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Abstract  
This project aims to enable the use of the sktime toolbox for the classification of fNIRS data 

by developing a testing infrastructure that will allow researchers to specify an fNIRS dataset and 

run sktime models on the specified data set. This tool is accompanied by a manual that presents 

information on how to use the tool and how to set up sktime. The tool and the manual were tested 

with potential users and recommendations were recorded for potential future improvements. 
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Introduction  

The goal of this project is to simplify and automate the classification component of the Brain 

Computer Interface (BCI) pipeline at the Worcester Polytechnic Institute (WPI) BCI lab. Towards 

this goal we built a tool that will allow researchers to use machine learning algorithms to classify 

and learn from functional near infrared spectroscopy (fNIRs) data that they have collected from 

experiments. 

During BCI experiments, data is collected over a period of time from multiple sensors, 

resulting in multivariate time series data [1].  Due to the complex nature of the data, it is not trivial 

to utilize machine learning algorithms to classify it. Implementing and running a custom classifier 

appropriate for time series classification from the ground up is not only difficult and time 

consuming, but often makes it troublesome for other researchers to reproduce the results [2]. Even 

with the custom code documented in a research  paper, it is unlikely that another researcher 

replicating the experiment will have the same implementation. There are, however, open-source 

tools, which can better support replication and that are designed to work with time series data 

specifically, such as sktime [2].  

Sktime provides implementations of several state-of-the-art  time series specific 

classification algorithms that are well-suited for fNIRS brain sensor data. This tool’s developers 

have created a unified interface for machine learning with time series in order to, “reduce(s) 

confusion and enable(s) us to focus on providing advanced time series analysis capabilities for 

researchers and practitioners” [2]. Leveraging this toolkit has the potential to reduce the amount of 

time between initial data collection and classification results. Additionally, as the toolkit is open 

source, the implementation of sktime algorithms can easily be found, enabling reproducibility of 

fNIRS research. 

However, sktime is a relatively new API with a steep learning curve. In fact, sktime is one of 

the first APIs to “to present a unified interface that can explicitly represent and link multiple 

distinct tasks” such as time series classification, pipelining, ensembling and data transformations 

[2]. Exploring the options and algorithms made available by sktime can be a time consuming and 

tedious process. Additionally, sktime is not designed to  process fNIRS data directly. The toolbox 

requires data to be in a specific format to be processed by its functions and classifiers.  

In this paper we present NIRS AutoML (NAML), a tool that provides an easy interface to 

create models with sktime and that logs information on these models, simplifying the process of 
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learning from and classifying fNIRS data.  NAML reads fNIRS data from a csv, performs validation 

checks on the format and contents of the data, and prepares it for sktime. It also provides the ability 

to choose classification methods implemented in sktime, and specify parameters for the algorithms. 

After running the specified methods, it logs the performance of the given classification methods. 

NAML is accompanied by a manual to assist future users. 
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Background  

Section 1: Brain Computer Interfaces (BCI) 

Brain computer interfaces (BCI) are points of communication that allow signals from the 

brain to direct external activity[2]. In natural communication, such as shaking someone’s hand, the 

brain would send a signal to the muscles, which would then complete the action of shaking the 

hand. With BCI, researchers are aiming to create an artificial system that bypasses the body’s 

typical method of communication using electric, magnetic, or hemodynamic brain signals[3]. BCI 

directly measures brain activity associated with the user’s intent and translates this activity into a 

signal for BCI applications. 

BCI research can be broken down into three components[3]:  

● Developing technologies such as Magnetic Resonance Imaging (MRI), 

electroencephalogram (EEG), and near infrared spectroscopy (NIRS) that can detect 

and record signals from the brain 

● Using algorithms to decode information. This can be broken down to preprocessing 

brain data, feature extraction and selection, and classification. 

● Developing a system that can integrate the decoded information into input for an 

interactive system  

In this project, the focus will be on  using algorithms to decode information, particularly 

data collected from fNIRS based experiments. 

 

1.1 Supervised Machine Learning Application in BCI  

Supervised machine learning is a subset of artificial intelligence, in which a computer is 

given data and its corresponding results or labels in order to learn a set of rules about the data. This 

set of rules then can be applied to classify more incoming data. This process differs from classical 

programming where the computer is given data and a set of rules in order to determine the results.  

Supervised machine learning techniques are prevalent for classifying and understanding 

brain data, as signals received by machines such as NIRS and EEG are not easily interpretable. 

These signals can come from multiple nodes over a large period of time and can also be noisy[3]. 

Within the three components of BCI mentioned in Section 2.1, machine learning is essential to 

classification in step two.  
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 Past research in brain computer interfaces has mainly focused on decoding and developing 

systems that can process EEG data. This is primarily due to the fact that in the past EEG machines 

were relatively inexpensive to other alternatives.  Recently, however, fNIRs systems have emerged 

as another neuroimaging modality that is also relatively inexpensive, opening up opportunities for 

new experiments and applications [4]. 

 

1.2 fNIRS 

Functional near infrared spectroscopy (fNIRS) is a non-invasive brain computer interface 

technology that collects hemodynamic data in order to monitor neuron activity in the cortex. This 

technology quantifies changes in hemoglobin intensity across the brain to determine the cognitive 

state of a person. The low cost and portable nature of this technology makes it ideal for experiments 

and applications where we have to monitor individual’s cognitive states during situations such as 

safety simulations or monitoring patients during rehabilitation[4]. 

 

Section 2 : Sktime for Time Series Classification (TSC)  

Researchers in fNIRS based BCI studies often choose to use machine learning techniques in 

order to classify or determine different cognitive processes. In this study, we explore the use of 

sktime, a machine learning API designed to address TSC  problems, to classify fNIRS data [1]. 

Sktime has the potential to enable researchers to use off the shelf algorithms instead of 

implementing their own for each project that they do.  

The sktime toolbox provides implementations of tools and algorithms that facilitate 

multivariate time series classification (MTSC)[1]. The tool documentation outlines three main 

methods for MTSC: concatenation, column ensemble, and shapelet transform. The concatenation  

method involves concatenating multivariate time series data into one one univariate series and 

then using a univariate classifier on the newly created univariate series [1].  The column ensemble 

method to perform MTSC  specifies a classifier for each constituent univariate component of the 

multivariate time series. Essentially, the multivariate time series is  treated as several separate 

univariate series. A user can then specify the classifier they would like to apply per univariate 

series. Finally, the predictions of these classifiers would be aggregated to provide a final accuracy 

score. This method is called the column ensemble method because a group or ensemble of 

classifiers are aggregated to get the final prediction[1]. Lastly, there is the shapelet transform 

classifier that processes the entire the multivariate time series to find shapelets, “time series 
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subsequences that are in some way representative of the class[7].” This classifier searches for 

shapelets within the multivariate series. 

There are several univariate classifiers that may be used with the first two methods. The 

following table outlines a few univariate classifiers implemented within the sktime toolbox. Several 

of the implemented TSC algorithms are built upon the base decision tree classifier. A decision tree is 

an example of a supervised machine learning algorithm. It is built on a series of nodes each where 

each node asks a question about the data in order to classify it [9].  

  

Classifier  Basic Functionality  

Time Series Forest 

Classifier (TSf) 

TSF is an interval based classifier built upon an ensemble of decision tree 

classifiers. Within each member of the ensemble a random set of intervals 

are selected and the basic summary statistics are computed. These 

statistics are then, “concatenated to form a new feature space.” [1] The 

library provides the ability to customize the TSF classifier.  

Bag of Symbolic 

Fourier 

Transformation 

Symbols (BOSS) 

Ensemble Classifier 

BOSS uses Fourier transformation to breakdown  a time series into its 

constituent frequencies and classify the series based on this frequency[1]. 

BOSS classifiers are trained upon multiple windows or subsets of the 

series, resulting in the BOSS Ensemble Classifier.  

Random Interval 

Spectral Ensemble 

(RISE) 

RISE is an ensemble of decision tree classifiers. Random intervals are 

selected and transformed into the power spectrum that is frequency 

components of the series, and autocorrelation features[1].  Decision trees 

are then created based off this new feature space.  

Table 1: Table of a select few sktime classifiers  

Section 3: Integrating BCI with sktime  

The motivation behind developing  the sktime API was to create a unified interface for 

machine learning with time series in order to provide researchers “ advanced time series analysis” 

[1].   As mentioned in section one, using supervised learning for time series classification, is a key 

component for BCI research. This toolbox provides a “consistent and modular” interface that can be 
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used by BCI researchers to reproduce results from different experiments [1]. However, exploring 

the options and algorithms made available by sktime can be a time consuming and tedious process. 

Additionally, sktime is not designed to  process fNIRS data directly. The toolbox requires data to be 

in a specific format to be processed by its functions and classifiers. In order to make sktime 

classifiers easily available for BCI researchers we aimed to develop NIRS AutoML (NAML), a tool 

that provides an easy interface to create models with sktime. The next section will provide an 

overview of NAML.  
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Tool Overview and Functionality 

This project had three main deliverables: 

1. Nirs AutoML (NAML): Automated Classification Platform for fNIRS data  

2. Manual for setting up sktime (seen in Appendix A)  

3. Manual for setting up NAML(seen in Appendix B)  

This chapter will give an overview of the functionality of Nirs AutoML as well as provide a proof of 

concept of the tool with an fNIRS data set.  

Section 1:Nirs AutoML (NAML) Functionality  

NAML has four main functions: 1) to parse and reformat the data, 2) to classify the data, 3) 

to record the results of the classification, and 4) to assist users with getting started. There are two 

main scripts the tool consists of. The first program is naml.py, the script that will parse, classify, 

and record the data. The second program is configuration_checker.py. This program assists 

the user by checking their configuration file, and specified data file in order to save them time with 

errors.  

The picture below shows the generic workflow of naml.py. The user sets up a JSON 

configuration that specifies a file path for the comma-separated value (csv) file, the target column 

that the user would like to classify the data into, the percentage of training data they would like the 

train the model on, a list of specified classifiers, and the option to log the results.  

 

Figure 1: NAMLs workflow  
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1.1 Configuration File Input  

In order to interact with NAML the user must create a JSON configuration formatted as shown 

below.  

  

Figure 2: Example JSON configuration file for NAML 

 

a) filePath , a string, defines the path to the location of the data file  you will be using. 

b) loggingEnabled, a true or false value, determines whether the output of the run 

will be logged onto a text file.  

c) targetCol, is a string that specifies which column the data will be classified into. 

For example, if there is  a column named “event” and there are two types of events, 

the data will be classified in one of the two events.  

d) percentTrain, a float value that determines the percentage of data that the 

models will be trained on. 

e) jobs, a list of jobs that will run. Within each job you must specify a classification 

method. Depending on the method there are different parameters that can be 

specified. Section 1.3 will overview the different classification methods and how to 

specify jobs per method within a configuration file.  

1.2 Data Manipulation 

Sktime requires data to be formatted in a certain way before it can be used with the toolbox. 

NAML’s data manipulation function is built to take in fNIRS data and reformat it accordingly. 

Consider the two images below. Figure 3 is the raw data outputted by the MATLAB graphical user 

interface. Several rows may represent the same event, but will contain the data collected from 

different sensors. Figure 4 is the output of passing this sensor data into the data manipulation 
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function of NAML. As  you can see, the sensors’ data has now been reformatted into dimensions that 

contain the time series per label. Each channel data is now formatted into columns: A-DC1 

translates into dim_0 and A-DC2 translates into dim_0.  In Figures 3 and 4, the same instance of the 

manipulated data is highlighted.  

 

 

Figure 3: Data outputted from MATLAB GUI  

 

 

Figure 4: Data reformatted for sktime  

1.3  Classification Methods  

The tool currently supports four different classifiers over three different methods.  

Concatenation Method 

The concatenation method converts a multivariate time series into a univariate series by 

concatenating the series together. After this, a classifier built for univariate data, chosen by 
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the user, is run. In this method, we support three distinct classifiers: Time Series Forest 

Classifier (TSF_CLF), KNeighbors Classifier, and Proximity Forest Classifier.  The following 

method shows three jobs each using the concatenation method.  

  

Figure 5: Example JSON for Concatenation Method  

 Multivariate Method  

The multivariate method currently supports one classifier that supports multivariate time 

series: the Shapelet Transform Classifier.  Here is an example of how to configure this 

method.  

 

Figure 6: Example JSON for Multivariate  Method  

 

 Column Ensemble Method  

The column ensemble method consists of specifying a classifier per column or dimension of 

the data. The user can choose as many dimensions of data as they would like to create the 

ensemble. For example, the following image shows that column zero and column one will be 

trained using the time series forest classifier. Any classifier mentioned under concatenation 

method section, is also available for the column ensemble method. 
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Figure 7: Example JSON for Column Ensemble  Method  

 

Different methods can be called together in one configuration file, and a user may choose to specify 

as many jobs as they would like. Additionally, there is the option to parametrize the classifier based 

on the options provided by sktime API documentation.  This can be seen in Figure 7 above as well. 

For any method mentioned a list by the name of parameters must be specified in the order of 

parameter name, parameter value, parameter name, and so on as can be seen in the image below.  

 

 

Figure 8: Example parameter input  

1.4 Logging Output  

If chosen, the results of the classifier may be reported. The logging output will be saved under the 

format date:::time.txt. Within the text file we first list the json, the csv, and the job. We then record 

the accuracy and the time taken to run a single job. Accuracy is the percent classified correctly, and 

the time is the number of seconds it took to run the model.  The image below shows the time and 

accuracy  for two different jobs to run.  

 

Figure 9: Example output log file  
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1.5 Configuration Checker  

configuration_checker.py is a file that will allow users to check if the format of the configuration file 

is correct, if any of data for a specific parameter in incorrect, and if the specified csv file has the 

correct format. The following is a list of checks covered by this program.  

● Parameters set in the JSON are valid parameters  as described in sections 1.1 and 1.3  

● fNIRS data file headers contains the following values: “name” “event”, “start time”, “end 

time”, “channel” 

  

Section 2: Proof of Concept 

Running sktime classification task on dual task driving study  

Data Overview  

The Dual Task Car Driving Study served as a test case to facilitate the development of the 

modular testing infrastructure.  This specific study aimed to determine if periods of high workload 

can be distinguished from periods of low workload, based on fNIRS data. In order to do this, thirty 

participants were put in a driving simulation while they had to perform an auditory vocal working 

memory tasks, specifically n-back tests, while driving in the simulator. These tasks required users 

to perform a blank-back, 0-back, 1-back, and 2-back test, each test requiring about 30 seconds to 

complete[5].  The researchers also collected a reference signal when the participant was 

performing no secondary task at all.  Each of these from baseline to the 2-back test, are increasing in 

difficulty, resulting in a higher cognitive workload.  

All in all, the study suggested that participants performed worse in the tasks as difficulty 

increased.  Additionally, preliminary results showed that the minimal value of  deoxygenated 

hemoglobin concentration over the task period, was a good indicator of task level with significant 

differences found in certain sensors[5]. 

The experimental fNIRS data from this study  is labeled for each participant. Within the data 

collected for each participant, there are makers for the time period in which the participant was 

performing a specific task (reference, blank-back, 0-back, 1-back,2-back). In total, there were 16 

fNIRS sensors placed on the participant. The sensor data is marked by the signal magnitude every 

millisecond.  

16 



 

To extract this data we used a MATLAB GUI that visualizes and exports experiment data as 

seen below.  

 

 

Figure 10: Matlab Graphical User Interface for fNIRS data 

 In the user interface shown above in Figure X,  we can see data for participant “2013e_001” 

as selected under “PARTICIPANT.”  This data includes signals from three sensors, selected under 

the label “CHANNELS”. For the Dual Task Driving Data, there are sixteen channels to choose from. 

The green intervals on the GUI  indicate the time in which the participant was performing a given 

task. In this GUI, tasks are specified under “EVENTS”. As the user of this interface selects a task, the 

time period in which that task took place is highlighted. In addition to this, the MATLAB graphical 

user interface shown in Figure X allows us to pick and choose the participant whose data we would 

like to extract and also provides simple extraction for the required data in the form of a csv file. The 

first few rows of the csv file looks like the following.  

 

Figure 11: MATLAB GUI csv output  

Within this dataset we extracted all the data for two “events”, the 0-back and the 2-back. 

The 0-back task has been validated to provide a lower workload demand than the 2-back task. In 

the next section, we will run classification algorithms on the data to determine if they can properly 
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classify the data into one of these two events, and demonstrate that we can distinguish between 

high and low workload, based only on fNIRS data.  

Setting  Parameters  

Once the fNIRS data file is generated as a csv, we can begin using NAML. The first step is to 

set up the configuration file. We will first specify the location of filePath to the location of the csv 

(line 1). Let’s say that we would like to run each classification method (line 5). We would like to 

train with 50% of the data (line 4), and want to record the output to the file (line 2). Lastly, we 

would like to classify the data into their distinct events (line 3). In this case, an event would be the 

n-back test (0-back or 2-back) the user was performing at the time the data was being collected. 

The following configuration file would meet these requirements.  

 

Figure 12: Sample JSON configuration file  

 

Reviewing Results  

The following is the output of the program. 
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Figure 13: Sample log output 

 

As can be seen the accuracy of each of the models is approximately 50%,. This is essentially 

baseline accuracy as there are two different classes that we are classifying the data into. However, if 

we run the configuration file, we may notice that the shapelet transform method generally performs 

worse than the other two methods. In the next step of this experiment, we may choose different 

classifiers, classification methods, or adjust parameters for  the classification methods listed above. 

In order to determine the best way to move forward, one would have to be a subject matter expert 

on the data, as well as the experiment. It is also possible to use hyper parameter tuning to 

determine the best steps forward. In section x.x, I outline possibilities of moving forward and 

creating better models.  

Section 3: Feedback on NAML  

NAML was tested by asking members of the Brain Computer Interface Lab to download and 

run the tool on their local machine. Throughout the testing session the participants gave feedback 

on the current tool and possible future improvements.  

The users agreed that the tool is intuitive, well commented, and straightforward to use. 

However, certain users suggested that building a user interface for a tool would make it easier to 

use. Other users enjoyed the ability to view the implementation of the tool and to have the ability to 

modify the code as they see fit.  Most users did state that writing a configuration file in the form of a 

JSON can be tedious and suggested that automating the generation of these configuration files can 

ease the workflow.  

Other suggestions included the following:  

● Combining the troubleshooting script and the main script (naml.py) into one master 

script 
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●  Storing all logged files in one local directory  

● Developing a flask API that can communicate with a web based front end  

● Cache the reformatted version of the data file locally to reduce the time it takes to 

run the program  

These suggestions will be further outlined in the Future Works section.  
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Methodology 
This chapter will give an overview of the steps taken towards developing Nirs AutoML 

(NAML) as presented in Tool Overview and Functionality chapter. It will also describe the process of 

creating guides for future users. The chapter will be split into the following two sections:  

1) Develop a modular infrastructure for running sktime models on fNIRS data  

2) Create manuals to assist future users with sktime and NAML  

The following sections will provide further detail per objective. 

Section 1: Develop a modular infrastructure for running sktime 

models on fNIRS data 

The first goal of this project was to develop a tool  that  allows researchers to easily run and 

evaluate models offered  by sktime. Our tool enables users to choose  a fNIRs dataset, pick a 

classification method and specify the needed parameters. In addition, they can  choose if they would 

like to save the accuracy and runtime for the model or models that they run.  

The tool was evaluated on its ability to take in: 

1)  Two or more datasets  

2)  Run these datasets against two or more classification methods 

3) Make this tool usable for other researchers in the lab, by creating a  guide detailed in 

section 2.2. 

These tasks were split into further specific tasks completed using an iterative process over 

the course of eight weeks. Development was split into three components:  

1. Initial development of the minimal viable product 

2. Troubleshooting 

3. Testing 

 Additionally, throughout the process, tasks and features were added based on feedback from 

advisors and testers. Each feature added went through this process.  

The first step was to ensure that previously collected fNIRS data can be properly 

reformatted to be compatible with the sktime API. In order to do this we extracted a dataset to 

assist with the develop a reformatting function. We then tested this functionality by sending a 

secondary dataset through the script. This was done throughout the course of three iterations with 
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increasing modularity per iteration. For example, the first iteration only allowed a single column in 

the data file to be the target column, whereas in the second iteration, the target classification 

column was decided by the user. Additionally, we tested the function’s ability to handle data with 

varying dimensions and sizes.  

The second core goal was to implement three distinct classification methods made 

from the sktime API. We first constructed a proof of concept for each classification method, to 

ensure that the reformatted data is compatible with different each classification job.  This step also 

allowed us to understand the steps required to automate each of these methods. Once these 

methods were automated, they were tested with the two datasets.  

 Additionally, we designed a configuration file that allows the user to specify the path 

to the location of the dataset, the classification method  they would like to use, and whether 

or not they want to benchmark the models for accuracy and time.  This step also required the 

script to properly read and parse the parameters within the configuration file. In order to test this 

we created several configuration files that called different classification methods with different 

settings. 

 Given feedback, we also added additional error handling to the tool. This was done by 

creating an additional script solely aimed to test the configuration file and the specified fNIRS data 

file. This error handling script checked the configuration file format and the format of the user 

specified data. The goal is that this would assist users with troubleshooting, if they get any errors.  

Outcomes: With the completion of these tasks, we had a minimal viable product that was 

able to process two different fNIRS datasets with more than two different classification methods, 

achieving our goal for functionality and flexibility.  

Finally, we reached out to members of the lab and guided them through the tool asking 

them about (1) the intuitiveness of the  written guide discussed in section 2.2, (2) the flow and 

understandability of the tool, and (3) improvements and possible future work. These responses 

were recorded and documented to allow developers to continue improving on this tool.  

Section 2: Create manuals to assist users with sktime and NAML  

The second goal of this project was to create manuals that will enable researchers to install 

and run sktime on their machine. In addition to this, we aimed to develop a guideline that will allow 

users to run the NIRS AutoML tool on their computer.  
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2.1 Create a manual for “Getting started with sktime”  

The aim is that this guide is to provide substantial information so that the user will be able 

to use sktime for classification of an online dataset with minimal effort. This guide  includes the 

following: 

● Information on the functionality provided by the sktime library 

● An overview of the environment requirements for using sktime. This will include 

information on how to find and download needed libraries.  

● Guideline  on uploading and formatting datasets in order to make them sktime compatible 

● Basic information and overview on the steps for setting up and running different models 

provided by sktime  

There are four main steps to developing this guide. First, I installed sktime and ran the 

library on my computer. This involved configuring a development environment that will run 

sktime. 

Next, I  found a dataset to run a classification function on  and recorded the steps that I took 

as a tutorial.  In order to do this, I  found time series data that is publicly available and configured 

sktime models to run with a chosen dataset. These first two steps involved taking notes on the 

process of installing and running the tutorial.  

 These notes were then compiled into a getting started guide that contained sections on the 

points bulleted above. This included organizing the notes into their distinct sections, and linking 

external resources where they may be helpful. 

 Finally, potential users of this guide to were asked to follow the outlined steps. The guide 

was evaluated based on the users’ ability  to install sktime on their computer and run through a 

basic sktime tutorial. In addition, the users were asked if the guide provides substantial amount of 

resources to look at for further understanding on any aspect of the guide. The user feedback was 

used to improve the guide.  

Outcomes: With the assistance of user feedback we were able to develop a comprehensive 

guide that will allow individuals to (1) set up sktime on their machine and (2) gain an 

understanding about sktime’s functionality and capability. This guide can be found in Appendix A.  
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2.2 Create a manual for “Getting started with NAML” 

The second component of the getting started guide is to inform  potential users on the 

functionality of the test suite developed, as outlined in Section 1. This component of the guide 

includes:  

● A detailed overview on the functionality of this test suite 

● Instructions on how to download and run the program  

● Access to a sample dataset and configuration file  

 To complete this component of the guide, we have created a sample dataset and 

configuration file. This guide and the program were then tested with members of the lab for its 

functionality and usability. The users followed the guide which required them to download the tool 

on their machine and asked them to run the tool. The users gave feedback on three main areas:  

1. Tool’s  usability  

2. Possible improvements and future work for the tool 

3. Improvements on the user guide 

Outcomes: This feedback for the tools usability and possible improvements was then recorded and 

documented as possible future work. The guide for getting started with NAML was edited and 

improved based on user feedback. This can be found in Appendix B. The next section will overview 

future work.  
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Future Work  
In this project, we have created a tool that allows users to run multiple sktime models. 

However, this tool is only the beginning of exploring how useful sktime can be in solving the 

classification problems in the field of brain computer interfaces. This project can serve as a means 

for finding the best model using hyper parameter tuning. The configuration file provides users the 

ability to specify the parameters for each classifier as specified by the sktime API. The process of 

finding the most optimal model and optimal parameters can also be automated.  

The tool itself can  improve certain functions. For example, reformatting generally takes 

longer to run than individual classifiers, especially with large data files.  A possible functionality 

may be to save the reformatted file if it is to be used in different configuration files. This is 

especially important as the size of the data increases. Similarly, it is also important to consider 

running multiple classifiers in parallel using multithreading as opposed to running them one after 

another,  as it is done in the  current implementation of the tool.  

The natural next step is to build a user interface for this tool that members of the lab can 

use. A user interface can be implemented in many ways. On way would be to ask users a series of 

questions on the command line to generate a JSON configuration file. We could also create local 

application using one of many python graphical user interface modules such as tkinter. However, 

the most popular option is to create a web application so that the tool can be used from any device.  

Creating a web application with this tool would require the use of an API. An API allows the 

frontend of the application to communicate with the backend of the application. As several web 

applications are developed using javascript, API often receive information as JSON. Future 

developers may choose to format the JSON sent from the front end of the web application in the 

same way the local JSON configuration files are formatted.  One option to develop a python API 

would be to use Flask, as other projects in the Brain Computer Interface lab are creating 

applications using this as well. 

 In addition to creating a web based user interface, there is also the option of extending the 

back end capability of the tool by integration sktime-dl into this tool as well. Sktime-dl is a deep 

learning extension for the sktime library developed by the same researchers. This extension uses 

deep learning algorithms provided by keras, a popular deep learning library. Deep learning is 

gaining popularity in the field of machine learning, and the algorithms provided by this extension 

may prove to be helpful in solving classification problem in brain computer interface settings.  
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Appendix A: Getting Started with Sktime Guide  

Introduction  

If you’re here you are probably already familiar with sktime. However, if you just happened to 
stumble upon this handbook you can learn more about the toolbox on its official page, its github 
page, or its documentation.  

I’ve written this guide based on the installation process on a linux and mac  machine.  If you have a 
windows please follow the steps listed under the Windows section on this page here.  

Downloading and creating an sktime environment  

The first component of this section outlines creating a virtual environment. However, if you already 
have python set up on your machine and are comfortable downloading sktime, please skip to the 
starred step. NOTE: sktime is only compatible with a version of python higher than 3.6.  

Creating a virtual environment with anaconda 

Although this isn’t necessary to create a virtual environment, it is highly recommended as it will 
allow you to manage your python libraries and projects more efficiently. To install anaconda visit 
the website  and download the linux installer for python 3. In your downloads directory, you will 
find a shell script named similar to the following: Anaconda3-2019.10-Linux-x86_64.sh 

Run this script by typing the following on the command line:  

bash ./Anaconda3-2019.10-Linux-x86_64.sh 

You will be prompted to accept the license and agreement as the program starts. Next, type the 
following onto the command line prompt.  

source .bashrc  

This command essentially refreshes the .bashrc file that was modified by the previous command 
that you ran. Now, we are ready to create a virtual environment. Run the following command on the 
commandline. Feel free to replace “yourenvname” with anything you would like. 

conda create -n yourenvname python=3.7 anaconda 

Next activate your environment by typing the following:  

conda activate yourenvname  
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*Now that you are in the environment you can install stime by running the following command:  

pip install sktime  

That’s it! You have sktime on your computer. You can deactivate the environment by typing the 
following command.  

conda deactivate  

To ensure that you installed sktime within the virtual environment. You can type the following onto 
the command:  

Ipython  

Ipython is a command shell for interactive python programming. If you type “import sktime” and 
click enter, you will be able to check if the sktime module is properly installed. Type “quit()” to get 
out of the shell.  

In the next section I have outlined the basics of pandas and numpy. If you are already familiar with 
this, you can skip to the tutorial.  

Running your first sktime experiment  

Now that we know a little more about pandas and numpy, we are ready to start our own mini 
experiment. I would highly suggest looking at the tutorial available on the sktime documentation 
website. 

Finding a suitable dataset  

There is a great time series dataset archive at timeseriesclassification.com . This archive has both 
univariate and multivariate datasets that you can use. Additionally, these datasets are also 
formatted to work seamlessly with sktime.  For this mini-experiment I will use atrial fibrillation 
data that can be found you  here. Once you download and unzip the folder, you will find that there 
are file types .ts and .arff. These files are supported by sktime load functions.  Now that the data is 
loaded, we need to load the data set.  

Loading the dataset  

I would suggest using jupyter notebook as we step through this tutorial as it will allow you to 
explore your data as you get started. Activate your environment, and launch jupyter notebook by 
typing the following onto your terminal.  

>conda activate environmentname 

>jupyter notebook  
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Now create a new python3 notebook and name it.  Follow the code and run each cell one by one. 
This following jupyter notebook can also be found here.  

 

  

Jupyter Notebook Tutorial  

 
Running Models  

Tutorial and API documentation can be found in the documentation page. In this tutorial, we will 
run through the concatenation method outlined in the cells below.  
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You may also choose to replace the TimeSeriesForest classifier with any other univariate classifier 
as such:  

 
You may notice a Pipeline() function that runs the column concatenation. This tool allows you to 
run other transformations on the data as well. If you are looking for more information on the 
functions provided the library viewing and searching the documentation and looking at the github 
page can help. Searching the function “KNeighborsTimeSeriesClassifier” will give you information 
on all the parameters that can be used with this function.  If you are trying to find the 
implementation you can use the import statement on top of the tutorial. For example, the 
k-neighbors implementation can be found in the folder sktime> classifier > distance_based. as can 
be seen in the first line of this code.  
 

Familiarizing yourself with pandas and numpy  

Pandas and numpy are essential when doing machine learning with python and are  core building 
blocks when  using sktime. There are endless resources when it comes to these two libraries that 
may come in handy. I personally recommend downloading copies Pandas Cheat Sheet and Numpy 
Cheat Sheet, as they will be invaluable resources when manipulating data for sktime. In sktime, the 
dataset excluding the labels is stored as a pandas dataframe and the labels are stored as numpy 
arrays. I would suggest opening up the IPython console by typing IPyhton on your terminal to 
follow along some of the examples. Once the console is open, type the following lines of code:  

import pandas as pd  

import numpy as np  
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Here is a brief introduction to each:  

Pandas 

The pandas library is popular for data manipulation and analysis. Particularly, the DataFrame 
objects provided by the library allows easy indexing of complicated datasets. There are a few 
functionalities of pandas that are a must know.  

Here are two ways to create a dataset:  

 

To gain descriptive understanding of the dataset, here are a few functions that you may choose to 
use the following functions: 
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Numpy 

Numpy, short for numerical python, is an open source library which provides fast mathematical 
computation on arrays and matrices. NumPy provides the essential multi-dimensional 
array-oriented computing functionalities designed for high-level mathematical functions and 
scientific computation. 
Here are a few ways to create numpy arrays:  

 
 
Here is how to gain some descriptive understanding of the data in a numpy array:  
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Appendix B: Getting Started with NAML Guide  

Introduction  

NAML is an automated classification tool built to process and classify fNIRS data collected in 
the Brain Computer Interface lab at WPI. The tool is built upon the sktime API, using the classifiers 
that are made available by the toolbox.  It will allow researchers in the lab to choose classifiers, 
adjust parameters, and, hopefully, help them determine the best classifier for their data.  

Case study: NAML user workflow for 2013 driving data 
In this section we will outline the workflow of  using  NAML with a real fNIRS dataset collected from 
a distracted driving experiment aimed at determining low and high memory workload. The 
experimental data is exported into a csv.  The following specifies the steps needed to run and use 
the tool effectively.  

1) Set up an environment for the tool to run 
In order to run NAML on your computer you will need: 

a) linux or mac operating system 
b) python 3  
c) Installed sktime library 

If you want to further gain  further information on installing sktime or setting up sktime you 
are welcome to use the getting started with sktime guide.  
 

2) Download the repository 
The next step is to download the repository from the following GitHub link: 
https://github.com/erins/NAML 
The following picture shows the GitHub repository. Click the green download button on the 
upper right hand corner. 
 
The downloaded repository has two main folders. The “examples” folder contains sktime 
tutorials and the “scripts”.  The scripts file on this computer contains four main items 
needed to run the tool  

1. naml.py 

2. configuration_checker.py  

3. data folder 
4. configurationFile folder 

 
Using the terminal navigate to script folder within the downloaded folder and type the 
following commands that will make the python files executable :  

chmod a+x naml.py 
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chmod a+x configuration_checker.py  

 
3) Explore the data in the csv file 

Under the data folder you will find a csv file labeled 2013e.csv. The data has multiple 
columns including: name, event, channel, start time, end time 

● name represents the participant. There about thirty participants in this dataset.  
● event is the type of event the participant is performing. For this dataset we have two 

event, 0 back and 2 back tests. This data could be indicative of high and low memory 
workload, respectively.  

● channel represents the sensor the data is being received from. This dataset has 
sixteen different sensors.  

● start time and end time are the start and end time for a particular event done by a 
participant  

● The remaining columns represent the data points collected by the machine over time 
at the sampling frequency 

Several columns represent the same event but with different sensors. One way to 
distinguish between the different events is to look at the start time or end time  
 

4) Set up the configuration file  
The following picture shows an example configuration file that can be found under 
configFiles.  

 
a) filePath , a string, defines the path to the data you will be using 
b) loggingEnabled, true or false, determines whether the output of the run will be 

logged onto a text file  
c) targetCol is a string that specifies which column the data will be classified into  
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d) percentTrain is a float value that determines the percent of data that will be trained 
on  

e) jobs is a list of jobs that will be run. Within each job you must specify a method. If 
the type of method is univariate transformation, you can also specify a classifier. 

 
5) Check correctness of the configuration file  

On the command line type the following command: 
./configuration_checker.py  ../scripts/configFiles/example_config.json 
This script is aimed at helping you detect any errors with configuration file.  
 

6) Run the classification jobs on the data 
On the command line type the following command:  
./naml.py ../scripts/configFiles/example_config.json 

 
7) Review logged output 

In your local directory navigate to the logs folder. In this folder you will find a .txt file that 
will show the percent accuracy and the time it took for the model to run. 
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