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Abstract 

 

In this dissertation, certain problems of stochastic optimal control and relevant 

analysis of random vibrations are considered. Dynamic Programming approach is used to 

find an optimal control law for a linear single-degree-of-freedom system subjected to 

Gaussian white-noise excitation. To minimize a system’s mean response energy, a 

bounded in magnitude control force is applied. This approach reduces the problem of 

finding the optimal control law to a problem of finding a solution to the Hamilton-Jacobi-

Bellman (HJB) partial differential equation. A solution to this partial differential equation 

(PDE) is obtained by developed ‘hybrid’ solution method. The application of bounded in 

magnitude control law will always introduce a certain type of nonlinearity into the 

system’s stochastic equation of motion. These systems may be analyzed by the Energy 

Balance method, which introduced and developed in this dissertation. Comparison of 

analytical results obtained by the Energy Balance method and by stochastic averaging 

method with numerical results is provided. The comparison of results indicates that the 

Energy Balance method is more accurate than the well-known stochastic averaging 

method.      
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1. Introduction 

 

Problems of optimal control have been known for a long time. However, only 

very simple, deterministic problems have been solved analytically because of the absence 

of computers and as a result the theory of control was not very popular. In the late 1940s, 

control theory gained a new impulse from the aerospace industry. Development of 

rockets, and later the launch of the first satellite increased interest in exploring this area. 

Because of the military and space applications of this theory, it became a priority topic at 

that time. Random loads were introduced into this theory, which gave a beginning to 

stochastic theory of control. Although today the theory of control may be encountered in 

different areas of engineering and science, this dissertation will only discuss problems of 

control for dynamic structures.      

The work described in this dissertation is related to finding an optimal control law 

for an oscillatory system with bounded in magnitude control force applied to the system 

with the goal of minimizing a system’s response energy.  These problems, even in the 

simplest arrangement, are extremely difficult to solve analytically or numerically. The 

problems arising in processes of finding an optimal control law will be discussed later. In 

this dissertation, a new ‘Hybrid’ solution method has been proposed and implemented for 

solution of this problem. An exact analytical solution to the Hamilton-Jacobi-Bellman 

(HJB) equation within an ‘outer’ domain is obtained. This solution later is used to 

evaluate boundary conditions for numerical simulation of the HJB equation within the 

remaining ‘inner’ domain. Finally, an optimal control law for the system’s response 

energy reduction is generated. An extremely important result is derived here for the 
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steady state system’s response. It turns out that for the steady-state system’s response, a 

‘dry-friction’ control law is found to be the optimal one for mean response energy 

reduction.  

Successful implementation of the ‘hybrid’ solution method has inspired us to 

continue and expand our research work in this area. Solution to the case of linear multi-

degree-of-freedom (MDOF) systems has been found. This new ‘hybrid’ solution method 

opens a new way of looking onto the problems of stochastic optimal control. More 

intensive and profound investigations in this area are needed, especially with application 

in earthquake, aerospace and mechanical engineering.        

Another challenging problem that we considered is the prediction the behavior of 

the optimally controlled system, subjected to random excitation. It may be shown on the 

example of stiffness controlled system, that such a system is conservative everywhere 

except at an extreme position as well as at a position of equilibrium, where due to optimal 

or ‘bang-bang’ control, the system’s energy is reduced. As a result, a new name for such 

systems has been introduced. The term ‘piecewise conservative’ system is used to 

describe such a system with instantaneous or stepwise energy losses, occurring at discrete 

time instants. Since the system’s mean response energy is of interest here, a new Energy 

Balance method is developed and implemented. This method provides us with an exact 

analytical expression for mean response energy in terms of mean cycle duration time. 

This mean duration time may be found as a solution to the first passage problem, which is 

represented as a partial differential equation. Because the first passage problem is a very 

complicated problem itself, its solution has been found by a perturbational approach. In 

the first approximation, the resulting mean cycle duration is found to be equal to the 
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system’s natural period. The results obtained via the direct energy balance method for 

different systems were compared to results obtained by the stochastic averaging method 

as well as to those obtained by direct numerical simulation. This comparison has shown 

that the proposed and implemented direct energy balance method provides better 

accuracy than stochastic averaging method, far beyond expected applicability range of 

the latter. The simple explanation is that whilst both analytical methods require the mean 

response cycle duration to be close to the natural period of corresponding conservative 

system, the direct energy balance method, unlike the stochastic averaging method, does 

not require variations of the response energy within a cycle to be small. 

The derivation of the HJB equation, the ‘hybrid’ solution method and its 

implementation will be discussed in details in Section 2. The energy balance method with 

various examples will be presented in Section 3. Basic findings and results of this 

dissertation will be summarized in Section 4. Section 5 will conclude this manuscript 

with some recommended direction for future work outlined in it.  
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2.  Optimal Control 

2.1     Stochastic Optimal Control 

2.1.1  Introduction 

 

In the late 1950s, Bellman proposed the Dynamic Programming method for 

solution of stochastic optimal control problems. According to this method, a problem of 

stochastic optimal control may be transformed into the problem of finding a solution to a 

certain partial differential equation (PDE) or so called the Hamilton-Jacobi-Bellman 

(HJB) equation, written for the Bellman function. At first, this method was accepted very 

well, but soon it was understood that this approach is very complicated and a lot of 

mathematical difficulties will have to be overcome. Consequently, only a few problems 

have been solved using this approach up.  

Unfortunately, there has not been enough attention been paid to the Dynamic 

Programming method in the recent years. The main reason for this is its mathematical 

complexity. First of all, the HJB equation is a non-stationary, multidimensional partial 

differential equation. Secondly, if an introduced control force is bounded in magnitude, 

the operation of minimization (maximization) has to be performed. This leads to the 

appearance of nonlinear terms in the HJB equation. Moreover, this HJB PDE has to be 

solved within the entire state-space domain, whereas the behavior of the Bellman 

function at infinity is unknown. As a result, boundary conditions for the HJB equation are 

unknown and a simple numerical simulation of the HJB equation cannot be implemented. 

However the Dynamic Programming method has one advantage: solution to the HJB 
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equation is valid for entire state-space domain, so that there is no need to recalculate the 

same problem for different initial conditions. 

 

2.1.2 The Hamilton –Jacobi-Bellman equation 

When we talk about a system subjected to some random load, we should realize 

that it may not be possible to optimize some criteria with certainty. This leads to the 

concept of “stochastic” optimal control, where some averaged characteristics of a system 

are optimized rather then the randomly changing variables itself. 

In generally, statement of control problems consists of three parts. The first part is 

governing equations of motion of the given dynamic system. It is a system of stochastic 

ordinary differential equations, which may be linear or non-linear. The second part deals 

with a control force, which usually belongs to a certain mathematical set. In other words, 

a control force may be unbounded or bounded in magnitude; some other restriction may 

be applied as well. Finally, the third part deals with so-called cost functional. This is 

actually a function that is to be minimized (maximized) by control force, introduced into 

equation of motion. The goal of the stochastic optimal control is to find an optimal 

control law, which belongs to given set from part two and minimizes (maximizes) given 

cost functional for the response, which satisfies governing equation of motion. 

In all problems of optimal control there is a cost functional which has to be 

minimized (maximized). It may be the response displacement, velocity, energy or some 

combination of the above. The cost function (or cost functional) for stochastic optimal 

control problems is usually written (Stengel, 1986) as the Boltz cost function 
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( )
0

1 E ( ), E ( ( ), ( ), )
ft

f f
t

J t t s s s dsϕ
 

 = + ℑ     
∫x x u          (2.1) 

 

which is different from the deterministic cost function by operation of averaging of the 

right hand side (RHS) and ftst ≤≤0 . Here [ ]E • - is expected value, ft is a final time 

instant, u(t) – control function and x(t) – vector of state variables. The first term, with 

)),(( ff ttxϕ  represents the Mayer or terminal cost function, whereas the second one 

0

( ( ), ( ), )
ft

t

s s s dsℑ∫ x u  represents the Lagrange or integral cost function. Functions ,ϕ ℑ  are 

certain functions, which form is known in advance. The first is usually encountered in 

problems when the difference in current system’s position and the desirable position or 

the system’s energy has to take the minimum value at the final time instant. The 

Lagrange cost function is used when a certain system’s characteristics are to be 

minimized over all given time period ftst ≤≤0 .  

Consider the minimization of a value function (which is related to the cost 

function as shown below) during the reduced time interval 1, ft t   , where fttt ≤≤ 10 . 

Having found an optimal control u* in this time interval, the minimized value of cost 

function could be expressed as 

 

( )
1

1min = min  E ( ), E ( ( ), *( ), )
ft

f fu u
t

J J t t t t t dtϕ
    = + ℑ        

∫x x u            (2.2) 
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A governing stochastic differential equation (SDE) of motion for a dynamic 

system may be generally written in the following vector form 

 

0

( ) f( ( ), ( ), ) ( ) ( )
(0)
t t t t t t= +

=
x x u L ς
x x
!            (2.3) 

 

where L is a matrix of disturbances ( )tς , which is a Gaussian white-noise with the 

following characteristics 

 

[ ]
[ ]

E ( ) 0
E ( ) ( ) ( ) ( )

t
t t t tτ δ τ

=
+ = −

ς
ς ς D             (2.4) 

 

The total derivative of J with respect to time is 

 

[ ]
1

1 1 1E ( ( ), *( ), )
t t

dJ t t t
dt =

= − ℑ x u            (2.5) 

 

As an alternative, this derivative can be expressed by a series expansion. Retaining 

second-degree terms, the incremental change in J  can be written (with partial derivatives 

evaluated at time 1t  as 

 

( )

( ) ( ) ( )( )

1

2
2

2

2
2

2

1E ...
2

1E f f f
2

T

t t

T

dJ J J Jt t t t
dt t

J J Jt t t
t

ς ς ς

=

  ∂ ∂ ∂∆ = ∆ + ∆ + ∆ + ≈  ∂ ∂ ∂  

 ∂ ∂ ∂∆ + + ∆ + + + ∆ 
∂ ∂ ∂ 

x x x
x x

L L L
x x

! ! !

         (2.6) 
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Dividing both sides of (2.6) by t∆  and replacing the last term by its trace, the time 

derivative is 

 

( ) ( )

( )( )
1

2

2

2

2

1f Tr E f f
2

1f Tr E f f
2

T

t t

T

dJ J J J t
dt t

J J J t
t

ς ς

ς ς

=

  ∂ ∂ ∂= + + + + ∆ =  ∂ ∂ ∂  
  ∂ ∂ ∂= + + + + ∆  ∂ ∂ ∂  

L L
x x

L L
x x

        (2.7) 

 

Because x and ( )tς  are uncorrelated and taking the limit as 0t∆ → , yields 

 

( ) ( )
2

2t 0
2

2

1 lim Tr E t+ E t
2

1
2

Tf ff L L
x x

f Tr LDL
x x

T T

T

dJ J J J
dt t

J J J
t

ςς
∆ →

 ∂ ∂ ∂  = + + ∆ ∆ =  ∂ ∂ ∂ 
 ∂ ∂ ∂= + +  

∂ ∂ ∂ 

       (2.8) 

 

Combine now (2.5) and (2.8), and letting 1t t=  

 

( ) ( )
2

2
1f ( ), *( ), ( ), *( ), Tr
2

TJ J Jt t t t t t
t

  ∂ ∂ ∂= − + ℑ +   ∂ ∂ ∂  
x u x u LDL

x x
                  (2.9) 

 

Because J is already the minimum of the cost function (2.2), it is independent of 

control law. Therefore, equation (2.9) does not have an implicit dependence on control 

law, although the optimal control u* may enter equation (2.9) explicitly.  

Minimizing the time-rate-of-change of the value function by the choice of control 
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( ) ( )
2

2
1min f ( ), *( ), ( ), *( ), Tr
2

T

u

J J Jt t t t t t
t

  ∂ ∂ ∂= − + ℑ +   ∂ ∂ ∂  
x u x u LDL

x x
    (2.10) 

 

Equation (2.10) is called the Hamilton-Jacobi-Bellman (HJB) equation for 

Bellman function J. It is to be solved with initial condition ( ) ( )( , ) ( , )f f f fJ t t t tϕ=x x . 

The approach based on this equation for solution of problems of optimal control is called 

Dynamic Programming method. 

There are certain theorems [2, 19, 20, 22, 30] talking about uniqueness of solution 

to the HJB equation in case when SDE of motion (2.3) is linear. Moreover, the HJB 

equation (2.9) is only a sufficient condition for local optimality and it is not a necessary 

condition. The Bellman function might fail to satisfy differentiability and continuity 

conditions required to solve the partial differential equation, yet still be optimal. 

The HJB equation is extremely difficult to solve because of the reasons, described 

in Section 2.1. Later we will consider an example of the HJB equation, where all the 

above difficulties will be seen. 

 

2.1.3 Known solutions to the Hamilton-Jacobi-Bellman equation 

Despite the mathematical difficulties discussed in the foregoing sections, certain 

exact and approximate solutions to the HJB equation are known for certain simple 

problems. Some solutions to the HJB equation are possible to obtain for the cases of 

unlimited in magnitude control force. One of the cases when an exact analytical solution 

exists is a linear-quadratic problem. Because control force is unbounded in magnitude in 

this problem, finding minimum is possible by differentiating the HJB equation with 
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respect to control force u. Condition of first derivative to be equal to zero provides the 

optimal control law, whilst the second derivative should be positive at that value of 

optimal control, in order to have minimum. This approach was implemented by (Zhu et. 

al. 1998) for Hamiltonian system. Although such statement of control problem is not very 

realistic there are cases when it could be justified. On the other hand an unbounded in 

magnitude force may not be feasible (Boyd S.P. et. al. 1991) and very often some bounds 

on control force have to be introduced. These types of problems will be considered in this 

dissertation. 

Consider a simple example problem to illustrate how to derive the HJB equation 

for certain problem with bounded in magnitude control force [9]. Let 

 

1 2

2 ( )
x x
x u tσς

=
= +

!
!                                     (2.11) 

 

where 2σ  is a white-noise intensity. This equation describes the motion of a particle 

under influence of white-noise excitation. A bounded in magnitude control force u R≤  

is applied to the system in order to minimize a system’s mean energy at final time instant. 

Therefore, Bellman function J may be chosen as 

 

{ }2 2
1 2

1min E ( ) ( )
2 f fu R

J x t x t
≤

 = +                (2.12) 

 

Then, according to (2.9) the following HJB equation may be derived 
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2 2

2 2
1 2 2

min 0
2u

J J J Jx u
t x x x

σ ∂ ∂ ∂ ∂+ + + = ∂ ∂ ∂ ∂ 
        (2.13) 

 

Before trying to solve this equation, operation of minimization should take place. 

The Bellman function in (2.12) is already a minimum of the function on the right hand 

side and therefore is independent of control force as well as 1 2,x x  which are free 

parameters. As a result, only the second term in square brackets contain u and therefore 

the optimal control law is found as 

 

2 2

2

min
u R

J Ju R
x x

Ju Rsgn
x

≤

∂ ∂  = − ∂ ∂ 
∂ = −  ∂ 

          (2.14) 

 

Substituting (2.14) into equation (2.13) yields 

 

2 2

2 2
1 2 2

0
2

J J J Jx R
t x x x

σ∂ ∂ ∂ ∂+ − + =
∂ ∂ ∂ ∂

          (2.15) 

 

As it can be seen, equation (2.15) is a nonlinear multidimensional PDE. In order 

to obtain an optimal control law defined by (2.14), one has to solve the HJB equation 

(2.15) first. 

As we could see, the problem of finding solution to the HJB equation becomes 

much more complicated when applied control force is bounded in magnitude. The 

corresponding HJB equation is nonlinear because of the operation of minimization in the 
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RHS of equation (2.9). There are a number of books written about the Dynamic 

Programming approach [3, 10, 19–21, 26, 30, 34]. Several analytical solutions to this 

type of control problems have been obtained by perturbation approach [3, 5-7]. 

In reference [3], the author found the special case of the multidimensional in 

space HJB equation, which may be reduced under certain conditions to the one-

dimensional in space HJB equation. This approach may not be used in the problems 

considered in this dissertation, because the abovementioned conditions are not satisfied. 

Moreover, solutions to the HJB equation, presented in this dissertation, obtained by 

method of characteristics.  

Lets try to implement Dynamic Programming approach to specific problems 

considered in this dissertation.  

 

2.2    Single-Degree-of-Freedom System with terminal cost function 

2.2.1 Problem Statement 

Consider a mass-spring system with deterministic initial conditions, subjected to a 

random excitation. A control force u(t)  is applied to the system, so that its equation of 

motion in terms of a displacement  x(t)  may be written as 

 

( ) ( )
( ) ( )

2

0 0

( ) ,    0

0 , 0
fx x u t t t t t

x x x v

σ ς+ Ω = + ≤ ≤

= =

!!

!
                                                               (2.16) 
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where ( )tς  is a standard zero-mean Gaussian white-noise of unit intensity, or derivative 

of a Wiener process and 2 ( )tσ  white-noise intensity. The control force is assumed to be 

of a bounded magnitude, i.e. 

 

( )u t R≤
                                                                                                              (2.17) 

 

According to the theory outlined in the previous sections, consider minimization 

problem for the mean response energy of the system at the given time instant ft . 

Introduce the Bellman function 

 

( )2 2 2
1 2

1min  E
2

f

u R
t t

H x x<
=

 = Ω + 
 

                                                                      (2.18) 

 

and a set of new state-space variables 

 

( ) ( ) ( )2
1 2 2 1,  x x x x u t t tσ ς= = −Ω + +! !                                                                     (2.19) 

 

The function H should satisfy the following HJB equation  

 

( )2 2
2

2 1 2
1 2 2 2

min 0
2u R

tH H H H Hx x u
t x x x x

σ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂≤

 
+ − Ω + + = 

 
                                   (2.20) 
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with condition ( ) ( ) 2 2 2
1 2 1 2, , 1 2 ( )fH x x t x x= Ω +  imposed on H at final instant  ft t= . 

 Solution for the minimum in the left hand side (LHS) of the equation (2.20) yields 

( ){ }2 2min u R u H x R H x∂ ∂ ∂ ∂≤ = − , where 

 

( )2sgn ;   sgn  z = 1 for 0,  sgn z = 1 for z<0u R H x z∂ ∂= − + > −                             (2.21) 

 

Then, by introducing backward time ft tτ = − , the problem (2.20) is reduced to the 

following degenerate quasilinear PDE of parabolic type 

 

( )2 2
2

2 1 2
1 2 2 22

H H H H Hx x R
x x x x

σ τ∂ ∂ ∂ ∂ ∂
∂τ ∂ ∂ ∂ ∂

= − Ω − +               (2.22) 

 

with initial condition ( ) ( ) 2 2 2
1 2 1 2, ,0 1 2 ( )H x x x x= Ω + . If the solution is obtained for the 

PDE (2.22), the optimal control law is defined by the relation (2.21) for the given 

system's state ( )1 2,   at given instant  fx x t tτ = − . As long as the problem (2.22) is 

solved, the optimal control law can be designed using relation (2.21). 

 

2.2.2 Analytical solution to the HJB equation for an “outer” domain 

 

STATEMENT 1. The function 
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( ) ( )

( ) ( ) ( )

2 2
2 2

1 2 2 1

2

0

1 ( ) ( ), , sin 1 cos
2

2; ,

Rsgn x Rsgn xH x x x x

B B d
τ

τ τ τ

τ τ σ γ γ

     = − Ω + Ω + − Ω    Ω Ω     

+ = ∫

"

   (2.23) 

 

provides an exact solution to the Cauchy problem for the equation (2.22) within the 

domain D defined by the following inequality 

 

( )1 2 2   0Rx x xτ τ = > ≥ Ω 
D , , : ,                                                                                 (2.24) 

 

Proof. Upon substituting expression (2.23) into equation (2.22) the latter is 

reduced to 

 

2
2

2 2 2
( )sin ( ) sinR Rsgn xx Rsgn x R xτ τΩ = − − Ω

Ω Ω
                                                    (2.25) 

 

This equality is satisfied identically within domain D, as defined by the inequality (2.24) 

and thus (2.23) is solution to equation (2.22) indeed. Q.E.D. 

 

COROLLARY 1. The control law 

 

( )2sgnu R x= −                                                                                                             (2.26) 
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is optimal within the “outer” domain D defined by the inequality (2.24). The proof is 

straightforward: relevant partial derivative of H is substituted into expression (2.21) and 

inequality (2.24) is used for its reduction. For vanishingly small R this simple "dry 

friction" control law becomes optimal everywhere except for a vanishingly small strip 

where the opposite to the inequality (2.24) holds. This is a limiting case of weak control, 

which can be studied by asymptotic methods. The dry friction control law for terminal 

cost function is sometimes called a suboptimal one, as being “asymptotically optimal” for 

vanishingly small R (case of “weak control”). 

 

COROLLARY 2. If ( )0
1 2, ,H x x τ  is the solution to the problem (2.22) for the 

case ( ) 0tσ ≡ , the following bounds do exist then within domain (2.24): 

 

( ) ( ) ( ) ( )0
1 2 1 20 , , , , 1 2H x x H x x Bτ τ τ≤ − =  

 

This estimate follows directly from an analytical solution (2.23) and illustrates well-

known fact, that random excitation tends to increase a mean value of functional compare 

to one for deterministic problem. 

 

2.3    Single-Degree-of-Freedom System with integral cost function 

2.3.1 Problem Statement 

Consider problem similar to the one, described in the foregoing section (2.19), but 

with different cost function. More precisely, consider the integral cost function, with the 
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mean system’s energy being the function to minimize. The Bellman function may be 

introduced as following 

 

( )2 2 2
1 2 1 2

1( , , ) min E '
2

ft

u
t

S x x t x x dt
 

= Ω + 
  
∫         (2.27) 

 

The corresponding HJB equation in this case, will look similar to equation (2.20) with a 

term, added into the equation due to (2.27) 

 

( )
2 2

2 2 2 2
2 1 1 22

1 2 2 2

( ) 1min 0
2 2u R

S S S S t Sx x u x x
t x x x x

σ
≤

 ∂ ∂ ∂ ∂ ∂+ − Ω + + + Ω + = ∂ ∂ ∂ ∂ ∂ 
    (2.28) 

 

with condition at final time instant 1 2( , , ) 0fS x x t = . Introducing backward time ft tτ = − , 

and calculating the minimum with respect to u 

 

2

Su Rsgn
x

∂ = −  ∂ 
           (2.29) 

 

yields the same control law as in (2.21) but for function S, so that the HJB equation is 

 

( )
2 2

2 2 2 2
2 1 1 22

1 2 2 2

( ) 1
2 2

S S S S Sx x R x x
x x x x

σ τ
τ

∂ ∂ ∂ ∂ ∂= − Ω − + + Ω +
∂ ∂ ∂ ∂ ∂

     (2.30) 
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and has to be solved with the initial condition 1 2( , ,0) 0S x x = . Solution to the nonlinear 

PDE (2.30) provides the optimal control law (2.29). 

 

2.3.2 Analytical Solution to the HJB Equation for an “outer” domain 

Lets introduce the "outer" domain, defined as 

 

( )( )1 2 2 2x , , : cos 1Rx xτ τ
τ

 = > Ω − Ω 
ΓΓΓΓ         (2.31) 

 

STATEMENT 2. The function 

 

( ) ( )2 2 2 22
1 2 1 2 1 2 12

2

2

2

0

1 sgn( , , ) cos( ) 1 sin( )
2

sin( ) ( ),  

( )where ( )
2

R xS x x x x x x x

R

d
τ

τ τ τ τ τ

ττ τ

σ χτ χ χ

 = Ω + + Ω + Ω − − Ω Ω + Ω
Ω − + Λ Ω Ω 

Λ = ∫

   (2.32) 

 

is the exact solution to equation (2.30) within Γ . 

Proof.  Substituting (2.32) into equation (2.30), results after some cancellations in 

 

2
2

2 22 2

sgn(cos( ) 1) (cos( ) 1)R R xR x R xτ τ τ τ− Ω − − = − Ω − +
Ω Ω

               (2.33) 
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It can be seen by inspection that two sides of equation (2.33) are indeed equal if 

inequality (2.31) holds, thereby indicating that (2.32) is the solution to the HJB equation 

(2.30). The "inner" domain here represents a strip of a finite width in 2x , infinite in 1x±  

direction and symmetric with respect to 2 0x = . It is worth mentioning that with increase 

of backward time τ to some certain value and beyond, inequality (2.31) will always hold. 

In this case the "inner" domain will be shrinking to a line 2 0x = . The solutions within the 

"inner" domains for both abovementioned problems (2.31) will be obtained numerically 

in the next section. 

 

2.3.3  Analytical Solution to the HJB Equation for Boltz cost function 

Having obtained solutions for the Mayer (Bratus et. al., 2000) and Lagrange 

(Iourtchenko 2000) cost functions one can develop solution to the Boltz problem. A 

linear combination of these solutions will represent an analytical solution for the Boltz 

cost function, within the "outer" domain. Denote the Bellman function, corresponding to 

the Boltz problem as 

 

( ) ( )2 2 2 2 2 21 2
1 2 1 2min E ( ) ( ) E '

2 2

ft

boltz u f f
t

a aS x t x t x x dt
    = Ω + + Ω +         

∫     (2.34) 

 

The HJB equation for this case is the same as (2.30), with the last term in the RHS 

multiplied by 2a . The initial condition for the Boltz problem would be taken from the 

Mayer problem as ( )2
2

2
1

2
21 2/1)0,,( xxxxSboltz +Ω= . Then, a linear combination of 
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solutions (2.23) and (2.32) is a solution to problem (2.34) within the following "outer" 

domain G, defined as 

 

( ) ( ) ( )













 Ω−

Ω
−Ω

Ω
>+= ττττ sinacosaRaaxxx 1221221

1:,,G      (2.35) 

 

The optimal control law for the Boltz cost function is defined as 

( )2/sgn xSRu Boltz ∂∂−= . It is possible to coordinate the contribution of each solution into 

formula for final solution by using different values of these factors. 

The solutions for the terminal, integral and Boltz cost functions are valid for 

arbitrary temporal variations of noise intensity σ(t). Consequently, these results can be 

directly applied to the problems with time varying noise intensity, such as earthquake for 

instance. For the constant value of noise intensity, which is considered in this work, 

4/)( 22τστ =Λ  and 2/)( 2τσ=τΒ . 

Concluding this section the next, very important fact should be stressed here. 

Namely, since the exact explicit analytical solutions are found, the exact boundary 

conditions, rather then approximate ones (Bratus, 1975), are imposed for numerical 

simulations of the HJB equation. Therefore the optimal control laws obtained numerically 

by means of the “hybrid” method are high precision ones, valid for any, not small values 

of R and σ. 
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2.4     Numerical simulation of the HJB equation for an “inner” 

domain 

2.4.1 Numerical Method 

To find an optimal control law for all values of 1 2, ,x x τ  one must find solution to 

the equation (2.22) and (2.30) within the “inner” domain. The available analytical 

solutions are extremely helpful in handling a problem of infinite overall domain, since it 

can be used to obtain boundary conditions for numerical solution of these equations 

within a bounded expanded “inner” domain. Specifically, the following computational 

domain Q was used for numerical solutions 

 

2 2 1 1,x d x d≤ ≤                                                                         (2.36) 

 

Here 2d  should be taken so that, inequality (2.24) or (2.31) holds for all values of 

backward time. As long as both the HJB PDEs are of a parabolic type in 2  and xτ , the 

boundary conditions (BCs) should be assigned on the top and bottom part of 

computational domain, that is, at 2 2x d= ± . This can be very simply implemented with 

the use of the analytical solutions. 

On the other hand, both PDEs are hyperbolic in 1  and  xτ , with characteristics of 

the hyperbolic part being 1 2 2 1,   constdx d x x xτ τ= − − = . Therefore, 1x  decreases along 

characteristics if 2 0x > and increases if 2 0x < . Thus, the BCs in 1x  should be assigned 
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along those parts of the boundary 1 1x d= only, where the characteristics enter into Q, that 

is, for 

 

1 1 2 1 1 2  if  0,     if  0x d x x d x= > = − <                                                                          (2.37) 

 

This part of the boundary will be denoted by Q1. It is illustrated by bold lines in Figure 1, 

where directions of characteristics are also shown (by arrows). At the remaining part of 

the boundary 1 1x d= no BCs are needed. 

 

 

 

 

 

 

 

Figure 1. Computational domain for numerical simulation of the HJB equation 

 

Numerical solution to both equations is based on the explicit and unconditionally 

stable DuFort-Frankel scheme (Anderson et al., 1984). The necessary values of the 

function H and its derivatives at the boundaries are easily obtained from the analytical 

solutions. Let, for instance ,
k
i jH  be value of H at the point 1 1 2 2, , ,  i j kx ih x jh kτ τ= = = ∆  

1 2 1 2where , ,   are steps in , ,h h x xτ τ∆  respectively. Then 

 

X2 

X1 

d2 

-d2 

-d1 d1 
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( )( ) ( )( ) ( )( )
( ) ( )( ) ( )

1 1 2
, , 2 1 1, 1, 1 2 , 1 , 1

2 2 1 1
2 , 1 , 1 2 , 1 , , 1 ,

1 2 2 2
2 2 ;   

k k k k k k
i j i j i j i j i j i j
k k k k k k k
i j i j k i j i j i j i j k

H H jh h H H ih h H H
R h H H h H H H H

τ
σ σ σ τ

+ −
+ − + −

− +
+ − + −

∆ − = − − Ω − −
− + − + − =

     (2.38) 

 

Equations (2.38), representing a discretization of (2.22), allow us to determine values of 

H at all nodal points in Q except for those at Q1. To find values of H at Q1, we represent 

1H x∂ ∂  at Q1 in the form 

 

( )

( )
1 1

1 1

1, 2, 3, 2
1

1 1

, 1, 2, 2
1

1 1

3 4
2

3 4
2

k k k
j j j

x d
k k k
m j m j m j

x d

H H HH o h
x h

H H HH o h
x h

∂
∂
∂
∂

=−

− −

=+

− + −
= +

− +
= +

                                                              (2.39) 

 

Using formulae (2.39) in equations (2.38) for i = 1 and i = m, one can find 

solution along Q1.  Finite-difference scheme for the Lagrange and Boltz cost functions 

will be very similar to one, described above. 

The calculations were performed for 1Ω = . Consequently, it is easy to show that 

inequality (2.31) is bounded within Ω≥ Rx 5.12 . Therefore, the computational domain 

of the following size 421 == dd , is considered.  The following values of increments in 

the finite-difference scheme had been used: 001.0;05.021 =∆== τhh , thereby satisfying 

the condition 2,1, =<<∆ jh jτ , as suggested by Anderson et. al. (1984). The 

convergence of the numerical solution had also been verified by repeating calculations 

for selected cases with twofold reduction of both spatial steps. 
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For the case of a stationary white-noise excitation the important nondimensional 

parameter is used as ( )µ σ σ σ σ= = = =R Rc c( ) ( ) ; ,Ω ∆ ∆ Ω Ω2 22 3 2  . Here ∆  is 

clearly seen to be a static displacement due to a constant force with magnitude being 

equal to that of the maximum control force, whereas σ c  is a steady-state root mean 

square (RMS) displacement response to a white-noise of a SDOF system with critical 

value of linear viscous damping. 

 

2.4.2 Results of numerical simulation for terminal cost function 

Obviously the best way to represent the results is to compare the system` energy 

alternation in time for controlled and uncontrolled systems. However it is proved to be 

time-consuming procedure. Namely, to do this one should solve numerically the HJB 

equation on every time step, determine the sign of the optimal control law, return to the 

Monte Carlo simulation and proceed to the next time interval. Therefore, presentation of 

results will be in the form of Bellman function and its derivative. 

Figure 2 illustrates level lines of expected energy ( ) 1,, 21 =τxxH  for different 

values of the "backward" time tt f −=τ  and µ = =2 1414.  . The values of H inside 

the enclosed curves, for the corresponding values of backward time, are less than unity 

and consequently more the unity outside these enclosed curves. The solution is clearly 

seen to be anti-symmetric within the lower half of the phase plane. Progressive 

"shrinking" of the enclosed areas is seen with decreasing “backward” time τ  - therefore 

with real time t approaching the final time instant. This illustrates actual reduction of the 

original response energy to its final value H = 1 (which is used as a label for all these 
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curves). Figure 3 illustrates evolution of the corresponding switching lines on the phase 

plane, defined as the lines with ∂ ∂H x2 0= . They are used for choosing proper sign, or 

direction for the optimal control force, as long as the above partial derivative is positive 

above the relevant switching line and negative below it. 
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Figure 2. Level lines of expected energy ( ) 1,, 21 =τxxH  and µ = 1414.   

for different values of τ : 0 for solid, 4π for dashed, 2π  for dash-dot, π for 

dotted. 
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Figure 3. Switching lines in phase plane for 414.1=µ  for different values of τ:  

0 for solid, 4/π  for dashed, 2π  for dash-dot, π for dotted. 

 

Figure 4 illustrates similar level lines of the expected energy H = 1 for the case 

µ = ⋅ =15 2 2121. . , which corresponds to higher R. It can be seen clearly, that larger 

reduction of the response energy is possible with the increased upper bound R on the 

available control force, that is, with increased control resources. Namely, value of energy 

at any given instant τ, which can be reduced to H = 1 by the time instant ft , is found to 

be larger than one given in Figure 2 for the same τ but with the smaller R.  
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Figure 4. Level lines of expected energy ( ) 1,, 21 =τxxH  and 121.2=µ   

for  different values of τ : 0 for solid, 4π for dashed, 2π  for dash-dot, π for 

dotted. 

 

The corresponding switching lines, as shown in Figure 5, are seen to lie further 

from the abscissa than those in Figure 3 (for the same nonzero time instants). As long as 

this abscissa corresponds to the simple dry-friction control law, this means that increasing 
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bound on the available control force R makes the optimal control law less close to the 

asymptotically suboptimal one, which corresponds to the case of a weak control. 
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Figure 5. Switching lines in phase plane for 121.2=µ  and different values of τ :  

0 for solid, 4/π  for dashed, 2π  for dash-dot, π for dotted. 

 

Figure 6 and Table 1 contain further results of numerical evaluation of the dry-

friction control law. In the asymptotic theory, where both R and σ 2  are assumed to be 

proportional to a small parameter, the difference in the values of the minimized (energy) 
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functional is known to be proportional to the same small parameter; it is precisely in this 

sense that the control law (2.21) may be regarded as a suboptimal one. The present 

solution provides a possibility for numerical evaluation of the "degree of suboptimality" 

for finite values of the supposedly small parameters. Namely, relative differences 

( ) HHH sub −=δ were calculated for two different time instants. Here H is the result of 

the present "hybrid" solution for the strictly optimal control case, whereas subscript  'sub' 

refers to the case of the "suboptimal" control. These values of H for the suboptimal case 

were calculated by applying the basic procedure for calculating the hybrid solution to the 

appropriately modified HJB equation (2.22) – namely, with the term 

( ) 222 sgnby  replaced xxHRxHR ∂∂−∂∂− . Figure 6 illustrates lines of constant level of 

δ  in the phase plane for 5.1, == µπτ . Two (anti-symmetric) peaks can be seen here, 

with a valley containing saddle-points between them. The peak value was found to be 

0.7376. The same double-peak pattern has been observed for other values of µ . 

The results of evaluation of the suboptimal dry-friction control law vs. the optimal 

one are summarized in the Table 1. Here maximal values of δ within the phase plane are 

presented for different values of R and two different time instants. As should be expected, 

the deviation from perfect optimality increases monotonously with R, or µ , within the 

range considered. The case µ <<1 may be regarded as a suboptimal one indeed, and 

even at 1=µ  the maximal difference in H is seen to be about 15 per cent  
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Figure 6. Level lines of relative difference, ( ) HHH sub −=δ  for 5.1=µ , 

obtained for the cases of optimal and ‘suboptimal’ (dry-friction) control laws  

 

 µ  0.5 0.8 1 1.5 2 2.5 

τ         

2/π   1.7 10-2 7.54 10-2 0.155 0.606 1.718 4.16 

π  1.25 10-2 6.26 10-2 0.142 0.757 2.949 10.33 

Table 1. Maximal relative difference in energies ( )[ ]max ,x x subH H H1 2 − ,  

as obtained for the cases of optimal and "suboptimal" (dry-friction) control 
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only. On the other hand, larger increases in H with deviations from the perfectly optimal 

control can be seen at 5.1=µ , and especially at values higher than two. 

 

2.4.3 Results of numerical simulation for integral and Boltz cost function 

Figure 7 demonstrates the switching lines 0/ 2 =∂∂ xS  for the terminal and 

integral types of cost functions evaluated for 2=µ  at two different instants of 

backward time. This plot clearly shows how different two optimal control laws may be. 

In particular, optimal switching lines for integral control are seen to be much less 

sensitive to the final control time then those for the terminal control. 

Because the switching line 0/ 2 =∂∂ xS  plays crucial role in defining the optimal 

control law another set of switching lines is to be presented. Figure 8 demonstrates the 

switching lines obtained for the Mayer, Lagrange and Boltz cost functions for µ=2.121. It 

seems that switching lines for the Lagrange and Boltz type cost functions are not very 

much different compared to one corresponding to the Mayer cost function. This type of 

behavior was observed during the all backwards time. As a result, in a sense of optimal 

control law, the Boltz problem can be better "approximated" by the Lagrange problem, 

for the specific types of cost functions, taken in this paper. Nevertheless, it is clear that all 

of these problems provide different, unique optimal control law. 
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Figure 7. Comparison of switching Lines for Mayer and Lagrange cost functions.  

Solid – the Mayer cost function, dashed – the Lagrange cost function for 2π=τ . dash-

dot – the Mayer cost function, dash-dot-dot – the Lagrange cost function for π=τ . 
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Figure 8. Comparison of switching lines for Mayer, Lagrange and Boltz cost functions.  

Solid – the Mayer cost function, Dashed – the Lagrange cost function, Dash-dot – the 

Boltz cost function at π=τ . 

 

 



 34 

2.5    Multi-Degree-of-Freedom System with terminal cost function 

For problems considered in Sections (2.2) and (2.3), equation of motion of 

dynamic system is linear. Therefore, it seems reasonable to try to extend the ‘hybrid’ 

solution method to the case of multi-degree-of-freedom systems. 

 

2.5.1 Problem statement 

Consider a randomly excited controlled system with n degrees of freedom, 

governed by the matrix equation of motion (Bratus et. al., 2000) 

 

( ) ( ) ( )ttBtUKXXM ς+=+!!                                                                                (2.40) 

 

Here X(t) and U(t) are now n-dimensional column vectors of displacements and control 

forces respectively, with components ( ) ( ) nitutx ii ,...,1 ,  and  = ; M and K are symmetric 

positively definite −× nn matrices of masses and stiffnesses respectively, ( )tς  is a vector 

of independent random Gaussian white noises with unit intensities; ( ) ( )  tbtB ij ;=  

.,...,2,1, nji =  (Just for brevity the original control forces, as well as transformed control 

forces – components of vectors  U  and  V  respectively – are shown here as functions of 

time only, whereas for a system with feedback control they may depend on all system’s 

state variables). The following bounds are imposed on the possible magnitudes of control 

forces: 

 

( ) ( ){ } 0 ,,...,1, :    where, >=≤=∈ iiiiRR RniRutuSStU                                            (2.41) 
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The total response energy at time instant t is ( )( ) ( )[ ]XKXXXMW ,,21 += !! , where 

parenthesis denotes dot product of vectors. The matrices of mass and stiffness can be 

diagonalized by a nonsingular transformation with njiaAnn ij ,...,1, ,matrix  ==−× , 

such that 

 

2  , Ω== KAAIMAA TT                                                                                                (2.42) 

 

Here I is the identity matrix, whereas matrix 2Ω  is diagonal with elements nii ,...,1,2 =Ω , 

and superscript “T” denotes transposal. Furthermore, A may be represented as a product 

of an orthogonal matrix Q and a certain diagonal matrix. Introducing now modal 

coordinates (Meirovitch L. 1986) as XAY 1−=  and using the relations (2.42), the 

equation of motion (2.40) and the expression for energy are reduced respectively to 

 

( ) ( ) ( )ttBAtUAYY TT ς+=Ω+ 2!!                                                                                    (2.43) 

 

( )( ) ( )[ ] ( ) ( ) ( )[ ]∑ Ω+=Ω+=
=

n

i
iii tytyYYYYW

1

2222 21,,21 !!!                                                  (2.44) 

 

In view of inequalities (2.41) the column vector V(t) of transformed control 

forces, with components 
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( ) ∑=
=

n

j
jjii tuatv

1
)(                                                                                                           (2.45) 

 

belongs to a set 

 

( ) ( ){ } j

n

j
jiiiii RanitvtvS ∑==≤=

=1
 ,,...,2,1,  : ρρρ                                                       (2.46) 

 

The transformed equation (2.43) may be rewritten in a space state (scalar) form as 

 

( ) nitvyppy iiiiiii ,...,2,1  ,, 2 =++Ω−== ξ!!  

( ) ( ) ( ) ( ) ( )∑=∑=
==

n

j
jkjikik

n

k
kii tbatttt

11
  , σςσξ                                                                       (2.47) 

 

Introducing “backward” time tt f −=τ , the HJB equation for H can be written as 

 

( ) ( )[ ] ( ) ( )PP
Tn

i
iiiiiii HTrpHpHyyHpH σσρτ 21

1

2 +∑ ∂∂−∂∂Ω−∂∂=∂∂
=

               (2.48) 

 

the initial condition being 

 

( ) ( ) ( )2 2 2

1
, ,0 1 2 E

n

i i i
i

H Y P y p
=

= Ω +∑                                                                             (2.49) 
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Here ( )jiijPP ppHnnH ∂∂∂−× 2 and   of  matrices are  and σσ  respectively, whereas terms 

with iρ  in the HJB equation (2.48) appear due to minimizing over iv of the original terms 

with ( )ii pHv ∂∂ . This minimization, in view of the inequalities (2.46), yields 

 

( ) 0for  1sgn ,0for  1sgn  ,sgn <−=>+=∂∂−= zzzzpHv iii ρ                                   (2.50) 

 

2.5.2 Analytical Solution to the HJB Equation for an “outer” domain 

 

It can be verified, by direct substitution, that the function 
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is the solution to the problem (2.48), (2.49) within domain 
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Indeed, substituting the expression (2.51) for H into the PDE (2.48) yields the equation 
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which would be certainly satisfied if it is satisfied simultaneously, term by term, for every  

i. Thus, the proof is reduced to the previously considered one for a SDOF system. The 

optimal control law within the domain D is found to be 
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which is clearly seen to be the dry-friction law for the  i-th DOF. Thus, as in the case of 

SDOF, this law differs from the perfectly optimal one within the “inner” domain only. 

The above analysis provides a complete solution to the problem of optimal 

control, as long as the required control forces for transformed, or modal coordinates 

(vector V(t)) can be implemented indeed. In certain applications this may not be the case, 

and one should generate vector U(t)  of the control forces, applied to the original 

coordinates. Then one should resolve – for every point of the state space and every time 

instant - the set of linear algebraic equations (2.45) in terms of ( ) ( )ttv    wheretu fij −,  are 

optimal control forces, as governed by relations (2.50). The natural question arises then: 

will the resulting original control forces – components of the vector U  - satisfy the 

original bounds (2.41)? Regretfully, the answer is negative in general, the reason being 

nonlinear operation of maximization, which “sneaks in” between direct modal 

transformation Y = A-1X and its inverse. 
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To illustrate this effect and outline the proposed procedure for generating a 

reasonable control strategy consider first a simple case of two DOFs (n = 2). Let a 

primary mass be attached to a rigid base via primary elastic spring, and a secondary mass 

be attached to the primary one via secondary spring. Then, using subscripts 1 and 2 

respectively for primary and secondary masses/stiffnesses, as well as for their 

displacements and corresponding control forces, the matrix equation of motion (2.40) 

may be written, with 
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The matrix A, which transforms the system to the form (2.43), may be written as 
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This results in the transformed equations (2.47) with 

 

( )( )2
1

2
2122,1

2 4221  ,2,1, kkkkimiii +±+===Ω λλ                                         (2.56) 

 

These explicit expressions for elements of the matrix A in terms of original 

masses and stiffnesses should be used in the equations (2.45) and (2.46) for the 

transformed control forces and their bounds respectively. 
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It can be seen that only four pairs of optimal values of the transformed control 

forces are possible, namely 2
*
21

*
1 , ρρ ±=±= vv  , with different combinations of positive 

and negative signs within various domains of space state and time (the optimal values are 

denoted here by star superscripts, which will also be used for  the optimized original 

control forces). Resolving relations (2.45) in terms of the original control forces for each 

of the above combinations of signs (with coefficients as defined by expressions (2.55)) 

yields 
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The resulting four pairs of values *
2

*
1 ,uu  define four points on the 21 ,uu  plane. 

We may denote them as A, B, C and D, using the same notation as for the corresponding 

cases as defined by the expressions (2.57) (with the upper (plus) sign being used for the 

case A in the double-sign expression, and lower (minus) - for the case D). 

STATEMENT 3. The quadrangle ABDC is a rectangle, circumscribed around the 

rectangle 2211 , RuRu ≤≤  (see Figure 9). 



 

To prove that vectors, say, CDAB   and    are collinear one can directly compare 

their angles by calculating, from expressions (2.57), relevant differences in coordinates  
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and it is clearly satisfied by the pair 2211 , RuRu == . It can be shown similarly, that 

( ) ( ) ( ) .,,,,, 212121 CARRCDRRBDRR ∈−∈−−∈−  Figure 10. illustrates positions of the 

rectangle ABDC for several values of α  and  .1,2 21 == RR  

Figure 10. Optimal transformed control forces for various stiffnesses ratios, 

as represented by the corresponding values of the angle α  (in degrees): 0 – solid,    

15 – dashed, 30 – dash-dot, 45 – dotted, 80 – dash-dot-dot.  
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This example shows clearly, that any pair of possible values of the optimal transformed 

control forces *
2

*
1 ,vv  corresponds to such a pair of the original control forces *

2
*
1 ,uu , that 

one of the conditions (2.41) is always satisfied whereas the other one is always violated. 

For example, 1,20 2211 =>=<< RuRu  for the highest corner point of the dashed 

rectangle in Figure 10 ( o15=α ). A reasonable way to handle this problem is to project 

the apexes of the rectangle ABDC onto the nearest sides of the rectangle 

2211 , RuRu ≤≤ . These projections are denoted in Figure 9 by the same letters with 

primes. The resulting control laws may be called “semioptimal” – literally (!), since one 

of the forces is kept at its optimal value, whereas the other one is reduced in magnitude in 

order to comply with the relevant bound (2.41). And this reduction is made along the 

shortest route on the plane of control forces. 

This simple example illustrates the approach, which is suggested for a general 

MDOF system with an arbitrary n. Let nju j ,...,2,1 ,* =  be solution to the equation set 

(2.45) for the corresponding domain τ,, PY . Denote by −+ JJ   and   lists of those indices 

j, for which, respectively, jjjj RuRu −<> **   and  . The “semioptimal” control law, which 

may be suggested then for this domain, is as follows (it is denoted by adding bars) 

 

#
−+−+ ∉=∈−=∈+= JJjuuJjRuJjRu jjjjjj for  ;for  ;for  ****                      (2.58) 
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2.6    Multi-Degree-of-Freedom System with integral cost function 

2.6.1 Problem statement 

Consider now the case of integral cost functional for the system (2.43), by 

introducing the following multidimensional counterpart of the Bellman S-function in 

transformed state variables 
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The corresponding HJB equation, similar to one for SDOF (2.30) is then 
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2.6.2 Analytical Solution to the HJB Equation for an “outer” domain 

 

Consider now equation (2.60) with the initial condition S(Y,P,0) = 0. The 

following function 
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provides the solution to the corresponding HJB equation (2.60) within the “outer” domain 

 

( ){ }1cos :,, 2

1

−ΩΩ>==
=

τρττ iiiiii

n

i
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The optimal control law within the domain (2.62) is found to be, similarly to the 

SDOF case, the dry-friction law 

 

( ) iiiii ppSv sgnsgn ρρ −=∂∂−=  , i = 1, 2, …, n 

 

Numerical solution to this type of problems represents tremendous difficulties, 

because the multidimensional HJB equation has to be solved. However, for integral cost 

function, similar to the case for a SDOF system, it is easy to show that with τ increasing, 

the “outer” domain will expand everywhere but lines 0, 1,2,...ip i n= = . Thus, it seems 

reasonable to apply simple dry friction control law, as long as in this case there is no need 

to solve this multidimensional HJB equation. For the terminal cost function, however, a 

certain inaccuracy will always exist in this case, which may be estimated from the case of 

SDOF system, explained in Section 2.3.2. 
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2.7    Dry friction is the optimal control law for steady-state response 

 

In many potential applications of active vibration control systems (such as in 

earthquake engineering, for shipboard and offshore equipment in rough seas, etc.) the 

main objective may be just to reduce the level of sustained vibrations. Therefore, a 

special study seems worthwhile for the case of a steady-state response, which is 

established after the (asymptotically stable) controlled system “forgets” its initial state. 

The complete “hybrid” analysis, as described above, seems to be very difficult for this 

case, as long as it requires marching in time with numerical solution of the HJB equation 

up to very large times. On the other hand, study of this special case can be made using 

just the analytical solution (2.32) if the integral cost functional is used as the optimization 

criterion. The solution shows the simple dry-friction control law to be optimal for this 

case of a “long-term control”. Certain estimates of the overall response level are obtained 

also in this section for the case of constant intensity of the white-noise excitation, where 

the steady-state response is stationary as well. This is done both by direct energy balance 

analysis through application of the SDE Calculus and by the stochastic averaging 

method, which is used to obtain certain reliability estimates for the optimally controlled 

system. 

Substituting the solution (2.32) into the expression (2.29) yields 

 

xRxRu !sgnsgn 2 −=−=                                                                                              (2.63) 
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thereby showing the simple dry-friction control law to be optimal now within the 

outer domain. This domain is clearly expanding with increasing the “backward” time 

∞→−= ττ   withand tt f ,  the inner domain – one where the opposite one to the 

inequality (2.31) holds – shrinks down to the −2x axis. This means that the control law 

(2.63) is the optimal one for “long-term” control of the steady-state response, 

irrespectively of the magnitudes of the excitation intensity and/or bound for the control 

force. This result may be directly extended to MDOF systems with Lagrange cost 

function, as long as a mean system’s energy is a subject to be minimized. This result is 

extremely important, because no numerical simulation to the HJB equation, which is one 

of the most difficult and time consuming part of optimal control problems, is needed at 

all. 

 

2.8   Conclusions 

 

The Hybrid solution method for the HJB equations proved itself to be an efficient 

approach to optimal bounded control of random vibrations. The essential part of the 

approach is an analytical solution within a certain “outer” domain of the phase plane for 

SDOF systems. The solution provides both optimized values of the cost functional (of the 

response energy in this work) and the optimal control law; the latter has been found to be 

just a simple “dry-friction” law in this work. The analytical solution is supplemented by 

the numerical one within the remaining inner domain, and provides boundary conditions 

for the latter, thereby being of great help for developing the complete hybrid solution. 
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The numerical solution provides switching lines (surfaces) within inner domains, which 

correspond to the desired optimal “bang-bang” control. For a special case of so-called 

“long-term” control (integral cost functional of a steady-state response) the dry-friction 

control is shown to be the optimal one within the whole phase plane. The above solutions 

to problems of optimal control have been extended to MDOF systems, using 

transformation to modal coordinates. 
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3. Nonlinear random vibrations of Piecewise Conservative 

systems 

 

In this Chapter a new name will be introduced for a certain type of nonlinear 

systems. This type of systems appears as a result of application of optimal bounded in 

magnitude control force. Analysis of motion of such type of system is to be profoundly 

described by means of a newly developed Energy Balance method. Analytical results, 

obtained with the Energy Balance method will be compared with results of numerical 

simulation of governing equation of motion. 

 

3.1 Piecewise Conservative systems 

 

Study of nonlinear systems is much more difficult than that of linear systems. For 

the latter principle of superposition holds, which significantly simplify a way of finding 

solution. There is no such thing as superposition principle for nonlinear systems and 

therefore each nonlinear system has to be treated in its own way. There are several well-

known methods developed for treating nonlinear systems, such as averaging methods 

(Dimentberg 1988, Lin et. al. 1995), perturbational approach and others.  

However, there are some categories, which nonlinear systems are divided into, 

based on system’s properties usually. Each of these categories may have its own best way 

of finding solution. For example, a system which stiffness characteristics consist of 

several continuously connected linear parts is usually called as a piecewise linear one. A 
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quasiconservative system is a system, for which an amount of input energy due to 

external excitation is approximately equal to the amount of energy, absorbed by some 

damping mechanism. Lets now consider a new name for a certain nonlinear system, 

namely (Iourtchenko et. al., 2000)    

DEFINITION 1.   Nonlinear vibratory systems with stepwise finite energy losses, 

which appear at discrete time instants only are called piecewise conservative one. 

Typical example of such a system is a vibroimpact system with dominant 

mechanism of energy loss being impacts with imperfect rebounds. It is clear that system 

is conservative always except for instant of impact. Another example is a system with 

externally imposed instantaneous stepwise variations, or “jumps”, of parameters, which 

can either bring in or carry away the system’s energy (pendulum clocks, swings, etc.). It 

may be added, that certain non-conservative systems may be treated as the piecewise-

conservative ones. An example is a SDOF system with dry friction, or resistance force of 

a constant magnitude with its direction being always opposite to that of the system’s 

velocity. By including work of this force into the system’s total energy, one can describe 

energy losses in vibration as being instantaneous, corresponding to reversals of velocity. 

The described kind of phenomena may also be observed in systems with active control of 

a “bang-bang” type, whereby the available control force, as developed by an actuator, is 

of a bounded magnitude; the optimal bounded control law is usually obtained as a 

sequence of “switches” between the given bounds.    
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3.2 Energy Balance Method 

 

These types of energy losses make the vibrating systems nonlinear in general, as 

long as the instants of stepwise variations aren’t known in advance but rather are 

governed by the equations of motion. This nonlinearity greatly complicates analyses of 

the systems’ response to a random excitation. Even for a SDOF system such an analysis 

requires either use of some moment closure scheme, or use of the stochastic averaging 

approach, which is valid only for small energy losses and excitation intensity.  

An alternative method for response prediction is proposed here for a SDOF 

system, subjected to a white-noise excitation. The method is based on a direct balance of 

the expected response energy and therefore is called a Direct Energy Balance method. A 

stochastic differential equation (SDE) for the total response energy E(t) is derived from 

the original equation of motion. A conditional averaging is first applied to this SDE, 

denoted by bar, the condition being initial value of E at the start of a certain response 

cycle. This results in the deterministic ODE 2E D=! , with D being intensity of the 

white-noise excitation, thereby implying linear growth of the (conditional) expected 

response energy with time. After deducting properly evaluated energy loss within the 

cycle, the conditional expectation of energy at the start of the next cycle can be evaluated. 

(The actual value of energy at this instant will be random). The concept of a “cycle” is 

problem-dependent, of course, but it is unambiguously defined by finite relation(s), 

which control the instantaneous energy losses. Thus, in case of a vibroimpact system with 

a single rigid barrier the cycle corresponds to a time interval between two consecutive 

rebounds (or impacts).  
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The above procedure results in a random sequence of values of E at the starting 

instants of various cycles. The unconditional averaging is applied then to this sequence, 

i.e. averaging over all response cycles, as denoted by angular brackets. As long as a 

stationary sequence has a constant mean value, the mean net energy increment per cycle 

should be zero. This results in a simple energy balance relation 

 

2E DT∆ =                                                                                                                  (3.1) 

 

where the LHS is a total mean energy loss per cycle. It is related to the system’s energy 

and/or other state variables by a specific equation for energy loss for a given problem. 

The RHS is a mean energy input per cycle, with T being expected duration of the cycle. It 

can be identified as a solution to the relevant first-passage problem for the response – 

namely as an expected time to arrive at the starting point of the next response cycle after 

start of the present cycle with energy E. This (conditionally) expected time satisfies the 

relevant generalized Pontryagin equation (Lin et. al., 1995), which had been identified 

and analyzed in (Dimentberg et. al., 1999) for the corresponding vibroimpact system. 

Solution T(H) to this PDE, which is to be used in the exact (by itself) relation (3.1), with  

E  replaced by its unconditional mean value, is the challenging part of the approach. It 

may be added, that in general T may also be present in the LHS of the relation (3.1); this 

will be the case where the magnitude of the energy drop depends not only, say, on the 

initial energy of the cycle, but on the instantaneous energy as well.  

 It will be shown later that, a perturbational analysis of the second-order PDE for 

T(E) has been made in (Dimentberg et. al., 1999), with excitation intensity  D  regarded 
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as a small parameter. In a zero-order approximation, D = 0, the PDE is of the reduced 

(first) order, and its exact solution is just the system’s natural half-period, or 

,  where T π= Ω Ω  is the system’s natural frequency. As long as the solution satisfies 

both boundary conditions for the original PDE, this is the case of regular rather than 

singular perturbations. Thus, the solution for the deterministic cycle duration T of the 

system without excitation may naturally be used in the relation (3.1). Relying on the 

above analysis for a vibratory system, a cycle duration time T will be taken as a system’s 

natural period in all example problems considered below. Of course, this would imply 

that the predictions are approximate only for not-very-small D’s. It may be speculated, 

however, that their accuracy should be higher than that of the asymptotic stochastic 

averaging – simply because the latter requires not only small variations of the response 

period, but also small variations of the response energy per cycle (and thus, small losses). 

This general expectation had been confirmed in (Dimentberg et. al., 1999) for a 

vibroimpact system by results of a direct Monte-Carlo simulation.  

Thus, the Energy Balance approach may provide better accuracy then the 

asymptotic one whenever the system’s losses and excitation level are not very small, and 

a single expected value of a certain response characteristic is adequate for a given 

application – for example, to evaluate efficiency of a “bang-bang” control. The type of 

response characteristic to be obtained from the relation (3.1) is problem-dependent. For 

example, expected response energy is predicted in four of five specific problems 

considered in this paper, whereas expected response amplitude, or peak value of the 

displacement, is predicted in the fifth one. The superior accuracy of the energy balance 

approach is demonstrated, by direct Monte-Carlo simulation, for all these problems: 
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relation (3.1) is shown to provide reasonable results far beyond the applicability range of 

the stochastic averaging. 

Possibility for extending this approach to systems with nonlinear restoring forces 

should be also mentioned here. Introducing relevant potential energy function, one can 

obtain the same linear growth law for the corresponding total energy, leading eventually 

to the same energy balance equation (3.1) for the steady-state response. The difference 

for the nonlinear case is in the RHS of this equation, where T should now depend on H, 

that is, on instantaneous starting energy value of the response cycle, even if it is predicted 

approximately as the natural cycle duration for a system without random excitation. For a 

slightly nonlinear system with smooth nonlinearity, with T(E) being linear in E, the linear 

part may be included into the RHS of the equation (3.1), together with the constant one. 

As long as the energy loss in the LHS depends on the same E, the mean response energy 

can be predicted indeed (In general, however, the functions of E in two sides of the 

equation (3.1) may appear to be different, thereby precluding the desired estimate without 

independent information on the relation between these functions). 

 

3.3 Piecewise Conservative systems - vibroimpact system   

3.3.1 Application of Energy Balance method 

 

Consider a SDOF mass-spring system, with a rigid barrier installed with an offset 

h from the system’s static equilibrium position. The equations of motion between impacts 

may then be written as 
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( )2, ,   for  y v v y t y hς= = −Ω + > −! !                                                                                (3.2) 

 

Thus, positive and negative values of h may imply, say, pretension and slack respectively 

in the mooring line of a floating moored body. The excitation ( )tς  is assumed here, as 

well as in all other examples to be a zero-mean stationary Gaussian random white noise, 

with intensity denoted by D. The impact/rebound condition, which should be satisfied at 

time instants *t , when y = - h, may be written, by introducing restitution factor r, as 

 

( ) ( )* *; 0 ; ;0 1v rv v v t y t h r+ − ±= − = ± = − < ≤                                                                  (3.3) 

 

According to the Energy Balance method (Section 3.2) lets introduce total response 

energy E(t) as 

 

( ) ( ) ( ) ( )2 2 2 22 ,   2,  E y U y U y y E y y y v tς= + = Ω = + Ω =!! ! !!                                     (3.4) 

 

and applying conditional averaging for a given  E(0), yields, according to the basic SDE 

calculus  (Dimentberg 1988, Lin et. al., 1995) 

 

( ) ( )2,  0 2E D E t E Dt= = +!                                                                                      (3.5) 
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Energy evolution equation (3.5) may be applied to predict response energy at impact as 

well as conditional mean square impact velocity 

 

( ) ( ) ( ) ( )2 2 2
* * * * *0 0 2,   2 0 2 ,  2E t E Dt v E Dt E E U h h−− = + = + − = − = Ω               (3.6) 

 

The impact/rebound condition (3.3) is applied now to obtain mean square rebound 

velocity and response energy after rebound – that is, at the start of the next cycle: 

 

( ) ( )2 2 2 2
* * * *,   0 0 2v r v E t r E Dt E E+ −= + = + − +                                                      (3.7) 

 

The unconditional averaging as denoted by angular brackets is applied now to the relation 

(3.7). Imposing then stationarity condition for the expected energy at the start of a cycle 

yields the following reduced energy balance relation 

 

( ) ( ) ( ) ( )2

* * 2

2
0 0 ,  ,   0

1
r DT

E E T T t E E
r

= + = = +
−

                                        (3.8) 

 

Unconditional mean square impact velocity can be found now, using equations (3.6) and 

(3.8), as 

 

( )( ) ( )2 2
*2 0 1v E E DT r− = − = −                                                                               (3.9) 
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This result is the same as obtained in  (Dimentberg et al., 1999) for the case h = 0. Of 

course, in general the offset of the barrier h cannot but influence the response through the 

value of T. The cycle duration T in this work is approximated by the system’s natural 

period. The latter can be easily obtained from the equation (3.2) with ( ) 0tς ≡  as  

 

( ) ( ) ( ) ( )1 1
*2 sin 2 sin 2T H H H h Hπ π− −= Ω + Ω = Ω + Ω Ω                           (3.10) 

 

Thus, the solution (3.9) is meaningful for sufficiently small h only, which lead to 

negligibly small variations of T due to second term in the expression (3.10). Thus, the 

system (3.2), (3.3) should be quasiisochronous, although it should still be regarded as a 

strongly nonlinear one. 

It is interesting to compare the “exact” mean square velocity (3.9) (quotation 

marks are applied since the exact value of T isn’t available at present) with its limiting 

value for the case of small impact losses, i.e. 

 

( )2 2
1lim 2 1rAS

v v DT r− → −= = −                                                                            (3.11) 

 

The latter expression can also be obtained by applying asymptotic stochastic averaging 

method to the SDE (3.2) with impact condition (3.3), as described in  (Dimentberg 1988). 

Therefore, it should be valid only for values of 1 - r, proportional to a small parameter. 

Actually both “exact” and approximate solutions, (3.9) and (3.11) respectively, rely on 

approximation of the cycle duration by the system’s natural period; therefore, they are 

based on assumption of small D, and thus (implicitly) on that of small impact losses.  
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However, Monte-Carlo simulations on Figure 11 for the case h = 0 demonstrated  

(Dimentberg et. al., 1999) good accuracy of the energy-balance approach down to values 

r = 0.7 (Actually, the expected response energy was predicted with a good accuracy by  
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Figure 11. Absolute percent deviations of analytical result from numerical one.  

Monte-Carlo simulation for different values of restitution factor r. Solid and dashed lines 

represent results, obtained with the use of α αeq as and  respectively. 

 

this approach with T π= Ω  even for r = 0.6, although the corresponding expected cycle 

duration was found to be rather lower than the natural period at so high level of impact 

losses). And they certainly were found to be superior to the asymptotic results for not-

too-small values of 1 – r. In other words, superior convergence rate of the energy-balance 

approach has been confirmed indeed, for this example, compared with the asymptotic 

approach, which requires small energy variations per cycle. Thus, in this example the 

energy-balance approach provides certain reasonably accurate predictions of the random 

response far beyond applicability range of the asymptotic stochastic averaging method. 
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To calculate a mean unconditional energy one has to take an average over a 

period from (3.5), which gives 

 

( ) ( ) ( )1 0 4
T

o

E t E t dt E DT
T

= = +∫           (3.12) 

 

This expression combining with (3.8) and T π= Ω  provides 

 

( )
2 2

2 2
1 1

4 1 4 1
DT r D rE t

r r
π   + += =   

 −  Ω  − 
           (3.13) 

 

The derived formula (Dimentberg et. al 1999) for mean response energy may be 

used to obtain an improved “equivalent” viscous damping ratio. For this purpose, lets 

compare (3.13) with a value of mean energy of system with viscous or linear damping 

/ 4linE D α= . Comparison will give the following value of equivalent damping 

coefficient  

 

2

2

1
1eq

r
r

α
π

 Ω −=  
 + 

          (3.14) 

 

3.3.2 Subharmonic response  

This section is somehow related to the author’s Master Thesis, where a 

subharmonic response of a vibroimpact system has been considered. As long as the 
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improved formula for non-small impact losses has been established (3.14) for a very 

special system only, it seems natural to consider more general systems: with non-zero 

gaps and/or nonwhite excitation, MDOF systems, etc. The analytical study seems very 

difficult for these cases, as discussed in the previous sections. Therefore, a sort of a 

"brute-force" treatment can be attempted: a direct use of the formula (3.14) as a 

benchmark, with mandatory verification of the resulting predictions by Monte-Carlo 

simulation. Figure 12 illustrates such a benchmark use of the derived equivalent viscous 

damping factor for a much more complicated problem. A SDOF system, with a one-sided 

barrier, is excited by a (narrow-band) sinusoidal-in-time force with random phase 

modulation, and subharmonic response is considered. The barrier is slightly shifted from 

the system's equilibrium position, so that the equation of motion is 

 

( ) ( )22 sin ,  for y y y t t y hα λ ψ ψ ν σξ+ + Ω = = + > −!!! !                                                (3.15) 

 

whereas the impact condition (3.3) is imposed for y =-h (where 1 2,y y y y= = ! ). 

Parameters 2 22, ,λ ν σ ν  represent, respectively, mean square value of the excitation, its 

expected or mean frequency and its relative bandwidth of power spectral density (PSD). 

For the case of small impact losses and small gap h the system (3.2) had been studied in 

author’s Master Thesis, both analytically - by averaging over the period, and numerically. 

Actually, the following Zhuravlev transformation was used in [32,33] 

,  sgn y x h y x x= − =! ! , which reduces the equation (3.15) to 

 

( )2 22 sgn  sgn  sinx x x h x xα λ ψ+ + Ω = Ω +!! !                                                                (3.16) 
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and makes the jump in transformed velocity proportional to  1 - r  (rather than to  1 + r  as 

in (3.2) ). The actual analysis was made for the case of elastic impact  (r = 1), with 

understanding that the asymptotic equivalent viscous damping factor ( )( )1 r π− Ω  can 

be added to the available one in equation (3.16), provided that 1 - r is small (the smallest 

value of r as used in (Dimentberg et. al., 1998) was r = 0.9).      
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Figure 12. Application of eqα  for problem of subharmonic response.  

Solid lines – with trace of impact r = 0.8, α = 0 , dashed lines – without trace of impact 

but α α= =eq 0 06987. Ω   

                         

Figure 12 compares results of application of two different procedures for Monte-

Carlo simulation for the case of subharmonic of the order n = 2, with mean excitation 

frequency being close to 4Ω . The first procedure used solution of the basic equation 

(3.15) with "honest" tracing of the impacts and imposing the impact condition (3.2) with 



 62 

a given value of r; viscous damping factor was assumed to be zero for these calculations 

and the results are represented by solid lines. The second procedure was based on 

numerical solution of the equation (3.16) - which is exactly equivalent to the original 

equation (3.15) in case of a perfectly elastic impact, or r = 1 - with eqα α= , as calculated 

via formula (3.14) for the given  r; the results are represented by dashed lines. Frequency 

responses of the square root of mean square amplitude are presented in Figure 11 for 

cases of perfect and imperfect periodicity of the excitation ( 0 and 0.4σ σ= = ) and r = 

0.8. The correlation between solid and dashed curves for the identical values of σ , 

corresponding to two different ways of accounting for impact losses, seem to be 

reasonable. It is clearly seen in particular, that use of the equivalent viscous damping 

model permits both qualitative and quantitative description of the basic effect - reduction 

of the peak subharmonic response amplitude with increasing excitation bandwidth, or 

random "disorder" in the periodic excitation. 

 

3.3.3 Vibration of secondary structure 

A problem of response of secondary mass is considered in this Section, when 

motion of the primary mass is described by equation (3.2) with impact condition (3.3). 

Such a "cascade" approximation (Dimentberg et. al., 1998) for the whole MDOF 

(nonlinear) vibroimpact system would be adequate at least in the case of small 

secondary/primary mass ratio. Motion of secondary mass may be expressed as 

 

22 s sz z z yα+ + Ω = −!!!! !                                                 (3.17) 
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with z being a relative motion. This approach permits to obtain analytical solution for the 

case of zero impact losses (r = 1) through the use of the following exact solution for 

autocorrelation function ( )yyK τ  of stationary response y(t)  as obtained by (Dimentberg 

et al, 1998). The corresponding quadrature expression for power spectral density 

(PSD) ( )yy ωΦ  of y(t)  has been studied both numerically and analytically and used for 

predicting mean square response of a secondary structure; in particular, peaks of this PSD 

at 2 , 1, 2,...n nω = Ω = were identified. Moreover, successive integration by parts in this 

expression yields the following asymptotic formula for the acceleration PSD at high 

frequencies: 

 

( ) ( ) ( )4lim lim 2
 1 2

yy yy D Q
Q

ω ωω ω ω π
πα

→∞ →∞Φ = Φ =
= + Ω

!!!!                 (3.18) 

 

This limiting value of the PSD of base excitation is directly applicable in case of large 

sΩ Ω , with corresponding mean square response of the secondary mass being 

 

2 2 24z s sDQσ α∞ = Ω                                                (3.19) 

            

 Convergence rate to this high-frequency limit increases with primary damping 

ratioα Ω . The case of inelastic impacts, or r < 1, will be addressed now. It should be 

noted, first of all, that the case of vanishingly small impact losses could be handled by 

asymptotic averaging over the period  (Dimentberg 1988). Specifically, if value of 1 - r is 

proportional to a small parameter (is much smaller than unity), then these losses are 
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found to be equivalent to those due to viscous damping    with the "asymptotically 

equivalent" factor ( )1as rα π= − Ω . Of course, the resulting solution is approximate 

rather than exact. This equivalent viscous damping may be regarded as a "universal" one, 

valid for free vibration also. 

 However, for the random vibration problem at hand another formula for 

equivalent damping (3.14) may be more relevant, as derived by Energy Balance method 

through a direct analytical solution of the vibroimpact problem (with zero viscous 

damping) by the method of moments: 

For the response of secondary structure the PSD of y(t)  is more relevant than its 

mean square value. Therefore, applicability of the improved formula (3.14) for 

incorporating the impact losses should be verified through Monte-Carlo simulations. The 

simulations were based on simultaneous numerical solution of the stochastic ODE (3.2)

with 0α =  together with impact condition and the following ODE for absolute 

displacement of secondary mass x(t) = z(t) + y(t), as derived from the ODE (3.17): 

 

2 22 2s s s sx x x y yα α+ + Ω = − − Ω!! ! !                                   (3.20) 

 

To compare the results with predictions via formulae (3.18), (3.19) the assigned 

values of the restitution factor r were calculated according to the relation (3.14). Damping 

ratio of the secondary mass has been 0.01s sα Ω =  throughout all simulation runs. 

Figure 13 illustrates high accuracy of the asymptotic expression (3.19) with 

"impact magnification factor" Q as calculated via formula (3.18) by using expression 

(3.14) for equivalent damping, down to rather low value of the restitution factor r = 0.72.  
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The limiting condition for Monte-Carlo simulations used to be established from 

analytical data as presented in (Dimentberg et al 1998); for this specific case the 

corresponding natural frequencies ratio was 12sΩ Ω = . 

 

 Figure 13. Application of eqα  for problem of vibration of secondary structure. 

Solid line – numerical result, Dashed line – result of calculation with eqα  

 

Figures 14 represent Monte-Carlo simulation results for z zσ σ ∞ vs. sΩ Ω  are 

compared with the curves, which are reproduced from  (Dimentberg et al., 1998) and are 

based on analytical solution for autocorrelation function ( )yyK τ  for 0.01α Ω = . Good 

correlation is seen once again between simulation results and the analytical ones, based 

on the equivalent viscous damping (3.14). The latter is seen therefore as providing a 

viable simplified approach for incorporating impact losses into random vibration 

analyses.  
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Figure 14. Comparison of analytical with eqα  and numerical results.  

Solid line – numerical result, Dashed line – result of calculation with eqα  

 

 

3.4 Piecewise Conservative systems – inertia controlled system   

 

In this section an externally excited SDOF systems is considered that is controlled 

through system’s inertia   

 

( ) ( )0 1 sgn( ) ,0 1d J R k t R
dt

θθ θ θ ς + + = ≤ < 
! !                 (3.21) 
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This equation may be rewritten, by introducing a new state variable p (Iourtchenko et al., 

2000), as two first order SDEs, which are then supplemented with that for the response 

energy (per unit 0J )  

 

( )

( )
( )

( ) ( )

2 2
0

2 2 2
1

0

,   ( ),  where  
1 sgn

,   ;   ( )
22 1 sgn 1 sgn

p p t k J
R p

p tpE E t J t
R p R p

θ θ ς
θ

ςθ ς ς
θ θ

−

= = −Ω + Ω =
+  

Ω= + = =
+ +      

! !

!
    (3.22) 

  

The last Stratonovich SDE is transformed to the Ito one, by applying Wong-Zakai 

correction, and the conditional averaging is applied then, with condition being initial 

values of the state variables at t = 0. This results in the deterministic equation for the 

conditional expected energy, which describes linear growth of the response energy 

between stepwise parameter variations (the notation D is used here for the intensity of the 

scaled white noise ( )tς , so that the original white-noise excitation in the RHS of the 

equation (3.21) has intensity 2
0DJ ) 

 

( ) ( )
,    (0)

2 1 sgn 2 1 sgn
D DtE E E

R p R pθ θ
= = +

+ +      
!                             (3.23)                

 

Consider now variation of the response energy within a half-cycle, which starts 

slightly to right of the system’s equilibrium position (after the stepwise drop of the 

kinetic energy), so that both state variables are positive at t = 0. The random durations of 

the half-cycle and quarter-cycles are denoted by Θ with subscripts ½ and ¼ respectively 
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and additional “plus” and “minus” subscripts for the quarter-cycles corresponding to the 

signs in front of R. The system’s energy growth within each quarter-cycle can be 

obtained, by applying equation (3.23), as 

 

[ ] [ ]
1/ 4 1/ 4

1/ 4 1/ 2 1/ 4 ( 0) (0)  and ( 0) ( 0)
2 1 2 1
D DE E E E

R R
+ −Θ ΘΘ − = + Θ − = Θ + +

+ −
    (3.24) 

 

The total energy does not experience any changes at the system’s extreme 

positions, whereas total energies before and after stepwise parameter variation at the 

equilibrium position are related by the continuity condition for the angular momentum p 

as 

 

1/ 2 1/ 2
1( 0) ( 0)
1

RE E
R

− Θ + = Θ −  + 
         (3.25) 

 

Combining equations (3.23), (3.24) and (3.25), one can relate response energy at 

the end of the half-cycle to that at the start of the half-cycle as 

 

[ ] [ ]
1/ 4 1/ 4

1/ 2 1/ 2
1 1( 0) ( 0) (0)  
1 2 1 2 1 1

D DR RE E E
R R R R

+ −
 Θ Θ− −    Θ + = Θ − = + +    + + − +     

    (3.26) 

 

Whilst the response energy varies (randomly) from cycle to cycle, the basic response 

pattern repeats itself within all half-cycles, and the unconditional averaging (once again 

denoted by angular brackets) may be applied to equation (3.26).  As long as steady-state 
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response E(t) is a stationary process, its expected value at the instants of zero-crossings 

by ( ) 1 2,  i.e. at 0, ,t t t Tθ = = etc. should be a constant, so that  

 

1/ 2

1/ 4 1/ 4

( 4 ) 1 1( 0) (0) (1 ) ,   
2 1 1

 as long as   1
2

eqD
E E R

R R
T R

α

π
± ±

 Θ + = = − + + − 
Θ = = ±

Ω

                               

 

where eq Rα π= Ω . The expected time between stepwise parameter variations is once 

again approximated here by the corresponding natural quarter-periods of the free system 

(3.21) (without white-noise)  

The overall mean energy may be calculated now as the average-over-the-half-

period (see (3.12)) of the piecewise-linear conditionally expected energy (3.24) 

 

( ) ( ) ( )( )
1/ 2

2 2

1/ 2 0

1( ) ( ) ;  4 ,  1 2 1 1
T

eqE t E t dt R D R R R
T

σ φ σ α φ= = = = + + −∫    (3.27) 

 

The first co-factor in the final expression for the expected response energy is 

clearly seen to correspond to the limiting case ( )1, 1R Rφ<< ≅ . This case can be handled 

by the asymptotic stochastic averaging method. The latter shows also that the system 

behaves as one with a linear viscous damping, with the “equivalent” damping ratio 

R πΩ , and the angular response is asymptotically Gaussian, so that the response energy 

has asymptotically exponential stationary probability density. With increasing R the 

expected response energy is seen to decrease from its limiting asymptotic value.  



 

These analytical results are compared in Figure 15 with Monte-Carlo simulation 

data, as shown by the dotted line. The dashed line represents scaled expected response 

energy  
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3.5 Piecewise Conservative systems – stiffness controlled system   

 

Consider the following Piecewise Conservative system subjected to Gaussian 

white-noise excitation (Iourtchenko et. al. 2000) 

 

( ) ( )0 1 sgn( ) ,0 1d J k R t R
dt

θ θθ θ ς + + = ≤ < 
! !        (3.28) 

 

Because the system is piecewise conservative, the energy balance method may be 

applied to obtained a mean system’s response energy.  
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Figure 16. Comparison of results for stiffness controlled system. 

The direct energy balance approach (dashed line) and Monte-Carlo simulation for the 
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0.1. The horizontal line represents the asymptotic (stochastic averaging) value for small 

R. 

 

Following the procedure, established in previous sections, one may obtain the following 

expression for a mean energy (Iourtchenko 2000) 

 

( ) ( ) ( )( ) ( )[ ]21212 1121, −− −++== RRR  RE ψψσ                                                      (3.29) 

 

with the same expressions for eqασ  and  as before.  

These analytical results for 2σE  are represented in Figure 16 by the dashed 

line, whereas the horizontal solid line represents the limiting (unity) asymptotic value. 

Comparison with Monte-Carlo simulation data, shown by various symbols for three 

different values of D (and 1=Ω ) indicates reasonable accuracy of both analytical 

approaches within the range R < 0.4 – once again, even for not-very-small R’s.  

 

3.6 Piecewise Conservative systems – pendulum with variable length  

In this Section, problem of pendulum with variable length will be discussed 

briefly. Consider the following dynamic system (Dimentberg 2000), equation of motion 

of which may be written as 

 

( )( ) ( )2

0 1 sgn( )
d dt L gL L t

L L R
θ θ ς

θθ
+ = −

 = + 

!

!
                                                                                       (3.30) 
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Similar to the problem with inertia control, a new variable p may be introduced here for 

convenience. Then, applying the Energy Balance method, the following expression for a 

mean system’s response energy may be derived 

 

( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )( )
( ) ( )

( )

2
0

0
0 3 2

2 2 2

5 2 5 2

0 2

,  
4 3 13 1 1

2 1 1 1
4 ,  / , 3

1 1
1 2 1

1 3

L

L

eq eq

E gL R
R R R R

R R R R R
R R R

D D D g R
R R

R R
R

ξ ξ

σ φ
φ

φ φ

σ α α π

φ

=
 + − = − + + − −

+ + + −
= Ω = = Ω

 + + − = −
+

    (3.31) 

 

where ξD  is seen to be the intensity of the non-dimensional horizontal support 

acceleration in g’s. Once again, in the asymptotic case of small R the system behaves as 

one with the linear damping; the equivalent damping ratio, however, is found to be three 

times higher than for the system with inertia and stiffness control. This case is 

represented in Figure 17 by a solid horizontal line at the unit height, where scaled 

expected response energy 2
0σgLE is given as a function of R.  

The dashed line represents results of the Monte-Carlo simulations, whereas the 

dotted line represents the analytical solution (3.31). The latter is seen to provide some 

improvement of accuracy compared with the asymptotic (stochastic averaging) approach.  
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3.7 The Energy Balance method for a SD

 

Consider now a SDOF system with Coul

governed by the following equation of motion (Dimen

 

( )2sgn ,   where 0  
sgn 1  0,sgn 1  0
x R x x t R

x for x x for x
ς+ + Ω = >

= + > = − <
!! !

! ! ! !
   

 

 
R
 

 variable length (swings).  

according to the analytical solution 

onte-Carlo simulation - dotted line 

l R – solid line 

OF system with dry friction 

omb, or dry friction damping, as 

tberg et al., 1999) 

     (3.32)  
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This equation may also appear for a system with active response control, 

whenever magnitude of the control force is bounded, as long as the dry-friction control 

law is found to be the optimal one to reduce the steady-state expected response energy 

E . Namely, replacing the second term in the LHS of the equation (3.32) by any other 

control law ( ), ,  with u x x t u R≤!  may only increase E . 

Introducing the response energy E, the equation of motion (3.32) may be rewritten 

in a space-state form as 

 

 ( )
( )( ) ( )

2
1 2 2 1 2

2 2 2
1 2 2 2

, sgn ,
1 2 ,

x x x x R x t
E x x E R x x t

ς
ς

= = −Ω − +
= Ω + = − +

! !
!        (3.33) 

 

A conditional averaging is applied to this set of “physical” or Stratonovich 

stochastic equations (SDEs) (Dimentberg 1988, Lin et al., 1995) denoted by bar, with 

condition being given values of state variables at a certain selected time instant. Using 

Wong-Zakai correction for E(t) yields 

 

2 / 2E R x D= − +!            (3.34) 

 

The ODE (3.34) may be integrated directly within any time interval that does not 

contain reversals of velocity. The resulting variation of the conditional mean energy will 

be Rs+Dt/2, where s is the traversed distance. Let this distance will be just the 

instantaneous range xpeak -xtrough, denoted as 2A, or doubled response amplitude, where the 
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initial and final instant of time correspond to the pair of consecutive trough and peak of 

x(t). Then the unconditional averaging for steady-state response results in 

 

2 2 2 2 0,  so that 4E R A DT R A D A D Rπ π∆ = − + ≅ − + Ω = ≅ Ω     (3.35)                 

 

Here T is the expected value of the time interval between the consecutive trough 

and peak, which once again is approximated here by the system’s natural half-period. The 

resulting expression for the expected response amplitude is found to be the same as 

obtained by stochastic averaging. However its range of applicability should not be 

restricted by the condition for small D and R, as long as the energy balance approach 

does not require the variations of energy to be small within any response cycle. 

Table 2 presents numerical (Monte-Carlo) simulation data for the expected 

response amplitude, normalized with respect to the “dead zone” 2R∆ = Ω . These data 

are compared with calculations according to the energy-balance formula (3.35), which 

yields 24 ,  where A R Dπ µ µ∆ = = Ω  is a nondimensional parameter of the “dry-

friction” force. The agreement is seen to be very good for values of µ , small compared 

with unity. It is also reasonably good for values of the order of unity – that is, far beyond 

the expected range of applicability of the asymptotic methods. (In actual numerical 

simulations values 1 and 1D = Ω =  were assigned, whereas R was varied). 

 µ=1.414 µ=1.0 µ=0.8 µ=0.5 µ=0.2 
Analytical 0.3927 0.7854 1.2272 3.1416 19.635 
Numerical 0.3353 0.7118 1.141 3.0788 19.58 

Table 2. Nondimensional expected response amplitudes RA 2Ω  vs. Ω= DRµ . 
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3.8 Reliability analysis of a SDOF system with dry friction 

 

Whilst formula (3.35) provides some estimates of the stationary response level for 

the optimally controlled system, more sophisticated response characteristics may be of 

interest for predicting reliability of the system. Their analysis is rather straightforward for 

the limiting case of a weak control. Indeed, if both R and D are proportional to a small 

parameter, the original SDE can be reduced efficiently by applying stochastic averaging 

method. Both “regular” and quasiconservative versions of the method can be used for the 

quasilinear system 

According to the quasiconservative averaging method  [11, 28], the velocity state 

variable in the RHS of the SDE (3.33) for E is expressed as 2 2
2 12x v E x= = − Ω . This 

RHS is averaged then over “rapid” time within response period Ωπ2 , with slowly 

varying energy E being kept constant; in view of symmetry, a quarter of period can be 

considered only. The integration according to this averaging can be replaced by that over 

“fast” state variable x from zero to A, as long as dx = v dt. Here 2A E= Ω is 

amplitude, or maximal displacement within a response cycle with given energy E. 

Applying the procedure to both terms in the RHS of the SDE (3.33) for E and adding 

Wong-Zakai correction D/2, yields the following approximate first-order Ito SDE for the 

response energy 

 

( ) ( )2 2 2E R E D DE tπ ς= − + +!                                                                        (3.36)                  
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From this equation formula (3.35) for the mean response amplitude can be 

obtained immediately, by imposing condition for zero expectation of the RHS and using 

the relation between A and E. Furthermore, the Fokker-Planck-Kolmogorov (FPK) 

equation can be written for p(E) - probability density function (p.d.f.) of  E - which 

corresponds to the SDE (3.36). This equation has the following stationary solution 

 

( ) ( ) ( ) ( )( )2222 6436,28,exp2 RDE that  soDREEp πγπγγγ ===−=     (3.37) 

  

Consider a vibrating component with possibility for a first-passage failure after 

exceeding a certain given response energy threshold ∗E . Assuming the initial energy E to 

be smaller than this threshold, we may consider an expected time T for reaching it, as 

long as the system’s dynamics is described approximately by the first-order SDE (13). 

The function T(E)  in this case satisfies the following deterministic ODE, its coefficients 

being derived from those of the SDE (3.36) as described in  [11] 

 

( )( ) ( )[ ]( ) 12222 22 −=−+ dEdTERDdETdDE π                                          (3.38) 

 

 The boundary conditions for this equation are (see an extensive discussion of the 

first one in [28]) 

 

( ) 0;02 ==−= ∗ETE at DdEdT                                                                              (3.39) 
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The first integration of the equation (3.38) yields, after imposing the first BC 

(3.39) (at E = 0) 

 

( )
( ) ( ) Ω==Ω=

Ω
−+= DR DEz  

z
zzdzdT µπµλ

λ
λλ ,22,4,

4
2exp21

2    (3.40) 

 

Whilst this expression is convenient for numerical integration, it has the analytical 

solution, which satisfies the second BC (3.39) 

 

( ) ( ) ( )[ ] ( ) ( ) ( )zzzzzEizEizT ∗
−

∗∗ Ω−Ω−−Ω−= ln4222
122 λλλλλ           (3.41)     

 

Here Ei is an exponential integral function 

( ) ∫
∞

−

−
−=

x

t

t
dtexEi  

Consider now the case of a fatigue-type failure. According to a simple model of 

linear fatigue damage accumulation, the expected fatigue life is inversely proportional to 

the m-th-order moment of the stress amplitude [11], and thus to the moment of response 

energy of the order m/2; here m is a parameter of stress-life curve for the material (its 

slope in semi-log coordinates). For a structure with linear viscous damping the model 

leads to a well-known Miles’ formula [11], which can be used for comparison of two 

different types of damping on the basis of the same expected response energy. For the 

optimally controlled system - one with the dry-friction damping – the corresponding 

moment of the probability density p(E) (3.37) may be calculated for even integer  m as 
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( ) m

DRY

m mE γ!12 += . On the other hand, probability density of energy in the system 

with linear damping is ( ) ( ) 222 ,exp vvv   whereEEp σσσ −=  is a mean square response 

velocity and ( )!22 mE m
vVISC

m σ=  for even integer m. Thus, equating two expressions 

for (m/2)-th-order moments of E for m = 2, yields the condition for comparable response 

levels as 6=γσ v . The expected life ratio for the two types of damping is then found to 

be ( )[ ] ( )!1!26 2 += mmTT m
VISCDRY   

The last formula clearly shows the system with dry-friction damping - which is 

the best kind of damping that can be obtained by using optimal bounded control - to be 

less reliable than the system with linear damping and same mean square response level. If 

the linear damping is produced by velocity feedback control, this reduction of reliability 

may be interpreted as a price for the imposed bound on control force, or for “weak” 

actuators. The price is seen to increase with m, i.e. it is higher for materials which are 

more sensitive to stress cycles with higher amplitudes; thus, the above ratio equals just 

0.6 for m = 4, is reduced to about 0.25 for m = 6 and then becomes much less than 0.1 for 

m = 8. 

 

3.9 Conclusions 

A certain class of nonlinear random vibration problems has been considered for 

Piecewise Conservative systems under white-noise excitation. The direct Energy Balance 

has proved itself to be an efficient and accurate approach for predicting (nonlinear) 

response of “piecewise-conservative” systems to white-noise random excitations for 
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those cases, where simple estimate of the expected response level (expected energy) is 

sufficient for the given application. In particular, the method may be convenient for 

estimating efficiency of the active feedback control systems, based on the use of “bang-

bang” control laws. Such estimates may be used as important benchmarks, in spite of the 

fact that in real-life applications a low-pass filter may be included into the feedback loop 

in order to avoid high-frequency chatter, whereas excitation may be not a white noise but 

rather just a broadband random process. Monte-Carlo simulation studies for a variety of 

specific problems indicate reasonable accuracy of the method far beyond the expected 

applicability range of the asymptotic approaches, especially for vibroimpact systems – for 

values of a supposedly small (compared with unity) nondimensional parameter up to 0.4 

and higher. However, the accuracy of the method is much better for the case of inertia 

and stiffness controlled system than for one with controlled length.  



 82 

4. Main Findings 

 

In this section the important results and conclusions of the above work will be 

summarized briefly. 

 

• An exact analytical solutions to the Hamilton-Jacobi-Bellman equation has 

been obtained within the “outer” domain” for the Mayer, Lagrange and Boltz 

cost functions. 

• These solutions are exact and therefore are valid for any, not necessary small 

values of R and σ   

• An exact analytical solution indicated that the dry-friction control law is a 

suboptimal control law for Mayer cost function. 

• It has been proved that for a steady-state system’s response, the dry-friction 

control law is an optimal one for a mean system’s response energy reduction. 

• A direct numerical simulation of the Hamilton-Jacobi-Bellman equation has 

been performed using the above analytical solutions as boundary conditions for 

the corresponding cost function. 

• Extension to the case of multi-degree-of-freedom system has been derived for 

the Mayer and Lagrange cost functions. 

• Reliability analysis for “optimally controlled” single-degree-of-freedom 

system has shown that this system is less reliable than the one with viscous 

damping. 
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• A new Direct Energy Balance method has been developed and implemented 

for various types of piecewise conservative systems. 

• Comparison with the stochastic averaging method and direct Monte Carlo 

simulation demonstrated that the Energy Balance method provides better 

accuracy then stochastic averaging one and may be applied far beyond the 

applicability range of the latter.          
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5. Recommendations and future work 

 

The Hybrid Solution method, proposed and developed in the foregoing Sections 

proved to be very effective for solution of stochastic optimal control problems via 

Dynamic Programming approach. The possibility of obtaining an exact analytical 

solution greatly simplify problem of finding an optimal control law. Moreover, certain 

important conclusions may be derived directly from an analytical solution, as it has been 

shown in the case of Lagrange cost function.  

Solution to the vibroimpact problem has been obtained using the hybrid solution 

method (Bratus et al., 2000). Application of the method may be extended to different 

systems and different types of excitations, acting onto the system. One of them is a linear 

system subjected to Poisson noise. The difference-differential HJB equation will appear 

and has to be solved. The other important application is identifying an optimal control 

law for parametrically (stiffness) controlled systems. The control law in this case will 

lead to the equation of motion, similar to one (3.28) considered in Section 3.5. This 

optimal control law may find its application in modeling smart material. Finding an 

optimal control for a system subjected to random and harmonic excitation is also possible 

by means of the hybrid solution method.  

Although the Energy Balance method is possible to apply only to piecewise 

conservative systems, certain helpful information may be obtained using this method, 

besides an expression for mean system’s response energy. Namely, finding an exact 

solution to the First Passage problem is extremely mathematically and numerically 

complex problem. However, using an exact analytical expression for mean energy in 
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terms of mean cycle duration time T, one can easily obtain the latter, based on simple 

measurements of mean system’s energy through Monte Carlo simulation of equation of 

motion. This approach obviously is much easy than numerical simulation of First Passage 

problem, which is represented as a multidimensional partial differential equation.  
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