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Abstract 

 The United States Military has increased their demand for engines that can fly in 

Unmanned Aerial Vehicles (UAVs).  These engines must be powerful and light enough to 

maximize the aircraft’s efficiency.  The objective of this project is to model the dynamic 

behavior of the O’Neill Motor Company, Inc.’s innovative coaxial counter-rotating cam engine 

called the NorEaster engine.  The engine’s output power was calculated using a mathematical 

model that we developed using Mathcad, and the weights of the newest NorEaster engine 

designs were obtained from another MQP team.  Therefore, we were able to calculate the power 

to weight ratio of the NorEaster engine.  The military’s desired minimum power to weight ratio 

for the NorEaster engine is 0.5.  Additionally, we performed dynamometer tests and pressure 

tests on the existing NorEaster engine prototype and developed mathematical models for both 

gasoline and diesel NorEaster engine designs.  A future NorEaster engine that operates on 

gasoline, has a 4 inch bore, a firing temperature of 2000 K, and a compression ratio of 10 is 

predicted to have a power to weight ratio of 0.46.  Similarly, a future NorEaster engine design 

that operates on diesel fuel with a 4 inch bore, a cut off ratio of 2.75, and a compression ratio of 

20 is predicted to have a power to weight ratio of 0.49.  Based on these results, we recommend 

further development of an eight cylinder diesel engine with the specified parameters. 
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Executive Summary 

 The NorEaster engine designed by the O’Neill Motor Company, Inc. is an innovative 

cam engine that utilizes coaxial counter rotation to generate lift for Unmanned Aerial Vehicles 

(UAVs).  The objective of this report is to calculate the power to weight ratio of the NorEaster 

engine and the new designs associated with it.  The military’s desired minimum power to weight 

ratio for the NorEaster engine is 0.5.   

Methodology 

 In order to understand the strengths and weaknesses of the existing NorEaster prototype, 

we researched the types of rotors used on helicopters and performed dynamometer and pressure 

tests on the current prototype engine.  

During our rotor analysis, we assessed the limitations on the diameter of the rotor blades 

and learned how they vary with angular velocity.  To ensure a safe and reliable flight, the rotor 

tip velocity must remain subsonic.  Given this limitation, we discovered that the maximum rotor 

radius varies with altitude, forward speed and rpm.  The maximum engine rpm values are 3120, 

4052, and 4984 for the three forward speeds of 300 mph, 200 mph and 100 mph, respectively.  

We discovered that the engine will stall at an angle of attack of approximately 20 degrees when 

using the requested airfoil, NACA 0015.   

 In addition to rotor analysis, we analyzed the output power of the existing NorEaster 

engine by performing a dynamometer test.  We calculated the power of the prototype engine by 

measuring the current and voltage across several resistors.  From this test, we discovered that the 

output power increased by 0.389 horsepower for every increase of 100 rpm.  As anticipated, the 

power produced by the prototype NorEaster engine increased as the engine’s rpm increased.   

 Finally, we performed a pressure test to calculate the pressure inside the cylinders of the 

prototype NorEaster engine.  We installed a Dytran pressure transducer on the inside surface of 

the cylinder head and relayed its signal through a charge amplifier.  We read the signal on an HP 

Dynamic Signal Analyzer in mV as a function of time and converted it to psi using a 6.22 

mV/psi conversion factor that we measured during a calibration test.  During the pressure test, 

we mounted a shaft encoder on the outer rotating shaft of the NorEaster engine in order to 
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pinpoint the piston’s location at top dead center (TDC) in relation to the pressure readings.  From 

this data, we discovered that there are some leaks in the current prototype, since its average 

maximum pressure reading was only 355.8 psi.  Ideally, the maximum pressure inside of the 

cylinder head should be around 1000 psi.   

Results 

 Upon analyzing the prototype of the NorEaster engine, we decided to use the air-standard 

Otto Cycle analysis method to calculate the power produced by existing and future engine 

designs.  We developed two mathematical models that calculate the anticipated power for the 

engine and divided it by the anticipated engine weight for diesel and gasoline designs. The 

values for the engine weight were determined by another MQP team that is working on 

designing a new NorEaster engine.  For the gasoline engine, we recommend using a 4 inch bore 

with a compression ratio of 10 and a firing temperature of 2000 K in order to obtain a power to 

weight ratio of 0.46.  For the diesel engine, we recommend using a 4 inch bore with a 

compression ratio of 20 and a cut-off ratio of 2.75 in order to obtain a power to weight ratio of 

0.49.   

Conclusion and Recommendations 

Based on the power to weight ratios that we calculated using our mathematical model, 

further development of the diesel NorEaster engine design is recommended.  We would suggest 

building a second generation prototype of the NorEaster engine with eight cylinder heads and the 

optimized parameters provided above.   
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1.0 Introduction 

 At the start of the 21
st
 century, the United States military increased production of 

unmanned aerial vehicles (UAV).  UAVs, also known as drones, are primarily used for two 

purposes: combat missions and surveillance missions.  They minimize the harm presented to 

American troops and increase tactical advantages during war.  Drones equipped with modern 

video and infrared technology can be used for surveillance missions.  They can provide military 

officials with real-time images of dangerous locations that are of higher quality than the satellite 

images military officials currently rely on.  Because UAVs are relatively small targets that are 

difficult to detect, they provide the military with new opportunities during war without putting 

soldiers in danger.  Most UAVs are small airplanes that can quickly fly over an area and collect 

the information needed.  

 The military has recently developed a need for a more agile UAV that can provide clearer 

images and more accurate calculations for combat missions.  Helicopter drones are an excellent 

way to meet this need since they can hover over an area for a period of time and easily move in 

all three dimensions.  Upon recognizing this need, the O’Neill Motor Company, Inc. began 

developing a small cam engine that is intended for military helicopter drones.  The NorEaster 

engine produces counter-rotation between two co-axial blades to obtain lift and thrust, so there is 

no need for a tail rotor.  Due to the nature of this design, the most significant advantage of the 

engine is the inherent 4:1 gear reduction ratio that allows for slow revolutions of the shaft and 

eliminates the need for a gearbox.   

 The goal of our project is to identify the output power of the NorEaster engine in order to 

assess its uses in the field.  The military’s desired minimum power to weight ratio for the 

NorEaster engine is 0.5.  We have concentrated our efforts on determining the output power of 

the NorEaster engine and identifying several parameters that can be adjusted in order to 

maximize it.  The O’Neill Motor Company, Inc.’s objective is to design a NorEaster engine that 

meets the military’s requirements and can be used to increase their capabilities. 

Our project bridges the gap in information between the prototype design of the NorEaster 

engine and the development of a more effective product by creating a model which simulates the 

engine’s performance.  We researched means of optimizing an engine’s power and identified the 

important aspects of engine design that must be considered in next generation engines.  During 
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our investigation of the engine’s output power, we compared our results to those of existing 

helicopter’s to assess the benefits of the NorEaster engine. 

In order to analyze the output power of the NorEaster engine, we modeled the engine in a 

computer program called Mathcad.  Our mathematical model incorporates the thermodynamic 

equations for work and power of a four-stroke engine.  We performed several power-related 

experiments to gather information on the NorEaster engine and assess the current design.  These 

experiments and models were used to determine how to increase the engine’s output power.  

Chapter 4 provides details on how to calculate the output power of the NorEaster engine and 

compares this innovative design to other competitive engine designs.  The analysis of the 

information that we gathered led to the development of improved engine designs that can 

enhance the performance of the NorEaster engine and increase its appeal amongst the branches 

of the United States military that use UAV technology.    



3 

 

2.0 Literature Review 

Aircraft engines have a variety of complicated and innovative designs.  For example, fixed 

wing aircraft are typically propelled by turbofan engines, while rotating blade aircraft are often 

propelled by turboprop or turboshaft engines.  The O’Neill Motor Company, Inc. has introduced 

another type of aircraft engine: the cam engine.  The NorEaster engine uses a cam design to 

generate power.   

2.1 How an Engine Works 

 Engines are machines containing moving parts that are used to generate motion.  There 

are many different engine parameters, such as fuel type, compression ratio and bore size, that can 

be altered to accommodate different applications such as size, power, and weight.  As each 

engine is designed to meet the desired specifications, these parameters can be modified to 

optimize the engine’s performance for that application. 

2.1.1 Four-Stroke Cycle 

 The majority of gasoline powered reciprocating aircraft and vehicle engines operate on a 

four-stroke cycle called the Otto or Diesel cycle.  As demonstrated in Figure 1, the four-stroke 

cycle goes through intake, compression, power, and exhaust strokes.  The intake stroke begins 

with the piston positioned at top-dead center (TDC) and ends with the piston positioned at 

bottom-dead center (BDC), where the cylinder volume is at its maximum (stages A to 1).  During 

this stroke, a fuel mixture is drawn into the cylinder through an inlet valve as the volume within 

the cylinder increases.  As the inlet valve closes, the compression stroke is initiated.  During this 

stroke (stages 1 to 2), the mixture within the cylinder is compressed and the piston slides to TDC 

again.  Following the compression stroke, the pressure in the cylinder rapidly increases as the 

compressed fuel is ignited (stages 2 to 3).  Next, the power stroke occurs as ignited fuel is 

converted into energy (stages 3 to 4).  The exhaust valve is then opened (stages 4 to B).  The 

exhaust stoke occurs as the piston reaches BDC and the gases and unburned mixture exit the 

cylinder (stages B to A).   
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Figure 1: Pressure versus Volume Diagram for an Ideal Otto Cycle (Glenn Research Center, 2008) 

 As shown in Figure 1, each stage of the Otto Cycle varies depending on the pressure and 

the specific volume in an engine’s cylinder head.  The work is a function of the engine’s 

pressures and compression ratio.  The work per cycle is the area between the compression stroke 

and power stroke.  Isentropic relationships can be used to assess the work, which is shaded in 

Figure 1.  Upon analyzing the pressures and compression ratios at each of the different stages of 

the Otto cycle, the work and the power of a four-stroke engine can be determined. 

2.1.2 Isentropic Relationships 

When assessing the output work of an Otto Cycle, an isentropic relationship can be 

assumed for the compression and the power strokes.  In an isentropic relationship, there is 

constant entropy; therefore, the process is both adiabatic and reversible (Moran, 2011, p. 315).  

The combination of these properties allow for engineers to use the Ideal Gas Tables to determine 

the relationship between the pressure, temperature, entropy, and internal energy at two different 

states.  Therefore, the change in pressure, P, and temperature, T, can be determined by using the 

following equations,  
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where the compression ratio, r, is the ratio of maximum to minimum volume during the 

compression stroke and 𝛾 is the ratio of specific heats.  During the combustion process (stages 2-

3), heat is released by, 

        
  

  
 

where Q is the heat released per pound of fuel, and f is the fuel to air ratio for combustion.  Also 

the pressure during combustion, 

      (
  

  
) 

can be calculated from the ideal gas law.  During the power stroke (stages 3-4), work is done on 

the piston by the gas.  Equations used during the compression stroke can be used similarly to 

analyze both pressure and temperature during the expansion stroke.  The relations used are: 

  

  
     

  

  
      

All heat is transferred to the surroundings between stages 4 and B in Figure 1; therefore, the 

temperature and pressure return to atmospheric conditions. 

 In a diesel engine, another parameter called the cut-off ratio,   , must be used to calculate 

the engine’s output power.  The cut-off ratio is the ratio of the volume in the cylinder at the start 

of ignition to the volume at the end of ignition (Engineering Software).  

   
  

  
 

 Work is done by the piston on the gas during the compression stroke and work is done by 

the gas on the piston during the expansion stroke.  The difference between the work done during 

these two strokes is the work produced during the four-stroke cycle.  Therefore the work, W, can 

be evaluated by the difference of the heat into the gas and the heat rejected by the gas which is 

represented by the formula:  

     (     )  (     )  

The output power of the engine is determined by dividing the work by the time it takes for one 

cycle to be completed. 
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2.1.3 Air-Standard Otto Cycle Analysis 

 An air-standard analysis is used when the temperature variation between several of the 

states exceeds 1000 K (Moran 2011, p 497).  According to calculations performed in Chapter 4 

of this report, the temperature in the existing NorEaster engine varies from room temperature 

(298 K) to over 1000 K, so the air-standard Otto Cycle analysis should be used to calculate the 

work.   

During this cycle, one must assume that heat addition occurs instantaneously while the 

piston is at top dead center (Moran 2011, p 497).  This causes the specific heat at constant 

pressure or constant volume to vary too much for the power calculation to depend on a constant 

value.  Therefore, the work performed by the engine is calculated using internal energies at each 

of the four stages.   

Figure 2 demonstrates how to use an air-standard analysis for an Otto Cycle based on an 

example from page 499-501 of Moran and Shapiro’s “Fundamentals of Engineering 

Thermodynamics.”  Table 1 identifies the variables and known parameters for this example. The 

procedure used to calculate the power in this sample problem is also used to calculate the power 

of the NorEaster engine.   

  



7 

 

Title Variable Value 

Specific Heat at Constant Volume Cv 
     

      

     
 

Specific Heat Ratio γ     

Specific Gas Constant R1     

     

      

     
 

Temperature at 2 T2       

Temperature at 3 T3        

Temperature at 4 T4        

Pressure P2 
       

   

   
 

Volume V2          

Fuel Heating Value Q         

Compression Ratio r   

Cycle Frequency fc          

Ratio of Specific Volume at 2 vr2        

Ratio of Specific Volume at 4 vr4        

Work W Calculated 

Power Hp Calculated 

Table 1: Variables and Values Used to Calculate Power in Figure 2 
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Figure 2: Given Parameters and Variables from a Sample Problem (Moran and Shapiro, 2011) 

 The graph in Figure 3 shows the theoretical engine speed verses the power that one 

cylinder outputs. It is based on the results of the power calculation performed in Figure 2.  As 

can be viewed in the graph, power is directly related to speed. The slope of the line is 0.0566.  

This slope describes the rate at which the power increases with speed. 



9 

 

 
Figure 3: Increase in Power as the Engine Speed Increases 

The final critical component of completing a power analysis for an Otto Cycle is the 

efficiency (η).  As demonstrated in Figure 4, an actual Otto Cycle does not follow the same 

pressure-volume curve as the ideal Otto Cycle does.   

 

Figure 4: Pressure versus Volume Diagram of an Actual Otto Cycle (MIT, 2006) 

 In order to account for inefficiencies in an internal combustion engine, the value for η 

must be calculated using the following equation: 
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The actual output work is the product of the ideal output work and the efficiency rate.  Modern 

internal combustion engines that use gasoline still have relatively low efficiencies compared to 

other methods of power generation such as turbines.  However, turbines are too complex and 

expensive to completely replace the internal combustion engine. 

For internal combustion engines, a correlation can be made between an engine’s 

compression ratio and its efficiency.  Figure 5 shows the typical engine efficiency for a gasoline 

fueled engine at various compression ratios. 

 

Figure 5: Thermal Efficiency depending on the Compression Ratio (MIT, 2006) 

For an internal combustion engine with a compression ratio of 7, the ideal thermal efficiency is 

approximately 50% (MIT, 2006).  However, the actual efficiency for an internal combustion 

engine averages only 30% (MIT, 2006).  Since gasoline engines do not operate at their ideal 

state, the efficiency decreases by approximately 20%.  As the compression ratio increases, the 

thermal efficiency of an internal combustion engine also increases, until it eventually approaches 

a maximum efficiency.   

2.1.4 Crankshaft Engines 

 Crankshaft engines consist of pistons that reciprocate within cylinders and transmit 

power to a crankshaft through a connecting rod.  The connecting rods are attached to the 

crankshaft and oscillate around the shaft while the pistons move within the cylinder.  The 

cylinders of the engine are typically arranged in one of three ways: inline, V, or flat.  When 

arranged inline, all cylinders are aligned in a single bank.  Both V arrangements (Figure 6) and 
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flat arrangements consist of cylinders arranged in two banks in which the cylinders are set at an 

angle to one another or with the angle being 180 degrees for an approved engine. 

 

Figure 6: The Interior of a V-Arrangement Crank Shaft Engine (Loeffler, 2003) 

2.1.5 Cam Engines 

 Similar to crankshaft engines, cam engines also consist of a piston that reciprocates 

within cylinders powered by a two- or four-stroke combustion process.  The difference is that the 

connecting rods motion is strictly translational.  This restricts pivoting at the linkage between the 

piston and the connecting rod.  Consequently, the connecting rods do not rotate around a 

crankshaft.  Instead, the connecting rods have followers which move within the groove of a 

rotating cam, as shown in Figure 7.  A four lobe cam allows the pistons to complete two 4-stroke 

cycles while the cam only revolves once.  This internal gearless reduction produces high torque 

and low rpm.  A helicopter can use a cam engine to increase the output power since there is no 

gearbox. 
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Figure 7: The NorEaster Engine’s Two-Lobe Cam Design 

2.1.6 The Existing NorEaster Engine Design 

The NorEaster engine uses the cam-follower technology described in Section 2.1.5 to 

convert the energy produced in the cylinder head into counter coaxial rotation.  In a gasoline 

engine, a fuel-air mixture is compressed and ignited by a spark, which in turn causes the cam to 

rotate.  In a diesel engine, a fuel-air mixture is compressed until its temperature is high enough to 

achieve self-ignition, at which point the cams rotate.  In the current prototype, the oval shaped 

path, labeled “Track A” in Figure 8, rotates at half the reciprocating speed of the pistons.  This 

relationship is a result of the two lobe design of the cam.   

Connecting Rod 

Follower 

Cam Track 
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Figure 8: The NorEaster’s Existing Cam Design 

Within the engine, there are two cams that rotate in opposite directions. This counter-

rotation between the cams creates the co-axial counter rotation of the rotors. The coaxial-counter 

rotation design is described in U.S. Patent No. 7,219,631 B1.   

The NorEaster engine utilizes gearless reduction to minimize the high speed required of a 

typical helicopter engines.  In turn, the NorEaster generates suitable rotor speeds to lift the 

aircraft off the ground without the assistance of external gears.  The current design operates at a 

2:1 gear ratio.  The new engine design will operate at a 4:1 gear ratio, which helps generate high 

torque and at low rpm.    

The NorEaster engine was designed to be perfectly balanced. The piston from the cam’s 

motion is a pure harmonic, which means that the velocity of the pistons follows a sinusoidal 

curve, and the connecting rods are in pure translation, thus adding no harmonics.  As the cam 

turns and the pistons reciprocate, the valves open and close at different points in the cycle.  

Additionally, the pistons and their connecting rods are not offset in the axial direction, which 

eliminates unbalanced moments.   

The existing NorEaster was designed with various cylinder arrangements in mind. For 

example, the transmission case and “snowflake plate” on the existing engine, shown in Figure 9, 

can accommodate up to eight cylinders.  Adding more cylinders to the existing design would 

Track A 
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increase the power produced by the NorEaster and help the O’Neill Motor Company, Inc. 

explore various ways to optimize the engine. 

 

Figure 9: View of the Snowflake Plate Inside of the NorEaster Engine 

 The fully assembled prototype of the NorEaster engine can be seen in Figure 10.  This 

was constructed by OMC before this project began.   

 

Figure 10: Fully Assembled NorEaster Engine 

Snowflake Plate 

Engine Cylinder 

Octagon Cover 

Aluminum Shell 

Center Shaft 
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2.1.7 Engine Design Optimization 

In order to optimize the engine design, we determined which parameters can be adjusted.  

Some of these parameters include the compression ratio, bore size, cut-off ratio, and firing 

temperature due to different fuels.  Gasoline and diesel engines are optimized in different ways.  

Despite these adjustable parameters, the optimized engine design must use the same helicopter 

blades and angle of attack to generate lift.   

2.2 Comparison to Existing Drone Engines and Companies 

The AAI RQ-7 Shadow, Reaper Drone, Predator Drone and Northrop Grumman MQ-8 

Fire Scout are existing UAVs that resemble the NorEaster engine.  In assessing the performance 

of the NorEaster engine, it is helpful to understand the existing UAV market and the 

competition’s ability to perform. 

The AAI RQ-7 Shadow is an UAV used for the U.S. Army and Marine Corps.  It 

includes an electro-optical/infrared camera that relays video in real time via a C-band line-of-

sight data link to the ground control station. While in flight, the Shadow uses a Wankel engine 

and can generate 38 brake horsepower (UAV Engines LTD, 2004).  A Wankel rotary engine, one 

of the most common types of rotary engines, uses a rotor to convert pressure into rotating motion 

instead of using conventional reciprocating pistons.  

            The Reaper Drone, also known as the MQ-9, is designed for long-endurance, high-

altitude surveillance. Much larger than the Shadow or Predator, the Reaper Drone is has a 

maximum takeoff weight of 10,500 pounds (UAV Engines LTD, 2004).  It utilizes a Honeywell 

TPE331-10 turboprop engine which outputs 950 shaft horsepower.  The turboprop engine drives 

the propeller of the aircraft using a reducing gear.  This gearing configuration allows the turbine 

to transform its high rpm and low torque to low rpm and high torque through gearing.  Unlike 

large aircraft turbines, the turboprop engine’s exhaust plays only a minor role in propulsion of 

the UAV.  

            The Predator Drone, or the MQ-1, is used primarily by the U.S. Air Force and Central 

Intelligence Agency.  This UAV can take off with a maximum weight of 2,250 pounds (Military 

Factory, 2010).  The Predator utilizes a Rotax 914F turbocharged four-cylinder engine (Military 

Factory, 2010).  The engine is horizontally-opposed, and it can produce 115 horsepower 
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(Military Factory, 2010).  It has a dry weight of 172 pounds, a bore of 3.1 inches, a stroke of 2.4 

inches, and a displacement of 74 cubic inches (Military Factory, 2010).  

            The Northrop Grumman MQ-8 Fire Scout is a UAV helicopter.  It is used by the U.S. 

Armed Forces to provide reconnaissance, situational awareness, and precision targeting for 

military support.  The Fire Scout has a maximum takeoff weight of 3,150 pounds (Northrop 

Grumman, 2011).  The Fire Scout is powered by a Rolls-Royce 250 turboshaft engine which 

produces 419.7 horsepower. The engine has a dry weight of 173 pounds (Northrop Grumman, 

2011).    

The Sikorsky X2, displayed in Figure 11, is a manned helicopter which was developed 

with a new blade configuration.  The configuration has two blades, which rotate in opposite 

directions on the same axis, like the NorEaster engine.  This allows for most of the forces to 

balance out and eliminates the need for a tail rotor.  The X2 recently broke the helicopter speed 

record at nearly 300 miles per hour.  It is powered by a LHTEC T800-LHT-801 turboshaft 

engine which produces between 1300 and 1800 shaft horsepower.  It has a maximum takeoff 

weight of 7,937 pounds (Sikorsky, 2011).  Its rotor diameter is 26.4 feet (Sikorsky, 2011).  

 

Figure 11: The Sikorsky X2 

The NorEaster engine incorporates the same counter rotating blade configuration seen in 

the Sikorsky X2 but sends power to the rotors differently.  The performance of the NorEaster 

engine can be compared to the Fire Scout, since that engine incorporates similar design aspects 

(Northrop Grumman, 2011).  These performance measures are provided in Chapter 4 of the 

report  
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3.0 Methodology 

 The combination of several research methods allowed us to determine how to model the 

NorEaster engine in a computer simulation, and in turn helped the O’Neill Motor Company Inc. 

determine the engine’s output power.  The approximate weight of the existing engine prototype 

was determined and used to calculate the power to weight ratio.  Additionally, several tests were 

run to analyze the current engine’s performance.  Research on the NorEaster engine can be used 

to understand the current limitations of the engine and determine how to best maximize its output 

power. 

3.1 Free Body Diagram of the NorEaster Engine 

The free body diagram, shown in Figure 12, demonstrates where the forces are exerted on 

the cams in the NorEaster engine.  In this example, the cam turns clockwise.  The forces acting 

on the cam are labeled in the legend on the figure. 

 

Figure 12: Free Body Diagram of the NorEaster Engine 
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The angle, φ, represents the pressure angle of the cam.  This rotation is due to the sum of all of 

the forces in their respective directions.  The piston force is exerted through the center of the 

cam.  Future designs can maximize the total force by increasing the piston force and the turning 

force.  Each of these forces is dependent upon a combination of engine parameters such as the 

bore size, compression ratio and temperatures within the cylinder.   

3.2 Weight Calculations 

Current Two Cylinder Engine 

 Individual Weight 

(lbs.) 

Number of Pieces Total Weight 

(lbs.) 

Octagon Cover 13 2 26 

Cam 31 2 62 

Snowflake Plate 6 2 12 

Engine Cylinder 9 2 18 

Aluminum Shell 55.88 1 55.88 

Nuts and Bolts -- --  

Gearbox Case -- 1  

Gears -- --  

Piston -- 2  

   Total Engine 

Weight 

173.88 

Table 2: Current Two Cylinder Engine Component Weights 

Several components of the existing engine were weighed within an accuracy of one 

pound.  SolidWorks was used to estimate the weight the aluminum shell.  These can be seen in 

Table 2.  The top octagon cover, one cam, one engine cylinder and one snowflake plate were 

removed from the engine and measured on a scale.  The total weight of the current engine, 

excluding the gearbox case, gears, pistons, nuts and bolts, is 173.85 pounds. 

Because all of the calculations performed in Chapter 4 are based on new engine designs, 

these weight calculations need to be adjusted.  The NorEaster Design Group provided weight 

calculations for a gasoline and diesel engine with differing bores.  This information can be found 

in Table 3. 
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Bore Size Gasoline Engine (lb) Diesel Engine (lb) 

3 inches 812 812 

4 inches 842.5 842.5 

5 inches 875.7 875.7 

Table 3: Weights from the NorEaster Design Group’s SolidWorks Models. 

3.3 Cylinder Compression Ratio Measurement 

 The compression ratio of the existing engine cylinders was determined by dividing the 

volume of the cylinder at bottom-dead center by the volume at top-dead center.  The volume of 

the cylinder was measured in two parts: volume where the stroke of the piston occurs and 

volume where the stroke of the piston does not occur.  The stroke and bore for the existing 

engine are both three inches. The stroke-volume for the existing NorEaster engine is 21.21 cubic 

inches. 

 The volume of the cylinder between top dead center and the cylinder walls was measured 

by determining the volume of liquid that fit in the top of the cylinder.  This is the volume of 

space that the compressed air fills when it is ignited.  The top of the cylinder was secured in a 

vise with the open head facing the ceiling.  A level was used to make sure that the cylinder was 

always measured in the same position relative to the ground and that all measurements were 

accurate.  Water was poured from a graduated cylinder into the top of the cylinder head until a 

meniscus formed and the amount of water that had been poured into the cylinder head was 

measured.  Five trials were completed in order to obtain an average volume of 59.8 mL (Table 

4). 

Test Measured Volume (mL) Additional Calc. Vol. (mL) Final Vol. (mL) 

1 53.5 5.4 58.9 

2 58.5 (error) 5.4 63.9 

3 54 5.4 59.4 

4 51 5.4 56.4 

5 55 5.4 60.4 

  Average 59.8 
Table 4: Measurements to Calculate the Volume when the Piston is at Top Dead Center 

 Therefore, the volume of the piston at top-dead center is 59.8 mL.  The volume of the 

piston at bottom-dead center is 407 mL.  The compression ratio is 7:1. 
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3.4 Mechanical Compression Test 

 A mechanical compression test was run on both cylinders to ensure that the compression 

in the cylinders was sufficient enough to run a pressure test.  A compression tester kit was 

connected to each of the cylinders at the spark plug holes and turned over the engine using the 

electric starter motor.  Three trials were run for each cylinder to obtain an average pressure.  The 

average mechanical cylinder compression for one cylinder head was 113 psi, and 115 psi for the 

other cylinder head. 

3.5 Blade to Engine Relationships 

In order to ensure that the NorEaster functions at optimized conditions, we analyzed the 

design of the propeller blades.  We assessed the limitations on the diameter of the rotor blades 

and analyzed how they vary with revolutions per minute. 

3.5.1 Maximum Blade Diameter Compared to Engine RPM 

 The maximum possible revolutions per minute of the NorEaster engine were calculated.  

This calculation depends on the speed of the blades at their tips.  The wing tip speed of the 

helicopter blade must remain subsonic in order to eliminate the possibility of vibrations that 

could disturb flight.   

Using the information on the maximum rpm of a helicopter engine, the maximum 

helicopter blade radius was calculated. The limitation on the speed of the tip of the helicopter 

blade was calculated by dividing the speed of sound by a safety factor of 1.2 and subtracting the 

maximum forward speed. The speed of sound is 761.2 mph at sea level and the fastest helicopter 

has a top speed of nearly 300 mph. As the helicopter increases its altitude, the maximum 

achievable speed will decrease.  This calculation can be seen in Appendix A. 

 Figure 13 shows the engine rpm verses the rotor length.  The curve, marked with squares, 

is the upper extreme representation of data because it does not take into account a safety factor or 

the speed of the helicopter.  The other three curves take into account a safety factor of 1.2 and a 

maximum forward speed of 100 mph, 200 mph and 300 mph.  If the rotor diameter is assumed to 

be 12 feet (1.83 m radius), the maximum engine speed is 780 rpm, 1013 rpm and 1246 rpm for a 

maximum forward speed of 300 mph, 200 mph and 100 mph respectively.  The engine’s pistons 

would feel like the engine was rotating four times as fast due to the internal 4 to 1 ratio.  
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Therefore, the performance of the pistons would be compared to maximum engine rpm values of 

3120, 4052, and 4984 for the three forward speeds of 300 mph, 200 mph and 100 mph 

respectively.  

 

Figure 13: Graph of the Propeller Blade Diameter vs. the Potential Revolutions per Minute 

3.5.2 Limitations of NACA0015 

Figure 14 shows a screenshot from MIT’s XFOIL program. This program calculates the 

lift and drag coefficients at a given angle of attack. The graph shown in Figure 14 shows the 

curve of a 2.5 degree angle of attack.  In this example, the drag coefficient is -0.00142, and the 

lift coefficient is 0.3091.  
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Figure 14: Image of the NACA 0015 Providing Lift and Drag Coefficients (MIT XFOIL) 

Figure 15 shows the lift and drag coefficients for a NACA 0015 airfoil.  As demonstrated 

in this figure, the lift to drag ratio ranges from 0 to 100.  Both the lift and drag coefficients are a 

function of the angle of attack.  The drag coefficient increases exponentially, until it reaches its 

stall point at an angle of attack of 20 degrees.  The lift coefficient increases linearly until it 

reaches a stall point at an angle of attack of 20 degrees.  Therefore, a NACA 0015 airfoil will 

cause an engine to stall at approximately 20 degrees.   
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Figure 15: Lift and Drag Coefficients of NACA 0015 at Varying Angles of Attack (CSEE) 

In order to compare the NorEaster engine with similar helicopter engines, the lift force is 

an important parameter to assess.  Calculating the lift force for a helicopter blade is a 

complicated procedure that requires assuming values for many of the engine’s design 

characteristics.  This rotor design method is often referred to as the blade element method.  In 

order to avoid these complexities, the lift force on a helicopter can be determined by utilizing the 

actuator disk model.  Under the actuator disk model, the blade of a helicopter is analyzed as the 

rotor blades are spun, so the model resembles that of a flat disk (Scott, 2001).  Increasing the 

weight of a helicopter and its engine will increase the disk loading.   

The lift force on a helicopter is dependent upon two factors.  First, as the air comes into 

contact with the helicopter blades that form the actuator disk, it is deflected downward.  Second, 
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Bernoulli’s principle states that air flowing over a curved surface gathers speed but loses 

pressure.  As a result, low pressure exists above the actuator disk.  The high pressure that builds 

up below the disk wants to move towards the low pressure, and in the process of this movement, 

lift is generated (Scott, 2001).   

For an airfoil, the lift force can be calculated by: 

  
 

 
       

In this equation, the density of air, ρ, is multiplied by the square of the true air speed, v, the plan 

form area, A, and the lift coefficient, CL, at the desired angle of attack.  In order to calculate this 

force, the desired angle of attack of the desired air speed must be decided.  These values 

typically depend on existing designs in the engine market.  The parameters can be optimized to a 

certain extent, but they cannot exceed the angle of attack at which the engine would stall out.  

For the NACA 0015 airfoil, the maximum angle of attack is 20 degrees.  As a result, the lift force 

must occur at an angle of attack of less than 20 degrees and at a true air speed that is competitive 

with existing technologies. 

3.6 Dynamometer Testing 

 This section of the report discusses the dynamometer testing that was performed on the 

current NorEaster Engine.  

3.6.1 Procedure 

A purpose-built dynamometer was created with the assistance of the O’Neill Motor 

Company, Inc. to gather experimental data on the NorEaster’s current output power.  A DC 

motor was used as a generator.  We recorded voltage across four resistors, shown in Figure 16, 

and measured the current through the circuit.   
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Figure 16: Circuit Board Used for the Dynamometer Test Performed on the NorEaster Engine 

The current was measured with an ammeter.  The voltage was measured with a voltmeter.  The 

rpm of the engine was measured with a tachometer.  In an effort to obtain accurate and consistent 

data, the current, voltage and engine rpm were recorded when there was a no-slip condition on 

the belt connected to the generator.  

Once all of the data was recorded, the power was calculated using the equation, 

     

Where P represents power measured in Watts; I represents current measured in amperes; and V 

represents voltage measured in volts.   The power was converted from Watts to horsepower and a 

linear regression was calculated to compare the output power to the engine rpm. For all 

computations, see Appendix B. 

3.6.2 Dynamometer Test 1 Results 

Once all data were collected and calculated, the rpm data were compared to the 

corresponding horsepower data, listed in Table 5.   
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RPM Horsepower 

1050 0.68 

600 5 

500 1.87 

760 1.67 
Table 5: Comparison of RPM with Corresponding Horsepower 

As displayed in Figure 17, there is a negative correlation between horsepower and RPM with a 

slope of -0.004561 and a y-intercept of 5.623.  This means that the engine’s output power 

decreased 0.4561 horsepower for every increase in 100 rpm.  It was concluded that the results of 

this test were not representative of the engine’s capabilities because the engine was not running 

well during this test.  A negative slope represents that the input to output power is in an inverse 

ratio which should not be the case.  Also, the line of best fit for the data points has a low R
2
 value 

of 0.343.  For a trend-line to be representative of the data in a scatter plot, the R
2
 value needs to 

be between 0.970 and 1.000. 

 
Figure 17: Graph Comparing Horsepower to RPM 

The variation in the collected data may be due to several factors. From examining the 

engine during the test, it was determined that only one of the two cylinders in the NorEaster 

fired. This is a mechanical failure that must be fixed in order to collect accurate data.  Secondly, 

the ammeter was did not accurately read any values below 10 amps, which resulted in invalid 
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data.  Additionally, it was very difficult to confirm a no-slip condition when the friction of the 

belt on the motor/generator was only being judged by sight and touch.  These variables, along 

with the typical human error in reading devices such as ammeters, tachometers, and volt meters, 

add up.  Finally, in the post-procedure inspections, it was determined that there was too much 

fuel in the engine during the combustion stage, since each of the brand new spark plugs was 

covered in soot after only having been used for approximately twenty minutes.  The combination 

of these errors account for the low values recorded. 

3.6.3 Dynamometer Test 2 Results 

Due to all of these inaccuracies, a second test was performed to measure the engine’s 

actual power, under different circumstances.  When executing the second dynamometer test, 

several improvements were made to the procedure resulting in more accurate data.  First, both 

cylinders were functioning properly with the correct fuel to air ratio.  Additionally, a more 

accurate ammeter was used to ensure that all readings below 10 amps were as close to the actual 

current as possible.  Once all data was collected and calculated, the rpm data was compared to 

the corresponding horsepower data, listed in Table 6.   

RPM Horsepower 

800 0.95 

900 0.94 

1000 1.07 

1000 1.09 

1100 0.98 

1100 1.01 

1200 1.09 

1200 1.17 

Table 6: Comparison of RPM with Corresponding Horsepower 

As shown in Figure 18, there is a positive correlation between horsepower and rpm with a slope 

of 0.389 and a y-intercept of 0.623.  
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Figure 18: Graph Comparing Horsepower to RPM 

This means that the engine’s output power increased by 0.389 horsepower for every increase in 

of 100 rpm.  The line of best fit for the data points has a low R
2
 value of 0.476, which is not 

within the desired range.  Unfortunately, the engine was still not running at its optimal 

performance, and the results still have some error in them. 

3.7 Pressure Transducer Test 

This section of the report provides detail on how the pressure inside one of the cylinder 

heads of the NorEaster engine was measured.   

3.7.1 Procedure 

In order to measure the pressure in the cylinder head as the engine fired, a piezoelectric 

Dytran pressure transducer Model 2200C5 was installed flush to the inside surface of the 

cylinder head.  The pressure transducer’s signal, measured in pC/psi, was relayed to a PCB 

Charge Amplifier Model 462S05 as shown in Figure 19, to convert the signal to mV/psi.  The 

signal from the charge amplifier on the HP Dynamic Signal Analyzer in mV was recorded as a 

function of time, shown in Figure 20.  The mV reading was converted to psi using a 6.22 mV/psi 

conversion factor, which was determined by the calibration method described in the following 

paragraph. 
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Figure 19: PCB Charge Amplifier Model 462S05 

 

Figure 20: HP Signal Analyzer 
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 In order to calibrate the Dytran pressure transducer, a strain gauge pressure transducer, 

model BLH-PR034, and the Dytran transducer, shown in Figure 21, were simultaneously 

subjected to the same static pressure from an air hose.  The pressure was released suddenly and 

data from both pressure transducers, Dytran (V) and Strain Gauge (psi), were recorded as a 

function of time.  The calibration factor of the Dytran pressure transducer was calculated by 

dividing the change in voltage of the Dytran pressure transducer by the change in psi of the strain 

gauge pressure transducer.  Three calibration tests were run to minimize error yielding an 

average calibration factor of 6.22 mV/psi. 

 

Figure 21: The Valve and Gage Used to Calibrate the Pressure Transducer 

 In order to pinpoint the piston’s location at TDC in relation to the pressure readings, a 

Shaft Encoder Model 776, shown in Figure 22, was mounted on the outer rotating shaft that is 

attached to the cam.  The signal from the shaft encoder was recorded simultaneously with the 

pressure transducer in the same signal analyzer as a function of time. 
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Figure 22: Shaft Encoder Model 776 Mounted on the NorEaster Engine 

 The first test was completed without the cylinder heads firing, allowing for a comparison 

between the pressure test and compression test data.  Two more relevant tests were performed 

and recorded.  The data was collected taking pressure measurements at a rate of 16,384 Hz.  

After the first test, we noticed that only the cylinder with the pressure transducer in it was firing.  

The first test results were compared to the results of a second test in which the spark plug was 

removed from the cylinder that was not firing.   

3.7.2 Pressure Transducer Test Results 

 Figure 23 shows the pressure measurements of the motoring NorEaster engine.  The 

pressure data is displayed by the line labeled A, and the shaft encoder index is represented by the 

line labeled B.  The sharp increase in the index represents when the piston is at top-dead center 

during the power stroke.  The peak values of each pressure curve demonstrate that the maximum 

pressure during compression is approximately 139.9 psi.  A pressure test was run with the engine 

firing, shown in Figure 24, using the same setup as the compression test.  As exhibited in the 

graph, the engine fired after top-dead center at a pressure of 75 psi.  We noticed a significant 

Shaft Encoder 
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discrepancy between the peak compression values in these two tests.  These tests were performed 

one after the other with the same setup.  At this time the team does not have a solution for why 

there is a significant difference in compression pressures between the two tests.  Also, both of the 

compression pressures measured with the Dytran pressure transducer were different than the 

113.5 psi value measured with the mechanical compression tester.  Since the two methods of 

testing the compression pressure in the cylinder were different, it is reasonable for there to be a 

variance in the compression pressures.  However, more testing would need to be done to 

determine why the difference between the measured pressures was so large. 

 

Figure 23: Pressure Data: Compression Test 
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Figure 24: Pressure Data: Retarded Spark with Low Time Resolution 

 Figure 25 shows the recorded pressures during the two trials for a cylinder firing when 

the piston was at TDC.  The first trial, labeled B, included both spark plugs, and the second trial, 

labeled A, included only one spark plug in.  Again the shaft encoder, labeled C, was used to 

determine where top-dead center occurred during the tests.  The time scale resolution was set to 

16,384 Hz during these two trials, and the greatest time scale in which the pressures from two 

compression strokes were recorded.  This allowed for more accurate pressure measurements.  

The data collected from one test to the next is consistent and the difference in the peak pressure 

with one spark plug or two is negligible.  The average maximum pressure was 341.1 psi. 
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Figure 25: Pressure Data: Advanced Spark with High Time Resolution 

The turning force, displayed in Figure 26, was calculated from the product of the pressure 

from the pressure test, the area of the piston, and the tangent of the pressure angle.  From this 

calculation, the maximum force which was turning the cam was 2173 N.  To find the torque, the 

turning force was multiplied by the radius of the cam at that given time.  The maximum torque 

from the torque graph, shown in Figure 27, for the calibration was 333.2 N*m.  
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Figure 26: Calibration Turning Force 

 

Figure 27: Calibration Torque 
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 For the remaining trials, we manually calculated the maximum turning force and torque. 

A summary of these values for the other trials are shown in Table 7. 

  Max Pressure 
(psi) 

Turning Force 
(N) 

Torque 
(N*m) 

Calibration 139.1 2173 333.2 

Retarded Spark 265.8 4151 636.6 

Somewhat 
Advanced 

263.1 4109 630.1 

Advanced 347.6 5428 832.5 

Advanced 1 Plug 338.1 5280 809.7 
Table 7: Pressure, Turning Force, and Torque Summation 
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4.0 Results 

The following section of the report provides conclusions and recommendations for a 

future NorEaster engine design.  In order to assess the possibilities for the NorEaster engine, we 

developed two mathematical models to analyze the differences between a gasoline and diesel 

engine.  The military has expressed a minimum desired power to weight ratio of 0.5.  Upon 

analyzing these variables, we developed several conclusions about future designs for the 

NorEaster engine.   

4.1 Gasoline Engine Results 

 The mathematical model we used to analyze the power to weight ratio of a gasoline 

engine design varies as a function of the firing temperature, the compression ratio and the bore 

size.  For gasoline engines, the firing temperature typically ranges from 1600 K to 2000 K 

(Moran and Shapiro, 2011).  At temperatures beyond this point, the cylinder will get too hot and 

would potentially melt.  Figure 28 demonstrates how the power to weight ratio varies with the 

firing temperature.  The line labeled A shows the power to weight of the engine at a compression 

ratio of 10 and a bore of 4 inches.  The line labeled B shows the power to weight ratio at a 

compression ratio of 6.8 and a bore of 4 inches.  In both circumstances, the power to weight ratio 

increases as the firing temperature increases. 

 

Figure 28: Power to Weight Ratio as a Function of Firing Temperature 
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The compression ratio of a gasoline engine typically ranges from 6.6 to 12 (Gotoh and 

Motoyama).  Figure 29 demonstrates how the power to weight ratio varies with the compression 

ratio.  The line labeled A occurs at a firing temperature of 1600 K and a bore of 4 inches.  The 

power to weight ratio reaches a maximum of 0.315 at a compression ratio of approximately 9.  

The line labeled B occurs at a firing temperature of 2000 K and a bore of 4 inches, but here a 

maximum power to weight ratio of 0.463 is achieved at a compression ratio of approximately 

12.5.  This figure demonstrates that increasing the compression ratio will increase the power to 

weight ratio, until the relative maximum for a specified firing temperature is achieved. 

 

Figure 29: Power to Weight Ratio as a Function of Compression Ratio 

The NorEaster engine’s current bore size ranges from 3 to 5 inches.  Figure 30 

demonstrates how the power to weight ratio varies with bore size.  This relationship is graphed at 

a firing temperature of 1800 K and a compression ratio of 10.  The graph shows that by 

increasing the bore size in the range of 3 in to 5 in, a higher power to weight ratio can be 

achieved. 
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Figure 30: Power to Weight Ratio as a Function of Bore Size 

 Additionally, the weight of the engine is dependent upon the bore.  The NorEaster Design 

team gave us the weight from their calculations of a 4 inch bore NorEaster engine experiencing 

diesel forces.  Figure 31 demonstrates the calculation that was used to estimate the weight of a 3 

inch and 5 inch engine.  The total weight of the engine is calculated under the assumption that 

everything aside from the cylinder will not change drastically by increasing the bore size.  Wall 

thickness is assumed to be 0.25 inches and the thickness of the top of the cylinder, te, is assumed 

to be 0.75 inches. The length of the cylinder was measured to be 12 inches. Figure 32 is a two-

dimensional cross-section of the cylinder.  As a result of this equation, the power to weight ratio 

is more accurate for different bore sizes. 
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Figure 31: Equation to Calculate Weight as a Function of Bore Size 

  

Figure 32: A 2 dimensional cross-section of a cylinder 
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4.1.1 Current Gasoline Engine Results 

Our model predicts a power to weight ratio of 0.259 for an eight cylinder Army head 

gasoline NorEaster engine.  This would occur at a measured bore of 3 inches, a compression 

ratio of 6.8 and a firing temperature of 2000 K.  This calculation can be seen in Appendix C.  

We expect a new NorEaster engine design to be able to achieve a power to weight ratio 

of approximately 0.46 with a 4 inch bore, a 3 inch stroke, a compression ratio of 10 and a firing 

temperature of 2000 K.  

4.2 Diesel Engine Results  

 Diesel engines have a higher efficiency than gasoline engines, and diesel fuel is non-

explosive.  The ideal efficiency for a diesel engine is 56% (Office of Energy Efficiency and 

Renewable Energy, 2003).  However, an average achievable efficiency for a diesel engine is 

45% (Office of Energy Efficiency and Renewable Energy, 2003).  Therefore, we performed a 

mathematical analysis for a diesel NorEaster engine.   

The mathematical model that was used to analyze the power to weight ratio of a diesel 

engine design varies as a function of the cut-off ratio, the compression ratio and the bore size. 

The cut-off ratio represents the ratio of the volume in the cylinder at the start of ignition to the 

volume at the end of ignition (Engineering Software).  For diesel engines, the cut-off ratio 

typically ranges from 1.5 to 3.5 (Engineering Software).  Figure 33 demonstrates how the power 

to weight ratio varies with the cut-off ratio rc.  The solid line depicts a compression ratio of 20 

and a bore of 4 inches.  The dotted line is the power to weight ratio derivative at the same 

conditions.  Figure 33 shows that the cut-off ratio increasing linearly until 2.5 and then behaves 

parabolic.  The optimal cut-off ratio for highest power to weight ratio is 2.75.   

 

Figure 33: Power to Weight Ratio as a Function of Cut-Off Ratio 
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The compression ratio on a diesel engine typically ranges from 14 to 24 (Engineers Edge, 

2012).  Figure 34 demonstrates how the power to weight ratio varies with the compression ratio.  

The line occurs at a cut-off ratio of 2.75 and a bore of 4 inches.  The power to weight ratio 

reaches a maximum of 0.492 at a compression ratio of approximately 20.  This figure 

demonstrates that increasing the compression ratio will increase the power to weight ratio, until 

the relative maximum for a specified cut-off ratio is achieved. 

 

Figure 34: Power to Weight Ratio as a Function of Compression Ratio 

Similarly to the gasoline engine, the range of bore sizes on a diesel NorEaster engine 

varies from 3 to 5 inches.  Figure 35 demonstrates how the power to weight ratio varies with 

bore size.  The line occurs at a cut-off ratio of 2.75 and a compression ratio of 20.  With our 

weight estimates, a power to weight ratio of 0.49 can be achieved at a bore of approximately 4 

inches.  This graph shows that by increasing the bore size within the range of 3 in to 5 in, a 

higher power to weight ratio can be achieved. 

 

Figure 35: Power to Weight Ratio as a Function of Bore Size 
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 As with the gasoline engine, the weight of the diesel engine is dependent upon the bore. 

Figure 31 in Section 4.1 demonstrates the calculation that was used to obtain the weight. 

4.3 Overall Findings for the NorEaster Engine Designs 

The weights calculated in Sections 4.1 and 4.2 used a safety factor of 2 for most of the 

components. The lowest safety factor was 1.5.  This results in a conservative weight estimate and 

a lower power to weight ratio than with a lower safety factor.  Typically, aircraft have a safety 

factor of 1.5 (Acar et al., 2004).  Table 8 is a table comparing the different weights and power to 

weight ratios that can be calculated for both gasoline and diesel engines at varying various 

engine design parameters.  Table 8 provides a summary of these values. Out of the four 

NorEaster engine configurations shown below, the best power to weight ratio is the 4 inch bore 

diesel engine.  This will give a power to weight ratio of 0.49.  

 Fire Scout NorEaster Diesel NorEaster Gasoline  

 3 in Bore 4 in Bore 3 in Bore 4 in Bore 

Engine Weight (lb) 173 812 842.5 812 842.5 

Power (hp)   419.7 233 414 218.2 388 

Power to Weight 2.43 0.29 0.49 0.27 0.46 

Table 8: Comparison of the Power to Weight Ratios at Different Weight and Engine Parameters 

Table 8 also demonstrates the vast differences in the power to weight of the Fire Scout 

turbine engine to the NorEaster engine. The Fire Scout has a power to weight ratio of 2.43. 

However, this power to weight ratio does not include the weight of the transmission, gearing, or 

tail rotor.  These components would not be needed in the NorEaster engine design. Therefore, 

comparing these two values is misleading.  

Table 9 shows both the power to weight of the Fire Scout at its minimum and maximum 

weight.  These two values are 0.2 and 0.13 respectively, which are significantly less than the 

power to weight of the engine shown in Table 8.  Additional weight of the NorEaster can be 

attributed to the specific needs of the consumer.  To have a better power to weight ratio (horse 

power divided by total helicopter weight) than the current Fire Scout, the NorEaster’s total 

weight would need to be under 2045 pounds. Since the engine would weigh just under 900 

pounds, the additional components would need to be less than 1145 pounds. Because the 



44 

 

NorEaster does not require a tail rotor, transmission or gearing, it is difficult to compare the Fire 

Scout and the NorEaster without all of Sikorsky’s information.  

Fire Scout 

Empty Weight (lb) 2073 

Power to Empty Weight of Fire Scout 0.2 

Max Takeoff Weight (lb) 3150 

Power to Max Takeoff Weight of Fire Scout 0.13 

Table 9: Fire Scout Power to Weight 
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5.0 Conclusions and Recommendations 

 The goal of this project was to model the thermodynamic behavior of the NorEaster 

engine, calculate the power to weight ratio, and assess its future development possibilities.  In 

order to perform this calculation, we developed two mathematical models using Mathcad, one 

for a diesel engine design and one for a gasoline engine design.  Both of these models use air-

standard Otto Cycle analysis to calculate the engine’s output power and then divide that value by 

the weight, which was calculated by the NorEaster Design team.   

 In order to generate these models, we studied the existing prototype of the NorEaster 

engine.  First, the team analyzed the rotor blades used on the engine.  These blades resemble the 

NACA0015 airfoils used on aircraft.  They are appropriate because they will minimize engine 

stalls, and they will help maximize the revolutions per minute.   

 To further assess the existing NorEaster engine prototype, we performed a dynamometer 

test and a pressure test.  Unfortunately, these test results showed that there are several problems 

and inefficiencies in the prototype.  During these tests, we encountered problems due to leaks 

and the fact that only one cylinder was regularly firing.  While the output power does increase 

with rpm, it was not as large an increase as expected.  Additionally, the motoring pressure in the 

cylinder heads was lower than anticipated.  We do not yet have any ample explanation for these 

discrepancies in data, but believe that some of them can be attributed to the flaws in the 

prototype.   

 Despite these flaws in the prototype, the team analyzed new designs of the NorEaster 

engine.  These new designs need to meet the United States Military’s desired power to weight 

ratio of 0.5.  The Design Team’s NorEaster engine with a 4 inch bore and gasoline fuel generates 

a power to weight ratio of 0.46.  The same engine running on diesel fuel generates a power to 

weight of 0.49.  Both of these designs utilize a 2.0 safety factor for most components. The lowest 

safety factor in the design is 1.5.  The materials selections and safety factor of the engine could 

be altered to reduce the weight and thus increase the power to weight ratio.  From our calculated 

power, we determined that the NorEaster weight would need to be reduced by approximately 15 

pounds in order to achieve a power to weight of 0.5.  Therefore, we recommend building a larger 
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prototype of the engine with a lower safety factor and ideal engine parameters. This new 

prototype could be tested and compared to our mathematical model’s power estimates.  

 Since the NorEaster engine does not utilize a tail rotor, transmission or gears, we also 

recommend obtaining the weight of these components for Sikorsky’s current Fire Scout.  This 

information will give a clear representation of the advantages and disadvantages of the NorEaster 

engine and allow us to better compare the two aircraft.    
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Appendix A – Blade to Engine Relationships 
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Appendix B – Dynamometer Mathcad 

Dynamometer Test 1 Calculations and Results 
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Dynamometer Test 2 Calculations and Results 
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Appendix C – Gasoline and Diesel Mathematical Models 

Gasoline Engine Model 
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Diesel Engine Model 
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