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Executive Summary 

Through the construction of new asphalt pavements, the asphalt industry has been 

contributing to greenhouse gas emissions released into our atmosphere.  Recently, there have 

been products developed, such as Sasobit®, that decrease viscosity of asphalt at a lower than 

conventional mix temperature, which can in turn reduce greenhouse gas emissions.  The 

objectives of this study were to determine if emissions can be reduced with the use of Warm Mix 

Asphalt (WMA), and whether any material properties can be expected to improve in mixes 

produced at lower temperatures (WMA versus Hot Mix Asphalt, or HMA).  Another objective 

was to determine economic benefits, if any, of producing mixes at lower temperatures.   

Testing for this study included emission testing for pure asphalt and asphalt mixes.  HMA 

and WMA samples were also mixed and compacted to test material properties.  All tests 

completed were done on 3 separate mixes: HMA with 5.3% asphalt, WMA with 5.3% asphalt 

and 1% Sasobit® (by mass of asphalt), and WMA with 4.8% asphalt and 1% Sasobit® (by mass 

of asphalt).   

For all emission tests, Drager testing equipment was used.  The set up used for these tests 

consisted of flasks, ovens, a Drager pump and Drager tubes.  To measure carbon dioxide (CO2), 

the Drager pump needed 10 full strokes and it took approximately four minutes for the test to be 

completed.  The color change in the chemical inside the tube indicated the amount of gas in the 

sample in parts per million (ppm).  Preliminary testing of emissions emitted from pure asphalt 

was done to develop a procedure since there are no test standards for this available at this time.  

For this study, approximately sixty grams of asphalt mix, both WMA and HMA, and 

approximately twenty-five grams of pure asphalt were tested for emissions. 

The three asphalt mixes in this study were tested for both unaged and aged conditions of 

material properties according to standards developed by the American Society for Testing and 

Materials.  The tests conducted to determine volumetric and mechanical properties were Bulk 

Specific Gravity, Theoretical Maximum Density, and Indirect Tensile Strength.  The volumetric 

properties analyzed were percent air voids, absorption and effective asphalt content. 

After thorough testing and analysis of the three different asphalt mixes, it is determined 

that the additive Sasobit® is a beneficial material to be used in WMA.  The changes in material 

properties result in stronger and longer lasting asphalt mixes as well as a longer paving season.  

With the addition of Sasobit® the temperature of HMA production can be cut down by 20°C and 
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as a result, the carbon dioxide emissions let off by the asphalt industry could be reduced as much 

as 43.9% per year.  This includes emissions from the fuel used as well as from the asphalt 

materials used to produce the Hot Mix Asphalt.  In addition, the decreased temperature required 

for Sasobit® asphalt mixes can save over $69 million in energy costs.   

The ecological impacts that the use of Sasobit® in asphalt mixes can have for the asphalt 

industry are significant.  The reduction of greenhouse gases from asphalt mix materials and 

energy consumed by the asphalt industry can make a difference in the world we live in and have 

the potential to improve the earth’s atmosphere.  From this study, it was calculated that 3.774 

million tonnes of CO2 could be prevented from being released into the atmosphere per year from 

the asphalt mix materials as well as energy used during production.  In 10 years, 37.74 million 

metric tons of CO2 could be prevented.  It is essential for the asphalt industry to start caring 

about their effects on the environment, and the addition of Sasobit® to asphalt mixes would be a 

great start for this. 
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Abstract  

The additive Sasobit® was tested in three asphalt mixes at two temperatures.  Volumetric 
properties, carbon dioxide emissions and mechanical properties were tested to determine if 
Sasobit® would be an effective additive for the asphalt industry.  It was found that the use of 
Sasobit® in Warm Mix Asphalt can help reduce carbon dioxide emissions, costs and energy used 
by the asphalt industry without affecting the quality of asphalt pavements. 
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Chapter 1: Introduction and Objectives 

Through the construction of new asphalt pavements, the asphalt industry has been 

contributing to greenhouse gas emissions released into our atmosphere.  Recently, there 

have been products developed that decrease viscosity of asphalt at a lower than 

conventional mix temperature.  These lower temperatures can in turn reduce greenhouse 

gas emissions.  In addition to environmental benefits, the asphalt industry could greatly 

profit from these products.  On average 30-50% of the costs at an asphalt plant are for 

emission control (1).  Companies are limited to specific areas to operate asphalt plants in, 

but if emissions were reduced, asphalt plants could be built in areas with strict pollution 

regulations.  This would mean shorter haul distances to construction sites, less costly 

operations, and savings for the tax paying public also.  

1.1 Greenhouse Gas Emissions 

Over the past few decades, as our culture has become more environmentally 

conscious, we have taken more notice to the problem of greenhouse gas emissions.  

Greenhouse gas emissions come mostly from the burning of fossil fuels and industry 

processes (2).  The main emissions that are present in our atmosphere are water vapor, 

carbon dioxide, methane, nitrous oxide, and many engineered gases.  

Greenhouse gas emissions cause many environmental problems for our earth.  

Many gas emissions soak up infrared radiation from the atmosphere, trapping heat in our 

lower atmosphere (2).  This is called the Greenhouse Effect, and if it were not present the 

earth’s natural temperature would be around -19ºC (-2.2ºF).  The Greenhouse Effect is 

not a negative process, and keeps our earth at a more tolerable 14ºC.  However, many 

scientists and researchers believe in the process of Global Warming.  They believe that 

with the increasing amounts of gases emitted into the atmosphere each year, the 

temperature of our earth is rising.  According to computer-stimulated models, the 

increase in gases will always result in Earth’s temperature rising.  Although these are just 

computer models, the actual temperature of the Earth has increased 0.6ºC over the past 

100 years (2).   
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These rising temperatures, of both land and ocean, have the ability to create 

changes in our weather patterns on Earth.  We have seen a lot changes over the past 

decade in our weather patterns and an increase in severe storms and hurricanes.  These 

changes have yet to be proven a sole result of human activities, as opposed to natural 

variations having an impact (2).   

1.1.1 Reducing Greenhouse Gas Emissions 

The actions taken in response to concerns of Global Warming come from 

organizations such as the Domestic Policy Council and the National Academy of 

Sciences (2).  The National Academy of Sciences through National Research Council 

prepared a statement on Global Response to Climate Change.  The statement indicates 

that not only is climate change real, but it caused by human activity.  It went on to say 

that nations should begin taking steps to reduce the growth of greenhouse gas emissions, 

as well as prepare for future climate changes.   

Over the past few years, as an increasing number of people have recognized the 

problems associated with greenhouse gas emissions, more efforts have been made to 

lower emissions.  In 1992, the Energy Policy Act was put in place, mandating the Energy 

Information Administration (EIA) to produce an inventory of aggregate U.S. national 

emissions updated each year (2).  Although this report is useful to recognize our specific 

problems, U.S. emissions are still far above what they should be.  In 2002, U.S. energy-

related carbon dioxide emissions totaled more than 5,746 million metric tons, making up 

approximately 24 percent of the worlds’ total emissions. 

There have been some actions taken to control the amount of emissions caused by 

asphalt production.  Title V of the Clean Air Act, 1990, states that “(it) requires the 

accurate estimation of emissions from all U.S. manufacturing processes, and places the 

burden of proof for that estimate on the process owner”  (3, p.1).  Although some general 

actions have been taken towards the reduction of greenhouse gas emissions, there needs 

to be more focus on improving the asphalt industry.   
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1.2 Asphalt Properties 

The majority of paving asphalt cement used at this time is obtained by processing 

crude oils (4).  Distillation is the first step in processing all crude oil.  There are several 

techniques to produce asphalt cements with straight reduction to grade being the most 

commonly used.  The processed asphalt must be workable to be mixed with other 

substances, such as aggregates, which requires a low viscosity. This can be achieved by 

heating the asphalt to a high temperature (such as 150ºC).  

1.2.1 Viscosity and Temperature 

Two intrinsic properties that affect asphalt’s physical state and performance are 

viscosity and temperature.  Temperature and viscosity are very much related to each 

other.  In order to construct asphalt pavements, the asphalt must be heated to a very high 

temperature (150ºC) to get a low viscosity, and thus a good coating of aggregates (4).  

The mix also has to be workable such that it can be compacted to an adequate density to 

obtain a strong and durable road.   

The resistance of flow of a given fluid is defined as viscosity.  

Viscosity at any given temperature and shear rate is essentially the ratio of shear stress to shear strain 
rate.  At high temperatures such as 135ºC, asphalt cements behave as simple Newtonian liquids; that is 
the ratio of shear stress to shear strain rate is constant.  At low temperature, the ratio of shear stress to 
shear strain is not a constant, and the asphalt cements behave like non-Newtonian liquids….viscosity is 
a fundamental consistency measurement in absolute units that is generally not affected by changes in 
test configurations or geometry of the samples (4, p. 48-49). 

 
The quantity of light fractions retained in asphalt after processing affects the viscosity 

(5).  Gasoline, kerosene and fuel oils are types of light fractions.  The atomic structure of 

the fractions exhibit different behaviors.  Even after experiencing the same processing, 

asphalts from different sources will contain different amounts of light fractions and have 

different viscosities.   

Asphalt binder is considered a thermoplastic material (4).  The consistency of asphalt 

changes according to the temperature it is subjected to.  The rate this occurs at is very 

important and is referred to as temperature susceptibility.  Temperature not only affects 

the viscosity of the asphalt, but it also affects the amount of emissions released from the 

material.  It is impossible to create an asphalt mix unless the asphalt has a relatively low 

viscosity.  The low viscosity allows the asphalt to coat and mix with the aggregates 
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properly.  To obtain the low viscosity it is generally necessary to heat the asphalt and the 

aggregates to a relatively high temperature.   

1.3 Asphalt Mix 

Asphalt, by definition, is the tar-like substance that serves as the binder for flexible 

pavement materials.  Asphalt mixing is the process of combining the asphalt with mineral 

aggregate to form a mixture.  Asphalt can also be mixed with RAP (Reclaimed Asphalt 

Product) to recycle old pavements.  

1.3.1. Production of Asphalt Mix 

Asphalt mixing can be done one of two ways, either at a drum plant or a batch plant 

(6).  In either case, the mineral aggregates are heated to a temperature between 135ºC and 

180ºC.  In a batch mix plant, the aggregates are heated and dried first and then transferred 

to a pug mill to be mixed with liquid asphalt.  In a drum mix plant, the aggregate is 

placed in a dryer that also serves as a mixer to blend with the liquid asphalt.  After 

mixing, the Hot Mix Asphalt (HMA) is sometimes transferred into a storage tank to be 

temporarily stored until paving.  These processes can be seen in Figure 1.  When the road 

is ready to be paved, the HMA is transported by trucks to the project site.   

     When the HMA is placed onto the road, it is usually done by crews of five to nine 

people (6).  The HMA remains at a high temperature, of up to 200°C, all the way to the 

paving site. 

1.3.2 Emissions Produced during Construction 

Although not hazardous to humans, asphalt lets off many hazardous emissions, 

especially carbon dioxide (CO2), carbon monoxide (CO), and hydrocarbons (6).  Another 

form of emissions that are dangerous to our atmosphere is Blue smoke, a visible aerosol 

emission formed from condensed hydrocarbons.  Blue smoke is capable of traveling long 

distances before dissipating sufficiently to become invisible.  It is an industry-wide 

concern for several reasons. These include regulatory limitations, organized opposition, 

community concerns, and control equipment requirements. 

One form in which greenhouse gas emissions are let off is through the road 

construction industry, primarily in the production and laying of asphalt (6).  In production 
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of asphalt, the materials need to be heated to increase viscosity of the asphalt to create a 

homogeneous mix and to increase workability to effectively place onto the road.  Each of 

these processes results in high temperatures; traditionally asphalt is heated to a 

temperature of 177ºC, resulting in a high level of emissions. 
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1.4 Additives to Reduce Mix Temperature 

Greenhouse gas emissions produced during the construction of asphalt pavements 

have led to a need to develop a way to control emissions.  In recent years, several 

additives have been formulated that claim to maintain a low viscosity at a lower 

temperature than conventional asphalt mix without affecting the quality of the pavement 

(1).  Since the temperature is lower, there is the possibility of reducing greenhouse gas 

emissions released during production.  These additives could take the industry to a more 

environmentally cautious future. 

1.4.1 Sasobit®  

One promising chemical additive that will reduce the temperature needed for an 

asphalt mix to have a low viscosity is called Sasobit®, a wax manufactured by Sasol (1). 

Sasobit®’s characteristics have led it to be described as an “asphalt flow improver” while 

it has been proven to reduce temperatures of asphalt mixes by 18-54ºC (1, p. 7).   Figure 

2 illustrates an asphalt mix’s decreased viscosity at a lower than conventional 

temperature.  This additive congeals at an approximate temperature of 102ºC and at 

temperatures higher than 120ºC, is completely soluble.  
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Figure 2: Mixing and Compaction Temperature for PG 64-22 Binders (4) 

 

Sasol’s Sasobit® wax “is a fine crystalline, long-chain aliphatic polymethylene 

hydrocarbon produced from coal gasification using the Fisher-Tropsch (FT) process.  It is 

also known as FT hard wax” (1, p. 6; see Appendix A for explanation of FT process).   

The crystalline network structure Sasobit® forms reportedly adds stability.  

When producing HMA, it is recommended that Sasobit® occupies 0.8 percent to 3 

percent by mass of the asphalt binder (1).  There are different forms of Sasobit® 

available.  Flakes of Sasobit® are convenient for molten additions, while small pellets 

can be added directly to a mix.  Both of these forms will result in an asphalt mix with a 

low viscosity at a low temperature.  

1.4.2 Possible Reduction of Mix Emissions 

Reductions in mix temperatures could lead to reduced fuel costs, lower emissions, 

more opportunities to lay pavement in cold weather and areas that need to be rapidly 
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open to traffic (1).  Lower asphalt mix temperatures means a reduction in both visible and 

non-visible emissions that contribute greenhouse gas emissions.  

Carbon dioxide (CO2 ) is the most common and harmful greenhouse gas emission (2).  

“It is claimed that CO2 emissions in manufacture are reduced by a factor of 2 for every 

10ºC reduction in temperature” (7, p. 1).  The rate of oxidation of HMA doubles for every 

25ºF (13.9ºC) increase over 200ºF (93.3ºC; 5).  A chemical reaction occurs when a 

substance combines with oxygen, known as oxidation.  As the upper mix surface 

oxidizes, carbon dioxide forms. Therefore, lowering the temperature of the mix will in 

turn lower the carbon dioxide formed and released to the atmosphere.  HMA that is 

produced at a lower temperature (using an additive such as Sasobit®) is known as Warm 

Mix Asphalt, or WMA (7). 

1.5 Objectives   

 The objectives of this study were to determine if emissions can be reduced with 

the use of WMA, and whether any material properties can be expected to improve in 

mixes produced at lower temperatures (WMA versus HMA).  Another objective was to 

determine economic benefits, if any, of producing mixes at lower temperatures.   
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Chapter 2: Scope of Work 

 The following hypotheses were made: 

• In WMA produced at 130°C, Carbon Dioxide, Carbon Monoxide and 

Hydrocarbon emissions would be less than emissions released for HMA at a 

typical temperature (150°C); 

• WMA produced at lower than conventional temperature (130°C) would have 

better or equal material properties when compared to HMA produced at a typical 

temperature (150°C);  

• Using WMA at a lower than conventional temperature (130°C) would lead to 

economic benefits. The benefits include cost savings in purchasing asphalt, fuel 

needed to heat asphalt and aggregates to high temperatures (150°C) for mixing, 

and emission control for asphalt plants. 

2.1 Testing Procedures 

 Testing for this study included emission testing for pure asphalt and asphalt 

mixes.  HMA (Hot Mix Asphalt) and WMA (Warm Mix Asphalt) samples were also 

mixed and compacted to test material properties.  All tests completed were done on 3 

separate mixes: HMA with 5.3% asphalt, WMA with 5.3% asphalt and 1% Sasobit® (by 

mass of asphalt), and WMA with 4.8% asphalt and 1% Sasobit® (by mass of asphalt).  A 

generic flow chart detailing the order of testing for the HMA and WMA is given in 

Figure 3, the actual flow charts for the 3 samples can be found in Appendix B.  HMA 

samples were mixed at 155°C and compacted at 150°C. WMA samples were mixed at 

135°C and compacted at 130°C. 

 The emission testing for pure asphalt was done before any testing on asphalt 

mixes began, and will be referred to as preliminary testing.   
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2.1.1 Drager Equipment for Emission Testing 

The set up used for this test consists of flasks, ovens and Drager sensors. The 

Drager pump and an unused Carbon Dioxide Drager Tube are shown in Figure 4.  The 

principle of operation is as follows.  A Drager tube is inserted inside a flask filled with 

HMA/WMA.  The pump is used to draw gas into the tube.  The tube has chemicals which 

register the amount of emissions present in the flask (carbon dioxide, carbon monoxide or 

hydrocarbons).  Before the Drager Tube can be inserted into the Drager pump, both ends 

of the tube need to be cut off using the Drager Tube Opener (Figure 5).  

 

Figure 4: Drager Testing Materials 
 

 
Figure 5: Drager Tube Opener 

 

Drager Pump Drager Tubes 

Flask filled 

with HMA 

Rubber 

Stopper 
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To measure carbon dioxide (CO2) and carbon monoxide (CO), the Drager pump 

needs 10 full strokes and it takes approximately four minutes for the test to be completed. 

The color change in the chemical inside the tube indicates the amount of gas in the 

sample in parts per million (ppm).  To measure Hydrocarbons, the number of pump 

stokes it takes for color change reflects the amount of Hydrocarbons in the sample. This 

can be anywhere from three to twenty-four strokes, as shown in Figure 6.  After twenty-

four strokes, if there is no color change, it is assumed there is less than 3 milligrams per 

liter (mg/L) of hydrocarbons in the sample.  Figure 7 shows an unused and unopened 

Hydrocarbon Drager Tube. 

Drager Pump Measurement of Hydrocarbon
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Figure 6: Drager Pump Measurement of Hydrocarbon 
 

 

Figure 7: Hydrocarbon Drager Tube 
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2.1.2 Preliminary Testing Procedures 

Preliminary testing was completed to determine the best way to collect data on 

emissions from asphalt and asphalt mixes since there is not standard procedure.  An 

empty flask was used as a control test to determine the amount, if any, of emissions 

currently in the air.  The individual materials asphalt and aggregates were heated 

separately in covered containers to our desired temperature in the oven.  A mixer was 

used to mix the asphalt mix, and the asphalt mix contained approximately 5% asphalt. 

After the asphalt and aggregate materials were mixed, they were quickly 

transferred into a flask.  They were poured into the flask using a tin funnel, and the flask 

was capped with tinfoil immediately.  The material sat in a covered flask for 15 minutes 

to allow enough time to off-gas.  

After 15 minutes, one at a time, the tubes were inserted into the Drager pump with 

the arrow pointing towards the pump.  The other end was inserted through the rubber 

stopper and through the tinfoil to measure their respective emissions.  The rubber stopper 

ensured no emissions leaked out before the test began.  The top of the stopper had two 

holes drilled into it; one to place the Drager tube into and the other one so the pumping 

did not create a vacuum in the flask.  This set up is shown in Figure 8.   

 

Figure 8: Drager Pump in Flask 
 

After completing the preliminary testing procedures, there was a need to adjust 

the amount of asphalt used, the length of aging, and the procedure for capping the flasks.  
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The amount of asphalt used was a property that had to be tested and readjusted before 

determining an amount that provided readable results from the Drager tubes.   

After numerous tests with pure asphalt, it was determined that readable results 

could only be obtained for carbon dioxide (CO2) if 25-30 grams of pure asphalt were 

tested.  The carbon monoxide (CO) and hydrocarbon emissions were repeatedly too great 

for the Drager tube to read.  It was finally determined that the best results would be 

obtained using an asphalt mix, as opposed to only pure asphalt.  The length of aging was 

adjusted to two hours, and the flask was placed back into the oven for those two hours.  

The two hours gives the sample adequate time to fill the head space with emissions 

before testing.  This more closely replicates the actual process used in the field for asphalt 

mixing.   

2.1.3 Mixing and Compacting 

 This study analyzed three different asphalt mixes: HMA with 5.3% asphalt, 

WMA with 5.3% asphalt and 1% Sasobit® (by mass of asphalt), and WMA with 4.8% 

asphalt and 1% Sasobit® (by mass of asphalt).  In total, thirty-six samples were 

compacted, twelve samples for each of the three mixes.  The compacted samples were 

made with the 4,550 gram aggregate batches.  The mixes used for emission testing and 

Theoretical Maximum Density (TMD) testing were made with the 1,500 gram aggregate 

batches.  Before mixing or compacting could take place, aggregates were sieved to create 

36 4,550 gram batches and 24 1,500 gram batches, from washed and dried aggregates 

received from All States Asphalt.  The PG 64-28 grade asphalt binder was obtained from 

the Maine Department of Transportation (MDOT).   

2.1.3.1 Sieving Aggregates 

The Sieving followed the standards found in ASTM C136-92.  Prior to each 

sieving, the sieves were thoroughly cleaned to remove any loose particles.  The sieve 

process consisted of nine sizes of sieves, as well as dust from the pan.  The sizes used 

were: 1/2 inch, 3/8 inch, No 4, No 8, No 16, No 30, No 50, No 100, and No 200.  The 

sieving was preformed in two steps; the first one for coarse aggregates (1/2 inch, 3/8 
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inch, No 4, and No 8), the second one for fine aggregates (No 8, No 16, No 50, No 100, 

and No 200).   

 

Figure 9: Mechanical Shaker with Sieves 

For each sieving the sieves were stacked, largest to smallest with the pan on the 

bottom.  Then 10,000 grams of aggregates were poured onto the top sieve.  The top lid 

was then secured.  The stack of sieves was then placed into the mechanical shaker, as 

seen in Figure 9, and the shaker was run for 10 minutes.  After sieving was completed 

each size of aggregate was placed in a bucket for making batches at a later time.   

2.1.3.2 4,550 Gram Batches for Compaction and Testing 

The aggregate batches used to create the HMA and WMA samples consisted of 

the following blend percentages: 25% of 1/2 inch coarse aggregates, 15% of 3/8 inch 

coarse aggregates, 27% of Natural Sand, 27% of Stone Sand and 6% of Stone Dust.  Each 

4,550 gram batch of aggregates contained the amount of each aggregate size specified in 

Table 1. 
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Table 1: Blend of 4,550 gram Aggregate Batches 

Size of 

Passing 

Aggregate 

(mm) 

Individual 

Weights 

(grams) 

12.5 172.9 

9.5 648.4 

4.75 655.4 

2.36 661.6 

1.18 729.1 

0.60 537.4 

0.30 558.7 

0.150 301.2 

0.075 144.2 

Pan 141.1 

Sum: 4550.0 

 

Before the aggregate batches were used to mix with asphalt, they were heated in 

an oven for approximately twenty-four hours before mixing.  The aggregates were heated 

to either 155ºC or 135ºC, depending on what asphalt mix they were being used for (refer 

to Table 2).  Approximately 4 to 6 hours before mixing occurred, the asphalt was put into 

the oven to heat to the temperature needed for mixing.  If Sasobit® was used in the mix, 

it was added to the asphalt approximately 2 hours before mixing to allow the Sasobit® 

time to disperse throughout the asphalt material. 

Table 2: Asphalt Mixes Used for 4,550 gram Batches 

Asphalt Mix Sasobit® 

Temperature at 

Mixing 

Aging 

Temperature 

Number of 

Mixes 

HMA - 5.3% Asphalt 0% 155ºC 150ºC 12 

WMA - 5.3% Asphalt 1% 135ºC 130ºC 12 

WMA - 4.8% Asphalt 1% 135ºC 130ºC 12 

 

 A mixer was used to mix the heated aggregate batches and asphalt for 

approximately thirty to forty-five seconds (Figure 10).  After the materials were mixed, 

they were spread out in pans and placed into a forced draft oven for two hours.  One hour 

after the first asphalt mix was placed in the oven, the mixes made were removed from the 

oven and remixed by hand to ensure no aggregates were left uncoated by asphalt. 
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Figure 10: Mixer 
 

 After each mix was aged for two hours, they were removed from the oven and 

compacted using the Gyratory Compactor for seventy-five gyrations to produce samples 

with a diameter of 150 mm (6 inches).  After compaction, the height of each sample was 

recorded from the Gyratory Compactor and the sample was numbered and left to cool 

overnight at room temperature.  

 

2.1.3.3 1,500 Gram Batches for Emission Testing and Theoretical 

Maximum Density 

 
The aggregate batches used to create the HMA and WMA samples consisted of 

the following blend percentages: 25% of 1/2 inch coarse aggregates, 15% of 3/8 inch 

coarse aggregates, 27% of Natural Sand, 27% of Stone Sand and 6% of Stone Dust.  Each 

1,500 gram batch of aggregates contained the amount of each aggregate size specified in 

Table 3. 
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Table 3: Blend of 1,500 gram Aggregate Batches 

Size of 

Passing 

Aggregate 

(mm) 

Individual 

Weights 

(grams) 

12.5 57.0 

9.5 213.8 

4.75 216.1 

2.36 218.1 

1.18 240.4 

0.60 177.2 

0.30 184.2 

0.150 99.3 

0.075 47.6 

Pan 46.5 

Sum: 1500.0 

 

Before the aggregate batches were used to mix with asphalt, they were heated in 

an oven for approximately twenty-four hours before mixing.  The aggregates were heated 

to either 155ºC or 135ºC, depending on what asphalt mix they were being used for (refer 

to Table 2).  Approximately 4 to 6 hours before mixing occurred, the asphalt was put into 

the oven to heat to the temperature needed for mixing.  If Sasobit® was used in the mix, 

it was added to the asphalt approximately 2 hours before mixing to allow the Sasobit® 

time to disperse throughout the asphalt material.  A mixer was used to mix the heated 

aggregate batches and asphalt for approximately thirty to forty-five second. 

Table 4: Asphalt Mixes Used for 1,500 gram Batches 

Asphalt Mix Sasobit® 

Temperature at 

Mixing 

Aging 

Temperature 

HMA - 5.3% Asphalt 0% 155ºC 150ºC 

WMA - 5.3% Asphalt 1% 135ºC 130ºC 

WMA - 4.8% Asphalt 1% 135ºC 130ºC 

 

2.1.4 Emission Tests of Asphalt Mixes 

 In this study, six asphalt mix samples with different amounts of asphalt and at 

different temperatures were tested for carbon dioxide (CO2) emissions (Table 5).  Three 

mixes had 1%  Sasobit® (by mass of asphalt) and were aged for 2 hours at 130ºC,while 
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the other three mixes contained no Sasobit® and were aged for 2 hours at 150ºC.  

Immediately after mixing, approximately 60 grams of each of the 6 samples were placed 

into individual flasks and covered with two sheets of aluminum foil held in place with 

wire.  A funnel was used to assist the transfer of the mix into the flask (Figure 11).  The 

remainder of each of the 6 asphalt mixes were placed into their own flasks and covered 

with aluminum foil and held in place with wire as well.  The aluminum foil and wire 

were used to prevent emissions from the mix from leaving the headspace of the flask.  

This allowed 6 emission tests on approximately 60 grams of mix, and 6 emission tests on 

approximately 1,400 grams of mix, totaling 12 emission tests. 

Table 5: Asphalt Mixes Tested for Emissions 

Asphalt 

Content Sasobit® 

Temperature 

During 2 

Hour Aging 

5.70% 0% 150ºC 

5.60% 1% 130ºC 

5.40% 1% 130ºC 

5.30% 0% 150ºC 

5.30% 0% 150ºC 

4.80% 1% 130ºC 

 

 

Figure 11: Glass Flask and Funnel 
 

Each flask was placed into a forced draft oven for two hours to allow ample time 

for the emissions to fill the head space of the flask.  When the flasks were removed from 

the oven, a rubber stopper was placed onto the top of the flask to ensure no emissions 
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were leaked out before testing began.  The top of the stopper had two holes drilled into it, 

one to place the Drager tube into and the other so the pumping of the Drager pump did 

not create a vacuum.  The asphalt mixes were tested for CO2 emissions only.  Section 

2.1.1 explains the procedure for using the Drager pump and interpreting its data.  

2.1.5 Volumetric and Mechanical Properties for Unaged and Aged 

Samples 

 The three asphalt mixes in this study were tested for both unaged and aged 

conditions according to standards developed by the American Society for Testing and 

Materials (ASTM).  The tests conducted to determine volumetric and mechanical 

properties were Bulk Specific Gravity, Theoretical Maximum Density, and Indirect 

Tensile Strength.   

2.1.5.1 Bulk Specific Gravity (BSG) 

The cylindrical samples of asphalt mix were tested to determine their bulk 

specific gravity (ASTM D1189 and D2726).  The dry weight of the sample was taken and 

recorded.  The sample was submerged in water at 25°C for six minutes, and the 

submerged weight was recorded at the end of the six minutes.  The sample was then 

removed from the water and the surface dried off with a towel, and the saturated surface 

dry weight was then taken and recorded.  The bulk specific gravity was then calculated 

using the following equation. 

Equation 1: Bulk Specific Gravity, Saturated Surface Dry (SSD) 

  
)( BC

A
BSG

−
=     

    Where: 
A = Dry Weight 

    B = Saturated Weight 
    C = Saturated Surface Dry Weight 

After the Bulk Specific Gravity was determined for each sample, the samples 

were sliced in half.  After slicing, each sample had an approximate height of 50 mm (2 

inches).  
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2.1.5.2 Theoretical Maximum Density (TMD) 

The Theoretical Maximum Density was measured using ASTM D2041.  Samples 

of Asphalt Mix were mixed according to the procedure in Section 2.1.2.3 to create 1,500 

gram batches.  Each mix was broken up while still hot after mixing, separating the 

aggregates as much as possible.  The separated sample was then spread out into pan and 

aged in a forced draft oven for either two, four or six hours at the desired temperature.  

The HMA was aged at 150°C and the WMA was aged at 130°C.  The different periods of 

aging were used to determine the increase in absorption with time of aging, if any. 

When the samples were removed from the oven, they were allowed to cool down 

to room temperature.  At room temperature, an empty bowl was weighed in air and while 

submerged in water, and recorded.  The separated mix was then placed into the empty 

bowl and the weight of the bowl and the mix was recorded in air.  The bowl was then 

filled with water to a height of approximately one inch above the mix.  The bowl was 

placed into the Gilson Vibro-Deairator and the lid was secured in place.  Then the 

vacuum pump was turned on until the air pressure inside the bowl reached 27 Hg.  At that 

point, the Deairator was turned on and allowed to run for ten minutes.  After ten minutes, 

the Deairator and vacuum pump were turned off and the valve was slowly released to 

remove the pressure inside the bowl.  Then without disturbing the mix, the bowl with the 

aggregates was submerged into water at 25°C.  After ten minutes, the submerged weight 

was recorded.  The Theoretical Maximum Density of the mix was calculated using the 

following equation. 

Equation 2: Theoretical Maximum Density, TMD 

( )
( ) ( )[ ]DBCA

CA
TMD

−−−
−

=    

     Where: 
     A = Sample weight in Air (with bowl) 
     B = Sample weight in H20 (with bowl) 
     C = Weight of bowl in Air 
     D = Weight of bowl in H20 

 The BSG and TMD, along with the specific gravities of the aggregates and 

asphalt (known), allowed the determination of percentage of asphalt absorbed and the 

effective asphalt content in the mix. 
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2.1.5.3 Indirect Tensile Strength (ITS) 

 To test Indirect Tensile Strength (ITS), the ASTM D4123 procedure was 

followed.  Computer controlled equipment with a data acquisition system was used to 

determine ITS (Figure 12).  Before the samples were placed into the equipment, the 

thicknesses of the samples were measured and recorded (Figure 13).  The Indirect Tensile 

Test is a method of determining the tensile strength of a sample by applying a 

compressive load vertically on a cylindrical specimen.  The load is applied vertically 

creating tensile stress horizontally, the machine records the maximum or peak load (in 

pounds) the sample can withstand before breaking.  The tensile strength is determined by 

the following equation. 

 Equation 3: Indirect Tensile Strength, ITS 

( ) ( )
( ) ( )insampleofthicknessinsampleofdiameter

lbLoadPeak
psiITS

**

*2

π
=  

 During the ITS test, the pressure is usually applied at a rate of 50mm/minute (2 

inches/minute).  All ITS tests were conducted at 25°C. 

 

Figure 12: Machine Performing ITS Testing 
 

HMA sample 
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Figure 13: Measuring thickness values for the samples 

 

2.1.5.4 Aged Samples  

 After each of the previous tests were run, 3 samples from each of the HMA–

5.3%AC-150°C Asphalt, WMA – 5.3%AC-130°C Asphalt, and WMA–4.8%AC-130°C 

Asphalt mixes were set aside for aging.  The samples were placed in an oven at 85°C for 

5 days (SHRP Protocol).  At the end of the 5 days, the samples were allowed to cool to 

room temperature and then tested for Indirect Tensile Strength according the procedure 

listed in Sections 2.1.4.3. 
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Chapter 3: Results 

 The results of this study are organized into three sections: Volumetric Properties, 

Emissions and Mechanical Properties.  The volumetric property results discuss percent 

air voids, absorption and effective asphalt content.  The emission results show measured 

emissions from both pure asphalt and asphalt mixes.  The mechanical property results 

discuss Indirect Tensile Strength of both aged and unaged samples. 

3.1 Volumetric Properties 

The volumetric properties of the three different asphalt mixes calculated were 

percent air voids, absorption, and effective asphalt content.  With the values of bulk 

specific gravity and theoretical maximum density, percent air voids could be calculated.  

This allowed the comparison of absorption and effective asphalt content.  

3.1.1. Percent Air Voids 

 The percent Air Voids for each sample are shown in Table 6 below.  Each percent 

air void was found after calculating the Bulk Specific Gravity and Theoretical Maximum 

Density (results in Section 3.1.2).  The value for Theoretical Maximum Density used is 

the value calculated after being aged for 2 hours, the standard aging time for Theoretical 

Maximum Density.  The percent Air Voids are calculated by the following equation. 

Equation 4: Percent Air Void 








−=
TMD

BSG
VoidAir

*100
100%  

Where: 
BSG = Bulk Specific Gravity 
TMD = Theoretical Maximum Density 
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Table 6: Bulk Specific Gravity & Percent Air Voids 

Mix Sample Dry, g Under Water, g SSD, g BSG Gmm/TMD Air voids Density 

HMA-5.3%AC-150C 1 4624 2693 4628.5 2.38905 4.9 95.1 

HMA-5.3%AC-150C 2 4723 2741 4724.5 2.38114 5.2 94.8 

HMA-5.3%AC-150C 3 4745.5 2762 4748.5 2.38887 4.9 95.1 

HMA-5.3%AC-150C 4 4774 2776.5 4779 2.38402 5.1 94.9 

HMA-5.3%AC-150C 5 4732.5 2747 4742 2.37218 5.6 94.4 

HMA-5.3%AC-150C 6 4721 2743.5 4727 2.38014 5.3 94.7 

HMA-5.3%AC-150C 7 4615.5 2689 4619.5 2.39083 4.9 95.1 

HMA-5.3%AC-150C 8 4653 2704 4658.5 2.38066 5.3 94.7 

HMA-5.3%AC-150C 9 4623.5 2681 4628.5 2.37407 5.5 94.5 

HMA-5.3%AC-150C 10 4707.5 2736.5 4711 2.38415 5.1 94.9 

HMA-5.3%AC-150C 11 4642 2697 4644 2.38418 5.1 94.9 

HMA-5.3%AC-150C 12 4748 2757.5 4753 2.37935 

2.513 

5.3 94.7 

            Average 5.2 94.8 

                 

WMA-5.3%AC-130C 13-5.3% 4758 2773 4760.5 2.39396 2.491 3.9 96.1 

WMA-5.3%AC-130C 14-5.3% 4737 2749 4740 2.37921   4.5 95.5 

WMA-5.3%AC-130C 15-5.3% 4779 2784 4782.5 2.39129   4.0 96.0 

WMA-5.3%AC-130C 16-5.3% 4722 2753.5 4723.5 2.39695   3.8 96.2 

WMA-5.3%AC-130C 17-5.3% 4707.5 2737 4711.5 2.38415   4.3 95.7 

WMA-5.3%AC-130C 18-5.3% 4703 2733.5 4706.5 2.38368   4.3 95.7 

WMA-5.3%AC-130C 19-5.3% 4749.5 2742.5 4723.5 2.39753   3.8 96.2 

WMA-5.3%AC-130C 20-5.3% 4779.5 2791 4782.5 2.39995   3.7 96.3 

WMA-5.3%AC-130C 21-5.3% 4671.5 2725 4676 2.39441   3.9 96.1 

WMA-5.3%AC-130C 22-5.3% 4702 2759 4699 2.42371   2.7 97.3 

WMA-5.3%AC-130C 23-5.3% 4732.5 2781.5 4725.5 2.43441   2.3 97.7 

WMA-5.3%AC-130C 24-5.3% 4716 2767 4717 2.41846   2.9 97.1 

WMA-5.3%AC-130C 1-4.8% 4663.4 2675.5 4670.5 2.33754   6.2 93.8 

            Average 3.9 96.1 

                  

WMA-4.8%AC-130C 2-4.8% 4757.5 2736.1 4765.1 2.34475 2.51 6.6 93.4 

WMA-4.8%AC-130C 3-4.8% 4706.5 2699 4713 2.33689   6.9 93.1 

WMA-4.8%AC-130C 4-4.8% 4707.5 2702.5 4717.6 2.33611   6.9 93.1 

WMA-4.8%AC-130C 5-4.8% 4705.6 2707.5 4715.2 2.34378   6.6 93.4 

WMA-4.8%AC-130C 6-4.8% 4647.9 2669.1 4654.4 2.34116   6.7 93.3 

WMA-4.8%AC-130C 7-4.8% 4707 2719.2 4712 2.362   5.9 94.1 

WMA-4.8%AC-130C 8-4.8% 4632.4 2660.5 4637.7 2.34291   6.7 93.3 

WMA-4.8%AC-130C 9-4.8% 4659.1 2684.5 4667.2 2.34988   6.4 93.6 

WMA-4.8%AC-130C 10-4.8% 4672.9 2698.1 4682.2 2.35517   6.2 93.8 

WMA-4.8%AC-130C 11-4.8% 4650.5 2678.7 4659.8 2.34743   6.5 93.5 

WMA-4.8%AC-130C 12-4.8% 4603.7 2650.2 4613.8 2.34452   6.6 93.4 

      Average 6.5 93.5 
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 As is shown in the table and the chart below, the Asphalt Mix with the highest 

amount of Air Voids is the WMA-4.8%AC-130ºC.  As asphalt content decreases it is 

natural for the Percent Air Voids to increase in a sample.  This does not mean that using 

4.8% asphalt instead of 5.3% asphalt is worse for a given asphalt mix.  Instead, the 

sample needs to be compacted more to eliminate air voids.  Asphalt mixes with a smaller 

percent asphalt content need to be compacted more.  

 However, the more important thing is that the use of Sasobit® at a lower 

temperature of 130ºC (20ºC lower than 150ºC) produced a higher density with the same 

compaction effort.  A higher density in an asphalt mix means that there are less air voids.  

This higher density should produce asphalt mixes with better mechanical properties, as 

well as lower in-place oxidation and aging.   
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Figure 14: Average Air Voids  

3.1.2 Absorption & Effective Asphalt Content  

 The TMD values were used to find the Effective Specific Gravity as shown in the 

equation below.  
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Equation 5: Effective Specific Gravity, Gse 









−

=

b

b

s

SE

G

P

TMD

P
G

100
 

 
Where: 
Ps = Percent Stone 
Pb = Percent Binder 
TMD = Theoretical Maximum Density 
Gb = Specific Gravity of Binder 

(assumed to be 1.03) 
 

Then the Bulk Volume of Stone and Effective Volume of Stone are calculated 

using the following equations. 

Equation 6: Bulk Volume of Stone, Vsb 

( )
sb

b

sb
G

P
V

−
=
100

 

Where: 
Vsb = Bulk Volume of Stone 
Pb = Percent Binder 
Gsb = Bulk Specific Gravity = 2.627 

 

Equation 7: Effective Volume of Stone, Vse 

( )
se

b

se
G

P
V

−
=
100

 

 
Where: 
Vsb = Effective Volume of Stone 
Pb = Percent Binder 
Gse = Effective Specfic Gravity 

 

 

Then the Absorbed Asphalt Content can be calculated by subtracting the Effective 

Volume of Stone from the Bulk Volume of Stone.  Finally, an Effective Asphalt Content 

can be calculated by subtracting the Absorbed Asphalt Content from the Total Volume of 

Asphalt for a given mix of 100 grams.  These results are shown in Table 7. 

ContentAsphaltAbosorbedAsphaltofVolumeTotalContentAsphaltEffective −=  
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As the table above shows, the Volume of Effective Asphalt was largest for the 

WMA – 5.3%AC – 130ºC asphalt mix, and about the same for the other two mixes.  Since 

the HMA – 5.3% - 150ºC and the WMA – 5.3% - 130ºC both have the same amount of 

asphalt; the higher temperature has an effect on the amount of asphalt absorbed by the 

stone.  This shows that by using the additive Sasobit®, with Warm Mix Asphalt, a lower 

absorption and hence a higher effective asphalt content compared to that in the HMA can 

be obtained.  This high effective asphalt content should mean greater durability of the 

mixture.  

3.2 Emissions 

 Greenhouse gas emissions were tested for both pure asphalt and asphalt mixes.  

Approximately twenty-five to two hundred grams of pure asphalt was tested for different 

lengths of time at different temperatures.  The asphalt mixes were tested only for carbon 

dioxide with half of the mixes containing Sasobit® and half without, at a range of 

temperatures.  As testing was completed, the final testing procedure was determined for 

this study. 

3.2.1 Emissions of Asphalt 

There is no standard procedure for measuring emissions produced by asphalt 

materials in the laboratory.  The procedures used for these tests were found by trial and 

error.  The mass of asphalt tested and the time allowed for the headspace to fill the 

headspace were the most important variables that needed to be determined.  Materials 

were obtained to measure carbon dioxide (CO2), carbon monoxide (CO) and 

hydrocarbons with the Drager pump of the asphalt after a given amount of time.  

The first trial (9/27/2006) of emission tests were done after allowing 

approximately 199 grams of asphalt to off-gas for 24 hours at 2 temperatures, 130ºC and 

160ºC (Table 8).  The results for all 3 emissions of the asphalt held at 160ºC were larger 

than Drager tubes measured.  The CO and hydrocarbon content were also larger than 

what Drager tubes could detect for the asphalt held at 130ºC for 24 hours.  Although for 

the same asphalt at 130 ºC, the CO2 was measured to be 2,500 ppm. 
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Table 8: Pure Asphalt Emissions 

  

The second trial (10/10/2006) of emission tests were done after allowing 

approximately 50 grams to off-gas for 24 hours at 120 ºC and 170 ºC (Table 8).  The 

results for all 3 emissions of the asphalt held at 170ºC were larger than Drager tubes 

measured.  The emission results for the asphalt held at 120ºC for 24 hours were 

obtainable.  The CO2 present was measured to be 1,400 ppm, the CO was measured at 

200 ppm and the hydrocarbon was found to be 14 mg/L.  The lower mass of asphalt, 50 

grams instead of 199 grams, was more promising and found results measurable by Drager 

products. 

 The third trial (11/2/2006) of emission tests were done on 23.5 grams of asphalt 

after off-gassing for 24 hours at 150ºC.  The results for CO2, CO and hydrocarbon were 

all immeasurable by Drager products since they were so high.  The results for this test 

were expected, since the mass of asphalt was decreased by half from approximately 50 

grams to 23.5 grams.  The higher temperature of 150ºC caused more emissions to be off-

gassed than at 120ºC. 

 In an attempt to have CO2, CO and hydrocarbon be measurable by the Drager 

pump, the time allowed for the asphalt to fill the headspace of the flask was reduced to 2 

hours from 24 hours.  The fourth trial (11/9/2006) was completed with 30 grams of 

    Measured Emissions 

        
Hydrocarbons 
(mg/L) 

Date 

Asphalt 
Temperature 

(ºC) 
Time allowed in 
oven at temperature  

Mass of 
Asphalt 
(grams) 

Carbon 
Dioxide 
(ppm) 

Carbon 
Monoxide 
(ppm) 

Number 
of 

strokes mg/L 

9/27/2006 130 24 hours 199.1 2500 > 300 4 18.5 

 9/27/2006 160 24 hours 20 minutes 199 > 3000 > 300 2 > 23 

10/10/2006 120 24 hours 50.5 1400 200 5 14 

 10/10/2006 170 24 hours 20 minutes 50 > 3000 > 300 1 > 23 

11/3/2006 150 24 hours 23.5 > 3000 > 300 1 > 23 

11/9/2006 150 2 hours 30 800 > 300 1 > 23 

11/10/2006 125 2 hours 27.5 600       

11/10/2006  150 2 hours 30 800       

11/10/2006  170 2 hours 25 1300       

 Maximum Emissions read by Drager Tube 3000 300 3 23 
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asphalt held at 150ºC for 2 hours.  The CO2 present was measured to be 800 ppm, while 

the CO and hydrocarbon was still too large for the Drager pump to measure.  Because 

results for emissions of CO and hydrocarbon could not be measured from asphalt unless 

it was at a temperature below 130ºC, the procedure was amended to only measure CO2 

emissions. CO2 emissions were most likely to be measured at any temperature ranging 

from 120ºC to 150ºC from the tests completed to this point. 

 The final trial (11/10/2006) measuring CO2 emissions from pure asphalt was done 

after holding asphalt at 125ºC, 150ºC and 170ºC for 2 hours.  The CO2 measured for 27.5 

grams of asphalt at 125ºC was 600 ppm.  The CO2 measured for 30 grams of asphalt at 

150ºC was found to be 800 ppm and the CO2 measured for 25 grams of asphalt at 170ºC 

was 1,300 ppm (Figure 15). 
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Figure 15: Carbon Dioxide (CO2) Emissions of Pure Asphalt 

 

 From the procedures described on measuring emissions from pure asphalt, the 

best combination of mass of asphalt tested and time allowed for the material to off-gas 

was chosen.  The time chosen for off-gassing was 2 hours, and the desired amount of 

pure asphalt to be tested was approximately 30 grams.  
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3.2.2 Emissions of Asphalt Mixes 

The procedure developed to test Carbon Dioxide (CO2) emissions from asphalt 

mixes was to allow approximately 60 grams of asphalt mix to off-gas for 2 hours.  This 

was done for 3 mixes with 1% Sasobit® (by mass of asphalt) that off-gassed in an oven 

for 2 hours are 130ºC, and 3 mixes without Sasobit® that off-gassed for 2 hours at 150ºC 

(Table 9).  This asphalt content of the different mixes tested ranged from 4.8% to 5.7%. 

Table 9: Carbon Dioxide (CO2) Emissions from Asphalt Mixes 

 

There is a clear difference in the amount of CO2 present in the headspace of the 

HMA with Sasobit® at 130ºC and the WMA without Sasobit® at 150ºC.  The amount of 

CO2 present in the HMA mixes range from 700 ppm to 750 ppm while the amount 

present in the WMA range from 450 ppm to 550 ppm.   

 

3.3 Mechanical Properties 

 The mechanical property of the three different asphalt mixes tested was Indirect 

Tensile Strength (ITS).  The ITS results showed the most positive impacts of the 

Sasobit® additive in the mixes.   

3.3.1 Indirect Tensile Strength 

 The Indirect Tensile Strength values we found are shown in Table 10 below.  The 

averages for each set of samples were taken and shown in the graph as well.  Finally, the 

Average change in Tensile Strength after aging was calculated by using the following 

equation. 

 

Mix Sasobit® 

(%) 

Temperature 

(ºC) During 2 

Hour Aging 

Mass of 

Mix 

(grams) 

Asphalt 

Content 

(%) 

Time in 

Oven 

(hours) 

CO2 

(ppm) 

HMA 0 150 61.2 5.7 2 700 

HMA 0 150 59.5 5.3 2 700 

HMA 0 150 60.7 5.3 2 750 

WMA 1 130 61.3 5.6 2 550 

WMA 1 130 62.3 5.4 2 550 

WMA 1 130 62.7 4.8 2 450 
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Equation 8: Average Change after Aging 

( )
StrengthAverageUnaged

StrengthAverageUnagedStrengthAverageAged
AgingAfterChangeAverage

−
= *100

 

Table 10: Indirect Tensile Strength  

Mix Condition Sample 
Thickness, 

in 
Peak Load, 

lb 

Tensile 
strength, 

psi 

Tensile 
Strength, 

kpa 

Average 
change after 

aging 
(+increase) 

HMA-5.3%AC-150C Unaged HMA-2a-unaged 2.134 2201.6 343.89 2372.86   

    HMA-6a-unaged 2.367 3280.7 462.01 3187.84   

    HMA-8a-unaged 2.207 2496.3 377.03 2601.49   

          Average 2720.73   

  Aged HMA-2b-aged 2.134 2999.7 468.56 3233.04   

    HMA-6a-aged 2.367 3288.2 463.06 3195.12   

    HMA-8b-aged 2.207 3001.7 453.36 3128.19   

          Average 3185.45 17.08 

                

WMA-5.3%AC-130C Unaged 
WMA-22a-
unaged 2.06275 2770.9 

447.77 3089.60 
  

    
WMA-24a-
unaged 2.056 2775 

449.90 3104.33 
  

    
WMA-15b-
unaged 2.20675 2239.2 

338.23 2333.82 
  

          Average 2842.58   

  Aged WMA-22a-aged 2.06275 2629.7 424.95 2932.16   

    WMA-24a-aged 2.056 3280.3 531.83 3669.60   

    WMA-15b-aged 2.20675 2932.4 442.94 3056.31   

          Average 3219.36 13.25 

                
WMA-4.8%AC-130C Unaged WMA-3b-unaged 2.40225 2230.9 309.56 2135.94   

    WMA-5a-unaged 2.2305 2465.9 368.51 2542.73   

    WMA-6b-unaged 2.2065 1524.9 230.36 1589.52   

          Average 2089.40   

  Aged WMA-4a-aged 2.139 3154.5 491.58 3391.94   

    WMA-7b-aged 2.252 3146.3 465.70 3213.36   

    WMA-9a-aged 2.213 3047.4 459.01 3167.20   

          Average 3257.50 55.91 

 
  Above, in Table 10, is a summary of the ITS values, density and the average 

change in ITS after aging.  After analyzing the table, it can be concluded that the most 

effective asphalt mix is the WMA-5.3%-AC-130ºC because of the high density and ITS 

and the low change after aging.  The high density means that the mix will have few air 

voids, which make it a more desirable asphalt mix.  The mix also has a high tensile 

strength unaged and a relatively low change in the strength after aging the sample.  This 
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means that in the field the sample will maintain a high strength as the asphalt ages over 

time.     



 36 

Chapter 4: Analysis 

 The Analysis of this study can be separated into three distinct areas: volumetric 

properties analysis, asphalt mix emission analysis, and mechanical properties analysis.  

The volumetric properties analysis describes the Bulk Specific Gravity (BSG) and 

Percent Air Voids in the asphalt mixes.  The emissions analysis illustrates the decrease in 

carbon dioxide emissions through the use of Sasobit® wax in WMA as opposed to HMA.  

Finally, the mechanical properties are analyzed by looking at the strengths and durability 

of the WMA and HMA samples measured in the lab.   

4.1 Volumetric Properties Analysis 

The relationship between asphalt content and percent air voids can be seen in 

Figure 16.  As is shown in the graph, the samples with the highest asphalt content have 

the lowest percentage of air voids.  When the samples were mixed, both the HMA-150°C 

and the first WMA-130°C had the same percentage of asphalt, 5.3%.  However, due to 

absorption, the WMA-130°C has a higher effective asphalt content.  The other WMA-

130°C sample had 4.8% asphalt content at mixing.   

When there is more asphalt in a mix, more of the air voids between aggregates are 

filled with the asphalt, creating an overall lower percent air void (8).  Effective asphalt 

content (EAC) is the amount of asphalt that is left coating the aggregates after absorption.  

It is not possible to avoid some absorption of asphalt into the aggregates.  On the other 

hand there needs to be a sufficient amount of effective asphalt content not absorbed to 

bind the aggregates together.  For these reasons, determining appropriate effective asphalt 

content is complicated.  It is desirable to have high enough effective asphalt content, so 

the aggregates have a layer of film on them and low air voids, but not too high so that 

asphalt is wasted and used in excess.  Some states even enforce a minimum film 

thickness in all asphalt mix designs.   
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Figure 16: Effective Asphalt Content vs. % Air Voids 
 

Low air voids prevent water and excess moisture from getting into the asphalt 

mix, as well as decrease the rate of aging of the mix (9).  When moisture gets into asphalt 

mixes because of high air voids, the mix is susceptible to moisture damage and cracking 

during freeze-thaw conditions.  As the moisture freezes and thaws, it results in a loss of 

adhesion between asphalt and aggregate.  The desired air voids percentage is between 

3.0% and 5.0% for lab samples (4).  The Sasobit® helps in lowering the air void 

percentage at the same asphalt content.  The WMA-130ºC-4.8% mix had 4.8% asphalt 

content and more air voids than the WMA-130ºC-5.3% mix, with 5.3% asphalt content. 

Using the Sasobit® in a Warm Mix Asphalt with 5.3% asphalt content leads to the lowest 

percentage of air voids, as shown in Figure 16.   

 Increased density can be achieved by either increasing the asphalt content or by 

increasing the gyrations in the lab for compaction, or by both.  It is not necessary to 

increase the asphalt content, because you can obtain the same desired density by 

increasing the compaction effort.  In the field, this translates to having the roller compact 

the asphalt for a greater time period or using more rollers.  This may not be practical 
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because it uses more time, energy, and is more cost prohibiting.  Therefore, when using 

Sasobit® to create an asphalt mix at a lower temperature, the asphalt content should not 

be reduced so that the density of the mix is not compromised.  Using the same asphalt 

content and compaction effort as HMA, one can expect a higher density for WMA, as 

shown in Figure 17. 
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Figure 17: Effective Asphalt Content vs. Bulk Specific Gravity 

4.2 Asphalt Mix Emissions Analysis 

The emission tests completed on asphalt mixes at 130ºC and 150ºC, with and 

without Sasobit® respectively, prove that a mix heated to a lower temperature produces 

less greenhouse gas than a mix at a higher temperature with the same amount of asphalt. 

While 61.2 grams of HMA with 5.7% asphalt produced 700 ppm of CO2, 61.3 grams of 

WMA with 5.6% of asphalt and 1% of Sasobit® (by mass of asphalt) produced only 550 

ppm of CO2 (Table 9 shown in Section 3.2.2).  This difference is significant, and shows 

that asphalt mix heated to a lower temperature emits less harmful greenhouse gas 

emissions, especially CO2.  The use of Sasobit® in an asphalt mix allows the mix to be 



 39 

produced at a lower temperature and hence helps reduce the amount of CO2 released into 

the atmosphere. 
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Figure 18: Carbon Dioxide (CO2) Emission from Asphalt Mixes 
 

4.3 Mechanical Properties Analysis 

 In an asphalt mix it is desirable to have high effective asphalt content after 

absorption.  In turn, this high effective asphalt content results in a low percentage of air 

voids in the mixture.  An HMA with low air voids will age slower than an HMA with 

higher air voids.  It is not desirable for asphalt mixes to age at a high rate because the 

performance deteriorates greatly as a mix ages (5).   

A summary of each asphalt mix’s change in mechanical properties after aging is 

described in Table 11.  As shown, the WMA-5.3%AC-130ºC mix had the highest density 

and ITS in its unaged samples.  This mix also had the lowest percent increase in ITS after 

aging.  The mix WMA-5.3%AC-130ºC  is the most desirable out of the three mixes since 

ITS is the best measurement of aging, and according to the data in this study this mix has 

aged the least in a given amount of time.  The WMA-5.3%A-10ºC asphalt mix results in 

the most desirable mechanical properties.  
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Table 11: Summary of Mix Mechanical Properties Changes after Aging 

  
HMA-5.3%AC-

150ºC 

WMA-

5.3%AC-130ºC 

WMA-4.8%AC-

130ºC 

Unaged Density (% of TMD) 94.8 96.1 93.5 

Unaged ITS (kPa) 2720.73 2842.58 2089.40 

Average Change after Aging 

in ITS (% increase) 17.08 13.25 55.91 

  

The WMA-5.3%AC-130ºC mix has the highest effective asphalt content, 4.0%, of 

the three mixes, and this produces a high density.  Also, as an effect of the high effective 

asphalt content, the sample contains the lowest percentage of air voids.  This low air void 

percentage is one of the main factors that contribute to the high indirect tensile strength 

of the sample.  The sample is more densely compacted and the bonds between aggregates 

are stronger from the higher effective asphalt content, creating a stronger sample 

altogether.   

The chart below, Figure 19, shows that the WMA-5.3%A-130ºC has the lowest 

change in ITS after aging.  A large increase in tensile strength after aging is bad because 

it shows the sample is aging at a faster rate, and the mechanical properties are changing 

too drastically.  The mechanical properties should not differ greatly after aging, because 

if the asphalt mix becomes too stiff it can lead to cracking.   
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Figure 19: Average Change in ITS After Aging 
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Chapter 5: Benefits 

After thorough testing and analysis of the three different asphalt mixes, it is 

determined that the additive Sasobit® is a beneficial material to be used in WMA.  The 

changes in material properties result in stronger and longer lasting asphalt mixes as well 

as a longer paving season.  With the addition of Sasobit® the temperature of HMA 

production can be cut down by 20°C and as a result, the carbon dioxide emissions let off 

by the asphalt industry could be reduced as much as 43.9% per year.  This includes 

emissions from the fuel used as well as from the asphalt used to produce the Hot Mix 

Asphalt.  In addition, the decreased temperature required for Sasobit® asphalt mixes can 

save over $69 million in energy costs.  Although it is an added cost to use Sasobit® in 

HMA mixes, there is still an overall savings, both monetary and ecologically.   

5.1 Carbon Dioxide Emissions Reduction from Energy and 
Materials 

Using Sasobit® in asphalt mixes allows the reduction of carbon dioxide (CO2) 

emissions since the temperature needed to mix is approximately 20ºC lower, 130ºC 

instead of 150ºC, than the conventional temperature.  The benefits that the use of 

Sasobit® bring to the asphalt industry include reduction in CO2 emissions, reduction in 

energy used to heat aggregates for mixing and cost savings in energy costs.   

5.1.1 Carbon Dioxide (CO2) Emissions from Energy Needed to 
Produce HMA 

Heat energy required to raise the temperature of mass to a given temperature is 

given by the following equation. 

Equation 9: Heat Energy 

TmcQ ∆= **  

Where: 
Q = Heat Energy (J) 
c = specific heat (J/kg*K) 
m = mass (kg) 

    ∆T = temperature change (K) 

The heat energy needed to heat the total amount of asphalt mix produced in the 

United States each year, 500 million tonnes (500 billion kg), was calculated to be 
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5.75*1016 J.  This calculation considered the total mass of 500 million tonnes, the 

temperature change of ambient temperature, 25ºC, to 150ºC and the specific heat of 

aggregates only, 920 J/kg*K. Since asphalt is required to be kept at very high 

temperatures already to maintain workability, the savings in energy for heating asphalt 

was not considered for these purposes.  

 From Table 11.4 (p. 11-5) of the Transportation Energy Data Book: Edition 25, 

2006, it was found that 1,666.2 million tonnes (1.67*1012 kg) of CO2 were produced in 

the United States for energy needed for industrial activity in 2003.  From Table 2.1 (p. 2-

3), it was found that 32.7 quadrillion BTUs (3.45*1019 J) of energy were produced for the 

industrial sector in 2003.  The ratio of CO2 produced for industry in a year (2003) to 

energy produced for industry in a year (2003) multiplied with the heat energy needed for 

500 million tonnes of asphalt mix produced, equals the CO2 produced by the asphalt 

industry per year, 2.78 million tonnes (Table 12).  This was calculated based on 100% 

transmission efficiency from the energy source, which is very conservative. 

 
Table 12: Carbon Dioxide (CO2) Emissions Savings per Year Based on Energy Needed 

for Asphalt Industry 
  

Q (per year for 500 million tonnes) 5.75E+16 J 

U.S. Carbon Dioxide Emissions 1.67E+09 tonnes 

  1.67E+12  kg 

U.S. Total Energy Use 3.27E+16 BTU 

  3.45E+19 J 

CO2 Emissions Per Year (asphalt industry) 2.78E+09 kg 

  2.78E+06 tonnes 

CO2 Emission Prevented Per Year (16%) 4.44E+05 tonnes 

 

 The heat energy needed to heat an asphalt mix from ambient temperature, 25ºC, to 

130ºC is a 16% savings from the heat energy needed to heat an asphalt mix from ambient 

temperature to a conventional temperature of 150ºC (Appendix C).   

Equation 10: Percent Savings in Energy 

%16%100*
125

105125
%100*

1

21 =
−

=
−

=
J

JJ

Q

QQ
energyinSavings  
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This 16% savings of CO2 emissions is calculated to be 444,000 tonnes per year emitted to 

produce the energy needed in the asphalt industry to make 500 million tonnes of asphalt 

mix in the United States (Table 12). 

5.1.2 Carbon Dioxide (CO2) Emissions from Asphalt Mix Materials 

 The CO2 emissions measured in this study allowed a calculation of reduction of 

emissions released directly from asphalt mix materials.  The emissions were measured 

from approximately sixty grams of asphalt mix that was assumed to have reached 

equilibrium after two hours in a two liter flask.  On average, 300 ppm (mg/L) of CO2 is 

expected to be found in ambient air.  The volume of the flask multiplied by the 

concentration of CO2 measured less the ambient CO2 equals the mass of CO2 emitted 

(Table 13).  This value was determined to be 833 mg for approximately 60 g of asphalt 

mix after 2 hours of being held at 150ºC.  This mass projected onto the total amount of 

asphalt mix produced in a year in the United States, 500 million tonnes, becomes 6.94 

million tonnes of CO2 emitted directly from asphalt mix materials. 

Table 13: Carbon Dioxide (CO2) Emissions Savings per Year Based on Measured 
Emissions from Asphalt Mix Materials  

  

Mass of CO2 emitted (based on 60g HMA) 8.33E+02 mg 

  8.33E-04 kg 

CO2 Emissions Released Per Year 6.94E+06 tonnes 

CO2 Emissions Prevented Per Year 3.33E+06 tonnes 

 

 The average CO2 levels measured from the emission tests in this study are 

summarized in Table 14.  With these average amounts, the CO2 emissions that have the 

potential to be prevented with the use of Sasobit® in asphalt mixes were determined to be 

3.33 million tonnes.  This was calculated with the use of the following equation, with the 

ambient CO2 present considered to be 300 ppm. 

Equation 11: CO2 Prevented 

( ) ( )
( )

releasedCOpreventedCO 22 *
30067.716

30067.51630067.716









−
−−−

=  
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Table 14: Asphalt Mixes Tested with Average Carbon Dioxide (CO2) levels 

Mix Sasobit® 

(%) 

Temperature 

(ºC) During 

2 Hour 

Aging 

Mass of 

Mix 

(grams) 

Asphalt 

Content 

(%) 

CO2 

(ppm) 

Average  

CO2 

(ppm) 

HMA 0 150 61.2 5.7 700   

HMA 0 150 59.5 5.3 700  

HMA 0 150 60.7 5.3 750 716.67 

WMA 1 130 61.3 5.6 550  

WMA 1 130 62.3 5.4 550  

WMA 1 130 62.7 4.8 450 516.67 

 

This works out to be a 27.9% reduction in emissions.  The amount of CO2 emissions, 3.33 

million tonnes, which could be prevented per year from entering the earth’s atmosphere 

directly from asphalt mix materials with the use of Sasobit®, is significant.   

5.1.3 Total Carbon Dioxide (CO2) Emissions Reduction 

 CO2 emissions that have the potential to be prevented from entering the earth’s 

atmosphere with the use of WMA was calculated based on the average production of 500 

million tonnes of asphalt mix per year in the United States.  Based on energy used in 

2003, 444,000 tons of CO2 emissions can be prevented per year from the amount of 

energy needed to heat asphalt mixes to only 130°C instead of 150°C.  From the measured 

CO2 amounts in this study, 3,330,000 tonnes of CO2 emissions can be prevented per year 

directly from asphalt mix materials.  Therefore, the total amount of CO2 emissions that 

can be prevented per year with the use of WMA is 3,774,000 tonnes, a 43.9% reduction 

(Table 15).   

Table 15: Total Carbon Dioxide (CO2) Emissions Prevented Per Year with the Use of 
WMA 

Emissions Prevented from Energy Per Year 444,000 tonnes 16% 

Emissions Prevented from Materials Per year 3,330,000 tonnes 27.9% 

Total Emissions Prevented Per Year 3,774,000 tonnes 43.9% 

 

The benefits associated with CO2 emissions are purely ecological at this point in 

time, though they are still significant.  Along with the ecological benefits from using 

WMA instead of HMA, there are cost benefits that can result from reduced energy and 

prolonged pavement life. 
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5.2 Cost Savings 

 The cost savings that the use of WMA instead of HMA brings to the asphalt 

industry are from two distinct areas.  There are cost savings that results from using less 

energy to heat asphalt mix to 130°C, rather than 150°C.  There are also cost savings 

associated with the increased pavement life of WMA, which allows a decrease in future 

maintenance costs.  Both of these cost savings greatly add to the benefits of using WMA 

instead of HMA. 

5.2.1 Cost Savings from Energy Reduction 

 This cost saving comes from the energy saved by heating the aggregates used in 

the mix to only 130ºC instead of 150ºC, which Sasobit® in WMA allows the asphalt 

industry to do.  As seen in Table 16, the amount of heat energy needed to heat a year’s 

worth of aggregates used in asphalt mixes from ambient temperature to 150ºC is 

5.75*1016 J (5.45*108 therms).  The amount of heat energy required to heat the same 

amount of aggregates from ambient temperature to 130ºC is 4.83*1016 J (4.58*108 

therms).  It costs 3 therms of natural gas to make a ton of asphalt mix.  Natural gas retails 

at about $0.80 per therm.  At this cost, the asphalt industry can save $69.8 million per 

year with the use of Sasobit® in WMA, for an average annual rate of 500 million tonnes 

of asphalt mix produced. 

Table 16: Summary of Energy Cost Savings 

Temperature of Mix 150ºC 130ºC 

Heat Energy, Q (per year for 500 million tonnes) 5.75E+16 J 4.83E+16 J 

  5.45E+08 therms 4.58E+08 therms 

                                                                                   $ 4.36E+08 $ 3.66E+08 

Monetary Savings in Energy Costs                                                  $ 69,800,000  

 

5.2.2 Cost Savings from Increased Pavement Life Using WMA 

 There are cost savings in using WMA in terms of the pavement life.  For example, 

to pave a one lane road (width of twelve feet), one mile long, and four inches thick with 

traditional HMA would cost about $86,100.  When the life of the asphalt mix is taken 

into consideration, using Sasobit® in WMA results in an 11% monetary savings.   
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The life of an ordinary HMA asphalt mix is 12 years.  The life of a WMA asphalt 

mix with Sasobit® was calculated to be 13.5 years.  This is based upon the air void 

percentages for both the HMA-5.3%AC-150°C and the WMA-5.3%-130°C mixes.  For 

every 1% the air voids are lowered, another 10% is added onto the pavement life (11).  

Since the air voids were lowered on average from 5.2% to 3.9% the percent lowering is 

1.3%. 

Equation 12: Percent Air Voids Lowered 

%3.1%9.3%2.5 =−=LoweredVoidsAirPercent     

This percent lowering of 1.3% translates to a 13% increase in the pavement life. 

Equation 13: Extension of Pavement Life 

yearsyearsLifePavement 56.1313.1*12 ==  

The HMA-5.3%AC-150°C mix will have to be replaced every 12 years, while the 

WMA-5.3%AC-130°C will have to be replaced 13.5 years.  The cost per year of each mix 

is calculated in the equations below; showing that without Sasobit®, the cost is about an 

extra $880 per year for this 1 lane road, 1 mile long.  The total savings from using 

Sasobit® results in an 11% savings in cost per year, which can be applied to any amount 

of asphalt mix being used on a project.  The savings are shown in the Table 17. 

Equation 14: Annual Cost without Sasobit® 

87.910,7$
12

930,94$
==YearperCost  

Equation 15: Annual Cost with Sasobit® 

89.031,7$
5.13

930,94$
==YearperCost  

Equation 16: Percent Annual Savings for Pavement Life 

%11.11100*
87.7910$

89.7031$87.7910$
% =

−
=Savings  

 

Table 17: Percent Savings in Cost from Materials on an Annual Basis 

  Without Sasobit® With Sasobit® 

Pavement Life 12 years 13.5 years 

Cost  $94,930.45 $94,930.45 

Cost per year $7,910.87 $7,031.89 

% Savings   11.11% 
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Although the addition of Sasobit® to asphalt mixes drastically reduces the energy 

costs, it does cost more money to add Sasobit® to asphalt mixes.  The current cost of 

producing one ton of asphalt mix is $60.  The addition of Sasobit® creates a $2 increase 

in this cost per ton of asphalt mix; making the total cost $62 per ton of asphalt mix.  Even 

though initially, the cost is more to make asphalt mix using Sasobit®, over the course of  

many years the Sasobit® asphalt mix results in a monetary gain.  Additionally, the cost of 

Sasobit® is rapidly decreasing, making the monetary gains even greater.   

The savings from a gain in pavement life is due to lowering the air voids, hence 

an increase in density.  Pavements with lower initial air voids last longer.  Of the many 

things that contribute to this enhanced life, one very important factor is the reduction in 

aging of the binder, because of less oxidation, due to the presence of lower amount of air 

voids.  The WMA mixes did show slower aging, as discusses in the following section. 

 

5.3 Material Property Benefits of Using WMA 

The following chart shows the material properties for the three asphalt mixes in 

the areas of Density and Change in Indirect Tensile Strength after Aging.  As the graph 

indicated the WMA-5.3%AC-130°C mix has the highest Density and the lowest change in 

ITS after aging.  These properties make this mix the most desired mix.  The HMA-

5.3%AC-130°C mix is the mix most widely used currently in the asphalt industry.  With 

the addition of Sasobit® to asphalt mix, the most striking change in mechanical 

properties is the decrease in change of the ITS.  The values are shown below in Figure 

20. 
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Material Properties
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Figure 20: Material Properties 

 
 The most beneficial change in mechanical properties with the addition of 

Sasobit® is the decrease in changes after aging.  This indicates that there is a slower 

aging process for the WMA-5.3%AC-130°C mix, which contains Sasobit®.  A slower 

aging process means that the life of the asphalt mix is much longer, and will last longer 

when applied to pave a roadway or driveway.  In turn, this saves money because 

roadways will have to be re-paved, patched, and have general maintenance done less 

often.     

5.4 Benefits of Extending the Paving Season 

The use of Sasobit® allows the HMA to be produced and compacted at a lower 

than conventional temperature.  This means, for those areas which have relatively short 

paving seasons, for example New England, the use of Sasobit® will help in extending the 

paving season.  More work will get done in a typical year and hence improvements in 

road conditions will be much faster.    
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5.5 Conclusion 

The use of Sasobit® in WMA has the potential to reduce the asphalt industry’s 

contribution to greenhouse gas emissions as well as save them money.  It will reduce CO2 

emissions produced both from the material and energy needed to make asphalt mixes.  It 

can save energy costs since an asphalt mix will not need to be heated to the conventional 

temperature of 150°C, it will be able to be heated to a lower temperature, such as 130°C.  

On top of all of these ecological and economic benefits, it also produces the same quality, 

or better, than conventional HMA.   

Not only does Sasobit® not negatively change the material properties, but it 

actually produces a stronger and longer lasting asphalt mix.  The addition of Sasobit® 

allows better compaction of HMA, which produces lower air voids.  This decrease in air 

voids results in a longer lasting asphalt mix.  The asphalt mixes with Sasobit® have 

shown a slower aging process than conventional HMA in this study, which will result in 

the longer life of a pavement. 

Although Sasobit® may not be beneficial for small paving jobs, for large scale 

projects it is a necessity.  It can save the asphalt industry money and energy.  The cost 

savings come from energy costs as well as the ability to delay repaving jobs, since the 

pavements containing Sasobit® have a longer in-service life.   

The ecological impacts that the use of Sasobit® in asphalt mixes can have for the 

asphalt industry are significant.  The reduction of greenhouse gases from asphalt mix 

materials and energy consumed by the asphalt industry can make a difference in the 

world we live in and have the potential to improve the earth’s atmosphere.  From this 

study, it was calculated that 3.774 million tonnes of CO2 could be prevented from being 

released into the atmosphere per year from the asphalt mix materials as well as energy 

used during production.  In 10 years, 37.74 million metric tons of CO2 could be 

prevented.  It is essential for the asphalt industry to start caring about their effects on the 

environment, and the addition of Sasobit® to asphalt mixes would be a great start for 

this. 
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Appendix A: Production of Sasobit® 
 

Fisher-Tropsch (FT) Process 

Hurley, G.C., Prowell, B.D. Evaluation of Sasobit® for Use in Warm Mix Asphalt. 

National Center for Asphalt Technology: Auburn University. June, 2005. Page 6. 

 

“In summary, in the Fischer-Tropsch synthesis, coal or natural gas (methane) is partially 

oxidized to carbon monoxide (CO) which is subsequently reacted with hydrogen (H2) 

under catalytic conditions producing a mixture of hydrocarbons having molecular chain 

lengths of carbon (C)5  to C100 plus carbon atoms. The process beings with the generation 

of synthesis gas then reacted with either an iron or cobalt catalyst to form products such 

as synthetic naphtha, kerosene, gasoil and waxes. The liquid products are separated and 

the FT waxes are recovered or hydrocracked into transportation fuels or chemical 

feedstocks. The Sasobit® recovered is in the carbon chain length range of C45 to C100 

plus. By comparison, macrocrystalline bituminous paraffin waxes have carbon chain 

lengths ranging from C25 to C50.  The longer the carbon chains in the FT wax lead to a 

higher melting point. The smaller crystalline structure of the FT wax reduces brittleness 

as low temperatures as compared to bitumen paraffin waxes.” 
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Appendix C: Heat Energy Calculations 
Heat energy required to raise the temperature of a mass, m, through delta (T), where the  

mass has a specific heat of c, is given by,     

        

Q = c*m*delta(t)     

        

Q is in Joules       

c is in Joules per gram degree C      

delta (t) is in C       

        

Consider heat required to raise temperature of aggregates   

from ambient, say 25C, to 150C      

        

Q1 c*m* 125 joules     

        

Now consider the case where we use warm mix asphalt    

Heat required to raise temperature of aggregates    

from 25C to 130C       

        

Q2 c*m* 105 joules     

        

Savings in energy  20 joules     

        

Savings in energy (Q1-Q2)*100/Q1     

    16 %     

        

If we burn 16 % less fuel (say natural gas)     

how much do we cut down CO2 production     

from burning of fuel only? (percent wise?)     

            

16 %         

        

Add this 16 % with the cut down in CO2 production from heating HMA  

It was 716.67 ppm for 150C      

and 516.67 ppm for 130 C.      

        

Hence cut down in CO2 production     

27.906847 %         

        

Total reduction in CO2 production      

43.906847 percent        

        

Savings ($) by burning less fuel     

16 %         

        

Minus cost of additive Sasobit®      

added cost $ 2 per ton of mix    

One ton of mix costs 60 per ton of mix    

added cost  3.33 percent     
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