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Abstract

National security needs dictate the development of new radar systems capable of iden-

tifying and tracking exoatmospheric threats to aid our defense. These new radar systems

feature reduced noise floors, electronic beam steering, and ultra-wide bandwidths, all of

which facilitate threat discrimination. However, in order to identify missile attributes such

as RF reflectivity, distance, and velocity, many existing processing algorithms rely upon

narrow bandwidth assumptions that break down with increased signal bandwidth.

We present a fresh investigation into these algorithms for removing bandwidth limita-

tions and propose novel state-space and direct-data factoring formulations such as

• the multidimensional extension to the Eigensystem Realization Algorithm,

• employing state-space models in place of interpolation to obtain a form which admits

a separation and isolation of solution components,

• and side-stepping the joint diagonalization of state transition matrices, which com-

monly plagues methods like multidimensional ESPRIT.

We then benchmark our approaches and relate the outcomes to the Cramer-Rao bound for

the case of one and two adjacent reflectors to validate their conceptual design and identify

those techniques that compare favorably to or improve upon existing practices.
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Chapter 1

Introduction

In this research, we set out to investigate the Joint-Doppler processing of ultra-wideband

signals. Here, ultra-wideband refers to any signal whose ratio of bandwidth over center

frequency exceeds approximately 40%, and we use Joint-Doppler processing to refer to a

whole class of problems such as simultaneously estimating an unknown radio transmitter’s

carrier frequency and direction of arrival using an antenna array, or using a single [radar]

antenna to estimate the range and velocity of an unknown ballistic threat. As an example

to highlight the general applicability of this research, we would also use Joint-Doppler

processing to describe algorithms that would be employed by advanced radar systems using

a two-dimensional antenna array to identify the range, velocity, azimuth, and elevation of

a number of uncooperative targets.

Algorithms already exist for Joint-Doppler estimation, and we may broadly categorize

their solution strategies as either polynomial realizations or state-space parameterizations.

Polynomial realizations such as MUSIC DOA Triangulation, G-MUSIC, and Mutual Infor-

mation (summarized and evaluated in [18]) may be used to process any amount of signal

bandwidth and sensor configuration, but consume exorbitant processing resources espe-

cially when the particular method must search some error surface or manifold in a global

optimization strategy. In contrast, state-space parameterizations such as those described

in [26, 50, 35, 8, 45] employ data interpolation or narrow bandwidth assumptions in or-

der to obtain a form which admits a separation of solution components and isolate these
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components via matrix factoring techniques. The state-space approaches produce more ro-

bust model parameterizations, especially those methods based on the direct singular value

decomposition (SVD) of the input data [47]. Therefore, the present research investigates

novel direct state-space formulations with emphasis on processing large signal bandwidths.

We have organized this dissertation as follows: Chapter 2 presents a brief background in

the context of radar signal processing and super-resolution direct state-space approaches.

We discuss the challenges of wide bandwidth Doppler processing and propose new algorith-

mic strategies in Chapter 3. Then in Chapter 4, we compare the performance of the new

and existing strategies and the theoretical limits. Lastly, we summarize our findings and

provide conclusions in Chapter 5.

Additionally, this dissertation uses many abbreviations and algebraic notations, and

defines many of them only once. For the reader’s convenience, Tables 1.1 and 1.2 list these

abbreviations and notations, respectively.

CRB Cramer-Rao Bound
DFT Discrete Fourier Transform
DSS Direct State-Space
EM Electromagnetic
FFT Fast Fourier Transform
GTD Geometric Theory of Diffraction
LFTI Linear Fast-Time Invariant
LTI Linear Time Invariant
PRF Pulse Repetition Frequency
RCS Radar Cross-Section
RMS Root-Mean-Square
RTI Range vs. Time vs. Intensity
SAR Synthetic Aperture Radar
SVD Singular Value Decomposition
UWB Ultra-Wide Bandwidth Systems

Table 1.1: Common abbreviations used throughout this dissertation.
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a Scalar
~a Vector
A Matrix
A ∈ Cm×n A is a complex matrix having m rows and n columns.
A ∈ Rm×n A is a real matrix having m rows and n columns.
A∗ Conjugate the elements of A
AT Transpose of A
AH Hermitian Transpose of A, defined as

(
AT

)∗ or (A∗)T

A† Moore-Penrose pseudo-inverse of A [21, p. 257]
I Identity matrix
Im Identity matrix having m rows and m columns
a(t) Continuous function of t in time domain
â(f) Continuous function of f in frequency domain
ak Discrete function of k in time domain
ân Discrete function of n in frequency domain
A 4= . . . Define A as . . .
A ⇐ . . . Assign A equal to result of . . .
A svd⇒ UΣVH Decompose A using the singular value decomposition into UΣVH

A eig⇒ VΛV−1 Decompose A using the eigen decomposition into VΛV−1

ln (a) Natural logarithm of a
diag A Retrieve the diagonal elements of A
‖A‖F Frobenius norm of A
F Fourier transform operator
H~a Arrange the elements of ~a into a Hankel matrix.
a(t) ∗ b(t) Convolution of a(t) with b(t) is defined as

∫ t
0 a(τ) b(t− τ) dτ .

Table 1.2: Common math notation used throughout this dissertation.
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Chapter 2

Radar Signal Processing

Background

While the algorithms we discuss in the next chapter deal directly with Doppler pro-

cessing, we will use this chapter to derive a simplified signal model to serve as background

and establish a common vocabulary. We establish this model in the context of radar signal

processing and later show the generalization to other applications via a simple substitution

of variables.

2.1 Target Impulse Response

We center our derivation upon a simple arrangement of a radar system observing some

ballistic target, depicted in Fig. 2.1. To detect the range to the target, our ideal radar

measures the delay time, τ , for an electromagnetic (EM) impulse to reflect off the target

and return to the radar antenna. We assume the target is sufficiently far from the antenna

such that the EM wavefront is planar and perpendicular to the direction of propagation.

Keller’s Geometric Theory of Diffraction (GTD) [32] states that the back scattered field

from a complex surface tends to be well approximated by a set of discrete scattering centers,

so in Fig. 2.1, we depict the target as having 3 scatterers, each having independent strengths,

Γs, and EM propagation delays, τ s. To describe the scenario analytically, we express the
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Figure 2.1: A simplified radar scenario consisting of a target having 3 prominent scattering
centers identified as s ∈ {1, 2, 3}.

transmitted pulse, vtx, using Dirac’s delta function in Eq. 2.1, and the received signal, vrx,

as the sum of received reflections from the target, Eq. 2.2.

vtx(t) = δ(t) (2.1)

vrx(t) =
∑

s

Γs δ(t− τ s) (2.2)

To determine the range to the scattering centers (rs), we divide the round-trip delay in

half and scale by the speed of light:

rs =
τ s

2
c (2.3)

Or alternatively, we shall substitute variables to express the original received signal in terms

of range to the target’s scatterers using a substitution of variables, Eq. 2.5.

τ s =
2
c
rs (2.4)

vrx(t) =
∑

s

Γs δ
(
t− 2

crs

)
(2.5)

Given that we assumed the transmitted signal was a theoretical impulse function, Eq. 2.5

is also known as the target’s impulse response, and instead of using vrx, we use g to denote

this special function:

g(t) =
∑

s

Γs δ
(
t− 2

c rs

)
(2.6)
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For the case of an arbitrarily complex transmit waveform, we may determine the received

waveform that results by convolving the transmitted signal with target’s impulse response:

vrx(t) = g(t) ∗ vtx(t) (2.7)

However to simplify matters, we will side-step the convolution by switching the remain-

der of our derivation and analysis to the frequency domain via the Fourier transform, F , and

the convolution theorem [54, p. 169]. By Fourier-transforming g(t) into ĝ(f) and vtx(t) into

v̂tx(f), the frequency domain received signal function may be obtained from the product of

ĝ(f) and v̂tx(f) (Eq. 2.12). We denote the frequency domain representation of a function

or variable with a small ∧ instead of capitalization, because we reserve capitalization for

matrices.

ĝ(f) 4= F g(t) (2.8)

=
∑

s

Γse
−2πjf 2

c
rs (2.9)

v̂tx(f) 4= F vtx(t) (2.10)

v̂rx(f) 4= F vrx(t) (2.11)

v̂rx(f) = ĝ(f) · v̂tx(f) (2.12)

By expressing everything in the frequency domain, we have the ability to trivially identify

the impulse response of an unknown target by dividing the transmitted signal by the received

signal:

ĝ(f) =
v̂rx(f)
v̂tx(f)

(2.13)

Radar systems use many different transmit waveforms, but when processing the reflected

data, most use some method of matched filtering such as that of Eq. 2.13 to extract the

impulse response of the unknown target. Therefore, processing algorithms may focus on

handling the general frequency-domain impulse response described by Eq. 2.9.

The last step we perform in establishing our example radar processing model is to put

Eq. 2.9 into the form that a digital system would use. Up to this point when considering

time delays (t or τ) or frequencies (f), we assumed these quantities were continuous in
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nature. However in the course of digital signal processing, these quantities are sampled at

known intervals. In the case of Eq. 2.9, we replace f with fn to represent the fact that the

system only considers some discrete frequency set where the subscript n is used to denote a

particular frequency of the set. Eqs. 2.14 and 2.15, are two possible schemes for analytically

describing this set of frequencies spaced ∆f apart.

fn = n∆f + f0 where n ∈ {0, 1, 2, . . .} (2.14)

fn = n∆f where n ∈ {n0, n0 + 1, n0 + 2, . . .} (2.15)

Both are equivalent if f0 = n0∆f ; Eq. 2.14 is more commonly used in other literature

where ∆f refers to the frequency sampling interval, and f0 is the first frequency of the

set. However, we use Eq. 2.15 which omits f0 in favor of starting n at n0 instead of 0.

Eliminating f0 in exchange for introducing n0 turns out to simplify our analytic expressions.

Substituting Eq. 2.15 into Eq. 2.9 yields Eq. 2.16.

ĝn =
∑

s

Γse
−4πj n∆f

c
rs (2.16)

2.2 Fourier Processing

Referring back to Fig. 2.1, an interrogation refers to the process of a radar sending an

EM pulse toward an unknown target scene and recording any reflections. This target scene

often consists of multiple targets, and because they are constantly moving, the radar system

interrogates the scene many times per second, and for each, the radar computes the impulse

response of the whole scene and passes that frequency-domain data to our algorithms. The

rate at which a radar interrogates a target scene is called the pulse repetition frequency

(PRF), and the system may vary this rate during the course of operation to satisfy mission

requirements.

We represent the complex data from one interrogation as a column vector whose dimen-

sion corresponds to the number of measured frequency-domain sample points. To process

this data and determine the composition of the target scene, the most traditional approach is

to apply the inverse Discrete Fourier Transform (DFT) to obtain a new vector representing

reflection strength versus time-delay between the radar and target(s) [39, p. 47–48].
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Figure 2.2: An inverse DFT applied to a frequency domain impulse response yields a map
of reflection strength versus time delay or range.

The example range-intensity plot in Fig. 2.2 is composed from a synthetic signal having

2 GHz bandwidth centered at 9 GHz, and sampled in 20 MHz intervals. The simulated

scatterers at 1 m and -2 m ranges have reflection coefficients of 1.0 and 0.5 respectively,

and the signal to noise ratio (SNR) is 10 dB. Note how the scatterer at 1 m has a reflection

magnitude of ≈0.8 instead of 1.0. This is due to how the DFT−1 is limited to identifying

scatterers at only distinct ranges, called range gates, resulting in spectrally distributing the

reflected energy into neighboring gates. This phenomenon is called spectral leakage, and

ultimately, blunts the scatterers reflection intensity while introducing additional smaller

false scatterers as sidelobes to the true location [39, p. 74–75].

Assuming that our targets’ velocities are small compared to the transmitted EM wave’s

duration1, we may model the target as being invariant during each interrogation. If we were

to record this data for the duration of a target’s flight, we organize the data as a matrix

where each column is a successive interrogation data set in time. Computing the inverse

DFT of each column and showing the resulting matrix as an image where each pixel is color

coded by the magnitude of a matrix element, yields a Range versus Time versus Intensity

(RTI) plot.

Analyzing the [500 Hz PRF] RTI plot of Fig. 2.3 reveals the two synthetic scatterers
1Example: The ALCOR system located at the Reagan Test Site uses a pulse duration of 10 µs. A target

traveling at mach 20 would move only 6.8 cm during this time. Other radar pulse durations include 2, 50
and 565 µs. [7, 10, 28]



9

undergoing a rotational motion which is representative of the spinning used for stabilizing

a ballistic missile’s reentry vehicle [7]. Note that if two scatterers are too close in proximity,

they become indistinguishable in this analysis since their EM wavefronts coherently combine

such as at ≈0.6 s in Fig. 2.3.

0 0.5 1 1.5
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1
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ge
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m
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Figure 2.3: Using color to portray reflection coefficient and stacking multiple range-intensity
plots collected over time produces a plot of range versus time versus intensity, which gives
insight to target scene dynamics.

2.3 State-Space Theory

Now we turn our attention to a newer processing methodology based upon State-Space

Theory [47]. State-Space Theory in control engineering concerns itself with the mathemati-

cal modeling of systems having some input(s), output(s), and internal state variables whose

relations may be expressed via systems of first-order differential equations. In processing

a target scene’s impulse response, we treat the whole scene as an unknown system, where

our transmitted and reflected EM waves are the respective input and output of the system

as illustrated in Fig. 2.4.

Through analyzing the system’s impulse response, we may employ System Identification

to reveal the unknown parameters composing the system [30, p. 325]. In control engineering

terms, our earlier assumption that targets’ velocities are small with respect to pulse duration

translates into our system being Linear Time Invariant (LTI), which greatly simplifies

system identification as we will now show.
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Figure 2.4: A systems-level block diagram expressing the target’s impulse function as a
linear operation on some input signal to produce an output.

In the next subsections, we first show that a target scene’s frequency domain impulse

response (Eq. 2.16) can be written in the form of an LTI state-space system. Following

that, we then derive algebraic system identification and present example output.

2.3.1 State-Space Modeling of Frequency Domain Impulse Response

We start this algebraic derivation by introducing the LTI discrete-time state-space equa-

tions:

~xn+1 = A~xn + B~un

~yn = C~xn + D~un

n = 0, 1, 2, . . . (2.17)

where ~un and ~yn are the sequences of vector inputs and outputs, respectively. The vector

~xn is called the state of the system, and matrix A defines how the system’s state evolves

from time n to n + 1. The matrix B specifies how the input (~un) influences the current

state (~xn), and C defines how the current state maps to the output. D provides a means

for direct coupling from inputs to outputs, but in the case of radar signal processing, D 4= 0

assuming there is no direct transmitter to receiver signal leakage. If the system has q

inputs, r outputs, and s state variables, then ~xn ∈ Cs×1, ~un ∈ Cq×1, ~yn ∈ Cr×1, A ∈ Cs×s,

B ∈ Cs×q, C ∈ Cr×s and D ∈ Cr×q.

By applying an impulse input to the system’s input and assuming zero initial state,

~un = δn
4=





1, n = 0

0, n 6= 0
(2.18)

~x0 = 0 (2.19)
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we obtain the impulse response as:

~y0 = D ~x1 = B

~y1 = CB ~x2 = AB

~y2 = CAB ~x3 = A2B

~y3 = CA2B ~x4 = A3B

...
...

~yn = CAn−1B n ≥ 1 (2.20)

Through substitution, a target scene’s impulse response (Eq. 2.16) can be written in identical

form to that of the state-space impulse response:

ĝn =
∑

s

Γse
−4πj n∆f

c
rs from Eq. 2.16

=
∑

s

Γs

(
e−4πj ∆f

c
rs

)n

=
[
Γ1 Γ2 . . .

]

︸ ︷︷ ︸
C




e−j4π ∆f
c

r1 0 . . .

0 e−j4π ∆f
c

r2

...
. . .




n

︸ ︷︷ ︸
An




1

1
...




︸︷︷︸
B

(2.21)

ĝn = CAnB (2.22)

Thus,

yn
4= ĝn−1 n ≥ 1 (2.23)

¤

2.3.2 Direct State-Space System Identification

In the previous section, we have shown how a target scene’s impulse response can be

represented in state-space. In this section we derive the Direct State-Space (DSS) system

identification algorithm which directly estimates A, B and C directly from the target scene’s

frequency-domain impulse response, which in turn provides the scatterers’ strengths (Γs)



12

and distances (rs) from the radar. We will do this by first using algebraic factorizations

to isolate and solve for A, and then we will use an over-determined system to solve for

B and C. Though principally established by Kung [33, 34], DSS system identification has

been reinvestigated several times since under different names such as ESPRIT [42, 43] and

Matrix-Pencil [27].

Solving for A via Observability (or Controllability) Processing

For a given interrogation impulse response ĝn from Eq. 2.16, we arrange the data into

a Hankel matrix, H ∈ CNR×N−NR+1, where N is the total number of data samples and NR

is the number of rows. Picking NR = 2
3N yields optimal estimation accuracy, as found in

[25, 27, 52] and mentioned again in [13].

H 4=




ĝn0+0 ĝn0+1 . . . ĝn0+N−NR

ĝn0+1 ĝn0+2
...

...
. . .

ĝn0+NR−1 . . . ĝn0+N−1




(2.24)

Recalling ĝn = CAnB (from Eq. 2.22), we substitute the elements of H and show that the

Hankel form admits a factorization which isolates B and C:

H =




CAn0+0B CAn0+1B . . . CAn0+N−NRB

CAn0+1B CAn0+2B
...

...
. . .

CAn0+NR−1B . . . CAn0+N−1B




=




CA
n0
2

+0

CA
n0
2

+1

...

CA
n0
2

+NR−1




[
A

n0
2

+0B A
n0
2

+1B . . . A
n0
2

+N−NRB
]

︸ ︷︷ ︸
H=OC

(2.25)

From control system theory, we identify the left and right matrices (O and C) from

factoring the Hankel as the Observability and Controllability matrices, respectively. Defining
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O− and O+ as O with either the last row or the first row deleted,

O− 4=




CA
n0
2

+0

CA
n0
2

+1

...

CA
n0
2

+NR−2




O+
4=




CA
n0
2

+1

CA
n0
2

+2

...

CA
n0
2

+NR−1




(2.26)

we may solve the linear system

O−A = O+ (2.27)

for A using Least-Squares (LS), Total-Least-Squares (TLS) [20] or Unitary-TLS [3] ap-

proaches [47, p. 295]. We call this method of solving for A from O observability-based DSS

processing, or observability processing for short.

Alternatively, we could have solved for A from C via a similar procedure, in which case

we could call this method controllability-based DSS processing and illustrate it briefly in

Eqs. 2.28–2.30. With regard to the size of H, we would set the number of columns to

be 2
3N (instead of rows) by setting NR = 1

3N , but in doing so, this procedure becomes

analytically identical to that of observability processing, except for all of the components

being transposed. Thus in the remainder of this research, we may not specifically refer

to controllability processing, but any discussion regarding observability processing applies

equally here as well.

C− 4=
[
A

n0
2

+0B A
n0
2

+1B . . . A
n0
2

+N−NR−1B
]

(2.28)

C+
4=

[
A

n0
2

+1B A
n0
2

+2B . . . A
n0
2

+N−NRB
]

(2.29)

AC− = C+ (2.30)

In both of the processing methods, there are innumerable ways to factor H into O and

C due to the non-uniqueness of state-space representations [30, p. 53] [47, p. 294] even

including trivial cases such as O 4= I, C 4= H [12, p. 203], and thus, factoring to solve for

A does not directly produce the diagonal canonical form we picked in Eq. 2.21. However,

the obtained alternative representation will be related to our canonical one via a similarity
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transformation, and we denote the transformed parameters for this using ∼ as shown in

Eq. 2.31 and Eq. 2.32. Compactly stated here, A, B, and C may be transformed so that

instead of having ĝn = CAnB, we have ĝn =
(
CT−1

) (
TAT−1

)n (TB) = C̃ÃnB̃ for some

non-singular T. See Appendix A for more details.

H =




C̃Ã
n0
2

+0

C̃Ã
n0
2

+1

...

C̃Ã
n0
2

+NR−1




[
Ã

n0
2

+0B̃ Ã
n0
2

+1B̃ . . . Ã
n0
2

+N−NRB̃
]

(2.31)

= ÕC̃ (2.32)

Õ− 4=




C̃Ã
n0
2

+0

C̃Ã
n0
2

+1

...

C̃Ã
n0
2

+NR−2




Õ+
4=




C̃Ã
n0
2

+1

C̃Ã
n0
2

+2

...

C̃Ã
n0
2

+NR−1




(2.33)

Õ−Ã = Õ+ (2.34)

To factor H into Õ and C̃, the usual choice is based upon the singular value decompo-

sition (SVD) (Eq. 2.35) for its relative insensitivity to matrix perturbations as well as its

ability to construct optimal low-rank approximations [47, p. 289]. In our radar example, we

have matrix perturbations stemming from the additive noise present in the received signal,

measured by SNR, and the rank approximations become important as a tool to estimate

the number of scatterers as well as suppressing noise.

For a given matrix X ∈ Cq×r, the SVD produces three new matrices, U ∈ Cq×q, V ∈ Cr×r

and Σ ∈ Rq×r, where UUH = UHU = Iq, VVH = VHV = Ir and Σ = diag(σ1, σ2, . . .) with

σn ≥ σn+1. [21, p. 70–73]

X svd⇒ UΣVH (2.35)

However, SVD rank truncation does not preserve Hankel structure, and there are nu-

merous avenues of research into this topic such as [37] which states “no analytic form for

[Hankel-structure preserving rank reduction] exists to date.” One of the more promising
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techniques is the O(n2 log n) Fast-Hankel SVD algorithm in [38, 53], but unfortunately, the

work is focused on one-dimensional, range-only Hankel matrices such as those presented in

this chapter for introductory purposes and not directly applicable to the multidimensional

(or “matrix-enhanced”) Hankels which will be introduced in Section 3.3 for processing range

and range-rate simultaneously. Another point about the Fast-Hankel SVD is that it is tai-

lored for square Hankel matrices and further work is needed if it is to be applied to matrices

∈ C 2
3
N× 1

3
N where N is the total number of data samples. Regardless of this limitation of

the SVD with regard to preserving Hankel structure, “the SVD is [still] the computational

tool of choice in modern signal processing” [47], and is employed in the present research.

Say our target scene contains 15 scatterers and our radar system collects the impulse

response at 100 distinct frequencies, observability processing would build a Hankel matrix

having 67 rows and 34 columns. Without noise, we could test the matrix rank which provides

a direct measure of the number of scatterers, but with noise, the matrix becomes full rank.

Additive noise manifests itself in the singular spectrum of H by introducing singular values

which are typically much smaller than the matrix’s singular values. Consequently, we

identify the larger singular values with the signal space of our data and the smaller singular

values with the noise space. Letting s stand for the number of large singular values, the

SVD permits us to identify the closest norm-2 rank-s Hankel matrix via truncation of U, Σ

and VH [47]:

H svd⇒ UΣVH (2.36)

Utr
4= U1:s,: first s columns of U (2.37)

Σtr
4= Σ1:s,1:s first s singular values of Σ (2.38)

Vtr
4= V1:s,: first s columns of V (2.39)

In order to distinguish the appropriate cut-off s, the Akaike Information Criterion (AIC)

[2] and Minimum Description Length (MDL) [49, 48] are often utilized in array processing for

estimating the number of sources [13]. However, there is ongoing research in source number

estimation, pointing to the suboptimality due to these methods often over-estimating s and

thus introducing a number of false sources [19, 11]. Instead, another common approach,

which is to “plot the Hankel singular values to visualize the trade-off between model order
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and identification accuracy”, [4] is suitable for non-automated processing of specialized data

sets but not for real-time radar signature processing. For automated processing, we apply

an empirically derived heuristic based on selecting the largest singular value, σ1, and any

smaller values that are within 20 dB of the largest as shown in Eq. 2.40.

max
s

20 log10

σ1

σs
≤ 20dB (2.40)

Once we possess Utr, Σtr and Vtr, we obtain Õ and C̃ via Eq. 2.41 and Eq. 2.42,2 and

then we may obtain Ã by solving either Eq. 2.27 or Eq. 2.30. Eq. 2.43 shows this solution

using a Least-Squares approach. Finding T to diagonalize Ã into A may be accomplished

by the eigen decomposition as shown in Eq. 2.44.

Õ ⇐ Utr

√
Σtr (2.41)

C̃ ⇐
√

ΣtrVH
tr (2.42)

Ã ⇐ Õ†−Õ+ or Ã ⇐ C̃+C̃†− (2.43)

Ã eig⇒ TAT−1 (2.44)

Alternatively, the solution for A and T may also be solved as a generalized eigenvalue

problem from Õ in Eq. 2.45 or from C̃ in Eq. 2.46.

Õ−TA = Õ+T (2.45)

AT−1C̃− = T−1C̃+ (2.46)

From Eq. 2.21, we recall that the diagonal elements of A encode the scatterers’ ranges,

so we only need to compute the natural logarithm of Ã’s eigenvalues and divide off −j4π∆f
c

2This particular factoring style of Eq. 2.41 and Eq. 2.42 produces what is called a balanced realization in
state space theory, because OOH = CCH [12, p. 205].
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as shown here:

A 4=




e−j4π ∆f
c

r1 0 . . . 0

0 e−j4π ∆f
c

r2 0
...

. . .
...

0 0 . . . e−j4π ∆f
c

rs




(2.47)

[
r1 r1 . . . rs

]
⇐ ln (diag A)

−j4π∆f
c

(2.48)

To find the reflection strengths of each scatterer, we could finish solving for B̃ and C̃

from C̃ and Õ, respectively, and then applying the appropriate system transformations to

set B =
[
1 1 . . .

]T
. However, we will abbreviate such mechanisms via rewriting Eq. 2.22

into a linear system fitting C to our original data ĝn:

[
ĝn0 ĝn0+1 . . .

]
= C

[
An0B An0+1B . . .

]
(2.49)

C =
[
ĝn0 ĝn0+1 . . .

] [
An0B An0+1B . . .

]†
(2.50)

C 4=
[
Γn0+1 Γn0+2 . . .

]
(2.51)

By solving for the reflection strengths without needing both C̃ and Õ, we may speed up

the numerical evaluation of the SVD of Eq. 2.36 in that we do not need to compute V when

using observability processing or U when using controllability processing. Additionally,

in typical processing cases, the number of frequencies measured during an interrogation

tends to far out-number the number of scatterers in the target scene, so Eq. 2.50 is over-

determined.

Solving for A via Balanced Processing

In the previous section, A was only solved using either O or C, and never both simul-

taneously, and this seems to be the common approach in the signal estimation community

as highlighted in 1992: “It seems that using both [O and C] matrices might yield better

estimates, but such attempt has not been successful.” [26] However, at least 7 years earlier

in the field of control systems theory, such a method had been described and often referred

to as either the Eigensystem Realization Algorithm [29, 4] or as Balanced Realization from
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Markov Parameters [12, p. 203]. The research is still continuing in the mechanical and

control theory fields as evidenced by [46, 9, 5], but there is a notable lack of reference to

this technique in the signal processing communities.3

Continuing within the naming scheme of the present research, we call this method bal-

anced DSS processing and begin our description by arranging the interrogation impulse

response data (ĝn from Eq. 2.16) into two equal sized Hankel matrices, Hn0 and Hn0+1, as

shown in Eq. 2.52, where each matrix is comprised of one sample less than the total number

of frequency-domain samples in an interrogation, N . Similar to observability processing,

the number of rows in Hn0 and Hn0+1 should be two to three times the number of columns

[29, 9], so we pick NR = 2
3N .

Hn0

4=




ĝn0 ĝn0+1 . . . ĝn0+N−NR−1

ĝn0+1 ĝn0+2
...

...
. . .

ĝn0+NR−1 . . . ĝn0+N−2




(2.52)

Hn0+1
4=




ĝn0+1 ĝn0+2 . . . ĝn0+N−NR

ĝn0+2 ĝn0+3
...

...
. . .

ĝn0+NR
. . . ĝn0+N−1




(2.53)

Substituting the elements of Hn0 and Hn0+1 via ĝn = C̃ÃnB̃ again reveals factorizations
3We attribute this communication gap between the signals processing and control systems communities

to their oft-diverging vocabulary.
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isolating B̃ and C̃:

Hn0 =




C̃Ãn0B̃ C̃Ãn0+1B̃ . . .

C̃Ãn0+1B̃ C̃Ãn0+2B̃
...

. . .




=




C̃Ã
n0
2

C̃Ã
n0
2

+1

...




[
Ã

n0
2 B̃ Ã

n0
2

+1B̃ . . .
]

(2.54)

= ÕC̃ (2.55)

Hn0+1 =




C̃Ãn0+1B̃ C̃Ãn0+2B̃ . . .

C̃Ãn0+2B̃ C̃Ãn0+3B̃
...

. . .




=




C̃Ã
n0
2

C̃Ã
n0
2

+1

...


 Ã

[
Ã

n0
2 B̃ Ã

n0
2

+1B̃ . . .
]

(2.56)

= ÕÃC̃ (2.57)

Note how Eqs. 2.54 and 2.56 reveal that Hn0 and Hn0+1 share common components, Õ
and C̃, and the only difference is that Hn0+1 has an additional Ã. Factoring Hn0 into Õ
and C̃, permits us to divide these components from Hn0+1 to isolate Ã, and we accomplish

this factoring using the SVD in a similar fashion to the observability processing described

in the previous section. Eq. 2.63 shows using the eigen decomposition to identify the

transformation matrix T to obtain a diagonal A from Ã.
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Hn0

svd⇒ UΣVH (2.58)

s
4= the number of large σi ∈ Σ (2.59)

Õ ⇐ U1:s,:

√
Σ1:s,1:s (2.60)

C̃ ⇐ √
Σ1:s,1:sVH

1:s,: (2.61)

Ã ⇐ Õ†Hn0+1C̃† (2.62)

Ã eig⇒ TAT−1 (2.63)

Note that the pseudo inverse of Õ and C̃ in Eq. 2.62 is available at no additional compu-

tational cost for balanced processing because we do not have to truncate Õ (or C̃) to form

O− and O+ (or C− and C+) as we did for observability processing in Eq. 2.43. Since these

matrices were composed from the unitary and diagonal outputs from the SVD, their pseudo

inverses are

Õ† ⇐ √
Σ1:s,1:s

−1
UH

1:s,: (2.64)

C̃† ⇐ V1:s,:

√
Σ1:s,1:s

−1
(2.65)

The balanced processing procedure to identify the remaining unknowns given A is the same

as the step used in observability processing in Eq. 2.50.

2.3.3 Example Output

To provide a qualitative comparison of the difference in results obtained for Fourier and

DSS processing, this section first presents sample results from the simple synthetic data set

of isotropic point scatterers introduced earlier, and then presents an example of processing

a representative target whose radar signature was measured at a compact-range.

Continuing from the example data used for Fig. 2.3, Fig. 2.5 presents analysis results

from both observability and balanced form Direct State-Space processing. The upper plot

was formed via observability processing, and the lower plot was formed via balanced pro-

cessing. Visually, both processing methods appear to produce similar results, but we will

withhold further analysis until Chapter 4.
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Figure 2.5: Using color to portray reflection coefficient and stacking multiple range-intensity
plots collected over time produces a plot of range versus time versus intensity, which gives
insight to target scene motion dynamics.



22

For an example of the utility of state-space processing versus Fourier processing, we

briefly introduce a test target, “LL-Cone” in Fig. 2.6. The target’s radar response over

2-18 GHz was measured in an anechoic chamber at Point Mugu, CA, and has been used

extensively at MIT Lincoln Laboratory for electromagnetic diffraction studies and algorithm

validation. A detailed specification for this object was provided by Lincoln Laboratory [17].

Though many other studies exist including [13, 8, 45], we will only highlight a couple of

processing examples regarding side-lobe suppression and attributed scattering centers in

our prior work developing the Parametric Scattering Law Identification (PSLI) algorithm

[24].

Figure 2.6: LL-Cone.

We first highlight Fig. 2.7, which is a side-by-side comparison of direct state-space’s supe-

rior scatterer resolving ability as compared to the main-lobe blurring of Fourier processing.

Unlike Fourier processing, state-space processing does not introduce sidelobes which typi-

cally obfuscate radar signature interpretation. In the Fourier plot on the left, the double

base edge diffraction at aspect angles of ±100 degrees are blurred together. In the state-

space plot on the right, the leading and trailing side of the base edge is clearly resolved as

two scattering centers.

The second result to highlight, Fig. 2.8, is a plot of scattering feature range versus aspect

angle, but instead of color coding the scatterers by reflection intensity, they are color coded
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Figure 2.7: Fourier vs. State-Space, 2.75-3.25 GHz, 25 dB SNR. This figure is reprinted
with permission from [24].
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by each scatterer’s frequency dependence, which may be described as fα. Keller’s Geometric

Theory of Diffraction [32] states that “scattering centers exhibit a frequency dependence

proportional to a power-law parameter, fα, where α = n/2 for small positive and negative

integers, n.” [24] Using Table 2.3.3 as a key, each scatterer’s frequency dependence provides

clues as to the underlying physical geometry. PSLI [24] is a fully automated algorithm

for identifying α, which is made possible through direct state-space’s discrete nature in

reflector/source identification.

Scattering Geometries Power Law
Discontinuity of curvature on edge −4/2
Cone tip −2/2
Curved-edge diffraction −1/2
Doubly curved surface, straight edge 0/2
Singly curved surface (cylinder) +1/2
Corner reflector, plate +2/2
Groove, duct +3/2
Rayleigh scattering +4/2

Table 2.1: GTD-predicted α for various scattering features.
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Figure 2.8: A plot of range versus aspect angle of LL-Cone’s scattering features processed
over 8-12 GHz. The individual scatterers are color coded by their frequency dependence
instead of reflection intensity to aid in identification. This figure is reprinted with permission
from [24].
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Chapter 3

Joint-Doppler Processing

The previous chapter presented two methods for estimating range and reflection inten-

sity of scatterers in a target scene, Fourier processing and Direct State-Space analysis. This

chapter extends the processing to estimate the change in range per unit time, range-rate, by

first presenting the established Fourier and DSS Joint-Doppler equivalents, and then intro-

duces our new processing methodologies in an exploration to identify algorithmic extensions

and potentially reduce limitations in present algorithms.

We start by presenting our original radar problem Eq. 2.16, except we added ṙst to rs

to permit any s scatterer’s range to change linearly over time:

ĝn(t) =
∑

s

Γse
−j4π n∆f

c
·(rs+ṙst) (3.1)

Now assuming that our radar interrogates the target scene at a given pulse repetition

frequency (PRF), we discretize time by substituting tk = k∆t where ∆t = 1
PRF . This results

in ĝn,k which designates the target scene’s frequency domain response for the n-th frequency

and k-th interrogation:

ĝn,k =
∑

s

Γse
−j4π n∆f

c
·(rs+ṙsk∆t) (3.2)
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3.1 Separating Range and Range-Rate

By solving for ranges and range-rates simultaneously, we are tackling a joint estimation

problem. To show this, we expand the exponential of Eq. 3.2 as

ĝn,k =
∑

s

Γse
−j4π n∆f

c
rse−j4π n∆fk∆t

c
ṙs (3.3)

and highlight the simple product of n∆fk∆t in the resulting exponential, which complicates

attempts to solve for range and range-rates independently.

As discussed in [8, p.526], we can separate the complex exponentials for range and

range-rate by time-domain resampling ĝn,k. Mathematically, we write this as a substitution

n∆f∆t ⇒ f0∆t′ (3.4)

where f0 is the lowest frequency of the target scene interrogation. We denote the resulting

data as ˜̂gn,k in Eq. 3.5. Fig. 3.1 illustrates this process.

˜̂gn,k =
∑

s

Γse
−j4π n∆f

c
rse−j4π

f0k∆t′
c

ṙs (3.5)
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Figure 3.1: At 40% bandwidth, this radar data needs significant interpolation to separate
rs and ṙs.

As expressed in Eq. 3.4, the precise parameters employed in the resampling depends on

the frequency and bandwidth of the signal under consideration. Percent bandwidth is the

relative measure of bandwidth versus center frequency,

%BW =
BW

fcenter
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Figure 3.2: At 10% bandwidth, this radar data may be small enough to neglect resampling
without causing too much error in rs and ṙs estimation.

and data with a percent bandwidth under 5-10% does not need significant interpolation as

illustrated in Fig. 3.2. Older radar systems tend to have relatively small %BW, so many

methods employ a narrowband assumption in one form or another and thus skip this resam-

pling step. Newer systems are designed to have more than 20 %BW to fulfill the demand for

higher system resolutions, and they may accomplish this with either a single radio system,

or by fusing multiple smaller %BW systems together [13, 14]. Inadvertently processing

wideband data with narrowband algorithms establishes ripe conditions for degraded range

and range-rate estimates, so it is important to keep the focus on our algorithms with respect

to an eye for future bandwidth capabilities.
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3.2 Fourier Processing

Rewriting Eq. 3.5, we recognize this function as a two-dimensional discrete Fourier

transform [39, p. 158] of Γs in k -space,

˜̂gn,k =
∑

s

Γse
−j4π n∆f

c
rse−j4π

f0k∆t′
c

ṙs from Eq. 3.5

=
∑

s

Γse
−j2π

“
2rs
c

n∆f+
2f0ṙs

c
k∆t′

”
(3.6)

n∆f ⇒ fn k∆t′ ⇒ t′k (3.7)

˜̂g(f, t′) =
∑

s

Γse
−j2π

“
2rs
c

f+
2f0ṙs

c
t′
”

(3.8)

kr , 2f

c
kṙ , 2f0t

′

c
(3.9)

˜̂g(kr, kṙ) =
∑

s

Γse
−j2π(krrs+kṙ ṙs) (3.10)

so we may use the inverse transform to identify Γs versus range and range-rate:

g̃(r, ṙ) 4= F -1

r,ṙ

{
˜̂g(kr, kṙ)

}
(3.11)

g̃(r, ṙ) =
∑

s

Γs δ(r − rs) δ(ṙ − ṙs) (3.12)

Sometimes called “block” processing, Fourier Doppler processing is accomplished via

processing a small number of interrogations at a time, and then advancing this window as

shown in Fig. 3.4. Within this window, data is first resampled to separate rs and ṙs, then

scaled by a window function, and finally processed with a two-dimensional inverse discrete

Fourier transform.

Applying window functions to the data before the DFT−1 mitigates the effects of spectral

leakage (called sidelobes) at the sacrifice of increased main lobe width resulting in blurred

target scenes. There are many choices for window functions such as Hanning, Hamming,

Taylor and Blackman-Harris to name a few, and each window has its own trade-off between

sidelobe suppression and main lobe width [23]. In this research, we use the Hamming

window when presenting Fourier processing examples.

The output of this processing produces a two-dimensional plot of target scene scattering

intensity versus range and range-rate, and the plot is updated over time as the sliding
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Figure 3.3: Two dimensional Fourier transform in k-space exchanges (kx, ky) with (x, y).
In this example, the two-dimensional wavefront on the left undergoes 3 full periods on the
kx axis and 2 periods on the ky axis, so its transform yields Dirac’s delta function at x = 3,
y = 2.
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Figure 3.4: Fourier Doppler processing analyzes a block of interrogations at a time. Within
a block, data is first resampled (indicated with blue circles) before further processing to
analytically separate rs and ṙs. This technique is also used for modern spectral processing
algorithms discussed in the next section.
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window advances. The animated plot is called an RDTI, which stands for Range vs. Doppler

vs. Time vs. Intensity, and Fig. 3.5 shows several still-frames produced from our synthetic

data of Chapter 2. Note how the two scatterers in Fig. 3.5 stay well resolved from one

another even when they temporarily share the same range. In a simpler range-only Fourier

plot such as the RTI of Fig. 2.3, an automated tracking system may have difficulty tracking

scatterers in a complex target scene as they cross over one another.

Figure 3.5: These are frames taken from an Range-Doppler-Time-Intensity animation of
our synthetic data in Chapter 2. Each frame is produced from 10 interrogations by first
applying Hamming windows across the frequency and time dimensions, then computing the
two-dimensional inverse DFT, and plotting the resulting magnitudes.

Alternatively, Fig. 3.6 presents the range and range-rates as separate RTI and DTI

(Doppler vs. Time vs. Intensity) plots. Each column of the DTI plot is formed by a one-

dimensional inverse DFT applied to 10 interrogations at a time, along the center frequency.

Since each DTI column is formed from only 10 samples across time at a single frequency,

the resulting range-rate (Doppler) resolution is highly susceptible to noise spikes and suffers

significant blurring as compared to the RTI. In fact, some of this blurring may also be

observed in the RDTI still frames of Fig. 3.5 in the form of each scatterer appearing elliptical,

that is, being more compact in the range dimension than in the range-rate dimension.

However, the two-dimensional DFT employed for the RDTI frames is not as susceptible to

noise spikes due to its utilization of consecutive interrogations to average out noise.
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Figure 3.6: The upper image is the same RTI plot from Fig. 2.3. The lower image is called
a Doppler vs. Time vs. Intensity (DTI) plot, and shows the range-rates of a target scene’s
scatterers as they change over time due to acceleration and deceleration.
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We could have selected a wider block size to increase our range-rate resolution in Fig. 3.6,

except doing so would incur more blurring of the velocity information about an uncooper-

ative target with rapidly changing motion dynamics. The selection of block-size depends

upon on a radar analyst’s processing needs versus target dynamics. We will continue with

this small block size to challenge the algorithms in the next section.

Fourier Doppler processing is very fast and may be processed in real-time with live

radar data feeds to provide instantaneous diagnostic feedback for system operators. The

downside to this approach is that range and range-rate estimates are confined to a grid, and

if a scatterer fell between grid locations, its spectral energy is smeared into adjacent grid

locations. As with the case of range-only Fourier processing, this spectral leakage degrades

reflection coefficient estimates, and impairs ability to identify weak scatterers, or scatterers

too close to one another [8]. A better approach would employ an algorithm without a fixed

solution grid.

3.3 Joint-Doppler Direct State-Space System Identification

The methods presented here are intrinsically related to other modern multidimensional

methods such as Multidimensional ESPRIT [50, 35, 8], Matrix-Enhanced Matrix-Pencil

[26] and C-MIMO [45] with the chief difference being one of a vocabulary translation [47].

We will continue with the algebraic and state-space terminology from Chapter 2, except

now we generalize to multidimensional data factoring and call this Multidimensional Direct

State-Space. We shall formulate the derivations in a similar fashion to the range-only DSS

method presented earlier, and start by demonstrating how Eq. 3.5 can be written in a form
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akin to that of a state-space impulse response:

˜̂gn,k =
∑

s

Γse
−j2π

“
2rs
c

n∆f+
2f0ṙs

c
k∆t′

”
from Eq. 3.5 (3.13)

=
[
Γ1 Γ2 . . .

]

︸ ︷︷ ︸
C




e
−j4πr1∆f

c 0 . . .

0 e
−j4πr2∆f

c

...
. . .




n

︸ ︷︷ ︸
An

r




e
−j4πf0ṙ1∆t′

c 0 . . .

0 e
−j4πf0ṙ2∆t′

c

...
. . .




k

︸ ︷︷ ︸
Ak

ṙ




1

1
...




︸︷︷︸
B

(3.14)

= CAn
r Ak

ṙB (3.15)

Note that Ar and Aṙ commute since they are diagonal matrices and will not lose their com-

mutability under state-space system equivalence transformations discussed in Section 2.3.2.

Having set the stage, we will first describe the extension of observability processing

introduced earlier to higher dimensional (range and range-rate) processing, and then follow

with the multidimensional extension of balanced processing. It should be noted that while

many variants of multidimensional observability processing exist in the signals processing

realm, the multidimensional form of balanced processing has not been developed until the

present research.

3.3.1 Multidimensional DSS Observability (or Controllability) Process-

ing

The process described in this section bears many similarities to other established pro-

cesses such as Multidimensional ESPRIT [50, 35, 8] and Coupled-MIMO [45]. We emphasize

how closely related the established algorithms are by referring to this general description

as Multidimensional, DSS Observability Processing. As a note, this method is not to be

confused with the Multiple-Input Multiple-Output (MIMO) algorithms applied in control

systems. The fundamental difference there is that the observed input and output data is

sampled over a single dimension of time or frequency, but in the signals processing realm,

there may be two or more time or frequency dimensions as in the case of time and k-space

as depicted in Fig. 3.3.
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We start this description by first forming a block Hankel matrix, H, over the two dimen-

sions of ˜̂gn,k in Eq. 3.16, and then we show that H factors into partitioned observability and

controllability matrices given in Eq. 3.17. By block Hankel, we mean that each partition is

a smaller Hankel matrix over index k for a fixed n, and on a larger scale, the n partitions

themselves are organized in the same anti-diagonal pattern associated with Hankel matri-

ces as well. For example, partition (1,1) of Eq. 3.16 is a Hankel matrix composed of ˜̂g0,k∀k
(˜̂g0,0, ˜̂g0,1, ˜̂g0,2, . . .). Partitions (2,1) and (1,2) are Hankels of ˜̂g1,k∀k, and partition (2,2) is

a Hankel of ˜̂g2,k∀k. For brevity, we have started our index numbers at 0 instead of n0 and

k0, but the same factorization holds for (n0, k0) as well.

H 4= H
n,k

{
˜̂gn,k

}
(3.16)

= H
n

{
H
k

{
˜̂gn,k

}}

=




Hk

{
˜̂g0,k

}
Hk

{
˜̂g1,k

}
. . .

Hk

{
˜̂g1,k

}
Hk

{
˜̂g2,k

}
. . .

...
...

. . .


 =




˜̂g0,0
˜̂g1,0 . . . ˜̂g0,1

˜̂g1,1 . . .

˜̂g1,0
˜̂g2,0 . . . ˜̂g1,1

˜̂g2,1 . . . . . .
...

...
. . .

...
...

. . .

˜̂g0,1
˜̂g1,1 . . . ˜̂g0,2

˜̂g1,2 . . .

˜̂g1,1
˜̂g2,1 . . . ˜̂g1,2

˜̂g2,2 . . . . . .
...

...
. . .

...
...

. . .
...

...
. . .




=




CA0
rA

0
ṙB CA1

rA
0
ṙB . . . CA0

rA
1
ṙB CA1

rA
1
ṙB . . .

CA1
rA

0
ṙB CA2

rA
0
ṙB . . . CA1

rA
1
ṙB CA2

rA
1
ṙB . . . . . .

...
...

. . .
...

...
. . .

CA0
rA

1
ṙB CA1

rA
1
ṙB . . . CA0

rA
2
ṙB CA1

rA
2
ṙB . . .

CA1
rA

1
ṙB CA2

rA
1
ṙB . . . CA1

rA
2
ṙB CA2

rA
2
ṙB . . . . . .

...
...

. . .
...

...
. . .

...
...

. . .



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=




CA0
rA

0
ṙ

CA1
rA

0
ṙ

...

CA0
rA

1
ṙ

CA1
rA

1
ṙ

...

...




︸ ︷︷ ︸
O

[
A0

rA
0
ṙB A1

rA
0
ṙB . . . A0

rA
1
ṙB A1

rA
1
ṙB . . . . . .

]

︸ ︷︷ ︸
C

H = OC (3.17)

We accomplish this factorization using the SVD, and thus the resulting state represen-

tation will not be in our canonical form of Eq. 3.14, but will be related via an equivalence

transformation as discussed earlier and in Appendix A.

H svd⇒ UΣVH (3.18)

Utr
4= U1:s,: first s columns of U (3.19)

Σtr
4= Σ1:s,1:s first s singular values of Σ (3.20)

Vtr
4= V1:s,: first s columns of V (3.21)

Õ ⇐ Utr

√
Σtr (3.22)

C̃ ⇐
√

ΣtrVH
tr (3.23)

From this point on we will continue with Õ, though applying the same techniques to C̃
would produced an analytically identical procedure, except for all variables being transposed

as noted in Section 2.3.2. Illustrated in Eq. 3.24, we form Õ−n by removing the last row

from each partition of Õ and Õ+n by removing the first row from each partition of Õ. At

the same time, we also form Õ−k from Õ by removing the entire last partition and Õ+k

from Õ by removing the first partition.
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Õ−n
4=




eCeA0
r
eA0

ṙ

eCeA1
r
eA0

ṙ

.

.

.

eCeAN−2
r

eA0
ṙ

eCeA0
r
eA1

ṙ

.

.

.

eCeAN−2
r

eA1
ṙ

.

.

.

eCeA0
r
eAK−1

ṙ

.

.

.

eCeAN−2
r

eAK−1
ṙ




Õ+n
4=


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eCeA1
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ṙ
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eA0

ṙ

.

.

.
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r
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ṙ
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ṙ
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.
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ṙ
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ṙ

.

.

.
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ṙ
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ṙ
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ṙ
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Õ+k
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eCeA0
r
eA1

ṙ

eCeA1
r
eA1

ṙ

.

.

.

eCeAN−1
r

eA1
ṙ

eCeA0
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eA2

ṙ
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eCeAN−1
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eA2
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

(3.24)

Inspecting these truncated versions of Õ reveals that Õ−n and Õ+n are related via a

multiplication by Ãr (Eq. 3.25), while Õ−k and Õ+k are related via Ãṙ (Eq. 3.26).

Õ−nÃr = Õ+n (3.25)

Õ−kÃṙ = Õ+k (3.26)

Similar to solving for Ã in the one-dimensional processing of Section 2.3.2, we may solve

for Ãr and Ãṙ using Least-Squares (LS), Total-Least-Squares (TLS) [20] or Unitary-TLS

[3] approaches [47, p. 295], though for brevity, we illustrate the LS technique here with

application of a pseudo inverse:

Ãr = Õ†−nÕ+n (3.27)

Ãṙ = Õ†−kÕ+k (3.28)

The next step is to find a set of eigenvectors, T, which diagonalizes both Ãr and Ãṙ in a

similarity transformation, shown in Eq. 3.29. There are methods to find such T such as the

Simultaneous Schur Decomposition [22] and the Joint Schur Decomposition [1]. However,

their iterations do not reliably converge, so researchers continue the quest for an optimal

solution [50, 35].

Ar ⇐ T−1ÃrT (3.29)

Aṙ ⇐ T−1ÃṙT (3.30)
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Simple attempts to bypass solving for T by separately diagonalizing Ãr and Ãṙ and

pairing the resulting eigenvectors break down in the case of two scatterers temporarily

crossing in range or range-rate such as frequently occurs for spinning or tumbling targets.

As two or more scatterers cross in range, Ar would contain duplicate eigenvalues, thus

causing an eigen decomposition to return generalized eigenvectors which make pairing with

the eigenvectors of Ãṙ difficult. In a complex target scene, many scatterers may temporarily

share similar range or range-rates as the objects spin and tumble.

For purposes of implementation simplicity, the present research employs a technique

described by Burrows [8], wherein he computes the eigenvectors from a weighted sum of

Ãr and Ãṙ as expressed in Eq. 3.33 in order to achieve automatic eigenvalue pairing. He

notes that a “choice for the weights is cr = 1 and cṙ = 0, but in the presence of noise a

more accurate estimate of the eigenvalues is obtained if both matrices are brought to bear

by making both weights nonzero.” He also observes that the approach fails in the rare

situation where the weighted eigenvalue sum for one scatterer happens to match that of

another scatterer, but that the break down may be avoided easily by changing cr and cṙ.

In the present research, we set the coefficients to the inverse of the Frobenius norm of each

matrix to give equal weighting to both Ãr and Ãṙ.

cr = 1/
∥∥∥Ãr

∥∥∥
F

(3.31)

cṙ = 1/
∥∥∥Ãṙ

∥∥∥
F

(3.32)
(
crÃr + cṙÃṙ

)
eig⇒ TΛT−1 (3.33)

After computing Ar and Aṙ, we set up an over-determined linear system to solve for the

scatterers’ reflection intensities,
[
Γ1 Γ2 . . .

]
, in C of Eq. 3.36.

B 4=
[
1 1 . . .

]T
(3.34)

[ ˜̂g0,0 ˜̂g1,0 . . . ˜̂g0,1 ˜̂g1,1 . . . . . . ] = C[ A0
rA0

ṙB A1
rA0

ṙB . . . A0
rA1

ṙB A1
rA1

ṙB . . . . . . ] (3.35)

C = [ ˜̂g0,0 ˜̂g1,0 . . . ˜̂g0,1 ˜̂g1,1 . . . . . . ][ A0
rA0

ṙB A1
rA0

ṙB . . . A0
rA1

ṙB A1
rA1

ṙB . . . . . . ]† (3.36)
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This section laid out a generalized description for a two-dimensional state-space algo-

rithm to identify the ranges and range-rates of scatterers in an unknown target scene. In

practice though, the need for three-dimensional and higher systems frequently arises in sig-

nals processing such as when we have a linear array of radar antennas and need to estimate

the range, range-rate, and direction to each unknown scatterer. The algorithm given above

is trivially extended to higher dimensional processing by further increasing the levels of

nesting in the block Hankel of Eq. 3.16. Given a three-dimensional data set, say Zu,v,w, the

resulting block Hankel is defined by Eq. 3.37, which when factored, forms partitioned Õ
and C̃ matrices such that

H 4= H
u,v,w

{Zu,v,w} = H
u

{
H
v,w
{Zu,v,w}

}
= H

u

{
H
v

{
H
w
{Zu,v,w}

}}
(3.37)

H svd⇒ UΣVH (3.38)

s
4= the number of large σi ∈ Σ (3.39)

Õ ⇐ U1:s,:

√
Σ1:s,1:s (3.40)

C̃ ⇐ √
Σ1:s,1:sVH

1:s,: (3.41)

Õ−u
4= . . . Õ+u

4= . . . Õ−v
4= . . . Õ+v

4= . . . Õ−w
4= . . . Õ+w

4= . . . (3.42)

Ãu = Õ†−uÕ+u Ãv = Õ†−vÕ+v Ãw = Õ†−wÕ+w (3.43)

...

3.3.2 Multidimensional DSS Balanced Processing

The previous section laid out the generalized form of multidimensional processing via

the observability matrix, O, and is well established in literature. In this section, we present

a new multidimensional extension of balanced processing which is the higher dimensional

generalization to the Eigensystem Realization Algorithm [29] or Balanced Realization from

Markov Parameters [12, p. 203]. We present this algorithm first two-dimensionally, to

solve for our scatterer’s ranges and range-rates, and then discuss the higher-dimensional

processing at the end.

We start this formulation with the formation of a Hankel matrix, H0,0 in Eq. 3.44, and
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show that it factors into the observability and controllability matrices O and C in Eq. 3.45.

The chief difference between this Hankel and that from observability processing (Eq. 3.16)

is that this Hankel only uses the first N − 1 and K− 1 elements of ˜̂gn,k instead of all N and

K elements.

H0,0
4= H

n∈[0..N−2],k∈[0..K−2]

{
˜̂gn,k

}
= H

k∈[0..K−2]

{
H

n∈[0..N−2]

{
˜̂gn,k

}}
(3.44)

=



Hn∈[0..N−2]

n
˜̂gn,0

o
Hn∈[0..N−2]

n
˜̂gn,1

o
. . .

Hn∈[0..N−2]

n
˜̂gn,1

o
Hn∈[0..N−2]

n
˜̂gn,2

o
. . .

.

.

.

.

.

.
. . .


 =




˜̂g0,0 ˜̂g1,0 . . . ˜̂g0,1 ˜̂g1,1 . . .

˜̂g1,0 ˜̂g2,0 . . . ˜̂g1,1 ˜̂g2,1 . . . . . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

˜̂g0,1 ˜̂g1,1 . . . ˜̂g0,2 ˜̂g1,2 . . .

˜̂g1,1 ˜̂g2,1 . . . ˜̂g1,2 ˜̂g2,2 . . . . . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .




=




CA0
rA0

ṙB CA1
rA0

ṙB . . . CA0
rA1

ṙB CA1
rA1

ṙB . . .

CA1
rA0

ṙB CA2
rA0

ṙB . . . CA1
rA1

ṙB CA2
rA1

ṙB . . . . . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

CA0
rA1

ṙB CA1
rA1

ṙB . . . CA0
rA2

ṙB CA1
rA2

ṙB . . .

CA1
rA1

ṙB CA2
rA1

ṙB . . . CA1
rA2

ṙB CA2
rA2

ṙB . . . . . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .




=




CA0
rA0

ṙ

CA1
rA0

ṙ

.

.

.

CA0
rA1

ṙ

CA1
rA1

ṙ

.

.

.

.

.

.




[ A0
rA0

ṙB A1
rA0

ṙB . . . A0
rA1

ṙB A1
rA1

ṙB . . . . . . ]

H0,0 = OC (3.45)

Then we form H1,0 which is similar to H0,0 except for shifting the index range of n by

using n ∈ [1..N − 1] instead of n ∈ [0..N − 2]. Eq. 3.46 shows that H1,0 factors into the

same O and C as H0,0 with an additional Ar arising between.
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H1,0
4= H

n∈[1..N−1],k∈[0..K−2]

{
˜̂gn,k

}
= H

k∈[0..K−2]

{
H

n∈[1..N−1]

{
˜̂gn,k

}}
(3.46)

=



Hn∈[1..N−1]

n
˜̂gn,0

o
Hn∈[1..N−1]

n
˜̂gn,1

o
. . .

Hn∈[1..N−1]

n
˜̂gn,1

o
Hn∈[1..N−1]

n
˜̂gn,2

o
. . .

.

.

.

.

.

.
. . .


 =




˜̂g1,0 ˜̂g2,0 . . . ˜̂g1,1 ˜̂g2,1 . . .

˜̂g2,0 ˜̂g3,0 . . . ˜̂g2,1 ˜̂g3,1 . . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

˜̂g1,1 ˜̂g2,1 . . . ˜̂g1,2 ˜̂g2,2 . . .

˜̂g2,1 ˜̂g3,1 . . . ˜̂g2,2 ˜̂g3,2 . . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .




=




CA1
rA0

ṙB CA2
rA0

ṙB . . . CA1
rA1

ṙB CA2
rA1

ṙB . . .

CA2
rA0

ṙB CA3
rA0

ṙB . . . CA2
rA1

ṙB CA3
rA1

ṙB . . . . . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

CA1
rA1

ṙB CA2
rA1

ṙB . . . CA1
rA2

ṙB CA2
rA2

ṙB . . .

CA2
rA1

ṙB CA3
rA1

ṙB . . . CA2
rA2

ṙB CA3
rA2

ṙB . . . . . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .




=




CA0
rA0

ṙ

CA1
rA0

ṙ

.

.

.

CA0
rA1

ṙ

CA1
rA1

ṙ

.

.

.

.

.

.




Ar [ A0
rA0

ṙB A1
rA0

ṙB . . . A0
rA1

ṙB A1
rA1

ṙB . . . . . . ]

H1,0 = OArC (3.47)

Repeating the same process again but this time shifting the Hankel in index k instead

of n yields:

H0,1
4= H

n∈[0..N−1],k∈[1..K−1]

{
˜̂gn,k

}
= H

k∈[1..K−1]

{
H

n∈[0..N−2]

{
˜̂gn,k

}}
(3.48)

=




CA0
rA0

ṙ

CA1
rA0

ṙ

.

.

.

CA0
rA1

ṙ

CA1
rA1

ṙ

.

.

.

.

.

.




Aṙ [ A0
rA0

ṙB A1
rA0

ṙB . . . A0
rA1

ṙB A1
rA1

ṙB . . . . . . ]

H0,1 = OAṙC (3.49)

So by using the SVD to factor H0,0 into Õ and C̃ as discussed in earlier sections, we

may divide these matrices from H1,0 to isolate Ãr, and from H0,1 to isolate Ãṙ. As with
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one-dimensional balanced processing, the pseudo inverses Õ† and C̃† may be easily obtained

via Eqs. 2.64 and 2.65.

H0,0
svd⇒ UΣVH (3.50)

s
4= the number of large σi ∈ Σ (3.51)

Õ ⇐ U1:s,:

√
Σ1:s,1:s (3.52)

C̃ ⇐ √
Σ1:s,1:sVH

1:s,:Ãr ⇐ Õ†H1,0C̃†Ãṙ ⇐ Õ†H0,1C̃† (3.53)

Then using the joint eigen decomposition of Eq. 3.33, we find T, which diagonalizes both

Ãr and Ãṙ into Ar and Aṙ for automated pairing of the range and range-rate estimates.

Lastly, we use the over-determined linear system of Eq. 3.36 to identify the scatterers

amplitudes,
[
Γ1 Γ2 . . .

]
, in C.

3.3.3 Example Output

Like Fourier Doppler processing, these state-space algorithms are also applied to a subset

of the interrogation data as delimited by a sliding window as depicted in Fig. 3.4. Fig. 3.7

shows example RTI and DTI plots from the example data set processed using MATLAB’s

spline function for the interpolation stage discussed in Section 3.1 and the state-space

observability factorization of Section 3.3.1. In both figures, note the drastically reduced

occurrence of false scatterers in the range-versus-time plot as compared to the range-only

processing results of Fig. 2.5; this may be attributed to the algorithm being able to fuse

multiple adjacent interrogations to average out noise.

Fig. 3.8 presents the results of using identical processing to that of Fig. 3.7, but using

cubic interpolation instead of spline interpolation, and we observe significant degradation

and artifacts when both scatterers are at their maximum absolute range-rates.

Fig. 3.9 shows the results of using spline interpolation with the balanced factorization

approach described in Section 3.3.2. Here, we find that the results are very similar to those

of observability processing, except that some of the interpolation artifacts are further sup-

pressed compared to Fig. 3.7. We will withhold further performance comparisons between
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Figure 3.7: These plots of range and range-rate versus time were generated from two-
dimensional state-space observability factorization of the synthetic data described in Chap-
ter 2. The 20% bandwidth data was resampled with a spline interpolation as described
Section 3.1.
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Figure 3.8: These plots of range and range-rate versus time were generated similarly to
those of Fig 3.7, except that cubic interpolation was used instead of spline. Note the severe
degradation of the scatterer having -6 dB reflection intensity.
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the multidimensional observability and balanced factorizations until Chapter 4 but to say

this apparent improvement was not substantiated under extensive evaluation.
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Figure 3.9: These plots of range and range-rate versus time were generated similarly to those
of Fig 3.7, except that state-space balanced factorization was used instead of observability
factorization. Note how some of the artifacts in Fig 3.7 are suppressed.

As a side note, if we had incorrectly assumed the data set contained sufficiently narrow

bandwidth and skipped the interpolation stage, we would have obtained the plots shown

in Fig. 3.10. The corruption seen while the scatterers have maximal absolute range-rate

(during the time interval from 0.25 to 1.0 seconds) is directly caused by the algebraic model

breaking down as it attempts to reconstitute the original input data from sums of complex

exponentials.
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Figure 3.10: These range and range-rate versus time plots were generated without interpo-
lating as is the assumption of narrow bandwidth algorithms. The 20% bandwidth data was
purposefully not resampled to show an example of the corruption that occurs when narrow
bandwidth algorithms are glibly applied to wide bandwidth data.
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3.3.4 An Alternative to Interpolation

Referring back to Fig. 3.7, note the amplitude attenuation at 0.6 seconds of the scatterer

that should ideally be found to have an amplitude of -6 dB in our synthetic data set,

indicated by the greenish tint. Also during this time, several low-intensity artifacts appear

clustered about a range-rate of -4 meters per second. We attribute these artifacts and

amplitude attenuation to the break down of the spline interpolation process as the scatterer’s

range rate approaches the Nyquist sampling limit, which is ± c
4f0∆t ≈ ±4 meters per second.

Instead of interpolating each row in the sliding data block of Figs. 3.1 and 3.4, we

propose to fit a state-space model which should provide a closer fit to the input data than

the generalized polynomials of spline and cubic interpolation. Each row of the data block

contains the target scene’s interrogation response for a single frequency, so we regroup the

components of Eq. 3.3 to restate it in a form well modeled by a one-dimensional state-space

technique, Eq. 3.54.

ĝn,k =
∑

s

Γse
−j4π n∆f

c
rs

︸ ︷︷ ︸
γn,s

e−j4π n∆fk∆t
c

ṙs restated from Eq. 3.3

=
∑

s

γn,se
−j4π n∆fk∆t

c
ṙs

=
[
γn,1 γn,2 . . .

]

︸ ︷︷ ︸
Cn




e−j4π n∆f∆t
c

ṙ1 0 . . .

0 e−j4π n∆f∆t
c

ṙ2

...
. . .




k

︸ ︷︷ ︸
Ak

n




1

1
...




︸︷︷︸
B

ĝn,k = CnAk
nB (3.54)

At each row, n, in the data block, ĝn,k, we solve for An and Cn using the balanced

factorization state-space approach of Section 3.3.2. Next, we directly scale the angles of

An’s eigenvalues using Eq. 3.55 where f0 is the same as in Eq. 3.4 in order to achieve the

same separation of range and range-rate described in Section 3.1.
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Ǎn ⇐ A
f0

n∆f
n (3.55)

=




e−j4π n∆f∆t
c

ṙ1 0 . . .

0 e−j4π n∆f∆t
c

ṙ2

...
. . .




f0
n∆f

=




e−j4π
f0∆t

c
ṙ1 0 . . .

0 e−j4π
f0∆t

c
ṙ2

...
. . .




Lastly, we evaluate this system over k in Eq. 3.56 to reconstruct the input data, and we

repeat this procedure for each n separately. We refer to this method as stretch processing

to highlight how the state-space representation provides a means for the direct modification

of the poles describing our input data.

˜̂gn,k = CnǍn
kB (3.56)

Fig. 3.11 presents the results of using stretch processing in conjunction with observ-

ability factorization of Section 3.3.1. Compared to the results in Fig. 3.7 where spline

interpolation was used, stretch processing did not introduce artifacts when the scatterer’s

range-rates were near their maximums. However, we do find that stretch processing intro-

duces deviations when the scatterers’ range-rates were in close proximity. Unfortunately

this is to be expected, because the one-dimensional state-space model fit at each frequency

will break down as the eigenvalues representing the range-rates become closer together.

To fix this, we generalize stretch processing such that instead of processing each fre-

quency independently, we process overlapping narrow (1 %BW) subbands using the two-

dimensional balanced-factorization of Section 3.3.1. From each subband’s representation

(C, Ar, Aṙ, B), we scale the angles of Aṙ’s eigenvalues in Eq. 3.57, and then reevaluate the

center frequency of each subband by iterating over k in Eq. 3.58.
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Figure 3.11: These range and range-rate plots versus time were generated using observ-
ability factorizations and stretch processing instead of spline or cubic interpolation. The
bottom-most plot highlights the deviations that occur when the scatterers’ range-rates were
in close proximity.
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Ǎṙ ⇐ Aṙ

f0
n∆f (3.57)

˜̂gn,k = CAn
r ǍṙkB (3.58)

In Fig. 3.12, we see the that the two-dimensional stretch processing no longer exhibits

the deviations that occurred when the scatterers’ range-rates were too close.

3.4 Linear Fast-Time Invariant (LFTI) DSS Systems

In this section, we introduce a unique approach to separating the range and range-rate

components of Eq. 3.3 while simultaneously removing the simultaneous diagonalization step

of Eq. 3.29 necessary for the typical multidimensional state-space methods. We will do this

by restating our two-dimensional state-space problem of Section 3.3 as a one dimensional

system, and to get started, we introduce linear fast-time invariant (LFTI) systems. In

“fast-time invariant” systems, we assume the system or target scene is LTI during one

interrogation, but between interrogations, the scatterer positions encoded within the state

transition matrix (STM) may change significantly. In Eq. 3.59, we denote the STM as A(t)

where (t) stresses that this matrix may change over time, but not during the interrogation

period while the radar system is interrogating over the fn frequencies.

~xn+1 = A(t)~xn + Bun

yn = C~xn + Dun

(3.59)

3.4.1 Algebraic Formulation

From Eq. 2.16 and Eq. 3.1, we further generalize rs as an arbitrary function of time,

rs(t) in Eq. 3.60, and write Eq. 3.61.

rs(t)
4= rs + ṙst +

1
2
r̈st

2 + . . . (3.60)

ĝn(t) =
∑

s

Γse
−j4π n∆f

c
·rs(t) (3.61)
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Figure 3.12: These range and range-rate plots versus time were generated using observabil-
ity factorizations and narrow-subband stretch processing instead of interpolation. Compared
to Fig. 3.11, the bottom-most plot here shows how the scatterers’ range-rates no longer ex-
hibit deviations when they are in close proximity.
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For this formulation, we will initially take rs(t) to be rs + ṙst excluding the second and

higher derivative (1
2 r̈st

2 + . . .) until later, and we start by showing that the resulting ĝn(t)

with its derivative with respect to time ( ∂
∂t ĝn(t)) may be written as the impulse response

of a state-space system having two outputs, Eq. 3.66.

ĝn(t) =
∑

s

Γse
−j4π n∆f

c
·(rs+ṙst) (3.62)

∂

∂t
ĝn(t) = −j4π

n∆f

c

∑
s

Γsṙse
−j4π n∆f

c
·(rs+ṙst) (3.63)


 ĝn(t)

j c
4πn∆f

∂
∂t ĝn(t)


 =

∑
s


 Γs

Γsṙs


 e−j4π n∆f

c
·(rs+ṙst) (3.64)


 ĝn(t)

j c
4πn∆f

∂
∂t ĝn(t)




︸ ︷︷ ︸
bGn(t)

=


 Γ1 Γ2 . . .

ṙ1Γ1 ṙ2Γ2 . . .




︸ ︷︷ ︸
C




e−j4π ∆f
c
·(r1+ṙ1t) 0 . . .

0 e−j4π ∆f
c
·(r2+ṙ2t)

...
. . .




n

︸ ︷︷ ︸
(A(t))n




1

1
...




︸︷︷︸
B

(3.65)

Ĝn(t) = C(A(t))nB (3.66)

Given that Eq. 3.65 and Eq. 3.66 are nearly identical to our one-dimensional (range

only) system defined earlier in Eq. 2.21 and Eq. 2.22, we may use either the balanced or

observability DSS system identification methods defined in Section 2.3.2 to identify rs and

ṙs. The principal difference is that instead of using the individual samples ĝn like before,

we compose the Hankel matrices from 2-element vectors Ĝn(t) of the raw data ĝn(t) with

the time-derivative and scaled data, j c
4πn·∆f

∂
∂t ĝn(t):

Ĝn(t) 4=


 ĝn(t)

j c
4πn·∆f

∂
∂t ĝn(t)


 (3.67)

H0
4=




Ĝ0 Ĝ1 . . .

Ĝ1 Ĝ2

...
. . .


 H1

4=




Ĝ1 Ĝ2 . . .

Ĝ2 Ĝ3

...
. . .


 (3.68)
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Next we count the number of larger singular values in Σ and form Õ and C̃ from the

truncated Utr, Σtr and Vtr matrices:

H0
svd⇒ UΣVH (3.69)

Utr
4= U1:s,: first s columns of U (3.70)

Σtr
4= Σ1:s,1:s first s singular values of Σ (3.71)

Vtr
4= V1:s,: first s columns of V (3.72)

Õ ⇐ Utr

√
Σtr (3.73)

C̃ ⇐
√

ΣtrVH
tr (3.74)

Dividing Õ and C̃ from H1 yields Ã in Eq. 3.75 which is eigen decomposed (Eq. 3.76) to

reveal our canonical form first defined in Eq. 3.65 and reprinted in Eq. 3.77 for clarity.

Ã ⇐ Õ†H1C̃† (3.75)

Ã eig⇒ TAT−1 (3.76)

A(t) =




e−j4π ∆f
c
·(r1+ṙ1t) 0 . . .

0 e−j4π ∆f
c
·(r2+ṙ2t)

...
. . .


 (3.77)

To isolate range-rates and reflection coefficients, we can also reuse our least-squares

solver; solving with range-rates is the same as our previous, range-only problem. Given

B =
[
1 1 . . .

]T
,

Ĝn = CAnB (3.78)
[
Ĝ0 Ĝ1 . . .

]
= C

[
A0B A1B . . .

]
(3.79)

C =
[
Ĝ0 Ĝ1 . . .

] [
A0B A1B . . .

]†
(3.80)

4=


 Γ1 Γ2 . . .

ṙ1Γ1 ṙ2Γ2 . . .


 (3.81)

The remaining solution step is the estimation of the time-derivative of each sample

point in the data, and to do this, we employ a similar approach to that of stretch processing
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presented in Section 3.3.4. For each sample point measured at a given frequency within an

interrogation, we use the samples from adjacent interrogations, specified by our block size,

to fit a one-dimensional state-space model. Then we compute the derivative with respect

to time of the model as shown in Eq. 3.82.

ĝn,k =
∑

s

Γse
−j4π n∆f

c
rs

︸ ︷︷ ︸
γn,s

e−j4π n∆fk∆t
c

ṙs restated from Eq. 3.3

=
∑

s

γn,se
−j4π n∆fk∆t

c
ṙs

=
[
γn,1 γn,2 . . .

]

︸ ︷︷ ︸
Cn




e−j4π n∆f∆t
c

ṙ1 0 . . .

0 e−j4π n∆f∆t
c

ṙ2

...
. . .




k

︸ ︷︷ ︸
Ak

n




1

1
...




︸︷︷︸
B

ĝn,k = CnAk
nB

∂

∂t
ĝn,k = Cn

(
1
∆t

ln An

)
Ak

nB recall t = k∆t (3.82)

3.4.2 Example Output

We present the results of LFTI state-space processing in Fig. 3.13, and we find that

while the range-rate estimation has a higher variance compared to the two-dimensional

state-space models of Section 3.3, LFTI successfully produces automatically paired range

and range-rate solution components without the need for interpolation or simultaneous

eigen decomposition as required by those methods.
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Figure 3.13: These range and range-rate plots versus time were generated using LFTI
state-space processing.
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Chapter 4

Method Validation

In this chapter, we evaluate the estimation performance of the algorithms presented

in Chapter 3 with a series of three tests. The first test evaluates the accuracy of each

algorithm when attempting to identify a single scatterer in a target scene, and the other

two tests evaluate algorithm performance when a scatterer of interest is in close proximity

to a second, interfering scatterer.

In all tests, these parameters are constant unless otherwise noted:
Center-Frequency fc = 10 GHz
Bandwidth fBW = 2 GHz
Frequency Sampling ∆f = 20 MHz
Interrogation Rate fPRF = 500 GHz (∆t = 2 ms)
Window Size 11 Interrogations (22 ms)

Also in each test, the algorithms are not given a priori knowledge as to the number of

scatterers and must instead rely upon the heuristic described earlier in Eq. 2.40. Therefore,

an algorithm may identify more than the expected one or two (truth) scatterers actually

present in a test, but to keep computational run-time low, we limit the maximum number to

10 potential scatterers. From the potential scatterers, the error metrics are computed from

the scatterer with the smallest 2-norm error in reflection magnitude, range, and range-rate.

Of the smallest 2-norm error scatterers, any which fall outside of three standard deviations

away from the mean error are identified as outliers and removed before the error calculation.

This approach follows the common practice of using methods such as Kalman [31, 15] or

particle filters [44] to post-process the estimates to remove spurious scatterers.
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Fig. 4.1 shows one example error data set from where three spurious scatterer are iden-

tified with red X’s, because their error values were at least three standard deviations away

from the mean error for either their reflection coefficient, range, or range-rate attributes. Re-

flection phase error was not used for outlier classification due to the naturally high variance

as identified in Appendix B when deriving the theoretical limit of estimation performance,

the Cramer-Rao bound (CRB).
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Figure 4.1: Raw error data from a 1000-trial test of the Observability method with stretch
processing. The scatterers identified with red X’s were classified as outliers.
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4.1 One Scatterer

The purpose of this test is to measure the estimation error variance of each algorithm

when identifying a target scene having a single scatterer. For a given SNR, which is varied

from -9 dB to 12 dB, each algorithm processes a set of 1000 target scenes where the single

scatterer of each scene has a constant reflection magnitude of 0 dB but a random range,

range-rate and reflection phase offset. The root-mean-square (RMS) of the estimation error

is taken over the 1000 trials for each of the scatterer’s parameters—reflection magnitude,

reflection phase offset, range, and range-rate—and presented in Figs. 4.2–4.5, respectively.

In each figure, the CRB is plotted alongside the algorithms to serve as a benchmark for the

best possible variance of any unbiased estimation algorithm. The derivation for this bound

is given in Appendix B.

In Fig. 4.2 and Fig. 4.3, we present the RMS errors of each algorithm for estimating

reflection magnitude and phase offset, and we note that the interpolation method appears to

have more influence on estimation performance than does the option between observability

and balanced processing methods. The methods employing our stretch processing approach

the Cramer-Rao bound for magnitude estimation performance for SNR above 3 dB, but for

poorer SNR, stretch processing performance falls back to that of LFTI. Also, we note that

LFTI appears to have reduced estimation errors than the spline and cubic interpolation

methods for higher SNR, and also that our subband stretch processing performed worse

than cubic interpolation.

Fig. 4.4 presents the range estimation RMS errors, and we again observe the same trends

that stretch processing tends to perform best, subband stretching performs worst, and LFTI

performs favorably with respect to the spline or cubic interpolation methods for SNR above

3 dB. However in, Fig. 4.5, we find that LFTI’s range-rate estimation performance sharply

lags behind the other algorithms, and stretch processing has a clear lead.

In all four plots, we attribute subband stretch’s notably poor performance to its reliance

on a narrow-band assumption, albeit a 1% BW assumption, which would traditionally be

considered very acceptable. We also note that LFTI processing compares favorably to the

spline and cubic interpolation methods except for its range-rate estimates, but overall, the



59

10−2 

10−1 

100 

 

 

SNR <dB>

R
M

S
 o

f R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t E

rr
or

−9 −6 −3 0 3 6 9 12

      

      

      

LFTI DSS
Obs. with Spline Interp.
Obs. with Cubic Interp.
Obs. with Stretch.
Obs. with Subband Stretch.
Bal. with Spline Interp.
Bal. with Stretch.
Bal. with Subband Stretch.
Cramer−Rao Bound

Figure 4.2: Comparison of RMS error of estimating a scatterer’s reflection magnitude versus
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best performing methods are the stretching methods with either observability or balanced

form state-space solvers.

4.2 Interfering Scatterers - Range Sweep

In this test, we evaluate the estimation performance of each algorithm in identifying a

reference scatterer in the presence of a nearby, interfering scatterer having the same range-

rate. The SNR is held constant at 6 dB, and both scatterers have unit reflection magnitude,

random reflection phase offsets, and range-rate of 0 m/s as a worst-case scenario, having

duplicate range-rate eigenvalues thus requiring the final solution to rely solely upon the

range eigenvalues. The reference scatterer has a range of 0 m, and the range of the interfering

scatterer is swept from 0 m to one quarter of the total range window in 32 steps. At each

range step of the interferer, the RMS estimation error is taken over 1000 trials, and the

results are presented in Figs. 4.6–4.9.

Similar to the figures of the previous test, the figures here also contain the Cramer-Rao

bound, evaluated numerically as discussed in Appendix B. Additionally, the bound for the

case of two scatterers tested in this section differs from that of the bounds plotted for one

scatterer in Section 4.1 in that the two-scatterer bound depends upon the reflection phase

angles of the scatterers, where as the one-scatterer bound does not. This precludes direct

comparison of the test result with the analytically obtained, multivariate CRB because

we randomize the phase offsets in every trial. The bound we include in Figs. 4.6–4.9 is

numerically obtained as the mean of Cramer-Rao variance bound for the phases tested in

each of the 1000 trials. This procedure provides the exact Cramer-Rao bound reduced over

the reflection phase angles, and only the numerical evaluation is an approximation.

Observing the common trends across Figs. 4.6–4.9, all of the algorithms break down

in estimating the reference scatterer’s attributes when the interfering scatterer is less than

≈ 0.1 m. For interferer ranges greater than ≈ 0.1 m, we note that both balanced and

observability with stretch processing methods perform the best throughout all of the tests,

LFTI processing performs the worst, and sub-band stretching fluctuates periodically be-

tween the performance curves of stretch and LFTI processing as especially depicted by the
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phase offset and range errors depicted in Figs. 4.7 and 4.8, respectively.

Also in Fig. 4.8, we observe that the apparent RMS range error appears to drop as the

interferer’s range approaches that of the reference scatterer. On closer inspection, we found

that once the scatterers were too close in range, the algorithms lumped them into a single

scatterer whose resulting reflection magnitude and phase further elevated the estimation

errors seen in Figs. 4.6 and 4.7, respectively.

4.3 Interfering Scatterers - Range-Rate Sweep

Similar to the test of the previous section, this test also evaluates each algorithm’s

performance in identifying a reference scatterer with a near-by interfering scatterer. Again,

both scatterers have unit reflection magnitude, random reflection phase offsets, and the SNR

is held constant at 6 dB, and the reference scatterer has a range of 0 m and a range-rate

of 0 m/s. However, in this test, the interfering scatterer will be held at a constant range

of 0 m, and have its range-rate swept from 0 m/s to one quarter of the range-rate window

in 32 steps. As before, the RMS estimation error is taken over 1000 trials at each step,

and we present the results in Figs. 4.10–4.13. The CRB curves depicted in these figures

were obtained in the same fashion as those depicted in Section 4.2, and thus are numerical

approximations of the lower bounds on estimation variance.

We observe that the algorithms’ estimation variance of the reference scatterer’s at-

tributes rises significantly in the observability and balanced methods when the interfering

scatterer approaches closer than approximately ≈ 0.8 m/s. In Fig. 4.13, we find that un-

like previous tests, the stretch processing methods have the highest range-rate estimation

variance, surpassed only by LFTI which maintains a constant standard deviation across the

varying interferer range-rate, but in Fig. 4.12, stretch processing appears to have a vari-

ance similar to that of the other methods in the breakdown region where the interferer’s

range-rate is less than 0.8 m.

In Fig. 4.13, we note that the algorithms’ range-rate estimation of the reference scatterer

appears to improve as the interferer’s range-rate approaches that of the reference. This is

the same failure mechanism observed earlier in the interferer range sweep of Fig. 4.8. When
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Figure 4.6: Comparison of RMS error of estimating the reference scatterer’s reflection
magnitude versus the range separation of the interfering scatterer for different algorithms.
The lower plot is a magnified view of the upper plot.
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Figure 4.7: Comparison of RMS error of estimating the reference scatterer’s reflection phase
offset versus the range separation of the interfering scatterer for different algorithms.
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Figure 4.8: Comparison of RMS error of estimating the reference scatterer’s range versus
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Figure 4.9: Comparison of RMS error of estimating the reference scatterer’s range-rate
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the two scatterers’ range-rates were close in value, the algorithms grouped them into a single

scatterer whose resulting elevated errors in reflection magnitude and phase observable in

Figs. 4.10 and 4.11. Observing LFTI’s performance in Fig. 4.13, we note that its estimation

variance only continues to increase with the interferer’s range-rate. This is due to how

LFTI’s Hankel matrix in Eq. 3.68 iterates over index n, which is the frequency dimension,

thus setting up a system analogous to the one-dimensional range-only processing algorithms

in Section 2.3.2. However in this test, both scatterers have the same range of 0 m, which

forces LFTI’s one-dimensional formulation to break down and always group the scatterers

regardless of their separation in range-rate.

4.4 Discussion

In Section 4.1, we evaluated the performance of the state-space methods in estimating

the reflection coefficient, range, and range-rate of a single unknown scatterer over varying

SNR, and we found that the significant algorithmic component most benefiting the estima-

tion variance was the usage of stretch processing instead of the traditional spline or cubic

interpolations. In contrast, the subband-stretch processing degraded the estimation error

the most, and we attribute this to the use of a narrow bandwidth approximation in that

method’s formulation. Our Linear Fast-Time Invariant solver had very low estimation error

for reflection coefficient and range but the worst error for range-rate. We attribute this to

LFTI’s range-rate estimates being based predominantly off the state-space estimated time-

derivatives formed from single frequencies at a time, and thus, those derivative estimates

were created from only 11 data samples per frequency due to our narrow interrogation block

size.

Then in Section 4.2, we stress tested the algorithm by supplying two scatterers, a ref-

erence having 0 m range and 0 m/s range-rate, and an interferer also having a range-rate

of 0 m/s but whose range was varied from 0 to 1.8 m. In these tests, stretch processing

maintained the lowest estimation errors for the reference scatterer’s reflection coefficient,

range, and range-rate, and observed an oscillatory error pattern in the methods relying on

subband stretching.
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Figure 4.10: Comparison of RMS error of estimating the reference scatterer’s reflection mag-
nitude versus the range-rate separation of the interfering scatterer for different algorithms.
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Figure 4.11: Comparison of RMS error of estimating the reference scatterer’s reflec-
tion phase offset versus the range-rate separation of the interfering scatterer for different
algorithms.
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Figure 4.12: Comparison of RMS error of estimating the reference scatterer’s range versus
the range-rate separation of the interfering scatterer for different algorithms.
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Figure 4.13: Comparison of RMS error of estimating the reference scatterer’s range-rate
versus the range-rate separation of the interfering scatterer for different algorithms.
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Lastly in the scenario presented in Section 4.3, we again stress tested the algorithms with

two scatterers, but this time, the scatterers shared the same range of 0 m, while the reference

had a constant 0 m/s range-rate and the interferer’s range-rate was swept from 0 m/s to 1.7

m/s. This proved to be a fatal blow to LFTI which could not separate the scatterers due to

their identical ranges. In the case of stretch processing, it also demonstrated higher errors

than the spline and cubic interpolation methods when estimating the reference scatterer’s

range-rate, but at the same time, it produced very good range estimates. As a note, we

found that subband stretching, did improve upon the range-rate estimation compared to

stretching, but it still did not perform as well when the interferer’s range-rate was less than

0.8 m/s.

In all of the test scenarios, we found that the observability and balanced factorization

approaches performed nearly identically in all of the tests. This is a counter-intuitive result

as one might expect the observability factorization to yield higher errors due to how it only

utilizes Õ and not C̃ thus ignoring any information content ostensibly in the V matrix from

the singular value decomposition of Eq. 3.18. In contrast, the balanced factorization uses

both the Õ and C̃ matrices thus utilizing all of the SVD output in Eq. 3.50.
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Chapter 5

Conclusions

In the background material presented in Chapter 2, we reviewed state-space approaches

for one-dimensional, range-only scatterer identification from radar interrogation data using

various approaches—Fourier processing, observability-factorization state-space processing,

and balanced-factorization state-space processing. Then in Chapter 3, we proceeded to

derive the higher-dimensional observability-factorization state-space family of algorithms

which includes ESPRIT [50, 35, 8], Matrix-Enhanced Matrix-Pencil [26], and C-MIMO [45].

After which in Section 3.3.2, we proposed a new multidimensional extension to balanced-

factorization processing, which if we were to provide a name, would be most precisely called

the Multidimensional Eigensystem Realization Algorithm to highlight its similarity with

the one-dimensional Eigensystem Realization Algorithm [29].

After establishing these algorithms, we next turned our attention to the requisite in-

terpolation stage first introduced in Section 3.1, and proposed one and two-dimensional

state-space systems as replacements to interpolation, called stretch processing and subband

stretch processing in Section 3.3.4. Next, we sought a more ambitious goal in Section 3.4,

where we proposed Linear Fast-Time Invariant state-space processing which completely

side-steps the simultaneous diagonalization normally required in the multidimensional state-

space methods, by employing a time-derivative to create a one-dimensional state-space ca-

pable of solving the multidimensional problem of identifying scatterer range and range-rate.

Lastly, we measured the performance of our proposed techniques using the test scenar-
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ios presented in Chapter 4: one general test evaluating single scatterer identification, and

two specialized test scenarios designed to induce duplicate eigenvalues in the state-space

methods. Comparing the multidimensional balanced versus the observability factorizations,

we found negligible difference in estimation performance, but when comparing the interpo-

lation methods versus stretch processing, we found that stretch processing often produced

the lowest errors of all algorithms, and that subband stretching suffered due to its reliance

upon a narrow-bandwidth assumption even though it was only 1% bandwidth.

In future work, we would continue to explore the LFTI processing approach and hybrids

with stretch processing, because even though LFTI appeared to break down more readily in

the special case tests involving the interfering scatterer in Sections 4.2 and 4.3, it still main-

tained some of the lowest estimation errors for reflection magnitude and range in the single

scatterer tests. Given that LFTI is formulated as a one-dimensional block Hankel, it would

seem that the other algorithms should have faired better since their two-dimensional block-

nested Hankel matrices should have been able to better incorporate the additional raw data

for further error reduction. Augmenting the two-dimensional Hankel matrices utilized in

the balanced+stretch or observability+stretch algorithms may yield further improvements.

Also, we would pursue further exploration into the processing stage common to all of

the studied algorithms: factoring the Hankel matrix of the input data into the observability

and controllability matrices discussed in Section 2.3.2. In this factoring stage, numerous

approaches have been tried ranging from visual inspection of the singular values—which

is inappropriate for applications requiring automated processing such as radar systems—

to attempting to apply Akaike Information Criterion or Minimum Description Length

techniques—which have been found to frequently over-estimate the number of scatterers

and thus permitting too much of the noise subspace into the solution set. In this research,

we employed an empirically derived heuristic wherein we automatically determine the num-

ber of scatterers based of the number of singular values (σs) falling within a certain distance

of the largest (σ1) as described in Eq. 2.40. Our threshold of 20 dB appeared to work well in

our example plots of Chapters 2 and 3 and for the validation tests of Chapter 4. However,

the threshold seems dependent upon on the number of data samples over both frequency

and time selected for each processing block; the exact relationship between the threshold
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and data size proved elusive in a cursory exploration, because it was conducted using a

singular value decomposition which does not preserve the Hankel structure when used for

rank truncations. This analysis should be carried out in further detail but using Hankel-

preserving methods such as the Fast-Hankel SVD [38, 53] or other structured matrix rank

reduction techniques [16, 40, 36, 6].
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Appendix A

State-Space Similarity

Transformations

A system’s internal state variables may be representative for many different forms. But

suppose we were given a state-space realization,

~xn+1 = A~xn + B~un

~yn = C~xn + D~un

n = 0, 1, 2, . . . (A.1)

we could change the state representation by some nonsingular transformation

~̃xn = T~xn (A.2)

and produce a different realization:

~̃xn+1 = Ã~̃xn + B̃~un

~yn = C̃~̃xn + D̃~un

n = 0, 1, 2, . . . (A.3)

where

Ã 4= TAT−1 B̃ 4= TB C̃ 4= CT−1 D̃ 4= D (A.4)

Thus if we were to substitute Eq. A.2 and Eq. A.4 into Eq. A.3,

T~xn+1 = TAT−1T~xn + TB~un

~yn = CT−1T~xn + D~un

n = 0, 1, 2, . . . (A.5)
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we would obtain our original system, Eq. A.1. This new representation (Eq. A.3) is not

a new system. It still produces identical output ~yn for a given input ~un. It is just that the

the state variables ~xn have been reordered or meanings reassigned.

The transformation on A into Ã (Eq. A.4) is called a similarity transformation [21,

p. 311], and thus the state-variable transformation into Eq. A.3 is also called a similarity

transformation in control engineering [30, p. 54 and p. 664]. These transformations preserve

the eigenvalues of A thus enabling us to use eigen or Schur decompositions to get back to

a useful canonical form.

We can perform similar operations to identify the new observability and controllability

matrices, Õ and C̃:

Õ 4=




C̃Ã0

C̃Ã1

...


 C̃ 4=

[
Ã0B̃ Ã1B̃ . . .

]
(A.6)

Õ 4=




CT−1
(
TAT−1

)0

CT−1
(
TAT−1

)1

...


 C̃ 4=

[(
TAT−1

)0 TB
(
TAT−1

)1 TB . . .
]

(A.7)

Õ 4=




CT−1TA0T−1

CT−1TA1T−1

...


 C̃ 4=

[
TA0T−1TB TA1T−1TB . . .

]
(A.8)

Õ 4=




CA0

CA1

...


T−1 C̃ 4= T

[
A0B A1B . . .

]
(A.9)

Õ 4= OT−1 C̃ 4= TC (A.10)

Note that the Hankel matrices H, which factor into any OC in our system identification

discussion (Section 2.3.2), also factor into any ÕC̃ as well.

For further information, please see [12, p. 95,159].
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Appendix B

Cramer-Rao Bound for Range and

Range-Rate Estimation

This appendix presents the Cramer-Rao bound (CRB) on parameter estimation perfor-

mance, which provides a bound on the covariance matrix of any unbiased estimate of some

unknown parameters [51]. In the context of the present research, our unknown parameters

are those attributes possessed by the scatterers within a target scene including complex

reflection coefficient, range, and higher time-derivatives of range such as range-rate and

range-acceleration. For simplicity, we only discuss the CRB derivation for the case of a

single radar scatterer, and we do not include higher time-derivatives of range beyond that

of range-acceleration.

Following Van Trees [51], we start the derivation by defining our signal and adding white

Gaussian noise as shown in Eqs. B.1 and B.2, respectively. In one radar target interrogation,

we receive a vector of reflectivity measurements, z̃n,k, taken at each of n∆f frequencies and

k∆t times, and consisting of the original reflected signal, yn,k, corrupted with additive white

Gaussian noise, x̃n,k. The parameters A, φ, r, ṙ, and r̈ refer to the unknown attributes

of a scatterer: reflection magnitude, reflection-phase offset, range, range-rate, and range-

acceleration, respectively, and they are assumed to be real with A > 0. For notational

convenience, we define θ
4=

[
A φ r ṙ r̈

]T
to encapsulate these unknowns.
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yn,k = Ae−4jπ n∆f
c (r+ṙk∆t+ 1

2
r̈k2∆t2)+φj (B.1)

z̃n,k = yn,k + x̃n,k (B.2)

We start this derivation by first treating z̃n,k as a proper random vector over n and k

[41] and presenting its probability density function (PDF) pz̃|θ in Eq. B.3 where σ2 is the

noise variance.

pz̃|θ(~z) =
n0+N−1∏

n=n0

k0+K−1∏

k=k0

1
πσ2

e−(z̃n,k−yn,k)H(z̃n,k−yn,k)/σ2
(B.3)

Next, we identify the log-likelihood function L~z(θ) from the natural logarithm of pz̃|θ in

Eq. B.5 and use it to construct the Jv,w elements of the Fisher information matrix (FIM)

in Eq. B.6 where E [. . .] denotes taking the expected value.

L~z(θ) , ln pz̃|θ(~z) (B.4)

= − ln
(
πσ2

)− 1
σ2

n0+N−1∑
n=n0

k0+K−1∑

k=k0

(z̃n,k − yn,k)
H (z̃n,k − yn,k)

= − ln
(
πσ2

)− 1
σ2

n0+N−1∑
n=n0

k0+K−1∑

k=k0

<2 (z̃n,k − yn,k) + =2 (z̃n,k − yn,k)

= − ln
(
πσ2

)− 1
σ2

k0+K−1∑

k=k0

n0+N−1∑
n=n0

[
A2 + < (z̃n,k)

2 + = (z̃n,k)
2 . . .

− 2A< (z̃n,k) cos
(

4πn∆f

c
(r + ṙk∆t +

1
2
r̈(k∆t)2)− φ

)
. . .

+ 2A= (z̃n,k) sin
(

4πn∆f

c
(r + ṙk∆t +

1
2
r̈(k∆t)2)− φ

) ]
(B.5)

Jv,w
4= −E

[
∂L~z(θ)

∂θv
· ∂L~z(θ)

∂θw

]

= −E

[
∂2L~z(θ)
∂θv∂θw

]
(B.6)
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J =




J1,1 0 0 0 0

0 J2,2 J2,3 J2,4 J2,5

0 J3,2 J3,3 J3,4 J3,5

0 J4,2 J4,3 J4,4 J4,5

0 J5,2 J5,3 J5,4 J5,5




(B.7)

J1,1 = 2NK
σ2

J2,2 = 2A2NK
σ2

J2,3 =−4A2π∆fN(2n0+N−1)K

cσ2

J2,4 =−2A2π∆f∆tN(2n0+N−1)K(K−1+2k0)

cσ2

J2,5 =−A2π∆f∆t2N(2n0+N−1)K(6k0
2+6k0K+2K2−6k0−3K+1)

3cσ2

J3,2 = J2,3

J3,3 = 16
3

A2π2∆f2N(6n0
2+6n0N+2N2−6n0−3N+1)K

c2σ2

J3,4 = 8A2π2∆f2∆tN(6n0
2+6n0N+2N2−6n0−3N+1)K(K−1+2k0)

3c2σ2

J3,5 = 4A2π2∆f2∆t2N(6n0
2+6n0N+2N2−6n0−3N+1)K(6k0

2+6k0K+2K2−6k0−3K+1)
9c2σ2

J4,2 = J2,4

J4,3 = J3,4

J4,4 = 8A2π2∆f2∆t2N(6n0
2+6n0N+2N2−6n0−3N+1)K(6k0

2+6k0K+2K2−6k0−3K+1)
9c2σ2

J4,5 = 2A2π2∆f2∆t3N(6n0
2+6n0N+2N2−6n0−3N+1)K(K−1+2k0)(K2−K+2k0K+2k0

2−2k0)
3c2σ2

J5,2 = J2,5

J5,3 = J3,5

J5,4 = J4,5

J5,5 = 2A2π2∆f2∆t4N(6n0
2+6n0N+2N2−6n0−3N+1)K

45c2σ2 ...

·(30k0
4+60k0

3K+60k0
2K2+30k0K3+6K4−60k0

3−90k0
2K−60k0K2−15K3+30k0

2+30k0K+10K2−1)
1

Lastly, we obtain the Cramer-Rao bound CCR(θ) from the inverse of J in Eq. B.8. The

five diagonal elements of CCR(θ) are the lower bounds on the estimation variance of the five
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unknown parameters listed in θ and are plotted in Fig. B.1. The off-diagonal elements of

CCR(θ) are the lower bounds on the estimation covariance between unknown parameters.

CCR(θ) 4= J−1 (B.8)

=




C1,1 0 0 0 0

0 C2,2 C2,3 0 0

0 C3,2 C3,3 C3,4 C3,5

0 0 C4,3 C4,4 C4,5

0 0 C5,3 C5,4 C5,5




C1,1 =
σ2

2NK

C2,2 =

(
6n0

2 + 6n0N + 2N2 − 6n0 − 3N + 1
)
σ2

A2NK (N2 − 1)

C2,3 =
3 (2n0 + N − 1) cσ2

4π∆fA2NK (N2 − 1)

C3,2 = C2,3

C3,3 =
9Qc2σ2

8KN∆f2π2A2 (6n0
2 + 6n0N + 2N2 − 6n0 − 3N + 1) (N2 − 1) (K2 − 1) (K2 − 4)

C3,4 =
−27 (K − 1 + 2k0)

(
10k0

2 − 10k0 + 10k0K + 2− 5K + 2K2
)
c2σ2

8KN∆f2π2A2∆t (6n0
2 + 6n0N + 2N2 − 6n0 − 3N + 1) (K2 − 1) (K2 − 4)

C3,5 =
45σ2c2

(
6k0

2 + 6k0K + K2 − 6k0 − 3K + 2
)

4∆f2NKπ2A2∆t2 (6n0
2 + 6n0N + 2N2 − 6n0 − 3N + 1) (K2 − 1) (K2 − 4)

C4,3 = C3,4

C4,4 =
9σ2c2

(
16K2 + 60k0K − 30K − 60k0 + 11 + 60k0

2
)

4∆f2NKπ2A2∆t2 (6n0
2 + 6n0N + 2N2 − 6n0 − 3N + 1) (K2 − 1) (K2 − 4)

C4,5 =
−135 (K − 1 + 2k0) c2σ2

2∆t3A2π2∆f2NK (6n0
2 + 6n0N + 2N2 − 6n0 − 3N + 1) (K2 − 1) (K2 − 4)

C5,3 = C3,5

C5,4 = C4,5
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C5,5 =
135σ2c2

A2π2∆f2∆t4NK (6n0
2 + 6n0N + 2N2 − 6n0 − 3N + 1) (K2 − 1) (K2 − 4)

Q =−10n0NK2+42N2k0K+42N2k0
2K2+2n0NK4+12N2k0K3−42N2k0K2+60N2k0

3K−90N2k0
2K ...

−4N+6K−8n0+12k0+8n0N+4N2−30k0
4+60k0

3−42k0
2+2n0

2K4+30N2k0
4+2N2K4 ...

−60N2k0
3−6N2K3−2n0K4−10n0

2K2+42N2k0
2+6N2K2−12N2k0−6N2K+10n0K2 ...
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Figure B.1: Cramer-Rao lower bounds on estimation variance for identifying a scatterer’s
attributes: reflection magnitude, reflection phase offset, range, range-rate, and range-
acceleration. These bounds are plotted for radar data having the same center frequency,
bandwidth, interrogation rate, and window as used in the validation tests of Chapter 4.
Though the scatterer attributes have differing units, we present them without units on the
same graph for visual comparison.

The derivation for two scatterers follows naturally from this derivation by extending

Eq. B.1 to

yn,k =
2∑

s=1

Ase
−4jπ n∆f

c (rs+ṙsk∆t+ 1
2
r̈sk2∆t2)+φsj (B.9)

and defining

θ
4=

[
A1 φ1 r1 ṙ1 r̈1 A2 φ2 r2 ṙ2 r̈2

]T
. (B.10)
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However, a closed-form, analytic solution for CCR(θ) proved intractable given today’s avail-

able computing resources; for the two-scatterer validation tests of Chapter 4, we numerically

evaluated J−1 in Eq. B.8 to obtain the Cramer-Rao bound.
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