
Simultaneous Localization and
Mapping with Atlas

Submitted 05/06/2021

─

Ryan Carnemolla (RBE), Anirban Mukherjee (RBE/ECE),
Amrit Parmanand (CS),  and Emily Staknis (RBE)

Advised by Professor Michael Gennert

This report represents the work of one or more WPI undergraduate students submitted to the faculty as
evidence of completion of a degree requirement.  WPI routinely publishes these reports on the web

without editorial or peer review.



Atlas Visual Localization

1

Abstract
Simultaneous Localization and Mapping (SLAM) is a powerful method for autonomously
exploring new environments, which has never been applied to humanoid robots. This
project implemented SLAM on the Atlas humanoid robot, allowing it to interact with and
explore novel environments. The Atlas robot was programmed to create 3 dimensional
maps of environments and localize itself within them. Due to constraints in time and safety
the project was conducted mostly in simulation. Both stereo cameras and LiDAR were used
in experiments to identify the robot’s surroundings and avoid obstacles. These sensors
paired with the robot’s locomotion allowed the Atlas robot to search and navigate unknown
areas.
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Executive Summary
As technology evolves and improves, so does the feasibility and practicality of robotic
solutions for problems facing the world today. Humanoid robotics research has opened the
possibility of simulating a wide variety of complex human capabilities through robotics. The
ability to adapt to unique circumstances is one of humanity’s strongest characteristics, but
it is one that is difficult to implement through robotics. When in a new environment,
humans are able to gather information and understand their surroundings quickly, a
capability that is essential for robots to master if they are to be used in place of humans in,
for instance, unknown and dangerous environments like crisis areas and disaster cites.  To
make humanoids interact robustly with new and altered environments, they must be able
to simultaneously create a high quality 3-dimensional map of the nearby environment and
localize themselves in the map.

Background:
To create dynamic 3D mapping on the Atlas robot, the Simultaneous Localization and
Mapping (SLAM) method was used. Previous research with the Atlas robot and other
humanoids has focused on topics such as path planning, locomotion, and obstacle
avoidance, all of which are complex tasks. With a base of similar research done in the WPI
Humanoid Robotics Lab (WHRL), this project was able to focus on high-level programming
of SLAM on the Atlas robot. Other open-source code was used to complete different
elements of the project, like Robotic Operating System (ROS) and various libraries,
including Octomap for grid based 3D mapping, and Viso2 for visual odometry. The Atlas
robot itself is a complex 30 degree of freedom (DOF) robot with a variety of sensors critical
to this project, like the stereo cameras and LiDAR.

Methodology:
To establish this ability, a mapping algorithm was created, which uses output from Atlas’
LiDAR as the robot moves to create a map. To do so, various external libraries were used,
which performed necessary tasks, ranging from map generation to visualization. After
using these to create a foundation for new code, the various tasks and steps of SLAM were
created in ROS. These localization and mapping techniques work in real time and can
account for uncertainties in the height and angle of the robot’s head. An exploration
algorithm was written to direct the robot to autonomously explore and map its
environment using the TOUGH library movement and path planning capabilities. This
algorithm allowed us to test the speed and performance of SLAM in simulation and the
capabilities of the different sensors Atlas is equipped with.

Results and Discussion:
In doing so, Atlas is able to fully explore and generate maps of enclosed environments. The
final map is robust and accurate, with loop closure and few artifacts. The two visual sensors
on the robot’s multisense head both had their benefits and drawbacks, but it was found
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that the LiDAR was much more suited to the construction of maps required for SLAM. By
using it and implementing custom ROS code, complete maps of fully enclosed areas could
be generated. We were also able to follow a process for remote development of humanoid
robotics research through trials of solving different bugs and issues. Through the duration
of the project, many issues were encountered, including difficulties setting up various
different libraries and controllers that needed to work in tandem and getting them to work,
as well as many others, all of which will be discussed along with their solutions.
Nevertheless, our project ended with the option to continue research in multiple different
directions.

Conclusion:
Through conducting our research in this project, we were able to implement novel research
and to understand the process necessary to work with humanoid robots. The many new
directions for future work from our study make it possible to continue researching SLAM
on Atlas to develop a stronger response to novel environments. This would be a strong
capability that motivated this project, so pursuing it further could lead to even better
performance in the future.
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Introduction
Humanoid robots have a huge potential to help in the automation of tasks that are
dangerous and otherwise unreasonable for humans. Because of their similarities to us,
they can be, hypothetically, applied to any risky situation that humans find themselves in.
However, the field of humanoid robotics research has a long way to come before robots
are able to seamlessly perform the extremely versatile variety of jobs people do.
Humanoids are expensive and complex, require a large amount of processing power, and
need to react to a broad amount of situations. This is a unique problem for robots, which
are optimally used in repetitive and well-defined circumstances. While humans are able to
respond quickly in novel situations, robots require at least a degree of preparation to
respond to different stimuli. This requires robust programming, particularly for loosely
defined situations.

For instance, disaster sites, like areas hit by earthquakes, flooding, or explosions, are often
unknown environments that require humans to put themselves in danger to respond.
Robots can be applied to such situations without risking further human lives. However,
there are a large amount of uncertainties in disaster sites that create difficulties for robots.
Among them is the unknown nature of the area. A human can easily look around and
understand where they are within an area and robots that need to respond to broad issues
without prior knowledge must have a similar level of adaptive capability. To do so, the
robot must be able to generate a 3D map of its surroundings and localize itself within it.
This requires the robot to be programmed with such capabilities.

Purpose
Simultaneous Localization and Mapping (SLAM) is the process robots use to understand
and position themselves within their surroundings. The focus of this project was
developing SLAM on the Boston Dynamics Atlas humanoid robot, to allow it to interact with
novel environments. Atlas is among the most advanced in the field and the Warner model
has been used by WPI for humanoid robotics research since the Defense Advanced
Research Projects Agency (DARPA) Robotics Challenge in 2013. Through the use of open
source robotics middleware Robot Operating System (ROS) and the TOUGH libraries,
developed between WPI and the Institute for Human and Machine Cognition (IHMC) for
smooth control of the robot, Atlas was programmed to dynamically generate maps of novel
environments and locate itself within them. This allowed it to explore and navigate
unknown areas.

Implementing SLAM on a humanoid robot is a novel concept that has not seen a lot of
development. Nonetheless, SLAM is a powerful tool for interacting with unknown
environments. Because humanoid robots have the potential to perform the same tasks as
humans do, their responses need to be dynamic and adaptive, like people. While creating
complex human-like behavior was beyond the scope of this project, its purpose was to
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develop the ability for humanoid robots to react to unique, unknown situations through
SLAM. The project sought to create basic slam functionality in simple novel environments
and to explore the benefits and drawbacks of various methods of implementing SLAM,
including the use of different sensors and approaches to localization.

Goals and Objectives
The specific goal for this project was to develop a SLAM algorithm that the Atlas robot
could use to map its surroundings while understanding its position within them. In order to
keep the project on schedule, the team established a list of realistic objectives to use as
milestones of the progress made throughout the four terms of work. These were initially
brainstormed, and were adapted as time went on, and as the team became more familiar
with the steps needed to be taken in order to make these possible.

The initial objective was to organise and set up the requirements for the project. Over the
course of the first two months, there was one main objective: creating a foundation for the
rest of the project. This included setting up development environments on personal
computers and on the computers in the WPI Humanoid Robotics Lab (WHRL), researching
previous work with humanoid robots inside and outside of WPI to refine the project scale,
and developing an understanding of the existing code infrastructure available for use
during the project.

Upon completing this objective, the project focus shifted to creating the SLAM algorithm
itself. Initially, this required implementing various libraries to complete different tasks
necessary to SLAM. Early in this process, complex libraries were used in an attempt to
implement SLAM quickly, allowing for the project to focus on optimizing the result.
However, difficulties using external libraries like this made it clear that implementing an
original application of SLAM was more practical and academically valuable.

As a consequence, the objective shifted to generating mapping from scratch. The objectives
used to do this included implementing visual odometry and map transformations,
generating both 2-D and 3-D graphs, frontier based exploration, and code coordination
with the TOUGH library. These were achieved with various levels of success, leading to the
completion of a SLAM algorithm which allowed Atlas to map and localize within novel
environments.

Our final objective was to test the success of the algorithm and the benefits and drawbacks
of different methods attempted, including the use of different visual sensors. This report
will detail the background that informed this project, the repeatable process used to
complete it, the results observed, and the importance of said results.
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Literature Review
During the preparation for this study, literature and previous work pertaining to several
topics were reviewed to contextualize it. These articles and studies discussed topics
including, but was not limited to, the Atlas robot’s mechanics and sensors, previous work
with Atlas, humanoid robotic locomotion, and methods for localization and mapping. In
reviewing these materials, a useful base of knowledge was created, which also works as a
background of information for understanding this project.

The Atlas Robot
The Atlas robot was created by Boston Dynamics and is a 30 degree of freedom humanoid
robot [14]. It was at the center of the DARPA Robotics Challenge in which teams had to
program the robot to climb into and out of a utility vehicle, walk on difficult terrain, and
perform some manipulation task [14]. The Werner Atlas robot used for this study was
gifted to WPI by Boston Dynamics for this challenge and for continued humanoid robotics
research. Though the tasks of the DARPA challenge proved challenging to complete, Boston
Dynamics has continued their research and made incredible progress, recently
programming Atlas to perform a backflip.  For many other researchers, getting Atlas to
walk proves a difficult enough challenge.

Transportable OpenSource API & UI for Generic Humanoids
In the DARPA robotics challenge, many teams wrote a set of controllers for the robot. The
controllers allowed the teams to command the robot to complete specific tasks. The
controllers were almost always specific to the challenges faced at the DARPA challenge,
such as climbing stairs. The Institute for Human and Machine Cognition (IHMC), however,
wrote more generalized controllers that lend themselves well to almost any task the robot
may need to complete. The Transportable OpenSource API & UI for Generic Humanoids
(TOUGH) was developed to use IHMC controllers and to further facilitate control of
humanoid robots.

TOUGH provides users with some basic controllers that allow the robot to remain
stationary, balance, and move in a very basic way (i.e. walking in a straight line, lifting an
arm). TOUGH’s work in the background of robot operation can be compared to the many
sensors and systems in the automotive industry. A car now comes equipped with traction
control, lane keep assist, and even more safety settings that protect the driver and
passengers. Similarly, TOUGH comes equipped with a framework that prevents issues like
joints locking up or tripping on relatively even terrain. TOUGH also provides users with a
Graphical User Interface with which they can edit parameters of the robot and observe it in
simulation.
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TOUGH also provides users with very basic navigation using A*.  The A* treats any object
which is above the flat terrain as an obstacle, regardless of if it is 1 inch or 1 foot off the
ground.  TOUGH also has a perception library through which we can access Atlas’ LiDAR
and Stereo Camera data. More information on Atlas’ sensors is below. Though we won’t be
using it, the library also has gripper control algorithms.

For all these reasons, TOUGH provides our team with an excellent toolkit for development.
We will therefore be using it in tandem with our own code for SLAM in order to reach our
end results.

Locomotion
A variety of papers have focused on improving and expanding Atlas’ ability to traverse both
flat and uneven environments. Early research on humanoid robotics defined a “Linear
Inverted Pendulum Model” for biped robots, which described a linear model for a biped
robot’s gait when the robot’s center of mass remained at a constant height [20]. The linear
model is often used even if the robot’s center of mass is not at a perfectly constant height.
Thus, it is useful for flat or nearly flat terrain, but does not necessarily apply to terrain
which is not flat [19].  For large step-ups, it is necessary to follow a non-linear model
because the change in height of the center of mass is not negligible [19].

The Atlas robot at WPI can walk using a Q-learning algorithm trained in a previous MQP
[15].  The group trained Atlas in simulation to walk on flat ground by “grading” the robot on,
among other things, if it fell and how long it took to traverse the environment [15].  The
WPI Atlas robot can consistently traverse flat terrain by shifting its weight completely to one
leg and waiting until the other foot is completely on the ground in a new position before
shifting the weight back.

Some research has centered around more complex topics. One paper succeeded in having
the robot walk on a series of partial footholds [18]. Many of these footholds were line
contacts [18]. They explored the potential foothold ahead of time with the robot’s foot, and
from this exploration determined the optimal center of pressure needed to maintain the
robot standing [18]. They also explored upper body balance techniques to better control
the robot’s center of mass and prevent the robot from falling without needing to put a
second foot down [18].

Atlas’ Sensors
Atlas’ head is a Carnegie Mellon Multi-sense head. The Multi-sense head has a Hokuyo
UTM-30LX-EW planar Light Detection and Ranging (LiDAR) sensor that can capture 40 scan
lines of the environment per second with a maximum range of 30m (Kuindersma et al).
LiDARs fire lasers at objects and read reflected light to deduce three-dimensional
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information in the form of a point cloud. LiDAR lacks the spatial resolution offered by
cameras and is slower than that of cameras because it requires greater amounts of
pre-processing. This is often due to the amount of noise in LiDAR data, but also from the
mechanical limitations of most LiDAR devices. The LiDAR module on the MultiSense head
contains an array of infrared sensors that revolve around an axis at given intervals. By
spinning these infrared arrays the module “scans” the robot’s immediate environment.
Consequently, the rate of data collection is limited by the speed at which this sensor
rotates about its axis.

Figure 1: Atlas MultiSense head [16]

The head also has two stereo cameras which can provide color data and point cloud data
[16]. Stereo cameras use images from both cameras as reference points for perceiving
depth. Mathematical post-processing can ultimately deduce distance of an object from this
method. The ability of cameras to perceive color has allowed machine learning algorithms
to perform object detection. The use of this technology is how Atlas was able to open doors
and turn valves in the DARPA robotics challenge.

Figure 2: Atlas Stereo Cameras [16]
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The head has its own ROS drivers and topics [21]. The topics publish raw and processed
output from the sensors, including images from the stereo camera, depth images (not
published when using gazebo), camera info, point clouds from the LiDAR and from the
stereo cameras, and calibration information.

The manipulators at the end of Atlas’ arms are exchangeable. Some manipulators are
similar to hands and have haptic sensors in the palms and fingers.  Others are less
complicated and have cameras in the center of the hand to provide a better view of the
object to be manipulated. There are also cameras on each of Atlas’ ankles pointing forward
to provide a better view of the upcoming terrain.

Atlas also has an IMU placed at the base of where Atlas’ tailbone would be. Each of Atlas’
joints have sensors that read the angle of the joints. Atlas’ feet have pressure sensors.
These sensors can sense pressure from pushing on the bottom or the top of Atlas’ feet
[17].

Point Clouds and the Point Cloud Library
Point clouds are a message type that will be prolific in the assembly of maps for this project
as they’ve been the standard for SLAM algorithms, especially when using ROS. The
structure of a point cloud is the following: a binary cloud of discretized points in free space.
The way these point clouds are discretized depends on the way the ROS data type is
structured. There are two point cloud data types in ROS, and they are pointCloud and
pointCloud2. Both are from the sensor_msgs library.

PointCloud messages are composed of a header, an array of 3d points, and an array of
channels. Details can be seen below:

# This message holds a collection of 3d points, plus optional additional

# information about each point.

# Time of sensor data acquisition, coordinate frame ID.

Header header

# Array of 3d points. Each Point32 should be interpreted as a 3d point

# in the frame given in the header.

geometry_msgs/Point32[] points

# Each channel should have the same number of elements as points array,

# and the data in each channel should correspond 1:1 with each point.
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# Channel names in common practice are listed in ChannelFloat32.msg.

ChannelFloat32[] channels

The pointCloud message type is useful for interpreting standard point clouds, but they are
not capable of providing information such as depth, intensity, and color. This is largely why
pointCloud2 has been adopted by the multisense interface instead. Both the LiDAR and
stereo cameras return pointCloud2 topics, which we use in this project to assemble a 3D
Occupancy grid. The pointCloud2 structure can be seen below:

# This message holds a collection of N-dimensional points, which may

# contain additional information such as normals, intensity, etc. The

# point data is stored as a binary blob, its layout described by the

# contents of the "fields" array.

# The point cloud data may be organized 2d (image-like) or 1d

# (unordered). Point clouds organized as 2d images may be produced by

# camera depth sensors such as stereo or time-of-flight.

# Time of sensor data acquisition, and the coordinate frame ID (for 3d

# points).

Header header

# 2D structure of the point cloud. If the cloud is unordered, height is

# 1 and width is the length of the point cloud.

uint32 height

uint32 width

# Describes the channels and their layout in the binary data blob.

PointField[] fields

bool    is_bigendian # Is this data bigendian?

uint32  point_step # Length of a point in bytes

uint32  row_step # Length of a row in bytes

uint8[] data # Actual point data, size is (row_step*height)

bool is_dense # True if there are no invalid points

It’s clear that the pointCloud2 message provides more flexibility in its ability to characterize
discrete points. In the multisense interface, the pointCloud2 data fields for the stereo
cameras are denoted as [x,y,z,RGB]. These fields are stated in the PointField[ ] array called
“fields”. To ensure that the data frames are being passed correctly through the ROS
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environment, the message also contains a height and width so a subscriber can check
whether or not the message is complete.

The LiDAR messages are brought up through the tough perception nodes, specifically the
ones in the launch file “field_laser_assembler.launch”. This file is inside the tough
perception package. The LiDAR iterates the point clouds in frames, and then publishes to
the topic field_assemledCloud2. With a real time factor of around 0.2 in Gazebo, it takes
about 30-40 seconds for these pointClouds to appear in Rviz. The perception nodes will
also automatically stop the LiDAR from publishing for a certain duration of time in order to
protect the system from memory overflow. This “pause” is also controlled through a
rostopic that contains a Boolean which can enable and disable this feature.
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Mapping Methods
Mapping environments using Atlas or humanoid robots in general is not a common
occurrence. Most environments that Atlas traverses are pre-mapped by a different robot.
In part, this allows for extensive testing in simulation and real-life testing in a comparable
environment.

In Kuindersma et al, though, Atlas’ LiDAR is used for initial mapping.  They begin by having
the robot stand still for 30 seconds to collect point cloud data of the environment.  The
cloud is then converted into an occupancy grid.  The robot uses the map to move around.
The article states that “if the robot were to approach the map boundary, on-line
construction of a new map could easily be performed during operation” (Kuindersma et al).

This differs from SLAM since they do not constantly update the map, but rather update it
only when missing information is required [6].  They also have the robot stand still for 30
seconds at the start to build the initial map [6]. This causes the movement of the LiDAR to
be negligible and thus avoids many of the problems with mapping using humanoids.

Some other researchers got around this issue by placing the sensors elsewhere on the
robot or designing the robot’s gait such that the sensor always stays at the same angle and
height.

Another issue addressed by [13] is representing a 3D environment in 2D or 2.5D, a height
map.  They describe an example in which the LiDAR views a table on a floor and averages
the heights in the height map.  They continued to use 2.5D, but used standard deviation to
find clusters in the point cloud and took the height to be the average of the highest cluster
[13]. Other researchers created 3D occupancy maps and worked with these instead [4].

Localization Methods
Localization for wheeled robots can be completed in 2 dimensions due to the wheeled
robot’s inability to climb, step over, and crouch under obstacles. Multiple methods have
worked to improve maps for humanoid robots, from 2.5D maps to placing the LiDARs in
the robot’s feet [4].  Humanoid robots trying to perform complex maneuvers, however,
require 3D maps of their environment.

Localization can be complicated by the humanoid tilting the sensors as it moves. The angle
of the sensors can be estimated using joint angles and forward kinematics, but in order to
be accurate the angle between the robot’s feet and the ground must be known. As a result,
some studies ignore the forward kinematics in part or completely and instead use IMUs,
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even very noisy ones, to estimate the angle of the sensor [7].  This is especially relevant
while the robot is walking.

Particle filters have been used in conjunction with Kalman filters on Atlas in past research
[6], and have been used on other humanoid robots on many occasions  for localization
[7,8,9]. Particle filters are an effective method of localizing a robot that has noisy movement
and measurements.  It begins by randomly distributing simulated robots over a map and
then moving the robots in the same way as the real robot moves. The particle filter
becomes survival of the fittest.  The robots are redistributed on the map, with higher
probability particles gaining robots and lower probability particles losing robots.  The
probabilities are found by comparing the real and the simulated robot sensor readings.

The Rao-Blackwellized Particle Filter (RBPF) was used to reduce the number of particles and
computational time. RBPF uses a Kalman filter localization with the particle filter [3]. The
Kalman Filter estimates an area in which the robot is likely to be based on the past
movements of the robot. KBPF then only scatters particles in the area that the Kalman filter
returns [3].

Some researchers used a global particle filter to first localize the robot and then optimized
and reduced the number of particles once the robot had been found [4]. Often, the
particles are simulated as wheeled robots instead of humanoid robots to simplify the
localization problem [8]. Reducing the accuracy of the gaussian curve also significantly
improved computation time for real-time localization of the robot [8].

Using sensor fusion is another way to improve the accuracy of localization.  Combining the
information from LiDARs, vision, and pressure and magnetic sensors when available can
improve the localization of the robot.  One paper, however, described a method using only
a neural network, IMU data, and actuator load data as input that had high accuracy for
small lightweight humanoids [11]. Their method performed significantly better than pure
odometry, but would require additional research to determine if it could be applied to
larger scale humanoids.

Pathfinding Algorithms
Once its environment is mapped and its location known, Atlas, and any other robot
performing SLAM, must find the optimal path through the environment to its destination.
To do this a pathfinding algorithm must be used.

A* is the most commonly used path finding algorithm due to its flexibility, efficiency, and
ability to find the optimal path. In the simplest terms, A* is a mix between Djikstra’s
algorithm and greedy best-first search.
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Dijkstra’s algorithm is usually used to find the shortest path from an initial point to all other
points in a graph.  It does this by examining the path costs of neighboring cells and
assigning the lowest found path cost as the shortest path. The disadvantage of Dijkstra’s
algorithm is that it must explore a significant portion of the map to ensure it has the
shortest path.

Figure 3: Dijkstra’s Algorithm With Obstacles [12]

Greedy-best first search uses a heuristic to choose the next cell to explore. In certain
environments, this allows for the shortest possible route to the destination with the least
amount of effort, but introducing obstacles can cause the path to deviate from the shortest
path [12].
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Figure 4: Greedy Best First Search With Obstacles [12]

A* makes use of a heuristic, but also takes into account the path length from the start node
to the current node, like Dijkstra’s algorithm. This results in an optimal algorithm that can
be extremely useful in static environments [12].

Figure 5: A* Algorithm With Obstacles [12]

A* has been used extensively in previous research for path-finding. However, in
environments that are not static, other algorithms can be more useful. In A Roadmap-based
Planner for Fast Collision-free Motion in Changing Environments, the D* algorithm was used,
which updates the map information upon observing new circumstances, like moving
obstacles. This allows for the path to be planned around newly observed information.
Other previous projects have used Rapidly exploring Random Trees (RRT) as a search
algorithm. This is particularly useful for pathfinding in open 3D spaces, whose random
search helps mobile robots avoid getting stuck in unknown environments. FInding an
appropriate search algorithm is critical to allowing Atlas to navigate environments once it
knows the start and end location.
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Methodology
This section of the report will highlight the procedure in which our project was completed,
as well as the methods used to determine our results. First, the External Libraries &
Software used for this project will be covered with regards to their utility. Additionally we’ll
cover the different ways we assembled our maps, and how we handled pathfinding with
the robot.

External Libraries & Software
This project made use of several external libraries and packages. The most noteworthy are
those we used for controlling the robot, computer vision, working with point clouds, and
mapping. The implementations vary based on whether or not point clouds were assembled
by LiDAR or Stereo Imaging.

TOUGH
As mentioned in the literature review section above, TOUGH is an API and GUI for
interaction with humanoid robots. More prominent in this project however, is TOUGH’s
ability to bridge the low level Java delegates on Atlas with the architecture of ROS. As a
result, TOUGH is essential as a controller and platform for simulating the Atlas robot.
TOUGH also includes a footstep planner which organizes the robot’s footsteps to reach a
2D navigation goal, or a goal location.

TOUGH’s setup involves using a .yaml file for installation, from the repository. The file sets
up local repositories on the host computer for both the IHMC controllers and the TOUGH
GUI and API. By default, the installed version of the TOUGH repository will be cloned into
the user’s catkin workspace in the ‘src’ folder.

The default branch of the TOUGH repository runs the DARPA Robotics Challenge
simulation. Our team used Gazebo for our implementation of SLAM, and so it was
advisable to use the latest working branch of the Tough_Gazebo package. Launching the
simulation thereafter involves editing the ‘atlas_default_world.launch’ file in the repository
locally so the robot can be brought up in any environment.

The stereo cameras start publishing as soon as the simulation is initialized. In order to start
the LiDAR however the spindle speed must be set manually for the LiDAR array, and then
the field_laser_assembler. The laser scan takes 30 seconds in simulation time to publish
data. Eventually the LiDAR publisher will automatically pause for a duration of time to
prevent overflowing the CPU of the host machine.
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The footstep planner can only be started after the LiDAR has been enabled. When running
the tough_gui it’s possible to then send nav goals to the robot and begin path planning
using the octomap’s 2D component.

The octomap functionality of TOUGH is also present within a launch file in the
tough_perception package. This octomap can be edited locally on the host machine to
control the operations for the octomap server.

As of the submission of the project, TOUGH is scheduled to be deprecated as a result of
ROS kinetic no longer being supported, likely by September 2021. As a result, this
implementation of SLAM will not be possible through the use of this software from that
point onwards.

ROS
ROS provided the overall structure for the code generated in this project. It allowed us to
have many separate tasks running concurrently and for us to pass data between tasks
effectively. Both the TOUGH library and previous work the team had done with SLAM
operated with ROS as well, which allowed us to efficiently create our code and coordinate it
with the existing framework. The version of ROS being used is kinetic, because it’s the only
version that’s compatible with TOUGH, meaning the cde was created in and must be run in
a Ubuntu 16.04 environment. ROS will be dictating the way the code is structured, as it is
necessary to make use of nodes and publisher/subscriber relationships.

Because LiDAR data is much more accurate in 3D mapping, the LiDAR based structure for
SLAM:

Figure 6: Map Generation Node Graph
ROS installation is well documented on the ROS wiki. Steps include setting up sources list,
getting installation keys, installing through sudo apt, setting up the environment, and
installing all dependencies for packages.

The main rostopics being used from TOUGH are from the stereo cameras and the LiDAR.
This data is fed from those topics to our mapping nodes. Using the tough perception
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packages for default bringup renders point clouds for both sensors. These topics are
recorded as a PointCloud2 datatype. This functionality, along with that of the footstep
planner and the gazebo simulation are the primary tools for working on our SLAM
implementation.

Viso2
The Viso library is a package used for performing visual odometry on stereo images. It was
used in an attempt to calculate an estimated pose for the robot within the map it created.
Viso also provides us with odometry on how far the robot has moved and in what direction
it moved in. Upon running Viso and mapping its subscribed topics to listen to the output of
the robots cameras, the library returns a set of cartesian and quaternion  values that
indicate the pose, which would allow for a homogeneous transformation matrix to be
created, which would represent the change in position form the origin, in this case being
the robots starting point.

We hoped to use visual odometry to verify the robot’s position with respect to its
environment, and to transform incoming point cloud topics to be added to a global XYZ
coordinate frame. We hoped that this would provide us with accurate data on the robot’s
location.
Installing Viso2 is as simple as adding the package to your catkin workspace’s source folder
and building. Afterwards it requires remapping of the subscriber rostopic to whatever topic
the raw images from the camera are publishing in the viso2 roslaunch file.

Octomap Library
The octomap library is included in the tough_perception commons, so our team needed
only to install the RVIZ plugins for visualizing octomap’s 3D occupancy grid. Having this
capability is imperative for our team because we verified the completeness and accuracy of
our created maps through RVIZ. The octomap_server library is an extremely useful open
source library that utilizes the 3D map format of octomap. The server acts as a ROS node
that listens to point clouds being published and returns various forms of maps, including
both the 3-D  gridded octomap, converted from the point cloud, and a down-projected 2-D
map that consists of every occupied grid cell of the 3-D map being marked as an obstacle
on the 2-D map.
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Figure 7: A Raised Staircase Being Observed as an Obstacle on the 2-D Map (black and white)

We also used the octomap_server to perform Z-Filtering on artifacts present on the ground
of the simulated environment, and to eliminate noise, as it conveniently includes options
for basic filtering.

Point Cloud Library
The Point Cloud Library (PCL) provides the necessary tools and functions for working with
point cloud data types. We used PCL to transform individual clouds from the robot’s
coordinate frame to the global coordinate frame. While working with visual odometry, it
was necessary to transform clouds that were viewed from the robot’s frame into the global
frame that would allow us to add them to the map. PCL’s included transformation functions
were useful for the set of nodes we created to handle this issue. However, after
experimentation, it was determined that this process was already being done in TOUGH,
resulting in these nodes being scrapped.

RGBD SLAM
The RGBD SLAM library allows for SLAM through image processing. The RGBD SLAM node
takes in stereo images from a set of cameras, calculates their disparity, and pieces together
a map. We attempted to use this process with Atlas’s raw image data. Had the
implementation been successful, Atlas could have performed SLAM very early into the
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project. However, the installation and application of this library to our project proved to be
extremely troublesome and unreasonable, as it required extremely specific inputs.

Gazebo & RVIZ
Gazebo and RVIZ are applications designed to work with ROS. Gazebo is a physics-based
simulation engine that allows models to traverse 3D environments. All of the simulation of
this robot is done in Gazebo. Gazebo also allows users to alter terrain and place objects
within the robot’s environment.

RVIZ exists in order to visualize data and ROS-Topics. All of our team’s 3D maps and 2D
occupancy grids will be displayed in RVIZ, along with any point cloud or image topics we
use to create them. RVIZ also provides the necessary tools for evaluating the effectiveness
of our mapping algorithm.

Mapping Methods
This section will cover the methods we used to assemble maps of the robot’s environment.
All of our maps were created using sensor data from the stereo cameras and LiDAR.

Mapping with Viso2 Pose
Atlas can provide a point cloud of its environment from either the stereo cameras or the
LiDAR. This point cloud is centered on the sensors. In order to combine point clouds into a
map, they must be transformed to the same global origin. The transformation can be
obtained by using the current 3D pose of the robot or using feature detection and
matching between point clouds.

The gyroscope in Atlas’ pelvis provides accurate 3D pose information for the pelvis of the
robot. This pose can be obtained through the robot_state node in the tough_common
package of the TOUGH library. Finding the pose of the stereo camera or LiDAR from the
pelvis pose would require transforming the pose. The transformation would need to take
into account the angle of the waist joint and the pitch of the stereo camera (for stereo
camera point cloud). Errors would accumulate with each measurement, and the final pose
might not be accurate enough. We did not know that the gyroscope pose could be used
until much later in the project, and did not attempt this method of getting the robot pose.

Viso2, a visual odometry library, could find the 3D pose of the robot from the stereo
camera images using feature detection. We used Viso2 to find the pose of the stereo
cameras directly. Once the pose of the sensors is found, the point clouds can be
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transformed to the same global origin. Once transformed, the octomaps created from the
point clouds can be compared and combined easily using a Bayesian filter.

We wrote and began testing code for mapping using Viso2.

Figure 8: Visual Odometry and Point Cloud Transform Node Graph
We discovered that Octomap performs feature detection and mapping on point clouds and
combines them into a larger map. In other words, passing raw point cloud data directly to
octomap is sufficient to accomplish mapping. Making the first group of nodes created
obsolete.

Octomap Mapping
Octomap uses feature detection and matching on point clouds to transform and match
new point clouds to the existing map. It then uses a probabilistic algorithm to update the
map. Mapping with octomap provides an accurate map of the environment as the robot
moves and is capable of loop closure.
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We remapped the published point cloud topic directly to the octomap server. The
published octomap could then be viewed in RViz after downloading octomap plugins. By
remapping the point cloud from the lidar to publish directly to the octomap_server, very
accurate maps could be generated.

Figure 9: Octomap Generated by LiDAR Point Cloud

Stereo Camera vs LiDAR
We tested our mapping using point clouds from the stereo cameras, and point clouds from
the lidar. The stereo camera had many artifacts, especially on the ground. We attempted to
implement a z-filter to remove these artifacts from the point cloud. We were not aware that
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Octomap had z-filter functionality built in, so we attempted to implement it ourselves by
altering the pointCloud2 we received from the robot.

We used Viso2 to find the pose of the robot relative to the origin of the world and
transformed the pointCloud2 data to this origin. We could then see if the point was lower
than our minimum z value and transform the point down to the ground plane. Once
z-filtered, the point cloud was transformed back to its original origin and passed to
octomap. We did not finish debugging the program because we discovered that octomap
could perform the z-filter.
After seeing the inferior quality of the stereo camera point cloud, we started experimenting
with the LiDAR.  The LiDAR must be started manually. First, the spindle speed of the LiDAR
must be set using the command
rostopic pub /multisense/set_spindle_speed std_msgs/Float64 0.8

Next, the perception nodes must be launched using
roslaunch tough_perception_bringup field_laser_assembler.launch

To avoid excessive memory usage, the LiDAR will stop after publishing 5 maps. Each map
takes a minimum of 8 seconds in real time to publish, which can be upwards of 30 seconds
in simulation with a low real time factor. This command restarts the LiDAR:
rostopic pub /atlas/pause_pointcloud std_msgs/Bool false

The LiDAR point cloud had no artifacts, so we did not perform any filtering to improve the
map.

Figure 10: Stereo Camera Point Cloud in rviz
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Figure 11: LiDAR Point Cloud in rviz

Frontier Based Exploration
This section will cover the basis for which we organized our frontier based exploration
algorithms. Frontier based exploration defines how the robot selects areas of the map to
explore, and how our programs discern the difference between unknown and known
territories of the environment.

Exploration Structure
Upon developing the ability to accurately map the robot’s surroundings, it was necessary to
implement autonomous exploration of the area. Through mapping, we were able to
generate both two and three dimensional maps of the surroundings. The two dimensional
map was a projection of the three dimensional one, meaning areas that inclined enough
above the ground at those with overhang would be marked as impassable, meaning it was
optimal for flat environments such as indoors or paved locations, but would struggle in
highly uneven terrain. However, as the robot is primarily tested by walking on flat ground,
the two dimensional map was selected for use in exploration.

As a process, the robot would begin by mapping all currently visible areas with the LiDAR,
generating a gridded 2D map of known passable and impassable areas, shown as light gray
and black squares in the map below, respectively.
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Figure 12: Atlas Walking in a 2-D Map

The known areas that border the blank edges of the map, or unknown spaces, were
considered to be “frontiers.” These frontier grid cells would form the basis for the
exploration. By determining the closest frontier and moving there, the robot could explore
unexplored areas. Doing this repeatedly until there are no remaining frontiers to explore
forms a complete and fully explored map.

To do this, several ROS nodes were created to work in conjunction with the existing
mapping code. To determine and choose from the frontiers, the FrontierExplorerNode was
created. It also calculates the centroid of the closest frontier, which is the desired point to
navigate to. The CSpaceNode is used to buffer the area taken up by the impassable spaces
on the map to ensure the robot does not collide with any obstacles. The final written node,
the NavigationNode decides where the closest reachable known point is to the desired
centroid and sends this information to the TOUGH footstep planner.
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Figure 13: Frontier Based Exploration Node Graph

FrontierExplorerNode
We began the FrontierExplorerNode with a similar process as was used for the various
mapping nodes. We initially created a C++ template node that could listen to and publish
topics and filled it in by creating various functions to complete the tasks necessary for
creating and analyzing frontiers. The frontiers were created by reading over a ROS
occupancy grid and adding the squares located next to unknown regions into a list of
frontiers. This list was a vector data type containing vectors of coordinate pairs, which were
arrays of length 2. The two vectors could be of variable length depending on the amount of
frontiers and the length of the individual frontiers listed within. This and other C++ related
errors proved to be a large inconvenience. Fortunately, we were able to utilize ROS’s
capability to use both C++ and Python code. Because the nodes programmed in either C++
or Python communicate through rostopics, the arithmetic being done inside the node can
be done in either language. For the FrontierExplorerNode in specific, Python is very well
suited to editing and reorganizing lists of data. The new PythonFrontierExplorerNode node
was created very similarly to the C++ version, albeit following the different syntax for
setting up a publisher and a subscriber. The node subscribes to the OccupancyGrid (2D
map) created by the octomap_server and publishes a point ROS message that represents
the desired frontier centroid to be navigated to. To successfully go from map data to a
navigation goal, there are several tasks that must be done. To start, the functions found the
frontiers by checking over the entire 2D map and formulating lists of grid cells (stored as
tuples of x and y coordinate values) that were adjacent to both an unknown space and
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another frontier space. If a point was adjacent to an unknown space, but not another
frontier, it would be stored as a single point frontier. These lists of adjacent frontier points
were themselves stored within a list of frontiers. The centroid for each individual frontier
from this list of lists of coordinates is then calculated by averaging the x and y value of each
coordinate within the frontier. Once a list of centroid is determined, the closest one to the
current robot pose is selected as the desired navigation goal for continued exploration by
calculating the euclidean distance to each and selecting the lowest value. Additionally, the
frontier explorer publishes a false boolean value, which the LiDAR running through TOUGH
subscribes to. This ensures that the LiDAR continuously updates while the robot navigates
through the map.

CSpaceNode
The CSpaceNode operates along with the FrontierExplorerNode. It subscribes to the same
occupancy grid as the frontier explorer and publishes an edited occupancy grid. However,
this occupancy grid includes “padded” obstacles, where the size of the impassable areas
has been increased so that the risk of collision is reduced significantly. It works fairly
simply, by iterating through the entire grid, checking for occupied cells. Each cell contains a
value from 1 to 100 indicating the possibility that the cell is an obstacle. If this value is over
50, the CSpaceNode changes it to 100 to confirm that it is an obstacle. It then changes the
values of the surrounding cells to 100 to pad them. The amount of cells that are padded
around the obstacles are controlled by an integer variable that can be changed for
optimization. This node was also written in Python because it also involves list operations,
therefore, it’s file is named PythonCSpaceNode

NavigationNode
The PythonNavigationNode is the final node in the frontier based exploration process. It
subscribes to the padded map from the CSpaceNode and the navigation goal from the
FrontierExplorerNode. It then checks if the location of the navigation goal is within a
walkable location. If it is, this point is sent to the TOUGH footstep planner to generate a
path to follow and to actuate the robot along it. If it is not a walkable location, the
navigation node calculates the closest walkable location to the goal, again through
euclidean distance, and sends this point to the footstep planner. This was meant to be
called repeatedly until the robot has traversed and mapped all of the reachable frontiers.
Once there are no more, and the map has been completed, the process stops, resulting in
a “closed-loop map.”

Pathfinding
Pathfinding was handled entirely through the TOUGH footstep planner. The custom node
detailed above sends the footstep planner the desired navigation goal. Upon receiving this
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information, the footstep planner can generate a sequence of steps for the robot to follow
that will result in the robot reaching the goal without stepping too far, colliding with its
surroundings, or losing balance.

Figure 14: TOUGH Footstep Planner Generating a Path of Footsteps

Then, the robot is actuated along these steps, also within TOUGH. The planner also
requires a separate topic to be published that approves the steps generated. The
implementation for this was started, but not finished, meaning that the navigation goal
generated by the nodes needed to be input to the planner manually, using the TOUGH GUI.
Because of this, observing the generated map by eye and clicking on a goal in the GUI also
works for exploration.

Efficient Code Execution and Testing
To allow for efficient testing of our algorithm, we initially designed a simulated
environment imitating a coffee shop. This had lots of obstacles to be mapped, however
there were not many walls and corridors, which we believed would be helpful for testing
effectively. To do this, another simulated environment was created in the same way as the
previous one. This involved placing obstacles in Gazebo from its library of pre-created
items. We found a useful model in the form of the IEEE ISCAS museum in South Korea.
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Figure 15: Atlas Walking in our Simulated Environment

This had all of the features we desired, including mostly flat floors, some traversable 3-D
surfaces. And walls forming corridors to be explored. Creating the world file also required
spawning the atlas robot within the environment. To do this, we made sure that the
museum model was oriented on the origin, where atlas could walk as it does in the empty
default TOUGH simulation. We duplicated the code pertaining to spawning Atlas from the
default world file into our new one.

In order to ensure the code runs properly, there are several steps that must be done. Upon
completing a node in C++, it must be added to the CMakeList file for the desired package.
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This will create an executable file. To make executable files for nodes created in Python,
running the chmod command on the node in their directory in a terminal makes the file
itself executable. These files, as well as other important executable tasks to be run, can be
put together into a launch file that will run all of the nodes at once. This was significantly
more convenient than running each node and each other process separately. We created
several launch files, but our main launch file, named slamnodes.launch, runs the Gazebo
simulation with Atlas in our environment, the octomap server, and our nodes. A similar file
was created for the obsolete visual odometry nodes, but that is not used. The slamnodes
file allowed us to conveniently run all of the necessary nodes for testing to generate
results.
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Results
Our final SLAM algorithm could perform closed loop mapping with no noticeable drifting in
the map as the robot moved. Using the LiDAR, the only artifact in the final map was the
part of the robot’s head, which the LiDAR could see. No artifacts were on the ground, walls,
or other objects in the robot’s field of view.

Comparison of LiDAR and Stereo Camera Performance
We initially used the point cloud from the stereo camera to create the map. The stereo
camera point cloud has several issues. Shadows in the environment were mapped as 1-3
grid square high obstacles. These shadows were down projected as obstacles on the 2D
occupancy grid, and so were treated as an obstacle when the robot was walking around.

The stereo camera point cloud also added a lot of artifacts. The artifacts appeared on walls
and made them appear bumpy instead of flat. Sometimes, there would be large spikes
coming out of surfaces. The stereo camera point cloud also had a lot of artifacts in front of
the robot. There would be small 1-5 block clumps of “obstacles” placed randomly in front of
the robot. These wouldn’t disappear and more would appear as the robot moved around,
resulting in larger and larger clouds of imagined obstacles as the robot continued to move.
These artifacts also prevented the robot from path finding correctly since they were also
downprojected as obstacles on the 2D occupancy grid.
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Figure 16: 3-D Map Resulting from Stereo Cameras with both Motion (1) and Shadow (2,3)
Artifacts

The LiDAR point cloud takes long and is more memory intensive to calculate, but it is of
significantly better quality than the stereo camera point cloud. The LiDAR point cloud has
no artifacts and produces clean edges on all obstacles. The only artifact that appears is a
block on the robot’s head when the LiDAR is started. The head is not detected by the LiDAR
after the robot has moved. This could be fixed by filtering out the obstacles within some
radius of the robot’s initial position.
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Figure 17: 3-D Map Resulting from Lidar with Updating Point Cloud Data Visible

Map Completion
As detailed in the methodology, the robot is able to create closed loop maps with the aid of
manual approval of steps using the TOUGH GUI. By doing this, we were able to create a full
map of our simulated environment, the IEEE ISCAS museum. This process was done using
the LiDAR data because of its aforementioned accuracy.
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Figure 18: 3-D Map of Simulated Environment using LiDAR

This meant that the process of completing a closed-loop map was very slow because of the
LiDAR’s speed. In fact, the simulation ran so slowly, that it was necessary to switch
computers from a relatively powerful laptop to a more powerful desktop to continue
testing, even when only using the stereo cameras. The real time factor displayed in Gazebo
was typically around 0.05 (one twentieth of a second per second) for the more powerful
setup using LiDAR data. Because of this, high computer specifications are necessary when
generating maps in this way. The slow simulation speed resulted in closed maps of the
museum that took about 40 minutes to complete. This time scales with the size of the
environment. Nonetheless, the LiDAR was able to create a very accurate 3-D map of the
environment. Because of the vertical walls and even terrain of the environment, the 2-D
map generated by the octomap_server was also very accurate, with well defined
traversable areas and obstacles. Closed-loop mapping was not attempted with the stereo
cameras due to the large amount of artifacts they generated during operation.

Troubleshooting and Autonomous Frontier Exploration
We were not able to complete debugging of the autonomous frontier exploration due to an
issue with the IHMC controllers. Throughout the project, we would run into issues with the
IHMC controllers preventing the project from making or preventing the simulation from
starting (more often the latter). Even though we were supposed to be running everything
locally, the IHMC controllers would still be updated from the external repository. This
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would cause the installations on all of our computers to break simultaneously. We ran into
this issue while we were working on our autonomous frontier exploration and were not
able to resolve it.

Using ROS Kinetic also caused issues. There are many libraries and codebases that may
work, but have not been updated over really long periods and would cause issues when
trying to run in conjunction with TOUGH and our other components in our Catkin
workspaces. We also found libraries which only worked on newer versions of Ubuntu or
ROS. ROS Kinetic also became unsupported near the end of our project. This may have
been why the IHMC controllers stopped working. We expect any future projects to struggle
to set up and run ROS Kinetic, TOUGH, the IHMC controllers, and any other applications or
libraries in the project.

We also ran into multiple other issues with TOUGH and related libraries. One issue that we
ran into was that gazebo could not be launched when we used the default branches. A new
branch was created that allowed us to use Gazebo. Unfortunately, installing other
necessary files would change the branch that we were on. We ended up with a “loop” of
errors where fixing one library would break the other. Instructions on fixing this error are
found in Appendix B.

Another library that we had trouble with was RGBDSLAM. Even though many people
appear to use this library for kinects, we had many issues related to installing and using the
library. We found misplaced files, local file paths that should have been global, and
crashing issues related to launching the GUI. We were able to run and collect data in the
version without a gui, but the point cloud was completely misshapen. Since we had only
managed to get the library working on a single computer, we decided to try a different
approach.

Another issue we had was with graphics drivers. TOUGH cannot run using a virtualized GPU
(and thus also can’t run on a VM). It will crash at some point while the simulation is
launching. One of our computers did not have graphics drivers available for Ubuntu, or the
installed drivers weren’t being used by the system. Despite this, the simulation ran
consistently until that computer crashed and Ubuntu had to be reinstalled. The simulation
never ran again on that machine. On another machine, the graphics drivers would stop
working on a regular basis. When the computer was started up, it would be stuck in a loop
at login. The UI had to be stopped and graphics drivers reinstalled before the machine
could work again.

The simulation also required a lot of processing power in general, and would regularly
crash computers running it. These crashes would sometimes corrupt files and result in the
reinstallation of Ubuntu.
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Discussion and Analysis
The results detailed above provide important revelations about implementing SLAM on a
humanoid robot. By collecting and analyzing the data, we were able to understand the
successes and shortcomings of our methods. The work we did in the process has set a
basis for future undergraduate work with the Atlas robot at WPI, but there are certain
caveats to continued work. Overall, our results provide valuable insights for the future of
humanoid robotics research, particularly in WHRL.

Successes and Shortcomings
Our final result was successful at implementing SLAM, but it was not without tradeoffs. One
tradeoff was using the LiDAR instead of the stereo cameras. As previously mentioned, the
LiDAR was significantly slower than the stereo camera. The extremely low real-time factor
would have most likely translated into a very slow operation on the physical robot, had
testing in the lab been feasible. However, the speed did not end up being a detrimental
issue because the range of the LiDAR was very long and the environment featured multiple
wide-open spaces. The LiDAR point cloud data would be published before the robot could
reach the frontier of the mapped area. Had we attempted to use the stereo cameras to
complete the map, the result would have been far too messy to understand, let alone to
use as a map for navigation. The walls of the environment might have been somewhat
clear, but the noise artifacts created by the robot’s motion would have likely filled up the
entire area in which the robot had moved. Combined with the artifacts created by shadows,
the stereo camera mmp would not have been useful, especially if the robot needed to
navigate through a C-space map.

Some other shortcomings were more noticeable, however. The downprojected map was
not ideal. Any obstacles of artifacts in the 3D map, regardless of their size or heights, would
be mapped to an obstacle in the 2D map. If there had been a rug on the ground or a ceiling
above, an obstacle would have been registered, even if the robot was fully capable of
walking on or over it. There is not enough information in the downprojected map to
represent the 3D space accurately. This could be partially mitigated by adjusting the
z-filtering values for the octomap_server, but this is not a permanent solution. Ideally, the
algorithm would be able to understand which obstacles could be walked on, such as floors
on uneven ground. However, these changes would make for a 3-D SLAM algorithm, while
this project implemented a 2-D algorithm.

The footstep planner would plan the path of the robot to a goal, but it also had its limits.
Goals could be inputted manually or by publishing to a topic, but either way had to be
approved before the robot would walk. The footstep planner also did not appear to create
a large enough c-space of the map before path planning, and the robot would occasionally
hit corners narrowly, which caused it to fall. Because the autonomous coordination with
the footstep planner was incomplete, the CSpaceNode and NavigationNode were not used
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to generate closed-loop maps and were not able to be tested as thoroughly as the rest of
the application. However, if the coordination with the footstep planner was completed,
they could have provided very useful methods for avoiding these rare collisions.

Ultimately, our 3D map was accurate and clean, but the other tools we used should be
improved before they are used as a robust autonomous exploration algorithm, for either
simulation or the physical robot. Working with the TOUGH libraries was one of the most
difficult tasks we approached. Enabling the algorithm would require this through tasks like
creating and approving steps autonomously, providing TOUGH with the padded C-space
map, and more in-depth use of the 3-D maps.

Significance
The results of this project carry a certain level of significance. To begin, this is the first
known implementation of SLAM on the Atlas robot, and one of the few implementations on
humanoid robots. As novel research, we helped to expand the understanding of using
broadly applicable methods on humanoids, specifically at WPI. In doing so, we were able to
test different methods that make SLAM difficult for humanoids. We discovered the
possibility, but impracticality, of using a 2-D algorithm for a robot capable of 3-D actuation.
Additionally, in our literature review we came across previous research that struggled with
optimizing performance and speed, which was an issue we confirmed to be present in
implementing slam. Additionally, we were able to define specific tasks that the two
multisense cameras, LiDAr and stereo cameras, are more applicable to through testing
them in the simulated environment.
Because of the unique timeframe located entirely within the COVID pandemic, we were
able to find useful ways of operating within simulation and out of the lab. By setting up the
TOUGH environment on our own computers, we followed a process that could be used to
enable remote development of humanoid robotics research. The project also helped to
open up new opportunities for research in WHRL. The point we left off our research has
many possible paths for future work.

Future Work
The completion of this project opens the possibility for future work, both as an extension of
this project specifically, and as tangentially related work. To begin, implementing our code
on the actual robot would be a clear step forward and an important one to prove the
validity of our algorithm. While meeting with several people in the lab to run the robot was
not possible this year due to COVID, this will likely change in the future. Additionally,
completing autonomous frontier exploration was a goal of the project that we were not
able to reach. Finishing this is another very clear possibility for continued work. However,
the degradation of ROS Kinetic, in which this project was created, makes a direct
continuation of the project impractical, for the time being. Because of this, the most
practical step forward for continuing work is to migrate the TOUGH control libraries to a
more recent ROS distribution, such as melodic or noetic. This would require large amounts
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of both effort and knowledge of TOUGH to do, but it is essential for continuing work with
TOUGH.
Other possible paths for continued work depend on updating TOUGH. For instance,
improving the SLAM algorithm created in this project could be a practical way to increase
the robots capability to interact with novel environments. An example of how this could be
done is by optimizing how frontiers are selected for exploration. In our desired
implementation, the robot proceeds to the closest frontier, but this could, hypothetically,
not be the optimal choice. Perhaps a study could be done to determine if a combination of
factors, such as size and distance could be more optimal for  quick closed-loop mapping.

Other possible routes of future work are less directly related to SLAM on Atlas, but are
nonetheless just as viable. Moxe involve interacting more with the generated 3D maps. The
stereo camera point clouds could be used to interact with objects because they maintain
color data. This could be useful in retrieving an item, like a red first aid kit for example. This
would be a more reasonable application for the stereo cameras than SLAM, as we found
the LiDAR more useful in that case. Additionally, the robot only interacted with
down-projected 2-D maps in this project, but the 3-D maps provide a lot of useful data.
They could be used for 3-D obstacle avoidance or navigating uneven terrain, which was not
done in this study.
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Conclusion and Recommendations

By the end of our testing we were getting fairly confident maps out of our SLAM
implementation. Our maps were simply evaluated visually against the Gazebo environment
that simulated the IEEE ISCAS museum in Korea. We chose this environment because it
provided a balance of walls, spaces, and features which were excellent for viewing the
results of our sensor data. The simulation also provided us with a flat walkable terrain,
which provided the best case scenario for TOUGH’s footstep planner.

Ultimately our results proved that 3 dimensional LiDAR scans, when used to update a 3D
occupancy grid, can provide us with a working methodology for performing SLAM on a
humanoid robot. The robot navigates these maps in a global coordinate frame, effectively
localizing itself within the maps it’s created. That being said LiDAR, though proven very
reliable in simulation, still has some major drawbacks. It takes almost 30 seconds in
simulation for the LiDAR point cloud to populate the map. If this method was ever used on
a faster or more agile robot, the speed of the robot may supersede that of the map
updating. This is generally not good practice, as the robot is already in an unknown frontier
when it begins mapping again, resulting in inconsistencies in localization.

The stereo cameras have proven much more efficient in this regard, and it may be
advisable to use them in fusion with the LiDAR for more confidence. This confidence would
prove crucial if Atlas were to navigate uneven terrain or rough obstacles. In those cases it’s
imperative to have a good understanding of the robot’s surroundings so that it can best
plan its footsteps.

Other future work on this project could also incorporate better filtering techniques for the
stereo point clouds. We attempted the implementation of a Z-Filter but found it wasn’t
quite great at eliminating artifacts that appear from shadows. It would be advisable to
instead use a filter that eliminates individual points in the cloud that aren’t part of a large
cluster. This would combat the appearance of artifacts that ultimately provide the robot
with false obstacles. These features could make the difference between a good mapping
algorithm and an excellent one. It is because of this that we recommend continuing
research for SLAM on Atlas if possible. There are many possible ways to improve our
algorithm and developing and entirely 3-D functionality is definitely possible.

Currently the Atlas robot can operate in a closed environment within a simulation, but it
would have been interesting to perform more testing on the physical robots. We would
assume that the behavior would be similar to that of simulation, but there are plenty of
variables that likely influence this reality. The robot’s lidar scan may very well be
significantly less accurate in reality than in simulation. Additionally it’s possible that our
footstep planner (which assumes level ground) may struggle with an actual floor.
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It’s being able to operate in any environment that would make this implementation
incredibly valuable. We would hope that with enough progress on this topic would
eventually result in the robot being able to map truly novel environments such as a forest
or the site of an accident. The map data it creates in these areas could prove to be
incredibly valuable to crisis response or surveillance teams. Humanoid robots will continue
to be developed and changed until they can completely replace humans athletically
wherever needed. It’s research like this that our team hopes will continue to pave the way
to the future.
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Appendices

Appendix A: Getting Atlas in Gazebo
First, follow the install instructions in the TOUGH repo, then do this:

cd ~/catkin_ws/src

wget
https://raw.githubusercontent.com/WPI-Humanoid-Robotics-Lab/atlas_workspace/master/atlas_
gazebo_rbe595_ws.yaml

vcs-import < atlas_gazebo_rbe595_ws.yaml

cd ~/catkin_ws/ && catkin_make install

source ~/catkin_ws/install/share/drcsim/setup.sh

# Download the bash file in the drive or copy to gazebo_possible_fixes.bash from below, then
run:
bash gazebo_possible_fixes.bash

source ~/catkin_ws/install/setup.bash

source ~/catkin_ws/install/share/drcsim/setup.sh

#launch!
roslaunch ihmc_atlas_ros ihmc_atlas_gazebo.launch use_local_build:=true

gazebo_possible_fixes.bash file contents:
#!/bin/bash

​
ihmc_repo_path=~/repository-group

catkin_path=~/catkin_ws

ihmc_path=${catkin_path}/src/ihmc_repos

​
echo "Git Pulling ihmc repos"

cd ${ihmc_path}/ihmc_ros_core && git reset --hard && git checkout

open-robotics-0.11.0-release && git pull

cd ${ihmc_path}/ihmc_ros_control && git reset --hard && git checkout

open-robotics-0.11.0-release && git pull

https://raw.githubusercontent.com/WPI-Humanoid-Robotics-Lab/atlas_workspace/master/atlas_gazebo_rbe595_ws.yaml
https://raw.githubusercontent.com/WPI-Humanoid-Robotics-Lab/atlas_workspace/master/atlas_gazebo_rbe595_ws.yaml
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cd ${ihmc_path}/ihmc_atlas_ros && git reset --hard && git checkout

open-robotics-0.11.0-release && git pull

cd ${ihmc_path}/ihmc_gazebo && git reset --hard && git checkout

open-robotics-0.11.0-release && git pull

​
echo "catkin_make install"

cd ${catkin_path} && catkin_make install

source ${catkin_path}/install/setup.bash

source ${catkin_path}/install/share/drcsim/setup.sh

​
echo "ihmc repo branch setting"

cd ${ihmc_repo_path} && rm -rf ihmc-open-robotics-software && git clone

https://github.com/WPI-Humanoid-Robotics-Lab/ihmc-open-robotics-software.git

--branch gazebo_devel

${ihmc_repo_path}/ihmc-open-robotics-software/gradlew

Appendix B: How to fix Bugs (some of them, anyway)

Catkin_make bugs
- if your catkin_make is failing with /usr/bin/ld: cannot find -lvtkproj4 (or similar) run this with the
name of your file substituted in:

ln -s /usr/lib/x86_64-linux-gnu/libvtkCommonCore-6.2.so

/usr/lib/libvtkproj4.so

Gazebo Bugs
If you get an error with robot description not found or are able to catkin_make but gazebo
doesn’t run, you may be in the error loop.
Or maybe not. Who knows. Here is how you might be able to get out of it:

Before starting, delete the build and devel folders in your catkin_ws and make sure you are on
the kinetic-0.11.0 branch of tough. Catkin_make, then start the instructions below.

Run these:

cd ~/catkin_ws/src
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wget

https://raw.githubusercontent.com/WPI-Humanoid-Robotics-Lab/atlas_workspace/m

aster/atlas_gazebo_rbe595_ws.yaml

vcs-import < atlas_gazebo_rbe595_ws.yaml

You are now in the RBE595 branch of tough
Go to tough and change back to kinetic-0.11.0
Download this entire folder and put it in tough/tough_control
catkin_make

Gazebo should still not work
Run this:
source ~/catkin_ws/install/share/drcsim/setup.sh

Running command below should still throw an error related to install/share
roslaunch ihmc_repos/ihmc_atlas_ros/launch/ihmc_atlas_gazebo.launch

Copy the launch folder from catkin_ws/src/ihmc_repos/ihmc_gazebo into
catkin_ws/install/share/ihmc_gazebo
(untested command: cp -r ~/catkin_ws/src/ihmc_repos/ihmc_gazebo/launch
~/catkin_ws/install/share/ihmc_gazebo/launch)

Now run:
roslaunch ihmc_repos/ihmc_atlas_ros/launch/ihmc_atlas_gazebo.launch

Gazebo should start

Every time you catkin_make you will need to move that launch folder in order for catkin_make to
work
The final command is now the command you must use to start gazebo

If you get an error including this: “Invalid <arg> tag: ihmc_gazebo”, perform the install
instructions again. Wget may have failed the first time

If gazebo launches but has a lot of squares in the environment and then crashes (or not),
run:
source ~/catkin_ws/install/share/drcsim/setup.sh

If no robot shows up, you may need to catkin_make install

If gazebo is crashing, you can also just try running this:

https://drive.google.com/drive/folders/1YGQtGmFQvUEAQ5FP-8JEWALj9tizyjVb?usp=sharing
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sudo apt-get update && sudo apt-get install git \

g++ vim nano wget  ca-certificates  ssh ros-kinetic-pcl-ros \

x11vnc xvfb icewm lxpanel iperf xz-utils cmake screen terminator

konsole\

ros-kinetic-pcl-conversions ros-kinetic-moveit \

ros-kinetic-trac-ik ros-kinetic-footstep-planner \

ros-kinetic-humanoid-localization ros-kinetic-multisense-ros \

ros-kinetic-laser-assembler ros-kinetic-robot-self-filter \

ros-kinetic-tf2-geometry-msgs ros-kinetic-joint-state-publisher \

ros-kinetic-octomap-server ros-kinetic-octomap

ros-kinetic-gazebo-ros-control \

ros-kinetic-joint-trajectory-controller ros-kinetic-controller-manager \

ros-kinetic-image-transport \

ros-kinetic-joint-state-controller ros-kinetic-position-controllers \

ros-kinetic-sbpl \

ros-kinetic-humanoid-nav-msgs ros-kinetic-map-server

ros-kinetic-trac-ik* \

ros-kinetic-multisense-ros ros-kinetic-robot-self-filter

ros-kinetic-octomap \

ros-kinetic-octomap-msgs ros-kinetic-octomap-ros ros-kinetic-gridmap-2d

\

software-properties-common python-software-properties debconf-i18n \

ros-kinetic-stereo-image-proc python-vcstool python-catkin-tools

ros-kinetic-ros-base \

openjdk-8-jdk openjfx ros-kinetic-effort-controllers

ros-kinetic-camera-info-manager \

ros-kinetic-gazebo-plugins ros-kinetic-fiducials

ros-kinetic-moveit-visual-tools

If you try to run gazebo and it crashes with the lots of errors related to PID
and robot description, then it is probably because you are using a virtualized GPU. You should
install your graphics drivers.

Appendix C: Every single thing that needs to be sourced
The order of sourcing is important! But I can’t guarantee that this is the right order.

source ~/catkin_ws/install/share/drcsim/setup.sh
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source /opt/ros/kinetic/setup.bash
source ~catkin_ws/install/setup.bash
source ~catkin_ws/devel/setup.bash

Appendix D: Common Commands
Run gazebo
roslaunch ihmc_atlas_ros ihmc_atlas_gazebo.launch use_local_build:=true

Run Footstep Planner:

Run Lidar:

The LiDAR must be started manually. First, the spindle speed of the LiDAR must be set
using the command
rostopic pub /multisense/set_spindle_speed std_msgs/Float64 0.8

Next, the perception nodes must be launched using
roslaunch tough_perception_bringup field_laser_assembler.launch

To avoid excessive memory usage, the LiDAR will stop after publishing 5 maps. Each map
takes a minimum of 8 seconds in real time to publish, which can be upwards of 30 seconds
in simulation with a low real time factor. This command restarts the LiDAR:
rostopic pub /atlas/pause_pointcloud std_msgs/Bool false

Appendix E: Git Repository
https://github.com/ATLAS-MQP-20-21/ATLAS-MQP-2021.git

Appendix F: Project Presentation Day Video
https://www.youtube.com/watch?v=XpMTDYAgMRo

https://github.com/ATLAS-MQP-20-21/ATLAS-MQP-2021.git
https://www.youtube.com/watch?v=XpMTDYAgMRo

