
Using ASSISTments to Help Teachers

Recover COVID19-Related Learning Loss

An Interactive Qualifying Project submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of Bachelor of Science

By: Shundong Li, Gong Fan

October 13, 2021

Report Submitted To:

Professor Neil Heffernan, Worcester Polytechnic Institute

This report represents the work of WPI undergraduate students submitted to the Faculty as

evidence of a degree requirement. WPI routinely publishes these reports on its website without

editorial or peer review. For more information about the project’s program at WPI, see

http://www.wpi.edu/Academics/Projects.

Abstract

The COVID pandemic hit heavily on all areas of industries, especially on education. Professor

Neil Heffernan, also the founder of ASSISTments, enlisted our help to recoup the loss that

occurred during the pandemic. ASSISTmentsis a tool for both teachers and students to use and

improve their efficiency. Teachers can easily assign homework and analyze students'

performance or learning experience, where students can have an easier time understanding the

topic by getting prompt feedback from ASSISTments. Our team aims to make this process even

more efficient on the teacher's side by providing a tool to predict the score of a student’s answer

and give suggestions for comments. We worked on the training of NLP models that would be

deployed into classrooms closely after the end of this project. The NLP model aims to give better

and more accurate scores and comments suggestions to teachers. The Bert transformer method is

used in this NLP model. We also looked into methods of data parsing and other model ensembles

to compare with the models we plan to deploy

I

Table of Contents

Abstract I

Table of Contents II

List of Figures III

List of Tables III

Introduction 1

Background 3
Package setup (venv & VScode) 3
Model Prediction Example (Localhost) 6
BERT transformer models 7
Logistics regression 7
Regex 7
Ten-fold cross-validation 8

Methodology 9
Separate code form answers 9
Model Training 9

Data Analysis 13
Grading Models 13
Code Feature Logistic Regression 14
Manual Input 15

Conclusions and Recommendations 16
Grading Models 16
Future Work 16

II

List of Figures

Figure 1, an example of using the venv python 3.7.11 as an interpreter 4

Figure 2, the example of select interpreter path page 5

Figure 3, the example of the select kernel for jupyter notebook 5

Figure 4, an example of the servertest page 6

Figure 5, an example of a cleaned dataset 10

Figure 6, an example of parsed out code from the answer 11

Figure 7, an example of added feature columns 11

Figure 8, Accuracy and confusion matrix for the logistic regression 14

Figure 9, one example of our altered input and predicted grade 15

List of Tables

Table 1, validation result for the models trained differently 13

III

Introduction
Natural Language Processing (NLP) is a dedicated branch of machine learning, artificial

intelligence in the direction of linguistics. The application of NLP ranges from processing speech

and text like optical character recognition to high-level applications like Apple Siri and Amazon

Alexa. The general goal for NLP is making the computer capable of “understanding” the natural

language contents. Due to the vastly different goals of each NLP application, the definition of

“understand” varies from task to task.

ASSISTments is a free public service aimed to serve schools and teachers with better

maths teaching. Despite the marketing, ASSISTments also have data and research into other

topics of tutoring. The quick comments service our team has been assigned aims to build an

online platform that could take in previous students’ answers, teachers’ grading, and replies and

predict the scores of new students who take the same question. Grading and commenting on the

open answer questions is much more complicated than multiple choice answers because there is

no “correct answer.” Even if there are keywords for each question, the logistics between the

keywords for each question varies tremendously, making regular parsing and checking wildly

inaccurate. Not to mention there are usually multiple approaches for one math problem.

Therefore, the modeling and prediction process relies on the NLP technology we have introduced

previously.

1

Quick comments service is already in the production stage in ASSISTments to help

predict open answer math problems. Professor Heffernan wants to deploy it to the CS2223

algorithms course at WPI. But deploying the models previously trained on math questions to

algorithm quizzes makes no sense. Therefore, our team aims to train the models for the course

and assess if the models are reliable enough to deploy.

2

Background

Package setup (venv & VScode)

Setting up the packages needed for the quick comments services can be problematic if we

install them directly onto the python we currently use. Several packages rely on Python 3.7 that

the previous developers worked on before, and specific packages we currently use also conflict

with the requirements.

We have tried parallel installing Python 3.7 onto our machine, and it still ended up with

weird conflicts when we proceeded to install the packages. The most frustration-free approach

was to use virtualenv to create a virtual Python environment to install the packages. The steps are

shown on the next page. However, setting up with the steps below still requires the developers to

activate and deactivate each time, and we came up with a solution that resolves this hassle.

3

Create virtualenv (One-time setup)

● virtualenv -p python3 venv

● (if default python3 version is not python 3.7 and parallels installed another python 3.7

instances, change the command with virtualenv -p python3.7 venv)

● Add venv in .gitignore file

Activate virtualenv

● source venv/bin/activate

Install from requirements.txt

● pip install -r requirements.txt

Generate requirements.txt after each new installation before pushing to git

● pip freeze > requirements.txt

Deactivate

● deactivate

Since both of us on the team use VScode to develop, we only looked into methods that

work with VScode. After installing the python plugin for VScode from Microsoft, we can set the

default python interpreter for each project after opening a python file by clicking the python

version at the lower left of the screen. Or we can use the shortcut ctrl+shift+P to open the

command palette and type in python: Select Interpreter.

Figure 1, an example of using the venv python 3.7.11 as an interpreter

4

Both methods will open the select interpreter pop-up shown below. We can then navigate

to the path where we installed the virtual environment and enter it. After doing this, every time

we hit run in VScode, it will run with the designated virtual environment.

Figure 2, the example of select interpreter path page

Also, suppose we want to use Jupyter Notebook to develop. In that case, the workaround

is similar: we first install the Jupyter Notebook Renderers plugin from Microsoft, we then

navigate to an ipynb file, and on the upper right corner, there is a button for us to select the

python kernel for the notebook. The remaining setup is similar to the previous setup with the

python interpreter.

Figure 3, the example of the select kernel for jupyter notebook

5

Setting up the environment is crucial before developing, especially in a short timeframe

like seven-week IQP; we hope our report can also help future students who continue our work.

Model Prediction Example (Localhost)

Currently, the quick comments service is developed with flask micro-framework. To run

the app, we can execute flask run or execute the app.py file. The default port for the localhost is

5000. We will only see the default page with “Server is running” if we go to localhost:5000. If

we go to localhost:5000/servertest, we can then access the test page for the service. We have also

used this page to validate our models are working as expected by plugging in our unique results

and seeing how the model predicts. Below is an example of the servertest page:

Figure 4, an example of the servertest page

6

BERT transformer models

BERT stands for Bidirectional Encoder Representations from Transformers. The

transformer means a deep learning model that each output node feeds back to the input nodes.

The weights for each node also change with each evaluation. On the other hand, bi-directional

means that the model can read the text input beginning at the right or left. This feature is made

possible because of the transformer.

Logistics regression

Logistics regression is a statistical model that utilizes a function that takes in data and

generates discrete regression results. This modeling fits perfectly for the quick comments

services because instead of continuous results, we would like our prediction of scores to be

integers within [0, 4]. At least for the comment service, we can create simple logistics regression

to compare with the BERT models.

Regex

Regex stands for the regular expression. A regular expression is a sequence of characters

that defines a search pattern. A program can use an expression to look for matching groups

inside a string and isolate them. Regex can be helpful in input validations or looking for specific

patterns to be replaced or removed.

7

Ten-fold cross-validation

The cross-validation is an approach to divide our dataset into equal size “folds”

randomly, and for each fold, we train the model with the rest of the “folds” and predict the result

onto the specific fold. We use ten-fold cross-validation in our case. The validation process is like

this:

● Randomly assign numbers within [1, 10] for each row in the dataset; these numbers

represent each row’s fold.

● Starting with fold 1, we train the model in fold 2 to 10 and predict the answers for fold 1

● Move to the next fold, train again with the reset, predict. Loop until all folds are

predicted.

● Save all the predicted results back to the original file.

● Run the testing functions

Professor Heffernan stressed multiple times that as time moves forward, there will always

be newer models and methods to process and predict the dataset, like how machine learning

evolved to deep learning; simple transformer models changed to BERT transformer models. But

cross-validation would always be applicable to verify if the model holds water. And when

processing the data, it is crucial to get some good results, and it is more important to make sense

of the generated good result.

8

Methodology

1. Separate code form answers

Currently, the QuickComment Service uses the Bert NLP model to predict comments and

scores for student answers. However, the problem with this model is that code is treated the same

as other natural languages; this could be a point of improvement to increase the accuracy of the

prediction of comments and scores.

To separate the code from text, regex expressions are used to identify code from student

answers. Then the built-in function of the regex library can separate the identified portion into

another column in the data.

Code has some pacific patterns, such as parentheses or other special characters and

patterns that normally do not appear in texts. Regex expressions can capture those groups such as

(), =>, if(‘condition’), etc.

2. Model Training

The other difficulty when training models on the algorithm course data is the data

parsing. Previous quick comments services fetch the required data from the ASSISTments SQL

database directly, but we received the data directly in CSV format. Since the Python class for

both models also fetches data from the SQL directly, we decided to create two new classes for

the algorithm models. We saved the new models into the script

“SBERT_canberra_algorithm_model.py”

9

After we settled with the model classes, we developed five functions for the different

process stages: data cleaning, code parsing, data training, data training for the ten-fold, and

finally, model testing. Detailed explanations are shown below:

● data cleaning

We first read the CSV file and store it into a data frame object data_df; we then take out

the problem id column to get all unique ids. To ensure the reliability of the model, we would

drop any model with less than 50 student responses. We then assign random fold tags (from 0 to

9) to a new column named folds for later ten folds testing. We also strip the HTML tags from

students’ comments because the response is fetched from ASSISTments directly. Finally, we

would save data_df into a new CSV file with the original filename attached with “_randomized”

in the end.

This function also returns the data_df object for potential references. When detecting

there is already a column named folds in the data frame, we would say that this dataset is already

cleaned and return the data_df directly without any of the processing listed above.

Figure 5, an example of a cleaned dataset (note the uncleaned HTML tag in the body column)
10

● code parsing

This function is our implementation of using regex to parse out the code from responses.

As described in methodology subsection one, code has been isolated from student answers using

regex expressions.

Figure 6, an example of parsed out code from the answer

For comparison, we also saved a column of answers without the code to make a

comparison model with the original one. We also counted the number of codes and characters in

the answer and saved them for the simple logistics regression.

Figure 7, an example of added feature columns

11

● data training & training for the ten-fold

We had two functions to train the data; the first one does not use ten-fold

cross-validation. Therefore all data for each question id will be used and trained; these models

are mainly used to deploy back to ASSISTments. But like we said before, if we do not perform

any kind of validation, we cannot make sure the models mainly designed for math problems can

handle computer science algorithm questions with code well. Therefore, we have another

function to train the ten-fold models.

Both functions will detect if there are already any existing models for the specific

question id in the designated path. If that is the case, the direct training function will skip to the

next id, while the ten-fold function will read in the model, perform prediction on the

corresponding fold, and finally update the file with the predicted answers. If there is no such

model, the production training function will train the model for that id, and the ten-fold function

will train the ten models for that id.

● model testing

Since we already have the student received answers from the dataset and the predicted

answer from the model generated by the process shown above, we can run the tests for AUC,

RMSE, and cohen_kappa.

12

Data Analysis

1. Grading Models

AUC RMSE

With code 0.719 1.229

Without code 0.703 1.242

Table 1, validation result for the models trained differently

For the table above, the first column with/ without code means that whether the

student_answer column we trained with has the code part purged or not. The second column,

AUC, stands for the AUC score, which measures the total area under the ROC curve. In other

words, for example, we have a 71.867% chance to correctly predict the student score from the

ten-fold cross-validation with the model “with code.” The third column, RMSE, stands for the

root mean square deviation, indicating how our data fits our model. The RMSE of 1.22 or 1.24

means that the model would generally predict the answer around 1.2 points off the actual score.

13

The table on the previous page shows our model performance did not change greatly even

though we purged the student answer code. This might be partly because the amount of code is

just a mere fraction compared to the total answer length. Also, the answering logic is mainly

conveyed by the language instead of the code, especially within restricted length problems. But

this also gives us the idea of separating the code and ensemble the non-code SBERT model with

logic regression or other models about the code. We did not fully complete the process, and the

future team could start from there.

2. Code Feature Logistic Regression

After the student response has been parsed to code and text, logistic regression to predict

an answers’ score is performed on feature columns of the number of code segments and the

number of special characters in the text. The data set is slipped into ten folds, with one fold for

testing. The logistic regression is performed with the Scikit-learn algorithm, and we will obtain

a classifier. Below is the accuracy of our classifier and the confusion matrix generated.

Figure 8, Accuracy and confusion matrix for the logistic regression

14

As we can see, the accuracy is around 0.41, which is not so great. However, it is better

than randomly guessing the score from 0-4, which is 0.2.

3. Manual Input

After the above analysis, we attempted to write our answers to see how the models

perform from new samples. We altered the expressions from the given answers to ensure the

given score did not deviate much from the actual score. Although we only made ten attempts

over three questions, the model predicted perfectly from the questions we altered. Again, ten

samples among three questions are nowhere statistically significant, but we are still quite

satisfied with the result of the model.

Figure 9, one example of our altered input and predicted grade

15

Conclusions and Recommendations

1. Grading Models

Throughout this project, we first familiarized ourselves with NLP and the project. We

then trained both commenting and grading models for the dataset. We worked towards the first

evaluation steps for the comment models as we graded the answers and saw how the grading

models assisted in improving these models. The next step would be working on the

improvement of these models. For the grading models, we evaluated their performance with two

conditions and designed simple logistic regression to compare them. We did not directly modify

the models to yield better results; instead, we attempted to derivative code-related features from

the students’ answers. Hopefully, our work and this report will help the following team continue

from our topic.

2. Future Work

Our team will also help the TAs for the incoming 2021 B-term algorithm course to use

ASSISTments in the class.

Although we did not have the time to develop a robust way to ensemble code features

into the existing SBERT models, future teams can start from here and see if the approach could

give more accuracy. Together with the improved grading models, the next team’s step is to

improve comment models.

16

