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Abstract

A fundamental problem in machine vision is the classification of objects which may have

unknown position, orientation, or a combination of these and other transformations. The

massive amount of data required to accurately form an appearance-based model of an object

under all values of shift and rotation transformations has discouraged the incorporation of

the combination of both transformations into a single model representation.

This Master’s Thesis documents the theory and implementation of a hierarchical clas-

sifier, named the Information Theoretic Decision Tree system, which has the demonstrated

ability to form appearance-based models of objects which are shift and rotation invari-

ant which can be searched with a great reduction in evaluations over a linear sequential

search. Information theory is utilized to obtain a measure of information gain in a feature

space recursive segmentation algorithm which positions hyperplanes to local information

gain maxima. This is accomplished dynamically through a process of local optimization

based on a conjugate gradient technique enveloped by a simulated annealing optimization

loop. Several target model training strategies have been developed for shift and rotation

invariance, notably the method of exemplar grouping, in which any combination of rotation

and translation transformations of target object views can be simulated and folded into the

appearance-based model. The decision tree structured target models produced as a result

of this process efficiently represent the voluminous training data, affording rapid test-time

classification of objects.
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Chapter 1

Introduction and Background

When one meets the concept of entropy in communication theory, he has a
right to be rather excited – a right to suspect that one has hold of something
that may turn out to be basic and important. [25, p.103]

– Warren Weaver in The Mathematical Theory of Communication

In the fifty years which passed since Claude Elwood Shannon and Warren Weaver wrote

their seminal masterpiece, information theory emerged as a unique discipline with far-

reaching impact for all of engineering and science. Humbly presented as a framework for

quantifying information and uncertainty in communication systems, Shannon’s theory of-

fered an intoxicating blend of mathematical rigor and conceptual naturalness found only in

papers of fundamental importance. Among modern engineers, the measure of uncertainty,

entropy, and the measure of information content, mutual information, rose to a nearly

philosophical plane, influencing all communications systems designed in the second half of

the twentieth century. The coming of the terms information theory and the now ubiquitous

unit of binary information, the bit, signaled the start of the Information Age.

Pioneering philosophers on machines and thought suggested that machines exhibiting

human-like intelligence would be forthcoming deliverables for the Information Age. Isaac

Asimov’s Three Laws of Robotics were first published in a short story1 in 1942, from which

robots emerged in the public eye for the first time as helpful machines, markedly orthogonal

to the metal monsters found in the fiction of the day. And Alan Turing first proposed what

has come to be known as the Turing test for machine intelligence in a 1950 paper[32]. In

1The Three Laws of Robotics were originally published in “Runaround” in Astounding Science Fiction,
March, 1942. It can be argued that their widespread recognition was delayed until Asimov published a series
of “Robots” novels in the 1950’s
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Turing’s test, a machine and a human interact with a jury over teletype terminals; for a

machine to pass, it must appear at least as human-like as the human it is pitted against. It

was believed that intelligent machines would not only replace humans performing dangerous

or repetitive tasks, but also aid us in solving the most difficult problems of the day. Smart

machines would go where humans couldn’t and do what humans didn’t want to do. By all

accounts, such machines have been slow to materialize. Late 20th century science fiction

author and Information Age pundit Bruce Sterling telegraphs this sentiment:

A faithful reader of SF from the 1940s and ’50s might be surprised to learn
that we’re not hip-deep in robots by now. By this time, robots ought to be
making our breakfasts, fetching our newspapers, and driving our atomic-powered
personal helicopters. But this has not come to pass, and the reason is simple.

We don’t have any robot brains.[27]

Constructing artificial brains, be they destined for robots or not, has proven a trouble-

some task. When the study of artificial intelligence began in earnest nearly a half century

ago, researchers couldn’t have dreamed of the countless theories and systems which have

sprouted like weeds in AI’s once pristine landscape. Now, after fifty years, the surface of

the machine intelligence problem has been scratched, but is far from cracked. In hopes to

aid progress, artificial intelligence has been segmented down into a small number of distinct

areas for study. Each of five human senses has attracted attention, although olfactory and

taste sensory models have been slow to proliferate. But, perhaps due to the human propen-

sity for the visual sense, it is arguably the area of machine vision which has amassed the

greatest interest.

Machine vision systems, in general, respond to visual stimuli in a way which helps solve

a certain problem. A typical machine vision system (figure 1.1) accepts input from a camera

and outputs some form of distilled information or decision. Used in this manner, the term

camera is a rather general description for what may be a stereo pair of cameras, a forward-

looking infrared (FLIR) sensor, a black and white security camera, or any number of other

visual transducers. The information output ranges from a simple binary pass/fail test to

spatial positions of objects and motion vectors. Such machines, which can quickly recognize

or understand visually observed environments are in great demand for numerous industrial

and military applications:

• Visual inspection and quality control for assembly - high speed cameras,

pass/fail decisions.
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• Guidance systems for smart munitions - FLIR sensors, RADAR, target tracking

and detection.

• Vehicle navigation, automated control and driving - stereo cameras, motion

vector and object avoidance decisions.

• Optical character recognition, handwriting recognition - conventional cam-

eras, touch sensitive surfaces, forgery detection and character identification.

CAMERA MACHINE VISION SYSTEM DECISION

Figure 1.1: A simple machine vision system flow model..

Historically, machine vision systems which purportedly offer good performance in one of

the above categories have not done so by modeling the way in which the human brain might

perform the same tasks. This is, in part, because the brain isn’t well understood, and in part

because the way which it is believed humans interpret visual scenes doesn’t translate well

to algorithmic implementations on digital computers. Demand for machine vision systems

which produce reliable, timely results has created a design methodology differing from

attempts at creating a general-purpose human-like machine brain. Machine vision systems

which aim to be more than intellectual curiosities aren’t based on cognitive models, relying

instead on a foundation of mathematics and signal theory. Good performance is achieved by

exploiting the strengths of the modern digital computer: storage with quick recall and fast

mathematical operations. In particular, algorithms which translate images into geometric

structures are readily handled by computers.

Any transformation of an input scene image can be used to form an abstract model of

an object, against which a test scene can be compared to locate or determine the identity

of particular objects. This technique, called model-based object recognition, folds-in im-

portant features of an object or objects to form a complete model, which is searched or

compared in some way to a test image. Two fundamental classes comprise model-based ob-

ject recognition algorithms: feature-based and appearance-based. Typically, feature-based

recognition systems employ a detailed geometric representation of an object. Systems of

this type find objects by matching key geometric structures in the model to similar struc-

tures found in the test image. The classic example of a feature-based recognition system
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is a vehicle locator which searches for round wheels under a rectangular body, with some

number of additional rectangles matching to the windows. Alternately, appearance-based

recognition systems use a catalog of views or images of an object to form a complete de-

scription of the object. An appearance-based vehicle locator would search through a set of

images of a car taken from viewing angles over 360◦ around the car.

When a machine vision system produces a decision regarding which entry in a target

model best corresponds to part or all of the input test image, the system does so by means

of a classifier. A machine vision classifier operates in conjunction with the model-based

mechanism to determine a distinct target class which best matches the object under test.

Specifically, the classifier is the component of a system which generates a decision - all

preprocessing required to transform a test scene image to the same means of representation

as used in the model are performed beforehand. Detection theory, which is applied to

the design of communication systems used to extract information from signals which have

been corrupted by noise, can also be applied to the machine vision problem. Using the

language of pattern recognition, one can place hyperplanes in a decision space to isolate

vector representations of structures in the model. Systems constructed in this manner

tend to be extremely robust. The military application of machine vision, automatic target

recognition (ATR), has an expansive body of literature documenting this signal theory

approach to object recognition.

The communication system theory perspective on machine vision affords a certain math-

ematical rigor not present from other viewpoints. In the same way in which information

theory is applied to characterize a communication channel, it can be applied to characterize

the theoretical performance of a machine vision classifier. One can model a classifier as a

communication channel with a capacity given by the maximum of the mutual information

between the input and output data. In doing so, a natural measure of goodness-of-fit of the

classifier to the target data is found.

This Master’s thesis documents the design, implementation and testing of a model-based

machine vision system which employs information theory in its classifier design. In this

system, called the Information Theoretic Decision Tree (ITDT), a set of images of an object

comprise an appearance-based model upon which an order is imposed by a hierarchical

classifier constructed by maximizing the mutual information at each successive stage in the

hierarchy. The system offers rapid test times by shifting the computational burden to an

off-line information theoretic model decision tree construction process, a structure which
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offers a great reduction in the number of target model exemplars which must be searched

(figure 1.2).

TARGET IMAGERY

TREE

TREE CONSTRUCTION
ALGORITHM

TREE SEARCH
ALGORITHM RESULTTEST IMAGERY

OFF-LINE MODEL BUILD PROCESS

ON-LINE TEST PROCESS

ON-LINE/OFF-LINE MODEL-BASED MACHINE VISION SYSTEM

Figure 1.2: The Information Theoretic Decision Tree system.

The following sections in this chapter constitute the background material necessary for

subsequent detailed exploration of the system: model-based machine vision, binary decision

trees, pattern recognition and information theory as applied to pattern recognition. An

exposition on the original contributions of the author to this problem and acknowledgement

of past work done on the ITDT system are reserved until the end of this chapter. Chapter

2 is a detailed exposition on the theoretical foundation of the ITDT system. Chapter 3

documents the author’s original contribution of exemplar grouping. Chapter 4 presents

several training strategies for shift and rotation independence in the ITDT system, which

make use of the method of exemplar grouping. Results for a variety of test cases are reported

throughout the text.
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1.1 Model-Based Machine Vision

Model-based machine vision operates under the deterministic ideal that given an ex-

haustive model of any particular object, it can be recognized. The eminent mathematician

Pierre Simon de Laplace is one of the earliest progenitors of a related belief:

An intellect which at any given moment knew all the forces that animate
Nature and the mutual positions of the beings that comprise it, if this intellect
were vast enough to submit its data to analysis, could condense into a single
formula the movement of the greatest bodies of the universe and that of the
lightest atom: for such an intellect nothing could be uncertain; and the future
just like the past would be present before its eyes.[28, p.10] 2

A model-based machine vision system is, in general, any system which uses a relatively

complete representation of any given object to recognize it. Objects can be modeled in this

way geometrically, by distinct features, or with textures, for example. The method which

is the focus for the ITDT system development employs a series of views or images of the

object to form an appearance-based model.

Figure 1.3: Rotation model of a knife silhouette.

2Originally stated in Laplace’s Philosophical Essays on Probabilities. Quotation from Stewart[28].
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Figure 1.3 shows 25 views of a knife silhouette at various rotations. In a simple test-

ing scenario, a test image which has been acquired through a camera is compared to each

image in the model, producing a goodness of fit metric. In the list of reported metrics, the

maximum corresponds to the entry in the model database which most likely corresponds

to the test image. However, in practice, testing a digital image against each element of a

complete model is a global search problem. These tests can rarely be implemented, consid-

ering the storage limitations and test time requirements inherent to every machine vision

problem. For this reason, nearly all research into model-based recognition has been in the

development of systems which somehow reduce the amount of data to be searched, thereby

increasing the feasibility of the model-based approach.

1.2 The Promise of Hierarchical Classifiers

Binary decision trees have long been a standard method of organizing data for efficient

searching, and with good reason: the number of comparison operations required to locate a

match is reduced to log2 of the number of comparisons required for a worst-case sequential

search of the same data. A simple example best illustrates this.

Suppose a data retrieval system were to be designed to search through a list of names and

associated personal data, locating the entry corresponding to a name provided by the user.

A sequential search through the data (Figure 1.4) is the simplest method to implement.

Each entry in the list is sequentially tested against the name for which the algorithm is

searching, in this case, “Murti”. If the name matches, the algorithm stops and returns the

entry, if not, the search proceeds to the next entry.

Sequential searches perform an average of N/2 comparison operations to locate an en-

try in a list of N equally probable items. In this example, if the name “Brent” were

sought (probability 1/N = 1/13), a sequential search algorithm would return after only

one comparison. Unfortunately, equally likely is the name “Witek” at the end of the list,

which would be reached in thirteen comparisons. Therefore, on average, sequential searches

through this list of 13 names will return after 6.5 comparisons. Moreover, although the list

of names is in alphabetical order, a strictly sequential search doesn’t make use of ordering

information. The list doesn’t have to be arranged in any particular order, and sequential

searches will always require an average of N/2 comparison operations to locate a match.
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Dave

Deb

Jim

John

Mike

Murti

Pedro

Nandan

Sean

Spiderman

Witek

Brian

Brent

Murti
= ?

Figure 1.4: Sequential search through a list of names.

We can use binary decision trees if we can impose a hierarchy on any ordered list, reducing

the number of comparison operations exponentially.

Figure 1.5 is a binary decision tree that can be used to find entries in the example list.

The tree is comprised of a number of circular and rectangular nodes, connected by branches

(Figure 1.6 is a guide to binary tree terminology.) A search algorithm traverses the tree by

starting at the top and progressing either to the right or left branch of every circular node,

eventually reaching a rectangular leaf, which is the closest match to the search name. Each

circular node in the binary tree contains a name which is compared alphabetically to the

name for which it is searching. When a search is invoked, the algorithm starts by visiting

the topmost circular node of the tree, performing the following actions:

1. Alphabetically compare the search name to the name stored in the tree’s node.

2. If the search name is found to precede the name stored in the node, continue down

the left branch.

3. Otherwise, continue down the right branch.
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Figure 1.5: Binary decision tree reduces average number of comparisons for searches.

TOP,
HEAD

CHILD

PARENT

CHILD,
LEAF

THE BINARY TREE

LEAF

BRANCH

NODE
TERMINAL

LEAVES, EXTREMITIES

SUBTREE

Figure 1.6: Common terms used to describe parts of a binary tree.

The tree is traversed in this manner, repeating the above process for each node visited.

Returning to the example, a search for the name “Murti” involves the following four decision

steps:
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1. Q: Does “Murti” precede “Mike”? A: No. Visit the node to the right.

2. Q: Does “Murti” precede “Sean”? A: Yes. Visit the node to the left.

3. Q: Does “Murti” precede “Nandan”? A: Yes. Visit the node to the left.

4. Q: Does “Murti” precede “Murti”? A: No. Visit the node to the right.

Therefore, in the case of the name “Murti,” this decision tree arrives at the result in

four comparisons, whereas a sequential search would take eight comparisons. Three of the

names require only three decisions, while the remaining ten names can be arrived at in four

decisions, an average of [(3)(3) + (10)(4)]/2 = 3.8 decisions for any one name, and nearly

half of the 6.5 decisions required in a sequential search. Optimally, binary trees used in this

manner for searches approach search paths of length log2N - for this case, log2 13 = 3.7,

indicating that this tree is nearly optimal.

In addition to the great computational speed benefit which can be gained by searching

in a binary tree structure, the trees themselves often reveal underlying structure in the

data they represent. Medical science, for years, has employed binary decision trees in

patient diagnosis - finding a sequence of yes/no questions translates readily to their graphical

structure, as seen in Figure 1.7, based upon a figure from Classification and Regression Trees

[4, p.2]. And, applying the ITDT system to a variety of specific problems in machine vision

has often resulted in a tree that points directly at a shortcoming in the training data or in

the phrasing of the vision problem, as illustrated in the examples in chapters 2, 3, and 4.

In general, machine vision object models are not orderable. Although hierarchy is easily

imposed on a set of names using alphabetical ordering, there exists no such clear set of rules

for ordering sets of images or geometric representations. The information theoretic decision

tree system formulates the ordering of a set of model views from an information theoretic

standpoint, without any risk of errors. The details of this are discussed in chapter 2.

For an early test of the information theoretic decision tree system, a tree was built

to discriminate among 53 poses of a Soviet T-72 tank. This particular test, called pose

identification, doesn’t identify which vehicle from a set of vehicles might be in a test image

- instead, it asks, “If there is a T-72 at this location in this image, what direction is it

facing?” Twenty five of the 53 poses are shown in Figure 1.8.
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Is the minimum systolic blood pressure over the initial 24 hour period > 91?��
��

Is age > 62.5?��
��

Is sinus tachycardia present?��
��

yes Not High Risk

�
�
�
�� L

L
L
LL

High Risk no

�
�
�
�� C
C
C
CC

High Risk no

�
�
�
�� B

B
B
BB

Not High Risk no

Figure 1.7: Decision tree for identification of high-risk heart attack conditions in patients.

Figure 1.8: Twenty five poses of a T-72 tank.

The decision tree which was built by the ITDT system is shown in Figure 1.9. It requires

an average of 5.8 decisions, with a maximum 6 decisions to correctly identify the pose.

Compare this with the average of 53/2 = 26.5 comparison operations needed to perform

a sequential search over the same 53 poses. Notably, the binary tree is nearly optimal, as

log2 53 = 5.7 decisions.
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Pattern recognition provides a methodology for performing tests such as pose recogni-

tion, a language and method for modeling how the ITDT system orders images of target

objects. A brief introduction to the science is presented in the following section, prior to a

discussion of a rudimentary information theoretic machine vision system.
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Figure 1.9: Binary decision tree built by the ITDT system to identify 53 poses of a Soviet
T-72.
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1.3 Pattern Recognition for Machine Vision

Pattern recognition has proven to be an effective tool in visualizing and solving problems

in machine vision. To a measurable precision, any signal can be represented by an arbitrar-

ily detailed pattern of data points organized into classes of patterns. Systems which perform

pattern recognition simply seek to determine to which class, among a set of predetermined

classes, a set of data belongs. By abstracting the problem of detection or recognition to the

pattern level, these systems are able to solve problems in seemingly unrelated modalities

- whether the patterns are the time series of temperature readings taken on a household

thermometer or intensities of pixels in a digital image, they are dealt with in the same man-

ner. The information theoretic decision tree (ITDT) is fundamentally a pattern recognition

system. Although certain digital image specific enhancements are documented, there is no

reason why an ITDT could not be developed to classify radar range data or population

statistics, for example.

1.3.1 Geometry of Pattern Recognition

Pattern recognition techniques powerfully employ geometry to solve recognition prob-

lems and generate insight into their structure. Fundamentally, the terminology is centered

around four geometric constructs: the feature space, the decision region, the decision bound-

ary, and the feature vector (Figure 1.10.) Although a detailed treatment is beyond the scope

of this report, Duda and Hart[6] is an excellent reference for fundamental concepts in feature

vector-based classification.

From a set of N data values which comprise a particular pattern, one can form a N

dimensional feature vector, X = {x1, x2, . . . , xN} which represents the pattern as a single

point in N−dimensional space. The vectors identified by “X” in Figure 1.10 are examples

of two-dimensional vectors, each component representing some measure of a process.

Given a set of patterns, or feature vectors, a classifier can be designed which divides the

feature space into regions which correspond to sets of feature vectors. In this way, patterns

can be classified by determining geometrically in which region of the feature space they

lie. Although the decision boundary created by a classifier can be a very complex high

dimensional structure, it is frequently simplified and represented as an optimally-placed

hyperplane.
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FEATURE SPACE

FEATURE VECTOR

DECISION BOUNDARY

REGION
DECISION

Figure 1.10: Terminology of Pattern Recognition Systems.

A hyperplane is the N-space equivalent of a 2-dimensional plane in 3-space. Hyperplanes

always have one less dimension than the space in which they exist; in a 2D space, a hyper-

plane is merely a line, and in a 1D space, a hyperplane is reduced to a point. Perhaps more

importantly, hyperplanes divide the space in which they lie into two regions just as a point

divides a line into two regions, a line divides a plane and a plane divides three-dimensional

space. In this way, a hyperplane acts as an unambiguous slice through a set of data points;

in any space points either lie to one side or the other of the hyperplane.

By way of example, Figure 1.11 shows the feature space and decision boundary for a

two hypothesis classifier. Each hypothesis is characterized as a symmetrical 2D Gaussian

distribution: the first with a mean at (5,5), the second with a mean at (15,15). Dividing

the 2D feature space is a decision boundary derived from a Bayes likelihood ratio test

(LRT), a result from classical detection theory[30, pp.24-27] proven to minimize the cost of

decisions made by the classifier. The boundary used in Figure 1.11 is derived in appendix

A, along with the more general result for symmetric N -dimensional Gaussian distributions

in appendix B.

In a purely analytic exercise, the representations of the two hypotheses do not require

any kind of experimentally obtained data, as the mean and covariance matrix of the Gaus-
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Two Hypothesis Classification Problem
Feature Space of Normal (5;2.5) and (15;2.5) Distributions

H0: Normal (5;2.5) Distribution
H1: Normal (15;2.5) Distribution
LRT Decision Boundary

Figure 1.11: The feature space with decision boundary for a two hypothesis classifier.

sian distributions fully describe the problem and the unique solution. However, one can

envision scenarios which, although contrived, might provide useful insight into the design

and application of the data and solution shown in this plot. For instance, imagine that it

was necessary to design a classifier to identify a test subject as one of two different people

based on their commute times to and from work. For one hundred working days, the time

it took for each person to drive to work and the time to drive home at night is recorded. If

the X axis is assigned to the time to commute to work in the morning, and the Y axis is

assigned to the evening return home trip time, then we can observe person A has about a

five minute commute to work and person B has about a fifteen minute commute. Given only

these data points, a classifier can be designed to compute a line which divides the feature

space clearly into the area occupied by the feature vectors associated with person A and



17

the area occupied by feature vectors for person B. When supplied with a new data point,

say {2, 4}, the data may be plotted as a feature vector and found to lie to the left of the

decision boundary, within the person A region. In this case, the particular classifier used

(to be explained in the following) proclaims the the data point was most likely generated

by person A.

In the information theoretic decision tree system, a set of feature vectors form an

appearance-based model of an object. Each feature vector is formed from a digital im-

age, the pixels of which become the vector components in the feature vector, as shown in

figure 1.12. Additionally, if one desires to remove the effect of varying light intensity on the

overall image energy, one can normalize each feature vector to unit magnitude. When using

this unit-magnitude constraint, the algorithm is modified to force hyperplanes to have zero

offset so that they must pass through the origin, thus classifying feature vectors based on

their orientation only, not their magnitude.

1 3

0

1

3

0 2 4 5 6

2

4

5

6

81 20 3 4 5 6 7 9 10 11 12 13

Figure 1.12: Feature vector components are the pixels in a digital image.

Fundamentally, the ITDT system is a pattern recognition system which has no notion of

the origins of the feature vectors which it classifies. However, the feature vectors described

throughout this report will always represent a digital image, unless otherwise stated. In

Chapter 4, we consider a number of image-specific enhancements to the ITDT system.

In the section to follow, we consider a multiple-stage hierarchical classifier design. Based

on a binary decision tree structure, hyperplanes are placed in each node so as to form binary

classifiers which maximize mutual information through splitting a set of feature vectors into

two classes. Each class formed in this manner is passed on to a node’s child, where it is

split again, stopping when a node contains only one feature vector.
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1.4 Information Theoretic Approach to Hierarchical Classi-

fier Design

Artfully employing decision trees in any system involves, above all, knowing what ques-

tions to ask at each internal node to split the data in a way which solves the problem in

an efficient fashion. In Leo Breiman’s seminal text Classification and Regression Trees, he

cites three elements essential in building decision trees: (list from [4, p.22])

1. The selection of the splits

2. The decision when to declare a node terminal or to continue splitting it

3. The assignment of each terminal node to a class

Breiman goes on to state, “It turns out that the class assignment problem is simple.

The whole story is in finding good splits and in knowing when to stop splitting.”[4, p.23]

As it happens, both the class assignments and the decision of when to stop splitting are

trivial and linked together for the information theoretic decision tree. The ITDT system is

designed to provide a decision framework for deciding among target classes by successively

splitting the data. Each successive split reduces the data to be handled by the node’s

children, and the algorithm continues to divide the data until a node is found which only

contains feature vectors belonging to one target class. Leaf nodes do not have an associated

hyperplane, because there is no decision to be made for the node since it represents only

one class. Conversely, all internal tree nodes have associated hyperplanes, since there is

always a decision to be made at those nodes.

Each internal node of the decision tree contains a set of feature vectors, and a hyperplane

which will be positioned to split the space appropriately. Both the hyperplane and targets

(feature vectors) are represented explicitly as sets:

• X = {x1, x2, . . . , xN} is the set of N target exemplars, represented as feature vectors.

P (X = x1) = P (x1) is the probability that any particular target is target x1. In the

following, targets are all assumed equally likely, so the random vector X is uniformly

distributed and P (xi) = 1/N for all i ∈ [1, . . . ,N ].

• Y = {y1, y2} are the sets of targets on the “left” side or the “right” side of the

hyperplane, respectively. P (y1) is the probability that any target is on the left side.
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Figure 1.13: Representation of the decision space for a two-dimensional, six target problem.

Figure 1.13 shows the decision boundary in a particular 2D feature space. Six targets

exist here, grouped such that {x5, x6} ∈ y1 and {x1, x2, x3, x4} ∈ y2. It is observed that

P (y1) = 2/6 and P (y2) = 4/6. Interestingly, this problem is actually a fundamental topic

of discrete probability - the “urn problem.”[19, p.51] In Figure 1.14, there are two urns

corresponding to the two decision regions. The first urn contains two balls (targets) and

the second holds four, so the probability that any one ball is in urn y2 is twice the probability

for being in urn y1.

y
2

y
1

Figure 1.14: The Urn Problem is the same as the decision region problem.

The urn problem is a guessing game for two people. At the start of the game, a dealer

and a player agree on a rule for placing any ball in the two urns based upon the color of

the ball. It can be agreed, for instance, that the y1 urn can contain only red balls and blue

balls, and that the y2 urn can contain green, violet, yellow or brown balls. The dealer then

places a ball, unknown to the player, in an urn and hands the urn to the player and asks,
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“what is the color of the ball in this urn?” Since the player knows the rules by which balls

are placed in the two urns, if the dealer hands the player the y1 urn, the player has one

chance in two of guessing the right color; if the dealer handed the player the y2 urn, the

player would have one in four odds of guessing the right color ball.

The ball placement rule which was agreed upon by the dealer and the player governs

how much information is revealed to the player about the ball in an urn. For example, the

dealer may proclaim that all balls can be placed in the y2 urn and no balls can be placed

in the y1 urn. If he places a ball in the y2 urn and hands it to the player, the player has a

one-in-six chance of guessing the color correctly, the same probability of guessing correctly

as if there were no urns at all. Thus with this rule, no information is gained with the receipt

of either urn.

Alternatively, the dealer might state that the y1 urn may contain red balls, blue balls,

and green balls and that the y2 urn may contain yellow balls, violet balls and brown balls.

The player could guess the color of any ball placed in either urn with probability 1/3. In

the following sections, it will be shown quantitatively how this arrangement maximizes the

average information gained by the player about the colors of balls in either urn.

1.4.1 Entropy

The entropy of a discrete random variable is a measure of its uncertainty or randomness.

Throughout this document, all logarithms will be base two logarithms, and the resulting

information measures are expressed in bits. The entropy of X is given as,

H(X) = −
∑
X

p(x) log p(x). (1.1)

Where p(x) is the probability mass function for the random variable X, p(x) = PX(X =

x), a convenient notation adopted from Cover and Thomas [5].

Entropy is maximized for a certain random variable if it is uniformly distributed. Cover

and Thomas[5] state this in Theorem 2.6.4[5, pp.27],

Theorem 2.6.4[5, pp.27]: H(X) ≤ log |X |, where |X | denotes the number
of elements in the range of X, with equality if and only if X has a uniform
distribution over X .
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Put another way, H(X) is maximum and equal to logN for a uniformly distributed

discrete random variable with N outcomes. As an example, consider the random variable

Y from the urn problem in Figure 1.14 with two states Y = {y1, y2}. We find the entropy:

H(Y ) = −p(y1) log p(y1)− p(y2) log p(y2). (1.2)

This entropy H(Y ) is bounded by theorem 2.6.4 [5, pp.27], so that H(Y ) ≤ 1. H(Y ) is

maximized when Y is uniformly distributed, or when P (y1) = 1/2 and P (y2) = 1/2. Thus

it becomes apparent that to do the best job of conveying information on average by means

of an urn, each urn must contain an equal number of balls. Similarly, to do the best job of

separating the set of target exemplars X between the two regions y1 and y2 formed by a

hyperplane, the hyperplane must be placed so that an equal number of exemplars from X

lie to each side.

Optimal Height of Binary Decision Trees

This entropy related result can be used to derive the theoretically optimal height of

a binary decision tree. Two observations inspire this derivation. First, the entropy (in

bits) of any uniform discrete random variable is the minimum number of bits necessary to

uniquely identify any outcome or event of that variable. Consider a random variable A with

4 possible outcomes, the entropy: H(A) = log2 4 = 2 agrees with the number of bits in the

base two representation of 4, 410 = 112.

Second, one bit can represent the outcome of a binary decision. In searching a binary

tree, each node visited has a binary decision outcome, representable by one bit. The average

height, h of a binary decision tree is the average number of decision nodes visited to reach

a leaf node. The four hypothesis decision tree shown in Figure 1.15 has an average height

of h = 2.

Therefore, the average height of a binary decision tree is the average number of bits

necessary to represent any outcome. In general, the optimal average height is the entropy

of the set of N equally likely outcomes h = log2N , which matches the intuitive result

presented in section 1.2.
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Figure 1.15: Four hypothesis binary decision tree.

Conditional and Joint Entropy

For systems of two or more random variables, both joint and conditional entropy mea-

sures may be computed. Given the joint probability mass function of two random variables,

p(x, y), the joint entropy can be formulated,

H(X,Y ) = −
∑
X

∑
Y

p(x, y) log p(x, y). (1.3)

As can the conditional entropy of Y given X,

H(Y |X) = −
∑
X

∑
Y

p(x, y) log p(y|x). (1.4)

A useful tool when working with joint and conditional entropies is the chain rule for

entropy:

H(Y |X) = H(X,Y )−H(X). (1.5)

Here the conditional entropy of Y , given X is the joint entropy minus the entropy of the

given variable. (A proof of this chain rule is given in Cover and Thomas as theorem 2.2.1[5,

p.16].) When one places conditions on a random variable, one is applying a priori knowledge

of that given variable. This chain rule states that conditional entropy is simply the total

joint entropy with the uncertainty of the given variable removed. Given a priori knowledge
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of a random variable, we may remove its uncertainty from the combined uncertainty of both

variables.

1.4.2 Mutual Information

From an optimistic standpoint, one may wish to examine the information content, rather

than the uncertainty in a two variable system. Building on the concept of entropy, mutual

information is the reduction of uncertainty (entropy) of a random variable when knowledge

of another is available, denoted I(X;Y ). It can be stated in terms of entropy, conditional

entropy and joint entropy,

I(X;Y ) = H(X)−H(X|Y ) (1.6)

= H(Y )−H(Y |X) (1.7)

= H(X) +H(Y )−H(X,Y ). (1.8)

Mutual information is conversely envisaged as the information gained about one variable

by knowledge of another. It answers the question: by knowing something about X, how

much information is revealed about Y ? Intuitively, the quantity expressed by mutual infor-

mation is symmetric, revealed by equations 1.6 and 1.7, such that I(X;Y ) = I(Y ;X). The

information uncovered about Y by knowing X is the same amount of information gained

about X by knowing Y . Mutual information brings to light an interconnectedness of the

random variables which it measures.

Mutual Information in the Urn Problem

In the urn problem, one can view I(X;Y ) as the information gained about the set of

balls X = {x1, x2, . . . , x6} by the way they are divided between the two urns Y = {y1, y2}.

Explicitly, this mutual information is best represented in this case by:

I(X;Y ) = H(Y )−H(Y |X), (1.9)

forming the mutual information as the reduction in the uncertainty about Y by the uncer-

tainty of Y when X is known. The conditional entropy,
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H(Y |X) = −
∑
X

∑
Y

p(x, y) log p(y|x), (1.10)

is formed from the joint probability mass function and the conditional probability of y given

x. Logically, p(y|x) reduces to either one or zero. A ball is always completely inside one

urn or the other - it can’t have been somehow placed partially in either urn. This indicates

that the entropy of Y given X will always be zero - there is no uncertainty about which urn

each of the balls came from, and the information function reduces to

I(X;Y ) = H(Y ). (1.11)

Therefore, to maximize the information gained by the player of our game about the color

of a ball from the urn in which it is placed, one must choose the rule that maximizes the

uncertainty the dealer has about into which urn the still unchosen ball needs to be placed.

If, as in Figure 1.16, we place all the balls in the y2 urn,

y
2

y
1

Figure 1.16: No information is gained about a ball if the rule is that all balls will be placed
in one urn.

I(X;Y ) = H(Y ) (1.12)

= −
∑
Y

p(y) log p(y) (1.13)

= 0 log 0 + 1 log 1 (1.14)

= 0 bits. (1.15)

There is no uncertainty about which urn the balls are in, and hence, no information

gained by dividing them in this manner. Conversely, we achieve one bit of information

when each urn contains three balls:
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y
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Figure 1.17: Information is maximized with complete separation.

I(X;Y ) = H(Y ) (1.16)

= −
∑
Y

p(y) log p(y) (1.17)

= −1/2 log 1/2− 1/2 log 1/2 (1.18)

= 1 bit. (1.19)

As a final example, we place five balls in the y2 urn and one in the y1:

y
2

y
1

Figure 1.18: Some information can still be had with only partial separation.

I(X;Y ) = H(Y ) (1.20)

= −
∑
Y

p(y) log p(y) (1.21)

= 5/6 log 6/5 + 1/6 log 6 (1.22)

= 0.65 bits. (1.23)

Indicating that even in a partial separation of the balls, some mutual information exists.
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1.5 Original Contributions and Acknowledgment of Previous

Work

Work on the ITDT system was initiated in 1996, under the direction of Professor Cygan-

ski. Sergey Perepelitsa developed much of the original theoretical background and produced

the first working prototype of the system, documented in a report to the Army Research

Office[23]. In 1997, Ryan Tomasetti made a number of optimizations to the existing system

which allowed it to successfully operate on larger data sets, documented in an unpublished

report[29]. This document is the first large-scale work describing efforts past and present.

The author’s primary original contributions are as follows:

1. Developed the concept of exemplar grouping to incorporate translation and rotation

independence into the ITDT system.

2. Implemented a training system by which rotation and translation independence can

be achieved with limited target imagery.

3. Enhanced the local optimization procedure for hyperplane placement, thereby reduc-

ing the size of the decision trees constructed. As a result, test speed is increased and

the system is less susceptible incorrect decisions due to image corruption.

4. Optimized the tree construction process, yielding construction times nearly an order

of magnitude faster, and enabling the system to operate on larger data sets.

In general, major contributions are documented starting in chapter 3. All examples used

throughout the course of this report in addition to the general background in this introduc-

tory chapter are the author’s. The derivation of mutual information for data segmentation

given in section 2.2.1 is based on the derivation in Tomasetti[29], but has been reworked

and expanded for clarity. Tomasetti’s derivation of the information function derivatives is

presented as a strict reproduction, in appendix C.
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Chapter 2

Information Theoretic Decision

Tree Theoretical Foundation

The Information Theoretic Decision Tree system affords a great reduction in comparison

operations over a linear search by utilizing a binary decision tree structure to impose order

on a set of feature vectors. This set of training feature vectors typically forms an appearance-

based model of a particular object or classes of objects. The tree is constructed in a top-down

fashion from these high-dimensional vectors by successively segmenting them, so that each

leaf of the tree contains a single model class. Section 1.4 presented Leo Brieman’s three

essential elements for building decision trees. These elements can now be stated explicitly

for the ITDT system:

1. The selection of the splits - A hyperplane is placed in the decision space at each

node so as to maximize the information about the set of feature vectors gained by

dividing the features into two subsets. The ITDT system assumes feature vectors are

corrupted with additive i.i.d. Gaussian noise.

2. The decision when to declare a node terminal or to continue splitting it -

Nodes are declared terminal when there is only one target class present in the node.

3. The assignment of each terminal node to a class1 - Each terminal node, con-

taining a feature vector corresponding to a single target class is simply assigned to

that class.

1Breiman’s list is found in [4], Classification and Regression Trees, pp.22.
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Fundamentally, the ITDT system achieves its high performance goal through a single

extension to the prior discussion of mutual information by hyperplane splits. By making a

traditional communication theory assumption that the input data are corrupted by additive

white Gaussian noise (AWGN), the ITDT system forms a model which is trained to reject

subtle variations and noise in test imagery. The process of searching the resultant tree to

classify a test vector is rapid; section 2.1 presents a top-down method. Section 2.2 presents

the details of decision tree construction, including the maximization of mutual information

at each successive node. Although the assumption of AWGN corrupted feature vectors

increases the likelihood of successful object classification in non-ideal environments, it does

complicate the derivation of mutual information for node splits. A full treatment, expanding

the theory developed for the urn problem is presented in section 2.2.1.

2.1 Testing a Decision Tree with a Test Feature Vector

The process of locating a test feature vector in a decision region formed by successive

hyperplane placements in a binary decision tree is independent of the means by which the

hyperplane decision space splits were chosen. The hyperplane decision boundaries in the

ITDT system were placed to maximize the information gained by splitting a set of training

feature vectors. Once the hyperplanes have been placed, the test-time functionality of the

system knows not of the means by which they were placed, only knowing their locations,

orientations and the structure of the decision tree. Three primary structures are utilized in

a search of a binary decision tree of this type:

1. a binary tree with a number of terminal nodes and a number of decision nodes,

2. a hyperplane decision boundary at each decision node of the tree, and

3. a feature vector to be classified by the system.

At test time, an acquired test feature vector is passed to the ITDT system, which is

to search a pre-constructed decision tree and return a reference to the target class which

best matches the test vector. Due to the order imposed on the feature vectors by the tree

structure, the best match can be easily arrived upon with a top-down search of the decision

tree, terminating in a leaf node which will contain a reference to a particular training
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feature vector which is closest to the feature vector under test. The search process is given

algorithmically in the following list:

1. Begin at the top of the tree.

2. If this node is a terminal leaf node, the search is ended. The test feature vector lies

within the decision region of a single original training feature vector.

3. If the node is a decision node, compute the minimum signed distance d from the point

identified by the test feature vector x to any point on the hyperplane z.

• If d > 0, proceed down the left branch

• otherwise, proceed down the right branch

4. Loop back to step 2.

The minimum distance from a point x to a hyperplane is the signed magnitude of a

vector oriented normal to the hyperplane, originating on the hyperplane and terminating at

x. Figure 2.1 shows the decision boundary hyperplane, feature vector and distance vector

for a hypothetical two-dimensional problem. The sign of the distance identifies the side of

the hyperplane to which the test feature vector falls.

The surface of the hyperplane, z, in N−space, is represented by a linear equation,

z1x1 + z2x2 + · · ·+ zNxN = zN+1. (2.1)

The first N coefficients of the hyperplane’s equation, z1, z2, . . . , zN , are the components

of a vector oriented normal to the hyperplane. The final coefficient, zN+1, controls the offset

of the hyperplane from the origin; if zN+1 = 0, the hyperplane passes through the origin. A

point lies on the surface of the hyperplane if equality holds in equation 2.1 when the point’s

coordinates are substituted for the parameters x1, x2, . . . , xN .

The minimum distance, d, is computed by substituting the components of the feature

vector x for x1, x2, . . . , xN in the left side of equation 2.1, subtracting the zN+1 component,

and normalizing to the magnitude of the hyperplane:



30

TEST FEATURE VECTOR

DISTANCE
d

x

BOUNDARY
NORMAL

DECISION BOUNDARY
HYPERPLANE

z

Figure 2.1: Calculating the minimum distance of a feature vector to a hyperplane.

d(x) =
< x, z > −zN+1

||z||
. (2.2)

At the completion of a search, a reference is returned to a training feature vector which

most resembles the feature vector under test. This reference is simply an index, and as

such, does not quantify the extent to which the feature vector under test and the matching

training feature vector resemble each other. A goodness-of-fit match metric can be computed

as a distance measure from the test feature vector to the matching training feature vector,

if the system can store the original training vectors.

2.2 Constructing an Information Theoretic Decision Tree

The information theoretic decision tree is constructed by repeatedly splitting the set of

input training feature vectors into two sets, forming a binary tree in which each downward

path defines a region in space occupied by a single training feature vector. At each new
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node of the tree, a hyperplane is placed to form a decision boundary in feature space,

splitting the set of feature vectors in that node into two distinct groups, one on the left of

the hyperplane and one on the right. Each group is then used to create a corresponding

left child node or right child node, which undergoes the same splitting process. Figure 2.2

depicts the structure of a binary decision tree constructed by successively segmenting a set

of feature vectors.

HYPERPLANE PLACEMENT
DECISION SPACE SPLIT

HYPERPLANE PLACEMENT
DECISION SPACE SPLIT

HYPERPLANE PLACEMENT
DECISION SPACE SPLIT

Figure 2.2: Construction of the binary decision tree.

The ITDT system maximizes mutual information for each node split in the same way as

in the urn problem, save for one important difference. In the urn problem, the probability

mass function describing the location of a particular ball was an impulse function - each ball

was a single point. To account for limited variation in information represented as feature

vectors, the ITDT system models each target exemplar as a feature vector corrupted by

additive N -dimensional independent and identically distributed (i.i.d.) Gaussian noise.

Under this system, with some non-zero probability, each exemplar can now occupy any

point in an N -volume. When the space is cut with a hyperplane, it is possible that it may

slice through one of the densities, indicating that an exemplar could lie to both sides of a

hyperplane. In Figure 2.3, two i.i.d. Gaussian random vectors, x1 and x2 are represented

with circles drawn at a radius of one standard deviation. The tails of both densities extend

far off in any direction, creating a situation in which instances of the classes represented

by the random vectors x1 or x2 can lie on either side of the hyperplane, with a non-zero

probability.
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In this example, the probability that an instance of the class represented by x1 lies to

the left of the hyperplane is greater than the probability that it lies to the right. The

probability that an instance of the class represented by x1 lies to the left of the hyperplane

can be computed by evaluating the Gaussian cumulative distribution function, Q(d/σ),

from the length of the line segment shown in Figure 2.3 which is oriented perpendicular to

the hyperplane, and connects it to the mean of density x1.

x1

x2

Figure 2.3: Decision boundary and two AWGN-corrupted feature vectors.

By definition, a symmetric Gaussian density has a hypersurface of equal probability at

a given distance from the mean. When the space is split by a hyperplane, one can evaluate

the conditional probability that a particular exemplar lies to one side or the other of the

hyperplane if one knows the perpendicular distance of the exemplar’s feature vector to the

hyperplane, di. From these conditional probabilities, the total probabilities and entropies

necessary to compute mutual information are derived.

2.2.1 Derivation of Mutual Information for Node Splits

The following information is given:
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• X = {x1, x2, . . . , xN} The set of N equally likely target exemplars which are taken to

be the mean of a Gaussian vector with independent and identically distributed (i.i.d.)

components.

• Y = {y1, y2} Sets y1 and y2 formed by the placement of a hyperplane in feature space.

The set of target exemplars, X, is distributed between these two sets.

• A hyperplane z1x1 + z2x2 + · · ·+ zNxN = zN+1 which defines the two regions y1 and

y2.

• σ: The standard deviation of all the i.i.d. Gaussian distributions associated with each

target vector.

The mutual information is given as,

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (2.3)

Where,

H(X,Y ) = −
∑
X

∑
Y

p(x, y) log p(x, y), (2.4)

H(X) = −
∑
X

p(x) log p(x), (2.5)

H(Y ) = −
∑
Y

p(y) log p(y). (2.6)

The entropy of the set of N equally likely target exemplars evaluates easily as:

H(X) = −
∑
X

p(x) log p(x) = logN (2.7)

The entropy of Y is dependent on the total probability of any target exemplar lying in

either the y1 or y2 regions.

H(Y ) = −P (y1) logP (y1)− P (y2) logP (y2) (2.8)

The total probability that any exemplar lies in region y1 is,
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P (y1) =
N∑
i=1

P (y1|xi)P (xi) =
1

N

N∑
i=1

P (y1|xi). (2.9)

Which is, in turn, dependent on the probability that a particular target exemplar xi

would lie in the y1 region, determined by a N -dimensional additive Gaussian noise cumula-

tive distribution function, given as the integral of the Gaussian probability density function

n(X,σ),

P (y1|xi) =

∫
Ω
n(X,σ)dΦ. (2.10)

We establish an orthonormal coordinate system Φ = {φ1, φ2, . . . , φN} so that φi is

parallel to the perpendicular distance di between the feature vector xi and the hyperplane

Z; its origin is centered at the point of intersection of the perpendicular with the hyperplane.

In doing so, all components except the perpendicular one can be ignored and equation 2.10

reduces to,

P (y1|xi) =

∫ ∞
−di

n(X,σ)dφi. (2.11)

With the perpendicular distance from feature vector xi to hyperplane z given as,

di =
< xi, z > −zN+1

||z||
. (2.12)

Where ||z|| is the vector norm of all components of the hyperplane z,

√
z2

1 + z2
2 + · · ·+ z2

N+1, (2.13)

and < xi, z > is the inner product of the vectors xi and z. From this distance measure, the

subset in Y in which a particular feature vector lies is defined by:

• xi ∈ y1 if di ≤ 0

• xi ∈ y2 if di > 0
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The cumulative distribution function for Gaussian densities can be expressed in terms

of the Q function,

N(η, σ) = Q(
x− η

σ
) (2.14)

Q(x) =
1
√

2π

∫ x

−∞
e−λ

2/2dλ (2.15)

Equation 2.11 can thus be rewritten,

P (y1|xi) =

∫ ∞
−di

n(X,σ)dφi (2.16)

= 1−

∫ di

−∞
n(X,σ)dφi (2.17)

= 1−Q(
di
σ

). (2.18)

The sets y1 and y2 are independent and represent a complete event space, therefore the

conditional probability of region y2 containing a given xi is

P (y2|xi) = 1− P (y1|xi) = Q(
di
σ

). (2.19)

Returning to equation 2.9, the total probability that any exemplar is in y1 may be

simplified to:

P (y1) =
1

N

N∑
i=1

P (y1|xi) =
1

N

N∑
i=1

[1−Q(
di
σ

)] = 1−
1

N

N∑
i=1

Q(
di
σ

). (2.20)

And, the total probability of any exemplar in y2 may be similarly simplified:

P (y2) =
1

N

N∑
i=1

P (y2|xi) =
1

N

N∑
i=1

Q(
di
σ

). (2.21)

The average entropy of the two regions y1 and y2 (from equation 2.6) follows as,
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H(Y ) = −P (y1) logP (y1)− P (y2) logP (y2) (2.22)

= −
1

N

[
N∑
i=1

[1−Q(
di
σ

)] log(
1

N

N∑
i=1

[1−Q(
di
σ

)] )

]
+

−
1

N

[
N∑
i=1

Q(
di
σ

) log(
1

N

N∑
i=1

Q(
di
σ

))

]
(2.23)

=
logN

N

N∑
i=1

(
1−Q

(
di
σ

)
+Q

(
di
σ

))
+

−
1

N

N∑
i=1

(
1−Q(

di
σ

)

)
log

[
N∑
i=1

(
1−Q(

di
σ

)

)]
+

−
1

N

N∑
i=1

Q(
di
σ

) log

[
N∑
i=1

Q(
di
σ

)

]

= logN −
1

N

N∑
i=1

(
1−Q(

di
σ

)

)
log

[
N∑
i=1

(
1−Q(

di
σ

)

)]
+

−
1

N

N∑
i=1

Q(
di
σ

) log

[
N∑
i=1

Q(
di
σ

)

]
. (2.24)

And finally, the joint entropy is the average entropy of all of the combinations of X and

Y , as given by:

H(X,Y ) = −
∑
X

∑
Y

p(x, y) log p(x, y) (2.25)

= −
∑
X

∑
Y

p(y|x)p(x) log( p(y|x)p(x) ) (2.26)

= −
1

N

N∑
i=1

[
P (y1|xi) log

P (y1|xi)

N
+ P (y2|xi) log

P (y2|xi)

N

]
(2.27)

= −
1

N

N∑
i=1

[(
1−Q(

di
σ

)

)
log

(
1−Q(diσ )

N

)
+Q(

di
σ

) log

(
Q(diσ )

N

) ]
(2.28)

= −
1

N

N∑
i=1

[(
1−Q(

di
σ

)

)
log

1

N
+Q(

di
σ

) log
1

N

]
+

−
1

N

N∑
i=1

[(
1−Q(

di
σ

)

)
log

(
1−Q(

di
σ

)

)
+Q(

di
σ

) logQ(
di
σ

)

]
, (2.29)

which simplifies as given below,
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H(X,Y ) = logN −
1

N

N∑
i=1

[(
1−Q(

di
σ

)

)
log

(
1−Q(

di
σ

)

)
+Q(

di
σ

) logQ(
di
σ

)

]
. (2.30)

Combining equations 2.7, 2.24 and 2.30, an explicit expression for the mutual information

of X and Y is arrived upon:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (2.31)

= logN + logN −
1

N

N∑
i=1

(
1−Q(

di
σ

)

)
log

[
N∑
i=1

(
1−Q(

di
σ

)

)]
+

−
1

N

N∑
i=1

Q(
di
σ

) log

[
N∑
i=1

Q(
di
σ

)

]
+

− logN +
1

N

N∑
i=1

[(
1−Q(

di
σ

)

)
log

(
1−Q(

di
σ

)

)
+Q(

di
σ

) logQ(
di
σ

)

]
(2.32)

= logN −
1

N

N∑
i=1

(
1−Q(

di
σ

)

)
log

[
N∑
i=1

(
1−Q(

di
σ

)

)]
+

−
1

N

N∑
i=1

Q(
di
σ

) log

[
N∑
i=1

Q(
di
σ

)

]
+

+
1

N

N∑
i=1

[(
1−Q(

di
σ

)

)
log

(
1−Q(

di
σ

)

)
+Q(

di
σ

) logQ(
di
σ

)

]
. (2.33)

2.2.2 Maximizing Mutual Information

Mutual information maximization in the decision tree is implemented as a local op-

timization procedure for the decision space at each node of the tree. Given a set of N

target exemplars, the placement of a hyperplane splitting the node’s decision space must

be optimized dynamically to yield maximum mutual information by the measure derived

above (2.33.) Central to the optimization procedure is the conjugate gradient minimization

method, as found in Press et. al[18]. Overall, this optimization is a three stage process

(Figure 2.4):

1. Form an initial placement guess and set an initial Gaussian standard deviation σ0

which is large compared to the distance between the exemplars.
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2. Find a local minimum for −I(X;Y ) (thereby finding a maximum for I(X;Y )) with

the conjugate gradient minimization procedure

3. Choose a new standard deviation σk+1 < σk on the kth execution of this step and and

return to the local minimization (step 2), leaving the loop when the local minimum

is unchanged over two iterations.

INITIAL HYPERPLANE
PLACEMENT GUESS MINIMIZATION METHOD

CONJUGATE GRADIENT
TO RETRACT DENSITIES
SIMULATED ANNEALING

UNTIL I(X;Y) CONVERGES

Figure 2.4: Three stage optimization procedure for node splits.

Initial Hyperplane Placement Guess

For the conjugate gradient minimization algorithm, it is important to place the hyper-

plane so that it cuts through the cloud of feature vectors. The closer it is placed to a local

minimum, the quicker the conjugate gradient algorithm will converge.

After evaluation of many different methods of initial placement, the following method

was arrived upon: place the hyperplane through the “center of gravity” of all feature vectors,

oriented normal to the vector from the center of gravity to the feature vector which lies

furthest away from the center of gravity (Figure 2.5). Placement in this manner ensures

that the hyperplane cuts through the center of the target feature vectors and is oriented so

as to separate at least one exemplar (the most different) from the majority. First the center

of gravity or mean feature vector is calculated,

x =
1

N

N∑
i=1

xi. (2.34)

Then a Euclidean distance measureD is applied to measure each feature vector’s distance

from the center of gravity,

Di =
√
< (x− xi), (x − xi) > (2.35)
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x1

x2

x

x

3

4

Figure 2.5: Initial guess for hyperplane placement.

retaining x∆, the feature vector furthest away from the center of gravity, identified by its

argument,

∆ = arg max
i
Di. (2.36)

The coefficients of the hyperplane represented as z1x1 + z2x2 + · · ·+ zMxM = zM+1 are

the components of the vector normal to the surface of the hyperplane. By setting these

components to those of the difference vector between the most distant feature vector and the

center of gravity, the hyperplane is placed orthogonal to the difference vector’s orientation.

z = x∆ − x. (2.37)

The final coefficient is set so that the plane passes through the center of gravity,

zM+1 =< x, z > . (2.38)
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Conjugate Gradient Optimization Method

The conjugate gradient local optimization algorithm used in the ITDT system is the

Polak-Ribiere variant from Press et. al, Numerical Recipes in C[18, pp.317-324]. This par-

ticular method was chosen because it offers excellent performance and minimizes the number

of evaluations of the mutual information function (equation 2.33). The fundamental trade-

off with this algorithm, as with any gradient-based algorithm, is that the partial derivatives

of the mutual information function must be evaluated. Appendix C contains the analytic

derivation of these partial derivatives.

Figure 2.6 illustrates the local optimization behavior of the conjugate gradient algorithm.

The algorithm iteratively adjusts the orientation and offset of the hyperplane, using the

gradient of the information function to guide it to a local maximum of mutual information.

The term conjugate, is applied to the description because the algorithm locates a local

optimum by progressively minimizing over directions which are different, or conjugate, to

the previous attempts.

x1

x2

x

x

3

4

Figure 2.6: The conjugate gradient method finds the local minima of −I(X;Y ).

For a detailed treatment, the reader is urged to reference Numerical Recipes.[18]
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Simulated Annealing

The optimization technique of simulated annealing gained widespread attention by often

finding optimum or nearly optimum solutions of the traveling salesman problem – the prob-

lem of producing a minimum-length route on which a salesman travels to visit N cities and

eventually return to his start point. As an optimization algorithm, it is a relatively slow

one, but the extrema it finds tend to be nearly as good as the global optimum. Simulated

annealing takes its name from the slow cooling process by which a blacksmith can create

swords in the form of a single crystal of metal:

an·neal 1. To subject (glass or metal) to a process of heating and slow cooling to reduce

brittleness.1

For the ITDT system, a simple simulated annealing algorithm acts as a control loop

for the conjugate gradient optimization routine. Its philosophy of operation is that by

beginning the optimization procedure with wide noise densities and slowly retracting them,

optimizing for a local minimum along the way, the final minimum converged upon will be

nearly as good as the global optimum. Three snapshots of this process are shown in Figure

2.7, demonstrating the retraction of the Gaussian densities. By beginning the optimization

process with wide noise densities, the conjugate gradient is prevented from finding a low-

quality local maximum in which it may only segment off a few of the feature vectors from

a large group. Using wide noise densities provides a smooth surface for the algorithm to

optimize on, yielding an initial local optimum which reflects much of the global configuration

of the feature vectors.

At the start of the process of simulated annealing, the i.i.d. Gaussian noise densities

corrupting the feature vectors are set to a standard deviation wider than the length of the

maximum possible distance between any two feature vectors. In an earlier preprocessing

stage, the maximum vector norm of the set of training feature vectors was computed and

used to normalize the entire set of training feature vectors. As a result, the maximum vector

norm of the set of feature vectors is 1.0. Choosing a standard deviation of 1.0 to begin the

simulated annealing process ensures sufficiently wide noise densities to prevent immediate

convergence to low-quality information maxima.

The simulated annealing process as used in the ITDT system is straightforward:

1from The American Heritage College Dictionary, 3rd ed., Houghton Mifflin Company, New York.
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Figure 2.7: Simulated annealing is used to retract the noise densities.

1. Begin with noise densities at a standard deviation of σ1 = 1.0.

2. Find a local minima with the conjugate gradient routine.

3. Halve the standard deviation of all the noise densities, σk+1 = σk/2.

4. While I(X;Y ) is increasing, loop back to 2. Exit when I(X;Y ) remains unchanged

from the previous loop.
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The hyperplane placement reached by this algorithm is the final placement used in a

particular node of the decision tree.

2.2.3 Considerations Regarding the Constructed Decision Tree

When constructing a decision tree, it is very likely that the mutual information maxi-

mization at some node splits will be much less than 1 bit. This non-optimality of a node

split indicates that the feature vectors were difficult to segment, and results in a taller tree.

Although a decision tree constructed to classify a set of target feature vectors must, by the

very way in which it is constructed, correctly classify the imagery used to train it, non-

optimal node splits increase the ITDT system’s sensitivity to noise in test imagery. This

will be demonstrated in the results for T72 pose classification in the next section.

Figure 2.8 shows an optimal size binary tree constructed to classify four targets. If, for

example, vectors x2 and x3 were located near each other (Figure 2.9), a decision tree similar

to the one in Figure 2.10 could result.

x1, x2 / x3, x4��
��

x1 / x2��
��

x1

�
�
�
�� C
C
C
CC
x2

�
�
�
�� A

A
A
AA

x3 / x4��
��

x3

�
�
�
�� C
C
C
CC
x4

Figure 2.8: Progressive exemplar splitting in the decision tree.

In the tree in Figure 2.10, three decisions have to be made to classify vectors x2 and x3

correctly. Examining the arrangement of the decision boundaries in Figure 2.11, it is shown

that since x2 and x3 were so similar, deciding between them was put off until there were no

other feature vectors in the decision space.

However, a non-optimal height tree does indicate increased sensitivity to subtle varia-

tions in the test imagery from the imagery used to train the system. In this example, if a
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x1

x2

x4

x3

Figure 2.9: Difficult arrangement of feature vectors.

x1, x2, x3 / x4��
��

x2, x3 / x1��
��

x2 / x3��
��

x2

�
�
�
�� C
C
C
CC
x3

�
�
�
�� L

L
L
LL
x1

�
�
�
�� L

L
L
LL
x4

Figure 2.10: Greater than optimal-size tree doesn’t increase classification errors.

test feature vector known to fall within the x2 class were to differ only slightly from the

training vector for x2, it could easily be misclassified as an x1 class feature vector. In prac-

tice, if feature vectors such as x1 and x2 represented digital images in an appearance-based

model, they would appear as two nearly identical images to the human eye. Any machine

vision classifier would be hard-pressed to discriminate between them.
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Figure 2.11: Decision spaces.
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2.3 T72 SAR Data Pose Estimation

One of the earliest tests of the ITDT system involved construction of a pose estimation

decision tree from synthetic aperture radar (SAR) imagery of a Soviet T72 tank over about

120◦ of azimuth angle. Figure 1.8 on page 11 shows twenty-five of the images used to

construct the tree, and the tree generated for this particular test was reproduced earlier

in Figure 1.9 on page 13. Table 2.1 contains the results of this tree construction. Feature

vectors were formed directly from the SAR imagery of the tank, as described in section

1.3.1, and depicted in Figure 1.12 on page 17.

Time to build tree 1m 28s
Maximum decisions (maxh) 6

Average height (h) 5.8
Optimal height 5.7
Dimensions 1296 (36x36)
Training feature vectors 53

Table 2.1: T72 Pose Estimation Tree

This test and all subsequent tests were conducted using an implementation of the ITDT

system written in the C++ language. The system runs under the Linux operating system

on an Intel Pentium II based PC operating at 350MHz.

This particular tree was quickly constructed, in one minute and twenty eight seconds.

Referring to the tree drawn on page 13, the measures of height in the tree refer to the

number of circular decision nodes visited to reach any leaf in the tree. For this tree, the

maximum number of decisions was 6, and the average number of decisions was 5.8. An

optimal size tree for 53 exemplars would have had, on average, 5.7 decisions to reach a leaf

node.

Some insight can be gained into this optimality by returning the hyperplanes in the

decision tree to an image space representation, and viewing the resulting hyperplane im-

ages aligned in a binary tree-like image representation. This conversion from hyperplane

coefficients to image space is possible because the hyperplane coefficients form a normal

vector to the hyperplane - essentially the difference vector between the feature vectors on

the left and the feature vectors on the right. Figure 2.12 shows how the hyperplane is, in

effect, the perpendicular bisector of a difference vector.
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HYPERPLANE

DIFFERENCE VECTOR

V1

V2

Figure 2.12: An optimal hyperplane separating two exemplars is perpendicular to their
difference vector.

This difference vector is a representation of the major differences between the left and

right decision regions formed by the hyperplane. It can reveal image features which were

leveraged in the final hyperplane placement which maximized mutual information in a

particular node split. Since the zN+1 coefficient of the hyperplane governs only its offset,

it can be discarded, retaining the pure difference information. Hyperplanes of the first

three levels of the tree are arranged pictorially in a binary tree fashion in Figure 2.13. The

hyperplane images are located where the decision nodes would be in an equivalent binary

tree skeleton image: for example, the centered image at the top is the hyperplane image

for the node at the top of the tree and the images to its lower left and lower right are the

hyperplanes in that node’s left and right children, respectively.

The extreme black and white values present in the hyperplanes occur on the outline of

the target. Intuitively, the hyperplanes were placed by the ITDT system so as to exploit

edge transitions which clearly delineate the pose of the target.

In addition to the tree construction, a series of noise corruption tests were performed.

For these tests, the original training data were subject to additive white Gaussian noise at

a specified signal-to-noise ratio (SNR). Performance wasn’t found to degrade until signal-

to-noise ratios near 0dB (one) were reached, at which point the signal power of the target

image is equal to the noise power. Figure 2.14 displays several levels of noise corruption, at

nine signal-to-noise ratios ranging from 12dB to -12dB.
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Figure 2.13: The first three levels of hyperplanes in the T72 pose estimation tree.

Figure 2.14: Signal to noise ratios: 12dB through -12dB.

This testing brought to light a condition improved by addition of the simulated annealing

algorithm. Figure 2.15 shows the error rates versus SNR of this test in the original ITDT

system, and error rates versus SNR for the ITDT system with simulated annealing. It is

interesting to note that the tree constructed by the original system had an average node

split mutual information of 9.75, while the tree constructed with the simulated annealing-

based optimization strategy had an average mutual information of 9.85. It is inferred that

by taking greater care to find local information maxima which are nearly of the quality

of global maxima that the decision tree becomes less sensitive to noise. As such, the tree

constructed with the aid of simulated annealing has no classification errors until the noise
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power is 3dB higher than the target image power.
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Figure 2.15: Simulated annealing improves hyperplane placement accuracy.
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Chapter 3

Exemplar Grouping

In lieu of analytically obtained expressions for probability densities of target classes,

most pattern recognition systems allow arbitrarily many feature vectors to contribute to

the definition of a particular class of target. Ideally, each feature vector added to the

training set widens the set of training data, increasing the accuracy of the classifier. As

shown on the left of Figure 3.1, target classes in the ITDT system are entirely characterized

by single feature vectors, in this example: x1, x2, x3, x4. Each terminal node’s decision

region contains reference to only one of the training feature vectors. On the right side of

Figure 3.1, the decision regions identifying particular target classes have been characterized

by four groups: {x11, x12}, {x21}, {x31, x32}, and {x41, x42, x43}. If many feature vectors

can be incorporated into the definition of a single target class, the ITDT system would be

applicable to a whole new range of machine vision problems.

x4 x2

x1

x3

x43

x21

1x 2
1x 1

x42

x41

x32 x31

Figure 3.1: Extending the ITDT system to classes specified by multiple feature vectors.
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In a practical machine vision problem, a classifier would be designed to discriminate

among a number of hypotheses or target classes characterized by measures of many instances

drawn from the target classes. If the analytic distributions of the data were known, the

classifier would typically be constructed from these analytic representations. Figure 3.2

shows two 2D gamma densities, one with a mean at (5, 5) and another with a mean at

(15, 15). As part of another ongoing project in the author’s lab, a colleague1 provided the

decision region corresponding to a Bayes minimum error classifier for the two densities, as

shown.

0 10 20 30 40
0

20

Gamma (5;1)
Gamma (15;1)
Decision Boundary

Minimum Error Classifier
2D Gamma (5;1) and (15;1) Densities

Figure 3.2: Minimum probability of error classifier for the two Gamma densities.

Each 2D gamma density is represented by 1000 samples in the plot. If only these data

were available and the densities were unknown, the densities could be estimated from the

data, densities could be assumed, or the classifier could incorporate the data using some

non-parametric technique.

1Jim Kilian, thanks.
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Three strategies were envisioned which could be employed to incorporate more than

one feature vector to characterize a particular target class in the ITDT system. First, a

single mean feature vector can be computed from any set of feature vectors and used in the

system as-is. While this technique may work under certain limited conditions, it is often

found to discard too much valuable information about the structure of the training data.

Second, a decision tree can be constructed for all of the individual training feature vectors,

regardless of the group to which they belong. While no modifications would be needed to

the core of the ITDT system, the trees formed using this strategy would be so immense

as to be completely impractical to form or to store. Finally, a multimodal density could

be created for each target class as the weighted sum of the set of target feature vectors

which characterize that class, and which are corrupted by i.i.d. Gaussian noise. This is the

method which was chosen for further development.

This section describes the method of exemplar grouping, which extends the ITDT system

to accept arbitrarily-sized sets of feature vectors as distinct classes (groups) of targets. It is

not the aim of this extension to accurately model underlying probability distributions, al-

though it may perform acceptably well for that function. Rather, exemplar grouping simply

provides a means for grouping many feature vectors together to form groups characterized

by multimodal Gaussian distributions. Groups of feature vectors can be formed from any

input. In tests, to be discussed, excellent results have been realized in grouping together a

series of translations or rotations of a particular target image.

3.1 Characterizing a Group of Feature Vectors

Previously, a set of N feature vectors, X = {x1, x2, . . . , xN} was used to characterize

N target classes in the ITDT system. This approach can be extended so that each target

class xi is characterized by a set of Mi feature vectors, xi = {xi1, xi2, . . . , xiMi}, which

are independent and identically distributed Gaussian random processes associated with the

each exemplar. Instead of supplying a set of feature vectors for the ITDT system to train

on, one supplies a set comprised of N subsets, each of which contains an arbitrary number

of feature vectors, Mi, which more completely characterize a particular target class. The

set X, formed from N groups, is defined explicitly,
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X = {{x11, x12, . . . , x1M1}, {x21, x22, . . . , x2M2}, . . . , {xN1, xN2, . . . , xNMi}}. (3.1)

Grouping exemplars (which are again take to represent the means of additive i.i.d.

Gaussian corrupted feature vectors) in this way only changes the previous lengthy derivation

of I(X;Y ) by an additional step in the calculation of the conditional probabilities. Each

feature vector xij is handled individually, with an evaluation of the Gaussian cumulative

distribution function over an individual minimum distance dij to the hyperplane. Under

exemplar grouping, the probability of an instance of a random process represented by a

given exemplar lying in the y1 region is the same as is given for a feature vector before

in equation 2.18. Thus, the probability that such an instance lies in y1 given the process

associated with exemplar xij, is,

P (y1|xij) = 1−Q

(
dij
σ

)
. (3.2)

The evaluation of the conditional probability that a given group, the set of processes

associated with a class of exemplars, lies in the y1 region is required for the mutual informa-

tion calculation in the ITDT system. Before, this quantity was given only as the conditional

probability that a particular feature vector lay in y1, equation 2.18. With exemplar group-

ing, one must now compute the total probability that any feature vector arising from the

process which is associated with the group xi lies in the region y1, given by,

P (y1|xi) =

Mi∑
j=1

P (y1|xij)P (xij) (3.3)

=

Mi∑
j=1

[
1−Q

(
dij
σ

)]
P (xij) (3.4)

=
1

Mi

Mi∑
j=1

[
1−Q

(
dij

σ

)]
, (3.5)

which is stated in terms of the conditional densities for each exemplar associated process.

This, in effect, states that the probability that a given group of exemplars, each rep-

resented by a random process, lies in region y1 is the average of the probabilities that
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each given exemplar within that group lies in region y1. Expressions for the y2 region are

obtained similarly as a result of the independence of regions y2 and y1,

P (y2|xij) = Q

(
dij
σ

)
(3.6)

P (y2|xi) =
1

Mi

Mi∑
j=1

[
Q

(
dij
σ

)]
(3.7)

Figure 3.3 shows a possible configuration of two groups and a hyperplane. In this

scenario, group x1 is formed from three exemplars, {x11, x12, x13} and group x2 has two

exemplars, {x21, x22}. In this example, the conditional probability that group x1 lies in

region y1 is the average of the probabilities that x11 lies in y1, x12 lies in y1, and x13 lies in

y1.

x1

x2

x1

x1

x2

3

2
1

2

1

Figure 3.3: Exemplars each contribute to a group’s total probability.

Once the conditional probabilities P (y1|xi) and P (y2|xi) have been computed, the

derivation of mutual information of node splits under exemplar grouping is as given previ-

ously in section 2.2.1 for the mutual information of node splits using single feature vectors.
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Substituting for P (y1|xi) and P (y2|xi) in equations 2.20 and 2.21, the total probability of

any group lying in region y1 or y2 is as given below:

P (y1) =
N∑
i=1

P (y1|xi)P (xi) (3.8)

=
1

Mi

N∑
i=1

Mi∑
j=1

[1−Q(
dij
σ

)]P (xi) (3.9)

=
1

NMi

N∑
i=1

Mi∑
j=1

[1−Q(
dij
σ

)] (3.10)

P (y2) =
1

NMi

N∑
i=1

Mi∑
j=1

Q(
dij

σ
) (3.11)

The remainder of the derivation is as given previously (section 2.2.1), utilizing the ex-

pressions for P (y1|xi) and P (y2|xi) as derived in this section.

3.2 Derivation of Derivatives for the Conjugate Gradient

As the addition of exemplar grouping changed the final mutual information evaluation

only by introducing the need for averaging over all vectors in each group, it also only

introduces an averaging in the partial derivative evaluations required for the conjugate

gradient optimization algorithm. Ryan Tomasetti’s derivation in appendix C of the partial

derivatives of the mutual information function with respect to distance resulted in the

following expressions, restated here to maintain notation consistency with the body of this

thesis (eqs. 3.12 - 3.18). The partial derivative expressions are as follows,

∂H(X)

∂di
= 0 (3.12)

∂H(Y )

∂di
=

1

N
log

[
P (Y1)

P (Y2)

] ∂Q(diσ )
∂di

(3.13)
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∂H(X,Y )

∂di
=

1

N
log

[
P (Y1|Xi)

P (Y2|Xi)

] ∂Q(diσ )
∂di

(3.14)

∂Q
(
di
σ

)
∂di

= −
1

σ
√

2π
e
− 1

2

(
di
σ

)2

(3.15)

∂di
∂zk

=


xik ||Z||−dizk
||Z||2 if k 6= D + 1

1
||Z|| if k = D + 1

(3.16)

∂I(X;Y )

∂zk
=

∂H(X)

∂di
+
∂H(Y )

∂di
−
∂H(X,Y )

∂di
(3.17)

=
∂Q
(
di
σ

)
∂di

log

[
P (Y1)P (Y2|Xi)

P (Y2)P (Y1|Xi)

]
∂di
∂zk

. (3.18)

Where,

• X = {x1, x2, . . . , xN} is the set of training vectors,

• Y = {y1, y2} is the set of regions created by the hyperplane,

• Z = {z1, z2, . . . , zD+1} is the D + 1 coefficient hyperplane,

• di is the perpendicular distance of xi to the hyperplane Z,

• i = 1, 2, . . . ,N is the index of training vectors,

• k = 1, 2, . . . ,D is the index of vector components for D dimensional vectors.

The major change in the development with exemplar grouping occurs in the calcula-

tion of the conditional probabilities in equation 3.7 on page 54, in which the conditional

probabilities P (y1|xi) and P (y2|xi) are arrived upon through an averaging process over all

the vector members of each group. As stated previously in the development of exemplar

grouping:

• X = {x1, x2, . . . , xN} is now the set of training exemplar groups,
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• j = 1, 2, . . . ,Mi is the index of vectors in the group xi, so that xij is the jth vector in

the ith group, and

• dij is the perpendicular distance of the jth vector of group i to the hyperplane Z.

The evaluation of the partial derivative of the Q(x) function (with respect to distance)

involves the only significant change to obtain partial derivatives of H(Y ) and H(X,Y ).

The expression for the partial derivative of Q(di/σ) with respect to distance di as given in

equation 3.15 is altered under the exemplar grouping extension to be the partial derivative

of the average of the evaluations of Q(dij/σ) over all the members of group xi, given as,

∂Q
(
di
σ

)
∂di

=
∂

∂di

 1

Mi

Mi∑
j=1

Q

(
dij
σ

) (3.19)

= −
1

σMi

√
2π

Mi∑
j=1

e
− 1

2

(
dij
σ

)2

. (3.20)

Likewise, the partial derivative of the distance from each exemplar group to the hyper-

plane z, with respect to the hyperplane coefficients zk, is calculated as the average of the

contributions from the vector members of group,

∂di
∂zk

=
∂

∂zk

Mi∑
j=1

dij (3.21)

=


Mi∑
j=1

xijk||Z|| − dijzk
||Z||2

if k 6= D + 1

1
||Z|| if k = D + 1

. (3.22)

An explicit formulation for the partial derivative of mutual information with respect to

the hyperplane coefficients, can be obtained by combining the above expressions, yielding,

if k 6= D + 1,

∂I(X;Y )

∂zk
= −

1

σ||Z||2Mi

√
2π

log

[
P (Y1)P (Y2|Xi)

P (Y2)P (Y1|Xi)

] Mi∑
j=1

[
(xijk||Z|| − dijzk) e

− 1
2

(
dij
σ

)2
]
.

(3.23)



58

If k = D + 1, we obtain:

∂I(X;Y )

∂zk
= −

1

σ||Z||Mi

√
2π

log

[
P (Y1)P (Y2|Xi)

P (Y2)P (Y1|Xi)

] Mi∑
j=1

e
− 1

2

(
dij
σ

)2

. (3.24)

3.3 Verification of Operation

As an initial test of the exemplar grouping extension, a decision tree was constructed

with one group consisting of only a black image and a second group formed from six poses

of an image of a die varying in azimuth angle from 0◦ to 15◦, shown in figure 3.4.

Figure 3.4: Image of a die rotated at 3◦ increments from 0◦ to 15◦.

The ITDT system produced an optimal size tree with only one decision node, represented

in the binary tree diagram in figure 3.5.

[2]��
��
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�
�
�� D
D
D
DD
1

Figure 3.5: Optimal size tree for a two hypothesis classifier.

Figure 3.6 is the hyperplane created to decide between the six die poses and a black

image. In it, the six poses of the die are visibly blurred together - confirming the notion

of the averaging behavior of exemplar grouping. Notably, the bright white section found in

the center of the image corresponds to the center section of the die, and is that part which

is observed not to change under rotation of the die. Hence, as we have come to expect,

the hyperplane placement exploits that portion of the image which best exemplifies the

difference between the die and the background, the two classes under consideration.
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Figure 3.6: Hyperplane image representing the difference between 6 die poses and an entirely
black image.

3.4 Two-Hypothesis Classifier for 2D Gamma Densities

A decision tree was constructed from the two 2D gamma distributed data depicted in

the introduction to this section. Figure 3.2 shows the analytically obtained minimum Bayes

error decision region for this set of data.

The statistics shown in Table 3.1 reveal that the ITDT system had difficulty in splitting

off some of the training data, resulting in a tree that required a maximum of 9 decisions,

and an average of 5.5 decisions. Two quantities are presented by which this height can be

judged. First, the worst-case optimal height is the optimal height of a tree constructed to

identify each datum with which it was trained. In this case, identifying each of the 2000

training exemplars would require a tree which was 11 decision nodes high. Second, the

best-case optimal height is the optimal height of a tree constructed to classify the number

of exemplar groups; here, the two exemplar groups would be characterized optimally by a

decision tree which was 1 decision node high.

From figure 3.2 it is obvious that a single hyperplane will not suffice to represent the

optimal decision surface constructed from the analytic class representation. Since in this 2D

space a hyperplane is represented by a single straight line, one would expect a decision tree

involving at least several decisions to obtain a similarly discriminatory result. As can be

seen in Figure 3.7, the tree constructed by the ITDT system is rather strange looking. There

are only two main branches, formed during the initial split of the data into its two primary

groups. Experiencing difficulty in understanding the behavior of the system, the author

developed slope-intercept equations for all sixteen hyperplanes and applied colored pencils
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Time to build tree 5s
Maximum decisions (maxh) 9

Average height (h) 5.5
Worst-Case Optimal height 11
Best-Case Optimal height 1
Decision nodes 16
Dimensions 2
Groups 2 (1000 members each)
Total exemplars 2000

Table 3.1: 2D Gamma Classification Tree

to a hard copy of the decision space, filling in regions corresponding to each distribution.

Figure 3.9 on page 63 is a scanned reproduction of that work.

It is essential to realize that the ITDT system will always correctly classify its input

training vectors. Thus, we can anticipate that the resulting decision system will not settle

for even an approximation of the curved decision surface in Figure 3.2. Rather, a set

of hyperplanes and associated decisions will be formed that successfully dissect the given

feature space exemplar representations so that each one is properly classified. Figure 3.9

demonstrates that even under poor separation conditions, the decision tree construction

process will go “out of its way” to segment the input data. Most notable in this figure is

the small island of red centered at approximately (0.3, 0.3), created simply to notch out a

lone vector. Similar cases can be found elsewhere in this diagram.

The ITDT system was again tested with a pair of gamma densities, however, this time,

only 100 trials in each group were utilized. The resultant datum are non-overlapping and

are linearly separable. As would now be expected, the ITDT system chooses a single best-fit

hyperplane, as shown in the plot in Figure 3.8.
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Figure 3.7: 2D Gamma Density Classification Tree.
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Figure 3.8: The hyperplane in the single ITDT decision node required to separate the two
linearly separable gamma distributed sets of data.
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Figure 3.9: Decision regions for the 2D Gamma classifier carefully colored in by the author.
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Chapter 4

Object Recognition Independent of

Image Shift and Rotation

In general, machine vision systems require some degree of shift (translation) and rotation

invariance. Very rarely will a situation arise in which an object’s location in a scene image is

known to sub-pixel accuracy. Even in controlled environments, objects shifted a few pixels

or rotated slightly can wreak havoc with the discrimination capabilities of machine vision

systems. The three objects shown in figure 4.1 differ only slightly, but enough to confuse a

machine vision system which isn’t designed to cope with translation and rotation.

Figure 4.1: Even in controlled circumstances, slight variations in position and orientation
arise.

Developing a means to obtain correct decisions regarding class membership despite target

transformations was a primary goal for this thesis. As presented in the prior chapter, the

ITDT system lacks an efficient means for handling arbitrary target shifts coupled with

changes in orientation. This chapter chronicles the strategies employed in the ITDT system

to handle unknown image shift and orientation: search with distance metric, exemplar
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grouping and sliding window correlation.

4.1 Search with Distance Measure

When translation invariance cannot be built directly into the model of an object, a brute

force search must be employed to locate the object in a test scene. Algorithms using this

method, in general, scan a window across the test image, applying a test to the region of

interest inside the window. A three stage implementation is typical:

1. Test for the object at each possible location in the test image, estimating which entry

in the object model is the best match for that location in the test image. Figure 4.2

shows such a test, in which a window is scanned across the test scene image.

2. Compute a distance measure between the estimated object and the object within the

current test window.

3. Report the location of the minimum distance of the above obtained over all such

positionings of the test window.

MODEL

TEST IMAGE

OBJECT

Figure 4.2: Simple search of a test image.

Excluding the possibility of objects which have partially slipped out of the test image,

a M ×M object model has (N −M + 1)2 possible locations in a N ×N test image.

Difficulty in using the search method with the ITDT system arises due to the need

for a measure of goodness-of-fit of the object model at each test location. The ITDT

system doesn’t provide such a measure directly - searching the decision tree results only in

a reference to the best matching target feature vector. However, if one is willing to preserve

the original set of training feature vectors in addition to the decision tree, a Euclidean
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distance measure can be computed between the best match training feature vector xmatch

and the vector formed by the region in the test image under test yi,

Di =
√
< (yi − xmatch), (yi − xmatch) >. (4.1)

The set of distances Di form a distance metric image, in which the value at each pixel

is a goodness-of-fit distance metric between the best match at that location determined by

the ITDT system and the underlying region of interest. Searching the metric image for the

minimum distance will yield the most probable location of a model object in the test image.

Computing the distance measures adds an additional M2-dimension dot product oper-

ation for each of N −M + 1 test locations. For many applications, the conventional search

with distance measure algorithm may be too computationally expensive.

4.2 Training for Rotation and Translation Independence

To achieve some measure shift or rotation invariance, it is possible to train the ITDT

system with sets of images which have undergone a great many combinations of shifts and

rotations. One can use the method of exemplar grouping to group these orientations or

shifts of like images into classes, allowing the ITDT construction process to determine the

minimum number of information maximizing decisions which need to be made to correctly

classify the training imagery. However, it will be seen that even in the simplest cases, a

massive amount of data may be required to train the system sufficiently.

Two strategies for handling shift and rotation invariance are implemented in the ITDT

system as part of a training imagery generation stage. Given a single image of a target to

classify, these training strategies can generate sets of training imagery in which the target is

transformed over a user-specified ranges of shift and orientation. For recognition of objects

which are smaller than the field of view of the camera, one can use the target mask-based

algorithm presented in section 4.2.1; for images which are larger than the field of view, one

can use the region-of-interest extraction algorithm described in section 4.2.2.

4.2.1 Translation and Rotation Training With Target Mask Images

In the first scenario handled by the ITDT training algorithms images are generated by

a camera, which remains fixed on a relatively unchanging background while small objects



67

move into the field of view. The small objects may be at unknown orientation, shift, or

both. Figure 4.3 shows three images typical of this application.

Figure 4.3: Small parts on a fixed background with small relative shifts and rotations.

In the example motivated by the images in Figure 4.3, the user desires to recognize three

classes of targets: no object present, object, and object with bent pin. Three images, shown

in Figure 4.4, are recorded and used to train the system to recognize each of the classes over

several hundred translations and rotations. These images represent single exemplars of the

empty background, a good object, and an object with a bent pin which would be rejected

in a manufacturing process.

Figure 4.4: Training images for a three hypothesis classifier: no object, object, and an
object with a bent bin.

Were the training system to rotate and translate this input imagery as stands to obtain

the set of training vectors, two unwanted artifacts would be produced in the resultant

images shown in Figure 4.5. First, the background would move with the object of interest,

producing the same effect as if the camera were moved. This doesn’t adequately model our

physical setup, in which only the object of interest moves, while the background remains

stationary. Second, the transformation algorithm is unable to create pixel data to fill in

sections of the image which are rotated or shifted in from beyond the bounds of the original

training data. These black, triangular-shaped artifacts can be observed in the transformed
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images in Figure 4.5.

Figure 4.5: Simply translating and rotating training images introduces unwanted artifacts
into the training imagery.

When the ITDT system was trained on the imagery in Figure 4.5, two of the resultant

hyperplanes shown in Figure 4.6 indicate that the artifacts were included as discriminating

characteristics of the training imagery, used to position the hyperplanes to maximum infor-

mation gain. The learning nature of the ITDT system cannot compensate for inadequate

training data.

Figure 4.6: Artifacts in the training imagery are used as classification information in the
decision tree.

To avoid introducing unwanted artifacts, the ITDT training system can employ a user-

created mask of the training objects, allowing the object of interest to be projected onto

the static background. Figure 4.7 shows the background, a training image and the binary

mask image.
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Figure 4.7: A training image mask is used to project the training object onto a static
background.

The usage of masking eliminates the major artifacts observed earlier from the training

imagery, as shown in Figure 4.8. Hyperplanes for these training images which are free of

the artifacts introduced earlier are shown in the next section in Figure 4.11 on page 72.

Figure 4.8: Input objects projected onto the supplied background using a mask image.

Assembly Line Part Verification Test

A three-hypothesis decision tree was constructed to detect the three simple objects

shown in Figure 4.9: no object, object, and an object with a bent pin. This test simulates

a machine vision system employed in a roughly constrained object placement system, in

which the general location of an object is known, but the object may have been slightly

shifted or rotated. In this example, the feature vectors formed from the digital training

images have been normalized to unit magnitude and hyperplanes are constrained to pass

through the origin.

The training data was generated using the method of object masking presented previ-

ously. For every 3◦ of rotation from −12◦ to 9◦ and every one pixel shift from −10 pixels to

+9 pixels in both X and Y image dimensions. Table 4.1 shows the statistics collected dur-

ing the tree construction process. Using the method of exemplar grouping, the size of the
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Figure 4.9: Training images.

search space was dramatically reduced. More than sixteen-hundred images were produced

by the training algorithm, forming three groups. Although the optimal size tree for three

groups would have only two decision nodes, considering the massive size of the training

set which would require sixteen-hundred decision nodes to characterize, the fifteen decision

nodes generated by the ITDT system demonstrate a remarkable reduction in model data.

Time to build tree 47m 30s
Maximum decisions (maxh) 6

Average height (h) 3.7
Best-Case Optimal height 1.6
Worst-Case Optimal height 10.6
Nodes 15
Dimensions 3696 (56x66)
Groups 3 (members in groups: 1, 800, 800)

Table 4.1: Three hypothesis assembly line detection tree

The tree in Figure 4.10 shows that the no object hypothesis was immediately split off

to the right, and that the rest of the tree below that point is well-balanced. Examining the

hyperplanes in Figure 4.11 reveals how the ITDT system illuminated the bent pin as the

major difference between the two target object hypotheses.

Searching this tree to produce correct classifications required between 1ms and 3ms on a

350MHz Intel Pentium II based PC, requiring approximately 500µs at each decision node.

For comparison, if a sequential search were conducted over the same set of training data,

an average of 1601/2 ≈ 800 comparisons would be required, with a search time of 400ms

using a similar comparison operation.
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Figure 4.10: This decision tree skeleton represents more than 1600 training images in a
three hypothesis assembly line part classifier.
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Figure 4.11: Hyperplanes in this hypothesis detection decision tree. Only the left side of the
tree is shown. The image is properly viewed by rotating the paper 90◦ counter-clockwise.
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4.2.2 Translation and Rotation Training With Region-of-Interest Extrac-

tion

A second configuration is possible wherein the feature to detect is part of a larger object

which occupies more than the field of view of the camera. This is the case with large circuit

boards, or in the following example, with UPC symbols on soda cans. In most cases, it is

usually known to some accuracy where the object to be recognized will lie in the figure, and

a region of interest (ROI) is extracted for test (Figure 4.12).1

Figure 4.12: A region of interest is extracted from the test scene.

This situation is best addressed by obtaining training images by means of performing

the necessary transformations on an image of the entire scene, and subsequently extracting

the region of interest, rather than by performing the transformations on the ROI explicitly.

In doing so, information previously on the outside edge of the ROI is able to enter the ROI

for appropriate shifts and rotations, as depicted in Figure 4.13.

Soda Can UPC Symbol Locator Test

Research conducted by a colleague2 in the machine vision lab produced a correlation-

based system for recognizing UPC symbols on the cans of several brands of soda. Perfor-

mance was acceptable, although classifications typically required several hundred millisec-

onds on an Intel Pentium II 350MHz PC.

1Coke, Coca-Cola, and the Coke can are registered trademarks of the Coca-Cola company.
2John Sullivan, thanks.
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Figure 4.13: Extraction of ROI’s after translation of target scene images yields good training
images from objects which are larger than the region of interest.

Figure 4.14: Three target UPC symbols are to be classified by the ITDT system.

A decision tree was constructed to detect the three UPC symbols shown in Figure 4.14

by extracting a region of interest, delineated by the box in Figure 4.15. The training data

was constructed from 125 (25 × 5) shifts of each training image using the ROI extraction

method described in the previous section. No rotation invariance was required.

Table 4.2 contains the statistics collected from the tree construction process. Remark-

ably, only a maximum of three decisions is required to identify any target, resulting in

test times of 1 − 3ms due to the large size (102 × 86) of each training image. With 375

total training images, it would have taken an average of nearly 200ms to search sequen-

tially through this set. Eighteen test scenes were acquired and classified correctly with the
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Figure 4.15: A region of interest is extracted for UPC symbol identification.

resultant decision tree.

Time to build tree 9m 9s
Maximum decisions (maxh) 3

Average height (h) 2.3
Best-Case Optimal height 1.6
Worst-Case Optimal height 8.6
Decision Nodes 4
Dimensions 8772 (102x86)
Groups 3 (125 members each)

Table 4.2: Soda Can UPC Symbol Locator Tree Table

Figures 4.16 and 4.2.2 depict the decision tree constructed to classify the three UPC

symbols. An interesting phenomenon can be observed in the hyperplane images in Figure

4.2.2. One observes a speckled nature to the second-level hyperplane, believed initially

by the author to reflect a relatively low information gain measure for that hyperplane

placement, reported during the tree construction process. In addition to the statistics

reported in the table, the ITDT system reports the mutual information gain to which

the dynamic hyperplane positioning algorithm finally converged. In this particular tree, a

decision made at the top node gains 0.92 bits of information, decisions made at either of the

two third-level nodes gain a full bit of information, but a decision at the second level node

only offers a gain of 0.66 bits of information. Low information measures indicate that the
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feature vectors could not be well separated with a hyperplane. It is possible that these low

information gains are caused by a convergence to a low-quality local information maximum

during dynamic hyperplane placement, although simulated annealing reduces the chances of

converging to low-quality local maxima. More likely, low information gain measures indicate

that a single hyperplane is insufficient to divide a particular arrangement of feature vectors

in the high dimensional space.
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Figure 4.16: Soda can UPC symbol identification decision tree.

After some experimentation, it was determined that the speckled effect described above

was caused by an assumption made early in the training process. During the training

process, each image in this set of data was normalized to unit vector magnitude to minimize

the classifier’s sensitivity to lighting variations, and the hyperplanes were constrained to pass

through the origin so as to discriminate only based on orientation, not image magnitude.

When both the unit-magnitude constraint and the zero hyperplane offset constraint were

removed from the system, the smoother appearing hyperplanes in Figure 4.2.2 were the

result.
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Figure 4.17: Hyperplanes from the soda can UPC symbol identification tree.

Figure 4.18: The speckle effect at the second level hyperplane was eliminated by removing
both the unit-magnitude normalization and zero offset hyperplane constraints.
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4.3 Two Stage Pose Classification With Match Metric

For all of the previous tests in which exemplar grouping was used, each target class was

comprised of multiple images produced by a training algorithm which generates a set of

transformed images from a small number of input images. The decision trees constructed

by the ITDT system for these training data were minimally sized, as they were constructed

to discriminate among a small number of groups, rather than among each image in the

large set of individual training images. However, the fast search times afforded by this

method only produce a decision regarding which among the target classes does the test

image most resemble. More useful in a robust machine vision system implementation would

be a decision accompanied by a match metric, a goodness-of-fit of the test image to the

chosen target image from the model.

As it stands, there exists no way to extract a match metric from decision trees which

used exemplar grouping. Any classification performed by such a tree results in a decision

on an entire set of feature vectors, with no clear means of extracting a difference between

the test image and the set of images in a particular target class. Two stage classification

is intended to alleviate this problem. If one can apply two decision trees, one may, for

instance, use one tree to determine the location of an object in an image, regardless of its

orientation. Subsequently, a pose estimation decision tree can be applied at that location

which does not use exemplar grouping. In this pose tree may be stored the original set of

training images, upon which the pose estimate will act as an index to select a particular

training image. A distance measure can then be generated to compare the training image

of the object at a particular pose to the object at the identified location in the test image.

In the following discussion, we will consider the problem of estimating the pose and

location of a die within a 33× 33 pixel image, shown in Figure 4.19.

Figure 4.19: Die training image.
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4.3.1 Stage 1: Pose Invariant Die Shift Estimation

In the ITDT two-stage classification process, the initial stage is comprised of a decision

tree which classifies a particular location in a test image at which an object lies, independent

of the pose of that image. This tree was constructed from 225 groups, one group for each

image location over ±7 pixel shifts in the X and Y image dimensions. Each group is formed

from eighteen poses of the die, ranging from 0◦ to 180◦.

The statistics of the constructed decision tree in Table 4.3, show that the tree offers a

modest reduction in the amount of data to be searched, with an average height of 8.85, and

with 779 decision nodes. Were a tree constructed from all 4050 exemplars individually, it

would have taken far longer to construct, yielding a very large tree with 4049 decision nodes

and 12 levels. Memory usage and storage size are considerations when trees become very

large; representing each hyperplane as N−dimensional arrays of double-precision floating

points requires 34MB of memory for this 4049 node tree, while only 6.5MB would be required

for the 779 node first-stage tree.

Time to build tree 5h 0m
Maximum decisions (maxh) 12

Average height (h) 8.85
Worst-Case Optimal height 12
Best-Case Optimal height 7.8
Nodes 779
Dimensions (33x33)
Groups 225 (18 members each)

Table 4.3: Pose Invariant Die Shift Estimation Tree

The first four levels of hyperplanes in the tree are depicted in Figure 4.20. As we would

now expect, the round shapes in each hyperplane are due to the averaging behavior of

exemplar grouping over the set of eighteen poses in each target class.

Pose Estimation Stage

Once a location has been determined by the shift estimation tree, a die-sized region of

interest is extracted from the test image at this location, forming a test image which may be

classified for pose. This rapidly built tree was of optimal height (4.2) for the eighteen poses

which it represents, based on the statistics shown in Table 4.4. The hyperplane images
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Figure 4.20: Hyperplanes in the Pose Invariant Die Shift Estimation Tree

represented in Figure 4.21 accentuate edge information of the die, including the black dots,

much like the earlier T72 pose classification tree presented in section 2.3.

Time to build tree 0m 5s
Maximum decisions (maxh) 5

Average height (h) 4.2
Optimal height 4.2
Dimensions 272 (17x16)
Groups 18

Table 4.4: Die Pose Estimation Tree

All test cases were properly classified by this two-stage system. However, there is a

tradeoff in using such a two-stage classifier: storage size versus test time, shown in Table

4.5.

If a single tree is constructed, a maximum of twelve decisions will be required, but

more than four thousand decision node hyperplanes must be stored by the system. If a

2-stage strategy is used, the maximum number of decisions raises to seventeen, but only

approximately eight hundred decision nodes need to be stored. Each will perform with the

same accuracy, and for each, a match metric can be computed. It is the author’s belief that

this tradeoff is best resolved on a case to case basis.
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Figure 4.21: Hyperplanes in the Die Pose Estimation Tree

Decision Nodes Total Tree Height

2-stage system 797 17
single tree pose classifier 4049 12

Table 4.5: Tradeoffs in Decision Tree Pose Classification Strategies
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Chapter 5

Conclusions

The Information Theoretic Decision Tree machine vision system described in this work

has proven to offer extremely rapid classification times for complex appearance-based mod-

els. Fundamental to the system’s operation, information theory has proven an effective

mechanism for classifying machine vision feature vectors. The ITDT system constructs a

binary decision tree by recursively splitting a set of training feature vectors with hyperplanes

placed to maximize the information gained by a particular split - minimizing the number

of binary questions which must be asked to correctly classify the training data. Using a

local optimization algorithm wrapped with simulated annealing, hyperplanes are placed at

nearly globally optimal information maxima, without knowledge of underlying probability

densities.

The author contributed new capabilities and optimizations to the ITDT system, which

began development three years ago under an Army Research Office contract. The author:

1. Developed the concept of exemplar grouping to incorporate translation and rotation

independence into the ITDT system.

2. Implemented a training system by which rotation and translation independence can

be achieved with limited target imagery.

3. Enhanced the local optimization procedure for hyperplane placement, thereby reduc-

ing the size of the decision trees constructed. As a result, test speed is increased and

the system is less susceptible to noise.

4. Optimized the tree construction process, yielding construction times nearly an order
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of magnitude faster, and enabling the system to operate on larger data sets.

This document is the first work to describe the ITDT system in a detailed fashion.

As such, the detailed treatment of the theoretical background presented herein is solely

the author’s. Much was learned of the fusion between information theory and machine

vision during the course of this thesis. It is the author’s hope that this document preserves

this knowledge, enabling future researchers to leverage against it to reach an even greater

understanding of the problem of machine vision.



84

Appendix A

The Bayes Likelihood Ratio Test

(LRT) for Gaussian Distributions

The binary Bayes likelihood ratio test has been proven[30, pp. 24-27] to minimize the

average cost of a particular decision in a classifier. In general, this cost can be assigned

arbitrarily to bias any of four outcomes:

• C00: the cost of deciding hypothesis zero when hypothesis zero is correct.

• C01: the cost of deciding hypothesis zero when hypothesis one is correct.

• C11: the cost of deciding hypothesis one when hypothesis one is correct.

• C10: the cost of deciding hypothesis one when hypothesis zero is correct.

In some problems, the cost of deciding hypothesis zero (H0) when H1 was the correct

choice may actually be higher than the reverse, deciding H1 when H0 was correct. Au-

tomatic target recognition (ATR) in particular assigns these costs indirectly. In a typical

ATR problem, a machine vision system is designed to decide, given a digital image, whether

a target is present in the image or no target is present. All non-target features or clutter

(trees, fields, some dwellings, etc.) invariably fall under H0 and targets fall under H1. In a

military application, a high cost of identifying clutter as a target (a false alarm) is based on

the cost of sending a vehicle to that location. On the other hand, the low cost of missing

a target which was improperly classified as clutter is justified because, invariably, other

nearby targets which weren’t missed will warrant initiating a response anyway.
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In the problem and solution regions presented in figure 1.11, the costs were set to their

extremes. The cost of either correct decision C00 and C11 was set to zero, or no cost at all;

false alarms (C10) and misses (C01) were both assigned a cost of one.

Apart from the costs of classification, some additional pieces of information are required

to evaluate the Bayes likelihood ratio test: a priori probabilities and distributions for each

hypothesis. In many problems the hypotheses can be assumed equally likely as it is in

this binary detection problem, where P (H0) = P (H1) = 1/2. The distributions of the data

comprising each hypothesis can be estimated from observations of real data. In our example,

each is a Gaussian normal distribution: p(H0) = N(5; 2.5) and p(H1) = N(15; 2.5).

A detailed derivation of the Bayes criterion likelihood ratio test can be found in Van

Trees’s classic text Detection, Estimation, and Modulation Theory [30, pp. 24-27]. Observ-

ing a feature vector R, equation A.1 defines the optimal Bayes decision in terms of the

underlying probability densities and costs.

p(R|H1)

p(R|H0)

H1

?
H0

P (H0)(C10 − C00)

P (H1)(C01 − C11)
(A.1)

If the costs and a priori probabilities are assigned as discussed, we obtain,

p(R|H1)

p(R|H0)

H1

?
H0

(1/2)(1 − 0)

(1/2)(1 − 0)
(A.2)

p(R|H1)

p(R|H0)

H1

?
H0

1. (A.3)

The threshold of the test, η, on the right side of the inequality is now equal to 1 for our

example. The left side of the inequality is the likelihood ratio, defined as the ratio of the

conditional probabilities of feature vector R given hypothesis one in the numerator and given

hypothesis zero in the denominator. In this problem, the densities are two dimensional, so

the likelihood ratio is formed from the joint densities, each the product of two independent

and identically distributed Gaussian probability density functions, as shown in equation

A.4.

p(x, y) =
1

2πσ2
e−

(x−m)2−(y−m)2

2σ2 (A.4)
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From equations A.3 and A.4, the Bayes likelihood ratio test for this configuration is

derived:

1
2πσ2

1
exp(− (x−m1)2−(y−m1)2

2σ2 )

1
2πσ2

0
exp(− (x−m0)2−(y−m)2

2σ2
0

)

H1

?
H0

1 (A.5)

ln(
σ2

0

σ2
1

)−
(x−m1)2 + (y −m1)2

2σ2
1

+
(x−m0)2 + (y −m0)2

2σ2
0

H1

?
H0

0 (A.6)

Equation A.6 in actuality expresses a log-likelihood ratio, which is valid because the

natural logarithm is a monotonically increasing function. Additionally, since both densities

have equal variance, the expression can be further simplified.

−(x−m1)2 − (y −m1)2 + (x−m0)2 + (y −m0)2
H1

?
H0

0 (A.7)

x(m1 −m0) + y(m1 −m0)−m2
1 +m2

0

H1

?
H0

0 (A.8)

x+ y
H1

?
H0

m2
1 −m

2
0

m1 −m0
(A.9)

The Bayes likelihood ratio test in equation A.9 minimizes the probability of error when

used as a binary classifier with hypotheses characterized by symmetric 2D normal densities,

each formed from two i.i.d. jointly normal distributions with equal variance throughout.

For the specific case of two densities with means at 5 and 15, equation A.10 is the explicit

likelihood ratio test, producing the boundary seen in figure 1.11.

x+ y
H1

?
H0

20 (A.10)
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Appendix B

Bayes LRT Generalized for

N−Dimensional Symmetrical

Gaussian Distributions

A useful result presaged by the above derivations is a more general binary hypothesis

LRT for N-dimensional symmetric Gaussian distributions. In this generalization we will al-

low each component of the mean vector to take on unrelated values. Vector components will

be expressed with xi, denoting the ith component of x. Thus, the mean vector components

under hypotheses 0 and 1 will be given, respectively, by m0i and m1i.

∏N−1
i=0

1
σ
√

2π
e(xi−m0i)2/2σ2∏N−1

i=0
1

σ
√

2π
e(xi−m1i)2/2σ2

H1

?
H0

1 (B.1)

N−1∏
i=0

e
(xi−m1i)

2−(xi−m0i)
2

2σ2
H1

?
H0

1 (B.2)

N−1∑
i=0

[(xi −m1i)
2 − (xi −m0i)

2]
H1

?
H0

0 (B.3)

N−1∑
i=0

[2(m0i −m1i)xi +m2
1i −m

2
0i]

H1

?
H0

0 (B.4)

Therefore, hyperplanes of the form aixi+b = 0 are the type of boundary which minimizes

the probability of error for Bayes likelihood ratio tests with binary hypotheses characterized

by N-dimensional symmetrical normal distributions with equal variance. For more involved
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problems, the boundaries become increasingly complex. However, one can approximate any

high-dimensional boundary as a series of hyperplanes, reducing a complex problem to many

easily solved problems.
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Appendix C

Information Function Partial

Derivatives (General Case)

Ryan Tomasetti[29, pp.7-10]

Let h1, . . . , hm+1 be the m+ 1 coefficients of the hyperplane where m is the dimension

of the image space. Let d1, . . . , dn be the perpendicular distances from the n image points

to the hyperplane.

∂
∂hj

I(P;Y) =
n∑
k=1

∂dk
∂hj

∂
∂dk

I(P;Y)

=
n∑
k=1

∂dk
∂hj

[
∂
∂dk

H(P) + ∂
∂dk

H(Y)− ∂
∂dk

H(P,Y)
]

(C.1)

∂
∂dk

H(P) = ∂
∂dk

[log(n)]

= 0 (C.2)
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∂
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In all of these functions, the derivative of the Q function is necessary. While an approx-

imation is acceptable for direct evaluation of Q, we should resort to the definition in order

to compute the derivative.



92

∂
∂dk

Q

(
dk
σ

)
=

1
√

2π
∂
∂dk

∞∫
dk
σ

e−
1
2
λ2
dλ

= −
1
√

2π

dk
σ∫
∞

e−
1
2
λ2
dλ

= −
1

σ
√

2π
e
− 1

2

(
dk
σ

)2

(C.5)

Finally, we need the derivative of the distance function with respect to the hyperplane

coefficients. Let x1, . . . , xn be the n image points in the image space.
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(C.6)

Combining (C.2), (C.3), (C.4), and (C.5) into (C.1), we receive,
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where ∂dk
∂hj

is as defined in (C.6).
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