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Abstract 

 

Phytoestrogens are popular substances used in hormone replacement therapy due to 

their similar structure to estrogen and ability to interact like estrogens in the body. One 

particular phytoestrogen compound, genistein, has been observed to have an 

antiproliferative effect on breast cancer cells. The experiments investigated the effects of 

estrogen and genistein on the cells through MTS assays and PCNA immunoblots. The 

cell line demonstrated estrogen responsiveness through both assays, but results as to 

genistein’s effect on the T47D breast epithelial cells were inconclusive. 
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Introduction  

 

 The effects of hormone replacement therapy (HRT) and its association with 

increased cancer risks has recently been examined (Ross et al., 2000). Research supports 

that HRT does increase the risk for developing cancer (Holmberg et al., 2008). 

Therefore, many women have chosen to take over-the-counter phytoestrogens to treat 

the symptoms of menopause. It is suggested that since phytoestrogens have a similar 

structure to estrogen, they may act through the same pathways in the body to relieve 

the menopausal symptoms caused by the steep decrease in circulating estrogens. 

Phytoestrogens are often favored over HRT, because they are plant derived compounds 

viewed as healthier, natural alternatives that are widely available but unregulated.  

 The aim of this project was to observe the possible estrogenic or anti-estrogenic 

effects of the phytoestrogen, genistein, on a breast epithelial cancer cell line. It was 

hypothesized that the addition of genistein in a high estrogen environment would 

result in antiproliferative effects while the addition of the phytoestrogen at a low 

estrogen concentration would cause an increase in cell proliferation.  

An estrogen responsive cell line, T47D, was purchased from the ATCC with 

expressed estrogen receptors in order to test the effects of the addition of genistein to 

the cells. Several experimental conditions with different concentrations of genistein and 

estrogen provided inconclusive data, which did not support the hypothesis.  
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Background 
 

Breast cancer is the most common form of cancer affecting woman in the United 

States (Centers for Disease Control and Prevention, 2010). This has lead researchers to 

examine the major risk factors associated with the disease, as well as the differences 

between breast cancer rates of women in the United States as compared with women 

living in other countries. In particular, the rising risk of breast cancer is linked to the 

participation of premenopausal and postmenopausal women in hormone replacement 

therapies (HRT). 

The physical symptoms of menopause in premenopausal and postmenopausal 

women are often treated with HRTs, usually containing doses of estrogen and 

progesterone. The severe drop in the estrogen hormone due to menopause can produce 

a range of symptoms, including hot flashes, cold sweats, difficulty sleeping, and 

irritability (Dennerstein et al., 2000). These changes in the body can lead many women 

to make the choice to participate in HRT.  

However, studies have shown an increased risk of breast cancer as an HRT side 

effect (Holmberg, et al., 2008). A randomized study by L. Holmberg and H. Anderson 

was performed in 2002 with 442 Scandinavian, female, breast cancer survivors with 

follow-ups over a median of 4 years. The subjects were either administered hormone 

therapy or symptomatic management of menopausal symptoms without hormone 

addition. The women in the hormone therapy group developed twice as many new 

cancer events as the group receiving symptomatic management. The study concluded a 

statistical significance of increased risk of new breast cancer events in the hormone 

therapy group (Holmberg, et al. 2008).  

The rates of American women developing breast cancer are much higher than 

those of Asian women, with the risk for an American woman having been recorded as 

nearly seven times greater than the risk for an Asian woman (Bouker and Hilakivi-

Clarke, 2000). However, this discrepancy is mitigated as Asian women immigrate to the 

United States, which suggests that the increased risk factors are not based on genetic 

factors but are environmental (Wu, et al. 1996). A case study performed in 1986 

compared the estrogen plasma levels of premenopausal Caucasian woman living in 

Boston with plasma concentrations from woman born in various Southeast Asian 

countries and residing in Hawaii. The results found a thirty-two percent increase in 

estrogen plasma levels in premenopausal, Caucasian females living in the United States 
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(Goldin, et al., 1986). It can be proposed that the cancer rate discrepancy between 

American and Asian women may be caused by the difference in circulating estrogen 

levels in the body. 

Research has also found that Asian woman born in America have a sixty percent 

greater risk than Asian woman living in Asian countries of developing breast cancer, 

which again strengthens the argument of environmental factors contributing to the 

varied estrogen levels and breast cancer rates (Bouker and Hilakivi-Clarke, 2000). These 

environmental factors can be further narrowed down to the role of diet, as researchers 

have attributed dietary factors in contributing to half of recent breast cancer diagnoses 

(Bouker and Hilakivi -Clark, 2000). The consumption of soy is comparatively higher in 

Asian countries than the United States and is believed to be responsible for the cancer 

rates.  

Soy is often attributed as the dietary factor that reduces breast cancer rates 

among Asian females due to its high concentrations of many naturally occurring 

phytoestrogens, such as the isoflavones, genistein and daidzein (Ososki and Kennelly, 

2003).  Although research on daidzein is limited, the effect of genistein on cell 

proliferation has been examined.  

Phytoestrogens have a similar structure to estrogen, as shown in Figure 1, but are 

seen as safer, natural alternatives to estrogen therapies that originate from plants and 

non processed food products. In response to increasing criticism of HRTs and the rising 

rates of breast cancer, many women opt to pursue more natural remedies and choose 

over-the-counter phytoestrogen supplements to find relief for their menopause 

symptoms. Genistein is one such phytoestrogen, and is an active component in many 

over-the-counter products and supplements that aim to lessen the symptoms of 

menopause. These phytoestrogens are usually marketed as the ‘natural’ form of 

hormone replacement therapy.  

The exact pathway, in which phytoestrogens interact in the body, whether by 

mimicking estrogens or competitively blocking the estrogenic response, is not known 

(Warren and Devine, 2002). It is hypothesized that phytoestrogens act as estrogens at 

low concentrations and act to block estrogenic activity at high concentrations (Ososki 

and Kennelly, 2003).   
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Figure 1: Phytoestrogens, genistein, and 17β-estradiol structures (Wood et al., 2006) 

 

 

Estrogens are steroid hormones produced from cholesterol in the ovary, 

placenta, and adrenal cortex in the female body. Prior to menopause, the predominant 

estrogen, 17β-estradiol, is found in female circulation at a concentration of 40-400pg/mL. 

Post-menopause, estradiol is found at a concentration of 10-20 pg/mL (Anti Aging Guide, 

2010). This hormone functions at the higher, premenopausal levels to produce the 

secondary sex characteristics in women. Estrogen molecules diffuse into cells and bind 

to the domains of estrogen receptors (ERs), which are transcription factors activated by 

the estrogen hormone. 17β-estradiol binds specifically to either the ER α or ER β, which 

activates the transcription factors to modify gene transcription and possibly activate 

specific, mutated oncogenes to express tumor producing cells.  

Oncogenes are a family of genes responsible for normal development and tumor 

suppression in the body, but when mutated or overexpressed, can cause cancerous cell 

growth (Creighton, 1999). Estrogen is known to activate certain oncogenes, such as the 

inherited BRCA-1 and BRCA-2 genes, which are suspected to mutate and cause breast 
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cancer cell proliferation (Hilakivi-Clarke, 2000). This mode of ligand binding would not 

typically disrupt normal cell growth, but can cause cancerous cell growth when the 

genes activated are overexpressed, such as in the case of when women are exposed to 

high estrogen levels for long periods of time. It is believed that the longer the exposure 

to estrogen in the body, the greater the risk of developing cancer due to the hormone 

increasing expression and mutations in oncogenes. An early menarche and late 

menopause both foster environments of high estrogenic levels and activity for long 

periods of time to contribute towards an increased breast cancer risk (Clemons and 

Goss, 2001). The addition of the hormone post menopause, when natural estrogen levels 

have decreased, may therefore result in the activation or mutation of oncogenes to 

produce breast cancer (Kennemans and Bosman, 2003). 

One of the first major experiments relating estrogen production with breast 

cancer was performed by Beatson in 1896, in which the ovaries, a major source of 

estrogen synthesis, were removed from the bodies of patients suffering from breast 

cancer. This procedure yielded significant results and patients with the ovariectomies 

exhibited regression of the disease (Ali and Coombes, 2002).  These results have also 

been supported by recent experiments where the removal of ovarian estrogens in 

postmenopausal women produces a significant decrease in breast cancer development 

(Hilakivi-Clarke, 2000). Therefore, it can be concluded that exposure to estrogen can 

affect development and progression of breast cancer. However, not all breast cancers 

are responsive to estrogen. In a study by McGuire et al. in 2003, the level of estrogen 

responsive tumors was determined by measuring the final level of progesterone 

receptors (PgRs), which are indicated to be under the direct control of estrogen. PgRs 

were found in about 59% of metastatic breast cancer tumors with expressed estrogen 

receptors (McGuire et al., 2003). This signified that approximately 59% of estrogen 

receptors in metastatic tumors are responsive to estrogen and can respond to hormone 

therapy.   

Phytoestrogens are supplemented as an alternative to HRT and exhibit a high 

binding affinity for ER β. They are able to bind in a similar manner as estradiol and 

exhibit estrogenic effects, such as the increase in cellular transcription and proliferation 

(Bouker and Hilakivi-Clarke, 2000). Genistein is believed to exhibit a 20 to 30 fold 

greater binding affinity for ER β than ER α, but an overall 1,000 to 10,000 fold lesser 

binding affinity to either estrogen receptor when compared to the binding affinity of 

estradiol molecules (Kuiper et al., 1998).  Studies have also found that the ER β may 
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counteract the activity of ER α and act in an anti-proliferative manner (Strom et al., 

2003).Therefore, it is hypothesized that at higher estrogen concentrations, genistein may 

compete with 17β-estradiol for binding sites at the ER to prevent estrogenic activity and 

prevent overexpression or stimulation of mutated oncogenes. If the ER β does have anti-

proliferative effects as the research suggests, then the addition of phytoestrogens in a 

high estrogen environment will only decrease cell growth by altering the ratio of bound 

receptors in favor of the ER β. However, at low estrogen concentrations, when the ER is 

not saturated, genistein may only have an additive proliferative effect by introducing 

more bound phytoestrogens into the cell. Once again, this could be dangerous in terms 

of mutated oncogenes or overexpression of the genes it activates to possibly cause 

cancer. 

 Genistein is also theorized to exhibit antiproliferative effects through other non-

receptor mediated pathways, such as the inhibition of tyrosine kinase or topoisomerise 

II activity to possibly arrest cellular replication. These inhibitory mechanisms may 

result in increased cell apoptosis or decreased cell proliferation, with both mechanisms 

acting to reduce the growth of cancerous cells (Trock, et. al, 2006). 

In order to examine the affect of genistein at high and low estrogen conditions, it 

is necessary to find a breast epithelial cell line that exhibits estrogen responsiveness. 

This has proven a difficult task in previous Major Qualifying Projects (MQPs) where 

both the 2007 and 2008 studies of phytoestrogens on the MCF-7 cell line found the cell 

line to be unresponsive to estradiol (Raasumaa, 2008; DeVault, Kosmaczewski, and 

Tracy, 2009). This cell line was known to contain expressed estrogen receptors but the 

increased number of cell passages could have resulted in decreased sensitivity to 

estrogen (Pratt and Pollak, 1993). Due to the MCF-7 cells’ lack of estrogen 

responsiveness in previous MQPs, a new cell line was explored. The T47D breast 

epithelial line was originally obtained from the duct of the mammary glands in a 54 

year old female diagnosed with infiltrating ductal carcinoma. The cells were found to 

have expressed receptors for 17-β estradiol as well as several other steroids (ATCC, 

2010).  

These adherent cells of the T47D line were examined in our investigation under 

experimental conditions. It was necessary to demonstrate proof of concept by validating 

estrogen responsiveness in the new cell line. The cancerous breast cells were predicted 

to show increased proliferation in higher concentrations of estrogen, since the hormone 

when bound to the ER acts as a transcription factor to regulate cell growth. It was also 
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hypothesized that the phytoestrogen, genistein, would competitively inhibit estradiol 

binding to its receptor at high estrogen concentrations, but would exhibit estrogenic 

effects by binding to the ER receptor at low estrogen concentrations. These data could 

have significant implications in dietary recommendations and its associated breast 

cancer rates, as well as the regulation of over-the-counter phytoestrogen products.  
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Methodology 

 

Cell Cultures 

 

The T-47D breast epithelial cancer cell line was used throughout this project. This 

cell line was obtained from the American Type Culture Collection (ATCC) (Product # 

HTB-133). The ATCC is a private, nonprofit biological resource center and research 

organization that aims to provide biological products and services that further the 

specific objectives of research organizations, both public and private (ATCC, 2009). The 

T47D cell line has expressed receptors for estrogen, progesterone, and glucocorticoid. 

The doubling time for the cells was listed as 32 hours. However, handling of these cells 

in the lab showed the doubling time to be approximately between 28 hours to 32 hours. 

The cells were maintained in T75 flasks and in situations where there were too few cells 

to cultivate, the culture was initiated in a T25 flask. The cells were always incubated at 

37°C and 5% CO2. Based on the ATCC recommendations, the cells were cultured in 

RPMI-1640 growth medium (Sigma Aldrich, Catalog No. R8758), modified by adding 

10% Fetal Bovine Serum (FBS) (Thermo Scientific, Catalog No. SH303396.03), 1% 

Penicillin-Streptomycin Solution (Cellgro, Catalog No. 30-001-CI) and 0.2units/mg of 

Bovine Insulin (Sigma Aldrich, Catalog No. 11070-73-8). The cells were passaged upon 

reaching a confluency of >80%, and were split at different ratios based on the 

experiments being performed.  

 

Cell Passaging 

 

Cells were passaged according to the following protocol. The following steps are 

directed to a T75 flask of cells. The volumes of different solutions used for these steps 

were scaled down when cells were being passaged in T25 flasks. 

 

1. After removing the media from the flask, the cells were rinsed in 5mL Hank’s 

Balanced Salt Solution (Life Technologies, Catalog No. 14170-112) for 30 seconds. 

2. This was aspirated off and the cells trypsinized using 0.25% Trypsin (Gibco, 

Catalog No. 15050-065). About 2-3 mL of 0.25% trypsin was added and the flask 

incubated at room temperature for 2 to 3 minutes.  
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3. Upon getting 50% of the cells off the flask by visual inspection, 9mL of the 

culture media was added to the cells and after completely rinsing the flask 

bottom with the media; the cells were transferred into a 15mL centrifuge tube 

using a suitable pipette. 

4. The cells were centrifuged at 1000xg for 3 minutes to pellet them.  

5. After aspirating off the media, the cells were re-suspended in 4mL of fresh 

culture media. 

6. Using a hemocytometer, the cells were counted and further sub-cultivation ratios 

were decided. 

 

Assays 

 

MTS Assay 

 

In order to test for estrogen responsiveness, a cell proliferation assay was done. 

The Cell Titer 96®AQueous Non-Radioactive Cell Proliferation Assay was obtained from 

Promega (cat# G5421) to determine the cell proliferation of T47D cells in the presence of 

estrogen. The assay is composed of solutions of a tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 

inner salt; MTS] and an electron coupling reagent, phenazine ethosulfate (PMS).The 

MTS is reduced into a formazan product by living cells and can be measured directly at 

490nm. The MTS gets converted into formazan due to the dehydrogenase enzymes 

present in metabolically active cells. The higher the absorbance at 490nm, the higher the 

number of living cells in the culture. 

Cells were plated at 150,000 cells/well and 75,000 cells/wells in 24-well plates, in 

the RPMI growth media as described previously, for a time period of 48 hours. The 

RPMI media was then aspirated off and fresh media was added to each well. This fresh 

media consists of Dulbecco’s Modified Eagle Medium (DMEM) (Lonza, Catalog No. 12-

917F), which is absent of L-Glutamine or Phenol Red. To this media, 0.2 units/mg of 

insulin and  Dextran Charcoal Treated (DCT) 10% Fetal Bovine Serum (Hyclone, 

Catalog No. SH 30068.03) were also added. The cells were incubated in this modified 

media for an additional 24 hours. The DMEM media, which lacked Phenol Red, was 

used to minimize any false positive readings for estrogen receptors since Phenol Red, 
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which is a pH indicator, is found to bind the estrogen receptors in human breast cancer 

cells MCF7. Even though a different cell line was used, this step was taken as a 

precautionary measure so as to be sure of observing actual results and not false 

positives, due to the reaction with Phenol Red.  A MTS Cell proliferation assay was 

started after a total growth time of 72 hours, which was run for 12 hours to measure cell 

proliferation. The cell proliferation was measured by adding 200 µl of the MTS assay 

solution to each well of 1ml cells, and running the assay for 12 hours before reading the 

absorbance values at 450nm. Several slight variations of this assay were run over the 

timeline of this project, to determine if the cells were responsive to different 

concentrations of estrogen which included 100µM, 10 µM, 1 µM, 0.1 µM and 0.01 µM. 

Some of these variations included plating a different set of cell densities, or switching 

from 24 well plates to 96 well plates and vice versa.  

One particular variation of this assay is the addition of 1% FBS instead of the 10% 

DCT FBS to the modified DMEM media, which is used to change the media of the cells 

after their initial growth period of 48 hours. This modification was performed to help 

cells stick to the bottom of the plate as opposed to the large clumps of cells floating in 

the cell media, and was hence incorporated into the assay method for future assays.  

The assays in the 96-well plates seemed to be failing consistently for no apparent 

reason but they could be attributed to the following reasons. There was very little 

working volume in 96-well plates (100 µl to 200 µl), which made it hard to maintain 

consistency of the number of cells added. Additionally, after performing a few 

experiments with different cell densities, it was still unclear what the best possible cell 

densities were to plate per well in a 96-well plate In order to overcome these issues, it 

was decided to switch to 24 well plates, since their working volumes are larger (1ml) 

and cell densities of 75,000 cells/well and 150,000 cells/well were plated.  

 

Immunoblotting 

 

A second approach, which consisted of immunoblotting, was chosen to 

demonstrate estrogen responsiveness in the cells and a few experiments were carried 

out using this approach. The immunoblot was performed using the PCNA antibody. 

PCNA or Proliferative Cell Nuclear Antigen is a protein that is mainly synthesized in 

the G1 and S phases of the cell cycle. It is involved in the DNA replication and aids the 

leading strand productivity during transcription (Santa Cruz Biotechnology, 2010). 
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Therefore, this protein was chosen as the target protein for the immunoblot process 

since cell proliferation is directly related to the amount of PCNA protein present in the 

cells. 

The cells were plated onto a 24-well plate and the following steps, similar to the 

MTS assay procedure were performed. The cells were plated at 150,000 cells/well and 

75,000 cells/wells in 24-well plates, and grown for a period of 48 hours in the modified 

RPMI growth media as described previously.  Five different concentrations of 17-β-

estradiol were prepared in the modified DMEM media with 1% FBS as described 

previously. These concentrations were 100 µM, 10 µM, 1 µM, 0.1 µM, 0.01 µM and 0 

µM.  When 48 hours of cell growth in the RPMI media elapsed, the RMPI media was 

aspirated off and 1ml of each estrogen concentration was added to the respective well 

of cells. After completing this step, the plate was left to incubate for an additional 24 to 

30 hours and then the plate was frozen down at -80°C, after aspirating off the DMEM 

media and rinsing the cells with 1% PBS.   

In order to perform the immunoblot, 12% acrylamide gels were cast. The 

protocols for this were taken from Current Protocols in Molecular Biology Vol.2, pages 

10.2.5 to 10.2.9 and 10.8.4 to 10.8.6 (Ausubel, et al.). There were a few changes made to 

the protocol as follows: 

For the separating and stacking gels, 40% Acrylamide was used instead of a 30% 

Acrylamide, mentioned in the protocol. Therefore, all the volumes of the other 

ingredients were scaled accordingly. Once the gels were prepared, the frozen cells were 

thawed and resuspended in 1%PBS, making sure as many of the cells were scraped off 

the bottom of the wells in the plate as possible, and resuspended in the solution. 

 

 

 

Immuno-analysis of the Protein Membrane 

 

The membrane was then processed through the immunodetection technique for 

PCNA antibody. The mouse monoclonal antibody PCNA (Santa Cruz Biotechnology 

Inc, Cat. No. sc 25280) was used as the primary antibody for the immuno-detection. 

This was diluted at 1:1500 in the blocking buffer. A goat anti-mouse IgG (Santa Cruz 

Biotechnology, Cat. No. sc 2008) was used as the secondary antibody in the detection.  
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Bradford Assay 

 

After the immunoblot, a Bradford assay was carried out to test for actual protein 

concentrations of the cell samples. A Coomassie (Bradford) Protein Assay Kit was used 

to perform the Bradford test (Thermo Scientific, Catalog No. 23200). The Bradford assay 

consisted of diluting each cell sample 50 fold in the provided Bradford Coomassie 

Reagent and reading absorbance values at 595nm in a spectrophotometer (Thermo 

Scientific, 2010). A standard curve was created using an Albumin BSA Standard (Piece, 

Catalog No. 1856269). The instructions for creating the different concentrations of the 

BSA standard were taken from the Instructions of Coomassie (Bradford) Protein Assay 

Kit (Thermo Scientific, 2010). The absorbance for the standard curve was also measured 

at 595nm and then a graph was plotted using the blank-corrected absorbance value of 

each BSA standard with its concentration in µg/ml. The standard curve was then used 

to determine the protein concentrations of the different cell samples.  
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Results 
 

MTS Assay Validation 

 

In order to validate the Cell Titer 96®AQueous Non-Radioactive Cell Proliferation Assay 

(MTS), cells were plated at 100,000, 50,000 and 25,000 cells/mL concentrations in 12 well 

plates. The cells were incubated in the modified RPMI media described in Methods for 

12 hours. This RPMI media was aspirated off and changed to the modified DMEM 

media detailed in the methods and the cells were incubated for another 12 hours. After 

a total of 24 hours incubation period, the MTS assay solution was added to the cells and 

the assay was run for 4 hours and the absorbencies of the cells were read on a 

spectrophotometer at 450nm. The microphotographs at 0, 12, and 24 hours after plating 

the cell concentrations are shown in Figure 2. The cell growth was visibly noticeable by 

different concentrations plated and increased with time incubated.  
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Figure 2: Cell Growth Microphotographs 

 Time after plating T47D cells 

Cells/ 

mL 

0 hours   12 hours with media change   24 hours with media change 

100,000  

   
50,0000  

   
25,000  

   

 

 

Table 1: MTS Assay Validation Data 

 

Cell Concentration Plated (cells/mL) 

100,000 50,000 25,000 
0 (Assay 

Reagent Blank) 

Absorbance 

(450 nm) 

Assay Kit #1 0.842 0.762 0.717 0.174 

Assay Kit #2 0.775 0.727 0.671 0.196 

 

Assay Kit #1 = Promega CellTiter 96® AQueous One Solution Cell Proliferation - DOE = June 2010 (Cat # 

G3580) 

Assay Kit #2 = Promega CellTiter 96® Aqueous Non-Radioactive Cell Proliferation - DOE = March 2012 

(Cat # G5421) 
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The spectrophotometer readings from the plate are shown in Table 1.  The data exhibits 

a trend in increasing absorbance with increasing cell densities. However, these 

absorbance values are not for the specific cells numbers listed in Table 1. Almost 28 

hours had passed since the cells were first plated and this accounts for approximately 

one doubling time, which essentially means the absorbencies noted were for the cell 

densities of around 200,000 cells/well, 100,000 cells/well and 50,000 cells/well.  

 

The data in Table 1 was plotted in Figure 3.The curves show a positive relationship 

between absorbance and cell concentration for both assay kits. The R2 values are 

displayed on the graph and support the positive correlation.  

 

Figure 3: MTS Assay Validation Plots 

 
 

The Figure 3 shows the two different MTS assay kits used to demonstrate the MTS cell 

proliferation assay validation. Each plot shows a constant increase in absorbance values 

with an increase in the cell densities and is almost saturated since the cells are almost 

confluent.  
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Estrogen Responsiveness Assay using the MTS Kit 

 

Table 2 below shows the absorbance values of the formazan dye emitted from the cells 

during the MTS assay. These are results obtained 36 hours after the estrogen hormone 

was added to the cells.  

 

Table 2: Absorbance Values from MTS Assay for Different Cell Densities Plated at Different 

Estrogen Concentrations 

Cell Densities 10 µM 1 µM 0.1 µM 0.01 µM 0 µM Controls Remarks 

150K 2.821 2.469 2.521 2.614 2.593 2.303 Cells in media 

      0.794 No Cells 

75K 1.906 1.796 1.406 1.14 1.321   

      0.346 Assay Control Blank 

 

Table 2 shows the absorbance values measured at 450nm of the formazan dye in the 

cells for each of the estrogen concentrations. It is seen that for both the cell densities, the 

10 µM concentration of estrogen showed the highest absorbance values, which relates to 

a higher cellular proliferation rate. This data is plotted in Figure 4, in order to better 

visualize and draw conclusions. 
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Figure 4: Estrogen Responsiveness Plot: Absorbance versus Estrogen Concentrations  

 

Figure 4 above shows the two cell densities plotted at different estrogen concentrations. 

It is seen that the cell densities of 75,000 cells/well demonstrates estrogen 

responsiveness whereas the cell densities of 150,000 cells/well seems to decline with 

increasing concentrations of estrogen. This could be due to the fact that the cells at 

densities of 150,000cells/well reached confluence in the 72 hours of growth time plus 12 

hours of assay time and hence proliferation was inhibited.    

 

Immunoblotting 

After having obtained results from the MTS assay for estrogen responsiveness, a PCNA 

protein immunoblot was performed in order to both validate the results obtained with 

the MTS assay as well as show consistency in the results obtained. 

 

Table 3: Absorbance Values of Cells at the Different Estrogen Concentrations  

 Estrogen Concentrations 

Cell Densities 10 µM 1 µM 0.1 µM 0.01 µM 0 µM 

75K cells/well 0.712 0.754 0.628 0.773 0.702 
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Table 3 above shows the different absorbance values emitted by the formazan dye in the 

MTS assay at different estrogen concentrations for 75,000 cells/well. This data is plotted 

in Figure 5 to get a visual image, which shows inconclusive data since all the data 

points are very close to each other. Another duplicate set of cell samples taken from 

another plate as the samples in Table 3 were run on a SDS-PAGE to quantify cellular 

proliferation at different estrogen concentrations. A picture of the transferred 

membrane is seen in Figure 6.  

 

Figure 5: Absorbance Values for Cells at each Estrogen Concentration 

 

 

Figure 6: Immunoblot Bands for Concentrations of Estrogen 

 

Figure 6 shows the immunoblot obtained after processing it with the PCNA antibody. 

Faint bands appear that correspond to the different estrogen concentrations. These faint 

bands can be associated with too little protein having been loaded onto the gel. Figure 7 

below shows a peak analysis of the immunoblot in Figure 6 which shows that the 1 µM 

concentration of estrogen has the brightest band although all of the visible bands are 
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very faint. Therefore nothing can be substantially concluded from the immunoblot and 

the data should be regarded as is observed. 

 

Figure 7: Different Immunoblot Band Intensities as Individual Peaks  
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Genistein Experiments 

 

Table 4 displays the proliferation effects of genistein added to cells cultured with 

varying estrogen concentrations, as measured by the MTS assay. From Table 4, the only 

effect of genistein is seen at 100 µM concentration of estrogen, which is an order of 

magnitude higher than the other values. Apart from this single data point, there 

appears to be no effect of either genistein or estrogen at lower concentrations of 

estrogen. Similarly, there is only a slight increase in absorbance values at 18.5 µM of 

genistein, at both 100 µM and 10 µM of estrogen. However, this data is again 

inconclusive since the effects of 100 µM estrogen have not been investigated previously.  

 

Table 4: Effects of Genistein at Varying Estrogen Concentrations (Genistein Experiment 1) 

 Estrogen Concentration (µM) 

Genistein 

Concentration 

(µM) 

100 10 1.0 0.1 0.0 

185.05 2.289 0.349 0.375 0.374 0.39 

18.5 0.634 0.465 0.361 0.517 0.372 

0 0.539 0.46 0.371 0.374 0.396 
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Figure 8: Absorbance Values of Genistein Treated Cells at Varying Estrogen Concentrations 

 

 

The genistein experiment described in Table 4 and Figure 8 was slightly modified and 

repeated, as can be seen in Table 5 and Figure 9. Additional estrogen concentrations 

were added and the individual genistein concentrations used were decreased, as shown 

in Table 5.  
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Table 5: Effect of Genistein at Varying Estrogen Concentrations (Genistein Experiment 2) 

 Estrogen Concentration (µM) 

Genistein Concentration (µM) 250  100  10  1  0.1  0.01  0  

50  1.169 1.063 1.400 1.202 1.605 1.611 1.614 

10  1.158 1.420 1.716 1.819 2.031 2.061 2.027 

1  1.671 1.366 1.809 1.468 1.882 1.901 2.198 

0 1.494 1.506 1.936 1.320 1.831 2.308 2.218 

 

From Table 5, it is seen that at 50 µM concentration of Genistein, there is a slight anti-

proliferative effect at every concentration of estrogen. However, it is not significant 

enough to conclude an anti-proliferative effect of genistein. Figure 9 shows the data in 

Table 5 as plotted on a logarithmic x-axis. In Figure 9, there is a steady decline of 

absorbance values for each genistein level, as the estrogen concentrations rise; however 

there is an unexpected spike at 10 µM concentration of estrogen that cannot be 

explained. Hence no trends can be drawn from this data and the interpretation of this 

data is difficult. 

 

Figure 9: Logarithmic Plot of Absorbance Values of Genistein Treated Cells at Varying 

Estrogen Concentrations 
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Bradford Assays for Protein Concentrations 

 

For the above Genistein experiments (Table 4), an immunoblot was also performed. 

However, at the end of the entire immunoblotting process (gel electrophoresis, transfer, 

primary antibody incubation, secondary antibody incubation, substrate detection), there 

were absolutely no bands visible on the membranes. In order to troubleshoot this 

incident, Bradford Assays were performed on the failed westerns for the different 

Genistein concentration samples to see if there was any protein in the actual samples 

themselves. The Bradford Assay Standards are displayed in Table 6 and the calculated 

protein concentrations for the different cell samples are in Table 7. 

 

Table 6: Albumin BSA Standards with Absorbance Values 

 

 

Table 6 above shows the concentration of the albumin standards used for creating a 

standard curve for the Bradford Assay. The absorbance values obtained were then used 

for creating a standard curve which is shown in Figure 10 below.  The equation of the 

line was obtained using a linear trend line and then the protein concentration values of 

each sample were obtained as seen in Table 7. 

Absorbance 

at 595nm 

Protein 

Concentrations 

(µg/ml) 

1.487 2000 

1.355 1500 

1.161 1000 

0.998 750 

0.847 500 

0.615 250 

0.556 125 

0.474 25 

0.464 0 
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Figure 10: Absorbance versus Protein Concentration 

 

 

Table 7: Calculated Protein Concentrations for Samples at Different Estrogen and Genistein 

Levels 

 100µM 10µM 1µM 0.1µM 0µM 

185.05 µM 284 51.1 60.9 57.1 64.7 

18.50 µM 41 56.3 66.3 44.5 55.6 

0 µM 291.4 65.5 163.2 60.9 67.9 

 

From Table 7, it is seen that there is a considerable amount of protein only in the 

samples where the estrogen concentration is at 100 µM and when the genistein 

concentration is either 185.05 µM or 0 µM. The middle concentration of 18.5 µM 

genistein does not show any significant protein concentration. Additionally, there is a 

spike in the protein concentration for 0 µM genistein and 1 µM estrogen concentration. 

This spike cannot be associated to any factors. These absorbance values translate into 

the amount of protein that was loaded onto each gel. 
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Discussion 
 

The MTS assay was used as the main technique for measuring cell proliferation 

throughout the experiment, apart from the immunoblotting technique that was 

performed on two occasions and in addition to the MTS assay. The MTS assay measures 

absorbance values at 450nm for the different samples, which are directly proportional to 

the amount of cells present. In order to use this assay to determine the proliferation of 

breast epithelial cancer cells in the presence of estrogen and genistein, the assay had to 

be validated. Table 1 contains the raw data obtained from the validation experiment, 

where the three cell densities plated were measured with the spectrophotometer. Figure 

3 shows the plot where the increase in absorbance readings is seen as directly 

proportional to the higher cell concentrations. The microphotographs in Figure 2 

provide visual evidence that the higher cell concentrations did actually contain a greater 

amount of cells, which the MTS assay in Figure 3 validated with readings of higher 

absorbance values. The microphotographs taken after 24 hours depict the confluency of 

the cells where the 100,000 cells/mL and 50,000 cells/mL concentrations of cells are 

observed as nearly confluent. This growth in the wells would have limited space and 

media available to cells to cause contact inhibition and prevent further cell proliferation. 

This would prevent the MTS assay from detecting any significant growth after 12 hours 

and could explain why the absorbance values measured appear to level between the 12 

hour and 24 hour time points. This may also explain why the validation of the MTS 

assay did not produce an ideal, linear proliferation curve.  

In addition, the initial cell densities plotted against the absorbance readings in 

Figure 3 do not reflect the final cell densities. The time elapsed for the experiment was 

24 hours and the doubling time for the cell line is approximately 28 hours to 32 hours, 

so the final concentrations would be closer to double the initial concentration. The 

experiment could have been repeated with lower cell concentrations to avoid 

confluence at 24 hours, but a positive correlation was still observed between absorbance 

readings and cell densities, thus validating the MTS assay. The two assay kits used were 

also compared. Both kits produced similar ranges of absorbance readings, supporting 

the validation of the MTS assay, but the assay kit #1, the one step MTS assay, was 

continued with for the rest of the experiments.  

The T47D cell line was found to be estrogen responsive during this experiment. 

Initially, there were issues with proving estrogen responsiveness in the T47D cell line. 
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This could have been due to several reasons. One reason is that there could potentially 

be problems with the estradiol stock solution being used. Halfway through the project, 

a new vial of 17-β-estradiol was bought and a new estrogen stock solution (100 mM) 

was prepared to carry out our experiments. The former estradiol stock was not labeled 

accurately and it was possible that solution was actually of a lesser concentration. If the 

concentration was 100 to 1000 fold less diluted than we believed, the cells would not 

have exhibited a strong estrogen response. Assuming that the estrogen stock was a 

reason behind the absence of measured estrogen sensitivity, it could also be suggested 

that the old stock was not as potent as a newly obtained stock solution, since the year it 

was purchased or opened was not labeled and the bottle was not stored appropriately. 

The new stock solution may have been relatively much more potent, which could 

explain the differences in measurements obtained. The purchase of a new estrogen 

stock solution may be the reason for the successful estrogen responsiveness 

experiments that were seen later during the project. 

Another problem could have been the addition of the DCT stripped FBS to the 

initial DMEM growth media. This was observed to be problematic to cell adhesion in 

the plates since replacing it with just FBS proved useful. DCT FBS helps to reduce 

serum concentration of endogenous hormones and growth factors such as estradiol that 

may interfere with the experimental process (Gemini Bio-Products, 2010). However, the 

DCT FBS could also reduce the lipids in the media that help the cells to plate down into 

the wells, which could have been a reason for no estrogen responsiveness.   

A final problem could have been that after several preliminary experiments, the 

ideal cell densities to be used were still not determined. The different cell densities used 

were 150,000 cells/well and 75,000 cells/well for a 24 well plate; and 75,000 cells/well, 

50,000 cells/well, 25,000 cells/well and 10,000 cells/well for a 96 well plate. These cell 

densities could have either reached confluence to shown no responsiveness beyond a 

certain cell population, or could have had very few cells in each well that they couldn’t 

survive and died off when transferred from the T75 flasks to the new environment of 

the plate wells.  

The Promega protocol recommended performing MTS assays with a starting cell 

concentration as low as 5,000 cells/well for a 96 well plate and 20,000 cells/well, for a 24-

well plate (Celltiter 96® aqueous, 2009). Although a much lower cell concentration was 

recommended for the MTS assay, we observed significant growth in Figure 4 in 24 wells 

plates with a concentration of 75,000 cells/well and chose to continue with this 
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concentration for the rest of the project. In addition, the microphotographs in Figure 2 

show that a concentration between 25,000 cells/well and 50,000 cells/well in a 12 well 

plate produced an appropriate amount of growth after 24 hours. In a 24 well plate, these 

ideal concentrations would translate to concentrations between 50,000 cells/well and 

100,000 cells/well. Therefore, the visual evidence of cell growth per well over a 24 hour 

period in Figure 2 supports the decision to continue experiments in a 24 well plate with 

a concentration of 75,000 cells/well.  

  The experiments performed demonstrated estrogen responsiveness in the cells. 

This can be observed in Table 2 and Figure 4. However, this was not consistent with 

different cell densities, mostly due to the fact that at higher cell densities of 150,000 

cells/well in a 24 well plate, the cells reached confluence during the growth period and 

were not able to grow properly in the wells due to contact inhibition. Hence, a cell 

density of 75,000 cells/well was chosen for the 24-well plates as the ideal number of cells 

since estrogen responsiveness was seen at that cell density and supported by the 

conclusions regarding confluence in Figure 1.  

After the T47D cell line was demonstrated as an estrogen responsive cell line, the 

phytoestrogen, genistein, was introduced as an experimental variable. Genistein was 

tested in both high and low estrogen concentrations to determine its effect on 

proliferation in the presence of estrogen. The inclusion of estrogen with the addition of 

genistein in the following experiments corresponded to the physiological conditions, 

since the human body has estrogen flowing at all times, albeit at different 

concentrations, depending on age, gender, and other factors. The first genistein 

experiment recorded in Table 4 found genistein to have an additive proliferative effect 

on cells. The curve in Figure 8 where no genistein was added had a final absorbance 

value of 0.539, while the curve with the greatest concentration of genistein, 185.05 µM, 

had a final absorbance of 2.289, both at a corresponding estrogen concentration of 

100µM. These results did not support our hypothesis that genistein would act as an 

inhibitory molecule at higher estrogen concentrations and exhibit estrogenic activity at 

lower estrogen concentrations.  

The unexpected results may be the result of incomplete saturation. If the 

estrogen receptors were not fully saturated, then the addition of phytoestrogens would 

cause the genistein molecules to bind to the ERs in a non competitive manner and may 

cause a proliferative effect (Ososki & Kennelly, 2003). However, the additive 

proliferative effect was not observed at the highest estrogen concentration, 100 µM, for 
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the 18.5 µM and 0 µM concentrations of genistein. This would suggest that the very 

concentrated 185.05 µM addition of genistein was the only factor differing from the 

other experimental groups and was the cause for the increased absorbance reading. If 

the ERs had not been fully saturated, then the control group with only estrogen would 

have measured increased proliferation, as well, for the higher estrogen concentrations.  

Another possibility for these results is that the genistein and estrogen bound only 

to the ER α and that the ER β may not have been expressed. It is hypothesized that the 

ER α stimulates proliferation while the ER β may act antagonistically and demonstrate 

anti-proliferative effects. If the ER β receptor was no longer expressed, which can occur 

in malignant cells of cancers, the hormone estradiol and genistein would only bind to 

the ER α to cause a binding preference of estradiol over genistein and an additive 

proliferative effect. This proliferation would be greatest at the highest concentration of 

estrogen and genistein, which was observed in Figure 8. However, it would be expected 

that the absorbencies for the estrogen control would also increase in a linear manner as 

the estrogen concentration increased, which was not shown in the absorbance values in 

Table 5. 

The reason for the high absorbance reading for the185.05 µM genistein is most 

likely due to the crystallization of the genistein. The phytoestrogen was not dissolved 

properly and crystallized in the media due to a high concentration After observing the 

inability for genistein to fully dissolve at that concentration, the remaining additions 

were heated and vortexed to ensure solubilization. The first addition at 100 µM 

estradiol was the exception and most likely absorbed the formazan dye from the MTS 

assay to read a much higher absorbance than the actual cell population would have 

measured.  

Research shows that genistein has anti-proliferative effects when in 

concentrations greater than 10 µM and proliferative at concentrations less than 10 µM 

(Bouker and Hilakivi-Clarke, 2000). It was decided to repeat the experiment and 

decrease the genistein concentration significantly so that it can dissolve in media. The 

initial genistein concentration of 185.05 µM was changed to 50 µM while the other 

concentrations were 10 µM, 1 µM, and 0 µM. 

The additive affects of genistein could also be linked to non estrogen mediated 

pathways. The aim of this project was to observe the effect of genistein based on the 

concentration of the estrogen environment, so any non ER mediated effects of genistein 

could not be studied thoroughly. 
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The second genistein experiment produced data that differed greatly from the 

initial findings and supported the original hypothesis. The data in Table 5 supports the 

anti-proliferative effect of genistein at high estrogen concentrations and the estrogenic 

activity at low estrogen concentrations. Research suggests that genistein may be 

antiproliferative when in concentrations greater than 10 µM and proliferative at 

concentrations less than 10 µM (Bouker and Hilakivi-Clarke, 2000). This could be due 

the 1,000 to 10,000 fold greater affinity of 17β-estradiol compared to genistein in binding 

to an estrogen receptor (Kuiper et al.,1998). Higher concentrations of genistein may be 

necessary in order to competitively inhibit estradiol when estradiol is preferred by the 

receptor. This concept was supported by the data for the different genistein 

concentrations. The 50µM concentration of genistein showed a decrease in cell 

proliferation with higher estrogen levels, while the 10 µM genistein concentration began 

to increase at around a 250 µM estrogen concentration. The lesser concentrated 

genistein values, such as the 1.0 µM curve, demonstrated the greatest increase in slope 

at the highest estrogen concentration. The control curve of 0 µM genistein leveled off at 

250µM estrogen, which could indicate that the cells’ estrogen receptors were completely 

saturated.  However, the control value for the 0 µM estrogen concentration did not 

exhibit normal activity and demonstrated a similar curve to the data sets containing 

genistein. This control set should have shown estrogenic activity directly correlating 

cellular proliferation with estrogen concentration. It is possible that some form of 

contamination with genistein occurred which might have distorted the results or that 

similarly to the previous genistein experiment, only the ER α was expressed at such 

high estrogen concentrations.  

Overall, the results were not conclusive as to the exact activity or mechanism 

through which genistein acts. The preliminary genistein results also did not support our 

hypothesis, while the final experimental results did indicate a trend more supportive of 

genistein inhibition of estrogenic activity at high estrogen concentrations and showing 

estrogenic activity to increase cell proliferation at low estrogen concentrations. The 

wide-ranging results could indicate that genistein may be working through more than 

just the estrogen receptor mediated pathway as mentioned previously (Bouker and 

Hilakivi-Clarke, 2000). It is known that genistein also works through inhibiting tyrosine 

kinase activity and topoisomerase II activity (Bouker & Hilakivi-Clarke, 2000). This 

could possibly be the reason for our inconsistent findings throughout the course of this 
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project. Our findings necessitate further research and experiments to determine the 

action of the phytoestrogen, specifically genistein, on breast epithelial cancer cells. 

 All the variables in these experiments could be optimized and standardized in 

further projects. Starting with the cell densities, the MTS protocol recommended using 

lower, initial cell numbers. Closer adherence to this suggestion may provide more 

conclusive data, since the possibility of the MTS assay measuring lower absorbance 

values than expected could have been attributed to confluent cells inhibiting further 

growth. Additionally, a set range of estrogen concentrations need to be established, 

where it is proven that cells show a specific trend with increasing estrogen 

concentrations. A third variable that needs to be handled is the incubation times for 

cells between experimental conditions and also during them. Certain time course 

experiments could be performed to determine exact durations for experimental 

procedures. Furthermore, after the role of genistein is established in being 

antiproliferative to breast cancer cells, further investigations should be carried out with 

the other phytoestrogen compounds present in the different over-the-counter 

phytoestrogen supplements. 
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