4\ The MathWorks
DAD is Pﬁm Ultimate Engineering Spreadsheet

DADISP & SIMULINK Integration

A Major Qualifying Project
submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the
Degree of Bachelor of Science

Bryan Ferguson

Date:
5 May, 2009

Advisor:
Hossein Hakim

ABSTRACT

MATLAB with Simulink is a powerful application set for signals processing in real-time
or offline however can be slow to learn and is unattractive. DADISP is menu driven through a
colorful, intuitive Graphical User Interface but has limited signals processing capabilities and
only processes data offline. This project sets out to conjoin these applications using Microsoft
ActiveX technology to utilize the best features from each resulting in an easy to use and

powerful real-time signals processing application with eye-catching outputs.

List of Contents

ABSTRACT ...ttt ettt ettt sttt st e b e e bt e b e e e bt e eae e e a et e bt e bt e sh et sae e e e E e e bt e bt e R e e e ae e ea et et e et e e b e e nheenanesaneeane i
[o) o] o =1 o1 KOOSR P PO VRROPRTOP 1
T o ST ={ U T TR RTP 3
I [A o Te [¥ T 4 To Yo WP U PO VRROPRTP 4
P = 7= ol €= TV T« [P 9
2.1 IMIATLAB . ettt ettt sttt et e b e b e s bt e s ae e e a et et e e bt e bt e eh et she e s aR e e bt e bt e beeeheeene e et e e nneenreenreen 9
2.1 1 MATHWORKS HISTOIY .. .eiuiiiiieiieiiecte ettt sttt sttt ettt ettt e b e sbeesaeesanesane e 10
2.1.2 ActiveX integration and implementation.........cccovciiie i 11
2.1.3 MATLAB evolution and SIMULINK Implementationccccoceveeiviiiei e 12

2.2 DADISP et ettt et e e e e b ettt e e e e e e e e bateeaee e e e e e hrbtaeaeeeeeaannrrraeaeeeeenanns 14
30 D YA\ DT ISY S 0o T 0 oY o =10 1VAl 1 15) ¥o] V2 15
2.2.2 DADISP Application EVOIULIONccuviiieiiiee ettt ettt e e e e e e e e e e e e e e aree e e eanes 16
2.2.3 Integration of ActiveX and implementationcccceeeeciiie i 18

2.3 Component OBJECT MOMEuviiiiiiiii e et e e s ree e e ssabe e e e sssbaeeesenraeeesans 19
2.3.1 Object Linking and EMbBedding 1.0ccuiiiiiiiieiiiiee ettt ree e et e e s ae e e s sare e e e 20
2.3.2 OLE 2.0 ottt bt sttt e b e bt e b e e b e ea et eae e et e et e e bt e nheenheeeareeareeane 23
2.3.3 OLE CUSEOM CONTIOIS ...ttt ettt ettt be e st sttt sb e sbeesaeesaneeane e 25
2.3.4 Distributed COM (DCOM)ueeiuiiiuiiiiieiieieetee st stte sttt st e bt e bt e sre e satesaee et e et e e nbeesbeesaeesanesareeane 26

P RN 610 1Y, TSRO 29
2.3.6 ACEIVEX AUTOMATION ..eiiiiiiei ettt e e s st e e e st e e s s e e s s nree e e sanes 29
2.3.7 IMHCIOSOFE LNET ittt ettt ettt ettt et s e st e e st e e sbt e e sabeesabaeesabeesabbeesabeesabeeesnseesabeesnnes 30

3. DEVEIOPMENT & TESEINEG .oeeeeriiee ettt ettt e et e et e e e e te e e e e ette e e s e ataeesestaeesentaeesesraeeeesreeesansres 32
N 2 1o =T a1 Y= o] o] o =Tt o) o [ES U 32
3.1.1 Passing Commands from MATLAB 0 DADISP..........ooiiieiie ettt 32
3.1.2 Bidirectional Pass of Data & CONrOlScceiiriiiriiiiiiiieeiee ettt ettt et 35
3.1.3 Creating the SIMULINK to DADISP CONNECLIONeiiiitiertiieiieniee ettt ettt 38
3.1.4 Creating SAmMPIE MOUEL... ..o et e e s be e e e e abe e e e snrae e e ennees 44

K I A S 111 [V-SSR 46
3.2.1 Creating @ filter iN DADISP........ooi ittt e et e e et e e e e eatee e e e te e e s eabaeesenreeeeennees 47

SIS 3 @0 o T o X= =l B 10 o o LU 50

3.4 Creating StartUP SCIIPTS ..ieeei i e e e e s s e e e e e nnan 53
3.5 Creating Installable Package (IMISI).......oo oottt ettt e e e e s aaa e e e saraee s 56
4. Results & RECOMMENAATIONS ...c..eiiiiiiiiiie ettt sttt sre e s st et e b e e 61
4.1 SPEEA & SYSLEM RESOUITESiiiiiiiiieiiiiieeeciteeeeitee e estre e e e rttre e e e sabaee e e abaeeeessaaeeeenssteeeesssaeeeennseeeesansens 61
4.2 FET COMIPAISON. . .eiiitiitteeeeeeeeittte e e e e e s esitetteeeeeesassteeeeeesesaaassbaeeeeesesanssbbaeeeessesansnbbaaaaesssansnnseaaeeenens 62
4.3 FULUIE WOTK. ettt ettt et e e st e s bt e e s bt e sabeeesmteesabeeesseesnseesneeesaneesas 62
e T R I [« VAT PO PPPTPPRR 63
4.3.2 Third-Party BlOCk DiagrammMiNgccccuveiiiiiiieeiciiee e cetee e erttee e eette e e setee e e setaeeesentaeeesentaeessensaeeesans 63
4.3.3 DADISP Application BUIIAErveiiiiieee ettt e ertee e e setae e e eeata e e e satae e e eentaeeeeans 63
4.3.4 Direct Integration With DADISP..........vii ittt rtre e e eete e e e e eatae e e seatae e e seataeeeeans 64

D CONCIUSIONS ..ttt ettt e s e e bt e ate e s bt e e sbe e e s abeeebeeesabeesabeeeambeesabeeeseeesabeesneeesareeas 65
RETEIENCES ...ttt ettt ettt ettt e bt e e s bt e ettt e sabe e s bt e e sabee s beeeaateesabeeesabeesabeeenbeesareeennes 67

List of Figures

Figure 1 - Excel Calendar Embedded in MATLAB..........uiii ittt et e e e ere e e e aanee s 11
Figure 2 - SIMUlink System EXAMPIEccee ittt e e et e e e e e e e e re e e e e e e e s e nnaaaaeeaaeeas 13
Figure 3 - Simulink Model With S-FUNCLIONcoiiiiiiicee e e e e aaeee s 13
FIBUre 4 - S-FUNCLION Paramelers....cuiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeese s e eeseeeea e s ee e e e e eeteeetesaeaessssssaeseseessannnens 14
Figure 5 - DADISP Application Builder Applicationueeiieii it e e e 17
Figure 6 - Excel Worksheet Embedded in Word Document being editedcccceeeveiieeeciiieeeccciieee e, 21
Figure 7 - Task Manager with Embedded DOCUMENTc.uviiiiiiiiiccee e e aaee s 22
Figure 8 - Excel Worksheet Embedded in Word Document not being edited..........ccccovvveeeeiriniciiiennnennn. 23
Figure 9 - Drag-and-Drop @XaMPIEueieiciiiiiciiieeecitee et ee e et e e e st e e e s atae e s saaaeessataeeeessaeeesnsaneesnssnneean 25
R T=qU I K I (ol o T D T oY o] o 1Yo PSSP 25
Figure 11 - Standard COM Application INteraction...........cccuuieiiei e e 27
Figure 12 - Cleint/Server DCOM.....cc.uccieieeeereeteeiteeiteeeteeeteeereesteesteesseestsesaseeaseeseessesssesssssesseeseesseesssesssenans 28
Figure 13 - Client/Web SErver DCOMcciccuieiieeiieeiieeeiee e eiteesteeeteeseesveeveeseestesstesssnesaseeseesseesseesssenans 28
Figure 14 - DADISP Opened and Visible from Matlab..........ccooieeiiieeiiieeccee e 34
Figure 15 - DADISP after formatting MOAScoocciiiiieiiiie e e e e srre e e s e e e 35
Figure 16 - DADISP window with data from MatLAB...........cuuii ittt e 36
Figure 17 - DADISP with Formatted MATLAB Data.......cccccuviiiieieiicccieieee et e et e e e s e ennnrneee s 37
Figure 18 - Spectrum and labeling of WINAOW 2......coouiiiiiiiie et 38
Figure 19 - From Wave Fil@ BIOCK......cocuuiii ettt ettt e st e et e e et e e e e e e e e e nneeas 44
Figure 20 - SIMULINK UNBUFFEr BIOCKcooieeiieecee ettt e et e e e 44
Figure 21 - S-FUNCEION BIOCK. .. .iiiiiiiii ittt e e e et ee e e e a e e e esabee e e e nneeeeesaneeas 44
FIgUre 22 - S-TUNCLION PAr@MELEIS ..ccccuiiiieeciiiee ettt ettt e e eetee e e e etae e e e bae e e e eabe e e e esabaee e e abeeeeesaseeeeeenseneesansenas 45
TV R A A 0o 4 oY o] (=] =T 1Y, o o 11 SRR 46
Figure 24 - Other DADISP Filter OPtioNs ..ccccuiiiiiiiieeecitee ettt e st e s sbre e e e sabre e e e saba e e s s sabaeeeesaseeeessanenas 48
FIgUre 25 - Z POIE-ZEI0 PIOT IMEBNU ...cceeiiiei ettt e e e e e tte e e ettt e e e e sabae e e e abeeeeesabeeeeenseneeennsenas 49
Figure 26 - DADISP FFT QUEPUL ..oeiiieiiiieeeiiieeee ettt ettt eeee e e eeeeee e e eseeeeeeeeesesessaessseseeeesesssasssssesnsnnnnnrnsnsnnnnns 51
Figure 27 - MATLAB FFT OUTPUL....citiitiiiitiiiiitieieieietetereeeeeeereeeeeeeseseseeeseseseeessee e saeeseeeeeeaeetesaeessresasararrrererarare 51
Figure 28 - Text IMPOrt WIzZardeoeeeiei ittt e e e e e et ee e e e e e e e annre e e e e e e e sennnnaaeeeaaeean 52
Figure 29 - After Text IMPOrt WiIZardcc.uiii ottt e e tae e e e aae e e e e abeeeeearaeeeennreeaas 52
Figure 30 - MatLab Data Formatted to Match DADISP Dataccceeuviieiiiiiee et eaeee s 53
FIBUIE 31 - NEW WiSE PrOJECT..cceiiiiiiiiiiiieeieeeieeeteteeeeeseeeeeeeeeeeeeeeeeeeeeeeesaeeeseseeseesesasssseeeeesreasrasessesennnnnnnnnrnnnnnnns 56
TN ol I A Yo [=T I o1 1= USRS 57
Figure 33 - Set Product INfOrmationcuviiiiiiiii e e e e e e eae e e seaaaeee s 57
Figure 34 - Add/Remove Programs INfOrmMation.........cccoeceiieveeeciieeeie ettt e e e et 58
FIUIE 35 - IMIENU TREIMES eeiiiee ettt e ettt e e e e e et e e e e e e e e st ta e e e e e e e eessabeaaeeaaeeeanssteeeeeaeeesannsssnnneeaesann 58
=V I o @ o Y oY LT 1] U 59
Figure 37 - Add/REMOVE PrOZIAMS.....ccveieiueeeeieeeeteeeeteeeeteeeetteeeeteeeeteeeeteseeseeeesseeessesesnseseasesessseesseeessseesnses 59
Figure 38 - INStalled SNOIMTCULSveiiiiiiie et e e e e et e e e e ata e e e s ataeeeentaeeesnssaeeean 60
Figure 39 - Relative Standard Deviation of Difference between outputs.......cccccueeiviiiiiiiiieeeccciee e, 62

1. Introduction
Society of 2009 is based heavily on the concept of ubiquity. Everything from Dunkin Donuts and

McDonalds to Microsoft Office, Cloud Computing, Smartphone Devices and Facebook. Everyone is a
user of technology while technology and computing is now embedded in almost every minute of our
lives. More and more often, users want to customize and program their devices to fit their data, needs
and lives. To that end the ability to program and customize a particular application has become almost
as ubiquitous as the application itself. This makes sense for engineering and research applications such
as Maple or LabVIEW, but the ability to automate even Microsoft Office applications such as Word and

Excel through Visual Studio Tools is a testament to our need to customize.

Some applications lend themselves to programmability more than others. Users today expect
applications to be attractive. They expect a Graphical User Interface (GUI). All the while expecting it to
be simple to use, yet perform complex functions, arguing as well that these two concepts are not
mutually exclusive. Companies like Microsoft and Apple have implemented frameworks within their
operating systems to allow independent software vendors (ISV) to be able to open up their applications
up to end users without opening all of their source code. Such technologies are known as AppleScript,
Component Object Model (COM), ActiveX and .NET. Microsoft has even gone so far as implementing

ActiveX on Mac OS.

Technologies give the end user and application programming interface, or API. It’s not as useful
as having the whole source code, but it does provide a structured universe to interface between
applications. The only problem with this implementation is that it’s up to the ISV as to how to build the
APl. The ISV decides what functions, commands and data are available through the APl. The ISV can

also decide not to make an API available at all.

The documentation of the functions as well as how they work is also up to the vendor to supply.
More importantly than the API being available, is documentation of the APl and the API’s functions. An

ISV can build the most powerful API, but if there is no documentation for how to use it, then it is useless.

Because APIs can be so general, there are a number of ways to use them to communicate, which
is completely dependent on the APl implementation. For this reason it is up to the implementer to
decide how to utilize the API. Some applications will allow direct connection to another, such as a
client/server implementation where one application (client) makes a direct connection to another
(server). Or some applications can only be classified as a server, so a 3" application needs to be brought

in as a broker to pass data and commands back and forth.

Two applications that have these types of APls are MATLAB from the MathWorks and DADiSP
from DSP Development Corporation. Both of these applications are commonly used for digital signals
processing and both also incorporate an implementation of a Microsoft ActiveX APl. While these are
two applications that are marketed towards a similar goal, they differ in their implementations and

functions.

MATLAB was developed in the 1970s and is short for Matrix Laboratory. It is an evolution of the
linear algebra packages LINPACK and EISPACK which have a foundation in the FORTRAN programming
language. MATLAB is command based, similar to a windows command line or a UNIX terminal. This
lends itself to batch style scripting through the proprietary M-Files. Unfortunately this doesn’t mean

MATLAB is the most attractive application to use out of the box.

MATLAB does however have an ActiveX API. This API allows end users to control MATLAB as an
ActiveX Server or also use MATLAB as an ActiveX Client to control another ActiveX Server. This makes it

very versatile, however in order to use it as an ActiveX client, the coding must be done using proprietary

M-Files which are based on FORTRAN. This can be a positive or a negative depending on the point of

view of the designer.

MATLAB later introduced an add-on package called SIMULINK that is a block diagramming and
real-time execution environment. SIMULINK has block sets, some are standard and others can be
purchased for a fee. These block sets are used for specific functions and applications within the
SIMULINK environment. One such set of blocks allows users to implement code they have written in the
form of an M-File and reconfigure it so that it will run in the SIMULINK. This has major implications in
that all of the power of the ActiveX client connection and MATLAB’s integrated development

environment under the control of a block diagram based real-time environment.

Meanwhile, DSP Development Corporation was founded in 1984 with the concept of graphical
data analysis and eventually produced an application called DADiSP. DADISP is a worksheet application,
similar to Microsoft Excel. Instead of putting simple numbers or simple mathematical formulas in each
cell, users instead can enter tables of information, such as the array that comprises a signal, like that of a
wav file. The data is represented in a graphical form instead of numerical form, allowing the user to see

the data.

Like Microsoft Excel, other cells, or windows, can be dependent upon the first cell. Instead of
performing simple mathematical calculations on a small set of numbers, DADiSP allows users to
manipulate large series of data and perform complex calculations such as Fourier transforms and digital
signal filtering. DADISP utilizes a graphical user interface for almost all tasks, which makes it appealing

to users that are not as comfortable with computer programming languages.

DADISP does not, however, have any sort of real-time environment. All tasks in DADISP are
asynchronous. It also does not have any sort of block diagramming features. This limits its usage for
real time experiments. DADISP does implement an ActiveX Server and Client APl and also has its own

6

proprietary scripting language called SPL, based in C/C++. This scripting language is not only useful to
script within DADISP, but all of the SPL commands and utilities are available through the ActiveX Server

implementation meaning they are available to be executed from a remote application.

The purpose of this project is to provide a sample SIMULINK model that can be installed via a
standard Microsoft installer (MSI) package. This package is a proof of concept to show the feasibility of
utilizing DADISP with real-time and block diagramming environments. The model utilizes ActiveX
connections to pass data between MATLAB as the ActiveX client and DADISP as the ActiveX server. This
model offers the block diagram visualization and real-time power of SIMULINK and at the same time the
directly paged virtual data series and more attractive and flexible graphical interface of DADiSP. This
also allows for the end user to perform post manipulation in DADISP after the real-time execution is
complete, which gives the user full access to the DADISP tools suite, as opposed to only the ones that

are activated by the SIMULINK model and chosen by the developer.

In MatLab and Simulink, a data set cannot be manipulated unless the entire set is loaded into
RAM. While RAM is less expensive than it was many years ago, it still has generally a much smaller
storage capacity than a hard drive and the pagefile. DADISP allows for directly paged virtual data series
which reside within the page file, or scratch space, on a hard disk as opposed to being loaded into the
limited space in RAM. Data sets can also be paged directly by the DADISP application as opposed to
using operating system page file algorithms which can add lag time to page reading and writing. All of

the execution and paging is completed by DADiSP automatically and seamlessly to the user.

In MatLab, the GUI has much to be desired, in reality it is command prompt with a number of
toolbar surrounding it. The graphs produced by MatLab are static and can only be manipulated,
rescaled or given titles through the command line that was previously discussed as lack-luster in visuals.

In DADISP, all of the Graphs and Charts can be tweaked and updated to look presentable without having

to touch a command prompt. Axis can be labeled and adjusted and just about anything desired can be
performed through a “What You See Is What You Get” (WYSIWYG), pronounced whizzywig, interface,

which is simpler and faster to learn and us.

2. Background

In order to understand how to build on and enhance two existing technologies, we first need to
understand how all the technologies involved will work. This means we must understand where DADiSP
and MATLAB came from and how they have evolved. However we have also added in the aspect of

ActiveX, an integration technology and standard from Microsoft.

This section will discuss the history of ActiveX and the history behind it; including the ActiveX
roots in the Component Object Model (COM). An addition this section will discuss the future for the
Component Object Model in Microsoft .NET Framework and the evolution of the technology. This will
also discuss the past and evolution of DADiISP, MATLAB and Simulink as well as how the ActiveX

framework is utilized within their environments.

2.1 MATLAB

MatLab is an operating environment for Data analysis and numeric computation using matrices.
MatLab can use FORTRAN style interpreted code for scripting applications and is also constructed in
FORTRAN. (“MATLAB - Introduction and Key Features”) SimulLink is an application that is integrated
with MatLab. Simulink is an environment for simulation and modeling. Simulink, in simple terms can be
seen as a block diagram application. Since MatLab and Simulink are tightly integrated, SimuLink has the
scripting and computation functionality of MatLab underlying it. This produces can produce power

solutions for engineering applications. (“Simulink - Introduction and Key Features”)

2.1.1 MATHWORKS History

Between 1972 and 1973 Cleve Moler joined a project to take some libraries developed by John
Wilkinson in ALGOL designed to determine eigenvalues numerically, and port them to FORTRAN. This
package was called EISPACK. In 1978, Cleve worked with Jim Bunch, Jack Dongarra and Pete Stewart to
write a follow-up, LINPACK, which was a library designed for solving linear systems and equations

numerically, this time written from the ground up in FORTRAN. (“Video: The Origins of MATLAB”)

Cleve wanted to allow his students to be able to access LINPACK and EISPACK without having to
write FORTRAN. To do this, Moler used concept developed by Niklaus Wirth for a parser and
implemented it on top of LINPACK and EISPACK and called it MATLAB. Matrices were the only data type
allowed. The entire program comprised approximately 2000 lines of code and 80 different functions

compared to the 8000 different functions of today. (“Video: The Origins of MATLAB”)

In 1979 Cleve spent a sabbatical at Stanford University, where he taught a computer science
course in numerical analysis. Many of the numerical analysis students were not interested in MatLab.
However many other engineering students in the course found MatLab useful for signals processing and
control theory. Some of these students shared MatLab with Jack Little, a recent graduate from Stanford,

who saw potential in the aforementioned areas. (“Video: The Origins of MATLAB”)

Together, Jack and Cleve founded The Mathworks in 1984. Jack co-authored some early
versions of Matlab as well as the signal processing toolbox and the control system toolbox. Currently
Jack Little is the President of The Mathworks and Cleve Moler is the Chief Scientist. (“The MathWorks -
Founders - Jack Little”) The Corporate Headquarters for The Mathworks is in Natick, Massachusetts

(“The MathWorks - Contact Us - Worldwide Offices and Representatives”).

10

2.1.2 ActiveX integration and implementation

Version 5.0 of MatLab allowed ActiveX clients to utilize MatLab as an ActiveX Server. This
allowed users to control MatLab via an external application. Such examples might be using a Microsoft
Visual Basic program to send data to matlab and use that data and create embed a Matlab Graph or
plot. However, in 1998 Mathworks released version 5.2, also known as MatLab release 10 that included
support to now utilize MatLab as an ActiveX Client. Now Matlab can be used as an ActiveX Client to
connect to ActiveX server applications using built in Fortran-like Code. (“MATLAB News & Notes -

Summer 1998 - MATLAB Compiler and New Support for ActiveX in MATLAB 5.2”).

Using MatLab as an ActiveX client can be useful to now embed controls from other applications
into MatLab. This is useful when MatLab doesn’t provide a visual control or functionality for something
a user needs. For example, users can make a connection to Excel and embed a calendar control from
excel directly into a Matlab figure, as shown in Figure 1. (“MATLAB News & Notes - Summer 1998 -

MATLAB Compiler and New Support for ActiveX in MATLAB 5.2”)

+|Figure Mo. 1 = E
File Edit Window Help

May 1998 | may x| 1908 =]
Sun | Mon | Tue | Wed | Thu Fri | Sat

10 11 12 13 14 15 16

17 18 14 20 21 22 23

24 25 26 2 28 29 30

Figure 1 - Excel Calendar Embedded in MATLAB

11

Some applications that don’t have controls that can be embedded like the calendar application
above, but MatLab can still execute and show those applications in their own native process window.
Depending on how a particular application is built, the ability for it to be embedded does not generally
affect how it passes or handles data. For all intents and purposes, the above calendar application could
be displayed through an excel window, yet still provide the same functionality, but it wouldn’t look as
clean or as unified as it does above. All of this functionality is taken advantage of through the use of M-
Files and the FORTRAN based MatLab language. (“MATLAB News & Notes - Summer 1998 - MATLAB

Compiler and New Support for ActiveX in MATLAB 5.2”)

2.1.3 MATLAB evolution and SIMULINK Implementation

Simulink is a model-based design and simulation environment that is distributed as part of
MatLab, however it is licensed and sold as an add-on unit. Simulink is integrated with MatLab, which
provides a powerful connection to the matrix based solutions as well as other add-on toolboxes
provided by MatLab. However Simulink has its own library of functions. As Simulink is a model-based
environment. All of its functions are organized in block sets and put together as a block diagram. Blocks
can provide a distinct individual function, or they can also be a complex sub-system of their own with
multiple inputs and outputs. Users can also design custom blocks of their own. (“Simulink - Introduction
and Key Features”) Figure 2 shows an example of multiple embedded models within a master simulink

model.

12

FiFES)

[B E|
P G Vom Senirin Fomat T e
DISHS| L @iz el i [D REBE REEG &

Clutch Control Model

L

o
— |

8

1
@
i
H
H

e

Figure 2 - Simulink System Example

Since Simulink is integrated with MatLab, and MatLab supports the ActiveX protocol, Simulink
can reap the benefits of Matlab’s interconnectivity with other ActiveX devices. Simulink can indirectly
control ActiveX Servers using MatLab as an intermediary. This is done by using custom blocks that are
either s-function blocks or MatLab Function blocks. S-Function Blocks can use specially crafted M-Files

to define custom functionality and specify input and output. (“Simulink — Documentation”)

Figure 3 shows a Simulink Model with a few different types of customized blocks. The “From
Wave File” block takes in a specified raw audio file in WAV format and converts it into the individually
sampled bits. The S-Function block utilizes the input it’s given out of the unbuffer from the WAV file and

performs the actions specified by the parameters of the S-Function as shown in Figure 4.

W dadisp * ElET=]
File Edit View Simulation Format Toels Help
DeES| Rty np [Normal || O B e
From Wave File Scopel
Sway Out
From Wave File
Scope
lot_and_filt] filtered wav
S-Function1
h b To Wave File
[,
Unbuffer
Ready [100% | | |odeds A
\ = J

Figure 3 - Simulink Model with S-Function

13

Figure 4 shows the parameters window for the S-Function Block. The S-function name is the
filename of the specially crafted M-File in the local directory of the model. The other S-function
parameters are customized parameters by the creator or the M-File. These parameters are input by the
user through the Parameters menu and can be passed between various functions of the M-File, as the
M-File itself can contain many different functions. Is the S-Function references and uses additional files

or modules, those can also be specified in this menu.

E Function Block Parameters: S-Functionl E

S-Function

User-definable block. Blocks can be written in C, M (level-1), Fortran, and Ada and
must conform to S-function standards. The variables t, x, u, and flag are
automatically passed to the S-function by Simulink. You can specify additional
parameters in the 'S-function parameters' field. If the S-function block requires
additional source files for the Real-Time Workshop build process, specify the filenames
in the 'S-function modules' field. Enter the filenames only; do not use extensions or full
pathnames, e.g., enter 'src srcl’, not 'src.csrcl.c.

Parameters

S-function name: | Plot_and_filter
S-function parameters: | 11127,'{-20,-30},'{-30,-40},'1,'1','1’

S-function modules:

QK] [Cancel] [Help Apply

Figure 4 - S-Function Parameters

More information about how this specific S-Function and sample model work provided in
section 3.1.4 Creating a Sample Model. This section will also describe what the specific parameters

mean and walk through the underlying S-Function code line-by-line.

2.2 DADiSP

DADISP is signals analysis software developed and distributed by DSP Development Corporation.
DADISP is designed as a signals processing spreadsheet, similar in function to Microsoft Excel. Each

worksheet contains as many cells as deemed necessary by the user. Cells can contain raw data or

14

analyzed data based on other cells. If source data is updated, dependant cells update on the fly. Each
cell doesn’t just display numeric values, but rather the graphical representation of the raw, or analyzed

data as described below. (“DSP Development Corporation: About DADISP”)

“With DADISP you can acquire, input and even generate sample data, displaying the results in multiple
windows for immediate graphic comparison. You can reduce and transform data, using any of hundreds of
menu-driven analysis functions, instantly graphing the results of each stage of your work. DADISP doesn't
require mastering any programming skills or arcane command sets. DADISP was designed to let you
perform data analysis the way you think about data analysis.” (“DSP Development Corporation: About
DADISP”)

2.2.1 DADIiSP Company History

DSP Development Corporation was founded in 1984 and currently holds their headquarters in
Newton, MA. DSP Development supports such customers as NASA, General Motors, Boeing and
Siemens. (“DADIP Executive Summary Flash 3 Presentation”) Their mission is to “Develop high
performance and reliable data analysis and display software that allows technical professionals who are
not programmers to easily perform complex computations and visualization of their data in a familiar

spreadsheet environment.”(“DSP Development Corporation: Corporate Background”).

DSP Development compares their product, DADiISP with that with high end engineering
applications, but also markets it as a high end spreadsheet. Their goal is to provide a tool to scientists
and engineers, similar in functionality to Microsoft Excel that does not require programming knowledge.
This approach allows for users to manage large sets of data and visualize them in a meaningful way, as
well as manipulate the data reliably. DSP Development markets DADISP as a type of productivity

application for engineers. (“DSP Development Corporation: Market Background”)

15

2.2.2 DADISP Application Evolution

Like Many applications, DADiSP has evolved over time to become the application it is today. The
current version of DADISP is version 2002, marked by the year of its last full release, and however has
continued to see improvements since. The owner of DSP Develoment Corporation, Randy Race, is also

the sole developer of DADISP. (“Race”)

DADISP supports integration with certain data acquisition applications, user programming via
Series Programming Language (SPL) and application integration via ActiveX. These integration and
customization tools give end-users flexibility to utilize DADISP in a multitude of ways. DADISP can be
used as a stand-alone application with separate data acquisition or with integrated acquisition. DADiSP
can also be used in conjunction with any other application that is compatible with the ActiveX standard.

(“DSP Development Corporation: DADISP Product Family”)

While DADISP supports full ActiveX support, it doesn’t support individual window embedding. In
2008, DSP Development Corporation introduced a new product known as the DADISP Application
Builder (DAB). The DAB allows application developers to utilize functionality similar to the ActiveX

implementation of the full version of DADISP, however is in a lightweight redistributable package.

“Purchase a one-time license for each development machine and distribute your applications with no
further fees or royalties. A callable install program is included to provide a single, integrated installation
strategy for your target application deployment.” (“DSP Development Corporation: DADISP Application
Builder”)

This new tools is the next logical step in utilizing DADISP as a componentized piece of an integrated
solution. It is a much smaller size and ideal for being embedded into custom applications. (“DSP

Development Corporation: DADISP Application Builder”)

Figure 5 displays a sample application developed by DSP Development Corporation to sample

how one can use the DADISP Application builder to embed individual pieces of DADISP into a visual basic

16

program that provides a cleaner, unified look and feel to any custom built application. These could also

be embedded in such applications as MatLab or SimuLink. Samples are also available to download from

the DSP Development website. (“DSP Development Corporation: DADISP Application Builder”)

Looking specifically at Figure 5, it shows 3 different DADISP plots within one window that looks

similar to a DADISP window, however it is actually a custom-built application. The radio buttons, slider

and buttons on the left hand side are all parts of the native custom-built application, but through

ActiveX these controls and change the data or settings of the DADISP graphs on the right to change the

output.

Building these controls in DADISP is extremely difficult, however building them in Microsoft

Visual Studio is fairly trivial because they are predefined controls through the development

environment. (“Race”)

P Pesky Raislban

(L £5
E ':li_a_..- -p-i--.-.-l—ll--l---i-lr--" """'""'-"H'"'-‘_.
= 45—

-I%9 i i i " i i i i i i
i} L] 1 BB B2 i
Ao

L1

s gt =1

-] 5 [BN T S| R T R T R ~ SR S |]
prT

Figure 5 - DADIiSP Application Builder Application

17

2.2.3 Integration of ActiveX and implementation

ActiveX is really nothing more than a set of standards as defined by Microsoft. ActiveX is
described by the Component Object Model (COM) which is described in further detail in section 2.3.
The idea behind COM, is that it's a way to interconnect processes independent of the language that
processes use. Applications written in VB, C or a multitude of other languages can interact with one
another. It also allows an implementer to utilize the functionality of an application without full
knowledge of all the underlying logic. This prevents the implementer from reinventing the wheel.

(“Component Object Model”)

As an ActiveX Client, DADiSP allows the end user to connect to other ActiveX enabled
applications and utilize their functionality directly from with DADISP using SPL. As an ActiveX server,
other ActiveX clients can use their own native language to make a connection to DADISP and utilize its

functions. (“DSP Development Corporation: ActiveX”)

For Example, visual basic script (vbscript) can create an object that references the DADISP
application and makes a connection to the application in visual basic scripting language. Once
connected, vbscript can insert and retrieve data as well as execute commands within DADiSP. This
utilization of DADISP as an ActiveX server is particularly convenient for use with MatLab and Simulink.

(“DSP Development Corporation: ActiveX”)

When connecting DADISP as an ActiveX server it supports three main methods: “GetData”,
“PutData” and “Execute”. The “GetData” method will retrieve data from a DADiSP window or variable.
“PutData” will send data specified within the command into a DADISP variable or window. The
“Execute” command will perform any DADiISP command as outlined by the help files. This is arguably
one of the more important methods because it is extensible for future version of DADiISP. As new

commands are implemented, the ActiveX APl doesn’t need to be extended, because the framework to

18

execute a new command or function is already there. In some cases, the “Execute” method may be

used instead of “GetData” or “PutData”. (“DSP Development Corporation: ActiveX”)

2.3 Component Object Model

Component Object Model (COM) is a conceptual and logical construct developed by Microsoft in
1993. (“Component Object Model”) In a nutshell, According to Microsoft “COM is used by developers to
create re-usable software components, link components together to build applications, and take
advantage of Windows services.” (“COM: Componet Object Model Technologies”) COM is language
agnostic, meaning that developers can take advantage of COM whether they write an application in
Visual Basic, Java, C++, C# or even other proprietary languages. COM itself, is not a specific technology,
but rather describes an evolutional series of technologies that include Object Linking and Embedding

(OLE), COM+, Distributed COM (DCOM) and ActiveX. (“Component Object Model”)

COM has been implemented on multiple platforms, however because it is a Microsoft product, it
has the highest level of support and functionality on Microsoft Windows. Because COM was introduced
in 1993, not all pieces of the suite were released out of the box, many were developed later. As later
operating systems were released, such as Windows 2000, Windows XP and Windows Vista, support for
newer technologies was included in the OS, while older operating systems required patches or updates

in order to take advantage of the technologies. (“COM: Componet Object Model Technologies”)

19

2.3.1 Object Linking and Embedding 1.0

Object Linking and Embedding (OLE) 1.0 is developed in 1990, prior to the term COM being defined.
(“Object Linking and Embedding”) However, OLE 1.0 is evolved out of Dynamic Data Exchange (DDE)
that dates back to 1987 with Windows 2.0 and is still part of new windows releases, however is not
utilized as often as newer technologies like OLE and ActiveX (“Dynamic Data Exchange”). Both DDE and
OLE 1.0 are designed with the purpose of passing information between multiple documents, such as

Microsoft Word or Excel (“Object Linking and Embedding”)

DDE can transfer a limited amount of data between two documents, however OLE can create an
active link between two documents or even embed one document within another as an object to
transfer and reference data between the two without having to reconnect back to the document every

time a change occurs like DDE does.

For Example, a Microsoft Excel document can be embedded into a Microsoft word document.
When this happens with OLE 1.0, a visual representation of that document is displayed to the end user
as a picture (such as a bitmap) and the data is stored in its own native format, i.e. excel format (“Object
Linking and Embedding”). To show how this embedding works, below is an example using Microsoft

Windows Vista and Microsoft Office 2007.

Figure 6 shows an example of OLE in action. A Microsoft Word 2007 document has an
embedded excel spreadsheet within it. The excel spreadsheet looks and feels to the user just like a full
version of excel, except it is part of the word document. When the user is editing the document, the
toolbar ,redesigned and renamed to the Ribbon in Microsoft Office 2007, within Microsoft Word shows

the formula bar. Also all of the toolbar tabs native to excel are merged together with the Microsoft

20

Word Ribbon. Looking

at Figure 6 closer you can see that even multiple spreadsheets can be added and

embedded within the same object.

= | B S |

B4 D th - Mi ft Word . —
_] ocumen icrosoft Wol
File Window
o6 -
Home Insert Page Layout Formulas Data Review View Acobat @
b llcibi - |u = ==|E T - A7-
-qu B I U-AAEEEH| o A
Paste g Styles Cells
- FE DA ||| E I*u% JEI &

7]]

Al

Thisis a word document

(%

b

Fe

excel spreadsheet

A A B C D E F G
1 |e><ce| spreadsheet|

2

3

4

5 /]

]

7

8

E

10 -
14 4 » 0| Sheet1 /7] 4 , K il r A
[1] i [|
Page:1of1 | Words:5 | o -

Figure 6 - Excel Worksheet Embedded in Word Document being edited

Taking a look at the Windows Task Manager in Figure 7 shows EXCEL.EXE is running under the

processes tab but Micr

and executed the EXC

utilized through the embedding or linking in Microsoft Word.

osoft Excel does not appear on the task bar. Microsoft Word has actually created
EL.EXE process so that it is not available directly to the end user, but must be

In other words the base process is

21

executed, but the user does not have to wait for the entire application to load, yet is also still able to

edit the object as if it were an entire Microsoft Excel Document.

p s
%8 Windows Task Manager IEIE"I‘
File Options View Help
Applications | Processes | Seryices | Performance I Metworking I sers |
-~

Image Mame User Mame CPU Memory (... Desoip =
acrotray.exe bryanf oo TeE8 K AcroTre

I Ati2evxx.exe SYSTEM [al] T33 K ATIExt
communicator.exe bryanf oo 7,220 K Microso| -
CSrSs,.eXe SYSTEM [ulu] 1,490 K Clients
dwm.exe bryanf oo 19,348 K Desktog
EXCEL.EXE bryanf oo 9,156 K Microso
explorer.exe bryanf oo 36,952 K Window
GoogleUpdate. exe bryanf oo 344K Google
iexplore, exe bryanf oo 51,884K Interne
IRW.exe bryanf oo 264K IR Rece
iTunesHelper.exe bryanf oo 808 K iTunest
jusched.exe bryanf oo 180K JavalTt
KbdMar.exe bryanf oo 1,204K BootCe
MSASCui.exe bryanf oo 3, 704K Window -
A | 10} | 3

[| show processes from all users
Processes: 77 CPU Usage: 8% Physical Memony: 58%

Figure 7 - Task Manager with Embedded Document

Once the user exits the spreadsheet but moving the cursor outside the bounds of the object, the
object reverts to a simpler view that appears as just a table. The Ribbon has reverted to only the tools
specific to Microsoft Word and the formula bar has gone away. However, taking a look at the task
manager shows that EXCEL.EXE is still running. With DDE, once the user exits the embedded document,
the process that allowed editing of that document exits. However with OLE 1.0, the process continues
to be loaded into memory, but it is kept as a background process. If the user would like to make a
change to the embedded document, it requires double clicking on the object and then the connection
back to the process is moved the foreground. This is also faster because instead of recreating and

executing the new EXCEL.EXE process, the existing one is just moved to the foreground.

22

Figure 8 shows the Microsoft Word document after the user clicks out of the embedded excel

document and into the regular document. The excel piece is reverted to the simplified view.

/En = LR Documents - Microsoft Word (=B]

Page Layout References Mailings Review View EndMote Web Acrobat @

ol =
Pages Table Picture Clip P_-.'
- - art il

This is a word document

excel spreadsheet

Page:1 of1 | Words: 5 | %#

Figure 8 - Excel Worksheet Embedded in Word Document not being edited

2.3.2 OLE 2.0

OLE 2.0 accomplishes many of the same goals as OLE 1.0, however it was rewritten with the
forethought of the COM framework. OLE 1.0 utilized system libraries and communicated to them via
Virtual Functional Tables (VTBL), which are a list of pointers to various functions. The reimplementation

of OLE 2.0 on top of COM allows it to be much more general and support new features such as

23

automation, drag-and-drop and structured storage. VTBLs are no longer used, however system libraries

are still utilized. (“Object Linking and Embedding”)

OLE Automation is a standard defining how a program opens up its APl so that another
application, such as a visual basic script (.vbs) or even a Microsoft batch file (.bat), may automate the
use of that program. This makes the script an ActiveX client and the application is an ActiveX server.

This will be discussed in further detail in section 2.3.6 ActiveX. (“OLE Automation”)

OLE structured storage is used as a method for storing hierarchical data in a single file.
Examples of this would be how a Microsoft SQL database that uses a single binary MDB file to store
many tables, constraints, security information and user accounts. All the information is stored within
the single file as well as a logical descriptor of how each piece of data relates to the others. Similarly
Microsoft Office used this method for storing data in Microsoft Word and Excel documents, however
Office 2007 is migrating to XML based Office Open XML (OOXML) format and supports binary OLE based
files as well as files that is described by eXtensible Markup Language instead of OLE structured storage.
OLE structured storage allows for application developers to utilize binary file types, without having to
worry about an individual component of a file getting larger or smaller and then needing to determine

what address in the file each component will now be stored in. (“Structured Storage”)

OLE drag-and-drop is almost exactly described by its name. An object, such as an icon, a file, or
a control in a program can be clicked on (and hold the click) by the user with the mouse icon and
dragged to another location. This is most common in Windows by moving icons around on the desktop.

Figure 9 displays an icon being dragged from one location to another.

24

f:li!@'i A EY
sikalijy

MATLAB
Simulttart R200& 3
Simuli..,

Figure 9 - Drag-and-Drop example

Meanwhile Figure 10 shows the icon after it has been dropped. These two figures utilize icons
on a desktop within Windows Vista to show how drag-and-drop works. Many applications utilize drag
and drop within them, including Microsoft Office and MathWorks SimulLink. In Microsoft office, text can
be highlighted and then Dragged and dropped to another location within the document. In a SimuLink
Model, one block can be dragged to another location or a new block can be dragged from the model

library to a particular model. These are all examples of OLE drag-and-drop. (“Drag-and-drop”)

2)
v

MATLAB

R2008a

Figure 10 - Icon Dropped

2.3.3 OLE Custom Controls

Visual Basic Extensions (VBX) were released as part of Visual Basic 1.0 to allow extensibility of
the Visual Basic Language. An extension would be something like a radio button or toggle switch that
could be a visual representation on a “form” that could then be linked to code in the background.

(“Visual Basic Extension”) In 1994, Microsoft deprecated VBX and instead promoted the use of more

25

versatile OLE Custom Controls (OCX). Usually OCX files are a dynamic link library (DLL) with specific

definitions that are renamed to use .OCX as the extension. (“Object Linking and Embedding”)

In 1996, Microsoft changed the standard definition of OCX so that the only one specific interface
is required. This kept the file size down. Microsoft also renamed OLE Custom Controls to ActiveX
Controls. (“Object Linking and Embedding”) ActiveX Controls are commonly used within web browsers
and for a time were a delivery method for spyware and adware. Familiar ActiveX Controls may be the
Adobe Flash Player, Microsoft SilverLight or even the Java Runtime Environment. (“Component Object

Model”)

2.3.4 Distributed COM (DCOM)

Distributed COM (DCOM) extends COM objects so that they can be used on multiple computers.
Until now, COM objects and controls have been confined to executing and existing on a single computer.
DCOM allows for COM objects to be hosted on a single server computer via windows services and allow
that service to be accessed over the LAN, WAN or Internet and provides tolerance for faults. (“DCOM

Technical Overview”)

DCOM allows the developer to not have to worry about the client side process crashing and
leaving an open connection, or the connection between the two computers being lost and having a
connection hung. DCOM deals with garbage collection and releasing resources when a client
disconnects, gracefully or otherwise. DCOM also deals handles encapsulation of commands so that they
can be transmitted over a TCP/IP connection that is serial, and then de-serializing the commands when

they reach their destination.

26

a‘f"‘i‘

o -3,@ :
{ Y Dd:eh
ﬁﬁ@‘pCDM Server Application
e

&

COM Client Application

Figure 11 - Standard COM Application Interaction

Finally DCOM allows for a one-to-many relationship, where with standard COM there can only
be a one-to-one relationship as shown in Figure 11. Standard COM applications have the client and the
server application installed on the local system and all data and commands are localized within the
computer. With DCOM applications, the server software is installed on a physical server computer. The
client side application is installed on the client, or can be hosted on the same or separate server
computer via a web site. Multiple clients can access the server application on the central server as

shown in Figure 12 and Figure 13 respectively.

27

3

DCOM Server

i J
@&
Nc,d{‘“ DATA/ .
Commands Ew‘f«'oo
\ by by~
DCOM Client
|-_I \-_I
Clienl 1 Clienl 2 Clhant 3

Figure 12 - Cleint/Server DCOM

DiatalC:

e| [&

| = -—-I - —— - '-'I
aaaaaa

Chent 1 Clhent 2

Figure 13 - Client/Web Server DCOM

28

2.3.5 COM+

In Windows NT Service Pack 4, Microsoft introduced Microsoft Transaction Server. This allowed
developers a better way to deal with resource pooling, disconnected applications and distributed
transactions, meanwhile offered better memory management and processor management. Microsoft
Transaction server was an extension of COM and DCOM services. At the time Microsoft released
windows 2000, they decided to incorporate this transaction server into the operating system and

rename it to COM+. (“Component Object Model”)

COM+ components were beneficial over standard COM and DCOM because they could be
reused by new calls without reloading the components into memory because they were already there.
Thus prevents multiple copies of a single routine from existing in memory. Components could also be
distributed like DCOM, thus reducing the need for strictly DCOM components. (“Component Object

Model”)

2.3.6 ActiveX Automation

ActiveX Automation is evolved out of OLE Automation. Developers can open up specific
functionality within their applications to provide an API to end users and other developers through
standard ActiveX COM runtime. Applications that allow for ActiveX Automation enable programmers
and users to script and control their application through external code. Many of Microsoft’s own
application are enabled for ActiveX Automation, such as Internet Explorer and Microsoft Office and even

Active Directory. (“ActiveX”)

Microsoft Excel, for example, can be manipulated by an end user through a Visual Basic Script
that connects to excel, opens a file performs particular formatting on a file and then saves the file, even

with a new name to preserve the old content. This automation task would be useful to someone

29

working with a large number of reports that are output from an application to an excel format that is
not readable right away. The visual basic script can automate the process of manipulating the reports so

that they are all uniform and visually appealing and save significant time and tedious labor.

Another Example of ActiveX Automation is a systems administrator creating user accounts in an
Active Directory Domain. A systems administrator my receive a list of new employees to start at a
company. The administrator may use a visual basic script to make a connection to Active directory.
Once connected they can create user accounts, set a password, set an email address and even execute a
remote Microsoft Powershell script that will create a Microsoft Exchange 2007 mailbox and link it to the

appropriate user account.

2.3.7 Microsoft .NET

The Microsoft .NET Framework is standard set of tools, utilities and solutions to common
programming problems to allow more complex solutions to more complex problems to be solved more
timely. Microsoft .NET also incorporates a runtime environment of its own so that code is more
portable. It also allows developers to develop uniformly between desktop and web applications and
use the same code in both places. This allows users to have a seamless experience on the desktop as

well as on a web client without significant extra effort from the developers. (“ActiveX”)

“The .NET Common Language Runtime provides bi-directional, transparent integration with COM. This
means that COM and .NET applications and components can use functionality from each system. This
protects your existing investments in COM applications while allowing you to take advantage of .NET at a
controlled pace. COM and .NET can achieve similar results. The .NET Framework provides developers with
a significant number of benefits including a more robust, evidence-based security model, automatic
memory management and native Web services support. For new development, Microsoft recommends
.NET as a preferred technology because of its powerful managed runtime environment and services.”
(“COM: Componet Object Model Technologies”)

.NET has gone through many revisions and the currently released version is 3.5 Service Pack 1
and still supports COM. Microsoft has not as of yet deprecated COM in favor of .NET, but rather used

the two in conjunction to enhance one another. There is no set date to deprecate COM in the near

30

future, even though some COM functions may seem redundant as they have been implemented within

.NET. (“ActiveX”)

Microsoft .NET Framework is fully supported on Windows XP, Vista, Server 2003 and Server
2008 and also has a compact framework for Windows Mobile smartphones to allow seamless
applications across the Desktop, Web and now cell phones. (“ActiveX”) An open source project known
as mono is dedicated to providing an open source, cross platform development and runtime
environment for .NET. Meaning that .NET applications, if developed correctly, could even run on Linux,

Unix and Mac 0S. (“Mono”)

31

3. Development & Testing

This section will discuss using the development and testing that occurred in creating a
connection between MATLAB, SIMULINK and DADISP as well as passing data and commands between
the applications. Much of this discussion focuses on sending commands and data to DADISP and
learning the DADISP language as well as how to construct a Level-1 S-Function for use within Simulink.
Some of the more difficult design problems focus on working within the SIMULINK environment which is
a runtime environment and has a somewhat cyclical nature. This can make coding and troubleshooting
difficult. For the purpose of Development and testing, | used MATLAB 2008a, Simulink 7.1 and DADiSP
6.0 provided by WPI’s academic licenses.

3.1 Brokering Connection

Before any data or commands can be transferred between applications, some sort of link
between the two must exist. This demo was built in steps starting by first making a connection from the
MATLAB command window to DADISP and passing data and commands from there. The next step was
to move the compiled commands into an M-File that could be run from the command window. The
Final step and largest connection step was to convert the M-File into a level-1 S-function and implement

it within a SIMULINK model.

3.1.1 Passing Commands from MATLAB to DADiSP

The initial development began at the MATLAB command window. MATLAB, as well as most
other ActiveX clients talk to the ActiveX server over a local variable within the application. To do this,
we set a variable equal to the ActiveX server command that connects to a particular application via it’s
program ID. This command is “ACTXSERVER” in MATLAB and the program ID of DADISP is

“DADISP.Application”. So to create the connection, we used the following command.

32

>> hDADiISP = actxserver ("DADISP.Application®);

Using the “ACTXSERVER” command in this way connects to the ActiveX Server on the local
computer. It is, however, robust enough to connect to an ActiveX server on a remote computer by
simply specifying the hostname of the computer as below. In this case, of course there is additional

complexity of permissions and firewalls so it is only noted in here.

>> hDADiISP = actxserver ("DADiSP.Application®,”’Computername”);

Looking at the current workspace shows a new variable “hdadisp” that looks just as if it were a
Matrix of statistical or signals data. This variable is the key that can send commands and transmit data
back and forth with the DADISP application. All ActiveX methods exposed from DADISP are available on
this variable. But once this variable was set, the DADiISP window did not appear, however the task
manager now showed DADISPNT.EXE running when it was not prior. So now DADISP just needed to be

made visible. To do this we executed the following.

>> hDADiSP.visible = true;

This exposed the DADiISP Command window as shown in Figure 14 with a blank worksheet with
default 4 blank windows. At this point DADISP is both controllable by the user through its own graphical
user interface, or MATLAB can also send commands to it from the command window, however the last

change that is executed will be overwritten.

33

==
File Edit Debug Parallel Desktop Window Help
S| % 8@ 9 o @l B | @ | Curent Directory: C\wp\DADISP - | @
Shortcuts (2] How to Add 2] What's New
Current Directory Workspace “ 0O # X | Command Window » 07 X
R \ B \ '|Stack: Base - H»] DADISP/EDU 2002 - [C:AProgram Files\DSP2002G]:UNTITLED:UNTITLED (=@ =] x
I Name = Value Min File Edit View Analysis Drawing Tools Data Window Help -
& hdadisp <1x1 COM.DADISP_Application>
Wi4:
i
||
wi: x| | w2 x|
y < 0 | 3
W3: b Wa: x
Command History w0oa x = =
‘ p
B
A
[B,A]=zp2tf(Z,P,K)
Z
P L
A=[1 -1.2859488129505388 0.84322£9397976457
t Type a Formula or Press F8 to Load a Series
B=[1 2 1]
[2,P,E]=tf2zp (B, A)
- | DAD: ication'):
Ges 1214708 1:37 P -t »> hdadisp - actxserver('DADiSP.Application');
»> hdadisp.visible = true
help actxserver
hdadisp = actxssrver ('DADISP.Applicacion'): | |paagiop -
hdadisp = actxserver ('DADiSP.Application', '|_
~hdadisp = actxserver ('DADiSF.Application'); COM.DADiSP Application
~hdadisp.visible = true -
< m l v o L
[ow

Figure 14 - DADISP Opened and Visible from Matlab

Now that DADISP was open, we could visually see some of the formatting we might want to
make using the “EXECUTE” method. The “EXECUTE” method is not restricted to making formatting
changes, but it is the only way to do such changes. Also these changes can be made while DADISP is not
visible, they will be shown once DADISP is made visible again. The following commands perform some

of these formatting changes and are shown in Figure 15.

%Create a new blank worksheet with 4 windows
>>hdadisp.Execute("NewWorksheet(4, 0)");

%Hide the DADiISP toolbar
>> hdadisp.Execute("setconf(""TOOLBAR_ENABLED","0')");

%Set the X-Axis of Window 1 to be “t (sec)”
>> hdadisp.Execute("SETXLABEL(W1,"t (sec)')");

%Change the Lable of Windows 1 to be “Matlab Data”
>> hdadisp.Execute("label (W1, "MATLAB Data'™)");

34

K] DADISP/EDU 2002 - [C:\Program Files\DSP2002GRUNTITLED:UNTITL ED s | =B i3
'y
File Edit View Analysis Drawing Tools Data Window Help
W4 v
| W1: MATLAB Data x| | w2 Pl
W3: x| wa X
_ B i

Figure 15 - DADISP after formatting Mods

3.1.2 Bidirectional Pass of Data & Controls
In order to transfer Data to DADiSP, we first needed some sample data. WAV files are readily

available to anyone with Microsoft Windows as they come preloaded for notification purposes such as
application errors and pop ups. WAV files are also easily converted into a Matrix in MATLAB as they are
already raw audio files. The files provided with Microsoft Windows are single channel audio files, or
monophonic as opposed to stereo files that will have two different signals to worry about. This sample

file was also useful later for the SIMULINK model.

To convert this file into a MATLAB variable, we used the “WAVREAD” command. “WAVREAD”
will also determine the sampling frequency and number of bits used to encode each sample. The
sampling frequency would be useful later for determining the correct axis on a graph be it within

MATLAB or DADISP.

>> [data,fs,nbits] = wavread("sample.wav”);

35

So to send data to DADISP we used the “PUTDATA” method. All we need to specify with this
method is the Window we are sending the data to and the variable containing the data. In our case we
actually used the variable “data” which contains the WAV file we imported earlier. The command looks

like the following and the DADISP window now appears as in Figure 16.

>> hdadisp.PutData("W1",data);

M| DADISP/EDU 2002 - [C:\Program Files\DSP2002G:UNTITLED:UNTITLED (=[E] =]
File Edit View Analysis Drawing Tools Data Window Help

W4: -

W1: MATLAB Data x| | w2 x|

15+

05

05

_1'5—| 1 1 1 1 1 1

0 5000 10000 15000 20000 25000 30000
W3: X | wa: |

|
|| Type a Formula or Press F& to Load a Series
e)

Figure 16 - DADiSP window with data from MatLAB

This looks visually like one would expect, however the Axis are incorrect and it’s just raw data,

so we need to make it look a little better. We know our sampling frequency before and we can also

figure out how many samples are shown. To perform more formatting we will need to use the

“EXECUTE” method again. However the “EXECUTE” method only accepts a string for input and some of

the changes we need to make are variables within MATLAB. To overcome this challenge we will need to

concatenate a string together and pass that string into the “EXECUTE” method as one command. The

resulting commands look as follows and the DADiISP Window looks like Figure 17.

36

%The total Time of the file is the number of samples in the file divided by the
sampling frequency.
>> execute_time = t max/fs;

%That needs to be converted to a string
>> execute_time=num2str(execute_time);

%then concatenate the string together with the command to set the distance
between points on the X-Axis
>> deltax_cmd = strcat("SETDELTAX(W1, " ,execute_time,")");

%Execute the command
>> hdadisp.Execute(deltax _cmd);

%Set the Label on the X-Axis (overwrite if already done)
>> hdadisp.Execute("SETXLABEL(W1,"t (sec)'™)");

- g - L] -~
@ DADISP/EDU 2002 - [C:\Program Files\DSP2002G]:UNTITLEC:UNTITLED = | B |
File Edit View Analysis Drawing Tools Data Window Help
Wi: v
W1: MATLAB Data X | w2 X|
1.5+
0.5+
05-
'1-51 1 1 1 1 I 1 1 1
0 1 2 3 4 5 fi 7 8
W3 X | wa X
- 3§

Figure 17 - DADISP with Formatted MATLAB Data

After we got the data formatted properly in DADISP, we could start using the tools within
DADISP for manipulation. We did this, however through the ActiveX connection from MATLAB, not
through the DADISP interface itself. For example, we put the Spectrum of Window 1 into Window 2 and

labeled it using the following code and shows in Figure 18.

37

%Put the FFT in Window 2
>> hdadisp.Execute("W2=Spectrum(W1);");

%Label Window 2
>> hdadisp.Execute("label (W2, "Spectrum of Window 1')");

[%] DADISP/EDU 2002 - [C:\Program Files\DSP2002GJ:UNTITLED:UNTITLED [=E] %]

File Edit View Analysis Drawing Tools Data Window Help

W4: -
W1: MATLAB Data x| W2: Spectrum of Window 1 x|

15 0.035

05 0.025 J

0.015 4
-0.5 0.005 " sl el
154 1 1 1 1 1 1 1 1 -0.005 4 1 1 1 1 1 | 1 1 1
0 1 2 3 4 5 G T 2 0 200 400 600 800 1000 1200 1400 1600 1800

w3: x| | W =]

Mixed FFT Algorithm: Loop 1 of 7 (for 4)

Figure 18 - Spectrum and labeling of Window 2

Various other commands can be executed in this way including everything that is listed in the
“DADISP Functions” help menu. Anything that can be executed as part of SPL can be executed via
ActiveX through hdadisp.Execute. From here, the much more difficult task is to integrate this now with

SIMULINK, a continuous real-time environment.

3.1.3 Creating the SIMULINK to DADiSP Connection

Creating the Connection between SIMULINK and DADiSP is a much more difficult task than
creating a connection from MATLAB. The reason is that SIMULINK is a continuous runtime application.
A custom, user defined function within MATLAB is a specially defined M-File called an S-Function. The

way the S-function works, is it takes in the first data point from the source then runs executes

38

everything within the output section of the S-Function. For the next data point it repeats this process all

over again.

This poses a large challenge when needing to instantiate a connection to a server or application
because each time the S-File executes it will try and create the connection all over again. Unfortunately
it's even worse when connecting to an ActiveX server because it will create a new process for the
remote application each time it cycles through the S-Function. If your data series has 30,000 data
points, then it will try to create 30,000 DADiISPNT.EXE processes, or one for each data point. This would
cause the host system to run out of memory and crash very quickly and is also useless for data
processing because each data point will be spread out across 30,000 different sessions and cannot be

analyzed.

To get around this we had to devise some sort of global variable or preference that was external
of the S-function and could be checked to see if the DADISP connection was already created. The
Windows Registry Database is the logical choice for this to be created. The windows registry is a
hierarchical database used to store preferences for programs and windows settings themselves. There
are different keys for the local system (global) as well as for the current user that is running. In order to
have this application usable by non-administrators, we needed to put this in the current user registry

Hive, or database file, named HKEY Current_User.

>> dadisp_status=winqueryreg(“"HKEY_ CURRENT USER", "Software\WPI\DADiSP", "Turned On");

The above command using “winqueryreg” will query a particular registry value and stores the
value into the variable “dadisp_status”. In order for this to work, the
‘HKEY_Current_User\Software\WPI\DADiSP\Turned_On’ value must exist. That part is taken care of

during the startup scripts that will be talked about further later on. The value of “Turned_On” will be a

39

string character. We used a bit more logic to test the value and if it is set to ‘0’, then it will create the
variable that initiates an ActiveX connection to the DADISP application and then it will overwrite the
value of “Turned_On" to equal ‘1’ to avoid creating another connection to DADISP next time. If the first
read of “Turned_On" is already non-zero, then it will assume that the connection has already been made
and continue to process the remainder of the script. The following block of code illustrates this

mechanism.

%Logical Check agains the DADISP Status from Registry.
>> if (dadisp_status == "0)

%Tell the registry that DADISP is on
>> regFileName = "c:\temp\DADiSP_On.reg";
>> fp = fopen(regFileName, "wt");
>> fprintf(fp, "REGEDIT4A\n");
>> fprintf(fp, "%s\n", "[HKEY_CURRENT_ USER\Software\WPI\DADiSP\]");
>> fprintf(fp, "%shs¥s%shshs\n®, """, "Turned On®, ="=%, ""1"");
>> fclose(fp);
>> dos("%windir%\regedit.exe /s c:\temp\DADiSP_On.reg");

%Create activeX connection to DADiSP ActiveX server
>> hdadisp = actxserver ("DADiISP.Application®);
>> hdadisp.Execute("NewWorksheet(4, 0)");
>> hdadisp.Execute("setconf(""TOOLBAR_ENABLED","0")");
>> set (hdadisp, "Visible®, 1);
>> else

%Do nothing because DADISP is already active.
>> end;

An important piece to note is that MATLAB has a function to read directly from the registry, but
does not have a function to write directly to it. In order to accomplish this task we created a method
that writes a .reg file to the c:\temp directory and writes out the appropriate registry information into a
format that is understood by the windows Registry application (regedit.exe). Then we used a windows
command prompt with the “dos” command to execute and install the registry file. After that we make a
connection to DADISP, setup the worksheet and make it visible. Creating this scheme for checking if

DADISP is already running adds minimal load to the application because it is only going to actually

40

execute tasks and Write the .REG file out to disk the one time that it needs to execute, rather than every

time.

There was one more problem, however that is significantly more difficult to deal with. When
connecting to DADISP through the MATLAB command window or an M-File, everything was done
sequentially and asynchronously. It didn’t matter when the WAV file was converted into a matrix, as
long as it was converted prior to using the “PutData” method to put data into a window. Also the whole
WAV file was converted and then all at once pushed up to DADISP “PutData”. In the SIMULINK world,
the whole data file doesn’t exist yet because each sample is being processed one at a time, just like it

would be in real time.

The “PutData” method would not work in this case because the data only exists one point at a
time, unless it could somehow be stored in a buffer. But using a buffer results in a delay between input
and output, which for some use cases, is valid. However, For a single set of raw data of duration 10
seconds, would typically require more memory than a 32-bit windows computer can address, which is
4,096 MB maximum. The “PutData” method could be used if the full contents of the DADISP window
were read back into a variable, add the one new value, then write the entire string back to DADISP as

shown below.

% Read Back the Data from the DADiISP window and put it into the
variable “temp”
temp = hDADiISP.GetData("W1");

%Add the current input value,
temp = [temp;u];

u’, to the end of the array “temp”

%Write the new “temp” variable back up to DADiSP
hDADiSP.PutData("W1®, temp);

This resulted in additional memory issues as the “temp” variable became again, as large as the

data file and every round, MATLAB was looking for a new block of memory that would fit the previous

41

variable plus the concatenated value. Creating a variable of appropriate size at the beginning was
fruitless because the memory required is large and in the end depends on the file size of the input file.

This was not a reasonable approach.

To solve this issue, | had to utilize a DADiSP command called “Curr”, which is used as the current
contents of the window. This command is only available to ActiveX clients through the “EXECUTE”
method so using it with variable input required converting numbers to strings and concatenating
commands again. Also, in order to use the “Curr” command, we need to, within DADISP, concatenate
the command itself with the next value to be added. The result of these stringing concatenations

together looks like the following.

%Focus on Window 1
>> hDADiSP.Execute("Moveto(W1)");

%Convert the input
%concatenation.
>> v = num2str(u);

u> from a number to a string for

%Concatenate the DADiSP concatenation command with the values
%that need to be concatenated.
>> newdata=strcat("CONCAT(curr,{",v,"})");

%Execute the command
>> hdadisp.Execute(newdata) ;

Lastly, there was one challenge to face: how to get the output from DADISP individually bit by
bit. The length of the output isn’t necessarily known at any given time to use as an index. It could be
kept track of with a counter variable, but that means more wasted memory and isn’t necessarily going
to be correct if something changes the window externally. To cope with this, | started by creating an
extra DADISP window used for calculations and hide it using the “hide” command to pass back special

information.

42

%Hide Windows 6
>> hDADiSP.Execute("hide(W6");

With this hidden window, | could now grab the length of the particular dataset in the window
we want to grab and throw it into the hidden window. We can import that information into a simulink
variable, since it’s only one value it will not be a big variable and time creating the variable will be
minimal. Then we need to convert that number to a string in order to concatenate it with the command
to extract just the value of the output window at that particular index we want and put it into the
hidden window. Then we pull the data out of that window and output it out of the S-function as shown
below. They output of the S-function is, by default, the “sys” variable. The “sys” variable is defined

below as the data from

%Put the Length of the window you want to output from into a
%hidden window
>> hDADiSP.Execute("W6=COLLEN(W5,1)");

%Get the length into a MATLAB variable.
>> lengthW5=hDADiSP.GetData("W6");

%Convert Length of Window 5 to a string.
>> slengthW5 = num2str(lengthW5);

%Make the Command String to Get the Last Value of Window 5 (output window) .
>> cmdgetoutput=strcat("W6=W5[", slengthW5, "]%);

%Execute the Command to put the Last value of Window 5 in Window 6.
>> hDADiSP.Execute(cmdgetoutput);

%Output the contents of Window 6 out of the S-Function as the result.
>> sys = hDADiSP.GetData("W6");

Combining all of this code together into a single S-funtion provides a single connection to
DADISP, sending data to DADISP and retrieving data from DADISP in effective ways that don’t drastically
increase the resource consumption of the host computer. From here it was a matter of creating a
sample model that utilizes this S-function and provides input from a binary audio file.

43

3.1.4 Creating Sample Model

To create the Sample Model, The first piece was getting data. | used the same sample.wav file
that | used when discussing initially how to transfer data to DADiSP. Simulink uses has a block that
performs an analogous function to “wavread” called “From Wave File” as shown in Figure 14. With this
block, simply specify the name of the file, within the same directory, that needs to be imported and it
automatically figures out the sampling frequency, number of channels and number of bits used to

encode each value.

From Wawve File
sample.way Out —
{11127THz/1Chi8b)

From Wawve File

Figure 19 - From Wave File Block

After that we sent the data into an unbuffer to clean the data make sure it isn’t buffered as in
Figure 20.

Unbuffer

Figure 20 - SIMULINK Unbuffer block

The Data point then flows into the S-Function block where the major work happens.

—e{lot_and_filtg—

S-Functicni

Figure 21 - S-Function Block

However the S-Function block is uninteresting without knowing seeing the parameters. The

parameters of an s-function block are shown in Figure 22.

44

E Function Block Parameters: 5-Functionl | 2

S+Function

IUser-definable block. Blocks can be written in C, M (level-1), Fortran, and Ada and
must conform to S-function standards. The variables t, x, u, and flag are
automatically passed to the S-function by Simulink. You can spedify additional
parameters in the 'S-function parameters' field. If the S-function block requires
additional source files for the Real-Time Workshop build process, spedify the filenames
in the 'S-function modules' field. Enter the filenames only; do not use extensions or full
pathnames, e.q., enter 'src srcl’, not 'src.c srcl.c

Parameters

S-function name: | Plot_and_filter

5-function parameters: | 11127,'{-1,-1}','{0.6430-0.6558i,0.6430+0.6556iF ,'1','1','1'

S-function modules:

o4] [Cancel] [Help Apply

Figure 22 - S-function Parameters

The S-function name is the name of the custom M-File. The other S-function parameters are
separated by commas. These are custom to the S-function itself and their variable types are specified in

the M-File. The parameters are as follows

Signal Frequency

Array Zeros for filter transfer function specification

Array of Poles for filter transfer function specification

Gain for filter transfer function specification

Sample Rate for filter transfer function specification

Warping Frequency for filter transfer function specification (for bilinear transforms, not
used in this example)

ok wnN PR

All of these pieces fit together in the final model as seen in Figure 23. Once these pieces were in
place we could begin working on make DADISP perform some more advanced functions on the input

WAV to perform transformations or gain.

45

From Wave File

sample wav Out 2 » :l

(11127Hz1Ch/8b) o s

; UnFiltered
inb

From Wave File roulter

phiot_and_fil]
S-Fundtion1 Filtered by DADISP

Figure 23 - Complete Model

3.2 Filtering

A Digital Filter is defined as “An algorithm operating upon a sequence of discrete-time sampled
data, designed to pass signals with selected temporal or spatial frequencies while attenuating signals
with other temporal or spatial frequencies.” (“AMS Glossary”) Highpass filters will pass the high band
while attenuating those below a specific breakpoint frequency. Lowpass filters perform the exact
opposite task. A Bandpass filter will attenuate all frequencies except those within a specific range.

(“AMS Glossary”)

Filters are typically described by their transfer function. In the analog world, H(s) or in the
discrete universe, H(z), where H(z) is the ratio of the desired output response to the input. Where the

output response and transfer function are described below. (“Z-transform”)

Y(2) = H(z)X(2)

Y(2)
X(2)

H(z) =

46

The numerator has M roots, or Zeros and the denominator has N roots, or poles but the number
of roots and poles can be the same. In addition, there may be a zeros and poles at z=0 and z = =. The
number of zeros and poles are always equal. (“Z-transform”) Using zeros and poles in conjunction with
determining what frequency band is desired to be filtered, we can design filters using software such as

dadisp and MatLab to filter digital signals.

3.2.1 Creating a filter in DADiSP

DADIiSP offers a few different methods for creating a filter. Different methods are better for
different circumstances. Also different methods may employ different mathematical functions in order

to evaluate the results. These methods are described in the DADISP help files.

Probably the simplest filters to implement are the Lowpass and Highpass filters. These are
available through special functions within DADIiSP. Their simplest form is a single pole filter. To utilize
this function all that’s needed is an input signal (or window) and a cutoff frequency. The command is
“slp(<window>,<frequency>)”. This command can be used from a DADISP SPL file, an ActiveX client
through the “Execute” method, or through the DADISP GUI from the Analysis menu. A highpass filter

can be created similarly by using “shp” instead of “slp”.

Other More complex filters can also be generated in DADISP using the Filter menu. Figure 24

shows a number of different filter options available to be designed.

47

DADISP/Filters | X I
- %

IR Filter Design

[(] | [Eancel] [Help |

Highpass
Bandpass
Bandstop
Differentiator
Hiloert Transformer

100

50

Magnitude Response

0 Phase Response
_ Other Functions
50 5 ! I I I
0 0.5 Filter Data 25 3 35

[(] 4 l [Eancel] I Help I

Figure 24 - Other DADISP Filter Options

Lastly DADISP can also create very granular filters using the Z Pole-Zero Plot. The menu shown
in Figure 25 allows users to enter in the desired Zeros, Poles and Gain for a filter. The fields will accept
real and imaginary numbers. All zeros and poles must be encapsulated in brackets and separated by
commas. DADISP also has an associated command line API for this tool. The command is zplane and it

accepts the same arguments as described in the menu below and in the very same format.

48

rIF' LAME Pale-Zerc Plaot of a Z Trar

J Format. Zplaneib, a)
Example: Zplane({1} {1, -3}

Zplane Inputs

(71 Z Transform Coefficients Biz)JAZ)
(71 Cascaded Biguad Coefficients

@ Zeros Poles Gain

Feros {-11% -
Poles {0.6430+614i-0 6430+0 65117
Gain 5.000000

Destination: w3 v|

[k.][Cancel l’ Help]

Figure 25 - Z Pole-Zero Plot Menu

This function draws a zero-pole plot of the zeros and poles in its own window. The user can the
use the “cascade” command in a third window to overlay the input onto the filter plot window and
receive the filtered output. If Window 1 contains the raw signal and Window 2 contains the zero-pole

plot, then the filtered Window3 would contain the following command: “cascade(w1,w2)".

Both of the above mentioned filter methods within DADISP have a command line version to
execute them, they can all be executed from MATLAB and SIMULINK to DADIS over ActiveX. In addition,
the filter and cascade commands only needs to be executed once because DADISP will automatically

update the output of a given window whenever the input is modified.

49

3.3 Comparing FFT OQutput

In order to verify that DADISP and Matlab are performing equivelant tasks. In order to compare
these two, | took a simple task, the Fast Fourier Transform (FFT) and compared the MATLAB calculated
FFT with the DADISP calculated FFT from the same input. The actual calculations were performed with a
simple m-file script. To perform the comparison, however, the outputs are copied into excel and each

real and imaginary value are compared individually.

The script used to calculate the two FFTs is shown below.

%This M-File iIs designed to input a signal, calculate the FFT of the
%signal. Then i1t will also submit the signal to DADiISP the exact same
%process and will allow comparison of the output values.
input=wavread("sample.wav");

var_fft = fft(input);

hdadisp=actxserver("DADiISP.Application®);

hdadisp.visible=1;

hdadisp.PutData("W1",input);

hdadisp.Execute("W2=FFt(W1)");

var_dadisp_fft = hdadisp.GetData("W2");

DADIiSP seperates the real and imaginary parts of the FFT into separate arrays, while the
MATLAB output keeps them in the same array. Figure 26 shows the first 12 rows of the FFT output
calculated by DADISP for a two-channel signal. The real and imaginary parts of each channel are broken
into their own column. While Figure 27 shows the first 12 rows of the FFT output calculated by DADiSP
for the same two-channel signal. The real and imaginary parts of each channel are combined into one

column.

50

Chanl Real Chanl Imaginary Chan2 Real Chan2 Imaginary
-0.595855712890625 0 -0.600830078125000 0
0.0948089658499117 0.238192645720516 0.0703144902072289 0.239271367778862
-0.299856648710897 -0.796386275247523 -0.361158228931889 -0.651044291178772
-1.40238594968114 1.26725875656358 -1.10979114951594 1.20562663533569
0.275174437514480 -0.396458021702227 0.200145980616593 -0.424580003400416
-0.158337381097453 6.53691854622354 -0.434330681932207 6.40061288154617

4.64887776559003

0.255743021582746

5.00233408531421

1.02505846704051

2.11451511908438

-5.34299945781243

3.24262997628328

-6.30844389330469

1.45703142592327

-1.96183359316595

0.984374608467294

-3.16061821271093

1.04831110780329

2.95539947727775

-0.446541673373439

3.28720684289584

3.85428639257386

-3.59777930502586

3.31190026766722

-3.61395019507544

-0.844760993777662

-9.69478196083844

-1.26217437407680

-9.16363222052710

Figure 26 - DADISP FFT Output

The DADISP output above is formatted for easy numeric comparison; however the MATLAB

output below is a bit more difficult because both the real and imaginary parts are embedded in the

same field of each array.

Channel 1

Channel 2

-0.595855712890626 + 0.00000000000000i

-0.600830078125001 + 0.00000000000000i

0.0948089658488165 + 0.238192645720860i

0.0703144902060141 + 0.239271367780099i

-0.299856648710276 - 0.796386275245513i

-0.361158228931180 - 0.651044291177912i

-1.40238594967842 + 1.26725875656107i

-1.10979114951389 + 1.20562663533453i

0.275174437513418 - 0.396458021697599i

0.200145980615913 - 0.424580003396650i

-0.158337381094350 + 6.53691854620924i

-0.434330681928218 + 6.40061288153345i

4.64887776558165 + 0.255743021587134i

5.00233408530548 + 1.02505846704159i

2.11451511908627 - 5.34299945780428i

3.24262997628307 - 6.30844389329344i

1.45703142592239 - 1.96183359316615i

0.984374608467614 - 3.16061821271108i

1.04831110780474 + 2.95539947726722i

-0.446541673370004 + 3.28720684288473i

3.85428639256594 - 3.59777930502025i

3.31190026765838 - 3.61395019507012i

-0.844760993775308 - 9.69478196082761.i

-1.26217437407406 - 9.16363222051583i

Figure 27 - MATLAB FFT Output

In order to calculate any differences between the two outputs the formatting has to be the
same. One simple way to do this is to bring the data into Microsoft Excel 2007 and utilize the text

import wizard to split the data into multiple cells.

51

A

B = D E

Wmﬂmtﬂhwl\ll—'n

-0.595855" -0.600830878125001 + 0.00000000000000i
0.0948089 D.D?OBI:‘MEDEDSDI:II +0.239271367730099i
-0.299856¢-0.361158F 28931180 - 0.651044291177912i
-1.4023855-1.109791114951389 + 1.205626635334531
0.2751744 0.2001459120615913 - 0.4245800033966501
-0.158337:-0.434330e81928218 + 6.400612881533451
4.6488777 5.00233408530548 + 1.025058467041591
2.1145151 3.2426299F028307 - 6.308443893293441
1.4570314 0.9843746008467014 - 3.160018212711081
10 |1.0483111-0.446541 73370004 + 3.28720684288473i
11 |3.8542863 3.3119002p 765838 - 3.61395019507012i

12 |-0.844760¢-1.2621 7427407406 - 9.16363 2220515831

4 4 » M

3 -
(= Match Destination Formatting

' [~Use Text Import Wizard..,
Sheetl < Shee

Figure 28 - Text Import Wizard

Using the default parameters of the text import wizard splits each cell into 3. So columns B and

C, shown in Figure 29 can be combined to ensure that the imaginary parts have the appropriate sign and

remove the

wsn
|

from each cell.

A A B C D
1 | -0.595855713 + 0.00000000000000i
2 | 0.094808966 + 0.238192645720860i
3 | -0.299856649 - 0.796386275245513i
4 | -1.40238595 + 1.26725875656107i
5 | 0.275174438 - 0.39645802165759%i
6 | -0.158337381 + 6.53691854620924i
7 | 4.648877766 + 0.255743021587134i
8 | 2.114515119 - 5.34299945780428i
9 | 1457031426 - 1.96133359316615i
10 (1.048311108 + 2.95539947726722i
11 | 3.854286393 - 3.59777930502025i
12 | -0.844760994 - 9.69473196082761i
13

14

15

M 4 » M| Sheetl ,Sheet? .~ Sheet3 .~ °J 4 Kl

Figure 29 - After Text Import Wizard

Figure 30 shows the MatLab Data once the formatting is complete for both channels and looks

very similar to the output from DADISP. Once that is completed for each channel, each column can be
compared to its analogous array from the DADISP output. Then the average difference, standard
deviation and relative standard deviation between the signals can be calculated.

52

Chanl Real

Chanl Imaginary

Chan2 Real

Chan2 Imaginary

-0.595855712890626

0.000000000000000

-0.600830078125001

0.000000000000000

0.094808965848817

0.238192645720860

0.070314490206014

0.239271367780099

-0.299856648710276

-0.796386275245513

-0.361158228931180

-0.651044291177912

-1.402385949678420

1.267258756561070

-1.109791149513890

1.205626635334530

0.275174437513418 -0.396458021697599 0.200145980615913 -0.424580003396650
-0.158337381094350 6.536918546209240 -0.434330681928218 6.400612881533450
4.648877765581650 0.255743021587134 5.002334085305480 1.025058467041590
2.114515119086270 -5.342999457804280 3.242629976283070 -6.308443893293440
1.457031425922390 -1.961833593166150 0.984374608467614 -3.160618212711080
1.048311107804740 2.955399477267220 -0.446541673370004 3.287206842884730

3.854286392565940

-3.597779305020250

3.311900267658380

-3.613950195070120

-0.844760993775308

-9.694781960827610

-1.262174374074060

-9.163632220515830

Figure 30 - MatLab Data Formatted to Match DADiSP Data

Repeating the above steps for 9 other sample wav files showed similar success across multiple
input files. Now that the outputs from MatLab and DADISP are verified to be consistant, the SIMULINK

model can be packaged for deployment and sharing.

3.4 Creating Startup Scripts

In order to make sure that the DADiISP model within simulink will start up properly and set all
the necessary variables and registry settings every time it’s started, | created a set of scripts that take
care of everything necessary to execute the model and allow the user to simple specify settings in the
model and then go. These scripts are also intelligent enough so that if the user is a new user to the
computer it is being executed on, or an existing user, everything will be set appropriately without any

additional steps. These are almost the most important pieces used when building an MSI later.

To start building these scripts we take all of the files we’ve used and compiled thus far and put
them into a centralized Directory. For the purposes of this example, I've used “C:\Program Files
(x86)\WPI\DADISP_SimuLink” because | have been using a 64-bit version of Windows and DADISP is a

32-bit application. On a 32-bit operating system, we would just use “C:\Program

53

Files\WPI\DADISP_SimulLink”. The files in this directory are “dadisp.mdl”, ”Plot_and_filter.m”,
“sample.wav” and “readme.txt”. “dadisp.mdl|” is the Simulink Model File. “Plot_and_filter.m” is the m-
file referenced within the model. “sample.wav” is the wav file used within the model. “readme.txt” is a

small readme file telling users not to modify the contents of this directory manually.

I've added four more files to this directory which will serve the purpose of the startup scripts.
“copy_user_files.bat” will copy the necessary model files from the current directory into the users’

directory under %USERPROFILE%\WPI\DADIiSP_Simulink\.

@echo off

mkdir %USERPROFILE%\WPI\DADISP_Simulink

copy "%PROGRAMFILES(x86)%\wpi\DADISP_SimuLink\dadisp.mdI" %USERPROFILE%\WPI\DADISP_SimuLink\ /y

copy "%PROGRAMEFILES(x86)%\wpi\DADiSP_SimuLink\Plot_and._filter.m" %USERPROFILE%\WPI\DADISP_SimulLink\ /y
copy "%PROGRAMFILES(x86)%\wpi\DADISP_SimuLink\sample.wav" %USERPROFILE%\WPI\DADISP_SimulLink\ /y

The “create_user_files.vbs” will check a bit in the registry to see if the user has already copied
the model files to their own user directory. If they have, then it will not execute the
“copy_user_files.bat” so as not to overwrite the users’ files in case they’'ve made any changes, if they

have not, then it will copy them over.

option explicit
on error resume next
dim oWshShell, FSO
dim struserFiles
set FSO = createobject("scripting.filesystemobject")
set oWshShell = createobject("wscript.shell")
'Tell DADISP it is off (create's registry key if necessary)
struserFiles = 0
struserFiles = owshshell.regread("HKCU\Software\WPI\DADiSP\user_Files_copied")
If err then
'install the key and copy the files
owshshell.run copy_user_files.bat, 0, true
oWshShell.RegWrite "HKCU\Software\WPI\DADISP\Files_Copied", "1", "REG_SZ"
end if
set struserFiles = nothing
set fso = nothing
set oWshShell = nothing

54

The “Reset_DADIiSP.vbs” file performs a couple of functions. First it checks and resets the
registry value in the user hive that is checked by the SIMULINK model to see if the DADISP ActiveX
connection has already been made. It also ensures that the directory “c:\temp” exists and is readable
and writeable bay users and administrators alike. To that end, the first time that these scripts are
executed, they must be executed by an administrator in order to make sure that the “c:\temp” directory

is created and the security permissions are set correctly.

option explicit
on error resume next
dim oWshShell, FSO
set FSO = createobject("scripting.filesystemobject")
set oWshShell = createobject("wscript.shell")
'Tell DADISP it is off (create's registry key if necessary)
oWshShell.RegWrite "HKCU\Software\WPI\DADiSP\Turned_On", "0", "REG_SZ"
'make sure the temp directory necessary exists
if FSO.folderexists("c:\temp") then
else
fso.createfolder "C:\temp"
owshshell.run "%COMSPEC% /c Echo Y| cacls c:\\temp /t /c /g Administrators:F System:F Users:F", 0, True
end if

set fso = nothing
set oWshShell = nothing

Finally the “Startup DADiSP Model.bat” file brings all of these files together and creates one
point of entry for anyone starting the Simulink model for the first time or for the 100™ time. It executes
the two visual basics scripts discussed above and then it will execute Matlab using the users’ copy of the
“dadisp.mdl” file. Creating a shortcut to this icon in the start menu for all users provides it as a single
point of entry to the model meanwhile ensuring that all the other various registry keys and files are set

appropriately.

Echo Starting DADiSP/Simulink Project

@echo off

wscript "C:\PROGRAM FILES (x86)\WPI\DADIiSP_SimulLink\create_user_files.vbs"

wscript "C:\PROGRAM FILES (x86)\WPI\DADiSP_SimulLink\Reset_DADiSP.vbs"

matlab.exe -nosplash -minimize -r "load_simulink;open %USERPROFILE%\WPI\DADIiSP_SimuLink\dadisp.mdI"

55

3.5 Creating Installable Package (MSI)

In order to create and installable package for the DADISP model, | used an application called

Wise Package Manager from Symantec Corporation.

However, there are also many other free open

source software or commercial software packages available that allow creation of single Microsoft

Installers (MSI) or Windows installation executables. To start creating the installer, we open up Wise

Package Manager, create a new project and then open up the “Windows Installer Editor” as shown in

Figure 31.

[SetupCapture

| %jvise Package Studio - Profess... [B[=] EX
File Edit ‘iew Reports Help

O/D | B E A |

Projects Tools

|»

Software Management

J_,‘ Software Manager
g Impact and Risk Aszessment

Analpsis
@ Applicationiy/atch
Package Cieation

DC} Legacy Setup Conversion

e SetupCapture Configuration

Project Name: IDADiSP_S\muLink_MDdeI_Dst

G Package Definition

Project Directory: (S harepoint]\Projects'[ProjectN ame]

%3 “Web Capture Corversion

Shatus: |Dpen

Product Yendor: IW’orceslel Polptechric Institute

]
=] Customization
=

ller E ditor

Application Mame: IDAD iSP_SimuLink_Model_Dema

a WizeScript Package Editor

Package Name: [DADISP_SinuLink_Model_Dema

Linux Package Editar

File Marme: IDADlSP_S\muLmk_M odel_Demo @ Yittual Package E ditar

Wendor Package: | _I Q InstallT ailor

Process: |None = ﬂl Mobile Device Package Editor
iy W UpgradeSyne

\B Patch Creation b
4= Command Line Builder

Validation
B Package 'V alidation
Conflict Resolution

"5 S0E Snapshat

Cose | D Carflicttd ananes =l

Figure 31 - New Wise Project

56

Next we go over to the “Files” section and we add the files that we are going to drop into the

Program Files directory. Here we can also add directories as we please. This is shown in Figure 32.

& tintitled - Windows Tnstaller Editor

Eie Gt Gomporend Pues awusge [ok Beporls ew Hel
D@+ | B8

il Bl Select the filder o). sedect e desiirlion Fedes, e cick itk the & Coeterts ce At il beitin b compiele he pesation
Projct ARl Garerd Featae. [Conpete (6] =
ES1 Project Sunmery
- Prouct Detaity [Dein | Sten | Type | et
) oo srmion 8 2 Mo Docamers TR T
et [B s o i
[) e varaties 7 DADP Sivaiink . b
- Leted D Neloys VPN LKE Tewt Govament 1118
3 Fosbirns LKD et Soret Pk 00
— TR Wave Sound un
Fucaliro Dol alts &) [startup Darwsr meded. bt LKE M5-D05 Ratch Rl i
T Merin Mokies
™ Files
o reitry il i |
% M Fies .
e fekd Contents | [} sdarge | 3
% Ervvicomet Vimiabies = | [3 Drsimation Compuins H | SceTipe [Miodhed [Vession |
* P Associstions =11 My Dccunrares ?g":@_m_mm TER MSDOS . 148200
8] serwces - Frogren Fies sl e vl TKE VESeeh. 1180
& oec _'_—‘l\:“‘:‘”‘“ﬂ dadapurnd 109K0 MDLFds 12015/20..
Nl Biostn =H . Pha_seed flteem SK3 MFie 12015420,
1S3 DepEEEmink L TKR TestDae 1A%/200
Target System I BT Windaws 2 Resel_DADISF b TKE VESeek. WAL
res— KB Wavedu. 11/B0.
e st DD mod 1D MEDO0S .. 1A19/200.,
] System Sparcn
Packagh Opthorns. =)
[P |

Figure 32 - Added Files

Next, set the product information and specify how we want things to look in the Add/Remove

Programs menu as seen in Figure 33 and Figure 34.

mponent Rules p
DEHE (D
To add the installation’s meta data to the Software Manager database, enter its Application and Package names and save the installation. You can modify Application and Package
3 names in Software Manager.
Project Definition ey
@ Project Summeary Application IDADISP,S\muhnk,Mude\
% 5
,, Product Details Package [PADEP_Simlk_Model
[Z] Genersl information
L) AddiRemove Progrems Some of the meta data is used during installation and in Add/Remove Programs in the Control Panel to identify the product to the end
[_] Path Varisbles usar. Subsequent patches and uparades also use the meta data to identify the product.
i Resources Package Meta Dats
=t Nars _ Valus Ehange
Feature Details x Product Type Wwindaws Installer
- Product Mame DADISP_Simulink_adel
T werge Modles Manufacturss WPl
% fies Wersion 1.00
& rewstry Default Directory Program Files\w/Fl
b e Package Path Nsiseserveriwise Share PaintiProjects\DADISE_Simy
@ Shertcuts Repositary 1D
#eCoxipinent arknies Praduct Cods {CCBEPFH-1 30841 DE-ADFCOCERABTADD)
 Flle Associstions Target Platiorm Inted 32-bit
e Application Type Win32 [non NET]
2 ODBC Installation Target Fipfindows based deskiopsserver PL -
a Firewvall Exceptions D escription _—
Target System &)
o
W System Requirements

Figure 33 - Set Product Information

57

fle Edt ComponentRules Language Took Reports Yiew Help

dows Installer Editor

D@ ¢ B8
Project Definition
[£) Project Summary
" Product Details
[Z] General Information
‘L) AddRemove Programs
[) Path variabies
4 Resources

Add/Remove Programs Fé

E dit the fields below to modify how this product sppears on the Add/Removwe Programs contiol panel for Windows 2000/4P/Server 2003

€ Do not display in Add/Remove Programs st
[~ Display in Add/Remove Programs list

Display lcon: WSe. Icon Number.

¥ Hide modity buttan

1] services
2% oDBC
& Firewall Exceptions

Shiiceucs [Hide remave buiton
Feature Details &) - Suppart Infarmation Pag
%5 Merge Modules Orline Info URL:
(2 Fies ComactPersan. Biyan Adam Ferguson
o Registry
b MFies Phone Number
12 Shortcuts Help URL:
2% Enviranment Variables
$ v Comments This package is not supported nor distibuted by The Mathworks o DSP Corporation

I™ Hide repair button

Target System (&)
W System Requirements

2 System Search

Package Options &)

[mdministrator Optians
. Search Locations
" Administrative Install

User Interface

S Dislogs

Figure 34 - Add/Remove Programs Information

Lastly, Wise package manager allows for customizable themes on the installation menus. Figure

35 shows a theme with the Worcester Polytechnic Institute seal.

Elle Edt Component Rules Language Tools Reports Wiew Help

indows Installer Editor

D d &R R

9

T TTFIE =]
1) Shortouts

5"'.1 Environment ariables
7 File &ssociations

a System Search

Package Options (&)
[‘3 Administrator Options
. Search Locations

' Administrative Instal

User Interface

ﬁk Dialogs
4 Installation Types

Release Definition (&)
' Releases

ﬁ Release Settings

.ﬁ Buile! Options

'E WiehDeploy

,_3; Mecia

Q Languages:

e Prerequisites -
% Instance Transforms

Distribution

% ot

Select the dialogs to display during installation by marking their checkboxes in the Dialogs list. Change the theme of the dialogs by selecting a new theme from the Default Theme
drop-down list. Edit dialog themes by clicking the Edit Theme buttan.

@ Services Dialogs
2 oDBC Dialog Mame | Condition | Details
& Firevral Exceptions ‘welcome Dialag 1

[License Dialog 1 Add
Target System @] Readme Dialog NOT RESUME

Svyatem Reguirements

] Installation Type Dial.. NOT RESUME AND MOT Preselected fove Up
[Select Feature Dislog MOT RESUME AND MOT Preselected AND InstallM...

i} D
Start Installation Dislog 1 _Hove Do |

Default Theme

User Information Dial.. NOT RESUME Delete

Single Feature Desti... MOT RESUME AND MOT Preselected

[
Fre

Pl Teal >] EditThemes
view
Dialog Editor

Figure 35 - Menu Themes

58

Finally Figure 36 shows the menu for compiling these modifications into an MSI. The MSI can be

compiled on the local computer, or if using a Wise Package Server, can be compiled remotely on the

server. This is useful if the server is more powerful than the computer with the Wise package Manager

client.

ﬁ:"DnDiSP_Sin1u|ink_ModeI_Demn.wsi - Windows Installer Editor
Eile Edit Componernk Rules Language Tools Reports Wiew Help

les to pour installation. Select the zoun

ent Feature:

Local Compile F7
Remote Compile Ctrl+F7

0 pesw Chrl+y
= open... Ctrl+0
Close
= Save Ctrl+S
Save As...
Export o ZML. ..
Compile
Test Chrl+T
Debug Chrl+E
Run 4

) Distribute

1 DADISP_Simulink_Model_Demo,wsi
2 Oracle 116G Inskant Client.wsi

3 Oradle Instant Cliznk. wsi

4 Oracle 10GR2.msk

5 Oraclel0gRzClient, msi

& Metops YPM.mst

7 MetDireckSetup.msi

8 Merge Module.wsm

Exit:

=3

lJ My Metwork Places
|~ DADISP_SimuLink
| =1 Metops WPH

Add Cor

D estination Computer
1 My Documents
:_I Program Files

Tm TETTCTT:

-2 Rl INSTALLDIR]

Figure 36 - Compile MSI

Once the MSI is executed, it will appear in the Add/Remove Programs Menu and any shortcuts

that were specified to be installed will appear in the start menu, as shown in Figure 37 and Figure 38

respectively.

Currently installed programs:

ulink _Model

his program From vour computer, «

[T show updates

Figure 37 - Add/Remove Programs

® Add or Remove Programs M=l B3 H

Sork by: IName vl

Remaove

59

Figure 38 shows the installed shortcut for the DADISP SimuLink Model Demo which when

selected will open up the SimuLink model that is a demo of the DADiSP functionality.

Wise Packager :

£ Internet Expl & Microsoft Update iments i
i Set Program Access and Defaults
Data Sources (€ e windows Catalog 4
BN Command Prom % ‘Windows Update s
= viise Package 5 Accessories *
@ . _ " Distribution |
_j. Motepad @ Adrministrative Tools 2
- b v |nﬂr-:hr4:h-1:\-
|
@ Alkiris * . :
@ Games 3 l Hﬂmﬂ
l@ Starkup L = :

Inkernet Explorer

&
il Outlook Express
Remoke Assistance
Windows Media Player
Windows Messenger
Windows Movie Maker
All Programs DADISE k @ Danisk simulink Model Demo

Figure 38 - Installed Shortcuts

Now that the final product is created, this single MSI can be distributed and installed on a
Windows XP or Windows Vista computer. Pre-requisites, however, include MATLAB 2008a or better and
DADISP 6.0 B12 or later be installed on the computer before being able to run the DADiSP Simulink

Model Demo.

60

4. Results & Recommendations

The sample model for DADISP has shown a number of results some of which support that such
an implementation will be useful to end users and signal processors, however other data shows that
optimization and perhaps a different implementation might be necessary for everyday use. The biggest
disappointment with a SIMULINK and DADISP implementation is that speed is drastically sacrificed.

However future work may be able to overcome these issues.

4.1 Speed & System Resources

The purpose of this project was to utilize DADISP through a run-time environment, such as
SIMULINK. Unfortunately, using SIMULINK to transfer data to DADiSP sample by sample results in a
significant lag. This appears to be, however a result of the ActiveX connection and not a problem with

DADISP, MATLAB or Simulink.

Using SIMULINK or MATLAB to import a wav file, perform a simple filter task or calculate an FFT
occurs in less than 1 second on a modern computer. Using only DADISP to perform the exact same task
also takes approximately less than 1 second on the same system. Also importing a signal into MATLAB,
transferring the entire signal into DADISP and then performing the same tasks executes in a matter of
seconds. However when using SIMULINK to import a WAV file then transfer each sample one at a time
to DADISP takes multiple orders of magnitude longer, on the order of 15 minutes for fewer than 40,000

samples.

This can only be a result of overhead from ActiveX. When using the ActiveX connection only
once to transfer a large block of data, the overhead is not noticed. However when executing a data
transfer over ActiveX, each sample is transferred with an individual ActiveX connection as opposed to

the one command, these repeated commands in multiply the overhead exponentially.

61

4.2 FFT Comparison

After applying the technique discussed in section 3.3 Comparing FFT Output to 10 different
sample files, | was able to determine that while there is a slight difference between the computed FFT of

DADISP and MATLAB, the relative standard deviation is negligible for most applications.

Sample name ChanlRE (%) | Chanlim (%) | Chan2RE (%) | Chan2IM (%) | AVERAGE (%)
Chime 0.00159791 | 0.001272093 | 0.002041029 | 1.20142E-15 | 0.001227758
Chord 0.009900774 | 0.000497626 | 0.004313568 | 0.00252236 | 0.004308582
Ding 0.00147216 | 0.00056196 | 0.005357983 | 0.001205079 | 0.002149295
Minimize 0.000852655 | 0.006122675 | 0.025211287 8.949E-05 | 0.008069027
Notify 0.01275789 | 0.000102854 | 0.009144268 | 0.000108322 | 0.005528334
Print 0.000636373 | 4.64845E-05 | 5.45696E-05 | 0.000450013 0.00029686
Recycle 0.09449649 | 0.017879374 | 0.137820264 | 0.013642558 | 0.065959672
Restore 0.003417942 | 0.007290816 | 0.000775511 | 0.011810649 0.00582373
Ringin 0.00168941 | 0.00035759 | 0.001204649 | 0.000704448 | 0.000989024
Shutdown 0.000731062 | 0.000629448 | 0.000919202 | 0.001189132 | 0.000867211

Figure 39 - Relative Standard Deviation of Difference between outputs

Figure 39 above shows the relative standard deviations in percentage of the difference between
the output of the DADISP calculated FFT and the MATLAB calculated FFT by channel as well as the
average for each channel. The average relative standard deviation for each signal is less than 0.1%. The
This shows that there is an

average relative standard deviation for all samples is 0.009691756%.

extremely close correlation between the DADISP calculated FFT and the MATLAB calculated FFT.

4.3 Future work

The purpose of the DADISP model is to use it as a proof of concept for additional work. While it
can be used as a blueprint for to perform more advanced functions, speed issues may preclude such
implementations.

However, a similar methodology with another implementation may be more

effective.

62

4.3.1 LabView

LabView might be a natural next step for an attempted implementation as LabView is a run-time
environment. Additionally, LabView supports ActiveX connections and even supports using Level-1 and
Level-2 S-Functions from SIMULINK, meaning that the code provided in this example may only need to
be simply dropped in place of a LabView model. However because it will still utilize ActiveX from within

an S-Function there may still be the same inherent speed issues as with SIMULINK.

However LabView may have an ability to interface via an ActiveX block connection that may be
more effective than a custom built S-Function. Again this may result in more successful speeds,
however may also result in the same speed lag as SIMULINK. A more custom solution may be more

effective, however may require significant additional programming.

4.3.2 Third-Party Block Diagramming

Another option to address the issues with Speed may be to utilize a general block diagramming
and run-time application. This could be either an open or closed source application as long as it
supports significant programmability. However, given that the only way to interface with DADISP from
an external application is through ActiveX, the same exact lag may be encountered. ActiveX appears to

be the resulting bottleneck and the limiting factor in each scenario.

4.3.3 DADISP Application Builder

The DADISP Application Builder (DAB), however may be a different and more viable alternative.
The biggest advantage of the DAB is that it allows direct coding from any Microsoft .NET language and
can be embedded like a custom control. Because it communicates directly it with .NET languages, it may
overcome the speed issues that are inherint with the full DADiSP application. In addition, it also has a

smaller footprint than the full DADiSP application and can be redistributed royalty free.

63

However the major catch with this implementation may be finding an open source run-time,
block diagramming application that is built in a Microsoft .NET language. Alternatively a team could
build a block diagramming run-time environment from the ground up using a .NET language and
implementing the DAB natively in that application which may prove most effective and possible.

However, in the end there may be one option that will ultimately be the most effective overall.

4.3.4 Direct Integration with DADiSP

What may be the ultimately the most effective option, would be to implement a block
diagramming, run-time extension directly within DADISP. Unfortunately this option is most out of the
scope of an MQP because the code to DADISP is closed source. However should DSP Development ever
decide to migrate their code to an open source model, that may allow for such a possibility. However
that would be a business decision of the developer. One possible model may be that the open source
version is untested and released under a different name, while the commercial version of DADISP is fully

tested and verified by the vendor.

Another way that this could be made possible is if DSP Development were to decide to
implement this feature via proprietary means. Again, however, this would be out of the scope of any
Major qualifying project as the parts of the code would need to be available for the purposes of the
project. This would be more effective than even an open source model since DSP Development

developed the original application and already know how the existing code functions.

64

5. Conclusions

While DADISP does not have its own real-time execution environment, it can be used as part of
another environment, such as SIMULINK. This provides for block-diagram functionality and the more
appealing DADISP graphical interface and simplified tools for signal manipulation. However, doing so
with current Active-X based technology comes at the cost of speed. While ActiveX has evolved over the
past 15 years it is unfortunately not yet capable of handling continuous, long data sets and the future is

unclear as to if it ever will.

Traditionally, the problem of slow software has been met by faster hardware, while this
approach can be effective and has, until now, satisfied the prediction of Moore’s Law; it isn’t necessarily
the correct answer to every problem. Hyper threading, multiple core processors, faster RAM, hard
drives and Flash memory have all enhanced and assisted engineering problems that could in some cases
be solved in software. Given the ubiquity of cloud or clustered computing, allowing an application to
run across a cluster of systems may make up for the lag in transferring data between SIMULINK and

DADISP. However, again, is applying more hardware to the problem appropriate?

While this isn’t to say that ActiveX may someday become more efficient to allow for rapid,
continuous data point transfer, it won’t be in the current and next generation of Microsoft Windows
operating systems. While it may not be feasible to open the source code for DADISP to allow a third
party to develop a directly integrated block-diagramming application for it, another approach may be to
develop a non-ActiveX based API. This could be based on Remote Procedure Calls (RPC) or some other,

more generic protocol that perhaps might support operating systems other than Windows.

A faster or more generalized API for DADiISP may ultimately benefit the signals engineer

population at large. Each generation is expected to build upon the work of the previous. As such, it is

65

important for the tools for the next generation to become not only more complex in functionality but
simpler in execution. The purpose of this is not to allow future engineers to disregard the fundamentals
of engineering, but rather to give them a boost towards further understanding. DADISP is effective in
this mission by allowing for easy visualization and manipulation of signals in ways that other software
packages don’t allow. By incorporating a real-time environment, a new dimension has added to

enhance this experience further.

With a real-time execution of DADISP, students can now see not only a signal as it progresses,
but also how its FFT evolves as the signal is processed further, as well as how a filter may morph a signal
differently as more of the signal information becomes available. This means that a real-time DADISP is
not only a tool for solving engineering problems, but also an educational tool for students. No matter
who uses this enhanced addition to DADISP be it an engineer, student or faculty, one of the most
important goals can bet met; better understand. This, in the end is what allows engineers to design and

innovate to the best of their ability.

66

References

"AMS Glossary". Glossary of Meteorology. 19 January, 2009

<http://amsglossary.allenpress.com/glossary/browse?s=d&p=28>.

"COM: Componet Object Model Technologies". Microsoft Corporation. 11, December 2008

<http://www.microsoft.com/com/default.mspx>.

"Component Object Model." Wikipedia, The Free Encyclopedia. 2 May, 2009, 17:20 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/Component_Object_Model>.

"Drag-and-drop." Wikipedia, The Free Encyclopedia. 19 March, 2009, 22:11 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/Drag-and-drop>.

"DCOM Technical Overview". Microsoft Corporation. November, 1996

<http://msdn.microsoft.com/en-us/library/ms809340.aspx>. 11 December, 2008

"DSP Development Corporation: About DADISP". DSP Development Corporation. 4 November, 2007

<http://www.dadisp.com/aboutdad.htm>.

"DSP Development Corporation: ActiveX". DSP Development Corporation. 11/04/2007

<http://www.dadisp.com/activeX.htm>.

"DSP Development Corporation: Corporate Background". DSP Development Corporation. 4

November, 2007 <http://www.dadisp.com/corpback.htm>.

"DSP Development Corporation: DADISP Application Builder". DSP Development Corporation. 11

November, 2008 <http://www.dadisp.com/dab.htm>.

67

“DSP Development Corporation: DADISP Product Family". DSP Development Corporation. 4

November, 2007 <http://www.dadisp.com/products.htm>.

"DSP Development Corporation: Market Background". DSP Development Corporation. 4 November,

2007 <http://www.dadisp.com/markback.htm>.

"Dynamic Data Exchange." Wikipedia, The Free Encyclopedia. 5 March, 2009, 21:29 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/Dynamic_data_exchange>.

"The MathWorks - Contact Us - Worldwide Offices and Representatives". The Mathworks. 19

January, 2009 <http://www.mathworks.com/company/aboutus/contact_us/>.

"The MathWorks - Founders - Jack Little". The Mathworks. 19 January, 2009

<http://www.mathworks.com/company/aboutus/founders/jacklittle.html>.

"MATLAB - Introduction and Key Features". The MathWorks. 7 November, 2007

<http://www.mathworks.com/products/matlab/description1.html>.

"MATLAB News & Notes - Summer 1998 - MATLAB Compiler and New Support for ActiveX in
MATLAB 5.2". The MathWorks. 7 November,
2007<http://www.mathworks.com/company/newsletters/news_notes/sum98/sum98active

x.html>.

“Mono". Mono Project. 19 January, 2009 <http://www.mono-project.com/Main_Page>.

"Object Linking and Embedding." Wikipedia, The Free Encyclopedia. 30 April, 2009, 11:48 UTC.

Wikimedia Foundation, Inc. 3, May 2009.

<http://en.wikipedia.org/wiki/Object_Linking_and_Embedding>.

68

"OLE Automation." Wikipedia, The Free Encyclopedia. 28 March, 2009, 20:17 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/OLE_Automation>.

Race, Randy and Rabin Tamang. Personal INTERVIEW. September 20, 2007

"Simulink - Introduction and Key Features". The MathWorks. 7 November, 2007

<http://www.mathworks.com/products/simulink/description1.html>.

"Structured Storage." Wikipedia, The Free Encyclopedia. 7 February, 2009, 3:26 UTC. Wikimedia

Foundation, Inc. 3, May 2009. <http://en.wikipedia.org/wiki/Structured_storage>.

"Video: The Origins of MATLAB". The Mathworks. 19 January, 2009

<http://www.mathworks.com/company/aboutus/founders/clevemoler.html>.

"Visual Basic Extension." Wikipedia, The Free Encyclopedia. 26 December, 2007, 16:20 UTC.

Wikimedia Foundation, Inc. 3, May 2009.

<http://en.wikipedia.org/wiki/Visual_Basic_Extension>.

"Z-transform." Wikipedia, The Free Encyclopedia. 1 May, 2009, 2:10 UTC. Wikimedia Foundation,

Inc. 1, May 2009. <http://en.wikipedia.org/wiki/Z-transform>.

69

	ABSTRACT
	List of Contents
	List of Figures
	1. Introduction
	2. Background
	2.1 MATLAB
	2.1.1 MATHWORKS History
	2.1.2 ActiveX integration and implementation
	2.1.3 MATLAB evolution and SIMULINK Implementation

	2.2 DADiSP
	2.2.1 DADiSP Company History
	2.2.2 DADiSP Application Evolution
	2.2.3 Integration of ActiveX and implementation

	2.3 Component Object Model
	2.3.1 Object Linking and Embedding 1.0
	2.3.2 OLE 2.0
	2.3.4 Distributed COM (DCOM)
	2.3.7 Microsoft .NET

	3. Development & Testing
	3.1 Brokering Connection
	3.1.1 Passing Commands from MATLAB to DADiSP
	3.1.2 Bidirectional Pass of Data & Controls
	3.1.3 Creating the SIMULINK to DADiSP Connection
	3.1.4 Creating Sample Model

	3.2 Filtering
	3.2.1 Creating a filter in DADiSP

	3.3 Comparing FFT Output
	3.4 Creating Startup Scripts
	3.5 Creating Installable Package (MSI)

	4. Results & Recommendations
	4.1 Speed & System Resources
	4.2 FFT Comparison
	4.3 Future work
	4.3.1 LabView
	4.3.3 DADiSP Application Builder
	4.3.4 Direct Integration with DADiSP

	5. Conclusions
	References

