Microsoft .NET ... 30

3. Development & Testing .. 32

3.1 Brokering Connection ... 32

3.1.1 Passing Commands from MATLAB to DADiSP .. 32

3.1.2 Bidirectional Pass of Data & Controls .. 35

3.1.3 Creating the SIMULINK to DADiSP Connection .. 38

3.1.4 Creating Sample Model .. 44

3.2 Filtering ... 46

3.2.1 Creating a filter in DADiSP .. 47

2

3.3 Comparing FFT Output .. 50

3.4 Creating Startup Scripts .. 53

3.5 Creating Installable Package (MSI) .. 56

4. Results & Recommendations .. 61

4.1 Speed & System Resources ... 61

4.2 FFT Comparison... 62

4.3 Future work ... 62

4.3.1 LabView .. 63

4.3.2 Third-Party Block Diagramming ... 63

4.3.3 DADiSP Application Builder .. 63

4.3.4 Direct Integration with DADiSP .. 64

5. Conclusions ... 65

References .. 67

3

List of Figures
Figure 1 - Excel Calendar Embedded in MATLAB .. 11
Figure 2 - Simulink System Example ... 13
Figure 3 - Simulink Model with S-Function ... 13
Figure 4 - S-Function Parameters .. 14
Figure 5 - DADiSP Application Builder Application ... 17
Figure 6 - Excel Worksheet Embedded in Word Document being edited .. 21
Figure 7 - Task Manager with Embedded Document ... 22
Figure 8 - Excel Worksheet Embedded in Word Document not being edited .. 23
Figure 9 - Drag-and-Drop example ... 25
Figure 10 - Icon Dropped .. 25
Figure 11 - Standard COM Application Interaction ... 27
Figure 12 - Cleint/Server DCOM .. 28
Figure 13 - Client/Web Server DCOM ... 28
Figure 14 - DADiSP Opened and Visible from Matlab ... 34
Figure 15 - DADiSP after formatting Mods ... 35
Figure 16 - DADiSP window with data from MatLAB .. 36
Figure 17 - DADiSP with Formatted MATLAB Data ... 37
Figure 18 - Spectrum and labeling of Window 2... 38
Figure 19 - From Wave File Block .. 44
Figure 20 - SIMULINK Unbuffer block ... 44
Figure 21 - S-Function Block .. 44
Figure 22 - S-function Parameters .. 45
Figure 23 - Complete Model ... 46
Figure 24 - Other DADiSP Filter Options ... 48
Figure 25 - Z Pole-Zero Plot Menu .. 49
Figure 26 - DADiSP FFT Output ... 51
Figure 27 - MATLAB FFT Output .. 51
Figure 28 - Text Import Wizard ... 52
Figure 29 - After Text Import Wizard .. 52
Figure 30 - MatLab Data Formatted to Match DADiSP Data ... 53
Figure 31 - New Wise Project .. 56
Figure 32 - Added Files .. 57
Figure 33 - Set Product Information ... 57
Figure 34 - Add/Remove Programs Information... 58
Figure 35 - Menu Themes ... 58
Figure 36 - Compile MSI .. 59
Figure 37 - Add/Remove Programs ... 59
Figure 38 - Installed Shortcuts .. 60
Figure 39 - Relative Standard Deviation of Difference between outputs ... 62

4

1. Introduction
 Society of 2009 is based heavily on the concept of ubiquity. Everything from Dunkin Donuts and

McDonalds to Microsoft Office, Cloud Computing, Smartphone Devices and Facebook. Everyone is a

user of technology while technology and computing is now embedded in almost every minute of our

lives. More and more often, users want to customize and program their devices to fit their data, needs

and lives. To that end the ability to program and customize a particular application has become almost

as ubiquitous as the application itself. This makes sense for engineering and research applications such

as Maple or LabVIEW, but the ability to automate even Microsoft Office applications such as Word and

Excel through Visual Studio Tools is a testament to our need to customize.

 Some applications lend themselves to programmability more than others. Users today expect

applications to be attractive. They expect a Graphical User Interface (GUI). All the while expecting it to

be simple to use, yet perform complex functions, arguing as well that these two concepts are not

mutually exclusive. Companies like Microsoft and Apple have implemented frameworks within their

operating systems to allow independent software vendors (ISV) to be able to open up their applications

up to end users without opening all of their source code. Such technologies are known as AppleScript,

Component Object Model (COM), ActiveX and .NET. Microsoft has even gone so far as implementing

ActiveX on Mac OS.

Technologies give the end user and application programming interface, or API. It’s not as useful

as having the whole source code, but it does provide a structured universe to interface between

applications. The only problem with this implementation is that it’s up to the ISV as to how to build the

API. The ISV decides what functions, commands and data are available through the API. The ISV can

also decide not to make an API available at all.

5

The documentation of the functions as well as how they work is also up to the vendor to supply.

More importantly than the API being available, is documentation of the API and the API’s functions. An

ISV can build the most powerful API, but if there is no documentation for how to use it, then it is useless.

Because APIs can be so general, there are a number of ways to use them to communicate, which

is completely dependent on the API implementation. For this reason it is up to the implementer to

decide how to utilize the API. Some applications will allow direct connection to another, such as a

client/server implementation where one application (client) makes a direct connection to another

(server). Or some applications can only be classified as a server, so a 3rd application needs to be brought

in as a broker to pass data and commands back and forth.

Two applications that have these types of APIs are MATLAB from the MathWorks and DADiSP

from DSP Development Corporation. Both of these applications are commonly used for digital signals

processing and both also incorporate an implementation of a Microsoft ActiveX API. While these are

two applications that are marketed towards a similar goal, they differ in their implementations and

functions.

MATLAB was developed in the 1970s and is short for Matrix Laboratory. It is an evolution of the

linear algebra packages LINPACK and EISPACK which have a foundation in the FORTRAN programming

language. MATLAB is command based, similar to a windows command line or a UNIX terminal. This

lends itself to batch style scripting through the proprietary M-Files. Unfortunately this doesn’t mean

MATLAB is the most attractive application to use out of the box.

MATLAB does however have an ActiveX API. This API allows end users to control MATLAB as an

ActiveX Server or also use MATLAB as an ActiveX Client to control another ActiveX Server. This makes it

very versatile, however in order to use it as an ActiveX client, the coding must be done using proprietary

6

M-Files which are based on FORTRAN. This can be a positive or a negative depending on the point of

view of the designer.

MATLAB later introduced an add-on package called SIMULINK that is a block diagramming and

real-time execution environment. SIMULINK has block sets, some are standard and others can be

purchased for a fee. These block sets are used for specific functions and applications within the

SIMULINK environment. One such set of blocks allows users to implement code they have written in the

form of an M-File and reconfigure it so that it will run in the SIMULINK. This has major implications in

that all of the power of the ActiveX client connection and MATLAB’s integrated development

environment under the control of a block diagram based real-time environment.

Meanwhile, DSP Development Corporation was founded in 1984 with the concept of graphical

data analysis and eventually produced an application called DADiSP. DADiSP is a worksheet application,

similar to Microsoft Excel. Instead of putting simple numbers or simple mathematical formulas in each

cell, users instead can enter tables of information, such as the array that comprises a signal, like that of a

wav file. The data is represented in a graphical form instead of numerical form, allowing the user to see

the data.

Like Microsoft Excel, other cells, or windows, can be dependent upon the first cell. Instead of

performing simple mathematical calculations on a small set of numbers, DADiSP allows users to

manipulate large series of data and perform complex calculations such as Fourier transforms and digital

signal filtering. DADiSP utilizes a graphical user interface for almost all tasks, which makes it appealing

to users that are not as comfortable with computer programming languages.

DADiSP does not, however, have any sort of real-time environment. All tasks in DADiSP are

asynchronous. It also does not have any sort of block diagramming features. This limits its usage for

real time experiments. DADiSP does implement an ActiveX Server and Client API and also has its own

7

proprietary scripting language called SPL, based in C/C++. This scripting language is not only useful to

script within DADiSP, but all of the SPL commands and utilities are available through the ActiveX Server

implementation meaning they are available to be executed from a remote application.

The purpose of this project is to provide a sample SIMULINK model that can be installed via a

standard Microsoft installer (MSI) package. This package is a proof of concept to show the feasibility of

utilizing DADiSP with real-time and block diagramming environments. The model utilizes ActiveX

connections to pass data between MATLAB as the ActiveX client and DADiSP as the ActiveX server. This

model offers the block diagram visualization and real-time power of SIMULINK and at the same time the

directly paged virtual data series and more attractive and flexible graphical interface of DADiSP. This

also allows for the end user to perform post manipulation in DADiSP after the real-time execution is

complete, which gives the user full access to the DADiSP tools suite, as opposed to only the ones that

are activated by the SIMULINK model and chosen by the developer.

In MatLab and SimuLink, a data set cannot be manipulated unless the entire set is loaded into

RAM. While RAM is less expensive than it was many years ago, it still has generally a much smaller

storage capacity than a hard drive and the pagefile. DADiSP allows for directly paged virtual data series

which reside within the page file, or scratch space, on a hard disk as opposed to being loaded into the

limited space in RAM. Data sets can also be paged directly by the DADiSP application as opposed to

using operating system page file algorithms which can add lag time to page reading and writing. All of

the execution and paging is completed by DADiSP automatically and seamlessly to the user.

In MatLab, the GUI has much to be desired, in reality it is command prompt with a number of

toolbar surrounding it. The graphs produced by MatLab are static and can only be manipulated,

rescaled or given titles through the command line that was previously discussed as lack-luster in visuals.

In DADiSP, all of the Graphs and Charts can be tweaked and updated to look presentable without having

8

to touch a command prompt. Axis can be labeled and adjusted and just about anything desired can be

performed through a “What You See Is What You Get” (WYSIWYG), pronounced whizzywig, interface,

which is simpler and faster to learn and us.

9

2. Background

In order to understand how to build on and enhance two existing technologies, we first need to

understand how all the technologies involved will work. This means we must understand where DADiSP

and MATLAB came from and how they have evolved. However we have also added in the aspect of

ActiveX, an integration technology and standard from Microsoft.

 This section will discuss the history of ActiveX and the history behind it; including the ActiveX

roots in the Component Object Model (COM). An addition this section will discuss the future for the

Component Object Model in Microsoft .NET Framework and the evolution of the technology. This will

also discuss the past and evolution of DADiSP, MATLAB and SimuLink as well as how the ActiveX

framework is utilized within their environments.

2.1 MATLAB

MatLab is an operating environment for Data analysis and numeric computation using matrices.

MatLab can use FORTRAN style interpreted code for scripting applications and is also constructed in

FORTRAN. (“MATLAB - Introduction and Key Features”) SimuLink is an application that is integrated

with MatLab. Simulink is an environment for simulation and modeling. Simulink, in simple terms can be

seen as a block diagram application. Since MatLab and Simulink are tightly integrated, SimuLink has the

scripting and computation functionality of MatLab underlying it. This produces can produce power

solutions for engineering applications. (“Simulink - Introduction and Key Features”)

10

2.1.1 MATHWORKS History

Between 1972 and 1973 Cleve Moler joined a project to take some libraries developed by John

Wilkinson in ALGOL designed to determine eigenvalues numerically, and port them to FORTRAN. This

package was called EISPACK. In 1978, Cleve worked with Jim Bunch, Jack Dongarra and Pete Stewart to

write a follow-up, LINPACK, which was a library designed for solving linear systems and equations

numerically, this time written from the ground up in FORTRAN. (“Video: The Origins of MATLAB”)

 Cleve wanted to allow his students to be able to access LINPACK and EISPACK without having to

write FORTRAN. To do this, Moler used concept developed by Niklaus Wirth for a parser and

implemented it on top of LINPACK and EISPACK and called it MATLAB. Matrices were the only data type

allowed. The entire program comprised approximately 2000 lines of code and 80 different functions

compared to the 8000 different functions of today. (“Video: The Origins of MATLAB”)

 In 1979 Cleve spent a sabbatical at Stanford University, where he taught a computer science

course in numerical analysis. Many of the numerical analysis students were not interested in MatLab.

However many other engineering students in the course found MatLab useful for signals processing and

control theory. Some of these students shared MatLab with Jack Little, a recent graduate from Stanford,

who saw potential in the aforementioned areas. (“Video: The Origins of MATLAB”)

 Together, Jack and Cleve founded The Mathworks in 1984. Jack co-authored some early

versions of Matlab as well as the signal processing toolbox and the control system toolbox. Currently

Jack Little is the President of The Mathworks and Cleve Moler is the Chief Scientist. (“The MathWorks -

Founders - Jack Little”) The Corporate Headquarters for The Mathworks is in Natick, Massachusetts

(“The MathWorks - Contact Us - Worldwide Offices and Representatives”).

11

2.1.2 ActiveX integration and implementation

Version 5.0 of MatLab allowed ActiveX clients to utilize MatLab as an ActiveX Server. This

allowed users to control MatLab via an external application. Such examples might be using a Microsoft

Visual Basic program to send data to matlab and use that data and create embed a Matlab Graph or

plot. However, in 1998 Mathworks released version 5.2, also known as MatLab release 10 that included

support to now utilize MatLab as an ActiveX Client. Now Matlab can be used as an ActiveX Client to

connect to ActiveX server applications using built in Fortran-like Code. (“MATLAB News & Notes -

Summer 1998 - MATLAB Compiler and New Support for ActiveX in MATLAB 5.2”).

Using MatLab as an ActiveX client can be useful to now embed controls from other applications

into MatLab. This is useful when MatLab doesn’t provide a visual control or functionality for something

a user needs. For example, users can make a connection to Excel and embed a calendar control from

excel directly into a MatLab figure, as shown in Figure 1. (“MATLAB News & Notes - Summer 1998 -

MATLAB Compiler and New Support for ActiveX in MATLAB 5.2”)

Figure 1 - Excel Calendar Embedded in MATLAB

12

Some applications that don’t have controls that can be embedded like the calendar application

above, but MatLab can still execute and show those applications in their own native process window.

Depending on how a particular application is built, the ability for it to be embedded does not generally

affect how it passes or handles data. For all intents and purposes, the above calendar application could

be displayed through an excel window, yet still provide the same functionality, but it wouldn’t look as

clean or as unified as it does above. All of this functionality is taken advantage of through the use of M-

Files and the FORTRAN based MatLab language. (“MATLAB News & Notes - Summer 1998 - MATLAB

Compiler and New Support for ActiveX in MATLAB 5.2”)

2.1.3 MATLAB evolution and SIMULINK Implementation

 Simulink is a model-based design and simulation environment that is distributed as part of

MatLab, however it is licensed and sold as an add-on unit. Simulink is integrated with MatLab, which

provides a powerful connection to the matrix based solutions as well as other add-on toolboxes

provided by MatLab. However Simulink has its own library of functions. As Simulink is a model-based

environment. All of its functions are organized in block sets and put together as a block diagram. Blocks

can provide a distinct individual function, or they can also be a complex sub-system of their own with

multiple inputs and outputs. Users can also design custom blocks of their own. (“Simulink - Introduction

and Key Features”) Figure 2 shows an example of multiple embedded models within a master simulink

model.

13

Figure 2 - Simulink System Example

Since Simulink is integrated with MatLab, and MatLab supports the ActiveX protocol, Simulink

can reap the benefits of Matlab’s interconnectivity with other ActiveX devices. Simulink can indirectly

control ActiveX Servers using MatLab as an intermediary. This is done by using custom blocks that are

either s-function blocks or MatLab Function blocks. S-Function Blocks can use specially crafted M-Files

to define custom functionality and specify input and output. (“Simulink – Documentation”)

Figure 3 shows a Simulink Model with a few different types of customized blocks. The “From

Wave File” block takes in a specified raw audio file in WAV format and converts it into the individually

sampled bits. The S-Function block utilizes the input it’s given out of the unbuffer from the WAV file and

performs the actions specified by the parameters of the S-Function as shown in Figure 4.

Figure 3 - Simulink Model with S-Function

14

Figure 4 shows the parameters window for the S-Function Block. The S-function name is the

filename of the specially crafted M-File in the local directory of the model. The other S-function

parameters are customized parameters by the creator or the M-File. These parameters are input by the

user through the Parameters menu and can be passed between various functions of the M-File, as the

M-File itself can contain many different functions. Is the S-Function references and uses additional files

or modules, those can also be specified in this menu.

Figure 4 - S-Function Parameters

More information about how this specific S-Function and sample model work provided in

section 3.1.4 Creating a Sample Model. This section will also describe what the specific parameters

mean and walk through the underlying S-Function code line-by-line.

2.2 DADiSP

 DADiSP is signals analysis software developed and distributed by DSP Development Corporation.

DADiSP is designed as a signals processing spreadsheet, similar in function to Microsoft Excel. Each

worksheet contains as many cells as deemed necessary by the user. Cells can contain raw data or

15

analyzed data based on other cells. If source data is updated, dependant cells update on the fly. Each

cell doesn’t just display numeric values, but rather the graphical representation of the raw, or analyzed

data as described below. (“DSP Development Corporation: About DADiSP”)

“With DADiSP you can acquire, input and even generate sample data, displaying the results in multiple
windows for immediate graphic comparison. You can reduce and transform data, using any of hundreds of
menu-driven analysis functions, instantly graphing the results of each stage of your work. DADiSP doesn't
require mastering any programming skills or arcane command sets. DADiSP was designed to let you
perform data analysis the way you think about data analysis.” (“DSP Development Corporation: About
DADiSP”)

2.2.1 DADiSP Company History

 DSP Development Corporation was founded in 1984 and currently holds their headquarters in

Newton, MA. DSP Development supports such customers as NASA, General Motors, Boeing and

Siemens. (“DADiP Executive Summary Flash 3 Presentation”) Their mission is to “Develop high

performance and reliable data analysis and display software that allows technical professionals who are

not programmers to easily perform complex computations and visualization of their data in a familiar

spreadsheet environment.”(“DSP Development Corporation: Corporate Background”).

 DSP Development compares their product, DADiSP with that with high end engineering

applications, but also markets it as a high end spreadsheet. Their goal is to provide a tool to scientists

and engineers, similar in functionality to Microsoft Excel that does not require programming knowledge.

This approach allows for users to manage large sets of data and visualize them in a meaningful way, as

well as manipulate the data reliably. DSP Development markets DADiSP as a type of productivity

application for engineers. (“DSP Development Corporation: Market Background”)

16

2.2.2 DADiSP Application Evolution

Like Many applications, DADiSP has evolved over time to become the application it is today. The

current version of DADiSP is version 2002, marked by the year of its last full release, and however has

continued to see improvements since. The owner of DSP Develoment Corporation, Randy Race, is also

the sole developer of DADiSP. (“Race”)

DADiSP supports integration with certain data acquisition applications, user programming via

Series Programming Language (SPL) and application integration via ActiveX. These integration and

customization tools give end-users flexibility to utilize DADiSP in a multitude of ways. DADiSP can be

used as a stand-alone application with separate data acquisition or with integrated acquisition. DADiSP

can also be used in conjunction with any other application that is compatible with the ActiveX standard.

(“DSP Development Corporation: DADiSP Product Family”)

While DADiSP supports full ActiveX support, it doesn’t support individual window embedding. In

2008, DSP Development Corporation introduced a new product known as the DADiSP Application

Builder (DAB). The DAB allows application developers to utilize functionality similar to the ActiveX

implementation of the full version of DADiSP, however is in a lightweight redistributable package.

“Purchase a one-time license for each development machine and distribute your applications with no
further fees or royalties. A callable install program is included to provide a single, integrated installation
strategy for your target application deployment.” (“DSP Development Corporation: DADiSP Application
Builder”)

This new tools is the next logical step in utilizing DADiSP as a componentized piece of an integrated

solution. It is a much smaller size and ideal for being embedded into custom applications. (“DSP

Development Corporation: DADiSP Application Builder”)

Figure 5 displays a sample application developed by DSP Development Corporation to sample

how one can use the DADiSP Application builder to embed individual pieces of DADiSP into a visual basic

17

program that provides a cleaner, unified look and feel to any custom built application. These could also

be embedded in such applications as MatLab or SimuLink. Samples are also available to download from

the DSP Development website. (“DSP Development Corporation: DADiSP Application Builder”)

Looking specifically at Figure 5, it shows 3 different DADiSP plots within one window that looks

similar to a DADiSP window, however it is actually a custom-built application. The radio buttons, slider

and buttons on the left hand side are all parts of the native custom-built application, but through

ActiveX these controls and change the data or settings of the DADiSP graphs on the right to change the

output. Building these controls in DADiSP is extremely difficult, however building them in Microsoft

Visual Studio is fairly trivial because they are predefined controls through the development

environment. (“Race”)

Figure 5 - DADiSP Application Builder Application

18

2.2.3 Integration of ActiveX and implementation

 ActiveX is really nothing more than a set of standards as defined by Microsoft. ActiveX is

described by the Component Object Model (COM) which is described in further detail in section 2.3.

The idea behind COM, is that it’s a way to interconnect processes independent of the language that

processes use. Applications written in VB, C or a multitude of other languages can interact with one

another. It also allows an implementer to utilize the functionality of an application without full

knowledge of all the underlying logic. This prevents the implementer from reinventing the wheel.

(“Component Object Model”)

As an ActiveX Client, DADiSP allows the end user to connect to other ActiveX enabled

applications and utilize their functionality directly from with DADiSP using SPL. As an ActiveX server,

other ActiveX clients can use their own native language to make a connection to DADiSP and utilize its

functions. (“DSP Development Corporation: ActiveX”)

For Example, visual basic script (vbscript) can create an object that references the DADiSP

application and makes a connection to the application in visual basic scripting language. Once

connected, vbscript can insert and retrieve data as well as execute commands within DADiSP. This

utilization of DADiSP as an ActiveX server is particularly convenient for use with MatLab and Simulink.

(“DSP Development Corporation: ActiveX”)

 When connecting DADiSP as an ActiveX server it supports three main methods: “GetData”,

“PutData” and “Execute”. The “GetData” method will retrieve data from a DADiSP window or variable.

“PutData” will send data specified within the command into a DADiSP variable or window. The

“Execute” command will perform any DADiSP command as outlined by the help files. This is arguably

one of the more important methods because it is extensible for future version of DADiSP. As new

commands are implemented, the ActiveX API doesn’t need to be extended, because the framework to

19

execute a new command or function is already there. In some cases, the “Execute” method may be

used instead of “GetData” or “PutData”. (“DSP Development Corporation: ActiveX”)

2.3 Component Object Model

 Component Object Model (COM) is a conceptual and logical construct developed by Microsoft in

1993. (“Component Object Model”) In a nutshell, According to Microsoft “COM is used by developers to

create re-usable software components, link components together to build applications, and take

advantage of Windows services.” (“COM: Componet Object Model Technologies”) COM is language

agnostic, meaning that developers can take advantage of COM whether they write an application in

Visual Basic, Java, C++, C# or even other proprietary languages. COM itself, is not a specific technology,

but rather describes an evolutional series of technologies that include Object Linking and Embedding

(OLE), COM+, Distributed COM (DCOM) and ActiveX. (“Component Object Model”)

 COM has been implemented on multiple platforms, however because it is a Microsoft product, it

has the highest level of support and functionality on Microsoft Windows. Because COM was introduced

in 1993, not all pieces of the suite were released out of the box, many were developed later. As later

operating systems were released, such as Windows 2000, Windows XP and Windows Vista, support for

newer technologies was included in the OS, while older operating systems required patches or updates

in order to take advantage of the technologies. (“COM: Componet Object Model Technologies”)

20

2.3.1 Object Linking and Embedding 1.0

Object Linking and Embedding (OLE) 1.0 is developed in 1990, prior to the term COM being defined.

(“Object Linking and Embedding”) However, OLE 1.0 is evolved out of Dynamic Data Exchange (DDE)

that dates back to 1987 with Windows 2.0 and is still part of new windows releases, however is not

utilized as often as newer technologies like OLE and ActiveX (“Dynamic Data Exchange”). Both DDE and

OLE 1.0 are designed with the purpose of passing information between multiple documents, such as

Microsoft Word or Excel (“Object Linking and Embedding”)

DDE can transfer a limited amount of data between two documents, however OLE can create an

active link between two documents or even embed one document within another as an object to

transfer and reference data between the two without having to reconnect back to the document every

time a change occurs like DDE does.

 For Example, a Microsoft Excel document can be embedded into a Microsoft word document.

When this happens with OLE 1.0, a visual representation of that document is displayed to the end user

as a picture (such as a bitmap) and the data is stored in its own native format, i.e. excel format (“Object

Linking and Embedding”). To show how this embedding works, below is an example using Microsoft

Windows Vista and Microsoft Office 2007.

Figure 6 shows an example of OLE in action. A Microsoft Word 2007 document has an

embedded excel spreadsheet within it. The excel spreadsheet looks and feels to the user just like a full

version of excel, except it is part of the word document. When the user is editing the document, the

toolbar ,redesigned and renamed to the Ribbon in Microsoft Office 2007, within Microsoft Word shows

the formula bar. Also all of the toolbar tabs native to excel are merged together with the Microsoft

21

Word Ribbon. Looking at Figure 6 closer you can see that even multiple spreadsheets can be added and

embedded within the same object.

Figure 6 - Excel Worksheet Embedded in Word Document being edited

Taking a look at the Windows Task Manager in Figure 7 shows EXCEL.EXE is running under the

processes tab but Microsoft Excel does not appear on the task bar. Microsoft Word has actually created

and executed the EXCEL.EXE process so that it is not available directly to the end user, but must be

utilized through the embedding or linking in Microsoft Word. In other words the base process is

22

executed, but the user does not have to wait for the entire application to load, yet is also still able to

edit the object as if it were an entire Microsoft Excel Document.

Figure 7 - Task Manager with Embedded Document

 Once the user exits the spreadsheet but moving the cursor outside the bounds of the object, the

object reverts to a simpler view that appears as just a table. The Ribbon has reverted to only the tools

specific to Microsoft Word and the formula bar has gone away. However, taking a look at the task

manager shows that EXCEL.EXE is still running. With DDE, once the user exits the embedded document,

the process that allowed editing of that document exits. However with OLE 1.0, the process continues

to be loaded into memory, but it is kept as a background process. If the user would like to make a

change to the embedded document, it requires double clicking on the object and then the connection

back to the process is moved the foreground. This is also faster because instead of recreating and

executing the new EXCEL.EXE process, the existing one is just moved to the foreground.

23

Figure 8 shows the Microsoft Word document after the user clicks out of the embedded excel

document and into the regular document. The excel piece is reverted to the simplified view.

Figure 8 - Excel Worksheet Embedded in Word Document not being edited

2.3.2 OLE 2.0

 OLE 2.0 accomplishes many of the same goals as OLE 1.0, however it was rewritten with the

forethought of the COM framework. OLE 1.0 utilized system libraries and communicated to them via

Virtual Functional Tables (VTBL), which are a list of pointers to various functions. The reimplementation

of OLE 2.0 on top of COM allows it to be much more general and support new features such as

24

automation, drag-and-drop and structured storage. VTBLs are no longer used, however system libraries

are still utilized. (“Object Linking and Embedding”)

 OLE Automation is a standard defining how a program opens up its API so that another

application, such as a visual basic script (.vbs) or even a Microsoft batch file (.bat), may automate the

use of that program. This makes the script an ActiveX client and the application is an ActiveX server.

This will be discussed in further detail in section 2.3.6 ActiveX. (“OLE Automation”)

 OLE structured storage is used as a method for storing hierarchical data in a single file.

Examples of this would be how a Microsoft SQL database that uses a single binary MDB file to store

many tables, constraints, security information and user accounts. All the information is stored within

the single file as well as a logical descriptor of how each piece of data relates to the others. Similarly

Microsoft Office used this method for storing data in Microsoft Word and Excel documents, however

Office 2007 is migrating to XML based Office Open XML (OOXML) format and supports binary OLE based

files as well as files that is described by eXtensible Markup Language instead of OLE structured storage.

OLE structured storage allows for application developers to utilize binary file types, without having to

worry about an individual component of a file getting larger or smaller and then needing to determine

what address in the file each component will now be stored in. (“Structured Storage”)

 OLE drag-and-drop is almost exactly described by its name. An object, such as an icon, a file, or

a control in a program can be clicked on (and hold the click) by the user with the mouse icon and

dragged to another location. This is most common in Windows by moving icons around on the desktop.

Figure 9 displays an icon being dragged from one location to another.

25

Figure 9 - Drag-and-Drop example

 Meanwhile Figure 10 shows the icon after it has been dropped. These two figures utilize icons

on a desktop within Windows Vista to show how drag-and-drop works. Many applications utilize drag

and drop within them, including Microsoft Office and MathWorks SimuLink. In Microsoft office, text can

be highlighted and then Dragged and dropped to another location within the document. In a SimuLink

Model, one block can be dragged to another location or a new block can be dragged from the model

library to a particular model. These are all examples of OLE drag-and-drop. (“Drag-and-drop”)

Figure 10 - Icon Dropped

2.3.3 OLE Custom Controls

 Visual Basic Extensions (VBX) were released as part of Visual Basic 1.0 to allow extensibility of

the Visual Basic Language. An extension would be something like a radio button or toggle switch that

could be a visual representation on a “form” that could then be linked to code in the background.

(“Visual Basic Extension”) In 1994, Microsoft deprecated VBX and instead promoted the use of more

26

versatile OLE Custom Controls (OCX). Usually OCX files are a dynamic link library (DLL) with specific

definitions that are renamed to use .OCX as the extension. (“Object Linking and Embedding”)

 In 1996, Microsoft changed the standard definition of OCX so that the only one specific interface

is required. This kept the file size down. Microsoft also renamed OLE Custom Controls to ActiveX

Controls. (“Object Linking and Embedding”) ActiveX Controls are commonly used within web browsers

and for a time were a delivery method for spyware and adware. Familiar ActiveX Controls may be the

Adobe Flash Player, Microsoft SilverLight or even the Java Runtime Environment. (“Component Object

Model”)

2.3.4 Distributed COM (DCOM)

 Distributed COM (DCOM) extends COM objects so that they can be used on multiple computers.

Until now, COM objects and controls have been confined to executing and existing on a single computer.

DCOM allows for COM objects to be hosted on a single server computer via windows services and allow

that service to be accessed over the LAN, WAN or Internet and provides tolerance for faults. (“DCOM

Technical Overview”)

 DCOM allows the developer to not have to worry about the client side process crashing and

leaving an open connection, or the connection between the two computers being lost and having a

connection hung. DCOM deals with garbage collection and releasing resources when a client

disconnects, gracefully or otherwise. DCOM also deals handles encapsulation of commands so that they

can be transmitted over a TCP/IP connection that is serial, and then de-serializing the commands when

they reach their destination.

27

Figure 11 - Standard COM Application Interaction

 Finally DCOM allows for a one-to-many relationship, where with standard COM there can only

be a one-to-one relationship as shown in Figure 11. Standard COM applications have the client and the

server application installed on the local system and all data and commands are localized within the

computer. With DCOM applications, the server software is installed on a physical server computer. The

client side application is installed on the client, or can be hosted on the same or separate server

computer via a web site. Multiple clients can access the server application on the central server as

shown in Figure 12 and Figure 13 respectively.

28

Figure 12 - Cleint/Server DCOM

Figure 13 - Client/Web Server DCOM

29

2.3.5 COM+

 In Windows NT Service Pack 4, Microsoft introduced Microsoft Transaction Server. This allowed

developers a better way to deal with resource pooling, disconnected applications and distributed

transactions, meanwhile offered better memory management and processor management. Microsoft

Transaction server was an extension of COM and DCOM services. At the time Microsoft released

windows 2000, they decided to incorporate this transaction server into the operating system and

rename it to COM+. (“Component Object Model”)

 COM+ components were beneficial over standard COM and DCOM because they could be

reused by new calls without reloading the components into memory because they were already there.

Thus prevents multiple copies of a single routine from existing in memory. Components could also be

distributed like DCOM, thus reducing the need for strictly DCOM components. (“Component Object

Model”)

2.3.6 ActiveX Automation

 ActiveX Automation is evolved out of OLE Automation. Developers can open up specific

functionality within their applications to provide an API to end users and other developers through

standard ActiveX COM runtime. Applications that allow for ActiveX Automation enable programmers

and users to script and control their application through external code. Many of Microsoft’s own

application are enabled for ActiveX Automation, such as Internet Explorer and Microsoft Office and even

Active Directory. (“ActiveX”)

 Microsoft Excel, for example, can be manipulated by an end user through a Visual Basic Script

that connects to excel, opens a file performs particular formatting on a file and then saves the file, even

with a new name to preserve the old content. This automation task would be useful to someone

30

working with a large number of reports that are output from an application to an excel format that is

not readable right away. The visual basic script can automate the process of manipulating the reports so

that they are all uniform and visually appealing and save significant time and tedious labor.

Another Example of ActiveX Automation is a systems administrator creating user accounts in an

Active Directory Domain. A systems administrator my receive a list of new employees to start at a

company. The administrator may use a visual basic script to make a connection to Active directory.

Once connected they can create user accounts, set a password, set an email address and even execute a

remote Microsoft Powershell script that will create a Microsoft Exchange 2007 mailbox and link it to the

appropriate user account.

2.3.7 Microsoft .NET

 The Microsoft .NET Framework is standard set of tools, utilities and solutions to common

programming problems to allow more complex solutions to more complex problems to be solved more

timely. Microsoft .NET also incorporates a runtime environment of its own so that code is more

portable. It also allows developers to develop uniformly between desktop and web applications and

use the same code in both places. This allows users to have a seamless experience on the desktop as

well as on a web client without significant extra effort from the developers. (“ActiveX”)

“The .NET Common Language Runtime provides bi-directional, transparent integration with COM. This
means that COM and .NET applications and components can use functionality from each system. This
protects your existing investments in COM applications while allowing you to take advantage of .NET at a
controlled pace. COM and .NET can achieve similar results. The .NET Framework provides developers with
a significant number of benefits including a more robust, evidence-based security model, automatic
memory management and native Web services support. For new development, Microsoft recommends
.NET as a preferred technology because of its powerful managed runtime environment and services.”
(“COM: Componet Object Model Technologies”)

 .NET has gone through many revisions and the currently released version is 3.5 Service Pack 1

and still supports COM. Microsoft has not as of yet deprecated COM in favor of .NET, but rather used

the two in conjunction to enhance one another. There is no set date to deprecate COM in the near

31

future, even though some COM functions may seem redundant as they have been implemented within

.NET. (“ActiveX”)

 Microsoft .NET Framework is fully supported on Windows XP, Vista, Server 2003 and Server

2008 and also has a compact framework for Windows Mobile smartphones to allow seamless

applications across the Desktop, Web and now cell phones. (“ActiveX”) An open source project known

as mono is dedicated to providing an open source, cross platform development and runtime

environment for .NET. Meaning that .NET applications, if developed correctly, could even run on Linux,

Unix and Mac OS. (“Mono”)

32

3. Development & Testing

This section will discuss using the development and testing that occurred in creating a

connection between MATLAB, SIMULINK and DADiSP as well as passing data and commands between

the applications. Much of this discussion focuses on sending commands and data to DADiSP and

learning the DADiSP language as well as how to construct a Level-1 S-Function for use within Simulink.

Some of the more difficult design problems focus on working within the SIMULINK environment which is

a runtime environment and has a somewhat cyclical nature. This can make coding and troubleshooting

difficult. For the purpose of Development and testing, I used MATLAB 2008a, Simulink 7.1 and DADiSP

6.0 provided by WPI’s academic licenses.

3.1 Brokering Connection
 Before any data or commands can be transferred between applications, some sort of link

between the two must exist. This demo was built in steps starting by first making a connection from the

MATLAB command window to DADiSP and passing data and commands from there. The next step was

to move the compiled commands into an M-File that could be run from the command window. The

Final step and largest connection step was to convert the M-File into a level-1 S-function and implement

it within a SIMULINK model.

3.1.1 Passing Commands from MATLAB to DADiSP

The initial development began at the MATLAB command window. MATLAB, as well as most

other ActiveX clients talk to the ActiveX server over a local variable within the application. To do this,

we set a variable equal to the ActiveX server command that connects to a particular application via it’s

program ID. This command is “ACTXSERVER” in MATLAB and the program ID of DADiSP is

“DADiSP.Application”. So to create the connection, we used the following command.

33

Using the “ACTXSERVER” command in this way connects to the ActiveX Server on the local

computer. It is, however, robust enough to connect to an ActiveX server on a remote computer by

simply specifying the hostname of the computer as below. In this case, of course there is additional

complexity of permissions and firewalls so it is only noted in here.

 Looking at the current workspace shows a new variable “hdadisp” that looks just as if it were a

Matrix of statistical or signals data. This variable is the key that can send commands and transmit data

back and forth with the DADiSP application. All ActiveX methods exposed from DADiSP are available on

this variable. But once this variable was set, the DADiSP window did not appear, however the task

manager now showed DADISPNT.EXE running when it was not prior. So now DADiSP just needed to be

made visible. To do this we executed the following.

 This exposed the DADiSP Command window as shown in Figure 14 with a blank worksheet with

default 4 blank windows. At this point DADiSP is both controllable by the user through its own graphical

user interface, or MATLAB can also send commands to it from the command window, however the last

change that is executed will be overwritten.

>> hDADiSP.visible = true;

>> hDADiSP = actxserver ('DADiSP.Application',’Computername’);

>> hDADiSP = actxserver ('DADiSP.Application');

34

Figure 14 - DADiSP Opened and Visible from Matlab

 Now that DADiSP was open, we could visually see some of the formatting we might want to

make using the “EXECUTE” method. The “EXECUTE” method is not restricted to making formatting

changes, but it is the only way to do such changes. Also these changes can be made while DADiSP is not

visible, they will be shown once DADiSP is made visible again. The following commands perform some

of these formatting changes and are shown in Figure 15.

%Create a new blank worksheet with 4 windows
>>hdadisp.Execute('NewWorksheet(4, 0)');

%Hide the DADiSP toolbar
>> hdadisp.Execute('setconf("TOOLBAR_ENABLED","0")');

%Set the X-Axis of Window 1 to be “t (sec)”
>> hdadisp.Execute('SETXLABEL(W1,"t (sec)")');

%Change the Lable of Windows 1 to be “Matlab Data”
>> hdadisp.Execute('label(W1, "MATLAB Data")');

35

Figure 15 - DADiSP after formatting Mods

3.1.2 Bidirectional Pass of Data & Controls
 In order to transfer Data to DADiSP, we first needed some sample data. WAV files are readily

available to anyone with Microsoft Windows as they come preloaded for notification purposes such as

application errors and pop ups. WAV files are also easily converted into a Matrix in MATLAB as they are

already raw audio files. The files provided with Microsoft Windows are single channel audio files, or

monophonic as opposed to stereo files that will have two different signals to worry about. This sample

file was also useful later for the SIMULINK model.

 To convert this file into a MATLAB variable, we used the “WAVREAD” command. “WAVREAD”

will also determine the sampling frequency and number of bits used to encode each sample. The

sampling frequency would be useful later for determining the correct axis on a graph be it within

MATLAB or DADiSP.

>> [data,fs,nbits] = wavread('sample.wav’);

36

 So to send data to DADiSP we used the “PUTDATA” method. All we need to specify with this
method is the Window we are sending the data to and the variable containing the data. In our case we
actually used the variable “data” which contains the WAV file we imported earlier. The command looks
like the following and the DADiSP window now appears as in Figure 16.

Figure 16 - DADiSP window with data from MatLAB

 This looks visually like one would expect, however the Axis are incorrect and it’s just raw data,

so we need to make it look a little better. We know our sampling frequency before and we can also

figure out how many samples are shown. To perform more formatting we will need to use the

“EXECUTE” method again. However the “EXECUTE” method only accepts a string for input and some of

the changes we need to make are variables within MATLAB. To overcome this challenge we will need to

concatenate a string together and pass that string into the “EXECUTE” method as one command. The

resulting commands look as follows and the DADiSP Window looks like Figure 17.

>> hdadisp.PutData('W1',data);

37

Figure 17 - DADiSP with Formatted MATLAB Data

 After we got the data formatted properly in DADiSP, we could start using the tools within

DADiSP for manipulation. We did this, however through the ActiveX connection from MATLAB, not

through the DADiSP interface itself. For example, we put the Spectrum of Window 1 into Window 2 and

labeled it using the following code and shows in Figure 18.

%The total Time of the file is the number of samples in the file divided by the
sampling frequency.
>> execute_time = t_max/fs;

%That needs to be converted to a string
>> execute_time=num2str(execute_time);

%then concatenate the string together with the command to set the distance
between points on the X-Axis
>> deltax_cmd = strcat('SETDELTAX(W1,',execute_time,')');

%Execute the command
>> hdadisp.Execute(deltax_cmd);

%Set the Label on the X-Axis (overwrite if already done)
>> hdadisp.Execute('SETXLABEL(W1,"t (sec)")');

38

Figure 18 - Spectrum and labeling of Window 2

 Various other commands can be executed in this way including everything that is listed in the

“DADiSP Functions” help menu. Anything that can be executed as part of SPL can be executed via

ActiveX through hdadisp.Execute. From here, the much more difficult task is to integrate this now with

SIMULINK, a continuous real-time environment.

3.1.3 Creating the SIMULINK to DADiSP Connection

Creating the Connection between SIMULINK and DADiSP is a much more difficult task than

creating a connection from MATLAB. The reason is that SIMULINK is a continuous runtime application.

A custom, user defined function within MATLAB is a specially defined M-File called an S-Function. The

way the S-function works, is it takes in the first data point from the source then runs executes

%Put the FFT in Window 2
>> hdadisp.Execute('W2=Spectrum(W1);');

%Label Window 2
>> hdadisp.Execute('label(W2, "Spectrum of Window 1")');

39

everything within the output section of the S-Function. For the next data point it repeats this process all

over again.

This poses a large challenge when needing to instantiate a connection to a server or application

because each time the S-File executes it will try and create the connection all over again. Unfortunately

it’s even worse when connecting to an ActiveX server because it will create a new process for the

remote application each time it cycles through the S-Function. If your data series has 30,000 data

points, then it will try to create 30,000 DADiSPNT.EXE processes, or one for each data point. This would

cause the host system to run out of memory and crash very quickly and is also useless for data

processing because each data point will be spread out across 30,000 different sessions and cannot be

analyzed.

To get around this we had to devise some sort of global variable or preference that was external

of the S-function and could be checked to see if the DADiSP connection was already created. The

Windows Registry Database is the logical choice for this to be created. The windows registry is a

hierarchical database used to store preferences for programs and windows settings themselves. There

are different keys for the local system (global) as well as for the current user that is running. In order to

have this application usable by non-administrators, we needed to put this in the current user registry

Hive, or database file, named HKEY_Current_User.

The above command using “winqueryreg” will query a particular registry value and stores the

value into the variable “dadisp_status”. In order for this to work, the

‘HKEY_Current_User\Software\WPI\DADiSP\Turned_On’ value must exist. That part is taken care of

during the startup scripts that will be talked about further later on. The value of “Turned_On” will be a

>> dadisp_status=winqueryreg('HKEY_CURRENT_USER', 'Software\WPI\DADiSP', 'Turned_On');

40

string character. We used a bit more logic to test the value and if it is set to ‘0’, then it will create the

variable that initiates an ActiveX connection to the DADiSP application and then it will overwrite the

value of “Turned_On” to equal ‘1’ to avoid creating another connection to DADiSP next time. If the first

read of “Turned_On” is already non-zero, then it will assume that the connection has already been made

and continue to process the remainder of the script. The following block of code illustrates this

mechanism.

 An important piece to note is that MATLAB has a function to read directly from the registry, but

does not have a function to write directly to it. In order to accomplish this task we created a method

that writes a .reg file to the c:\temp directory and writes out the appropriate registry information into a

format that is understood by the windows Registry application (regedit.exe). Then we used a windows

command prompt with the “dos” command to execute and install the registry file. After that we make a

connection to DADiSP, setup the worksheet and make it visible. Creating this scheme for checking if

DADiSP is already running adds minimal load to the application because it is only going to actually

 %Logical Check agains the DADiSP Status from Registry.
>> if (dadisp_status == '0')

 %Tell the registry that DADiSP is on
>> regFileName = 'c:\temp\DADiSP_On.reg';
>> fp = fopen(regFileName,'wt');
>> fprintf(fp,'REGEDIT4\n');
>> fprintf(fp,'%s\n','[HKEY_CURRENT_USER\Software\WPI\DADiSP\]');
>> fprintf(fp,'%s%s%s%s%s%s\n','"', 'Turned_On', '"=', '"1"');
>> fclose(fp);
>> dos('%windir%\regedit.exe /s c:\temp\DADiSP_On.reg');

 %Create activeX connection to DADiSP ActiveX server
>> hdadisp = actxserver ('DADiSP.Application');
>> hdadisp.Execute('NewWorksheet(4, 0)');
>> hdadisp.Execute('setconf("TOOLBAR_ENABLED","0")');
>> set (hdadisp, 'Visible', 1);
>> else
 %Do nothing because DADiSP is already active.
>> end;

41

execute tasks and Write the .REG file out to disk the one time that it needs to execute, rather than every

time.

 There was one more problem, however that is significantly more difficult to deal with. When

connecting to DADiSP through the MATLAB command window or an M-File, everything was done

sequentially and asynchronously. It didn’t matter when the WAV file was converted into a matrix, as

long as it was converted prior to using the “PutData” method to put data into a window. Also the whole

WAV file was converted and then all at once pushed up to DADiSP “PutData”. In the SIMULINK world,

the whole data file doesn’t exist yet because each sample is being processed one at a time, just like it

would be in real time.

 The “PutData” method would not work in this case because the data only exists one point at a

time, unless it could somehow be stored in a buffer. But using a buffer results in a delay between input

and output, which for some use cases, is valid. However, For a single set of raw data of duration 10

seconds, would typically require more memory than a 32-bit windows computer can address, which is

4,096 MB maximum. The “PutData” method could be used if the full contents of the DADiSP window

were read back into a variable, add the one new value, then write the entire string back to DADiSP as

shown below.

 This resulted in additional memory issues as the “temp” variable became again, as large as the

data file and every round, MATLAB was looking for a new block of memory that would fit the previous

% Read Back the Data from the DADiSP window and put it into the
variable “temp”
temp = hDADiSP.GetData('W1');

%Add the current input value, ‘u’, to the end of the array “temp”
temp = [temp;u];

%Write the new ‘temp’ variable back up to DADiSP
hDADiSP.PutData('W1', temp);

42

variable plus the concatenated value. Creating a variable of appropriate size at the beginning was

fruitless because the memory required is large and in the end depends on the file size of the input file.

This was not a reasonable approach.

 To solve this issue, I had to utilize a DADiSP command called “Curr”, which is used as the current

contents of the window. This command is only available to ActiveX clients through the “EXECUTE”

method so using it with variable input required converting numbers to strings and concatenating

commands again. Also, in order to use the “Curr” command, we need to, within DADiSP, concatenate

the command itself with the next value to be added. The result of these stringing concatenations

together looks like the following.

 Lastly, there was one challenge to face: how to get the output from DADiSP individually bit by

bit. The length of the output isn’t necessarily known at any given time to use as an index. It could be

kept track of with a counter variable, but that means more wasted memory and isn’t necessarily going

to be correct if something changes the window externally. To cope with this, I started by creating an

extra DADiSP window used for calculations and hide it using the “hide” command to pass back special

information.

 %Focus on Window 1
>> hDADiSP.Execute('Moveto(W1)');

 %Convert the input ‘u’ from a number to a string for
 %concatenation.
>> v = num2str(u);

 %Concatenate the DADiSP concatenation command with the values
 %that need to be concatenated.
>> newdata=strcat('CONCAT(curr,{',v,'})');

 %Execute the command
>> hdadisp.Execute(newdata);

43

 With this hidden window, I could now grab the length of the particular dataset in the window

we want to grab and throw it into the hidden window. We can import that information into a simulink

variable, since it’s only one value it will not be a big variable and time creating the variable will be

minimal. Then we need to convert that number to a string in order to concatenate it with the command

to extract just the value of the output window at that particular index we want and put it into the

hidden window. Then we pull the data out of that window and output it out of the S-function as shown

below. They output of the S-function is, by default, the “sys” variable. The “sys” variable is defined

below as the data from

Combining all of this code together into a single S-funtion provides a single connection to

DADiSP, sending data to DADiSP and retrieving data from DADiSP in effective ways that don’t drastically

increase the resource consumption of the host computer. From here it was a matter of creating a

sample model that utilizes this S-function and provides input from a binary audio file.

 %Put the Length of the window you want to output from into a
 %hidden window
>> hDADiSP.Execute('W6=COLLEN(W5,1)');

 %Get the length into a MATLAB variable.
>> lengthW5=hDADiSP.GetData('W6');

 %Convert Length of Window 5 to a string.
>> slengthW5 = num2str(lengthW5);

 %Make the Command String to Get the Last Value of Window 5 (output window).
>> cmdgetoutput=strcat('W6=W5[', slengthW5, ']');

 %Execute the Command to put the Last value of Window 5 in Window 6.
>> hDADiSP.Execute(cmdgetoutput);

 %Output the contents of Window 6 out of the S-Function as the result.
>> sys = hDADiSP.GetData('W6');

 %Hide Windows 6
>> hDADiSP.Execute('hide(W6');

44

3.1.4 Creating Sample Model

 To create the Sample Model, The first piece was getting data. I used the same sample.wav file

that I used when discussing initially how to transfer data to DADiSP. Simulink uses has a block that

performs an analogous function to “wavread” called “From Wave File” as shown in Figure 14. With this

block, simply specify the name of the file, within the same directory, that needs to be imported and it

automatically figures out the sampling frequency, number of channels and number of bits used to

encode each value.

Figure 19 - From Wave File Block

 After that we sent the data into an unbuffer to clean the data make sure it isn’t buffered as in
Figure 20.

Figure 20 - SIMULINK Unbuffer block

 The Data point then flows into the S-Function block where the major work happens.

Figure 21 - S-Function Block

However the S-Function block is uninteresting without knowing seeing the parameters. The

parameters of an s-function block are shown in Figure 22.

45

Figure 22 - S-function Parameters

The S-function name is the name of the custom M-File. The other S-function parameters are

separated by commas. These are custom to the S-function itself and their variable types are specified in

the M-File. The parameters are as follows

1. Signal Frequency
2. Array Zeros for filter transfer function specification
3. Array of Poles for filter transfer function specification
4. Gain for filter transfer function specification
5. Sample Rate for filter transfer function specification
6. Warping Frequency for filter transfer function specification (for bilinear transforms, not

used in this example)

 All of these pieces fit together in the final model as seen in Figure 23. Once these pieces were in

place we could begin working on make DADiSP perform some more advanced functions on the input

WAV to perform transformations or gain.

46

Figure 23 - Complete Model

3.2 Filtering

A Digital Filter is defined as “An algorithm operating upon a sequence of discrete-time sampled

data, designed to pass signals with selected temporal or spatial frequencies while attenuating signals

with other temporal or spatial frequencies.” (“AMS Glossary”) Highpass filters will pass the high band

while attenuating those below a specific breakpoint frequency. Lowpass filters perform the exact

opposite task. A Bandpass filter will attenuate all frequencies except those within a specific range.

(“AMS Glossary”)

Filters are typically described by their transfer function. In the analog world, H(s) or in the

discrete universe, H(z), where H(z) is the ratio of the desired output response to the input. Where the

output response and transfer function are described below. (“Z-transform”)

𝑌𝑌(𝑧𝑧) = 𝐻𝐻(𝑧𝑧)𝑋𝑋(𝑧𝑧)

𝐻𝐻(𝑧𝑧) =
𝑌𝑌(𝑧𝑧)
𝑋𝑋(𝑧𝑧)

47

The numerator has M roots, or Zeros and the denominator has N roots, or poles but the number

of roots and poles can be the same. In addition, there may be a zeros and poles at z = 0 and z = ∞. The

number of zeros and poles are always equal. (“Z-transform”) Using zeros and poles in conjunction with

determining what frequency band is desired to be filtered, we can design filters using software such as

dadisp and MatLab to filter digital signals.

3.2.1 Creating a filter in DADiSP

DADiSP offers a few different methods for creating a filter. Different methods are better for

different circumstances. Also different methods may employ different mathematical functions in order

to evaluate the results. These methods are described in the DADiSP help files.

Probably the simplest filters to implement are the Lowpass and Highpass filters. These are

available through special functions within DADiSP. Their simplest form is a single pole filter. To utilize

this function all that’s needed is an input signal (or window) and a cutoff frequency. The command is

“slp(<window>,<frequency>)”. This command can be used from a DADiSP SPL file, an ActiveX client

through the “Execute” method, or through the DADiSP GUI from the Analysis menu. A highpass filter

can be created similarly by using “shp” instead of “slp”.

 Other More complex filters can also be generated in DADiSP using the Filter menu. Figure 24

shows a number of different filter options available to be designed.

48

Figure 24 - Other DADiSP Filter Options

 Lastly DADiSP can also create very granular filters using the Z Pole-Zero Plot. The menu shown

in Figure 25 allows users to enter in the desired Zeros, Poles and Gain for a filter. The fields will accept

real and imaginary numbers. All zeros and poles must be encapsulated in brackets and separated by

commas. DADiSP also has an associated command line API for this tool. The command is zplane and it

accepts the same arguments as described in the menu below and in the very same format.

49

Figure 25 - Z Pole-Zero Plot Menu

This function draws a zero-pole plot of the zeros and poles in its own window. The user can the

use the “cascade” command in a third window to overlay the input onto the filter plot window and

receive the filtered output. If Window 1 contains the raw signal and Window 2 contains the zero-pole

plot, then the filtered Window3 would contain the following command: “cascade(w1,w2)”.

 Both of the above mentioned filter methods within DADiSP have a command line version to

execute them, they can all be executed from MATLAB and SIMULINK to DADiS over ActiveX. In addition,

the filter and cascade commands only needs to be executed once because DADiSP will automatically

update the output of a given window whenever the input is modified.

50

3.3 Comparing FFT Output

In order to verify that DADiSP and Matlab are performing equivelant tasks. In order to compare

these two, I took a simple task, the Fast Fourier Transform (FFT) and compared the MATLAB calculated

FFT with the DADiSP calculated FFT from the same input. The actual calculations were performed with a

simple m-file script. To perform the comparison, however, the outputs are copied into excel and each

real and imaginary value are compared individually.

 The script used to calculate the two FFTs is shown below.

 DADiSP seperates the real and imaginary parts of the FFT into separate arrays, while the

MATLAB output keeps them in the same array. Figure 26 shows the first 12 rows of the FFT output

calculated by DADiSP for a two-channel signal. The real and imaginary parts of each channel are broken

into their own column. While Figure 27 shows the first 12 rows of the FFT output calculated by DADiSP

for the same two-channel signal. The real and imaginary parts of each channel are combined into one

column.

%This M-File is designed to input a signal, calculate the FFT of the
%signal. Then it will also submit the signal to DADiSP the exact same
%process and will allow comparison of the output values.

input=wavread('sample.wav');

var_fft = fft(input);

hdadisp=actxserver('DADiSP.Application');

hdadisp.visible=1;

hdadisp.PutData('W1',input);

hdadisp.Execute('W2=fft(W1)');

var_dadisp_fft = hdadisp.GetData('W2');

51

Chan1 Real Chan1 Imaginary Chan2 Real Chan2 Imaginary
-0.595855712890625 0 -0.600830078125000 0
0.0948089658499117 0.238192645720516 0.0703144902072289 0.239271367778862
-0.299856648710897 -0.796386275247523 -0.361158228931889 -0.651044291178772
-1.40238594968114 1.26725875656358 -1.10979114951594 1.20562663533569
0.275174437514480 -0.396458021702227 0.200145980616593 -0.424580003400416
-0.158337381097453 6.53691854622354 -0.434330681932207 6.40061288154617
4.64887776559003 0.255743021582746 5.00233408531421 1.02505846704051
2.11451511908438 -5.34299945781243 3.24262997628328 -6.30844389330469
1.45703142592327 -1.96183359316595 0.984374608467294 -3.16061821271093
1.04831110780329 2.95539947727775 -0.446541673373439 3.28720684289584
3.85428639257386 -3.59777930502586 3.31190026766722 -3.61395019507544
-0.844760993777662 -9.69478196083844 -1.26217437407680 -9.16363222052710

Figure 26 - DADiSP FFT Output

The DADiSP output above is formatted for easy numeric comparison; however the MATLAB

output below is a bit more difficult because both the real and imaginary parts are embedded in the

same field of each array.

Channel 1 Channel 2
-0.595855712890626 + 0.00000000000000i -0.600830078125001 + 0.00000000000000i
0.0948089658488165 + 0.238192645720860i 0.0703144902060141 + 0.239271367780099i
-0.299856648710276 - 0.796386275245513i -0.361158228931180 - 0.651044291177912i
-1.40238594967842 + 1.26725875656107i -1.10979114951389 + 1.20562663533453i
0.275174437513418 - 0.396458021697599i 0.200145980615913 - 0.424580003396650i
-0.158337381094350 + 6.53691854620924i -0.434330681928218 + 6.40061288153345i
4.64887776558165 + 0.255743021587134i 5.00233408530548 + 1.02505846704159i
2.11451511908627 - 5.34299945780428i 3.24262997628307 - 6.30844389329344i
1.45703142592239 - 1.96183359316615i 0.984374608467614 - 3.16061821271108i
1.04831110780474 + 2.95539947726722i -0.446541673370004 + 3.28720684288473i
3.85428639256594 - 3.59777930502025i 3.31190026765838 - 3.61395019507012i
-0.844760993775308 - 9.69478196082761i -1.26217437407406 - 9.16363222051583i

Figure 27 - MATLAB FFT Output

In order to calculate any differences between the two outputs the formatting has to be the

same. One simple way to do this is to bring the data into Microsoft Excel 2007 and utilize the text

import wizard to split the data into multiple cells.

52

Figure 28 - Text Import Wizard

 Using the default parameters of the text import wizard splits each cell into 3. So columns B and

C, shown in Figure 29 can be combined to ensure that the imaginary parts have the appropriate sign and

remove the “i” from each cell.

Figure 29 - After Text Import Wizard

 Figure 30 shows the MatLab Data once the formatting is complete for both channels and looks
very similar to the output from DADiSP. Once that is completed for each channel, each column can be
compared to its analogous array from the DADiSP output. Then the average difference, standard
deviation and relative standard deviation between the signals can be calculated.

53

Chan1 Real Chan1 Imaginary Chan2 Real Chan2 Imaginary
-0.595855712890626 0.000000000000000 -0.600830078125001 0.000000000000000
0.094808965848817 0.238192645720860 0.070314490206014 0.239271367780099

-0.299856648710276 -0.796386275245513 -0.361158228931180 -0.651044291177912
-1.402385949678420 1.267258756561070 -1.109791149513890 1.205626635334530
0.275174437513418 -0.396458021697599 0.200145980615913 -0.424580003396650

-0.158337381094350 6.536918546209240 -0.434330681928218 6.400612881533450
4.648877765581650 0.255743021587134 5.002334085305480 1.025058467041590
2.114515119086270 -5.342999457804280 3.242629976283070 -6.308443893293440
1.457031425922390 -1.961833593166150 0.984374608467614 -3.160618212711080
1.048311107804740 2.955399477267220 -0.446541673370004 3.287206842884730
3.854286392565940 -3.597779305020250 3.311900267658380 -3.613950195070120

-0.844760993775308 -9.694781960827610 -1.262174374074060 -9.163632220515830
Figure 30 - MatLab Data Formatted to Match DADiSP Data

Repeating the above steps for 9 other sample wav files showed similar success across multiple

input files. Now that the outputs from MatLab and DADiSP are verified to be consistant, the SIMULINK

model can be packaged for deployment and sharing.

3.4 Creating Startup Scripts

 In order to make sure that the DADiSP model within simulink will start up properly and set all

the necessary variables and registry settings every time it’s started, I created a set of scripts that take

care of everything necessary to execute the model and allow the user to simple specify settings in the

model and then go. These scripts are also intelligent enough so that if the user is a new user to the

computer it is being executed on, or an existing user, everything will be set appropriately without any

additional steps. These are almost the most important pieces used when building an MSI later.

 To start building these scripts we take all of the files we’ve used and compiled thus far and put

them into a centralized Directory. For the purposes of this example, I’ve used “C:\Program Files

(x86)\WPI\DADiSP_SimuLink” because I have been using a 64-bit version of Windows and DADiSP is a

32-bit application. On a 32-bit operating system, we would just use “C:\Program

54

Files\WPI\DADiSP_SimuLink”. The files in this directory are “dadisp.mdl”, ”Plot_and_filter.m”,

“sample.wav” and “readme.txt”. “dadisp.mdl” is the Simulink Model File. “Plot_and_filter.m” is the m-

file referenced within the model. “sample.wav” is the wav file used within the model. “readme.txt” is a

small readme file telling users not to modify the contents of this directory manually.

 I’ve added four more files to this directory which will serve the purpose of the startup scripts.

“copy_user_files.bat” will copy the necessary model files from the current directory into the users’

directory under %USERPROFILE%\WPI\DADiSP_Simulink\.

 The “create_user_files.vbs” will check a bit in the registry to see if the user has already copied

the model files to their own user directory. If they have, then it will not execute the

“copy_user_files.bat” so as not to overwrite the users’ files in case they’ve made any changes, if they

have not, then it will copy them over.

option explicit
on error resume next
dim oWshShell, FSO
dim struserFiles
set FSO = createobject("scripting.filesystemobject")
set oWshShell = createobject("wscript.shell")
'Tell DADiSP it is off (create's registry key if necessary)
struserFiles = 0
struserFiles = owshshell.regread("HKCU\Software\WPI\DADiSP\user_Files_copied")
If err then
'install the key and copy the files
 owshshell.run copy_user_files.bat, 0, true
 oWshShell.RegWrite "HKCU\Software\WPI\DADiSP\Files_Copied", "1", "REG_SZ"
end if
set struserFiles = nothing
set fso = nothing
set oWshShell = nothing

@echo off
mkdir %USERPROFILE%\WPI\DADiSP_SimuLink
copy "%PROGRAMFILES(x86)%\wpi\DADiSP_SimuLink\dadisp.mdl" %USERPROFILE%\WPI\DADiSP_SimuLink\ /y
copy "%PROGRAMFILES(x86)%\wpi\DADiSP_SimuLink\Plot_and_filter.m" %USERPROFILE%\WPI\DADiSP_SimuLink\ /y
copy "%PROGRAMFILES(x86)%\wpi\DADiSP_SimuLink\sample.wav" %USERPROFILE%\WPI\DADiSP_SimuLink\ /y

55

 The “Reset_DADiSP.vbs” file performs a couple of functions. First it checks and resets the

registry value in the user hive that is checked by the SIMULINK model to see if the DADiSP ActiveX

connection has already been made. It also ensures that the directory “c:\temp” exists and is readable

and writeable bay users and administrators alike. To that end, the first time that these scripts are

executed, they must be executed by an administrator in order to make sure that the “c:\temp” directory

is created and the security permissions are set correctly.

 Finally the “Startup DADiSP Model.bat” file brings all of these files together and creates one

point of entry for anyone starting the Simulink model for the first time or for the 100th time. It executes

the two visual basics scripts discussed above and then it will execute Matlab using the users’ copy of the

“dadisp.mdl” file. Creating a shortcut to this icon in the start menu for all users provides it as a single

point of entry to the model meanwhile ensuring that all the other various registry keys and files are set

appropriately.

Echo Starting DADiSP/Simulink Project
@echo off
wscript "C:\PROGRAM FILES (x86)\WPI\DADiSP_SimuLink\create_user_files.vbs"
wscript "C:\PROGRAM FILES (x86)\WPI\DADiSP_SimuLink\Reset_DADiSP.vbs"
matlab.exe -nosplash -minimize -r "load_simulink;open %USERPROFILE%\WPI\DADiSP_SimuLink\dadisp.mdl"

option explicit
on error resume next
dim oWshShell, FSO
set FSO = createobject("scripting.filesystemobject")
set oWshShell = createobject("wscript.shell")
'Tell DADiSP it is off (create's registry key if necessary)
oWshShell.RegWrite "HKCU\Software\WPI\DADiSP\Turned_On", "0", "REG_SZ"
'make sure the temp directory necessary exists
if FSO.folderexists("c:\temp") then
else
 fso.createfolder "C:\temp"
 owshshell.run "%COMSPEC% /c Echo Y| cacls c:\temp /t /c /g Administrators:F System:F Users:F", 0, True
end if

set fso = nothing
set oWshShell = nothing

56

3.5 Creating Installable Package (MSI)

 In order to create and installable package for the DADiSP model, I used an application called

Wise Package Manager from Symantec Corporation. However, there are also many other free open

source software or commercial software packages available that allow creation of single Microsoft

Installers (MSI) or Windows installation executables. To start creating the installer, we open up Wise

Package Manager, create a new project and then open up the “Windows Installer Editor” as shown in

Figure 31.

Figure 31 - New Wise Project

57

 Next we go over to the “Files” section and we add the files that we are going to drop into the

Program Files directory. Here we can also add directories as we please. This is shown in Figure 32.

Figure 32 - Added Files

 Next, set the product information and specify how we want things to look in the Add/Remove

Programs menu as seen in Figure 33 and Figure 34.

Figure 33 - Set Product Information

58

Figure 34 - Add/Remove Programs Information

 Lastly, Wise package manager allows for customizable themes on the installation menus. Figure

35 shows a theme with the Worcester Polytechnic Institute seal.

Figure 35 - Menu Themes

59

Finally Figure 36 shows the menu for compiling these modifications into an MSI. The MSI can be

compiled on the local computer, or if using a Wise Package Server, can be compiled remotely on the

server. This is useful if the server is more powerful than the computer with the Wise package Manager

client.

Figure 36 - Compile MSI

 Once the MSI is executed, it will appear in the Add/Remove Programs Menu and any shortcuts

that were specified to be installed will appear in the start menu, as shown in Figure 37 and Figure 38

respectively.

Figure 37 - Add/Remove Programs

60

Figure 38 shows the installed shortcut for the DADiSP SimuLink Model Demo which when

selected will open up the SimuLink model that is a demo of the DADiSP functionality.

Figure 38 - Installed Shortcuts

 Now that the final product is created, this single MSI can be distributed and installed on a

Windows XP or Windows Vista computer. Pre-requisites, however, include MATLAB 2008a or better and

DADiSP 6.0 B12 or later be installed on the computer before being able to run the DADiSP Simulink

Model Demo.

61

4. Results & Recommendations

 The sample model for DADiSP has shown a number of results some of which support that such

an implementation will be useful to end users and signal processors, however other data shows that

optimization and perhaps a different implementation might be necessary for everyday use. The biggest

disappointment with a SIMULINK and DADiSP implementation is that speed is drastically sacrificed.

However future work may be able to overcome these issues.

4.1 Speed & System Resources

 The purpose of this project was to utilize DADiSP through a run-time environment, such as

SIMULINK. Unfortunately, using SIMULINK to transfer data to DADiSP sample by sample results in a

significant lag. This appears to be, however a result of the ActiveX connection and not a problem with

DADiSP, MATLAB or Simulink.

 Using SIMULINK or MATLAB to import a wav file, perform a simple filter task or calculate an FFT

occurs in less than 1 second on a modern computer. Using only DADiSP to perform the exact same task

also takes approximately less than 1 second on the same system. Also importing a signal into MATLAB,

transferring the entire signal into DADiSP and then performing the same tasks executes in a matter of

seconds. However when using SIMULINK to import a WAV file then transfer each sample one at a time

to DADiSP takes multiple orders of magnitude longer, on the order of 15 minutes for fewer than 40,000

samples.

 This can only be a result of overhead from ActiveX. When using the ActiveX connection only

once to transfer a large block of data, the overhead is not noticed. However when executing a data

transfer over ActiveX, each sample is transferred with an individual ActiveX connection as opposed to

the one command, these repeated commands in multiply the overhead exponentially.

62

4.2 FFT Comparison

 After applying the technique discussed in section 3.3 Comparing FFT Output to 10 different

sample files, I was able to determine that while there is a slight difference between the computed FFT of

DADiSP and MATLAB, the relative standard deviation is negligible for most applications.

Sample name Chan1RE (%) Chan1im (%) Chan2RE (%) Chan2IM (%) AVERAGE (%)
Chime 0.00159791 0.001272093 0.002041029 1.20142E-15 0.001227758
Chord 0.009900774 0.000497626 0.004313568 0.00252236 0.004308582
Ding 0.00147216 0.00056196 0.005357983 0.001205079 0.002149295
Minimize 0.000852655 0.006122675 0.025211287 8.949E-05 0.008069027
Notify 0.01275789 0.000102854 0.009144268 0.000108322 0.005528334
Print 0.000636373 4.64845E-05 5.45696E-05 0.000450013 0.00029686
Recycle 0.09449649 0.017879374 0.137820264 0.013642558 0.065959672
Restore 0.003417942 0.007290816 0.000775511 0.011810649 0.00582373
Ringin 0.00168941 0.00035759 0.001204649 0.000704448 0.000989024
Shutdown 0.000731062 0.000629448 0.000919202 0.001189132 0.000867211

Figure 39 - Relative Standard Deviation of Difference between outputs

 Figure 39 above shows the relative standard deviations in percentage of the difference between

the output of the DADiSP calculated FFT and the MATLAB calculated FFT by channel as well as the

average for each channel. The average relative standard deviation for each signal is less than 0.1%. The

average relative standard deviation for all samples is 0.009691756%. This shows that there is an

extremely close correlation between the DADiSP calculated FFT and the MATLAB calculated FFT.

4.3 Future work

 The purpose of the DADiSP model is to use it as a proof of concept for additional work. While it

can be used as a blueprint for to perform more advanced functions, speed issues may preclude such

implementations. However, a similar methodology with another implementation may be more

effective.

63

4.3.1 LabView

 LabView might be a natural next step for an attempted implementation as LabView is a run-time

environment. Additionally, LabView supports ActiveX connections and even supports using Level-1 and

Level-2 S-Functions from SIMULINK, meaning that the code provided in this example may only need to

be simply dropped in place of a LabView model. However because it will still utilize ActiveX from within

an S-Function there may still be the same inherent speed issues as with SIMULINK.

 However LabView may have an ability to interface via an ActiveX block connection that may be

more effective than a custom built S-Function. Again this may result in more successful speeds,

however may also result in the same speed lag as SIMULINK. A more custom solution may be more

effective, however may require significant additional programming.

 4.3.2 Third-Party Block Diagramming

 Another option to address the issues with Speed may be to utilize a general block diagramming

and run-time application. This could be either an open or closed source application as long as it

supports significant programmability. However, given that the only way to interface with DADiSP from

an external application is through ActiveX, the same exact lag may be encountered. ActiveX appears to

be the resulting bottleneck and the limiting factor in each scenario.

4.3.3 DADiSP Application Builder

 The DADiSP Application Builder (DAB), however may be a different and more viable alternative.

The biggest advantage of the DAB is that it allows direct coding from any Microsoft .NET language and

can be embedded like a custom control. Because it communicates directly it with .NET languages, it may

overcome the speed issues that are inherint with the full DADiSP application. In addition, it also has a

smaller footprint than the full DADiSP application and can be redistributed royalty free.

64

 However the major catch with this implementation may be finding an open source run-time,

block diagramming application that is built in a Microsoft .NET language. Alternatively a team could

build a block diagramming run-time environment from the ground up using a .NET language and

implementing the DAB natively in that application which may prove most effective and possible.

However, in the end there may be one option that will ultimately be the most effective overall.

4.3.4 Direct Integration with DADiSP

 What may be the ultimately the most effective option, would be to implement a block

diagramming, run-time extension directly within DADiSP. Unfortunately this option is most out of the

scope of an MQP because the code to DADiSP is closed source. However should DSP Development ever

decide to migrate their code to an open source model, that may allow for such a possibility. However

that would be a business decision of the developer. One possible model may be that the open source

version is untested and released under a different name, while the commercial version of DADiSP is fully

tested and verified by the vendor.

 Another way that this could be made possible is if DSP Development were to decide to

implement this feature via proprietary means. Again, however, this would be out of the scope of any

Major qualifying project as the parts of the code would need to be available for the purposes of the

project. This would be more effective than even an open source model since DSP Development

developed the original application and already know how the existing code functions.

65

5. Conclusions

 While DADiSP does not have its own real-time execution environment, it can be used as part of

another environment, such as SIMULINK. This provides for block-diagram functionality and the more

appealing DADiSP graphical interface and simplified tools for signal manipulation. However, doing so

with current Active-X based technology comes at the cost of speed. While ActiveX has evolved over the

past 15 years it is unfortunately not yet capable of handling continuous, long data sets and the future is

unclear as to if it ever will.

Traditionally, the problem of slow software has been met by faster hardware, while this

approach can be effective and has, until now, satisfied the prediction of Moore’s Law; it isn’t necessarily

the correct answer to every problem. Hyper threading, multiple core processors, faster RAM, hard

drives and Flash memory have all enhanced and assisted engineering problems that could in some cases

be solved in software. Given the ubiquity of cloud or clustered computing, allowing an application to

run across a cluster of systems may make up for the lag in transferring data between SIMULINK and

DADiSP. However, again, is applying more hardware to the problem appropriate?

While this isn’t to say that ActiveX may someday become more efficient to allow for rapid,

continuous data point transfer, it won’t be in the current and next generation of Microsoft Windows

operating systems. While it may not be feasible to open the source code for DADiSP to allow a third

party to develop a directly integrated block-diagramming application for it, another approach may be to

develop a non-ActiveX based API. This could be based on Remote Procedure Calls (RPC) or some other,

more generic protocol that perhaps might support operating systems other than Windows.

A faster or more generalized API for DADiSP may ultimately benefit the signals engineer

population at large. Each generation is expected to build upon the work of the previous. As such, it is

66

important for the tools for the next generation to become not only more complex in functionality but

simpler in execution. The purpose of this is not to allow future engineers to disregard the fundamentals

of engineering, but rather to give them a boost towards further understanding. DADiSP is effective in

this mission by allowing for easy visualization and manipulation of signals in ways that other software

packages don’t allow. By incorporating a real-time environment, a new dimension has added to

enhance this experience further.

With a real-time execution of DADiSP, students can now see not only a signal as it progresses,

but also how its FFT evolves as the signal is processed further, as well as how a filter may morph a signal

differently as more of the signal information becomes available. This means that a real-time DADiSP is

not only a tool for solving engineering problems, but also an educational tool for students. No matter

who uses this enhanced addition to DADiSP be it an engineer, student or faculty, one of the most

important goals can bet met; better understand. This, in the end is what allows engineers to design and

innovate to the best of their ability.

67

References

"AMS Glossary". Glossary of Meteorology. 19 January, 2009

<http://amsglossary.allenpress.com/glossary/browse?s=d&p=28>.

"COM: Componet Object Model Technologies". Microsoft Corporation. 11, December 2008

<http://www.microsoft.com/com/default.mspx>.

"Component Object Model." Wikipedia, The Free Encyclopedia. 2 May, 2009, 17:20 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/Component_Object_Model>.

"Drag-and-drop." Wikipedia, The Free Encyclopedia. 19 March, 2009, 22:11 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/Drag-and-drop>.

"DCOM Technical Overview". Microsoft Corporation. November, 1996

<http://msdn.microsoft.com/en-us/library/ms809340.aspx>. 11 December, 2008

"DSP Development Corporation: About DADiSP". DSP Development Corporation. 4 November, 2007

<http://www.dadisp.com/aboutdad.htm>.

"DSP Development Corporation: ActiveX". DSP Development Corporation. 11/04/2007

<http://www.dadisp.com/activeX.htm>.

"DSP Development Corporation: Corporate Background". DSP Development Corporation. 4

November, 2007 <http://www.dadisp.com/corpback.htm>.

"DSP Development Corporation: DADiSP Application Builder". DSP Development Corporation. 11

November, 2008 <http://www.dadisp.com/dab.htm>.

68

 “DSP Development Corporation: DADiSP Product Family". DSP Development Corporation. 4

November, 2007 <http://www.dadisp.com/products.htm>.

"DSP Development Corporation: Market Background". DSP Development Corporation. 4 November,

2007 <http://www.dadisp.com/markback.htm>.

"Dynamic Data Exchange." Wikipedia, The Free Encyclopedia. 5 March, 2009, 21:29 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/Dynamic_data_exchange>.

"The MathWorks - Contact Us - Worldwide Offices and Representatives". The Mathworks. 19

January, 2009 <http://www.mathworks.com/company/aboutus/contact_us/>.

"The MathWorks - Founders - Jack Little". The Mathworks. 19 January, 2009

<http://www.mathworks.com/company/aboutus/founders/jacklittle.html>.

"MATLAB - Introduction and Key Features". The MathWorks. 7 November, 2007

<http://www.mathworks.com/products/matlab/description1.html>.

"MATLAB News & Notes - Summer 1998 - MATLAB Compiler and New Support for ActiveX in

MATLAB 5.2". The MathWorks. 7 November,

2007<http://www.mathworks.com/company/newsletters/news_notes/sum98/sum98active

x.html>.

“Mono". Mono Project. 19 January, 2009 <http://www.mono-project.com/Main_Page>.

"Object Linking and Embedding." Wikipedia, The Free Encyclopedia. 30 April, 2009, 11:48 UTC.

Wikimedia Foundation, Inc. 3, May 2009.

<http://en.wikipedia.org/wiki/Object_Linking_and_Embedding>.

69

"OLE Automation." Wikipedia, The Free Encyclopedia. 28 March, 2009, 20:17 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/OLE_Automation>.

Race, Randy and Rabin Tamang. Personal INTERVIEW. September 20, 2007

"Simulink - Introduction and Key Features". The MathWorks. 7 November, 2007

<http://www.mathworks.com/products/simulink/description1.html>.

"Structured Storage." Wikipedia, The Free Encyclopedia. 7 February, 2009, 3:26 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/Structured_storage>.

"Video: The Origins of MATLAB". The Mathworks. 19 January, 2009

<http://www.mathworks.com/company/aboutus/founders/clevemoler.html>.

"Visual Basic Extension." Wikipedia, The Free Encyclopedia. 26 December, 2007, 16:20 UTC.

Wikimedia Foundation, Inc. 3, May 2009.

<http://en.wikipedia.org/wiki/Visual_Basic_Extension>.

"Z-transform." Wikipedia, The Free Encyclopedia. 1 May, 2009, 2:10 UTC. Wikimedia Foundation,

Inc. 1, May 2009. <http://en.wikipedia.org/wiki/Z-transform>.

	ABSTRACT
	List of Contents
	List of Figures
	1. Introduction
	2. Background
	2.1 MATLAB
	2.1.1 MATHWORKS History
	2.1.2 ActiveX integration and implementation
	2.1.3 MATLAB evolution and SIMULINK Implementation

	2.2 DADiSP
	2.2.1 DADiSP Company History
	2.2.2 DADiSP Application Evolution
	2.2.3 Integration of ActiveX and implementation

	2.3 Component Object Model
	2.3.1 Object Linking and Embedding 1.0
	2.3.2 OLE 2.0
	2.3.4 Distributed COM (DCOM)
	2.3.7 Microsoft .NET

	3. Development & Testing
	3.1 Brokering Connection
	3.1.1 Passing Commands from MATLAB to DADiSP
	3.1.2 Bidirectional Pass of Data & Controls
	3.1.3 Creating the SIMULINK to DADiSP Connection
	3.1.4 Creating Sample Model

	3.2 Filtering
	3.2.1 Creating a filter in DADiSP

	3.3 Comparing FFT Output
	3.4 Creating Startup Scripts
	3.5 Creating Installable Package (MSI)

	4. Results & Recommendations
	4.1 Speed & System Resources
	4.2 FFT Comparison
	4.3 Future work
	4.3.1 LabView
	4.3.3 DADiSP Application Builder
	4.3.4 Direct Integration with DADiSP

	5. Conclusions
	References

